
Thèse de doctorat de l’Université ITMO et de
l’Université Sorbonne Paris Cité

Préparée à l’Université Paris Diderot
Ecole doctorale de Sciences Mathématiques de Paris Centre, ED 386

INRIA Paris, GALLIUM

Synchronization Costs in Parallel Programs
and Concurrent Data Structures

Par Vitalii Aksenov

Thèse de doctorat d’Informatique

Dirigée par Petr Kuznetsov, Anatoly Shalyto et Carole Delporte

Présentée et soutenue publiquement à Paris le 26 Septembre 2018

Jury:
President du jury: Hugues Fauconnier, HDR, Paris 7 Diderot
Rapporteurs: Danny Hendler, PhD, Ben-Gurion University

Rachid Guerraoui, PhD, EPFL
Examinateurs: Sylvie Delayët, HDR, Université Paris Sud

Directeur de thèse: Carole Delporte, HDR, Paris 7 Diderot
Co-directeurs de thése: Petr Kuznetsov, PhD, Télecom ParisTech
Directeur de cotutelle: Anatoly Shalyto, DSc, ITMO University

Abstract

To use the computational power of modern computing machines, we have to deal with
concurrent programs. Writing efficient concurrent programs is notoriously difficult, pri-
marily due to the need of harnessing synchronization costs. In this thesis, we focus on
synchronization costs in parallel programs and concurrent data structures.
First, we present a novel granularity control technique for parallel programs designed

for the dynamic multithreading environment. Then in the context of concurrent data
structures, we consider the notion of concurrency-optimality and propose the first imple-
mentation of a concurrency-optimal binary search tree that, intuitively, accepts a concur-
rent schedule if and only if the schedule is correct. Also, we propose parallel combining,
a technique that enables efficient implementations of concurrent data structures from
their parallel batched counterparts. We validate the proposed techniques via experimental
evaluations showing superior or comparable performance with respect to state-of-the-art
algorithms.

From a more formal perspective, we consider the phenomenon of helping in concurrent
data structures. Intuitively, helping is observed when the order of some operation in a
linearization is fixed by a step of another process. We show that no wait-free linearizable
implementation of stack using read, write, compare&swap and fetch&add primitives can
be help-free, correcting a mistake in an earlier proof by Censor-Hillel et al. Finally, we
propose a simple way to analytically predict the throughput of data structures based on
coarse-grained locking.

Keywords: parallel programs, concurrent data structures, synchronization, perfor-
mance, granularity control, algorithms

Resumé

Pour utiliser la puissance de calcul des ordinateurs modernes, nous devons écrire des pro-
grammes concurrents. L’écriture de programme concurrent efficace est notoirement diffi-
cile, principalement en raison de la nécessité de gérer les coûts de synchronization. Dans
cette thèse, nous nous concentrons sur les coûts de synchronisation dans les programmes
parallèles et les structures de données concurrentes.
D’abord, nous présentons une nouvelle technique de contrôle de la granularité pour les

programmes parallèles conçus pour un environnement de multi-threading dynamique. En-
suite, dans le contexte des structures de données concurrentes, nous considérons la notion
d’optimalité de concurrence (concurrency-optimality) et proposons la première implémen-
tation concurrence-optimal d’un arbre binaire de recherche qui, intuitivement, accepte
un ordonnancement concurrent si et seulement si l’ordonnancement est correct. Nous
proposons aussi la combinaison parallèle (parallel combining), une technique qui permet
l’implémentation efficace des structures de données concurrences à partir de leur version
parallèle par lots. Nous validons les techniques proposées par une évaluation expérimen-
tale, qui montre des performances supérieures ou comparables à celles des algorithmes de
l’état de l’art.
Dans une perspective plus formelle, nous considérons le phénomène d’assistance (help-

ing) dans des structures de données concurrentes. On observe un phénomène d’assistance
quand l’ordre d’une opération d’un processus dans une trace linéarisée est fixée par
une étape d’un autre processus. Nous montrons qu’aucune implémentation sans attente
(wait-free) linéarisable d’une pile utilisant les primitives read, write, compare&swap et
fetch&add ne peut être “sans assistance” (help-free), corrigeant une erreur dans une preuve
antérieure de Censor-Hillel et al. Finalement, nous proposons une façon simple de prédire
analytiquement le débit (throughput) des structures de données basées sur des verrous à
gros grains.

Mots clefs: programmes parallèles, structures de données simultanées, synchronisa-
tion, performance, contrôle de la granularité, algorithmes

Contents

1. Introduction 11
1.1. Concurrent Programs . 11
1.2. Synchronization . 12
1.3. Overview of the Results . 13

1.3.1. Granularity Control Problem . 13
1.3.2. A Concurrency-Optimal Binary Search Tree 15
1.3.3. Parallel Combining . 16
1.3.4. Helping as a Synchronization Technique 17
1.3.5. Performance Prediction of Coarse-Grained Programs 17

1.4. Publications . 18
1.5. Roadmap . 18

2. Background: Models and Definitions 19
2.1. Parallel Models . 19

2.1.1. Parallel Random Access Machine . 19
2.1.2. Bulk Synchronous Parallelism . 19
2.1.3. Asynchronous Shared Memory . 19

2.2. Expressions of Parallel Programs . 20
2.2.1. Static Multithreading . 20
2.2.2. Dynamic Multithreading . 20

2.3. Data Structures . 22
2.3.1. Corectness, Progress Guarantees and Complexity Model of Concur-

rent Data Structures . 23
2.3.2. Data Types Considered in This Thesis 25

3. Overview of Data Structure Implementations 27
3.1. Binary Search Trees . 27

3.1.1. Parallel Batched Implementations 28
3.1.2. Concurrent Implementations . 28

3.2. Skip-Lists . 30
3.2.1. Concurrent Implementations . 31

3.3. Priority Queues . 33
3.3.1. Sequential Binary Heap . 33
3.3.2. Parallel Batched Implementations 33
3.3.3. Concurrent Implementations . 34

4. Automatic Oracle-Guided Granularity Control 37
4.1. Introduction . 37
4.2. Overview . 39
4.3. Algorithmic Granularity Control . 42

4.3.1. Making Predictions . 43
4.3.2. Dealing with Nested Parallelism . 43
4.3.3. Dealing with Real Hardware . 44
4.3.4. Analysis Summary . 44
4.3.5. High-Level Pseudo-Code for the Estimator and Spguard 45
4.3.6. Implementing Time Measurements 46
4.3.7. Programming Interface . 48

7

4.4. Analysis . 49
4.4.1. Definitions and Assumptions . 49
4.4.2. Results Overview . 51
4.4.3. Additional Definitions . 52
4.4.4. Basic Auxiliary Lemmas . 55
4.4.5. Proofs . 57

4.5. Experimental Evaluation . 62
4.5.1. Experimental Setup . 63
4.5.2. Input Data Description . 64
4.5.3. Main PBBS Results . 65
4.5.4. Parallel BFS . 65
4.5.5. Portability Study . 67
4.5.6. Summary . 68

4.6. Related Work . 68
4.7. Conclusion . 72

5. A Concurrency-Optimal Binary Search Tree 73
5.1. Introduction . 73
5.2. Binary Search Tree Implementation . 74

5.2.1. Sequential Implementation . 75
5.2.2. Concurrent Implementation . 75

5.3. Concurrency-Optimality and Correctness. Overview 78
5.4. Proof of Correctness . 81

5.4.1. Structural Correctness . 81
5.4.2. Linearizability . 82
5.4.3. Deadlock-Freedom . 87

5.5. Proof of Concurrency-Optimality . 87
5.6. Implementation and Evaluation . 91
5.7. Conclusion . 93

6. Parallel Combining: Benefits of Explicit Synchronization 95
6.1. Introduction . 95
6.2. Parallel Combining and Applications . 96

6.2.1. Read-optimized Concurrent Data Structures 96
6.2.2. Parallel Batched Algorithms . 98

6.3. Binary Search Tree with Parallel Combining 98
6.3.1. Contains Phase . 99
6.3.2. Update Phase . 100
6.3.3. Analysis . 102

6.4. Priority Queue with Parallel Combining . 103
6.4.1. Combiner and Client. Classes . 104
6.4.2. ExtractMin Phase . 107
6.4.3. Insert Phase . 107
6.4.4. Analysis . 108

6.5. Experiments . 111
6.5.1. Concurrent Dynamic Graph . 112
6.5.2. Binary Search Tree . 113
6.5.3. Priority Queue . 114

6.6. Related Work . 115
6.7. Conclusion . 116

7. On Helping and Stacks 117
7.1. Introduction . 117
7.2. Model and Definitions . 118

8

7.3. Helping and Exact Order Types . 119
7.4. Wait-Free Stack Cannot Be Help-Free . 120

7.4.1. Help-Free Stacks Using Reads, Writes and Compare&Swap 120
7.4.2. Adding Fetch&Add . 124

7.5. Universal Construction with Move&Increment 127
7.6. Related Work . 129
7.7. Conclusion . 130

8. Performance Prediction for Coarse-Grained Programs 131
8.1. Introduction . 131
8.2. Abstract Coarse-Grained Synchronization 131
8.3. Model Assumptions . 132
8.4. CLH Lock . 132

8.4.1. Cost of an Operation . 132
8.4.2. Evaluating Throughput . 133

8.5. Experiments . 134
8.6. Conclusion . 135

9. Conclusion and Future Work 137

10.Bibliography 141

A. Coûts de Synchronization dans les Programmes Parallèles et les Structures
de Donnèes Simultanées 151

9

1. Introduction

In 1965, Intel co-founder Gordon E. Moore made a prediction [119], widely known as
Moore’s law, that the number of transistors per integrated circuit would increase ex-
ponentially leading to an exponential increase of a chip performance. However, around
2004, such increase in performance became economically inefficient due to hardware limi-
tations [146]. To resolve this, hardware manufacturers had to find another way to improve
the performance. They decided to combine multiple computational units (cores) on the
same processor, named multicore processor. Further, we avoid the term core and use the
term process instead: a core is a physical object while a process is an abstraction that
represents a sequential code running on a core.

1.1. Concurrent Programs

The invention of multicore processors, known as the “multicore revolution” [110], changed
the whole paradigm of computing. To benefit from the new design of processors, sequential
algorithms had to be replaced by concurrent ones.

In this thesis, we consider two types of concurrent programs: parallel programs and
concurrent data structures. The distinction between these types of programs is based on
the relation between inputs and outputs.

Similarly to sequential programs, a parallel program, given an input, should produce
an output that satisfies a specification. A specification maps each possible input to a set
of allowed outputs. The main advantage of parallel programs in comparison to sequential
programs is that they can use multiple processes to improve performance (Figure A.1).
Consider a sorting algorithm as an example. Its specification is: given an input array

a the algorithm should output an array of elements of a in the ascending order. The
sequential mergesort algorithm sorts an array of size m in O(m logm) time, while its
parallel version [49] only needs O(mn · logm) time where n is the number of processes.

In concurrent data structures, e.g., concurrent stacks and concurrent binary search
trees, inputs and outputs are distributed across the concurrent processes (Figure A.2).
The input of a process consists of operations called on the data structure by that process.
The process performs each operation and appends its result to the output. Of course, these
results should satisfy some correctness property. Typically, the correctness properties of
concurrent data structures are split into two categories: safety or liveness.

A safety property asserts that “nothing bad ever happens”. The most reknown safety
property is linearizability [93] — the invocations and responses of high-level operations
observed in the execution should constitute a correct sequential history.
A liveness property asserts that “something good eventually happens”. The most com-

mon liveness properties are:

• wait-freedom — every process eventually completes its operation;

• lock-freedom — at least one process eventually completes its operation;

• starvation-freedom — every process eventually completes its operation if each process
takes an infinite number of steps;

• deadlock-freedom — at least one process eventually completes its operation if each
process takes an infinite number of steps.

11

input

...

output

Figure 1.1.: Execution of a parallel pro-
gram

...

in
pu
t

ou
tp
ut

in
pu
t

... in
pu
t

...

ou
tp
ut

ou
tp
ut

Figure 1.2.: Execution of a concurrent data
structure

Note that starvation-freedom and deadlock-freedom allow the implementation to use
locks, while wait-freedom and lock-freedom do not [91].

1.2. Synchronization
To ensure correctness of parallel programs and concurrent data structures, we need syn-
chronization, i.e., coordination between the processes. Informally, synchronization is used
to handle conflicts on the shared data, e.g., resolving data races, and on shared resources,
e.g., memory allocation and deallocation.
Let us have a look at how synchronization is instantiated in parallel programs. Parallel

programs are typically written for two environments: for static multithreading and for
dynamic multithreading [50].
In static multithreading, each process is provided with its own program. These programs

are written as a composition of supersteps. During a superstep, a process performs inde-
pendent local computations. After the superstep is completed, the processes synchronize
to accumulate the results of their independent computations.
In dynamic multithreading, the program is written using fork-join mechanism (or a

similar one, for example, # pragma omp parallel in OpenMP [34]). Fork-join takes
two functions, named branches, as arguments and executes them in parallel until their
completion. One fork-join call incurs the synchronization overhead at least on [72]:

1. Allocating and deallocating a thread: the shared memory should be able to process
concurrent requests.

2. Scheduling of a thread. The scheduler should accept concurrent requests to execute
threads and should control migration of threads. The migration happens when a
thread changes the process-owner: this typically involves significant overhead spent
on transfering the necessary data.

3. Joining of the two threads. A process that completes a thread decrements a concur-
rent counter of the corresponding fork-join call. If the counter is zero the process
proceeds with the code after the fork-join, otherwise, it flags the scheduler that it is
idle.

An important property of most parallel programs (written either for static or dynamic
multithreading) is that they are designed in a way that there are no data races except for
the races described above.

In contrast, data races arising in concurrent data structures, typically, are way more
diverse because each process has its own input and invocations of operations on different

12

processes are not synchronized. As a consequence, synchronization is individually crafted
from scratch for each concurrent data structure. For example, lock-based data structures
get rid of data races using locks that enable an exclusive access to data. In wait-free
and lock-free data structures, data races are allowed and they are resolved using different
techniques, for example, helping where one process may perform some work on behalf
of other processes. This complexity of synchronization makes concurrent data structures
more challenging to design than parallel programs.

1.3. Overview of the Results
Synchronization, when it is not implemented properly, can induce an overhead overwhelm-
ing the benefits of parallelism. Ideally, the programmer should use just the right amount
of synchronization to ensure correctness. In this thesis, we discuss how to improve perfor-
mance in different settings by reducing the synchronization overhead.
At first, we provide a new practical way to solve the granularity control problem [100].

Suppose that we are provided with a parallel program written for dynamic multithreading
using the fork-join mechanism. Informally, the granularity control problem consists in
deciding, for each fork-join in a given program, whether to call it or to execute its branches
sequentially in order to achieve the best performance. On one hand, if too many calls are
executed, the total synchronization overhead (spent on allocation, scheduling, and joining
of threads) can take a considerable fraction of the total execution time. On the other hand,
if too many calls are executed sequentially, we lose potential benefits of multiprocessor
machine.
Then we describe two techniques to build concurrent data structures with potentially

low synchronization overhead:

• concurrency-optimality, a technique that constructs a concurrent data structure from
a sequential implementation with the theoretically “optimal” synchronization;

• parallel combining, a technique that uses explicit synchronization to gather all con-
current accesses to a concurrent data structure and then calls a parallel algorithm
that requires a small amount of synchronization, thus, reducing the total synchro-
nization overhead.

Further, we consider synchronization in wait-free and lock-free data structures that
typically appears in a form of helping. We identify a mistake in an earlier proof by Censor-
Hillel et al. [44] of the fact that stack does not have a wait-free help-free implementation
and, then, we reprove that fact.
Finally, we describe a simple method that theoretically measures the throughput of

simple coarse-grained lock-based concurrent data structures exporting one method: a
critical section of size C guarded by CLH lock [51] followed by a parallel section of size P .

Below, we describe the results in more details.

1.3.1. Granularity Control Problem
Over past decades many programming languages and systems for parallel computing have
been developed, such as Cilk, OpenMP, Intel Threading Building Blocks, etc., to pro-
vide dynamic multithreading [50] (sometimes called implicit parallelism). Although these
systems raise the level of abstraction and hide synchronization details from the user, the
programmer still has to perform extensive optimization in order to improve performance.
One such optimization is granularity control, which requires the programmer to determine
when and how parallel tasks should be sequentialized.
We present an automatic algorithm to control granularity using an oracle: the oracle

predicts the execution time of a parallel code and helps the algorithm decide whether
the code should be sequentialized or not. We prove that this algorithm has the desired

13

theoretical properties, i.e., the overhead on synchronization is small compared to the total
execution time. Finally, we implement it in C++ as an extention to Cilk and evaluate its
performance. The results show that our technique can eliminate hand tuning in many
cases and closely match the performance of hand-tuned code.
To get an intuition behind granularity control, suppose that a dynamic multithreading

is implemented via the fork-join primitive [50]. This primitive takes two functions, called
program branches, as arguments and executes them in parallel until their completion.
Despite its simplicity, fork-join is powerful enough to implement other common parallel
expressions, including parallel loops and nested parallel computations [115].
One important aspect of dynamic multithreading is that it is possible to express the

efficiency of a parallel program using so-called Work-Span Framework: work is the time
spent to execute the program using an idealized machine with one process and span is
the time spent to execute a program using an idealized machine with an infinite supply of
processes.
Widely accepted as complexity metrics for parallel programs, work and span do not

account for the real overhead hidden in a fork-join call — they consider this call to cost
one unit of work (one instruction). However, in practice, this cost is non-negligible — one
fork-join call induces at least an allocation of a new thread, its scheduling and, finally,
the joining. Frequent calls of this primitive can take a considerable fraction of the total
execution time. Thus, for each fork-join call, we have to decide whether to call it or to
execute an alternative sequential algorithm, e.g., execute its branches sequentially. The
resulting granularity control problem is about the synchronization overhead: we want to
call fork-joins rarely enough so that the time spent on the overhead of these calls is a
small fraction of the total execution time, and, on the other hand, we want to call them
often enough to make processes busy.

The most popular solution to this problem is to cover each fork-join call with a special
condition-guard [100]: if the work in both branches exceeds some grain-size constant, i.e.,
the approximation of the execution time is much bigger than the overhead in fork-join,
then we are allowed to call it; otherwise, we execute an alternative sequential algorithm
(e.g., execute branches sequentially).
However, such an approach is quite inconvenient. First, a program can have several

fork-join calls that have distinct condition-guards with different grain-size constants. To
improve performance, we have to tune all these constants. This tuning is tedious, especially
when the constants cannot be tuned separately. For example, two constants of different
condition-guards that correspond to two nested fork-join calls depend on each other. There
is a further performance issue: everytime we want to check whether the chosen constants
provide good performance the program has to be re-executed. Second, the tuned constants
are non-portable, i.e., the constants tuned for one machine can provide bad performance
on other machine.

In order to resolve these two issues, difficulty of tuning and non-portability, we present
an automatic granularity control technique in a form of a sp-guard (a substitution of a
condition-guard).
At first, the user should provide the asymptotic cost function of the code covered by

each sp-guard. Notice that, as these functions depend only on the algorithm, they are
portable.
Second, the user should provide a machine dependent variable κ. It represents the

smallest amount of work that is big enough in comparison to an overhead in a fork-join
call.
Our automatic granularity control algorithm works with each sp-guard g separately.

At first, it determines the biggest value Ng of the cost function for which the sequential
execution time of the covered fork-join does not exceed κ. Then, when the fork-join is
about to be called, the cost is compared with Ng. If Ng is smaller than the cost, then the
execution time exceeds κ and we can call the fork-join, otherwise, an alternative sequential

14

1

null

1

1

null
π1

2

1

null
π2π1

3

1

null

2

π1

3

π2

4

1

2
π1

3

π2

5

1

3

2

π1 π2

6

Figure 1.3.: A non-linearizable schedule

algorithm is executed (e.g., two branches are executed sequentially).
For our granularity control technique, we provide a theoretical analysis in the Work-

Span Framework [104] together with a rigorous experimental analysis on a wide range
of parallel programs taken from the PBBS suite [142] on three machines with different
architectures. Experiments show that the performance of programs written with our
automatic granularity control is comparable or even better (up to 32% faster and no more
than 6% slower) than the performance of hand tuned code.

1.3.2. A Concurrency-Optimal Binary Search Tree

Implementing a concurrent data structure typically begins from a sequential implemen-
tation. When used as is in a concurrent environment, a sequential data structure may
expose incorrect behaviour: lost updates, incorrect responses, etc. One way to ensure
correctness is to protect portions of the sequential code operating on the shared data with
synchronization primitives. By that, certain schedules, i.e., interleavings of the steps of the
sequential implementation, are rejected, and the more synchronization we use the more
schedules we reject.
Using this notion of schedules, we can compare the “concurrency” of algorithms: lin-

earizable implementation A is “more concurrent” than linearizable implementation B if
the set of schedules accepted by A is a strict superset of the set of schedules accepted by
B. Thus, a linearizable implementation is concurrency-optimal [79] if it accepts all lin-
earizable schedules. We expect this implementation to perform well since it uses exactly as
little synchronization as necessary to ensure the linearizability of the data structure. Note
that the notion of concurrency-optimality is theoretical and, thus, we expect concurrency-
optimal implementations to perform well on any machine.
As an example, consider the sequential partially-external binary search tree and its

following schedule (Figure A.3):

1. initially the tree consists of one node with value 1;

2. π1 = insert(2) finds that 2 should be in the right child of the node with 1;

3. π2 = insert(3) finds that 3 should be in the right child of the node with 1;

4. π1 and π2 create new nodes;

5. π1 links its node as the right child of the node with 1;

6. π2 overwrites the right child of the node with 1.

This schedule is non-linearizable: operation insert(2) is lost and, thus, it should be
rejected by any concurrency-optimal implementation.
We design a concurrency-optimal binary search tree. We implement it and compare

against the state-of-the-art implementations [39, 52, 57, 62]. To check the portability of
concurrency-optimal technique we perform experiments on two machines with different
architectures. The evaluation shows that our implementation is one of the best and, thus,
the concurrency-optimal approach can be an adequate design principle for building efficient
portable data structures.

15

1.3.3. Parallel Combining

We discussed two portable methods that try to provide optimal synchronization: an auto-
matic granularity control for parallel programs and the concurrency-optimal design princi-
ple for concurrent data structure. The first method is automatic: it uses the fact that the
synchronization in parallel programs appears in the special form and, by that, it almost
does not require to change the original program. By contrast, concurrency-optimality
requires the programmer to design the data structure from scratch, which might be non-
trivial. It would be interesting to check whether it is possible to automatically build
efficient concurrent data structures from parallel programs.
Efficient “concurrency-friendly” data structures (e.g., sets based on linked lists [84, 85]

or binary search trees [52, 57]) are, typically, not subject to frequent data races and are
designed using hand-crafted fine-grained locking.. In contrast, “concurrency-averse” data
structures (e.g., stacks and queues) are subject to frequent sequential bottlenecks and solu-
tions based on combining (e.g., [86]), where requests are synchronized into batches and each
batch is applied sequentially, perform surprisingly well compared to fine-grained ones [86].
A general data structure typically combines features of “concurrency-friendliness” and
“concurrency-averseness”, and an immediate question is how to implement it in the most
efficient way.
We propose parallel combining, a technique that can be used to build a concurrent data

structure from a parallel batched counterpart [13]. A parallel batched data structure is
implemented as a parallel program (apply function) that applies a set of data-structure
operations to the underlying sequential data structure. As a correctness criteria, typically,
after the execution of apply function we expect that the results of operations and the
state of the underlying sequential data structure satisfy some sequential application of
the operations. Parallel batched data structures appeared a long time ago, and, perhaps,
the oldest one is 2-3 search tree by Paul et al. [129]. As other examples, we can consider
parallel batched priority queues (e.g., [137]) and parallel batched graphs (e.g., [6]).
In parallel combining, processes share a set of active requests using any combining al-

gorithm [58]. One of the active processes becomes a combiner and forms a batch from the
requests in set. Then, under the coordination of the combiner, owners of the collected
requests, called clients, execute apply method on the parallel batched data structure.
This technique becomes handy when the overhead on combining algorithm is compen-

sated by the advantages of using the parallel batched data structure. We show that
combining and parallel batching pay off for data structures that offer some degree of
parallelism, but still have sequential bottlenecks.
We discuss three applications of parallel combining. First, we design concurrent im-

plementations optimized for read-dominated workloads given sequential data structures.
Intuitively, updates are performed sequentially by the combiner and read-only operations
are performed by the clients in parallel. In our performance analysis we considered a
sequential dynamic graph data structure D [95], that allows adding and removing edges
(updates), and checking a connectivity between two vertices (read-only). We implement
the resulting concurrent dynamic graph and compare it against three implementations:
the first uses the global lock to access D; the second uses the read-write lock, i.e., a con-
nectivity query takes the read lock and other queries take the write lock; and, finally, the
last one uses flat combining [86] to access D. The experimental analysis shows that our
implementation has throughput up to six times higher on the loads consisting mostly of
connectivity queries that can be parallelized.
Second, we apply parallel combining to the parallel batched binary search tree [32].

The resulting concurrent algorithm performs somewhat worse than the state-of-the-art
implementations [39, 41, 52, 57, 62, 97, 120, 121], which is expected: a binary search
tree is a concurrency-friendly data structure. But from the theoretical point of view, our
concurrent tree provides a guarantee (inherited from the parallel batched algorithm) that
it is always strictly balanced compared to the state-of-the-art concurrent implementations

16

with relaxed balancing schemes [39, 41, 52, 57].
Finally, we apply parallel combining to priority queue. As a side contribution, we pro-

pose a novel parallel batched priority queue. We compare the resulting concurrent algo-
rithm with the state-of-the-art algorithms [90, 113, 139] and show that our implementation
is among the best ones.
To summarize, our performance analysis shows that parallel combining can be used to

construct efficient concurrent data structures.

1.3.4. Helping as a Synchronization Technique

Up to this point we only considered synchronization costs in lock-based (deadlock-free
or starvation-free) concurrent data structures. In such data structures, data races are
resolved by protecting a code operating on the shared data with the mutual exclusion
mechanisms, i.e., locks.
Wait-freedom or lock-freedom guarantees cannot be achieved using locks and should

use other types of synchronization. To ensure these progress guarantees when one process
blocks indefinitely, it might be necessary for the remaining processes to complete the
operation of the blocked process. This behaviour is a special type of synchronization
known as “helping”.

Censor-Hillel et al. [44] proposed a natural formalization of helping, based on the notion
of linearization: a process p helps an operation of a process q in a given execution if a step
of p determines that an operation of q linearizes before some other operation by a different
process in any possible extention. It was claimed that in a system provided with read,
write, compare&swap and fetch&add shared memory primitives helping is required for any
wait-free linearizable implementation of an exact order data type. Informally, a sequential
data type is exact order if for some operation sequence any change in the relative order
of two operations affects the result of at least one other operation. As examples of exact
order data types, Censor-Hillel et al. gave queue and stack.
However, we observe that the stack data type is not exact order. As we show, in any

sequential execution on stack, we can reorder any two operations in such a way that no
other operation will see the difference. Hence, the original proof for exact order types by
Censor-Hillel et al. does not apply to stack.

In this thesis, we present a direct proof that stack does not have a wait-free help-
free implementation. Our proof is similar to the original one: we choose any help-free
implementation and build an execution history such that one process makes an infinite
number of steps, but never completes, proving that the implementation is not wait-free.

1.3.5. Performance Prediction of Coarse-Grained Programs

Reasoning about concurrency-optimality provides an analytical way to compare synchro-
nization overheads of implementations using sets of schedules. However, this metric might
be not always useful capturing synchronization costs. Implementations are, in this sense,
incomparable when their sets of schedules are not related by containment, though their
actual performance may differ a lot. Furthermore, the scope of implementations that en-
able the schedule-based metric is limited, e.g., lock-free algorithms are hard to model this
way.
The common way to compare two implementations is to compare their throughput, i.e.,

the number of operations per unit of time. In the last technical chapter of this thesis,
we discuss an analytical way to evaluate throughput of an implementation. Typically,
throughput is measured through experiments, and soundness of the results is subject to
experimental setting, the workload, the machine, etc. It is therefore interesting whether
we can quantify throughput theoretically.
We describe a simple model that can be used to predict throughput of coarse-grained

lock-based algorithm. We show that our model works well for the simple data structures

17

that export one method: perform a critical section of size C guarded by CLH lock [51]
(acquire the lock, perform work of size C and release the lock) followed by a parallel
section of size P (simply, work of size P).

1.4. Publications
The results presented in this thesis appeared originally in the following papers.

[1] Umut A Acar, Vitaly Aksenov, Arthur Charguéraud, and Mike Rainey. Perfor-
mance challenges in modular parallel programs. In Proceedings of the twenty third
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), pages 381–382. ACM, 2018

[2] Vitaly Aksenov, Vincent Gramoli, Petr Kuznetsov, Anna Malova, and Srivatsan
Ravi. A concurrency-optimal binary search tree. In European Conference on Parallel
Processing (Euro-Par), pages 580–593. Springer, 2017

[3] Vitaly Aksenov, Petr Kuznetsov, and Anatoly Shalyto. Parallel combining: Benefits
of explicit synchronization. arXiv preprint arXiv:1710.07588, 2018

[4] Vitaly Aksenov, Petr Kuznetsov, and Anatoly Shalyto. On helping and stacks. In
Proceedings of NETYS 2018

[5] Vitaly Aksenov, Dan Alistarh, and Petr Kuznetsov. Brief-announcement: Perfor-
mance prediction of coarse-grained programs. In Proceedings of the thirty seventh
annual ACM Symposium on Principles of distributed computing (PODC), pages 411–
413, 2018

In parallel with this doctoral work, the author was also involved in the following paper:

[1] Umut A Acar, Vitaly Aksenov, and Sam Westrick. Brief-announsement: Parallel dy-
namic tree contraction via self-adjusting computation. In Proceedings of the twenty-
ninth ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 275–277. ACM, 2017

1.5. Roadmap
In Chapter 2, (1) we present different models of computation (Section 2.1); (2) we de-
scribe schedulers and complexity models for parallel programs written for dynamic multi-
threading (Section 2.2); (3) we provide definitions concerning concurrent data structures:
correctness and progress guarantees, complexity models and data types (Section 2.3).

In Chapter 3, we describe state-of-the-art implementations of binary search tree, skip-
list and priority queue, used for experimental analyses in Chapters 5 and 6.
Chapter 4 presents our automatic granularity control algorithm with the theoretical

bounds on the execution time of parallel programs using it and with the rigorous perfor-
mance analysis.
Chapter 5 presents the concurrency-optimal binary search tree.
Chapter 6 presents the parallel combining technique together with several applications.
Chapter 7 presents a proof of the fact that stack does not have a wait-free help-free

implementation in systems with reads, writes, compare&swap and fetch&add primitives,
correcting a mistake in an earlier proof by Censor-Hillel et al.
Chapter 8 presents a simple method that predicts the throughput of simple coarse-

grained lock-based data structures.
We conclude in Chapter 9 with a discussion of open questions and future work.

18

2. Background: Models and Definitions
In this chapter we present models, definitions and notations that will be used throughout
the thesis. Individual chapters will be provided with additional definitions and notations
specific to the chapter.

2.1. Parallel Models
In each considered parallel model there are n processes p1, . . . , pn that communicate via
reads, writes and, possibly, other primitives (defined explicitly) on shared atomic registers.
Each process is provided with its own program.

2.1.1. Parallel Random Access Machine
Parallel Random Access Machine (PRAM) model was proposed by Fortune and Wyllie [71]
as a simple extension of the Random Access Machine model used in the design and analysis
of sequential algorithms. A global clock synchronizes the operations of processes: one
operation (or skip) of each process is executed during one tick of the clock. The memory
model of PRAM is the strongest known consistency model [10]: a write during clock tick
t becomes globally visible to all processes in the beginning of clock tick t+ 1.

There are several variations of PRAM model based on how the concurrent writes and
reads are handled. The exclusive read exclusive write (EREW) PRAM does not allow
any simultaneous access to a single memory location. The concurrent read exclusive write
(CREW) PRAM allows for concurrent reads but not concurrent writes. The concurrent
read concurrent write (CRCW) PRAM allows for both concurrent reads and writes. The
CRCW models can be distinguished further: common allows concurrent writes only when
all processors are attempting to write the same value; arbitrary allows an arbitrary write
to succeed; and priority allows the process with the smallest index to succeed.

There are further variations of PRAM model. For example, QRQW PRAM [74] in
which reads and writes are added into the queue and are served one per tick; and scan
PRAM [26], a version of EREW PRAM in which scan (prefix sum) operation takes one
tick of the global clock.
PRAM model is unique in that it supports deterministic parallel computation, and

it can be regarded as one of the most programmer-friendly models available. Numerous
algorithms have been developed for PRAM model, for example, see the book by JáJá [104].
Unfortunately, this model is not useful in practice since it induces high overhead on the
synchronization of processes during each tick.

2.1.2. Bulk Synchronous Parallelism
The bulk-synchronous shared-memory parallel (BSP) model, proposed by Valiant [154], is
an extension of PRAM. The computation is split into supersteps. Each superstep consists
of a computation phase, during which the processes peform local computations, and a
global interprocesor comunication phase, during which processes can share a data. After
each superstep, the processes are synchronized using a barrier.

2.1.3. Asynchronous Shared Memory
An asynchronous shared memory model resembles the PRAM model, but the processes
run asynchronously and all potentially conflicting accesses to the shared memory must be

19

resolved by the programmer. If we extend this model with a special instruction — the
synchronization of the subset of processes, it becomes Asynchronous PRAM [73].
In this thesis, we use the Asynchronous PRAMmodel. Typically, in addition to standard

primitives on shared atomic registers (reads and writes), we provide this model with more
powerful ones such as compare&swap and fetch&add, etc.

Useful Primitives

The compare&swap primitive takes a target location, an expected value and a new value.
The value stored in the location is compared to the expected value. If they are equal, then
the value in the location is replaced with the new value and true is returned (we say that
the operation is successfull). Otherwise, the operation fails (i.e., the operation is failed)
and returns false.
The fetch&add primitive takes a target location and an integer value. The primitive

augments the value in the location by the provided value and returns the original value.

2.2. Expressions of Parallel Programs
We consider two ways of expressing the parallel programs: for static multithreading or for
dynamic multithreading.

2.2.1. Static Multithreading
For static multithreading the user writes a program for each process separately [50]. Typ-
ically, it is assumed that the number of processes executing the program is kept constant
during the execution (note, that this number has to be less than n, the total number of
processes).

2.2.2. Dynamic Multithreading
For dynamic multithreading, or nested fork-join parallelism, the programs are written
using two constructions: fork that specifies procedures that can be called in parallel, and
join that specifies a synchronization point among procedures [50]. Fork and join constructs
can be nested, making this type of programs useful for divide-and-conquer algorithms.
An execution of programs written for dynamic multithreading can be modeled as a

directed acyclic graph (dag) that unfolds dynamically. In this execution dag, each node
represents a unit-time sequential subcomputation and each edge represents control-flow
dependencies between nodes. A node that corresponds to a “fork” has two or more out-
going edges, and a node corresponding to a “join” has two or more incoming edges.
To execute a program some processes are chosen to work under guidance of a sched-

uler [2]. The scheduler is responsible for choosing which nodes to execute on each process
during each timestep. It chooses for execution only ready nodes: unexecuted nodes whose
predecessors have all been executed.

Schedulers

There exist two types of schedulers for dynamic multithreading: offline and online. Online
scheduler works with a dynamically unfolding dag, while offline scheduler works with a
pre-provided full computation dag. Typically, online schedulers are used in practice, since
the execution dag is not known a priori and offline scheduler cannot be used. However,
offline schedulers are easier to implement and analyse.
The commonly used offline schedulers [2] are greedy schedulers. A scheduler is greedy if

it never leaves a process idle unless there are no ready nodes.
Online schedulers obey the following scheme. The algorithm maintains a pool of work,

consisting of ready nodes. Execution starts with the root node in the pool. It ends when

20

the pool becomes empty. During the execution, a process withdraws a node from the pool,
executes it and puts the ready successor nodes into the pool.
One of the most popular online scheduler is the work-stealing scheduler [33]. Each

process maintains a deque, doubly ended queue, of nodes. Each process tries to work on
its local deque as much as possible: a process pops the node from the bottom of its deque
and executes it. When a node is executed, the process puts all ready successor nodes to
the bottom of the deque. If a process finds its deque empty, it becomes a thief. A thief
picks a victim process at random and attempts to steal a node from the top of the victim’s
deque. If the victim’s deque is not empty, the steal attempt succeeds, otherwise, it fails.

Implementations

The support of nested parallelism dates back at least to Dijkstra’s parbegin-parend con-
stuct. Many parallel languages support nested parallelism includling NESL [27], Cilk [72],
the Java fork-join framework [70], OpenMP [34], X10 [47], Habanero [42], Intel Threading
Building Blocks [100], and Task Parallel Library [112].

Algorithmic Complexity Model

Parallel algorithms are generally analyzed using Work-Span Framework [28]. Work W is
the total number of nodes in the computation dag and span S is the length of the longest
path in the dag.
There exist several theorems that bound the execution time of a parallel program with

work W and span S with different schedulers.
The first one is the renown Brent’s theorem [37].

Theorem 2.2.1 (Brent’s theorem). With any greedy scheduler the execution time of pro-
gram on n processes does not exceed bWn c+ S.

The bound on the execution time with the work-stealing scheduler was provided by
Aurora et al. [20].

Theorem 2.2.2. With the work-stealing scheduler the expected execution time of program
on n processes is O(Wn + S). Moreover, for any ε > 0, with probability at least 1− ε, the
execution time on n processes is O(Wn + S + log 1

ε).

Work and Span of PRAM Algorithm

In this thesis, we will talk about work and span of PRAM algorithms even though this no-
tation is only applicable to programs written for dynamic multhreading. Here, we explain
how to convert PRAM algorithm to its counterpart written to dynamic multhreding.
Instead of presenting the precise transformation algorithm, we explain how the compu-

tation dag should look like for each input (this should be enough to talk about work and
span). At first, we execute the PRAM algorithm on that input and suppose that it takes
T ticks. Our dag will have T layers of at most n nodes, the i-th layer contains nodes that
correspond to the operations performed by processes during the i-th tick of the PRAM
algorithm, and the nodes in the i-th level depend on the nodes in i− 1-th level. Now, we
can state that the work and span of the PRAM algorithm is work and span of that dag.

However, typically, the span of the PRAM algorithm, re-written for dynamic mu-
tithreading, is logn times bigger. This is due to the fact that our dag uses a complex
dependency between layers, while in practice we only can have nodes with a constant
number of predecessors and successors. This replacement increases the span of the algo-
rithm by logn, while the work increases by no more than a constant.

21

An Example

To give an intuition behind the expression of parallel programs for dynamic multithreading
and the use of the Work-Span Framework, consider an example: exclusive scan operation.
Given an array a of s integers exclusive scan operation returns an array of length s such
that its i-th value is the sum of the first i − 1 values of a. Below, we provide a standard
algorithm of exclusive scan written for dynamic multithreading.
In the pseudocode, instead of two constructions fork and join, we use one primitive

fork2join that takes two functions, named branches, as arguments and executes them in
parallel until their completion.

1 phase1(a, tmp, l, r):
2 if l = r - 1:
3 return a[l]
4

5 left ← 0
6 right ← 0
7 m ← (l + r) / 2
8 fork2join(
9 [&] {

10 left ← phase1(a, tmp, l, m)
11 },
12 [&] {
13 right ← phase1(a, tmp, m, r)
14 }
15)
16 tmp[m] ← left
17 return left + right
18

19 phase2(tmp, ans, l, r, sum):
20 if l = r - 1:
21 ans[l] ← sum
22 return

23 m ← (l + r) / 2
24 fork2join(
25 [&] {
26 phase2(tmp, ans, l, m, sum)
27 },
28 [&] {
29 phase2(tmp, ans, m, r, sum + tmp[m])
30 }
31)
32 return
33

34 exclusive_scan(a):
35 s ← a.length
36 tmp ← new int[s]
37 ans ← new int[s]
38

39 phase1(a, tmp, 0, s)
40 phase2(tmp, ans, 0, s, 0)
41

42 return ans

We briefly explain how the algorithm works. During the execution, we implicitly build
a segment tree with height O(log s), i.e., a binary tree whose root corresponds to segment
[0, s), a node corresponding to a segment [l, r) is either a leaf, if l equals to r − 1, or a
parent of two nodes corresponding to segments [l, l+r2) and [l+r2 , r). The algorithm consists
of two phases. During the first phase, we calculate an array tmp of length s: suppose that
m = l+r

2 is a split point of a segment [l, r) in the segment tree, then tmp[m] equals to
a[l] + . . . + a[m − 1] (note that each i ∈ [1, n) is a split point of exactly one segment).
During the second phase, we calculate the results array ans: ans[m] is the sum of the
values on the segments to the left of m.

The total work performed by the algorithm is O(s): we visit each node in the segment
tree O(1) times and the number of nodes is O(s). The span of the algorithm is O(log s)
as the height of the segment tree. Thus, the expected execution time of the algorithm on
n processes with work-stealing scheduler by Theorem 2.2.2 is O(sn + log s).

2.3. Data Structures

A data type is a tuple (Φ,Γ, Q, q0, θ), where Φ is a set of operations, Γ is a set of responses,
Q is a set of states, q0 is an initial state and θ ⊆ Q× Φ×Q× Γ is a transition function,
that determines, for each state and each operation, the set of possible resulting states and
produced responses.

22

A sequential implementation (or sequential data structure) corresponding to a given
data type specifies, for each operation, a sequential read-write algorithm, so that the
specification of the data type is respected in every sequential execution.
A batched version [122] of a data type τ = (Φ,Γ, Q, q0, θ) is specified by the transition

function β ⊆ θ∪
+∞⋃
i=2

Q×Φi×Q×Γi that determines, for each state and a batch of requests,
the set of possible resulting states and produced responses for each request in the batch.
In the simplest batched version of the data type the resulting state and the responses to
the operations from the batch correspond to the sequential application of the operations
in some order.
A batched implementation (or batched data structure) corresponding to a given data

type τ specifies an algorithm of apply operation that applies a batch of operations, so
that the specification of the batched version of τ is respected.
When apply operation is implemented as a parallel program, we call the batched im-

plementation parallel.
A concurrent implementation (or concurrent data structure) corresponding to a given

data type assigns for each process and each operation type a deterministic state machine
that specifies the sequence of steps (primitives on the shared atomic registers) that the
process needs to perform to complete the operation.

2.3.1. Corectness, Progress Guarantees and Complexity Model of Concurrent
Data Structures

Correctness

Here, we describe common corectness criteria of concurrent implementations in the asyn-
chronous shared memory model.
A low-level history (or an execution) is a finite or infinite sequence of primitive steps:

invocations and responses of high-level operations, invocations and responses of primitives
on the shared registers (reads, writes, etc.). We assume that executions are well-formed:
no process invokes a new primitive, or high-level operation before the previous primitive, or
a high-level operation, respectively, returns or takes steps outside its operation’s interval.
An operation is complete in execution α if the invocation event is followed by a matching

response; otherwise, it is incomplete.
A high-level history (or simply a history) of execution α on high-level object O is the

subsequence of α consisting of all invocations and responses of operations on O.
Here we define three correctness criteria that appear in the thesis: quiescent consis-

tency [21], linearizability [93] and set-linearizability [122].

Definition 2.3.1 (Quiescent consistency). A period of quiescence in a history h is a period
between two consecutive events such that all invoked operations are complete.
A history h defines a partial order on operations: op1 preceeds op2 (op1 ≺h op2) if they

are separated by a period of quiescence. A quiescence given a history h is a sequential
high-level history of operations Q such that:

1. Q consists of all the operations completed in h and, possibly, some operations that
have started but not yet completed in h;

2. the operations have the same input and the same output as the corresponding oper-
ations in h;

3. for every two operations op1 ≺h op2 if op2 is included in Q, then op1 preceeds op2 in
Q (op1 ≺Q op2).

A concurrent implementation of a data type is quiescently consistent if, for each of its
histories, there exists a quiescence.

23

Definition 2.3.2 (Linearizability). A history h defines a partial order on operations: op1
preceeds op2 (op1 ≺h op2) if op1 is completed before op2 begins. A linearization of a history
h is a sequential high-level history of operations L such that:

1. L contains all the operations completed in h and, possibly, some operations that have
started but not yet completed in h;

2. the operations have the same input and the same output as the corresponding oper-
ations in h;

3. for every two operations op1 ≺h op2 if op2 is included in L, then op1 preceeds op2 in
L (op1 ≺L op2).

A concurrent implementation of a data type is linearizable if, for each of its histories,
there exists a linearization.

Definition 2.3.3 (Set-linearizability). A set-linearization of a history h is a sequence S
of batches of operations with set-linearization points such that:

1. a union of batches in S contains all the operations completed in h and, possibly,
some operations that have started but not yet completed in h;

2. for any batch b from S, its set-linearization point lies between invocation and response
of all operations of b in h;

3. the operations have the same input and the same output in h as if they are applied
sequentially in batches of S.

A concurrent implementation of a batched data type is set-linearizable if, for each of its
histories, there exists a set-linearization.

In an infinite execution a process is faulty if it stops taking steps before completing its
operation. A process which is not faulty is called correct.

Progress Guarantees

A method implementation is non-blocking if a failure or a suspension of any other process
does not prevent other threads from making progress during the execution of this method.
A method that is not non-blocking is called blocking.
Non-blocking. A method implementation is wait-free if it guarantees that every call

of this method eventually completes. A method implementation is bounded wait-free if
every call of this method completes in a bounded number of steps. We say that a data
structure is wait-free if its methods are wait-free.
A method implementation is lock-free if it guarantees that some call of this method

eventually completes. We say that a data structure is lock-free if its methods are lock-
free. Wait-freedom is stricter than lock-freedom: a wait-free method is lock-free, but not
vice versa.
We say that a method call is executed in isolation for a duration if no other threads

take steps during that time. A method implementation is obstruction-free if it guarantees
that every call completes if the corresponding thread executes in isolation for long enough.
Blocking. Blocking implementations can provide two progress guarantees: starvation-

freedom and deadlock-freedom.
A method is starvation-free if it guarantees that every call of this method eventually

completes if each process takes an infinite number of steps. We say that a data structure
is starvation-free if its methods are starvation-free.
A method is deadlock-free if it guarantees that an infinite number of calls of this method

completes if each process takes an infinite number of steps We say that a data structure
is deadlock-free if its methods are deadlock-free. Note that starvation-freedom implies
deadlock-freedom.

24

Complexity for Concurrent Data Structure

Two architecture paradigms are considered in the literature that allow shared variables to
be locally accessed: the cache-coherent (CC) and the distributed shared memory (DSM)
machines [18].
In a CC machine, each process has a private cache, and some hardware protocol is used

to enforce cache consistency (i.e., to ensure that all copies of the same variable in different
local caches are consistent). A shared variable becomes locally accessible by migrating to
a local cache line. Memory references to the variable stored on the cache line in a process’s
cache are called local and are much faster than ones that has to load a cache line (i.e.,
cache misses), called remote memory references (RMRs).

In a DSM machine, each processor has its own memory module that can be accessed
without accessing the global interconnection network. On such a machine, a shared vari-
able can be made localy accessible by storing it in a local memory module. An access to
a memory location in a process’s own memory module is local and a reference to another
process’s memory module is an RMR.
Complexity of concurrent data structures’ operations, typically, cannot be expressed in

steps: the standard spin-wait loop (the loop that spins on a local boolean variable) can
take infinite number of them. Instead, complexity is measured in RMRs and, for example,
the described spin-wait loop takes 1 RMRs. However, the algorithm can have different
complexities on CC and DSM machines. For example, on DSM machine, the spin-wait
loop on a non-local variable can take more than 1 RMRs.

2.3.2. Data Types Considered in This Thesis
Stack

Stack is a data type that maintains a multiset of values and supports two operations:

• push(v) — inserts value v into the set;

• pop() — extracts the most recently added element that was not yet extracted, or
returns ⊥ if the set is empty.

Queue

Queue is a data type that maintains a multiset of values and supports two operations:

• enqueue(v) — inserts value v into the set;

• dequeue() — extracts the earliest added element that was not yet extracted, or
returns ⊥ if the set is empty.

Set

Set is a data type that maintains a set of elements and supports three operations:

• insert(v) — inserts value v into the set, returns true, if and only if v is absent in
the set;

• delete(v) — deletes value v from the set, returns false, if and only if v is present
in the set;

• contains(v) — returns whether v is in the set or not.

Sets are generally implemented in two ways: using hash tables or some sort of balanced
(tree-like) data structures, e.g., binary, B-, (a, b)- trees and skip-lists. In the thesis we are
interested in binary search trees and skip-lists implementations. Such implementations
support operations in logarithmic time. We discuss their state-of-the-art implementation
in Section 3.1 and 3.2.

25

Priority Queue

Priority queue is a data type that maintains an ordered multiset and supports two oper-
ations:

• insert(v) — inserts value v into the set;

• extractMin() — extracts the smallest value from the set, or returns ⊥, if the set is
empty.

We discuss its state-of-the-art implementations in Section 3.3.

Dynamic graph

Dynamic graph is a data type that maintains a graph on N vertices and supports three
operations:

• insert(u, v) — adds an edge between vertices u and v;

• delete(u, v) — removes an edge between vertices u and v;

• isConnected(u, v) — returns whether u and v are connected.

In the thesis, we use only one implementation of dynamic graph presented by Thorup
et al. [95]: on a graph with N vertices insertion and deletion take O(log2N) amortized
time, and connectivity query takes O(logN) time.

Dynamic forest

Dynamic forest is a special case of dynamic graph: the sequence of operations can be
appled only if after each operation a graph is a forest, i.e., after each operation there
exists no more than one simple path between any pair of vertices.

26

3. Overview of Data Structure
Implementations

In this chapter, we overview the state-of-the-art sequential, parallel batched and concur-
rent implementations of set and priority queue data types. Most of the implementations
described here are used to compare against our novel data structures, either empirically
or theoretically. However, if you are not interested in the overview, you can safely skip
this chapter.
We are primarily interested in set implementations based on binary search tree and

priority queue implementations. Since the majority of priority queue implementations are
based on skip-list, we also discuss set implementations based on skip-list.

3.1. Binary Search Trees
Binary search tree (BST) is a rooted binary tree, whose nodes each store a value (and,
possibly, other information) and have two subtrees, commonly denoted left and right (the
roots of these subtrees are called left and right children, respectively, if subtree is not
empty). The tree additionally satisfies the order property: the value in each node is
strictly greater than values in its left subtree and strictly smaller than values in the right
subtree. The node is named a leaf, if it does not have any child. Otherwise, the node is
called inner.
Three types of binary search trees are distinguished in literature: internal, external and

partially-external. In an internal tree, the set of an internal tree consists of the values in
all nodes. In an external tree, the set consists of the values in the leaves; and each inner
node has two children and is called routing. In a partially-external tree, each node can be
either routing or data; each routing node has exactly two children; and the set consists of
the values in data nodes.
To provide logarithmic bounds for the operations, a binary search tree is augmented

with a balancing scheme. In a few words, balancing scheme is an algorithm that explains
how to restructure the binary tree after an update, so that a special condition, called an
invariant, is satisfied.
Some of the schemes are:

• AVL scheme [9]. Invariant: for any node the heights of left and right subtrees differ
by at most one.

• Red-Black scheme [81]. Each node has a color: red or black. Invariant consists of
two parts: 1) no red node has a red child; and 2) the number of black nodes on every
path from the root down to any leaf is the same.

• Weight-balanced scheme or BB[α] [123]. Let w(T) be the number of nodes in tree
T and let Tl be the left subtree of T . Invariant: for any node with subtree T ,
α ≤ w(Tl)

w(T) ≤ 1− α.

• Treap scheme [138]. Each node has a uniformly random priority. Invariant: the
priority of each node is not less than the priorities of its children.

One of the most important features of the presented trees is that they allow an operation
join in logarithmic time. Join unites two trees, such that the maximal key of the first is
less than the minimal key of the second.

27

3.1.1. Parallel Batched Implementations

The first parallel batched binary search tree was presented by Blelloch and Reid-Miller [29]:
they used treap balancing scheme. The algorithm is implemented by a recursive function
apply(T,A) that returns a tree after applying operations A, sorted by the arguments, to
tree T . apply(T,A) splits the tree T by the argument of the middle operation A[m← l+r

2]
to Tl and Tr, calls recursively in parallel Tl ← apply(Tl, A[1, . . . ,m − 1]) and Tr ←
apply(Tr, A[m+ 1, . . . , |A|]), and, finally, returns the join of Tl, argument of A[m] and Tr,
if A[m] is Insert, and return the join of Tl and Tr, if A[m] is Delete.
It was shown that given the size of the tree k and the size of the batch m the algorithm

is work-efficient, i.e., the work is O(m · log(km + 1)), and is highly parallel, i.e., the span
is O(log2 k). We called this algorithm work-efficient, because in order to apply a batch
of size m to a tree of size k any sequential algorithm should make at least dlog

(k+m
m

)
e =

θ(m · log(km + 1)) comparisons.
The second paper by Blelloch et al. [32] is a generalization of the previous one. They

took the same algorithm and applied it to four different implementations of binary search
tree (one for each balancing scheme described earlier). For all four algorithms the work is
O(m · log(km + 1)) and the span is O(log k · logm), where k is the size of the tree and m
is the size of the batch.

3.1.2. Concurrent Implementations

Lock-Based Partially-External BST by Bronson et al.

We start with the first practical balanced concurrent BST by Bronson et al. [39]. The tree
is a partially-external BST and it uses relaxed AVL balancing scheme [35]. Any operation
starts with a traversal that is implemented as a recursive function: it goes optimistically
down the tree and the recursion saves for us a path of nodes that we traversed from the
root. If someone has updated the links on the nodes in such a way that we cannot continue
the traversal correctly, e.g., the current node is removed or there was a “bad” rotation,
we have to backtrack (return from recursive calls) and find the lowest position on the
traversed path from the root, saved by the recursion, from which we can continue the
traversal down. After the traversal, an Insert or Delete operation properly updates the
node and goes up the tree to fix every node on the path to the root using locks: remove
routing nodes with one child and rebalance if necessary. Rebalance is performed using
relaxed AVL scheme [35]: we optimistically calculate the difference in heights (possibly,
stale) between the children; if the absolute difference is bigger than one, we lock necessary
nodes (the node, the parent and the proper child) and perform the proper rotation; and,
finally, we update the height of the node from the heights of its children. It is argued that
when there is no pending operation, the tree is a strict AVL tree.

Non-Blocking External BST by Ellen et al.

The first practical lock-free BST was proposed by Ellen et al. [62]. The tree is implemented
as an external BST. The blocking version of external BST is quite straightforward and
Barnes’s technique [24] is used to make the algorithm lock-free. Each node of a tree is
expanded with a pointer info to Info record. Each operation starts with a simple traversal.
When an operation reaches the effective node node the operation indicates that it wants
to change node: it creates Info record and sets the pointer info to this record. Info record
contains enough information to help complete the original operation so that the node can
be unflagged. Typically, helping often leads to poor performance because several processes
try to perform the same piece of work. In this implementation a process p helps another
process’s operation only if this operation prevents p’s progress. Because of this policy
traversals do not help at all.

28

Wait-Free Red-black Tree by Natarajan et al.

Natarajan et al. [121] presented a wait-free red-black tree. As a basis they took an ex-
ternal red-black tree with top-down operations by Tarjan [149]. To translate a sequential
algorithm into wait-free concurrent one they used Tsay and Li’s framework [152]. In this
framework each operation holds a window (subtree) that moves down the tree. If the
window of an operation intersects with some lower window of a different operation, the
process tries to move the lower window first. To move a window a process copies the
subtree from the window, updates the copy, links the copy instead of the original subtree
and, finally, moves a window lower. The straightforward application of Tsay and Li’s
framework is very expensive, because of that some optimizations are proposed which we
do not discuss here.

Non-Blocking Internal BST by Howley et al.

Howley et al. [97] presented an internal lock-free binary BST. They used the similar
technique of Info records as in BST by Ellen et al. [62]. Nevertheless, this BST is more
complicated to implement: the traversal should be accurately taken care of since the
desired value can be moved up the tree; furthermore, a delete operation now has to search
for the replacement value. Traversals and insertions in Howley and Jones’s algorithm
are generally faster than in Ellen et al.’s algorithm: the traversed path in an external
tree terminates at a leaf node while in an internal tree it may terminate at an internal
node. However, delete operations in an internal tree are generally slower than those in an
external tree.

Lock-Based Partially-External BST with Helper Thread by Crain et al.

Crain et al. [52] presented a contention-friendly lock-based partially-external BST with
relaxed AVL balancing scheme. Given that the traversal is the longest part of the operation
concurrent BST should avoid unnecessary verifications and backtracking which happen to
be an issue of the previous balanced BST by Bronson et al. Crain et al. simplified an
implementation: the operations are decoupled from structural adaptations, e.g., physical
removal and rebalancing. These adaptations are performed in a separate daemon thread
that continually recursively restructures the tree. To get rid of verifications during the
traversals the daemon thread performs restructures as follows: 1) to remove a routing
node it takes locks on the node and its parent, reroutes pointers to the children to point
onto the parent and marks the node as deleted; 2) to rebalance a node it takes necessary
locks (on the node, its parent and the proper child), replaces a current node with a new
node and marks the current node as deleted. By that all operations on a data structure
become short and lightweight.

Lock-Based Internal BST with Logical Ordering by Drachsler et al.

Drachsler et al. [57] proposed a practical lock-based internal concurrent BST with relaxed
AVL balancing scheme. Their main goal was also to reduce overheads during the traversals.
For that they stitch the nodes of BST in sorted order with a linked list. Now, to find a
node with the given value in BST an operation starts a wait-free traversal, stops at some
node, and then moves to the left or to the right of this node in the linked list. Note that
the overhead of any modification increases since the algorithm in addition to updating
links of the tree updates links in the linked list.

Lock-Free External BST with Low Overhead by Natarajan et Mittal

Natarajan and Mittal [120] proposed an external lock-free BST as an improvement of BST
by Ellen et al. We describe three key ideas of this improvement. At first, the algorithm

29

operates on edge-level (marks edges) whereas Ellen et al.’s algorithm operates at node-level
(marks nodes). This leads to the smaller contention window: any two operations that can
be executed concurrently in Ellen et al.’s algorithm can also be executed concurrently in
Natarajan et al.’s algorithm, but not vice versa. For example, the algorithm by Natarajan
et al. allows setting two children of a node independently. The second improvement is that
Info records are not used, instead only edges are being marked, and the help is performed
only for delete operations (insertions do not need help). Finally, they optimized the oper-
ations: the number of allocated objects and the number of executed atomic instructions
are less than in lock-free algorithms by Ellen et al. and Howley et al.

Lock-Free External Balanced BST by Brown et al.

Brown et al. [41] presented a lock-free balanced BST based on an external chromatic
BST [125], which is a relaxed version of the red-black tree. To implement BST they
introduced generalized versions of LL and SC primitives: LLX and SCX [40] which operate
on Records consisting of a fixed number of mutable and immutable fields. LLX(r) attempts
to take a snapshot of the mutable fields of a Record r. SCX(V , R, fld, new) takes as
arguments a sequence V of Records, a subsequence R of V , a pointer fld to a mutable
field of one Record in V , and a new value new for that field. SCX tries to atomically store
the value new in the field that fld points to and to finalize each Record in R, i.e., make
all fields in these Records to be immutable. A traversal in this algorithm is performed
in a standard wait-free manner by following links from the root. Insertions and deletions
use LLX and SCX (on two and three Records, correspondingly) to update the nodes, then
they start a cleanup phase: continually rebalance the first unbalanced node on the path
from the root to the position of the value. Brown et al. proved that the height of the tree
at any time is O(c+ log k), where k is the size of the tree and c is the number of updates
in progress.

3.2. Skip-Lists
A skip-list data structure was proposed in 1990 by Pugh [135]. It maintains a collection
of sorted linked lists, which mimics, in a subtle way, a balanced search tree.
Each list has a level, ranging from 0 to a maximum (constant MAX_LEVEL). Each value

has a corresponding node that is linked into a subset of lists. The bottom-level list contains
all nodes, and each higher-level list is a sublist of the lower-level lists. The higher-level
lists are shortcuts into lower-level lists.
The structure itself is randomized: the node is created with a random top level (or

simply level), and belongs to all lists up to that level. Top levels are chosen in such a way
that the expected number of nodes decreases exponentially with the increase of level. For
example, if the probability of the node to appear at level i is 1

2i , then, roughly speaking,
each link at level i skips 2i nodes in the bottom-level list.

To simplify implementations of skip-lists we prepopulate them with head (value −∞)
and tail (value +∞) sentinel nodes that appear in all the lists. Each node has an array
next of references: one reference for each list the node belongs to.
In the algorithms we use the following additional notations: in a sorted linked list, the

node with the biggest value smaller than value v is called the predecessor of v, while the
node with the smallest value bigger than value v is called the successor of v. Also, we
sometimes call the top level of a node simply as the level of a node.
The sequential algorithm works as follows. Given value v each operation starts with

the traversal. The traversal starts from the top-level at sentinel node head and goes
down the levels one after the other until it reaches the predecessor of v at the bottom
level: at each level i, the algorithm takes the last visited node and follows next pointers
until it reaches the predecessor of v; we store the found predecessor in preds[i] and the
successor of v in succs[i]. Then insert, if a node with value v does not exist (i.e., value

30

in preds[0].next[0] is not v), creates a new node node (with random top level as described
above) and links it from bottom up to its level: preds[i].next[i] is set to the new node
and node.next[i] is set to succs[i]. And delete, if a node node with value v exists
(i.e., value in preds[0].next[0] is v), unlinks node at each level up to the level of node:
preds[i].next[i] is set to succs[i].next[i].

3.2.1. Concurrent Implementations

Lock-Based Skip-List by Pugh

The first concurrent lock-based skip-list was presented by Pugh [134]. At first, he described
a lock-based linked list. To find a position to insert or delete, an operation with argument
v does a lock-free lookup for the node pred of v by following next pointers. Then the
operation takes a lock on the next pointer of pred, and using hand-over-hand locking
follows next pointers to adjust the predecessor pred of v. Insert operation creates a new
node and links it after pred in the list. Delete operation takes an additional lock on the
next pointer of the node node with value v, sets the next pointer of node to pred and
unlinks node.
The skip-list algorithm works similarly to the described linked list. An operation with an

argument v traverses the skip-list down to the bottom level using the sequential algorithm
and stores the predecessors preds at each level. Insert creates a new node with level `
and iterates through all the lists from level 0 to level `: at each level i, it finds the real
predecessor of v using the estimation preds[i] (as in lock-based linked list algorithm)
and links the new node. Delete finds a node node with value v and iterates through
all the lists from the level of the node downto level 0: at each level i, it finds the real
predecessor using the estimation preds[i] (as in lock-based linked list algorithm), sets
the next pointer node[i].next to the predecessor and unlinks node.

Lock-Free Skip-List by Sundell and Tsigas

Sundell and Tsigas [144] presented the first lock-free skip-list. They extended nodes with:
(1) a reference prev that points to some predecessor (not necessarily, exact) at some level
if the node is under deletion; and (2) an integer validLevel that indicates the current
level up to which the node is linked. Also, for each node, each pointer in next array is
now extended with a boolean mark that indicates whether the node is under deletion.
The algorithm uses auxiliary functions scan and helpDelete. Given a node node, a

level and a value v, scan follows next pointers from node on that level until it finds the
predecessor of v, and at the same time it helps to delete nodes with the marked next
pointer at that level using helpDelete. The helping function helpDelete, given a node
with value v and a level `, deletes the node and returns the current predecessor of v at
level `: mark all next pointers from top-level up to level `; then find a current predecessor
of v: traverse either from the node at prev pointer or from the head, if prev has a small
level; and, finally, unlink a node at level `.
Each operation with an argument v starts with the traversal: start at the top level, then,

at each level, the traversal calls scan function given the predecessor from the previous
(upper) level. An insertion then creates and links a new node: at each level from bottom
to top, find a current predecessor of v using scan on the estimation from the traversal and
link the new node. A deletion sets prev pointer to the estimated predecessor of v at level
node.level/2 from the traversal, marks the next pointers from top to bottom and, finally,
unlinks a node: at each level from top to bottom, find a current predecessor of v using
scan given the estimation from the traversal and unlink the node. Note that the traversal
call in contains can skip the help to delete marked nodes.

31

Lock-Free Skip-List by Fomitchev and Ruppert

Fomitchev and Ruppert [69] designed a lock-free skip-list similar to the lock-based skip-lit
by Pugh. At first, they present a lock-free linked list with the bounds on the running
time of operations. They augment nodes with a backlink pointer and augment each next
pointer with two bits: flag and mark. Mark bit is used to register the deletion of the
node, while flag bit is a warning that a deletion of the next node is in progress. Flag bit
is introduced only to ensure the bounds on the running time.

Each operation starts with the traversal that finds a predecessor pred of an argument
v: start from the head, follow next pointers and help to delete marked nodes on its way.
Insert then creates a new node and tries to link it. If the attempt to link is unsuccessful
then: (1) if the next pointer of pred is flagged, then the operation help the concurrent
delete operation; then, (2) while the next pointer of pred is marked the operation follows
the backlink pointers; finally, (3) the operation adjusts pred. Delete takes node node
with value v and attempts to perform four steps: 1) flag prev.next; 2) set the backlink
of node to pred; 3) mark node.next; 4) unlink node and unmark node.next. If the
attempt is unsuccessful the operation helps the concurrent delete operation, adjusts prev
and retries.
This lock-free linked list is a basic building block of the proposed lock-free skip-list. This

skip-list has a non-standard representation of a node: a node is represented with a linked
list (a tower) from the top-level subnode (tower_root) to the bottom-level subnode. Each
subnode stores a successor (next pointer) in the level-list, a subnode below and a link to
tower_root. Additionally, tower_root is extended with the value field, other subnodes
do not contain values. Each operation starts with the traversal: the standard traversal
algorithm that helps to delete subnodes from top to bottom of a node which tower_root
marked for deletion. Insert links a new tower from bottom to top: at each level i, it
inserts a subnode in the linked list trying with preds[i] as the predecessor. Delete
unlinks a tower from top to bottom: at each level i, it deletes a subnode from the linked
list trying with preds[i] as the predecessor.

Lock-Based Lazy Skip-List by Herlihy et al.

Herlihy et al. [92] proposed a simple lock-based “lazy” skip-list. Each node is extended
with a mark that indicates whether the node is under deletion. Each operation with an
argument v starts with the standard traversal that finds the predecessors preds and the
successors succs of v.
Insert then tries to lock the predecessors at each level from bottom to top. When all

the locks are taken successfully, the algorithm checks that: (1) the predecessors are not
marked; and (2) for each level i, preds[i].next still equals to succs[i]. If the conditions
are satisfied, the insertion creates a new node and links it from the bottom level; otherwise,
it restarts from the beginning.
Deletion locks the node node with value v and marks it. Then it locks the predecessors

at each level from bottom to top and checks: (1) the predecessors are not marked; and
(2) for each level i, prev[level].next still equals to node. If the conditions are satisfied,
the deletion unlinks a node from top to bottom; otherwise, the operation restarts.

Lock-Free Skip-List by Herlihy et at.

The last skip-list implementation described here is a simple lock-free skip-list by Herlihy
et al [88]. Next pointers are augmented with a mark that indicates whether the node is
under deletion. Each modification operation with an argument v starts with the traversal:
the standard traversal algorithm that at the same time unlinks all the traversed nodes
with a marked next pointer. Insert creates a new node and links it from bottom to top,
but if at some level the real predecessor and successor of v are not the same as found by
the previous traversal — the traversal is repeated. Delete goes from top to bottom and

32

only marks the next pointers of a node with value v obtained from the traversal. If it
marked the next pointer at the bottom level it calls the traversal to physically delete the
node. Contains function uses the standard traversal that does not modify anything.

3.3. Priority Queues
3.3.1. Sequential Binary Heap
We start with the simplest sequential priority queue and its simple modification. This
implementation (or its modification) is a basis of various priority queue implementations,
either parallel batched or concurrent, including a novel parallel batched implementation
presented in Section 6.4.

A binary heap of size m is represented by a complete binary tree with nodes indexed
from 1 to m. Each node v has at most two children: 2v and 2v+ 1 (to exist, 2v and 2v+ 1
should be less than or equal to m). For each node, the heap property should be satisfied:
the value stored in the node is less than or equal to the values stored in its children.
The heap is represented with size m and an array a where a[v] is the value at node v.

At first, we describe the classical binary heap algorithm [50]:

• extractMin() records the value a[1] as a response, copies a[m] to a[1], decrements
m and performs the sift down procedure to restore the heap property. Starting from
the root, for each node v on the path, we check whether value a[v] is less than values
a[2v] and a[2v + 1]. If so, the heap property is satisfied and we stop the operation.
Otherwise, we choose the child c, either 2v or 2v + 1, with the smallest value, swap
values a[v] and a[c], and continue with c.

• insert(x) incrementsm, sets a[m] to x and performs the sift up procedure to restore
the heap property. Starting from the node m, for each node v on the path to the
root, we check whether value a[v] is bigger than value a[v/2] in the parent. If so, the
heap property is satisfied and we stop the operation. Otherwise, we swap a[v] with
a[v/2] and continue with v/2.

An important modification of that algorithm was presented by Gonnet and Munro [75].
extractMin() remains the same while insert(x) works from top to bottom. insert(x)
initializes a variable val with x, increments m and traverses the path from the root to a
new node m. For each node v on the path, if val < a[v], then the two values are swapped.
Upon reaching node m the operation sets a[m] to val.

3.3.2. Parallel Batched Implementations
Parallel Batched Heap By Pinotti and Pucci for CREW PRAM

The first parallel batched priority queue was presented by Pinotti and Pucci [132]. The
algorithm works in CREW PRAM with n processes. The priority queue is represented by
a complete binary heap and each node contains a sorted array of n values. The arrays in
nodes satisfy extended heap property: the minimal value in a node is bigger or equal than
the maximal value in the parent. This data structure supports an insertion of n values
and an extraction of n minimums.
To insert n values a new node is created, the provided n values are preliminarily sorted

using Cole’s algorithm [49] in O(logn) time and merged with all values in the ancestors of
the new node using Kruskal’s merging algorithm [106] in O(logm+ log logn) time, where
m is the number of nodes. Then the sorted array is distributed between the nodes on the
path from the new node to the root.
To extract n values, at first, an array in the root is saved as a response and is replaced

with an array from the last node. Then we construct the minimal path µ: suppose we are
now at node v, we add the child c with the smallest maximal value to µ and continue with

33

c. For each node v in µ, we merge an array in v with an array in its sibling, split this array
into halves, give the smallest half to v and the other half to the sibling in O(logn) total
time. Then we merge arrays of all the nodes v on a path µ and distribute the resulting
array to the nodes at µ.
Summarizing, insertions and extractions in batches of size n take O(logm + log logn)

time, and O(n · (logm+ log logn)) work where m is the number of nodes.

Parallel Batched Heap by Deo and Prasad for EREW PRAM

Next we discuss a parallel batched priority queue by Deo and Prasad [56]. The algorithm
is described for EREW PRAM with n processes. As in the previous algorithm the priority
queue is represented by a complete binary tree where each node contains n sorted values
and satisfies extended heap property.
An insertion of c ≤ n keys works similarly to the sequential algorithm by Gonnet and

Munro. At first, the operation sorts arguments using Cole’s algorithm and stores them in
a new array x. The operation starts at the root and traverses towards the last leaf: at
each node the array at the node is merged with array x; then, first n values are stored in
the node, while x is populated with the values left.
An extraction of c ≤ n minimums retrieves the first c values from the root as the answer,

then replaces them with c values from the last leaf. Then the operation starts a traversal
from the root towards some leaf. Suppose the traversal is currently at node curr and
let child be the child with the biggest maximal value. The array at curr is merged with
arrays in children; the smallest n values are stored in curr, the next n values are stored
in child; and the traversal continues with the other child.
Thus, a batch of size c ≤ n can be applied in O(logm · logn) time and O(n · logm · logn)

work where m is the number of nodes. In the same paper, they discuss how the pipelining
approach can reduce time to O(logm). Unfortunately, this idea can be applied only if
there is a continuous flow of batches to apply.

Parallel Batched Priority Queue by Sanders et al. for Asynchronous PRAM

We finish the survey of parallel batched priority queue with the algorithm by Sanders [137].
The algorithm is designed for asynchronous shared memory model with n processes. Each
process has its own queue which is split into two parts: a sorted array and a heap.
An insertion of c ≤ n values randomly chooses c out of n local queues and inserts each

value into the array of the chosen queue. Once in logn insertions to a local queue the
values from the array are flushed into the heap. By that the size of the array in any local
queue does not exceed logn.
The algorithm to apply a batch of c ≤ n extractMin operations is more involved. At

first, each process operates on its own local queue: move the smallest values one-by-one
from the heap to the array until all arrays of local queues together contain c smallest
values (they can also contain other values). Then the smallest c values from the union
of arrays are found using the algorithm similar to quicksort and, finally, these values are
returned.
An application of a batch of c ≤ n insert operations takes O(c · logm) work and

O(logm) span, while an application of a batch of c ≤ n extractMin operations takes
O(n · logm) work and O(logm · logn) span, where m is the size of the priority queue.

3.3.3. Concurrent Implementations

Lock-Based Heap by Hunt et al.

We start with the coarse-grained heap-based priority queue by Hunt et al. [99]. They used
an algorithm similar to the sequential binary heap that we described earlier. At first, an
operation takes a global lock, changes the number of nodesm, calculates m̄ as a bit-reverse

34

of m (the least significant becomes the most significant and etc.), locks node m̄ and, if the
operation is extractMin, also locks root, and, finally, releases the global lock.
Insert writes a value into a[m̄] and sifts up from m̄. To guarantee correctness the

operation uses hand-over-hand locking: takes the lock on the parent, then, possibly, swaps
values, releases the lock on the node and continues with the parent.
ExtractMin swaps a[1] with a[m̄], unlocks node m̄ and sifts down. To guarantee cor-

rectness the operation uses hand-over-hand locking: takes a lock on both children, then,
possibly, swaps values with one of them, releases the lock on the node and continues with
the proper child.

Priority Queue from Skip-Lists

Typically, all concurrent skip-lists algorithms can be transformed into concurrent priority
queue implementations in a manner firstly proposed by Lotan and Shavit [139]. They
took the concurrent skip-list by Pugh [134] and augmented it with a findMin function
(a subfunction of extractMin) that simply goes through the bottom level searching for a
non-marked node. When such node is found the operation performs its deletion.
It is argued that such an implementation is not linearizable, but quiescently consis-

tent: suppose that the skip-list contains only one value 2 and the first process performing
findMin is currently at that node; then the second process inserts 1, inserts 3, and marks 2
for deletion; the first process wakes up and finds 3 which never was a minimum. To ensure
the linearizability they added the timestamp for each operation and findMin function only
searches for the nodes that were inserted before the extractMin operation starts.
Next, Sundell and Tsigas proposed a lock-free priority queue [145] which is based on

their lock-free skip-list [144]. Finally, the lazy lock-based skip-list by Herlihy [92] and the
lock-free skip-list by Herlihy [88] were transformed into priority queues in [90]. We name
them Lazy and SkipQueue, correspondingly.

Lock-Free Priority Queue by Johnson and Linden

The concurrent priority queues obtained from concurrent skip-lists in a manner described
above are subject to severe contention: several processes can try to mark the same node
at the same time, where the losers proceed together trying to mark the next node and so
on; plus the nodes to be physically removed are likely to be neighbours and, consequently,
are likely to share predecessors, thus, leading to contention.
Johnson and Linden addressed the issue with contention during physical removals and

presented a lock-free priority queue [113]. A key idea is: instead of physically removing
each logically deleted node separately, we remove them in batches, i.e., several at a time.
As a basis for priority queue they take a skip-list similar to the lock-free skip-list by
Herlihy [88]. As usual the nodes can be logically and physically deleted. The major
distinction from the previous skip-list algorithms, is that the logically-deletion flag is
stored not in the next pointer of the node, but in the next pointer of its predecessor. By
that the algorithm can guarantee that logically deleted nodes represent a prefix of the
skip-list.
Given a value v an insertion starts with a traversal that finds, at each level i, the first

not logically deleted node succs[i] with the value bigger than v and its predecessor
preds[i]. Since logically deleted nodes always form the prefix, this traversal does not
differ much from the standard one. Then the insertion creates a new node and inserts it
starting from the bottom: at each level i, inserts between preds[i] and succs[i] using
compare&swap, if unsuccessful then restarts the traversal to get new predecessors.
An extraction of minimum iterates through the lower level in order to mark the first

not logically deleted node. When found, the node is marked and the number of traversed
nodes is compared to the threshold. If it exceeds some predefined threshold, the next

35

pointers from the head node are changed in order to unlink the prefix of logically deleted
nodes.

Lock-Based Priority Queue with Elimination and Combining by Calciu et al.

The last data structure still suffers from the contention during the marking of the nodes.
Calciu et al. [43] tried to resolve this issue by splitting the queue into two parts: sequential
and concurrent skip-lists. The first skip-list contains values smaller than a threshold and is
accessed through a request buffer. The requests from the buffer are performed sequentially
by a dedicated server thread. The second skip-list stores all other values and is instantiated
as some concurrent skip-list.
Insert decides in which skip-list to insert: if a value is bigger than the threshold it

is inserted into the concurrent skip-list, otherwise, the operation lefts a request in the
buffer to the sequential skip-list. ExtractMin simply publishes a request in the buffer to
the sequential skip-list. After an operation is performed the threshold can be adjusted in
order to improve performance: the sequential skip-list should be not very small and also
not very big.

Lock-Free Cache-Friendly Priority Queue by Braginsky et al.

Braginsky et al. [36] choose some lock-free skip-list implementation and make a node
contain not one value but an array of values with the size of one cache line. The skip-list
is logically split into two parts: the first node, which array is sorted, and the others.
Insert a node curr in the skip-list that should contain the argument and tries to insert

it. There are two cases: curr is the first node or not. In the first case, the operation adds
its request into a special buffer associated with the first node. Then the operation freezes
curr, creates a new node with the sorted values from curr and the buffer, and tries to
replace curr with a new node in the skip-list. In the second case Insert appends the
value to the array in curr using one fetch&add instruction. In both cases, if the array
becomes full the operation freezes node curr to split it into two. The freeze procedure is
implemented in such a manner that other operations working on curr help to unfreeze it.
ExtractMin tries to take the first element from the first node using one fetch&add

instruction. If the first node becomes empty, the operation freezes the first node and the
second node in order to sort values in the second node and move them to the first node.

Lock-Based and Lock-Free Priority Queues by Liu and Spear

We finish the overview of concurrent priority queues with Mounds by Liu and Spear [114].
This priority queue is represented by a binary tree with a sorted list of values in each
node and extended heap property: the smallest value at a node is less than or equal to
the smallest values in the children (note that this extended property differs from the one
appeared before).
Insert(v) starts with several attempts to find a node with the first value bigger than

v: take a random leaf and find the highest node on the path to root that has the first value
bigger than v using binary search. If such node is not found, the binary tree is extended
with a new level of nodes and the operation restarts. The operation simply finishes by
inserting v at the beginning of the list of the found node.
ExtractMin operation removes the first value from the list in the root and marks the

root as dirty. All dirty nodes have to be moundified, or in other words they have to be
sift down that compares the first values of the lists.
Two implementations of this data structure were described: lock-based and lock-free.

Lock-based implementation simply uses hand-over-hand locking as the priority queue by
Hunt et al. In lock-free implementation operations help each other to moundify nodes
they are working on.

36

4. Automatic Oracle-Guided Granularity
Control

4.1. Introduction
At the very beginning of the era of multicore processors parallel programs were written
for static multithreading: each process is provided with its own program. These programs
are written as a composition of supersteps. During a superstep, each process performs
independent local computations. After each superstep, the processes synchronizae to
accumulate the results of their independent computations. When the number of processes
exceeds the number of cores, the programmer has to think about low-level execution
details, such as scheduling the processes onto cores and controlling the overhead spent on
the synchronization between processes.
The intricacy of these low-level details has motivated interest in dynamic multithreading

(also known as implicit parallelism). Dynamic multithreading seeks to make parallel pro-
gramming easier by delegating the tedious details, such as tasks scheduling, to compiler
or run-time system. Much work has been done in that area resulting in various implemen-
tations: OpenMP [34], Cilk [72], Fork/Join Java [70], Habanero Java [42], X10 [47], Intel
TBB [100], NESL [27], TPL [112], parallel ML [103] and parallel Haskell [46].
Most of these implementations provide the opportunity for parallelism via lightweight

language constructs. In this work, we will use Cilk Plus [101] runtime system that provides
just two keywords: spawn and sync. Spawn indicates a computation that can be executed
in parallel and sync indicates a computation that must be synchronized with. These
keywords are enough to express common parallel constructs such as nested parallelism
and parallel loop [115].
As a classic application of implicit parallelism, consider a map function that takes an

array a and a function f , and returns an array b with bi = f(ai). Using templates
(a powerful feature of C++) our map implementation (Figure 4.1) enables different forms
of mapping. For example, a can be an array of integers and f can be an increment.
Alternatively, a can be an array of vectors from Rn and f can be a “dot product” with
vector specified beforehand. As can be seen, templates simplify a life of the programmer:
it is unnecessary to write the separate code for each type of a and f . However, as discussed
further this unification introduces a new obstacle on the path to good performance.
Even though implicit parallelism allows writing high-level code, it is non-trivial to make

the code perform well. During the execution of a parallel program the run-time system
induces overheads related to creation and scheduling of tasks. These overheads can be large
enough to wipe out benefits of parallelism. For example, the simple map example above
could run as much as 10-100x slower than an optimized implementation (Section 4.2).
There exists two complementary types of approaches to reduce the overheads of paral-

lelism. An approach of the first type (e.g., [107]) optimizes the run-time system itself, for
example, by reducing overheads spent per task creation, and does not require any changes
to the code. An approach of the second type (e.g., [100]) controls granularity. Granularity
control requires the programmer to tune the code in order to ensure that only big enough
computations are parallelised and for small and only small computations an alternative
sequential algorithm is executed. By that, the total overhead spent by run-time system
takes a small fraction of the total execution time.
As an example of granularity control, imagine our map function that takes an integer

array as a and an increment function as f . To perform this operation efficiently, the pro-

37

template <F, T, S>
map(F f, T* a, S* b, int n):
map(f, a, b, 0, n)
return

template <F, T, S>
map(F f, T* a, S* b, int l, int r):

if r - l = 1:
b[l] ← f(a[l])
return

mid ← (l + r) / 2
spawn [&] { map(f, a, b, l, mid) }

[&] { map(f, a, b, mid, r) }
sync
return

Figure 4.1.: Parallel map, naive implemen-
tation.

template <F, T, S>
map(F f, T* a, S* b, int n):
map(f, a, b, 0, n)
return

int grain = ... // to be determined
template <F, T, S>
map(F f, T* a, S* b, int l, int r):

if r - l ≤ grain:
for i in l..r - 1:
b[i] ← f(a[i])

return

mid ← (l + r) / 2
spawn [&] { map(f, a, b, l, mid) }

[&] { map(f, a, b, mid, r) }
sync
return

Figure 4.2.: Parallel map, coarsened imple-
mentation.

grammer should group operations on elements into blocks that are executed sequentially
and that are large enough to amortize the cost of parallelism. Figure 4.2 shows such a
tuned implementation of map, where GRAIN_SIZE determines the block size.
The only thing left unspecified is how to choose the setting for grain-size constant

GRAIN_SIZE. While it may appear simple, this process turns out to be a challenge, because
the optimal setting for GRAIN_SIZE depends on the the architecture as well as the specific
inputs [25, 55, 66, 94, 136, 153]. The programmer has to perform the tuning process,
i.e., repeatedly execute the program with different inputs so that the right setting can be
found [100, 153].
In simple parallel programs, such as map discussed above, grain-size constants are inde-

pendent from each other and can be tuned separately. However, when programs become
more complicated, for example, by using the nested parallelism: the grain-size constants
that correspond to recursive calls become dependent. The dependency between the con-
stants greatly complicates the tuning process.
Furthermore, for generic code, such as map, it can be impossible to perform such tuning,

because grain-size constants depend on the template parameters as well as the actual
arguments.
These issues emerge an interest in an automatic algorithms that help the programmer

to control granularity [55, 98, 130, 155]. However, all these approaches fall short to deliver
strong theoretical and practical efficiency guarantees. A more recent paper on automatic
oracle-guided algorithm [5] show that strong bounds can be achieved if we are provided
with an oracle that can predict the execution time precisely. The authors present an
implementation of such an oracle, but this implementation cannot be used in programs
with nested parallelism. This limitation excludes nearly all interesting parallel programs
expressible in high-level parallel programs.
In this chapter, we present provably and practically efficient automatic granularity con-

trol technique for the class of nested parallel programs. To use our technique the pro-
grammer is asked to provide an “asymtotic” cost function of each piece of parallel code.
Our novel online algorithm works as follows: (1) uses these cost functions to predict the
expected execution time of that code on one process; (2) uses this prediction to decide
whether to execute the parallel or sequential version of the code.
We prove that our algorithm has the desired theoretical properties, i.e., the overhead

38

on synchronization is small in comparison to the total execution time, for a broad class
of parallel programs. We implement the algorithm as a C++ library that extends Cilk
Plus [101] and compare it against the hand-tuned code from the PBBS suite [142]. As
the results show, our automatic approach to granularity control can eliminate the need
for hand-tuning in many cases.
To the best of our knowledge, this is the first result that provides the provable and

practically efficient automatic granularity control.

Roadmap

In Section 4.2, we present several challenges of the granularity problem and present the
high-level idea behind our solution. In Section 4.3, we present our online algorithm for
automatic granularity control. This algorithm is fully online and does not require addi-
tional tuning or specific compiler support. Then we present end-to-end tight bounds on
the execution time of a parallel algorithm that uses our algorithm. In Section 4.4, we
provide the proofs of the bounds. In Section 4.5, we present the results of the evaluation
on a broad collection of hand-tuned benchmarks. In Section 4.6, we discuss the related
work. We conclude in Section 4.7.

4.2. Overview
We present an overview of the challenges of the granularity problem and our proposed
solution.

Example Program

Consider a simple, data-mining problem: given an array of elements of type T, find the
number of elements that satisfy a given predicate p. Using C++ templates, we specify such
a generic function as follows:

template<T, P>
match(T* lo, T* hi, P p): int
...

Because match is generic, we can set T to be char, and define the predicate to be a
function (a C++ lambda function [143, Sec.11.4]) that tests equality of the character to ’#’
as follows.

p = [&] (char* c) { return *c = ’#’ }

Similarly, we can perform matches over arrays whose elements are 1024-character strings,
by setting T to be char[1024]. For example, we may count the strings whose hash code
matches a particular value, say 2017, by instantiating the predicate as follows.

p = [&] (T* x) { return hash(x, x + sizeof(T)) = 2017 }

A classic way to implement a parallel match is to divide the input array into two halves,
recursively call on each half, and compute the sum of the number of occurrences from
both halves. Figure 4.3 shows the code for such an implementation, where match takes as
arguments the input array, specified by a reference a and length l, and a predicate function,
p. To control granularity, we stop the recursion when the input contains fewer than grain
elements and switch to a fast sequential algorithm, match_seq. When the input array is
large, it is divided in half and solved recursively in parallel using fork2join.

Choice of the Grain Size

To ensure good performance, the programmer must choose the setting for grain; but what
should this setting be? The challenge is that there is no a priori suitable setting for grain,

39

Type T Size grain Time Comment

char 800M 1 1.963 100x slower
10 0.330 17x slower
5000 (TBB-rec.) 0.020 optimal
auto (ours) 0.020 optimal

char[64] 200M 1 0.129 78% slower
10 (TBB-rec.) 0.077 6% slower
5000 0.072 optimal
auto (ours) 0.073 optimal

char[2048] 0.4M 1 (TBB-rec.) 0.049 optimal
10 0.050 optimal
5000 0.057 16% slower
auto (ours) 0.050 optimal

char[131072] 0.01M 1 (TBB-rec.) 0.075 optimal
10 0.075 optimal
5000 1.419 19x slower
auto (ours) 0.075 optimal

Table 4.1.: Running times on 40 cores for inputs of various sizes, for manually-fixed grain
sizes, including the one obtained following Intel’s TBB manual, and for our
algorithm.

because the suitability depends on the particular hardware and software environment and,
in fact, on the inputs to the function match. Applying the established practice of manual
granularity control leads to poor results even on the same machine and with the same
software environment.
Table 4.1 illustrates the issue. It shows the 40-core run times for different types T

and different grain settings. (The experiment is run on an Intel machine described in
Section 4.5.) The input size (total number of elements) is chosen to ensure a sequential
execution time of a few seconds. When T is the type char, we use character equality as
predicate. When T is an array of characters, we compare the hash values, for a standard
polynomial hashing function. For each setting of T, we consider various values of grain,
including the “recommended” grain value determined by following the process described
in Intel’s TBB manual [100]: start by setting the grain to the value 10, 000 and halve it
until the 1-processor run-time stops decreasing by more than 10%. Such tuning maximizes
the exposed parallelism by considering the smallest grain value for which the overheads
are not prohibitive.
At first, observe that the TBB-recommended value of grain changes for different set-

tings of T. For char it is 5000; for char[64] it is 10; for char[2048] it is 1. Secondly,
observe that a grain optimal in one setting may induce a very significant slowdown in a
different setting. For example, when T is char, setting the grain to 1 instead of 5000
results in a 100-fold slowdown. Thus, we conclude that, there is no one value of grain
that works well for all instances of match.
One might attempt to select the grain size based on the arguments provided to the

match function. For example, the grain could be set to C/sizeof(T), for some constant C,
to ensure use of a smaller grain size when processing bigger elements. This approach helps
in some cases, but it does not solve the problem in general: note that in match, the grain
depends not only on the type T, but also on the predicate passed as the second argument.
If T is set to char[64] and the predicate is instantiated as a standard polynomial hash
function, the optimal grain size is 10; however, providing a different, more computation-
ally expensive predicate function, for example, the number of different substrings, causes

40

1 int grain = ... // determined by tuning
2 template <T, P>
3 match(T* lo, int n, P p): int
4 res ← 0
5

6

7

8

9

10 if n > grain:
11 sl ← n / 2
12 sr ← (n + 1) / 2
13 T* mid ← lo + sl
14 res1 ← 0
15 res2 ← 0
16 fork2join(
17 [&] {
18 res1 ← match(lo, sl, p)
19 },
20 [&] {
21 res2 ← match(mid, sr, p)
22 }
23)
24 res ← res1 + res2
25 else:
26 res ← match_seq(lo, hi, p)
27

28 return res

Figure 4.3.: Find matches with manual
granularity control.

1

2 template <T, P>
3 match(T* lo, int n, P p): int
4 res ← 0
5 spguard([&] { // complexity function
6 return n
7 }, [&] { // parallel body
8 if n ≤ 1:
9 result ← match_seq(lo, hi, p)

10 else:
11 sl ← n / 2
12 sr ← (n + 1) / 2
13 T* mid ← lo + sl
14 res1 ← 0
15 res2 ← 0
16 fork2join(
17 [&] {
18 res1 ← match(lo, sl, p)
19 },
20 [&] {
21 res2 ← match(mid, sr, p)
22 }
23)
24 res ← res1 + res2
25 }, [&] { // sequential body
26 res ← match_seq(lo, hi, p)
27 })
28 return res

Figure 4.4.: Find matches with automatic
granularity control.

the optimal grain size to be 1. Selecting the right grain for different predicates would
require the ability to predict the execution time of a function, an intractable problem.
To control granularity in cases of nested-parallel programs, the programmer will likely
have to specialize the code for each predicate and apply granularity control to each such
specialization, thus losing the key benefits of generic functions.
The problems illustrated by the simple example above are neither carefully chosen ones

nor isolated cases. They are common; more realistic benchmarks exhibit even more com-
plex behavior. In fact, as discussed in more detail in Section 4.5, in the state of the art
PBBS benchmarking [142], nearly every benchmark relies on carefully written, custom
granularity control techniques.

Our Approach

Our goal is to delegate the task of granularity control to a smart library implementation.
To this end, we ask the programmer to provide for each parallel function a series-parallel
guard, by using the keyword spguard. A spguard consists of: a parallel body, which is a
lambda function that performs a programmer-specified parallel computation; a sequential
body, which is a lambda function that performs a purely sequential computation equivalent
to the parallel body, i.e. performing the same side-effects and delivering the same result;
and, a cost function, which gives an abstract measure, as a positive number, of the work
(run-time cost) that would be performed by the sequential body.
At a high level, a spguard exploits the result of the cost function to determine whether

the computation involved is small enough to be executed sequentially, i.e., without at-
tempting to spawn any subcomputation. If so, the spguard executes the sequential body.

41

Otherwise, it executes the parallel body, which would typically spawn smaller subcompu-
tations, each of them being similarly guarded by a spguard.
The cost function may be any programmer-specified piece of code that, given the context,

computes a value in proportion to the one-processor execution time of the sequential body.
Typically, the cost function depends on the arguments provided to the current function
call. A good choice for the cost function is the average asymptotic complexity of the
sequential body, e.g., n lgn, or n, or

√
n, where n denotes the size of the input. The

programmer need not worry about constant factors because spguards are able to infer
them on-line, with sufficient accuracy.
In a real implementation, the sequential body can be left implicit in many cases, because

it can be inferred automatically. For example, the sequential body for a parallel-for loop
can be obtained by replacing the parallel-for primitive with a sequential for. Likewise, in
many instances, the complexity function is linear, allowing us to set it to the default when
not specified. In our library and experiments, we use this approach to reduce dramatically
the annotations needed.
Figure 4.4 shows the code for our example match function using spguard. Compared

with the original code from Figure 4.3, the only difference is the code being structured
as a spguard with three arguments: cost function, parallel body, and sequential body.
There, the cost function simply returns the input size, written n, because the sequential
body (match_seq) uses a linear-time, sequential matching algorithm.
As we show in this chapter, once a parallel algorithm is modified with the insertion of

spguards like in Figure 4.4, the information provided by the cost function suffices for our
run-time system to control granularity effectively for all settings of the parameters. As
shown in Table 4.1, our oracle-guided version matches the performance achieved by the
grain settings recommended by the TBB method, but without any of the manual tuning
effort and code modifications.

4.3. Algorithmic Granularity Control

Our algorithm aims at sequentializing computations that involve no more than a small
amount of work. To quantify this amount, let us introduce the parallelism unit, written
κ, to denote the smallest amount of work (as units of time) that would be profitable
to parallelize on the host architecture. The value of κ should be just large enough to
amortize the cost of creating and managing a single parallel task. On modern computers,
this cost can be from hundreds to thousands of cycles. Practical values for κ therefore
range between 25 and 500 microseconds.

To see the basic idea behind our algorithm, consider the following simple example,
involving a single spguard. Suppose that we have a parallel function f(x) which, given
an argument x, performs some computation in divide-and-conquer fashion, by recursively
calling itself in parallel, as shown below. Assume the body of this function to be controlled
by a spguard, with c(x) denoting the cost function, and g(x) denoting the sequential body,
that is, a purely sequential function that computes the same result as f(x).

f(x):
spguard(

[&] { c(x) }, // cost function
[&] { // parallel body

if x = 1:
...

else:
(x1, x2) ← divide(x)
r1 ← null
r2 ← null
spawn [&] { r1 ← f(x1) }

42

[&] { r2 ← f(x2) }
sync
conquer(r1, r2)

},
[&] { g(x) } // sequential body

)

Intuitively, we aim at enforcing the following policy: if the result of f(x) can be obtained
by evaluating the sequential body g(x) in time less than κ, then g(x) should be used.
Under a small number of assumptions detailed further in this chapter, this policy leads to
provably efficient granularity control.

4.3.1. Making Predictions

One central question is how to predict whether a call to g(x) would take less than κ
units of time. Assume, to begin with, a favorable environment where (1) the hardware
is predictable in the sense that the execution time is in proportion to the number of
instructions, and (2) the cost function c(x) gives an estimate of the asymptotic number
of instructions involved in the execution of g(x). For a given input x, let N denote the
value of c(x), and let T denote the execution time of g(x). By definition of “asymptotic”,
there exists a constant C such that: T ≈ C ·N . Our algorithm aims at computing C by
sampling executions, and then it exploits this constant to predict whether particular calls
to g(·) take less than κ units of time.
More precisely, for an input x_i being evaluated sequentially, that is, through a call to

g(x_i), we may measure the execution time of g(x_i), written Ti, and we may compute
the value of c(x_i), written Ni. From a collection of samples of the form (Ti, Ni), we may
evaluate the value of the constant C by computing the ratios Ti/Ni. In reality, the actual
value of the constant can vary dramatically depending on the size of the computation,
in particular due to cache effects — we will later return to that point. There is a much
bigger catch to be addressed first.
In order to decide which computations are safe to execute using the sequential body

g(·), our algorithm needs to first know the constant C. Indeed, without a sufficiently
accurate estimate of the constant, the algorithm might end up invoking g(·) on a large
input, thereby potentially destroying all available parallelism. Yet, at the same time, in
order to estimate the constant C, the algorithm needs to measure the execution time of
invocations of g(·). Thus, determining the value of C and executing the algorithm g(·)
are interdependent. Resolving this critical circular dependency is a key technical challenge.
At a high level, our algorithm progressively sequentializes larger and larger computa-

tions. It begins by sequentializing only the base case, and ultimately converges to com-
putations of duration κ. Each time that we sequentialize a computation by calling g(·)
instead of f(·), we obtain a new time measure. This measure may be subsequently used
to predict that another, slightly larger input may also be processed sequentially. We are
careful to increase the input size progressively, in order to always remain on the safe side,
making sure that our algorithm never executes sequentially a computation significantly
longer than κ.

As our algorithm increases the cost (as measured by the cost function) of sequentialized
computations each time at most by a multiplicative factor, called α, it converges after
just a logarithmic number of steps. The growth rate, α controls how fast sequentialized
computations are allowed to grow. Any α > 1 could be used; values between 1.2 and 3
work well in practice.

4.3.2. Dealing with Nested Parallelism

When dealing with a single spguard, the process described above generally suffices to infer
the constant associated with that spguard. However, the process falls short for programs

43

involving nested parallelism, e.g., nested loops or mutually-recursive functions. To see
why, consider a function h(·) that consists of a spguard whose parallel body performs
some local processing then spawns a number of calls to completely independent functions.
Because h(·) is not a recursive function with a base case, the algorithm described so far
is unable does not have a chance to follow the convergence process; the spguard of h(·)
would have no information whatsoever about its constant, and it would always invoke the
parallel body, failing to control granularity.
To address this issue and support the general case of nested parallelism, we introduce

an additional mechanism. When executing the parallel body of a spguard, our algorithm
computes the sum of the durations of all the pieces of sequential computation involved in
the execution of that parallel body. This value gives an upper bound on the time that
the sequential body would have taken to execute. This upper bound enables deriving
an over-approximation of the constant. Our algorithm uses this mechanism to make safe
sequentialization decisions, i.e., to sequentialize computations that certainly require less
than κ time. By measuring the duration of such sequential runs, our algorithm is then
able to refine its estimate of the constant. It may subsequently sequentialize computations
of size closer to κ.

Overall, our algorithm still progressively sequentializes larger and larger subcompu-
tations, only it is able to do so by traversing distinct spguards with different constant
factors.

4.3.3. Dealing with Real Hardware

Our discussion so far assumes that execution times may be predicted by the relationship
T ≈ C ·N . But in reality, this assumption is not the case. The reason is that the ratios
T/N may significantly depend on the input size. For example, we observed in several
programs that processing an input that does not fit into the L3 cache may take up to 10
times longer to execute than a just slightly smaller input that fits in the cache. In fact,
even two calls to the same function on the same input may have measured time several
folds apart, for example, if the first call needs to load the data into the cache but not the
second one.

We design our algorithm to be robust in the face of large variations of the execution
times typical of modern hardware. In addition to validating empirically that our algo-
rithm behaves well on hundreds of runs of our full benchmark suite, we formally prove its
robustness property. To that end, we consider a relatively realistic model that takes into
account the variability of execution times typical of current hardware. More precisely, we
develop our theory with respect to an abstract notion of “work”, which we connect both
to runtime measures and to results of costs functions, as described next.
At first, we assume that runtime measures may vary by no more than a multiplicative

factor E from the work, in either direction. Second, we require that, for the program
and the growth rate α considered, there exists a value β such that, for any cost function
involved in the program, the following property holds: if the cost function applied to an
input J returns a value no more than α bigger than for input I, then the work associated
with input J is at most β times bigger than the work for input I. Intuitively, this property
ensures that the work increases with the cost, but not exceeding a maximal rate of increase.
In practice, for α ≤ 2, we typically observe β ≤ 10. The value 10 typically corresponds to
the maximal slowdown occurring when the input data exceeds the size of the cache. Note
that the algorithm does not require knowledge of β; it is only involved in the analysis.

4.3.4. Analysis Summary

Our algorithm relies on several important assumptions on programs. These assumptions,
whose formal statements may be found in Analysis Section 4.4.1, are matched by a large
class of realistic parallel algorithms. At first, our algorithm assumes that, for each spguard,

44

the sequential body evaluates no slower than the corresponding parallel body on a single
process. (The sequential body might always be obtained by omitting spawns in the parallel
body.) But at the same time, the sequential body should not run arbitrarily faster than the
parallel body executed with all its inner spguards being sequentialized. This assumption
is required to know that it is safe to exploit the execution time of the parallel body to
over-approximate that of the sequential body.
Second, our algorithm assumes that spguards are called regularly enough through the

call tree. Without this assumption, the program could have a spguard called on an input
that takes much longer than κ to process, with the immediately nested spguard called
on an input that takes much less than κ, leaving no opportunity for our algorithm to
sequentialize computations of duration close to κ.
Last, our algorithm assumes some balance between the branches of a fork-join. Without

this assumption, the program could be a right-leaning tree, with all left branches containing
tiny computations. Such an ill-balanced program is a poorly-designed parallel program
that would be slow in any case.
As we prove through a careful analysis detailed in Section 4.4, under these assumptions,

our algorithm is efficient. Our bound generalizes Brent’s Theorem 2.2.1 (TP ≤ W
P + S),

by taking into account the overheads of thread creation (cost of spawning and managing
threads) and granularity control (including the cost of evaluating cost functions, which
are assumed to be executed in constant time). A simplified statement of the bound, using
big-O notations, appears next.

Theorem 4.3.1. Under the above assumptions, with parallelism unit κ, the runtime on P
processes using any greedy scheduler of a program involving work w and span s is bounded
by:

TP ≤
(

1 + O(1)
κ

)
· w
P

+ O(κ) · s + O
(
log2 κ

)
.

The most important term in this bound is the first term: the overheads impact the
work term w by only a small factor O(1)/κ, which can be reduced by controlling κ. The
second term states that doing so increases the span by a small factor O(κ), and that the
granularity control comes at a small logarithmic overhead O(log2κ), which is due to our
granularity control algorithm. We note that while our theorem is stated for simplicity
in terms of greedy schedulers, it could easily be adapted to other schedulers, e.g., to
work-stealing schedulers using Theorem 2.2.2.

4.3.5. High-Level Pseudo-Code for the Estimator and Spguard

In what follows, we present pseudo-code for the core of our algorithm. For each syntactic
instance of a spguard, we require a unique estimator data structure to store the information
required to estimate the corresponding constant factor. (In the case of templated code,
we instrument the template system to ensure that each template instantiation allocates
one independent estimator data structure.) The estimator data structure appears on the
left of Figure 4.5. It maintains only two variables: the variable C, a running estimate of
the constant, and Nmax, which tracks the maximum (abstract) work sampled thus far.

The function report provides the estimator with samples. It takes as argument T, the
execution time and N, the abstract work. If T is less than the parallelism threshold κ
and N is greater than Nmax, then C is atomically updated as T/N and Nmax is updated
to N. The function report protects against data races by using an atomic block. Our
library implements this atomic block using a single compare-and-swap (CAS) operation,
by packing the variables C (represented in single-precision) and Nmax (represented on 32
bits) on a single machine word. In the case of a race, compare-and-swap would fail and
our code would try again until it succeeds, or Nmax becomes greater than N.
The function is_small, takes as argument a cost N and returns a boolean indicating

whether the time to execute this much work is predicted to be less that α · κ. (Allowing

45

1 const double κ // parallelism unit
2 const double α // growth factor
3

4 class estimator
5 // constant for estimations
6 double C
7 // max complexity measure
8 int Nmax
9

10 report(int N, time T):
11 atomic {
12 if T ≤ κ and N > Nmax:
13 C ← T / N
14 Nmax ← N
15 }
16 return
17

18 is_small(int N): bool
19 return (N ≤ Nmax) or
20 (N ≤ α · Nmax and N · C ≤ α · κ)

21 template <Body_left, Body_right>
22 fork2join(Body_left bl, Body_right br):
23 spawn [&] { bl() }
24 [&] { br() }
25 sync
26 return
27

28 template <Complexity, Par_body, Seq_body>
29 spguard(estimator* es, Complexity c,
30 Par_body pb, Seq_body sb):
31 int N ← c()
32 if es.is_small(N):
33 work ← measured_run(sb)
34 else:
35 work ← measured_run(pb)
36 es.report(N, work)
37 return

Figure 4.5.: Pseudocode for the core algorithm.

sequentialization of computations of size slightly larger than κ is needed to obtain proper
estimates near κ.) If N is smaller than Nmax, then the function returns true. Intuitively,
this computation is smaller than a previously-sampled computation that took less than κ
time. If N exceeds Nmax, but no more than by a factor α, the function extrapolates using
its most current information: if the product C · N does not exceeds ακ, then it returns
true.
The functions fork2join and spguard appear on the right of Figure 4.5. The fork2join

function executes its two branches in parallel and resumes after completion of both branches.
The function spguard takes an estimator, a parallel body, a sequential body and a cost
function that return the abstract work of the sequential body. It begins by computing
the abstract cost N for the sequential body and consults the estimator. If the work is
predicted to be small, it runs the sequential body, else the parallel body. It relies on
a function called measured_run to measure the sum of the duration of the pieces of se-
quential code executed. This function is not entirely trivial to implement, but can be
implemented efficiently with little code as detailed further.

4.3.6. Implementing Time Measurements
Above, for simplicity, we have abstracted an important detail: measuring the work of
a sequential or a parallel function. Now, we present a refinement of the algorithm that
performs such measurements. The basic strategy is to keep several pieces of information as
processor local state to accumulate relevant timer information and combine them carefully
to compute the total work of a function. Figure 4.6 shows the full specification, which we
describe below.

Time Measures

We assume a function called now() that returns the current time. Importantly, we never
need to assume a global clock synchronized between the various processors, since all our
time measurements are always local to a processor. We nevertheless need to assume
that the clocks on the various processors deliver homogeneous results, that is, that the
clocks tick (roughly) at the same pace. The precision of the clock should be sufficient to

46

1 core_local time total
2 core_local time timer
3

4 total_now(time t): time
5 return total + (now() - t)
6

7 measured_run(f): time
8 total ← 0
9 timer ← now()

10 f()
11 return total_now(timer)
12

13 template <Body_left, Body_right>
14 fork2join(Body_left bl, Body_right br):
15 t_before ← total_now(timer)
16 t_left ← 0
17 t_right ← 0
18 spawn [&] { t_left ← measured_run(bl) }
19 [&] { t_right ← measured_run(br) }
20 sync
21 total ← t_before + t_left + t_right
22 timer ← now()
23 return

24 template <Complexity, Par_body, Seq_body>
25 spguard(estimator* es, Complexity c,
26 Par_body pb, Seq_body sb):
27 N ← c()
28 if es.is_small(N):
29 t ← now()
30 sb()
31 es.report(N, now() - t)
32 else:
33 t_before ← total_now(timer)
34 t_body ← measured_run(pb)
35 es.report(N, t_body)
36 total ← t_before + t_body
37 timer ← now()
38 return

Figure 4.6.: Implementation of time measurements.

measure time interval one or two order of magnitude smaller than κ, that is, roughly in
the thousands of cycles. In practice, we rely on hardware cycle counters, which are both
very precise and very cheap to query.

Sequential Work Time

We define the sequential work time of a computation to be the sum of the durations of all
the sequential subcomputations performed over the scope of that computation.

Invariants

Our algorithm maintains some information as processor-local state. More precisely, each
processor manipulates two variables, called total and timer. These two variables are
used for evaluating the sequential work time associated with the innermost call to the
measured_run function, according to the following two invariant. First, the timer variable
stores either the time of beginning of the innermost measured_run call, or a point in
time posterior to it. Second, the total variable stores the sequential work time that
was performed between the timestamp associated with the beginning of the innermost
measured_run call and the timestamp stored in the variable timer.
The auxiliary function total_now returns the sequential work time since the beginning

of the innermost call to measured_run. It is implemented by computing the sum of the
contents of the total variable and the width of the time interval between the timer and
the current time.
Remark: when outside of the scope of any measured_run call, the two processor local

variables keep track of the sequential work time since the beginning of the program. Our
code never exploits such values.

47

Transitions

When entering the scope of a new call to measured_run (Line 7), the variable total is
set to zero, and the variable timer is set to the current time. When exiting the scope of
a measured_run call (Line 11), the auxiliary function total_now is used to compute the
total sequential work time over this call.
When entering the scope of a new call to measured_run, it is essential to save the

relevant information associated with the current (immediately outer) call, otherwise this
valuable information would get lost. The variable t_before serves this purpose, by saving
the sequential work time performed so far in the current call, just before entering the scope
of the new call (Lines 15 and 33). When subsequently leaving the scope of this new call,
we restore the invariant by setting total to t_before plus the time spent during the new
call (Lines 21 and 36), and by setting timer to the current time (Lines 22 and 37).

In case the innermost measured_run call executes a fork-join (Line 14), the value of
the local variable t_before is captured by the join continuation. In technical terms, the
value of t_before is part of the call frame associated with the join thread that executes
after the sync. This join thread could be executed on a different processor than the
one that initiated the spawn, but such possibility does not harm the correctness of our
algorithm. Regardless of potential thread migration, we correctly set the timer and the
total immediately after the sync (Lines 21 and 22). More precisely, the processor that
executes the join continuation sets its total variable to be the sum of the sequential work
time performed before the spawn, plus that performed in each of the two branches (which
may execute on different processors), and it resets its timer variable to the current time.
In the simple case of a spguard executing its sequential body (Lines 28-31), our algorithm

does not bother calling measured_run. Instead, it directly measures the time before and
after the sequential body, and then compute the difference between the two values. This
simpler scheme applies because the sequential body involves no spguard nor any fork-join
call.

4.3.7. Programming Interface

We highlight two interesting features of our C++ implementation. At first, our imple-
mentation supports spguard without an explicitly-provided sequential body. In this case,
the parallel body is executed, with all spawns processed sequentially. Second, our im-
plementation supports defining higher-level abstractions on top of fork2join, such as
parallel-for, map, reduce, map_reduce, scan, filter, etc. For these abstractions, the
programmer may either indicate a custom cost function or simply rely on the default
one, which assumes a constant-time processing for each item or iteration. This default
mechanism saves a large number of cost functions.
For example, we implemented a more concise version of the match function in Figure 4.4

using map_reduce, as follows.

1 template <T, P>
2 match(T* lo, int l, P p): int
3 return map_reduce(lo, lo + l, 0,
4 [&] (int x, int y) { // associative combining operator
5 return x + y
6 },
7 [&] (T* i) { // leaf-level operation
8 return p(*i)
9 }

10)

48

4.4. Analysis

4.4.1. Definitions and Assumptions

Work and Span

To take into account the actual overheads of parallelism that granularity control aims to
amortize, our analysis accounts for the cost of parallel task creation, written by τ , as well
as the cost of evaluating cost functions, written by φ. Although these costs may vary in
practice, we assume τ and φ to be upper bounds for them. In particular, we assume cost
functions to evaluate in constant time, and we exploit the fact that our algorithm makes
predictions and handles time measurements in constant time for each spguard call. For
the latter, we make the simplifying assumption that the resolution of data races during
reports in an estimator incurs no more than a fixed cost. (In practice, CAS-conflicts are
quite rare in our experiments; a more refined cost model taking contention into account
would be required to account for the cost of CAS conflicts.)
Our analysis establishes bounds on the work and on the span, including the overheads of

parallelism, of the execution of a program under the guidance of our automatic granularity
control algorithm. We name these entities total work and total span. Our bounds on the
total work and span are expressed with respect to the work and span of the erasure version
of that program, in which all spguards are replaced with their parallel bodies. The erasure
of a program can be viewed as a program that is not granularity controlled at all, but
instead exposes all available parallelism.
We define the work and span of the erasure program, written w and s respectively, as

the work and the span of its erasure, where work and span are defined in the standard
manner [2]. In short, the work of two expressions composed sequentially is the sum of the
work of the two expressions; the work of two expressions composed in parallel is the sum
of the work of the two plus one. The span of two expressions composed sequentially is
the sum of the spans of the two; the span of two expressions composed in parallel is the
maximum of the spans of the two plus one. Note that to avoid ambiguity we call w and s
the raw work and the raw span, respectively.
We define the total work, written W, and the total span, written S, to measure the

actual work and span of an execution (rather than a program), accounting also for the
cost of parallelism and granularity control. More specifically, total work and total span
include the overheads: each fork2join is assumed to incur an extra cost τ (covering
in particular the cost of spawning threads and dealing with their scheduling), and each
estimator operation (including the evaluation of the cost function, the call to is_small
and to report, and the time measurements) is assumed to incur an extra cost φ. When
computing total work and span, we compute work/span of a spguard based on the branch
that it took: if the sequential branch is taken, then the total work/span of the spguard
is the total work/span of the sequential branch plus φ. Otherwise, if the parallel branch
is taken, then the total work/span of the spguard is the total work/span of the parallel
branch plus “τ + φ”.
Finally, for the purpose of stating the assumptions of our theorems, we define the

sequential work, written Ws(t, I), as the work of a piece of code t executed on input
I when this term executes fully sequentially, that is, where all spguards are forced to
execute the sequential body. For such a sequential execution, no parallelism is created
and no cost function is evaluated, thus, the sequential work is equal both to the work and
to the total work.

Accuracy of Time Measurements

We assume that time measured for a sequential execution may diverge from the sequential
work by up to some multiplicative factor E, in either direction. Formally, we assume the
existence of constant E such that, for any sequential execution of a purely sequential term

49

S on input I, its measured time, written M(S, I), satisfies:
M(S, I)
Ws(S, I) ∈ [1

E
,E].

Well-Defined Spguards

We say that a spguard is well-defined if the relative sequential work cost of the sequential
body and the parallel body of each spguard can be lower and upper bounded by a constant,
i.e., are asymptotically the same. Specifically, consider a spguard g, with a cost function
F , sequential body S, and parallel body B, executed on some input I. LetWs(S, I) denote
the sequential work of the sequential body of this call. Let Ws(B, I) denote the sequential
work of parallel body of this call, that is, the sequential execution time of the parallel
body when all spguards choose their sequential body. The spguard is well-defined if there
exists a constant D such that:

1 ≤ Ws(B, I)
Ws(S, I) ≤ D.

For the analysis, we consider programs where each spguard is well-defined with respect to
the same constant D.

The lower bounds assert that the sequential body induces no more work than the parallel
body. This is justified because the parallel body can always serve as a sequential body
by replacing fork2join calls with function calls. Note that without this assumption, the
sequentialization of subcomputations can increase the total work making it impossible to
control granularity.

The upper bound asserts that the sequential body cannot be arbitrarily faster than
executing the parallel body sequentially. This requires the parallel body to use spguards
to fall back to a sequential body without doing too much work. This is not difficult to
achieve for many nested-parallel algorithms, because they present an opportunity to use a
sequential body at each nest level, which usually corresponds to a recursive call. Without
this assumption, our algorithm is not guaranteed to converge to the desired constant factor
due to the gap between the parallel and sequential bodies.

Accurate Cost Functions

Wemake several accuracy assumptions on cost functions. At first, as mentioned previously,
we assume that cost functions are evaluated in constant time, and that this amount of
time does not exceed φ.
Second, we assume that the work increases with the cost. Formally, we assume that,

for any spguard g and associated cost function F , and for any pair of input I and J such
that F (I) ≤ F (J), we have: Ws(g, I) ≤Ws(g, J).

Finally, we assume that the work increases with the cost no faster than at some max-
imal rate (recall Section 4.3). Formally, we require that, for the program and the value
considered for the parameter α, there exists a value β such that, for any guard g and
associated cost function F involved in the program, and for any pair of inputs I and J
such that F (I) ≤ α · F (J), we have: Ws(g, I) ≤ β ·Ws(g, J).

Syntactic Forms of Spguards

For the analysis, we assume that we are given a program written by using the two paral-
lelism primitives that we offer: fork2join and spguards (described in Section 4.3). To
facilitate and simplify the analysis, we make two syntactic assumptions about programs.
These assumptions are not necessary for the algorithm or our implementation but are used
purely to facilitate analysis.
First, we assume that the parallel body of a spguard consists of fork-join call surrounded

by two pieces of sequential code, one to split the input and one to merge the output. In
C++ syntax:

50

spguard(F, [&]{ Sp;fork2join(L,R);Sm }, S).

This assumption causes no loss of generality because more complex expressions can be
guarded by sequencing and nesting spguards.
Second, we treat the body of spguards as functions that operate on some input. More

precisely, an execution of the guard above requires some input I and proceeds by first
executing F (I) to compute the cost, and then running with I either the sequential body
S(I) or the parallel body based on the outcome of the estimator as described in Section 4.3.
The parallel body is of the form:

Sp(I); fork2join(L(IL),R(IR)); Sm(Im)

where IL and IR are the inputs to branches and Im is the input to Sm. The inputs IL and
IR are obtained after processing of the input I by Sp, and Im is an output produced by
branches L and R.

Regularity of Forks

As explained in Section 4.3, to allow efficient granularity control, we need to rule out
ill-balanced programs. We assume the existence of a constant γ (with γ ≥ 1), called the
regularity factor, satisfying the following requirements.

• When considering a fork-join, there must be at least some balance between the left
and the right branch. Formally, for any execution on input I of a spguard with
sequential body S and branches L and R, we assume:

Ws(L, I)
Ws(S, I) and Ws(R, I)

Ws(S, I) ∈
[1
γ
, 1− 1

γ

]
.

Without this assumption, the program can be a right-leaning tree, with all left
branches containing only a tiny subcomputation; in such a program the overheads
of forks cannot be amortized.

• spguards must be called sufficiently frequently in the call tree. Formally, for any call
to a spguard that has sequential body S and executes on input I, if the immediate
outer spguard call has a sequential body S′ and executes on input I ′, we assume:

Ws(S, I)
Ws(S′, I ′)

≥ 1
γ
.

Without this assumption, the program can have a spguard called on an input that
takes much longer than κ to execute, with the immediate inner spguard called on
an input that takes much less than κ, leaving no opportunity to sequentialize a
subcomputation that takes approximately time κ to execute.

• For an outermost call to a spguard, we need to assume that it involves a nontrivial
amount of work. Formally, if an outermost call to a spguard with sequential body
S executes on input I, we assume Ws(S, I) ≥ κ. Without this assumption, the
program can consist of a sequential loop that iterates calls to a spguard on tiny
input; and, again, the overheads would not be amortized. (Note that, technically,
the requirement Ws(S, I) ≥ κ

γDE would suffice.)

4.4.2. Results Overview
To establish a bound on the parallel execution time of our programs, we first bound the
total span and total work. We then derive a bound on the parallel execution time under
a greedy scheduler. For the bounds, we assume programs that are 1) γ-regular, 2) where
spguards are well-defined, and 3) where all cost functions are accurate. We express our
bounds with respect to work and span, which do not account for the overheads as well as
the parameters of the analysis that account for various overheads and factors.

51

Theorem 4.4.1 (Bound on the total span). S ≤ (1 + φ+ max(τ, Eβκ)) · s.
The span may grow by a multiplicative factor, but no more. As our final bound will

show, for a program with sufficient parallelism (i.e., with w
s � P), this increase in the

span has no visible impact on the parallel run time.
Theorem 4.4.2 (Bound on the total work). Let κ′ = κ

DEγ , and F = 1 + logα κ
DE , and

H = logγ/(γ−1)
κ
DE , and P denote the number of processes, and G denote the number of

spguards occuring in the code. Then, we have

W ≤
(

1 + τ + 2φ
κ′

)
· w + PFGH · (τ + 2γφ).

The first component of the left hand side asserts that the work grows by no more than a
multiplicative factor 1 + ε, where ε may be tamed to a couple of percents by the choice of
a sufficiently large κ. The second component asserts that the total overheads associated
with the sequentialization of tiny subcomputations during the convergence phase of the
estimators are bounded by some constant cost, proportional to the number of estimators
and to the product P · F ·H, which is P ·O(log2 κ).
To bound the parallel run time, we exploit Brent’s Theorem 2.2.1, which asserts that,

for any greedy scheduler, Tp ≤ W
P + S, where P stands for the number of processes. To

simplify the final statement, we make some over-approximation, and we also exploit several
inequalities that are always satisfied in practice. We assume κ ≥ τ and κ ≥ 1 + φ, since
in practice the user always sets κ� max(τ, φ) to ensure small overheads.
Theorem 4.4.3 (Bound on the parallel run time). Let P denote the number of processes
and G denote the number of spguards.

TP ≤
(

1 + γED · (τ + 2φ)
κ

)
· w
P

+ (Eβ + 1) · κ · s + O
(
G · log2 κ · (τ + 2γφ)

)
.

Theorem 4.3.1 (Simplified bound on the parallel run time). For fixed hardware and any
program, all parameters of the analysis except for κ (the unit of parallelism) can be replaced
with constants, leaving us with the following bound:

TP ≤
(

1 + O(1)
κ

)
w

P
+ O(κ) · s + O

(
log2 κ

)
.

The most important term in this bound is the first term that says that the overhead
of various practical factors impact the work term w by only a small factor O(1)/κ, which
can be reduced by controlling κ. The second term states that doing so increases the span
by a small factor O(κ) and that all of this comes at a small logarithmic overhead, which
is due to our granularity control algorithm O(log2 κ).

Our theorem establishes that a non-granularity controlled nested parallel program with
work w and span s can be guaranteed to be executed fast on a real machine using our gran-
ularity control algorithm. Our experiments (Section 4.5) show that the analysis appears
to be valid in practice.

4.4.3. Additional Definitions
Syntax of Programs

The BNF grammar for programs with spguards is thus as follows. For brevity, we focus on
the language constructs that matter to the analysis: sequences, conditionals, and spguards
combined with fork-join.
• B ::= a boolean variable

• S ::= a purely sequential piece of code, without forks nor guards

• t ::= S | (t; t) | if B then t else t | spguard(S, p, S)

• p ::= S; fork2join(t, t); S

52

Detailed Definitions of Work and Span

The table below shows the definition of raw work and span, which correspond to the
standard definitions used in parallel program analysis, as well as the definition of total
work and span, which include the overheads of thread creation, written τ , and the over-
heads associated with the estimator, written φ. Note that in the definitions below we are
ultimately referring to the work of a sequential piece of code, written W (S), which we
assume to be defined as the number of instructions involved in the execution of S, or as
the number of cycles involved if the considered execution model assigns a cost to each
instruction.

Definition 4.4.1 (Work and span, raw and total, for each construct).
t: source expression W (t): raw work S(t): raw span W(t): total work S(t): total span

S W (S) W (S) W (S) W (S)
(t1; t2) W (t1) +W (t2) S(t1) + S(t2) W(t1) + W(t2) S(t1) + S(t2)
if B then t1 else t2

when B is true
1 +W (t1) 1 + S(t1) 1 + W(t1) 1 + S(t1)

if B then t1 else t2
when B is false

1 +W (t2) 1 + S(t2) 1 + W(t2) 1 + S(t2)

spguard(F , (Sp; fork2join(L, R); Sm), S)
when parallel body is chosen

W (Sp) +W (L) +W (R)+
+1 +W (Sm)

S(Sp) + max(S(L), S(R))+
+1 + S(Sm)

W(Sp) + W(L) + W(R)+
+φ+ τ + W(Sm)

S(Sp) + max(S(L),S(R))+
+φ+ τ + S(Sm)

spguard(F , (Sp; fork2join(L, R); Sm), S)
when sequential body is chosen W (S) W (S) W (S) + φ W (S) + φ

Due to the fact that spguard may dynamically select between the execution of the
sequential or the parallel branch, it does not make sense to speak about the work and
span of a program. We may only speak about the work and span of a particular execution
of the program, that is, of the work and span of an execution trace describing which
spguards have been sequentialized and which have not.

Definition 4.4.2 (Execution trace). A particular execution of a source term t on an input
I corresponds to a trace, written X, that describes, for each evaluation of a spguard during
the program execution, whether the sequential body or the parallel body is selected by the
spguard.

Definition 4.4.3 (Work and span, raw and total, of an execution trace). For an execution
of a source term t on an input I producing a trace X, we let:

• W (t, I,X) denote the raw work,

• S(t, I,X) denote the raw span,

• W(t, I,X) denote the total work,

• S(t, I,X) denote the total span.

The definitions are obtained by applying the appropriate rules from the previous table.

When the arguments t, I and X are obvious from the context, we write simply W , S,
W, and S.

Definition 4.4.4 (Sequential work). For a term t and an input I, we define the sequential
work, writtenWs(t, I), as the raw workW (t, I,X), where X is the trace that systematically
selects the sequential bodies.

Definition 4.4.5 (Work and span). For a term t and an input O, we define:

• the work w(t, I) as the raw work W (t, I,X) where X is the trace that systematically
selects parallel bodies.

• the span s(t, I) as the raw span S(t, I,X) where X is the trace that systematically
selects parallel bodies.

For a purely sequential subcomputation, the work is equal to the raw work. (It also
matches the span since there is no parallelism involved.) We use this fact implicitly in
several places through the proofs.

53

Time Measurements

In addition to the definition already given for the measurement of a sequential execution
time, written M(t, I), we need for the analysis to quantify the total sequential work time
involved in a parallel execution, written M(t, I,X). (Recall Appendix 4.3.6.)

Definition 4.4.6 (Measured time). We let:

• M(t, I) denote the measured time of the sequential execution of the term t on input
I.

• M(t, I,X) denote the sum of the measured time of all the pieces of sequential sub-
computations involved in the evaluation of the term t on input I according to trace
X. The measure thus ignores the overheads of fork-join operations and the overheads
associated with our runtime decisions. Note that this is exactly the time we measure
in our algorithm.

Classification of Spguard Calls

Definition 4.4.7 (Small call). A call to a spguard g on input I is said to be small whenever
Ws(g, I) ≤ κ

DE . Otherwise, it is said to be non-small.

Definition 4.4.8 (Domination of a spguard call).
• We say that a spguard call a is dominated by a spguard call b if a is executed as part
of the execution of the parallel body of b.

• We say that a is directly dominated by b if there are no spguard in-between, i.e. if
there does not exist a spguard c that dominates a and at the same time is dominated
by b.

Definition 4.4.9 (Covered sequential call). A sequential call to a spguard is said to be
covered if it is directly dominated by a parallel small call. Otherwise, it is non-covered.

Definition 4.4.10 (Classification of spguard calls). Every spguard call falls in one of the
four categories:

• parallel non-small call (when the spguard executes its parallel body on a non-small
call).

• parallel small call (when the spguard executes its parallel body on a small call).

• covered sequential call (when the spguard executes its sequential body and is domi-
nated by a parallel small call; note that a covered sequentiall call is a small call).

• non-covered sequential call (when the spguard executes its sequential body but is not
directly dominated by a parallel small call; in this case, it can be dominated by a
parallel non-small call, or not dominated at all).

Definition 4.4.11 (Critical parallel calls). A small parallel call to a spguard is said to be
a critical if all the calls that it dominates are sequential small calls.

This classification simplifies the presentation of the proof.
Any non-small call amortizes the overheads in a standard manner, i.e., provides multi-

plicative factor to the work and span. So, our major task is to bound the overhead spend
during small calls. Our bound is obtained in several steps.

1. We bound the number of critical parallel calls (that is, a parallel small call that
dominates only sequential small calls) in Lemma 4.4.7. To that end, we exploit
the fact that, after each critical parallel call, the algorithm performs a report that
increases the value of Nmax by at least some constant factor.

54

2. We show that the number of parallel small calls is bounded in terms of the number
of critical parallel calls in Lemma 4.4.9. To that end, we observe that each parallel
small call features at least one nested critical parallel call, and that, reciprocally,
each critical parallel call is nested in at most a logarithmic number of small parallel
calls.

3. We bound the number of covered sequential calls in terms of the number of parallel
small calls in Lemma 4.4.10. We do so by arguing that each parallel small call can
have at most a logarithmic number of nested sequential calls.

4. We independently show that the non-covered sequential calls correspond to non-small
calls, so their overheads are properly amortized in Lemma 4.4.11.

All together, we derive the bound on the overheads associated with all small calls in
Lemma 4.4.13.

Parameters Involved in the Statement of the Bounds

Definition 4.4.12 (Bound on the number of processes). Let P denote the number of
processes involved in the evaluation.

Definition 4.4.13 (Bound on the number of spguards). Let G denote the total number
of different spguards occuring in the source code of the program.

Definition 4.4.14 (Auxiliary parameter F). We define F = 1 + logα κ
DE , where κ is

expressed in number of machine cycles.

Definition 4.4.15 (Auxiliary parameter H). We let H = logγ/(γ−1)
κ
DE , where κ is ex-

pressed in number of machine cycles.

In the definitions of the auxiliary constants F and H, we assume that the number
of cycles involved in the sequential execution of a spguard always exceeds the number
returned by the cost function. The bounds can be easily adapted by adding a constant
factors to F and H if this was not the case.
To bound the total work W, our proof first bounds the total work excluding overheads

involved in parallel small calls and covered sequential calls, which we call W′, then bounds
the excluded overheads, that is, the value of W−W′.

Definition 4.4.16 (Total work excluding the overheads involved in parallel small calls).
We let W′ denote the subset of the total work W obtained by excluding the overheads (τ
and φ) involved in small parallel calls, in the sense that when reaching such a call, we
only count the raw work involved in this call, regardless of the decisions involved in the
subcomputations.

4.4.4. Basic Auxiliary Lemmas
Lemma 4.4.1. If term S does not contain any spguard, then w(S, I) = Ws(S, I).

Proof. Immediate from the definitions.

Lemma 4.4.2 (Sequential work associated with a spguard). In the particular case where
the term t corresponds to some spguard g, the sequential work is that of its sequential body
S, which does not contain any spguard. Thus, we have:

Ws(g, I) = Ws(S, I) = W (S, I,X) = W(S, I,X)− φ for any trace X.

Lemma 4.4.3 (Relationship between work and measured time of a computation). For
any term t executed on input I according to trace X, we have:

M(t, I,X)
W (t, I,X) ∈ [1

E
,E].

55

Proof. Recall our hypothesis: M(S,I)
W (S,I) ∈ [1

E , E] for all sequential computation S. First, we
prove that M(t, I,X) ≤ E ·W (t, I,X) by induction on the execution tree.

• Case t = S. By assumption on the variability of time measurements, we have:
M(t, I,X) = M(S, I,X) = M(S, I) ≤ E ·Ws(S, I) = E ·Ws(t, I). Using the fact
Ws(S, I) = W (S, I,X) from Lemma 4.4.2 we get M(t, I,X) ≤ E ·W (t, I,X).

• Case t = (t1, t2). We have: M(t, I,X) = M(t1, I,X)+M(t2, I,X) ≤ E·W (t1, I,X)+
E ·W (t2, I,X) = E ·W (t, I,X).

• Case t = if B then T1 else T2. Similar to the previous case, after performing the
case analysis.

• Case t = spguard(F , (Sp; fork2join(L, R); Sm), S).
– First case: spguard chooses the parallel body. Then,M(t, I,X) = M(Sp, I,X)+
M(L, I,X)+M(R, I,X)+1+M(Sm, I,X) ≤ E ·W (Sp, I,X)+E ·W (L, I,X)+
E · W (R, I,X) + 1 + E · W (Sm, I,X) ≤ E · (W (Sp, I,X) + W (L, I,X) +
W (R, I,X) + 1 +W (Sm, I,X)) = E ·W (t, I,X).

– Second case: spguard chooses the sequential body. Similar to the case t = S.

The second inequality W (t, I,X) ≤ E ·M(t, I,X) again can be proved by induction on
the execution tree. The proof is identical to the proof of the inequality above with the
only difference: M and W should be swapped.

We assumed, for each spguard, that the execution of the sequential body is faster than
the sequential execution of the parallel body, thus, when the trace chooses the parallel
body the execution should be slower than the corresponding sequential execution.

Lemma 4.4.4. Consider a term t with well-defined spguards. For any execution t on
input I with trace X, we have: Ws(t, I) ≤W (t, I,X).

Proof. We prove this by induction on the execution tree.

• Case t = S. We have: Ws(S, I) = W (S, I,X).

• Case t = (t1, t2). We have: Ws(t, I) = Ws(t1, I) + Ws(t2, I) ≤ W (t1, I,X) +
W (t2, I,X) = W (t, I,X).

• Case t = if B then t1 else t2. Similar to the previous case, after performing case
analysis.

• Case t = spguard(F , (Sp; fork2join(L, R); Sm, S). We distinguish two cases:
– First case: spguard chooses the parallel body. Then, using the property of well-

defined spguards, Ws(t, I) ≤Ws(Sp, I)+1+Ws(L, I)+Ws(R, I)+Ws(Sm, I) ≤
W (Sp, I,X) + 1 +W (L, I,X) +W (R, I,X) +W (Sm, I,X) = W (t, I,X).

– Second case: spguard chooses the sequential body. Then,Ws(t, I) = Ws(S, I) =
W (S, I,X) = W (t, I,X).

Because work considers full parallelization, it never selects the sequential bodies of
spguards, which are assumed to execute faster than parallel bodies on one process. Thus,
the work always exceeds the raw work.

Lemma 4.4.5. Consider a term t with well-defined spguards. For any execution of t on
input I with trace X, we have: w(t, I) ≥W (t, I,X).

Proof. We prove this by induction on the execution tree.

56

• Case t = S. We have: w(S, I) = W (S, I,X).

• Case t = (t1, t2). We have: w(t, I) = w(t1, I)+w(t2, I) ≥W (t1, I,X)+W (t2, I,X) =
W (t, I,X)

• Case t = if B then t1 else t2. Similar to the previous case, after performing the
case analysis.

• Case t = spguard(F , (Sp; fork2join(L, R); Sm), S). We distinguish two cases:
– First case: spguard chooses the parallel body. Then, w(t, I) = w(Sp, I) + 1 +
w(L, I) + w(R, I) + w(Sm, I) ≥ W (Sp, I,X) + 1 +W (L, I,X) +W (R, I,X) +
W (Sm, I,X) = W (t, I,X).

– Second case: spguard chooses the sequential body. Thus, the raw work corre-
sponds to the sequential work, i.e. W (t, I,X) = Ws(t, I). Besides, by definition
of work, we know that w(t, I) = W (t, I,X ′), where X ′ is the trace that sys-
tematically selects parallel bodies. By Lemma 4.4.4, w(t, I) = W (t, I,X ′) ≥
Ws(t, I) = W (t, I,X)

4.4.5. Proofs

Lemma 4.4.6. If a spguard g executes its sequential body, then its sequential work is
bounded as follows:

Ws(g, I) ≤ E · β · κ.

Proof. At first, observe that Ws(g, I) = Ws(S, I), where S denotes the sequential body of
the spguard.
Let N denote the value of F (I). According to the implementation of function is_small,

a spguard selects the sequential body according to the boolean condition: (N ≤ Nmax) or
((N ≤ α ·Nmax) and (N ·C ≤ α ·κ)), where Nmax and C are the values stored in the estimator
for this spguard.
Since N is non-negative, the condition may only evaluate to true if Nmax is non-zero,

indicating that at least one previous report has been stored for this spguard. Let J be
the input on which this previous report has been obtained, in other words Nmax = F (J),
let X denote the trace of spguards choices, and let M(g, J,X) denote the measured time
at this previous report. Since the report was stored, according to the implementation of
function report, we know that M(g, J,X) ≤ κ and that C = M(g,J,X)

F (J) .
By Lemma 4.4.2 on sequential work we know that Ws(S, J) = Ws(g, J). Lemma 4.4.4

provides us with Ws(g, J) ≤ W (g, J,X). And Lemma 4.4.3 on measured time in the
execution on input J gives W (g, I,X) ≤ E ·M(g, J,X). Thus, the raw work on input J
can be bounded as follows: Ws(S, J) = Ws(g, J) ≤W (g, J,X) ≤ E ·M(g, J,X).

In what follows, we establish the inequality Ws(S, I) ≤ β ·Ws(S, J). By exploiting that
Ws(S, J) ≤ E ·M(g, J,X) and M(g, J,X) ≤ κ, this inequality allows us to conclude as
follows:

Ws(g, I) = Ws(S, I) ≤ β ·Ws(S, J) ≤ β · E ·M(g, J,X) ≤ E · β · κ.

The desired inequality is deduced from the fact that the boolean condition evaluates to
true. Indeed, we know that N ≤ Nmax is true, or that N ≤ α · Nmax and N · C ≤ α · κ are
true.

• In the first case, the condition reformulates to F (I) ≤ F (J). By the property of
well-defined spguards, we deduce Ws(S, I) ≤ Ws(S, J). By exploiting β > 1, we
conclude Ws(S, I) ≤ β ·Ws(S, J), as desired.

57

• In the second case, the condition reformulates to: F (I) ≤ α ·F (J) and F (I) · M
F (J) ≤

α · κ. By the property of well-defined spguards, exploiting the first inequality, we
deduce: Ws(S, I) ≤ β ·Ws(S, J), the desired inequality.

Theorem 4.4.1 (Bound on the total span). For any execution of a program with well-
defined spguards, we have:

S ≤ (1 + φ+ max(τ, Eβκ)) · s

Proof. Let ρ be a shorthand for 1+φ+max(τ, Eβκ). We establish the inequality S ≤ ρ ·s
by induction on the execution tree.

• Case t = S. The program is sequential, so S = s ≤ ρ · s.

• Case t = (t1; t2). We have: S = S(t1) + S(t2) ≤ ρ · s(t1) + ρ · s(t2) = ρ · s.

• Case t = if B then t1 else t2. Similar to the previous case, after considering the
two cases.

• Case t = spguard(F , (Sp; fork2join(L, R); Sm), S). We have two cases:
– First case: the spguard chooses the parallel body. Then, S = S(Sp)+max(S(L),S(R))+
φ+ τ + S(Sm) ≤ ρ · s(Sp) + max(ρ · s(L), ρ · s(R)) + ρ+ ρ · s(Sm) = ρ · (s(Sm) +
max(s(L), s(R)) + s(Sp) + 1) = ρ · s.

– Second case: the spguard chooses the sequential body. In this case by Lemma 4.4.6
we know that the sequential work of this spguard call is bounded: Ws(g, I) ≤
Eβκ. Thus, using the fact that the span is nonnegative (s ≥ 1), we have:

S = Ws(S, I) + φ ≤ Eβκ+ φ ≤ ρ ≤ ρ · s.

Lemma 4.4.7 (Bound on the number of critical calls). A given estimator involves no
more than P · F critical calls.

Proof. Let us consider the critical call on input I with measured time M by process p.
At first, we prove that M does not exceed κ. From Lemma 4.4.3, we have M

W ≤
E. Because the critical call is small, we know that Ws(S) ≤ κ

DE and that all directly
dominated calls are sequentialized, thus W = Ws(Sp) +Ws(L) +Ws(R) + 1 +Ws(Sm). By
the property of well-defined spguardsWs(Sp)+Ws(L)+Ws(R)+1+Ws(Sm) ≤ D ·Ws(S).
Combining all these facts, we getM ≤ E·W = E·(Ws(Sp)+Ws(L)+Ws(R)+1+Ws(Sm)) ≤
E ·D ·Ws(S) ≤ E ·D · κ

DE = κ.
Second, after the report Nmax is at least F (I): either another process updated Nmax to

be not less than F (I), or this report successfully updates Nmax and sets it to F (I). This
report can be successful since the reported time M does not exceed κ.
Next, we show that the cost of the next critical call by process p increases at least by a

factor α. Suppose that the input of the next critical call is J . Our goal is to show F (J) >
α ·F (I). For the spguard to choose parallel body on J , the boolean condition in is_small
function (F (J) ≤ F (Y), or ((F (J) ≤ α ·F (Y)) and (F (J) ·T/F (Y) ≤ α ·κ), where Y and
T are the latest reported input and the measured time, respectively), needs to evaluate to
false. Note that F (I) ≤ F (Y), since after the last report by process p the value of Nmax
was at least F (I), and T ≤ κ, since the measure for Y was reported. Thus, at least one of
the two following conditions needs to be satisfied: F (J) > α · F (Y), or F (J) > F (Y) and
F (J) > ακ·F (Y)

T . The first case directly gives us the desired inequality, since F (Y) ≥ F (I).

58

For the second case, exploiting T ≤ κ, we have: F (J) > α·κ·F (Y)
T ≥ α·κ·F (I)

κ = α · F (I). In
summary, F (J) > α · F (I).
Since critical calls are small calls, their work cannot exceeed κ

DE . By the assumption that
the number of cycles exceeds the cost, the value of the cost function cannot exceed κ

DE , with
κ expressed in cycles. The cost associated with the first critical report is at least 1 unit,
and since the value increases by a factor α at least between every two consecutive critical
call by the same process, the number of such critical calls cannot exceed P · (1 + logα κ

DE).
We denoted 1 + logα κ

DE as F .

Lemma 4.4.8 (Bound on the number of nested small calls). Small spguard calls may be
nested at no more than on depth H.

Proof. Consider a set of nested small calls. The outermost call is small, so it involves work
at most κ

D·E . As we argue next, the ratio between the work of a call directly nested into
another one is at least γ

γ−1 . Combining the two, we can deduce that the number of nested
small calls is bounded by logγ/(γ−1)

κ
D·E .

To bound the ratio between two directly nested calls, we proceed as follows. Consider a
spguard with sequential body S on input I, directly dominated by a call to a spguard with
sequential body S′ on input I ′. Assume, without loss of generality, that the inner spguard
call occurs in the left branch, call it L, of the outer spguard call. From the γ-regularity
assumption, we know that Ws(L′,I′)

Ws(S′,I′) ≤ 1− 1
γ . Furthermore, since S executes as a subcom-

putation of the sequential execution of L′, we have: Ws(S, I) ≤ Ws(L′, I ′). Combining
the two inequalities gives: Ws(S, I) ≤ (1 − 1

γ) ·Ws(S′, I ′), which can be reformulated as
Ws(S′,I′)
Ws(S,I) ≥

γ
γ−1 , meaning that the ratio between the two nested calls is at least γ

γ−1 .

Lemma 4.4.9 (Bound on the number of parallel small calls). A given spguard involves
no more than P · F ·H parallel small calls.

Proof. First, we observe that each parallel small call must dominate at least one critical
call. Indeed, when following the computation tree, there must be a moment at which we
reach a spguard such that all dominated spguards choose sequential bodies, or such that
there are no dominated spguards in the body.

Thus, we may bound the number of parallel small calls by multiplying the number of
critical calls with the number of parallel small calls that dominate it (including the critical
call, which is itself a parallel small call). Of course, we may be counting a same parallel
call several times, but this over-approximation is good enough to achieve our bound. More
precisely, we multiply the bound from Lemma 4.4.8 with the bound from Lemma 4.4.7.

Lemma 4.4.10 (Bound on the number of covered sequential calls). A given spguard
involves no more than P · F ·H · (2γ − 2) covered sequential calls.

Proof. A covered sequential call is dominated by a parallel small call. The claimed bound
follows from the bound of Lemma 4.4.9 and the fact that, for each parallel small call, we
can have at most 2γ−2 directly dominated sequential small calls. We next prove this last
claim.
Consider a parallel small call on input I ′ to a spguard with sequential body S′ and

branches L′ and R′. Consider a directly dominated call on input Ic to a spguard with
sequential body Sc. By γ-regularity, we have: Ws(Sc, Ic) ≥ 1

γ · Ws(S′, I ′). From the
structure of the program, we know: Ws(L′) + Ws(R′) ≥

∑
c∈C

Ws(Sc, Ic), where C is the

set of all directly dominated sequential small calls. Also, by the first property of γ-
regular programs: Ws(L′),Ws(R′) ≤ (1 − 1

γ) ·Ws(S′, I ′), giving us additional inequality
Ws(L′)+Ws(R′) ≤ (2− 2

γ) ·Ws(S′, I ′). By combining the facts, we get: |C| · 1γ ·Ws(S′, I ′) ≤∑
c∈C

Ws(Sc, Ic) ≤Ws(L′)+Ws(R′) ≤ (2− 2
γ) ·Ws(S′, I ′). Thus, we deduce that the number

of directly dominated sequential small calls |C| does not exceed 2γ − 2.

59

Lemma 4.4.11 (Work involved in a non-covered sequential call). If a call to a spguard g
on input I is a non-covered sequential call, then it involves at least some substantial amout
of work, in the sense that:

Ws(g, I) ≥ κ

γDE
.

Proof. A call can be a non-covered sequential call for one of two reasons.
• First case: the call is directly dominated by another spguard call. This spguard
call is necessarily parallel, and by assumption it is a non-small call (otherwise, the
inner call would be covered). This non-small parallel call occurs on some spguard
g′ with sequential body S′ executed on input I ′. This call is not small, meaning
that Ws(S′, I ′) > κ

DE holds. Besides, by the definition of γ-regularity, we have:
Ws(S,I)
Ws(S′,I′) ≥

1
γ . Combining the two inequalities gives: Ws(S, I) > κ

γDE .

• Second case: the call is not dominated by any other spguard call. Then, by the last
assumption from the definition of γ-regularity, we have Ws(S) ≥ κ

γDE .

Lemma 4.4.12 (Bound on the work excluding overheads during small calls).

W′ ≤
(

1 + DEγ · (τ + 2φ)
κ

)
· w

Proof. Let us introduce the shorthand κ′ = κ
γDE . The bound is equivalent to W′ ≤(

1 + 1
κ′ τ + 2

κ′φ
)
· w.

Let B(w) = w + (w−κ′)+

κ′ τ + (2w−κ′)+

κ′ φ, where x+ is defined as x if x is non-negative,
and 0, otherwise.
We establish the slightly tighter inequality W′ ≤ B(w), by induction on the execution

tree.

• Case t = S. The program is sequential, so W′ = W = w ≤ B(w).

• Case t = (t1; t2). W′ = W′(t1) + W′(t2) ≤ B(w(t1)) +B(w(t2)) ≤ B(w1 +w2). The
last inequality holds, because B(x) + B(y) ≤ B(x + y) due to the fact (x − k)+ +
(y − k)+ ≤ (x+ y − k)+.

• Case t = if B then t1 else t2. Considering two different cases, similar to the
previous case.

• Case t = spguard(F , (Sp; fork2join(L, R); Sm), S). Let I be the input and X
be the trace for this call. Thereafter, we write Ws(S) as short for Ws(S, I) ad w as
short for w(t, I).
By Lemma 4.4.4, we know that: Ws(t, I) ≤ W (t, I,X). By Lemma 4.4.5, we have
W (t, I,X) ≤ w. Combining the two gives Ws(t) ≤ w.
We then distinguish four cases:
– First case: the call is the parallel non-small call. By definition of small,

this means: Ws(S) > κ
DE . Let us focus first on the left branch. By the

definition of γ-regularity, we know Ws(L)
Ws(S) ≥

1
γ . Besides, for the same rea-

son as we have Ws(t) ≤ w, we have Ws(L) ≤ w(L). Combining these re-
sults, we get: w(L) ≥ 1

γ · Ws(S) > κ
γDE = κ′. By symmetry, we have

w(R) > κ′. Also, we know that B(x) + B(y) ≤ B(x + y). Putting everything
together gives: W′ = W(Sp) + W′(L) + W′(R) + τ + φ+ W(Sm) ≤ B(w(Sp)) +
B(w(L)) + B(w(R)) + τ + φ + B(w(Sm)) = B(w(Sp)) + (w(L) + w(R)) +
(w(L)−κ′)+(w(R)−κ′)+κ′

κ′ τ + (2w(L)−κ′)+(2w(R)−κ′)+κ′

κ′ φ + B(w(Sm)) ≤ B(w(Sp)) +
B(w(L)+w(R))+B(w(Sm)) ≤ B(w(Sp)+w(L)+w(R)+w(Sm)) = B(w−1) ≤
B(w).

60

– Second case: the call is the parallel small call. By definition of W′, we do not
count the overheads within the scope of this call and only count the raw work,
thus W′ ≤W (t, I,X). Recall that W (t, I,X) ≤ w. Besides, by definition of B,
we have: w ≤ B(w). Combining these results gives: W′ ≤ B(w).

– Third case: the call is the covered sequential call. In this case, the call is
dominated by a parallel small call. Thus, such calls are never reached by our
proof by induction, because to reach them one would necessarily first go through
the case that treats parallel small calls, case which does not exploit an induction
hypothesis. (Recall that the definition of W′ excludes all the overheads involved
throughout the execution of a parallel small call.)

– Fourth case: the call is the non-covered sequential call. In this case, the work
equals to the sequential work, w = Ws(S), and W′ does not exclude the over-
heads, so W′ = Ws(S)+φ. By Lemma 4.4.11, we have: Ws(S) ≥ κ

γDE . In other
words, Ws(S) ≥ κ′. This inequality may be reformulated as: 2Ws(S)−κ′

κ′ ≥ 1.
Recall that we have Ws(S) ≤ w, since here Ws(t) = Ws(S). Combining all
these results yields:

W′ = Ws(S) + φ ≤Ws(S) + 2Ws(S)− κ′

κ′
φ ≤ B(Ws(S)) ≤ B(w).

Lemma 4.4.13 (Bound on the overheads associated with small calls).

W−W′ ≤ PFGH · (τ + (2γ − 1) · φ)

Proof. This bound on the overheads associated with small calls is obtained as the sum of
the overheads associated with covered sequential calls and the overheads associated with
parallel small calls. For the former, each covered sequential call induces an overhead of
φ, and there are at most PFH · (2γ − 2) of them per spguard, by Lemma 4.4.10. For the
latter, each parallel small call induces an overhead of τ + φ, and there are at most PFH
of them per spguard, by Lemma 4.4.9. Multiplying by G, the number of spguards, and
factorizing the sum leads to the aforementioned bound.

Theorem 4.4.2 (Bound on the total work using our algorithm).

W ≤
(

1 + DEγ · (τ + 2φ)
κ

)
· w + PFGH · (τ + 2γ · φ)

Proof. Obtained by summing the bound on W′ obtained from Lemma 4.4.12 and the
bound on W−W′ obtained from Lemma 4.4.13 with the fact that 2γ − 1 < 2γ.

Theorem 4.4.4 (Bound on the running time of γ-regular program). Consider the γ-
regular program with well-defined spguards. Let TP be the running time of the program on
a machine with P processes and a greedy scheduler. Let w and s be the work and span of
the program, correspondingly. G, F and H are as defined in 4.4.13, 4.4.14 and 4.4.15.
We have:

TP ≤
(

1 + γED · (τ + 2φ)
κ

)
· w
P

+ (1 + φ+ max(τ, Eβκ)) · s + FGH · (τ + 2γφ).

Proof. Combining Theorem 4.4.1 about the total span and Theorem 4.4.2 about the total
work together with Brent’s Theorem 2.2.1, we get our main theorem.

Theorem 4.4.3 (Bound on the parallel run time). Under two assumptions κ ≥ τ and
κ ≥ 1+φ, the bound on the parallel running time from the previous theorem can be slightly
simplified:

TP ≤
(

1 + γED · (τ + 2φ)
κ

)
· w
P

+ (Eβ + 1) · κ · s + O
(
G · log2 κ · (τ + 2γφ)

)
.

61

Proof. The proof is straightforward. At first, since κ ≥ τ , κ ≥ 1 + φ and E, β ≥ 1
we obtain: (1 + φ + max(τ, Eβκ)) ≤ (1 + Eβ) · κ. Secondly, F = 1 + logα κ

DE and
H = logγ/(γ−1)

κ
DE , thus F ·H = O(log2 κ).

Theorem 4.3.1 (Simplified bound on the parallel run time). For fixed hardware and any
program, all parameters of the analysis except for κ which represents the unit of parallelism
can be replaced with constants, leaving us with the following bound:

TP ≤
(

1 + O(1)
κ

)
w

P
+ O(κ) · s + O

(
log2 κ

)
.

Proof. Immediate from the previous theorem.

4.5. Experimental Evaluation

For our experiments we chose 11 benchmarks from the PBBS benchmark suite [142],
which covers diverse algorithms and is designed to compare different parallel programming
methodologies in terms of performance. Here we list the benchmarks: blockradix-sort
stably sorts fixed-length unsigned integer keys with the ability to carry along fixed-length
auxiliary data; comparison-sort sorts a sequence of any type given a comparison function;
suffix-array sorts all suffixes of a given string; convex-hull build a convex hull over a
set of points in 2D; nearest-neighours given a set of points in 2D or 3D finds k nearest
neighbours for each point; ray-cast given a set of triangles inside a 3D bounding box and
a set of rays calculates for each ray the first triangle it intersects; delaunay given a set
of points in 2D calculates the Delaunay triangulation for them; mis given an undirected
graph calculates a maximal independent set, i.e., a set of vertices, such any pair of points
are not adjacent and no other vertex can join this set; mst given a weighted undirected
graph calculates a minimum spanning tree (or forest), i.e., a subgraph without cycles, in
which any pair of vertices is connected, and which has the minimum possible total edge
weight; spanning given an undirected graph calculates any spanning tree (or forest); BFS
given an unweighted undirected graph and a source calculates the shortest path from the
source to all vertices.
PBBS includes only four more benchmarks: delaunay-refine given a Delaunay trian-

gulation in 2D calculates new Dealunay triangulation with all original points plus points
such that no triangle has an angle smaller than a threshold θ; n-body given n points in
3D calculates the gravitational force vector on each point due to all other points; remove-
duplicates removes duplicates from a sequence of any type; maximal-matching given an
undirected graph calculates a maximal matching, i.e., the set edges such that any pair of
edges does not share a vertex and that no other edge can join this set. We do not consider
them in our evaluation analysis because: delaunay-refine and n-body have critical code re-
gions that do not readily admit a cost function; remove-duplicates and maximal-matching
exhibit a very high variability in the running time of their critical loops, due to heavy use
of atomic operations that trigger massive bus contention. We leave it to future work to
investigate how to generalize our approach to support these algorithms.
The code provided for these benchmarks in the PBBS suite is highly-optimized. It relies

on a number of sophisticated techniques to control granularity, with careful engineering to
select the technique and hand-tune threshold settings. Two of the benchmarks we consider,
namely ray-cast and delaunay, are among the largest and most complex codes in PBBS.
The BFS and nearest-neighbour benchmarks are also notable because these benchmarks
were identified by the PBBS authors as problem cases for granularity control.
For our programs, we ported the original code by modifying only what was needed

to set up our automatic granularity. Overall, we frequently relied on default cost func-
tions provided by our library, and only provided 24 explicit cost functions. Changes are
summarized as follows.

62

• Several divide-and-conquer algorithms involved a manually-fixed grain to control
granularity (like in Figure 4.3). We replaced them with a spguard (like in Figure 4.4),
thereby eliminating the hardware-dependent magic numbers.

• A number of loops were parallelized by splitting in fixed size blocks of 2048 items
each — a pattern widely used throughout the PBBS sequence library. We replaced
all of them with our automatically-controlled parallel-for loop.

• Other loops exploited Cilk parallel for-loops, which essentially split the loop range
in 8P blocks, where P is the number of cores. We also replaced all of them with our
automatically-controlled loops.

• A number of inner loops were forced to be sequential, even though they could have
been parallel. As we learned from private communication with the authors, the pur-
pose was to tame the overheads. We restored parallelism, using our automatically-
controlled loops.

• A number of loops were forced to always make one spawn per iteration, using a Cilk
for-loop with grain size 1. Doing so is needed in situations were the loop body itself
may need to generate parallel spawns, because nontrivial grain size might dramati-
cally reduce parallelism. Again, we replaced all such loops with our automatically-
controlled loops, which properly support nested parallelism.

In summary, from a programmer’s perspective, automatic granularity control enables
replacing careful selection of techniques with a single, uniform technique for controlling
granularity. Furthermore, our automatic approach does not require labor-intensive tuning
of grain sizes, and it automatically adapts to the hardware — performance is portable.
These significant benefits are not completely free. Indeed, our algorithm needs to infer

granularity thresholds online, through a convergence phase. Nevertheless, as established
by our analysis (and, as we confirm through our experimental results), the cost of the
convergence phase generally accounts for at most a few percent of the parallel run time.
In addition to its engineering benefits, automatic granularity control may also deliver

better results. Depending on the situations, the elimination of Cilk for-loops may either
increase the number of spawns, possibly increasing utilization without noticeably increas-
ing the overheads; or it may decrease the number of spawns, possibly decreasing overheads
without noticeably decreasing parallelism. Likewise, the parallelization of inner sequential
loops may increase the parallelism available without incurring significant overheads. Thus,
we may expect to see, on a number of benchmarks, significant performance improvement.

4.5.1. Experimental Setup

Our primary test harness is an Intel machine with 40 cores. We compiled the code using
GCC (version 6.3) using the extensions for Cilk Plus (options -O2 -march=native -fcilk-
plus). Our 40-core machine has four 10-core Intel E7-4870 chips, at 2.4GHz, with 32Kb
of L1 and 256Kb L2 cache per core, 30Mb of L3 cache per chip, and 32GB RAM, and runs
Ubuntu Linux kernel v3.13.0-66-generic. For this machine, we used κ = 25 microseconds
and α = 1.5. For each data point, we report the average running time over 30 runs. The
variation in the running times is negligible: overall, we observed only a few cases where
the standard deviation is 5%, but it was usually below 3%.
The benchmarks in the PBBS suite were originally implemented in C++, using Cilk

extensions to realize parallelism. As baselines we use the author’s original code for each
benchmark. Note that that code was tuned by the authors offline, on a collection of inputs,
using a test machine similar to ours, and using GCC compiler like we did.

63

4.5.2. Input Data Description

For input data, we used mostly the same data sets used in the original PBBS study [142],
but in a number of cases using newly acquired data.
For radix-sort, we used a variety of inputs of 108 items. The random input consists of

32-bit integers ∈ [0, 231) drawn from the uniform distribution and exponential from the
exponential distribution. The input random kvp 256 consists of integer pairs (k, v) such
that k ∈ [0, 231) and v ∈ [0, 256), and random kvp 108 with v ∈ [0, 108).
For comparison-sort, we used a variety of inputs of 108 items. The random input consists

of 64-bit floats ∈ [0, 1) from a uniform distribution, and exponential from an exponential
distribution. The almost sorted input consists of a sorted sequence 64-bit floats ∈ [0, 108)
that is updated with 104 random swaps. The trigrams input consists of strings generated
using trigram distribution.
For suffix-array, we used one synthetic and three non-synthetic inputs. The trigrams

input consists of a string of length 108 generated using trigram distribution. The dna
input consists of a DNA sequence and has about 32 million charachters. The text input
consists of about 105 million characters drawn from Project Gutenberg. The wiki input
consists of 100 million characters taken from wikipedia’s xml source files.
For convex-hull, we used a variety of inputs of 108 2D points. The in circle input

consists of points inside the unit circle centered at the origin, on circle consists of points
on the unit circle centered at the origin, and kuzmin consists of points from Kuzmin’s
distribution [30].
For nearest neighbors, we used a variety of inputs of 108 2D and 3D points. The inputs in

square and on square consist of 2D points in and on, respectively, the unit square centered
at the origin. The input kuzmin consists of 2D points drawn from the Kuzmin distribution.
The input plummer consists of 3D points drawn from the Plummer distribution [133]. The
inputs in sphere and on sphere consist of 3D points in and on, respectively, the unit sphere
centered at the origin.
For ray-cast, we used a variety of synthetic and non-synthetic inputs. The input in cube

consists of 106 triangles with vertices drawn from the unit cube centered at the origin, and
on sphere consists of 106 triangles with vertices drawn from the unit circle centered at the
origin. The input happy consists of happy Buddha mesh from the Stanford 3D Scanning
Repository, and it consists of 1087716 triangles. The input xyz-rgb-manusript comes from
the same repository and consists of 4305818 triangles. The input turbine comes from
a different repository and consists of 1765388 triangles.1 For each of the mesh with n
triangles, n rays were generated: the start of each ray is randomly drawn from the lowest
side of the bounding box of the mesh and the end of each ray is randomly drawn from the
upper side of the bounding box of the mesh.
For delaunay, we used two inputs consisting of 107 2D points. The input in square

consists of points in the unit square, and kuzmin consists of points drawn from the Kuzmin
distribution.
For mis and spanning, we used three input graphs. The graph cube-grid (33076161

vertices and 99228483 edges) is represented as follows: the vertices are the unit cubes
of the cube with side 321 and an edge exist between two vertices if the cubes share
the side. The graph rMat24 (rMat27) is a synthetic graph on 16777216 vertices and
119845397 (118768790) generated with power-law distribution degrees [45] with settings
a = 0.5, b = c = 0.1 and d = 0.3 (a = 0.57, b = c = 0.19, d = 0.05).

For mst, we used the same three graphs as above. A weight of each edge is generated
uniformly at random from [0, 231).
For bfs, we used 13 different graphs that is a representative subset of the graphs used in

a different performance study in [4]. This subset includes small-world graphs, such as the
networks of livejournal and twitter, and high-diameter graphs, such as a map of Europe

1Large Geometric Models Archive at Georgia Institute of Technology http://www.cc.gatech.edu/
projects/large_models/blade.html

64

http://www.cc.gatech.edu/projects/large_models/blade.html
http://www.cc.gatech.edu/projects/large_models/blade.html

and cube-grid. We already described three graphs cube-grid, rMat24 and rMat27 above.
The graphs livejournal and twitter describe social networks [1, 109]: the first has 4 847 571
vertices and 68 993 773 edges, and the second has 41 652 231 vertices and 1 468 365 182
edges. The graph wikipedia (as of 6 February 2007) is taken from University of Florida
sparse-matrix collection [54]: 3 566 907 vertices and 45 030 389 edges. The graph europe
is chosen from DIMACS challenge problems [124]: 50 912 018 vertices and 108 109 320
edges. The remaining six graphs are synthetic. The directed graph square-grid (49 999 041
vertices and 99 998 082 edges) is represented as follows: the vertices are the cells of the
square with side 7071 and a cell has at most two out-edges, to the right neighbour cell
and to the up neighbour cell. The directed graph par-chains-100 (50 000 002 vertices and
50 000 100 edges) is 100 directed chains with 500 000 vertices each that start in one source
vertex and finish in one sink vertex. The directed graph trunk-first (10 000 001 vertices
and 10 000 000 edges) is a directed chain of length 5 000 000 each vertex of which (except
for the last one) has additional out-edge to a vertex with out-degree zero. The directed
graph phases-10-d-2 (33 333 331 vertices and 93 333 306 edges) has a source vertex and 10
layers each with 3 333 333 vertices, a source has out-edges to all vertices of the first layer,
exactly one vertex of each layer has out-edges to all the vertices of the next layer, and
any other vertex has out-edges to 2 random vertices of the next layer. The directed graph
phases-50-d-5 (40 000 001 vertices and 196 800 000 edges) has a source vertex and 50 layers
each with 800 000 vertices, a source has out-edges to all vertices of the first layer, exactly
one vertex of each layer has out-edges to all the vertices of the next layer, and any other
vertex has out-edges to 5 random vertices of the next layer. The directed graph trees-524k
(99 712 001 vertices and 99 712 000 edges) is a directed chain of length 381 each vertex of
which (except for the last one) has 524 287 additional out-edges to vertices with out-degree
zero. The last three graphs are cube-grid, rMat24 and rMat27 described above.

4.5.3. Main PBBS Results

The performance results appear in Table 4.2. The first column indicates the execution
time of the baseline, while the second one indicates the relative performance of our version
featuring automatic granularity control. For example, -10% indicates that our code is 10%
faster. Overall, our oracle-guided algorithm performs effectively the same and, in six cases,
between 23% and 36% better than the unaltered authors’ code.
Interestingly, we learned from private communication that the PBBS authors were aware

of granularity problems affecting nearest-neighbors and BFS, but not for other codes, such
as blockradix-sort, sample-sort, and convex-hull. Even carefully hand-tuned codes can
contain inefficiencies related to granularity control that are not necessarily obvious and
can easily escape detection.

4.5.4. Parallel BFS

In addition to the other PBBS programs, we considered the non-deterministic nested BFS
benchmark, named ndBFS in the PBBS paper. We chose ndBFS because it is the fastest
among the alternative BFS implementations in the PBBS suite and, to the best of our
knowledge, the fastest publicly available Cilk implementation of BFS.
There are two versions of BFS : the flat and the nested version (ndBFS). In the flat

version, the traversal over the neighbors of each vertex is performed sequentially. In the
nested version, it is performed using a parallel loop, allowing to process in parallel the
out-edges of vertices with high out-degree.
PBBS currently uses the flat version. Via personal communication, we learned that

the authors sequentialized the inner loop because (1) the graphs they considered did not
feature such high-degree vertices, and (2) they observed that performance improved for
some of their test graphs when this loop was serialized. Columns 2 and 4 from Figure 4.7
give the execution time for the flat PBBS BFS, and for its nested counterpart, using a

65

Application/input PBBS (s) Ours
blockradix-sort

random 0.20 −7.4%
exponential 0.19 −8.4%
random kvp 256 0.49 −23.9%
random kvp 108 0.49 −27.7%

comparison-sort
random 1.13 −36.4%
exponential 0.82 −31.3%
almost sorted 0.63 −18.8%

suffix-array
trigrams 3.58 −6.3%
dna 1.29 −6.7%
text 4.11 −7.4%
wiki 3.66 −5.3%

convex-hull
in circle 0.61 +5.8%
kuzmin 0.41 −6.9%
on circle 8.26 −32.4%

nearest-neighbours
in square 5.75 −2.2%
kuzmin 22.00 −2.5%
in cube 7.90 −6.5%
on sphere 14.60 −31.2%
plummer 23.54 −2.5%

ray-cast
in cube 7.90 −1.9%
on sphere 0.87 −0.2%
happy 0.50 −1.9%
xyz-rgb manuscript 9.46 +0.3%
turbine 4.10 −2.1%

delaunay
in square 3.39 −4.1%
kuzmin 3.99 −4.4%

mis
cube-grid 0.12 +1.2%
rMat24 0.07 +2.7%
rMat27 0.06 +2.7%

mst
cube-grid 2.28 −9.9%
rMat24 2.21 −13.3%
rMat27 1.89 −16.3%

spanning
cube-grid 0.62 −5.8%
rMat24 0.44 −0.6%
rMat27 0.33 −5.0%

Table 4.2.: Results from PBBS benchmarks, executed on 40 cores, averaged over 30 runs.
Figures show that automatic granularity control can be achieved at the expense
of small overheads, and that in fact it often decreases the parallel runtime
compared with carefully hand-tuned code.

66

Flat Nested Ours nested

Graph PBBS
(s) Ours PBBS

(s) Ours vs.
PBBS flat

livejournal 0.12 +10.3% 0.18 −26.3% +12.4%
twitter 1.74 −11.3% 2.14 −29.3% −13.0%
wikipedia 0.11 +1.2% 0.15 −27.8% −0.4%
europe 3.62 −30.6% 3.62 −22.9% −23.0%
rmat27 0.19 +2.5% 0.33 −35.7% +8.4%
rmat24 0.32 +6.0% 0.32 +6.1% +4.4%
cube-grid 0.71 −2.2% 0.67 +7.6% +0.3%
square-grid 3.81 −29.0% 3.82 −30.4% −30.3%
par-chains-100 65.4 −80.9% 66.9 −70.7% −70.0%
trunk-first 16.2 −52.1% 15.4 −51.2% −53.4%
phases-10-d-2 1.33 +16.0% 0.49 +7.3% −60.1%
phases-50-d-5 0.63 +2.2% 0.58 +8.2% +0.4%
trees-524k 10.8 +14.8% 1.14 +27.6% −86.5%

Figure 4.7.: Parallel BFS experiment on 40 cores (30 runs).

parallel cilk_for loop over the edges. The figures confirm that overheads of parallelization
using cilk_for are significant, sometimes above 50%.
In contrast, our algorithm, which supports nested parallelism, delivers significantly bet-

ter results for nested BFS, as reported in the 5th column from Figure 4.7 (“nested/ours”).
The last column from this figure shows our main result: it compares the performance of
the original authors’ flat BFS versus our nested BFS with automatic granularity control.
Our version either performs about as well or up to 86% faster.

4.5.5. Portability Study
We run the same set of experiments on two additional machines. As baselines we use the
PBBS author’s code, unaltered.

Portability: 48-core AMD machine This machine has four 12-core AMD Opteron 6172
processors running at 2.1GHz. Each core has 64KB of L1 instruction and data cache and
a 512KB L2 cache. Each processor has two 6MB L3 cache that is shared with the four
cores of the processor. The system has 128Gb of RAM and runs Ubuntu Linux 10.04.2
LTS. We tuned κ and α to be 30 microseconds and 1.1, respectively. Results are shown
in Table 4.10 and Figure 4.8.

Portability: 72-core Intel Xeon machine This machine features four Intel Xeon E7-8867
chips, each with 18 cores. Each core has a 32Kb L1 cache and a 256Kb L2 cache, and
there is one 45Mb shared cache per chip. The system has 1Tb of RAM and runs is running
Ubuntu v16.04 LTS (with Linux kernel version 4.10.0-27). We tuned κ and α to be 40
microseconds and 1.2, respectively. Results are shown in Table 4.11 and Figure 4.9.

Although the architecture of this machine is similar to our primary 40-core Intel ma-
chine, this 72-core machine is also useful to test the scalability of our granularity control
approach.
One outlier value it the +14% for the BFS algorithm on the cube-grid graph. This

slowdown is due to the particular graph structure and its particular size: the BFS traversal
of this graph exhibits a critically-low amount of parallelism, explaining why the slowdown
did not show up on the other two test machines. For this input graph, the cilk_for
loop manages to exploit slightly more parallelism within each round of a succession of
several BFS frontiers. It does so by spawning 8P parallel tasks, each of size less than

67

Flat Nested Ours nested

Graph PBBS
(s) Ours PBBS

(s) Ours vs.
PBBS flat

livejournal 0.26 +4.9% 0.33 −14.6% +6.9%
twitter 3.15 −5.2% 3.40 −17.1% −10.4%
wikipedia 0.22 +6.1% 0.27 −13.7% +3.0%
europe 4.92 −14.2% 4.95 −12.8% −12.3%
rmat27 0.35 +10.6% 0.49 −24.2% +5.2%
rmat24 0.55 +10.1% 0.57 +4.6% +8.8%
cube-grid 1.04 +4.3% 1.04 +4.6% +4.7%
square-grid 4.77 −25.6% 4.77 −24.7% −24.8%
par-chains-100 62.8 −66.3% 62.9 −66.2% −66.2%
trunk-first 10.1 +0.9% 10.1 +0.1% −0.3%
phases-10-d-2 1.99 +9.4% 0.71 +9.9% −60.9%
phases-50-d-5 1.43 +18.2% 1.24 +25.3% +8.1%
trees-524k 37.9 +0.6% 2.64 +32.9% −90.7%

Figure 4.8.: Results from the BFS experiment, executed on the 48-core AMD machine,
averaged over 30 runs.

κ. Generally, doing so would result in noticeable overheads, but here it gives a small
advantage, because on each of the frontiers considered in turns by the BFS algorithm,
there is barely enough work to feed all cores. The relative conservatism of our algorithm
gives it in such circumstances a slight disadvantage; yet, this same conservatism is what
gives our algorithm a major speedup on many other graphs.

4.5.6. Summary

These results show that, as expected, individual benchmarks could perform slightly differ-
ently on different machines, but also that the overall trends remain the same. Therefore,
we conclude that, as suggested by our theoretical results, our technique appears to be
portable across different machines.

4.6. Related Work
Controlling the overheads of parallelism has been an important open problem since the
early 1980’s, when it was first recognized that practical overheads can overwhelm the ben-
efits of parallelism [83]. Since then, researchers have explored two separate approaches
that reduce overheads by reducing the number of created threads. Note that these ap-
proaches are complementary to approaches that reduce overheads by reducing per-task
costs [3, 72, 94, 107, 136, 148].

Granularity Control

The granularity control is a technique that reduces the number of threads by selectively
switching from a parallel code to its, possibly faster, sequential alternative. Perhaps the
oldest granularity control technique is to use condition-guards for each task creation: “cut-
off” conditions that switch from parallel to a sequential mode of execution. Researchers
have addressed the limitations of such manual granularity control by using various forms
of automation.
Weening et al. [130, 155] proposed two methods based on height and depth cutoffs. The

“height cutoff” approach approximates the height of the current subcomputation in the
execution tree and then compares it against the single properly chosen cutoff constant. The

68

Flat Nested Ours nested

Graph PBBS
(s) Ours PBBS

(s) Ours vs.
PBBS flat

livejournal 0.09 −0.4% 0.13 −34.2% +3.3%
twitter 1.10 −17.5% 1.29 −34.4% −22.5%
wikipedia 0.08 −12.7% 0.10 −33.2% −11.3%
europe 2.77 −22.9% 2.77 −6.7% −6.9%
rmat27 0.12 +6.3% 0.20 −39.2% +4.9%
rmat24 0.17 +2.1% 0.18 +0.1% +4.1%
cube-grid 0.41 +7.9% 0.41 +14.1% +14.3%
square-grid 2.67 −25.7% 2.67 −20.8% −20.9%
par-chains-100 49.4 −88.4% 49.3 −87.4% −87.4%
trunk-first 13.8 −56.9% 14.0 −56.1% −55.6%
phases-10-d-2 0.93 +11.0% 0.21 +9.0% −75.9%
phases-50-d-5 0.52 +13.9% 0.45 +19.0% +4.6%
trees-524k 8.28 +7.5% 0.80 +23.4% −88.1%

Figure 4.9.: Results from the BFS experiment, executed on the 75-core Intel machine,
averaged over 30 runs.

two drawbacks are: (1) sometimes the height of the subcomputation cannot be deduced;
(2) the increase of the problem size results in the increase of the number of created threads
and, thus, the cutoff constant should be adjusted. The “depth cutoff” approach compares
the depth, i.e., the distance from the root to a current subcomputation in a computation
tree, with a single properly chosen cutoff constant. Its disadvantages are: (1) the depth
cannot provide an approximation of the size of the task and on skewed computation trees
this approach can create very small tasks; (2) when the code has several functions that
depend on each other, it becomes non-trivial to find the optimal cutoff constant.
Suppose that a function f has a sole argument — a list l. The algorithm by Huelsbergen

et al. [98] compares the length of l with a cutoff constant. This cutoff constant C is deduced
statically by abstractly executing f on lists of different sizes: C is the smallest value such
that the execution time of f on the list of length C exceeds the overhead threshold T .
Note that this approach works only for functions which execution time depends on the
length of exactly one argument.
Lopez et al. [55] proposed an approach similar to ours, but in the context of logic pro-

gramming: the programmer is required to provide cost functions and, then, the approach
decides to execute in parallel or sequentially by comparing costs with cutoff constants.
However, these cutoff constants are precomputed statically, while our algorithm does not
require preliminary tuning.
The algorithm by Duran et al. [60] uses an average execution time of subcomputations

on each depth to make predictions: if the average time for the current depth exceeds
some cutoff constant then the code is executed in parallel, otherwise, sequentially. To find
the average time for each depth, the algorithm measures the sequential execution time of
the subcomputations (as the sum of the execution times of sequential pieces) and, then,
reports it. If the number of reports for the current depth is big enough, e.g., 100, then
the average time is computed as an average time of reports. Despite the fact that this
approach is fully automatic, the average time is not a proper approximation of the work.
For example, if we received reports from 100 nodes on depth d with very little work then
any node on depth d with a lot of work will be executed sequentially leading to the loss
of parallelism.

Another approach to control granularity is proposed by Thoman et al. [150]. It radically
differs from the previous techniques. At first, it compiles different versions of each function:

69

Application/input PBBS (s) Ours
blockradix-sort

random 0.33 −2.3%
exponential 0.32 −2.5%
random kvp 256 0.58 +1.1%
random kvp 108 0.58 −0.0%

comparison-sort
random 1.24 −31.2%
exponential 0.96 −25.5%
almost sorted 0.82 −19.9%

suffix-array
trigrams 7.07 +0.8%
dna 4.01 +2.0%
text 9.21 +0.9%
wiki 7.60 +2.2%

convex-hull
in circle 1.04 +5.6%
kuzmin 0.73 +2.1%
on circle 10.53 −18.1%

nearest-neighbours
in square 8.65 +1.6%
kuzmin 32.57 +1.3%
in cube 10.75 +0.3%
on sphere 33.38 +0.0%
plummer 36.51 +0.3%

ray-cast
in cube 12.94 −3.5%
on sphere 2.09 +1.8%
happy 1.75 +4.8%
xyz-rgb manuscript 15.78 −0.4%
turbine 9.80 −0.2%

delaunay
in square 7.33 −1.0%
kuzmin 8.73 −4.5%

mis
cube-grid 0.25 −1.4%
rMat24 0.17 +0.4%
rMat27 0.14 −4.5%

mst
cube-grid 3.94 −9.6%
rMat24 4.09 −9.0%
rMat27 3.29 −6.5%

spanning
cube-grid 1.09 +0.0%
rMat24 0.81 +0.1%
rMat27 0.58 −3.0%

Figure 4.10.: Results from PBBS benchmarks, executed on the 48-core AMD machine,
averaged over 30 runs.

70

Application/input PBBS (s) Ours
blockradix-sort

random 0.12 −10.0%
exponential 0.11 −7.8%
random kvp 256 0.24 −20.6%
random kvp 108 0.24 −20.6%

comparison-sort
random 0.50 −34.9%
exponential 0.38 −29.6%
almost sorted 0.26 −15.3%

suffix-array
trigrams 2.17 +0.4%
dna 1.19 −3.2%
text 2.80 −1.1%
wiki 2.34 +0.7%

convex-hull
in circle 0.39 −4.2%
kuzmin 0.25 −11.9%
on circle 3.86 −30.5%

nearest-neighbours
in square 2.69 −1.1%
kuzmin 12.54 +1.9%
in cube 3.42 −2.4%
on sphere 14.40 +5.0%
plummer 16.39 −0.3%

ray-cast
in cube 3.01 −4.4%
on sphere 0.77 +4.3%
happy 0.69 +5.6%
xyz-rgb manuscript 5.81 +2.8%
turbine 2.40 +2.6%

delaunay
in square 2.43 −4.3%
kuzmin 2.89 −8.9%

mis
cube-grid 0.09 −5.7%
rMat24 0.06 +3.0%
rMat27 0.05 +1.8%

mst
cube-grid 1.34 −13.0%
rMat24 1.24 −8.4%
rMat27 1.12 −11.6%

spanning
cube-grid 0.37 −8.3%
rMat24 0.27 −3.8%
rMat27 0.21 −2.3%

Figure 4.11.: Results from PBBS benchmarks, executed on the 72-core Intel machine, av-
eraged over 30 runs.

71

the parallel version p; the sequentialized version s; the version p1 where all immediate
calls in p are inlined; the version p2 where all immediate calls in p1 are inlined; etc. These
versions are used to avoid overheads related to function calls. Second, the algorithm
maintains two variables: a task demand (keeps track of other worker’s unfulfilled attempts
to steal tasks from the worker) and a queue length (how many tasks the worker currently
has). Using a task demand and a queue length the algorithm decides which version of a
function to execute: s, p, p1, p2, etc. Unfortunately, this approach can oversequentialize.
Suppose a process withdraws a huge task (for example, the program is irregular, and this
is the biggest task created) to execute and sees that all processes are busy. The process
decides to sequentialize that task and, thus, the parallelism is lost.
The latest technique was proposed by Iwasaki et al. [102]. For each function it uses a

static analysis to find a condition on arguments in which the height of the subcomputation
is within a specifically chosen constant height H. Thus, when a function is executed the
condition is checked: if it is satisfied, the function is executed sequentially, otherwise, it
is executed in parallel. Further, the technique uses a sophisticated compiler support to
provide static optimizations, such as code-bloar-free inlining (inlining of the immediate
function calls) and loopification (transforming tasks into vectorizable loops). The major
drawback of this approach is that it uses height cutoffs: as shown by Weening [155] the
height is not a good approximation of the sequential execution time. In addition, in
complex programs the static analysis cannot deduce the conditions and the approach has
to decide on runtime information such as depth and the number of ready tasks: as shown in
prior works none of these properties can reasonably approximate the sequential execution
time.

Lazy Task Creation

In contrast to granularity control, lazy task creation (or, sometimes, lazy scheduling) fo-
cuses on reducing the number of tasks by observing the load in the system and creating
tasks only when necessary [25, 66, 118, 153]. Although, lazy task creation can reduce over-
heads of parallelism, it has some important limitations. First, there is no way to account
for the fact that an alternative sequential algorithm is more efficient than the original
parallel one executed on one process. So, it is reasonably common, that an algorithm
under lazy task creation works 3-10 times slower than the same algorithm under manual
granularity control.
Another issue with lazy task creation is that it requires regular checks whether some

process made a work request. Unfortunately, the simplest way to implement it is to use a
compiler support that injects polling checks [67].
However, we think that granularity control, such as our algorithm, and lazy task creation

are complementary. For example, when it is impossible to provide a cost function lazy
task creation can improve performance, and when it is possible our granularity control
can improve performance by switching to a sequential alternative.

4.7. Conclusion
The problem of managing parallelism-related overheads effectively is an important problem
facing parallel programming. The current state of the art in granularity control places the
burden of the tuning on the programmer. The tuning process is labor intensive and
results in highly engineered, possibly performance-brittle code. In this paper, we show
that it is possible to control granularity in a more principled fashion. The key to our
approach is an online algorithm for efficiently and accurately estimating the work of parallel
computations. We show that our algorithm can be integrated into a state-of-the-art,
implicitly parallel language and can deliver executables that compete with and sometimes
even beat expertly hand-tuned programs.

72

5. A Concurrency-Optimal Binary Search
Tree

5.1. Introduction

To meet modern computational demands and to overcome the fundamental limitations
of computing hardware, the traditional single-CPU architecture is being replaced by a
concurrent system based on multi-cores or even many-cores. Therefore, at least until the
next technological revolution, the only way to respond to the growing computing demand
is to invest in smarter concurrent algorithms.
Synchronization, one of the principal challenges in concurrent programming, consists

in arbitrating concurrent accesses to shared data structures: lists, hash tables, trees, etc.
Intuitively, an efficient data structure must be highly concurrent: it should allow multiple
processes to “make progress” on it in parallel. Indeed, every new implementation of a
concurrent data structure is usually claimed to enable such parallelism. But what does
“making progress” means precisely?

Optimal Concurrency

If we zoom in the code of an operation on a typical concurrent data structure, we can
distinguish data accesses, i.e., reads and updates to the data structure itself, performed
as though the operation works on the data in the absence of concurrency. To ensure
that concurrent operations do not violate correctness of the implemented high-level data
type (e.g., linearizability [89] of the implemented set abstraction), data accesses are “pro-
tected” with synchronization primitives, e.g., acquisitions and releases of locks or atomic
read-modify-write instructions like compare&swap. Intuitively, a process makes progress
by performing “sequential” data accesses to the shared data, e.g., traversing the data
structure and modifying its content. In contrast, synchronization tasks, though necessary
for correctness, do not contribute to the progress of an operation.
Hence, “making progress in parallel” can be seen as allowing concurrent execution of

pieces of locally sequential fragments of code. The more synchronization we use to protect
“critical” pieces of the sequential code, the less schedules, i.e., interleavings of data accesses,
we accept. Intuitively, we would like to use exactly as little synchronization as sufficient
for ensuring linearizability of the high-level implemented abstraction. This expectation
brings up the notion of a concurrency-optimal implementation [79] that only rejects a
schedule if it does violate linearizability.
To be able to reason about the “amount of concurrency” exhibited by implementations

employing different synchronization techniques, we consider the recently introduced no-
tion of “local serializability” (on top of linearizability) and the metric of the “amount of
concurrency” defined via sets of accepted (locally serializable) schedules [79]. Local seri-
alizability, intuitively, requires the sequence of sequential steps locally observed by every
given process to be consistent with some execution of the sequential algorithm. Note
that these sequential executions can be different for different processes, i.e., the execu-
tion may not be serializable [127]. Combined with the standard correctness criterion of
linearizability [22, 93]), local serializability implies our basic correctness criterion called
LS-linearizability. The concurrency properties of LS-linearizable data structures can be
compared on the same level: implementation A is “more concurrent” than implementation
B if the set of schedules accepted by A is a strict superset of the set of schedules accepted

73

by B. Thus, a concurrency-optimal implementation accepts all correct (LS-linearizable)
schedules.

A Concurrency-Optimal Binary Search Tree

It is interesting to consider binary search trees (BSTs) from the optimal concurrency
perspective, as they are believed, as a representative of search data structures [48], to be
"concurrency-friendly" [147]: updates concerning different keys are likely to operate on
disjoint sets of tree nodes (in contrast with, e.g., operations on queues or stacks).
We present a novel LS-linearizable concurrent BST-based set implementation. We prove

that the implementation is concurrency-optimal with respect to a standard partially-
external sequential tree [79]. The proposed implementation employs the optimistic “lazy”
locking approach [85] that distinguishes logical and physical deletion of a node and makes
sure that read-only operations are wait-free [89], i.e., cannot be delayed by concurrent
processes.
The algorithm also offers a few algorithmic novelties. Unlike most implementations of

concurrent trees, the algorithm uses multiple locks per node: one lock for the state of the
node, and one lock for each of its descendants. To ensure that only conflicting operations
can delay each other, we use conditional read-write locks, where the lock can be acquired
only under certain condition. Intuitively, only changes in the relevant part of the tree
structure may prevent a thread from acquiring the lock. The fine-grained conditional
read-write locking of nodes and edges allows us to ensure that an implementation rejects
a schedule only if it violates linearizability.

Concurrency-Optimality and Performance

Of course, optimal concurrency does not necessarily imply performance nor maximum
progress (à la wait-freedom [91]). An extreme example is the transactional memory (TM)
data structure. TMs typically require restrictions of serializability as a correctness crite-
rion. And it is known that rejecting a schedule that is rejected only if it is not serializable
(the property known as permissiveness) requires very heavy local computations [80, 108].
But the intuition is that looking for concurrency-optimal search data structures like trees
pays off. In this chapter, we show that optimal concurrency can pay off: we demonstrate
empirically that the Java implementation of our concurrency-optimal BST outperforms
state-of-the-art BST implementations [39, 52, 57, 62] on most workloads. Apart from the
obvious benefit of producing a highly efficient BST, this work suggests that optimizing
the set of accepted schedules of the sequential code can be an adequate design principle
for building efficient concurrent data structures.

Roadmap

The rest of the paper is organized as follows. In Section 5.2, we describe the details
of our concurrency-optimal BST implementation together with a novel conditional read-
write lock abstraction. In Section 5.3, we formalize the notion of concurrency-optimality
and sketch the corresponding proof. In Section 5.4, we give a proof of correctness of
our concurrent algorithm and, in Section 5.5, we show its concurrency-optimality. In
Section 5.6, we provides details of our experimental methodology and extensive evaluation
of our Java implementation. In Section 5.7, we presents concluding remarks.

5.2. Binary Search Tree Implementation

This section consists of two parts. At first, we describe in details the sequential implemen-
tation of the set based on partially-external binary search tree which we briefly mentioned
in Section 3.1. Then, we build the concurrent implementation on top of the sequential one

74

by adding synchronization separately for each field of a node. Our implementation takes
only the locks that are neccessary to perform correct modifications of the tree structure.
Moreover, if the field is not going to be modified, the algorithm takes the read lock instead
of the write lock. The last is done only to improve the performance of the algorithm, i.e.,
allow more schedules of the concurrent algorithm, while, as we shall see, this does not
affect the optimality.

5.2.1. Sequential Implementation

As for a sequential implementation we chose the well-known partially-external binary
search tree. The partially-external tree supports two types of nodes: routing and data.
The set is represented by the values stored by the data nodes. To bound the number of
routing vertices by the number of data nodes the tree should satisfy the following condition:
all routing nodes should have exactly two children.
The pseudocode of the sequential implementation is presented in Figure 5.1. Here, we

give a brief description. The traversal function takes a value v and traverses down the
tree from the root following the corresponding links as long as the current node is not null
and its value is not v. This function returns the last three visited nodes. The contains
function takes a value v and returns whether the last visited node is null or not.
The insert function takes a value v and uses the traversal function to find the place

to insert the value. If the last node returned by the traversal is not null, the algorithm
checks whether the node is data or routing: in the former case it is impossible to insert; in
the latter case, the algorithm simply changes the state of the node from routing to data.
If the last node is null, then the algorithm assumes that value v is not in the set and
inserts a new node with value v as the child of the latest non-null node visited by the
traversal.
The delete function takes a value v and uses the traversal function to find the node

with value v to delete. If the last node returned by the traversal is null or its state is
routing, the algorithm assumes that value v is not in the set and finishes. Otherwise, there
are three cases depending on the number of children that the found node has: (i) if the
node has two children, then the algorithm changes its state from data to routing; (ii) if
the node has one child, then the algorithm unlinks the node; (iii) finally, if the node is a
leaf then the algorithm unlinks the node, and if the parent is a routing node then it also
unlinks the parent.

5.2.2. Concurrent Implementation

As the basis of our concurrent implementation we took the idea of optimistic algorithms,
where the algorithm reads all necessary variables without synchronization and right before
the modification, the algorithm takes all the locks and checks the consistency of all the
information it read. As we show in the next section, the obtained concurrent partially-
external BST appears to be concurrency-optimal. The algorithm is presented at Figure 5.4
while the necessary read-write lock and node classes are presented at Figures 5.2 and 5.3,
respectively. Now, we discuss the details.

Deleted Mark

As usual in concurrent algorithms with wait-free traversals, the deletion of any node
happens in two stages. At first, the delete operation logically removes a node from the
tree by setting the boolean flag deleted (Figure 5.4 Lines 59, 63, 78, 83, 94-95 and 102-
103). Secondly, the delete operation updates the links to physically remove the node
(Figure 5.4 Lines 60, 64, 79, 84, 96 and 104).

75

Shared variables
node is a record with fields:
val, its value
left, its pointer to the left child
right, its pointer to the right child
state ∈ {DATA, ROUTING}, its state

Initially the tree contains one node root,
root.val ← +∞
root.state ← DATA

1 traversal(v): 〈Node, Node, Node〉
2 // wait-free traversal
3 gprev ← null
4 prev ← null
5 curr ← root // start from root
6 while curr 6= null:
7 if curr.val = v:
8 break
9 else:

10 gprev ← prev
11 prev ← curr
12 if curr.val < v:
13 curr ← curr.left
14 else:
15 curr ← curr.right
16 return 〈gprev, prev, curr〉

17 contains(v): bool // wait-free contains
18 〈gprev, prev, curr〉 ← traversal(v)
19 return curr 6= null and curr.state = DATA

20 insert(v): bool
21 〈gprev, prev, curr〉 ← traversal(v)
22 if curr 6= null: // curr has value v
23 Lines 28-30
24 else: // prev is a place to insert
25 Lines 32-36
26 return true

Update existing node
28 if curr.state = DATA:
29 return false // v is already in the set
30 curr.state ← DATA

Insert new node
32 newNode.val ← v // allocate a new node
33 if v < prev.val:

34 prev.left ← newNode
35 else:
36 prev.right ← newNode

37 delete(v): bool
38 〈gprev, prev, curr〉 ← traversal(v)
39 if curr = null or curr.state 6= DATA
40 return false // v is not in the set
41 if curr has exactly 2 children:
42 Line 51
43 if curr has exactly 1 child:
44 Lines 52-60
45 if curr is a leaf:
46 if prev.state = DATA:
47 Lines 62-65
48 else:
49 Lines 67-74
50 return true

Delete node with two children
51 curr.state ← ROUTING

Delete node with one child
52 if curr.left 6= null:
53 child ← curr.left
54 else:
55 child ← curr.right
56
57 if curr.val < prev.val:
58 prev.left ← child
59 else:
60 prev.right ← child

Delete leaf with DATA parent
62 if curr is left child of prev:
63 prev.left ← null
64 else:
65 prev.right ← null

Delete leaf with ROUTING parent
// save second child of prev into child

67 if curr is left child of prev:
68 child ← prev.right
69 else:
70 child ← prev.left
71 if prev is left child of gprev:
72 gprev.left ← child
73 else:
74 gprev.right ← child

Figure 5.1.: Sequential implementation

76

1 class RWLock:
2 int lock ← 0
3
4 writeLock():
5 while true:
6 if compare&swap(lock, 0, 1):
7 break
8
9 readLock():

10 while true:
11 now ← lock
12 if now % 2 = 0 and
13 compare&swap(lock, now, now + 2):
14 break

15 unlock():
16 if lock = 1:
17 compare&swap(lock, 1, 0)
18 else:
19 while true:
20 now ← lock
21 if compare&swap(lock, now, now - 2):
22 break

Figure 5.2.: Read-write lock implementation

Traversal function

The traversal function is slightly different from the sequential implementation, but we
omit it from the pseudocode. It traverses as the sequential algorithm, but if the target
node is “under-deletion”, i.e., its deleted mark is set, the traversal is restarted.

Locks

In the beginning of the section we noted that we have locks separately for each field of a
node: llock for the reference to the left child, rlock for the reference to the right child
and slock for the state (Figure 5.3 Lines 8-10). Also, as mentioned, the algorithm uses
read-write locks, implemented using one integer variable lock (Figure 5.2). The least
significant bit of lock indicates whether the write lock is taken or not, the remaining bits
represent the number of readers that have taken the lock. In other words, lock is zero if
the lock is not taken, lock is one if the write lock is taken, otherwise, lock divided by
two represents the number of times the read lock is taken. The locking and unlocking are
done using the atomic compare&swap primitive.
Throughout the algorithm the locks are acquired using helper functions that are pro-

vided by the Node class (Figure 5.3). These functions take a lock and verify several
conditions: they check whether the future modification is possible. If the conditions are
not satisfied, the guarded modification will corrupt the data structure (in the next sub-
section we explain what we mean by corruption). In our concurrent algorithm when the
helping function returns false (Figure 5.4 Lines 15, 20, 24, 42, 47, 48, 51, 71, 76, 81,
90-92 and 98-100), all locks taken up to this moment (including this one) by the high-level
“parent” function call, i.e., contains, insert and delete, are released and that “parent”
call is restarted.
These are the helper functions:

• tryReadLockState() (Figure 5.3 Lines 36-40) takes a read lock on slock and checks
that the node is not marked as deleted;

• try(Read|Write)LockState(exp) (Figure 5.3 Lines 42-46 and Lines 48-52) takes a
(read|write) lock on slock, checks that the state of the node is equal to exp and the
node is not marked as deleted;

• tryLock(Left|Right)Ref(exp) (Figure 5.3 Lines 12-16) takes a write lock on (llock|rlock),
checks that the reference to the (left|right) child is equal to exp (to verify that the
child did not change) and the node is not marked as deleted;

• tryLock(Left|Right)Val(exp) (Figure 5.3 Lines 24-29) takes a write lock on (llock|rlock),
checks that the value in the corresponding child (left.val or right.val) is equal

77

1 class Node:
2 V val, its value
3 Node left, its pointer to the left child
4 Node right, its pointer to the right child
5 state ∈ {DATA, ROUTING}, its state
6
7 bool deleted, deleted mark
8 RWLock llock, the lock on the left field
9 RWLock rlock, the lock on the right field

10 RWLock slock, the lock on the state field
11
12 tryLock(Left|Right)EdgeRef(expRef): bool
13 (llock|rlock).writeLock()
14 if deleted or (left|right) 6= expRef:
15 return false
16 return true
17
18 tryLockEdgeRef(exp): bool
19 if v < exp.v:
20 return tryLockRightEdgeRef(exp)
21 else:
22 return tryLockLeftEdgeRef(exp)
23
24 tryLock(Left|Right)EdgeVal(expVal): bool
25 (llock|rlock).writeLock()
26 if deleted or (left|right) = null or
27 (left|right).val 6= expVal:
28 return false
29 return true

30 tryLockEdgeVal(exp): bool
31 if v < exp.v:
32 return tryLockRightEdgeVal(exp.val)
33 else:
34 return tryLockLeftEdgeVal(exp.val)
35
36 tryReadLockState(): bool
37 slock.readLock()
38 if deleted:
39 return false
40 return true
41
42 tryReadLockState(expState): bool
43 slock.readLock()
44 if deleted or expState 6= state:
45 return false
46 return true
47
48 tryWriteLockState(expState): bool
49 slock.writeLock()
50 if deleted or expState 6= state:
51 return false
52 return true

Figure 5.3.: Node clasess

to exp (to verify that the value in the child did not change) and the node is not
marked as deleted.

We use the notation of bar as a shorthand notation for avoiding name duplication; such
notation should be read as either choosing the first option or the second option.

Momentarily we make two remarks. At first, in the algorithm we typically use
tryLockEdge(Ref|Val)(node) (Figure 5.3 Lines 18-22 and Lines 30-34) instead of
tryLock(Left|Right)Edge(Ref|Val)(exp). Such a substitution, given non-null node,
decides whether the node is the left child or the right child of the current node and
calls the corresponding function providing node or node.val. Secondly, to improve the
performance we implement these functions using double-verification: check the conditions,
only if they are satisfied take a lock and then check the conditions again.

5.3. Concurrency-Optimality and Correctness. Overview

In this section, we discuss correctness and concurrency-optimality [79] of our implemen-
tation (the proofs of these properties are provided in Sections 5.4 and 5.5, respectively).
Intuitively, a concurrency-optimal implementation employs as much synchronization as
necessary for ensuring correctness of the implemented high-level abstraction — in our
case, the linearizable set object [89].

Recall our sequential BST implementation and imagine that we run it in a concurrent
environment. We refer to an execution of this concurrent algorithm as a schedule. A
schedule, thus, consists of reads, writes, node creation events, and invocation and responses
of high-level operations. Note that each operation performs at most one write to which
we can simply refer as a write of the operation.
Notice that in every such schedule, any operation locally witnesses a consistent tree

state, since it cannot distinguish the execution from a sequential one. It is easy to see that
the local views across operations may not be mutually consistent, and this simplistic con-

78

1 contains(v): bool
2 〈gprev, prev, curr〉 ← traversal(v)
3 return curr 6= null and curr.state = DATA

4 insert(v): bool
// All restarts are from this Line

5 〈gprev, prev, curr〉 ← traversal(v)
6 if curr 6= null:
7 Lines 13-16
8 else:
9 Lines 18-26

10 Release all locks
11 return true

Update existing node
13 if curr.state = DATA:
14 return false
15 curr.tryWriteLockState(ROUTING)
16 curr.state ← DATA

Insert new node
18 newNode.val ← v
19 if v < prev.val:
20 prev.tryReadLockState()
21 prev.tryLockLeftEdgeRef(null)
22 prev.left ← newNode
23 else:
24 prev.tryReadLockState()
25 prev.tryLockRightEdgeRef(null)
26 prev.right ← newNode

27 delete(v): bool
// All restarts are from this Line

28 〈gprev, prev, curr〉 ← traversal(v)
29 if curr = null or curr.state 6= DATA:
30 return false
31 if curr has exactly 2 children:
32 Lines 42-45
33 if curr has exactly 1 child:
34 Lines 52-64
35 if curr is a leaf:
36 if prev.state = DATA:
37 Lines 75-84
38 else:
39 Lines 85-104
40 Release all locks
41 return true

Delete node with two children
42 curr.tryWriteLockState(DATA)
43 if curr does not have 2 children:
44 Restart operation
45 curr.state ← ROUTING

Lock acquisition routine for vertex
with one child

47 prev.tryLockEdgeRef(curr)
48 curr.tryWriteLockState(DATA)
49 if curr has 0 or 2 children:
50 Restart operation
51 curr.tryLockEdgeRef(child)

Delete node with one child
52 leftChild ← curr.left
53 if leftChild 6= null:
54 child ← leftChild
55 else:
56 child ← curr.right
57 if curr.val < prev.val:
58 perform lock acquisition at Lines 47-51
59 curr.deleted ← true
60 prev.left ← child
61 else:
62 perform lock acquisition at Lines 47-51
63 curr.deleted ← true
64 prev.right ← child

Lock acquisition routine for leaf
66 prev.tryLockEdgeVal(curr)
67 if v < prev.key: // get current child
68 curr ← prev.left
69 else:
70 curr ← prev.right
71 curr.tryWriteLockState(DATA)
72 if curr is not a leaf:
73 Restart operation

Delete leaf with DATA parent
75 if curr.val < prev.val:
76 prev.tryReadLockState(DATA)
77 perform lock acquisition at Lines 66-73
78 curr.deleted ← true
79 prev.left ← null
80 else:
81 prev.tryReadLockState(DATA)
82 perform lock acquisition at Line 66
83 curr.deleted ← true
84 prev.right ← null

Delete leaf with ROUTING parent
85 if curr.val < prev.val:
86 child ← prev.right
87 else:
88 child ← prev.left
89 if prev is left child of gprev:
90 gprev.tryLockEdgeRef(prev)
91 prev.tryWriteLockState(ROUTING)
92 prev.tryLockEdgeRef(child)
93 perform lock acquisition at Lines 66-73
94 prev.deleted ← true
95 curr.deleted ← true
96 gprev.left ← child
97 else:
98 gprev.tryLockEdgeRef(prev)
99 prev.tryWriteLockState(ROUTING)

100 prev.tryLockEdgeRef(child)
101 perform lock acquisition at Lines 66-73
102 prev.deleted ← true
103 curr.deleted ← true
104 gprev.right ← child

Figure 5.4.: Concurrent implementation

79

current algorithm is not linearizable. For example, two insert operations that concurrently
traverse the tree may update the same node so that one of the operations “overwrites”
the other (so called the “lost update” problem). Obviously, such a schedule is “incorrect”
since it is not linearizable.
To reach the concurrency-optimality we want the concurrent algorithm to avoid such

“incorrect” schedules, while accepting all others. More precisely, a schedule σ is accepted
by an algorithm if it has an execution in which the sequence of high-level invocations
and responses, reads, writes, and node creation events (modulo the restarted fragments)
is σ [79]. Now, we formalize what does it mean for the schedule to be “incorrect” by
introducing the opposite notion of observable correctness.

Definition 5.3.1. A schedule is observably correct if each of its prefixes σ satisfies the
following conditions:

• subsequence of high-level invocations and responses of operations that performed their
write in σ has a linearization with respect to the set type;

• a set of nodes reachable from the root after performing σ is a BST B: (i) they form
a tree rooted at node root; (ii) this tree satisfies the order property: for each node
with value v all the values in the left subtree are less than v and all the values in the
right subtree are bigger than v; (iii) each routing node in this tree has two children.

• BST after performing σ does not contain a node x such that there exist σ′ and σ′′,
such that σ′ is a prefix of σ′′, σ′′ is a prefix of σ (σ′ ≺ σ′′ ≺ σ), x is in the BST
after σ′, and x is not in the BST after σ′′.

In other words, a schedule is observably correct if it is linearizable, during its execution
the tree is always a partially-external BST and, finally, the unlinked node is never linked
back.
Now we can define the concurrency-optimality property.

Definition 5.3.2. A concurrent implementation is concurrency-optimal if it accepts all
observably correct schedules.

At first, in Section 5.4, we prove the correctness of our algorithm.

Theorem 5.3.1 (Correctness). The algorithm is correct:

• The schedule corresponding to any execution of our BST implementation is observ-
ably correct.

• The algorithm is deadlock-free.

Further, in Section 5.5 we prove that, in a strict sense, our algorithm accepts all correct
schedules.

Theorem 5.3.2 (Optimality). Our BST implementation is concurrency-optimal.

The intuition behind the proof of Theorem 5.3.2 is the following. We show that for
each observably correct schedule there exists a matching execution of our implementation.
Therefore, only schedules not observably correct can be rejected by our algorithm. The
construction of an execution that matches an observably correct schedule is possible, in
particular, due to the fact that every critical section in our algorithm contains exactly one
event of the schedule. Thus, the only reason to reject a schedule is that some condition
on a critical section does not hold and, as a result, the operation must be restarted. By
accounting for all the conditions under which an operation restarts, we show that the
restart may only happen if the schedule violates observable correctness.

80

2

3

p

a)

b

2

null 3

p

b)

b

2

3 3

p

c)

b

2

3 3

p

d)

µ

2

null
e)

b

Figure 5.5.: Scenario depicting an execution of two concurrent delete(3) operations, fol-
lowed by a successful insert(3); rejected by all the popular BSTs [39, 52, 57,
62, 120], it is accepted by a concurrency-optimal BST

Suboptimality of Related BST Algorithms

To understand the hardness of building linearizable concurrency-optimal BSTs, we present
a schedule that is rejected by current state-of-the-art BST algorithms against which we
evaluate the performance of our algorithm. This schedule is shown in the Figure 5.5. There
is one operation p = delete(3) performed on a tree shown in part a). It traverses to leaf v
with value 3. Then, some concurrent operation delete(3) unlinks node v (part b)). Later,
another concurrent operation inserts a new leaf with value 3 (part c)). Operation p wakes
up and locks a link since the value 3 is the same (part d)). Finally, p unlinks the node
with value 3 (part e)). Note that this is a correct schedule since both delete operations
can be successful; however, all the BSTs we are aware of reject this schedule or similar
ones [39, 52, 57, 62, 120]. By contrast, there is an execution of our concurrency-optimal
BST that accepts this schedule.

5.4. Proof of Correctness
In general, the correctness of the parallel algorithm is carried by the proofs of linearizability
and deadlock-freedom. Here, we have additional constraints on the possible executions of
our algorithm: they have to carry the observably correct schedules (Definition 5.3.1).

The theorem about the correctness of the algorithm can be stated as follows.
Theorem 5.3.1. The algorithm is correct if:
• the schedule corresponding to any execution of the algorithm is observably correct.

• the algorithm is deadlock-free.
We split the proof of the first statement into two parts: the structural properties, i.e.,

the tree is a BST and an unlinked node cannot be linked back and the linearizability. In
total our proof consists of three parts.

5.4.1. Structural Correctness
At first, we prove that our search tree satisfies the structural properties at any point in
time, i.e., the second and the third properties of observably correctness.
Theorem 5.4.1. The following properties are satisfied at any point in time during the
execution:
• The order property of BST is preserved.

• Every routing node has two children.

• Any non-physically deleted node is reachable from the root.

• Any physically deleted node is non-reachable from the root.
Proof. The first two properties are non-trivial by themselves, but we refer to papers [39]
and [52] that use the similar partially-external algorithm.

The last two properties follow straightforwardly from the fact that during physical
deletion the algorithm takes locks.

81

5.4.2. Linearizability

We prove for each execution that it is linearizable.

High-Level Histories and Linearizability

Suppose we are given a history H. To prove the linearizability of H we perform three
steps (see Definition 2.3.2). At first, we complete H obtaining the completion H̃: choose
a subset of incomplete operations to complete and discard all other incomplete. Then, we
provide linearization points to each remaining operation giving us a total order on these
operations. And, finally, we prove that the resulting order makes sense: the responses of
operations remain the same in H̃ and in the linearization (order) S̃.

Completions

We obtain a completion H̃ of history H as follows. The invocation of an incomplete
contains operation is discarded. An incomplete π = insert operation that has not
performed a write at Lines 16, 22 (26) of Figure 5.4 are discarded; otherwise, π is completed
with the response true. An incomplete π = delete operation that has not performed
a write at Lines 45, 60 (64), 79 (84), 96 (104) of Figure 5.4 is discarded; otherwise, π is
completed with the response true.
Note that the described completions correspond to the completions in which the com-

pleted operations made a write of the sequential algorithm.

Linearization Points

We obtain a sequential high-level history S̃ equivalent to H̃ by associating a linearization
point lπ with each operation π. In some cases our choice of the linearization point depends
on the interval between the invocation and the response of the execution of some operation
π, later referred to as the interval of π. For example, the linearization point of π in should
lie in the interval of π.
Below we specify the linearization point of the operation π depending on its type.

Insert.
For π = insert(v) that returns true, we have two cases:

1. A routing node with value v was found in the tree. Then lπ is associated with the
write in Line 16 of Figure 5.4.

2. A node with value v was not found in the tree. Then lπ is associated with the writes
in Lines 22 or 26 of Figure 5.4, depending on whether the newly inserted node is left
or right child.

For π = insert(v) that returns false, we have three cases:

1. If there exists a successful insert(v) whose linearization point lies in the interval of
π, then we take the first such π′ = insert(v) and linearize right after lπ′ .

2. If there exists a successful delete(v) whose linearization point lies in the interval of
π, then we take the first such π′ = delete(v) and linearize right before lπ′ .

3. Otherwise, lπ is the call point of π.

Delete.
For π = delete(v) that returns true we have four cases, depending on the number of

children of the node with value v, i.e., the node curr:

1. curr has two children. Then lπ is associated with the write in Line 45 of Figure 5.4.

82

2. curr has one child. Then lπ is associated somewhere between the writes in Line 59
(63) and in Line 60 (64) of Figure 5.4, depending on whether curr is left or right
child. The exact position is calculated as what comes last: Line 59 (63) or the last
invocation of unsuccessful insert(v) or contains(v) that reads the node curr.

3. curr is a leaf with a data parent. Then lπ is associated somewhere between the
writes in Line 78 (83) and in Line 79 (84) of Figure 5.4, depending on whether curr
is left or right child. The exact position is calculated as what comes last: Line 78
(83) or the last invocation of unsuccessful insert(v) or contains(v) that reads the
node curr.

4. curr is a leaf with a routing parent. Then lπ is associated between the writes in
Line 95 (103) and in Line 96 (104) of Figure 5.4, depending on whether prev is left
or right child. The exact position is calculated as what comes last: Line 95 (103)
or the last invocation of unsuccessful insert(v) or contains(v) that reads the node
curr.

For every π = delete(v) that returns false, we have three cases:

1. If there exists a successful delete(v) whose linearization point lies in the interval of
π, then we take the first such π′ = delete(v) and linearize right after lπ′ .

2. If there exists a successful insert(v) whose linearization point lies in the interval of
π, then we take the first such π′ = insert(v) and linearize right before lπ′ .

3. Otherwise, lπ is the invocation point of π.

Contains.
For π = contains(v) that returns true, we have three cases:

1. If there exists a successful insert(v) whose linearization point lies in the interval of
π, then we take the first such π′ = insert(v) and linearize right after lπ′ .

2. If there exists a successful delete(v) whose linearization point lies in the interval of
π, then we take the first such π′ = delete(v) and linearize right before lπ′ .

3. Otherwise, lπ is the invocation point of π.

For π = contains(v) that returns false, we have three cases:

1. If there exists successful delete(v) whose linearization point lies in the interval of
π, then we take the first such π′ = delete(v) and linearize right after lπ′ .

2. If there exists successful insert(v) which linearization point lies in the interval of
π, then we take the first such π′ = insert(v) and linearize right before lπ′ .

3. Otherwise, lπ is the invocation point of π.

To confirm our choice of linearization points, we need an auxiliary lemma.

Lemma 5.4.1. Consider the call π = traverse(v). If BST at the moment of the invocation
of π contains the node u with value v and there is no linearization point of successful
delete(v) operation in the interval of π, then π returns u.

Proof. Consider a list A(u) of ancestors of node u: root = w1, . . . , wn−1, wn = u (starting
from the root) in BST at the moment of the invocation of π.
Let us prove that at any point in time the child of wi in the direction of value v is wj

for some j > i. The only way for wi to change the proper child is to perform a physical
deletion on this child. Consider the physical deletions of wi in their order in execution.
In a base case, when no deletions happened, our invariant is satisfied. Suppose that we

83

performed first d deletions and now we consider the deletion of wj . Let wi be an ancestor
of wj and wk be a child of wj in proper direction. After relinking wk becomes a child of
wi in proper direction, so the invariant is satisfied for wi because i ≤ j ≤ k, while the
children of other vertices remain unchanged.
Summing up, π starts at root, i.e., w1, and traverses only the vertices from A(u) in

strictly increasing order. Thus, π eventually reaches u and returns it.

Theorem 5.4.2 (Linearizability). The algorithm is linearizable with respect to set type.

Proof. We split our proof into three parts. First, we prove the linearizability of the
subhistory with only successful insert and delete operations because other operations
do not affect the structure of the tree. Then, we prove the linearizability of the subhistory
with only update operations, i.e., successful and unsuccessful insert(v) and delete(v).
And finally, we present the proof for the history with all types of operations.
Successful Update Operations.
Let S̃ksucc be the prefix of S̃ consisting of the first k complete successful operations

insert(v) or delete(v) with respect to their linearization points. We prove by induction
on k that the sequence S̃ksucc is consistent with respect to set type.
The base case k = 0, i.e., there are no complete operations, is trivial.
The transition from k to k + 1. Suppose that S̃ksucc is consistent with set type. Let π

with argument v ∈ Z and its response rπ be the last operation in S̃k+1
succ. We want to prove

that S̃k+1
succ is consistent with π. For that, we check all possible types of π.

1. π = insert(v) returns true.
By induction, it is enough to prove that there is no preceding operation with an
argument v or the last preceding operation with an argument v in S̃k+1

succ is delete(v).
Suppose the contrary: let the last preceding operation with an argument v be π′ =
insert(v). We need to consider two cases of insertion: whether π finds the node
with value v in the tree or not.
In the first case, π finds a node u with value v. π′ should have inserted or modified
u. Otherwise, the BST at lπ would contain two vertices with value v and this fact
violates the structural correctness. If π′ has inserted u, then π has no choice but
only to read the state of u as data, which is impossible because π is successful. If
π′ has changed the state of u to data, then π has to read the state of u as data,
because the linearization points of π′ and π are guarded by the lock on state. This
contradicts the fact that π is successful.
In the second case, π does not find a node with value v. We know that π and π′

are both successful. Suppose for a moment that π wants to insert v as a child of
node p, while π′ inserts v in some other place. Then the tree at lπ has two vertices
with value v, violating the structural correctness. This means, that π and π′ both
want to insert v as a child of node p. Because lπ′ precedes lπ and these linearization
points are guarded by the lock on the corresponding link of p, π′ takes a lock first,
modifies the link to a child of p and by that forces π to restart. During the second
traversal, π finds newly inserted node with value v by Lemma 5.4.1 and becomes
unsuccessful. This contradicts the fact that π is successful.

2. π = delete(v) returns true.
By induction it is enough to prove that the preceding operation with an argument
v in S̃k+1

succ is insert(v). Suppose the opposite: let the last preceding operation with
v be delete(v) or there is no preceding operation with an argument v.
At first, consider the simplest case: there is no such operation. This means that π
could not find a node with value v. Because if it finds a node then there exists another
operation that should have inserted this node and consequently its linearization point

84

would have been earlier. In this case, π cannot successfully delete, which contradicts
the result of π.
The only remaining possibility is that the previous successful operation is π′ =
delete(v). Because π is successful, it finds a non-deleted node u with value v. π′
should have found the same node u by Lemma 5.4.1, otherwise, the BST right before
lπ′ would contain two vertices with value v, violating the structural correctness. So,
both π and π′ take locks on the state of u to perform an operation. Because lπ′

precedes lπ, π′ has taken the lock earlier and set the state of u to routing or marks u
as deleted. When π obtains the lock, it could not read state as data and, as a result,
cannot delete the node. This contradicts the fact that π is successful.

Update Operations.
Let S̃km be the prefix of S̃ consisting of the first k complete operations insert(v) or

delete(v) with respect to their linearization points. We prove by induction on k that
the sequence S̃km is consistent with respect to set type. We already proved that successful
operations are consistent, then we should prove that the linearization points of unsuccessful
operations are consistent too.
The base case k = 0, i.e., there are no complete operations, is trivial.
The transition from k to k+ 1. Suppose that S̃km is consistent with set type. Let π with

argument v ∈ Z and response rπ be the last operation in S̃k+1
m . We want to prove that

S̃k+1
m is consistent with π. For that, we check all the possible types of π.
If k + 1-th operation is successful then it is consistent with the previous operations,

because it is consistent with successful operations while unsuccessful operations do not
change the structure of the tree.

If k + 1-th operation is unsuccessful, we have two cases.

1. π = insert(v) returns false. When we set the linearization point of π relying
on a successful operation in the interval of π, the linearization point is correct: if
we linearize right after successful insert(v) then π correctly returns false; if we
linearize right before successful π′ = delete(v) then by the proof of linearizability for
successful operations there exists successful insert(v) preceding π′, thus, π correctly
returns false.
It remains to consider the case when no successful update operation was linearized
in the interval of π. By induction, it is enough to prove that the last preceding
successful operation with v in S̃k+1

m is insert(v). Suppose the opposite: let the
last preceding successful operation with an argument v be delete(v) or there is
no preceding operation with an argument v. If there is no such operation then π
could not find a node with value v, because, otherwise, another operation should
have inserted the node and its linearization point would have come earlier. Thus, π
can successfully insert a new node with value v, which contradicts the fact that π is
unsuccessful.
The only remaining possibility is that the last preceding successful operation is π′ =
delete(v). We know that lπ′ does not lie inside the interval of π, since, otherwise,
we linearized π with respect to π′. Thus, π has to find either the routing node with
value v or do not find such a node at all, since π′ has already successfully unlinked it.
(This happened because we set linearization points of successful delete operations
quite tricky) In both cases, insert operation could be performed successfully. This
contradicts the fact that π is unsuccessful.

2. π = delete(v) returns false.
When we set the linearization point of π relying on the successful operation in the
interval of π, the linearization point is correct: if we linearize right after successful
delete(v) then π correctly returns false; if we linearize right before successful

85

π′ = insert(v) then by the proof of linearizability for successful operations there
exists successful delete(v) preceding π′ or there are no successful operation with an
argument v in S̃k+1

m before π′, thus, π correctly returns false.
It remains to consider the case when no successful operation was linearized in the
interval of π. By induction, it is enough to prove that there is no preceding suc-
cessful operation with v or the last preceding successful operation with v in S̃k+1

m is
delete(v). Again, suppose the opposite: let the previous successful operation with
v be π′ = insert(v).
By Lemma 5.4.1, π finds the data node u with value v and π can successfully remove
it because no other operation with argument v has a linearization point during the
execution of π. This contradicts the fact that π is unsuccessful.

All Operations.
Finally, we prove the correctness of the linearization points of all operations.
Let S̃k be the prefix of S̃ consisting of the first k complete operations ordered by their

linearization points. We prove by induction on k that the sequence S̃k is consistent with
respect to the set type. We already proved that update operations are consistent, then we
should prove that the linearization points of contains operations are consistent too.

The base case k = 0, i.e., there are no complete operations, is trivial.
The transition from k to k + 1. Suppose that S̃k is consistent with the set type. Let

π with argument v ∈ Z be the last operation in S̃k+1. We want to prove that S̃k+1 is
consistent for the operation π. For that, we check all the possible types of π.

If k+ 1-th operation is insert(v) and delete(v) then it is consistent with the previous
insert(v) and delete(v) operations while contains(v) operations do not change the
structure of the tree.

If the operation is π = contains(v), we have two cases:

1. π returns true.
When we set the linearization point of π relying on a successful update operation
in the interval of π, then the linearization point is correct: if we linearize right
after successful insert(v), then π correctly returns true; if we linearize right before
successful π′ = delete(v), then, by the proof of the linearizability on successful
operations, there exists successful insert(v) preceding π′, thus π correctly returns
true.
We are left with the case when no successful operation has its linearization point
in the interval of π. By induction, it is enough to prove that the last preceding
successful operation with v in S̃k+1 is insert(v). Suppose the opposite: the last
preceding successful operation with an argument v is delete(v) or there is no pre-
ceding successful operation with v. If there is no successful operation then π could
not find a node with value v, otherwise, some operation has inserted a node before
and its linearization point would have come earlier. This contradicts the fact that π
is successful.
It remains to check if there exists a preceding π′ = delete(v) operation. Since lπ′

does not lie inside the interval of π then π has to find either the routing node with
value v or do not find such node, since π′ has unlinked it. This contradicts the fact
that π returns true.

2. π returns false.
When we set the linearization point of π relying on a successful update operation
in the interval of π, then the linearization point is correct: if we linearize right after
successful delete(v), then π correctly returns false; if we linearize right before suc-
cessful π′ = insert(v) then, by the proof of linearizability on successful operations

86

either there exists a preceding π′ successful delete(v) or there exists no operation
with an argument v in S̃ before π′. Thus π correctly returns false.
We are left with the case when no successful operation has its linearization point
in the interval of π. By induction, it is enough to prove that there is no preceding
successful operation with an argument v or the last preceding successful operation
with an argument v in S̃k+1 is delete(v). Again, suppose the opposite: the last
preceding successful operation with an argument v is π′ = insert(v).
By Lemma 5.4.1 π finds the data node u with value v. This contradicts the fact that
π returns false and π should return false.

5.4.3. Deadlock-Freedom

Theorem 5.4.3 (Deadlock-freedom). The algorithm is deadlock-free: assuming the infi-
nite execution and that no thread fails in the middle of its update operation, the infinite
number of operations is completed.

Proof. contains does not take locks at all, so, it is deadlock-free.
We note that during insert and delete operations the locks are taken in a top-down

manner: when the first lock is taken, the other locks are acquired only after the “parent”
lock is taken: the “parent” lock for the state lock is the lock on the edge from parent; and
the “parent” lock for the edge lock is the lock on the state in the source node. Also, let a
lock-level of an operation be the number of “ancestors” towards the root of the first lock
that the operation attempts to acquire.
In such a manner, when it is not possible for an operation to take a lock then there is

another operation with a higher lock-level that acquired that lock. Then, if the second
operation cannot proceed there exists the third blocking operation with lock-level even
bigger, and so on. Since the height of the tree is finite, there exist the lowest operation that
blocks everybody: this operation can proceed. This lowest operation either successfully
completes or the conditions are not satisfied and the operation is restarted. However, in
the last case, the operation, that forces the restart, made progress.

5.5. Proof of Concurrency-Optimality
Theorem 5.3.2 (Optimality). Our binary search tree implementation is concurrency-
optimal with respect to the sequential algorithm provided in Figure 5.1.

Proof. Consider all executions of our algorithm in which all critical sections are executed
sequentially, i.e., the primitives of a critical section are executed sequentially. Since all
critical sections in our algorithm contain only one operation from the sequential algorithm,
the implementation accepts all the schedules in which the operation is not restarted by
failing some condition in the critical sections.
Suppose that we are given a schedule σ. We show that each condition that forces the

restart is crucial, i.e., if the operation ignores it, then σ is not observably correct.
By the first property of observable correctness (Definition ??) when we talk about the

linearization of the schedule we talk about the linearization of operations that made the
write.
To simplify the proof by exhaustion we consider three common situations (later referred

to as Cases 1, 2 or 3) that appear under consideration, and show that in each of these
cases the schedule σ is not observably correct.
Let two functions I(T, v) and D(T, v) be the number of insert and delete operations

with argument v that made the single write of the sequential algorithm in the prefix of
the schedule σ of length T , i.e., T primitives, later referred as σ(T).

87

1. The modification, i.e., a corresponding write, in the critical section of operation
π = insert(v) (the case of delete(v) is considered similarly) does not change the
set of values represented by our tree: (1) for each node reachable from the root the
fields (left and right link, and state) do not change; or (2) for each node reachable
from the root (except for one) the fields do not change, and for the vertex left one
routing child can be unlinked. Note that we do not discuss the deleted field, since
the sequential algorithm does not know about its existence and, thus, modifications
of this field do not belong to schedules.
Let this modification be the T -th primitive of the current schedule σ. Consider two
prefixes of this schedule: σ(T − 1) and σ(T). There are two cases:
• If the value v is present in the set after σ(T−1), then I(T−1, v) = D(T−1, v)+1,

since σ(T − 1) is linearizable. As the T -th primitive, π made the write and,
since π is insert, I(T, v) = D(T, v) + 2. Any completion of σ(T) (considering
only operations that made a write) is non-linearizable, because the number of
successful insert operations cannot exceed the number of successful delete
operations by more than one. This means that σ(T) is non-linearizable, and,
thus, σ is not observably correct.
• If the value v is not present in the set after σ(T − 1), then I(T − 1, v) =
D(T − 1, v), since σ(T − 1) is linearizable. As the T -th primitive, operation π
made a write and, since π is insert, I(T, v) = D(T, v) + 1,. Also, the node
with value v is unreachable from the root, since the set did not change. Let
us consider any linearizable completion of σ(T). By completing operations, the
set cannot change, since all writes by the operations were already performed,
and, thus, v does not belong to the set. However, the number of successful
insertion exceeds the number of successful deletions, and, thus, σ(T) cannot be
linearizable. This means that any completion of σ(T) is non-linearizable, thus,
σ(T) is non-linearizable and, consequently, σ is not observably correct.

2. After the modification in the critical section of operation π with argument v a whole
subtree of node u with a value different from v becomes unreachable from the root.
Let this modification be the T -th primitive of the current schedule σ. Because of
the structure of the partially-external tree, subtree of node u should contain at least
one data vertex with value x not equal to v: either u is a data leaf, or the subtree
contains at least two data nodes. Since x was reachable before the modification and
σ(T − 1) is linearizable, we assume I(T − 1, x) = D(T − 1, x) + 1. The number of
successful update operations with argument x does not change after the modification,
so I(T, x) = D(T, x) + 1. But the value x is not reachable from the root after σ(T),
meaning that any completion of (operations that made a write in) σ(T) cannot be
linearized. Thus, σ(T) is non-linearizable and, consequently, σ is not observably
correct.

3. After the modification in the critical section of operation π the node u with deleted
mark becomes reachable from the root. Let this write be the T -th primitive of the
current schedule σ. Let the write that was done in the same critical section as the
deleted mark of u was set be the T̃ -th primitive of σ. It could be seen that u is
reachable from the root after σ(T̃ − 1) and after σ(T), but u is not reachable from
the root after σ(T̃). Thus, σ does not satisfy the third requirement for observably
correct schedules, meaning that σ is not observably correct.

Now, we want to prove that all conditions that precede each modification operation are
necessary and their omission leads to not observably correct schedule. The proof is done
by induction on the position of the modification operation in the execution. The base
case, when there are no modification operations done, is trivial. Suppose that we showed
the correctness of the statement for the first i− 1 modifications and want to prove it for

88

the i-th. Let this modification be the T -th primitive of the schedule σ. We ignore each
condition that precedes the modification one by one in some order and show that their
omission makes σ not observably correct.

• Operation π = insert(v) restarts in Line 15 of Figure 5.4. As we explicitely did not
write in the pseudocode for simplicity we want to remind that an update operation
restarts whenether some condition checked while the locks are held is not satisfied.
This means, that at least one of the following condition holds:

– curr is not routing (Line 15). Then the guarded operation does not change the
set of values and we can apply Case 1.

– deleted mark of curr is set (later, we simply say curr is deleted) (Line 15).
then curr is already unlinked, so the modification in Line 16 does not change
the set of values and we can apply Case 1.

• Operation π = insert(v) restarts in Lines 20, 21 (24, 25) of Figure 5.4. This means,
that at least one of the following conditions holds:

– prev is deleted (Line 20 (24)). Then prev is already unlinked and is not
reachable from the root. This means, that the modification in Line 22 (26)
links the new node to already unlinked node prev, not changing the set of
values, and we can apply Case 1.

– The corresponding child of prev is not null (Line 21 (25)). Then the write in
Line 22 (26) unlinks a whole subtree of the current child and we can apply Case
2.

• Operation π = delete(v) restarts in Lines 42 and 44 of Figure 5.4. This means that
either curr is not a data node, curr is deleted or curr does not have two children.

– If curr is not a data node or it is deleted (Line 42), then the write at Line 45
does not change the set of values and we can apply Case 1.

– If curr does not have two children (Line 44), then after the write in Line 45 the
tree has the routing node curr with less than two children. Thus, after σ the
tree does not satisfy the second requirement for observably correct schedules.

• Operation π = delete(v) restarts in Lines 47-51 of Figure 5.4. This means that at
least one of the following conditions holds:

– prev is deleted (Line 47). Then the write at Line 60 (64) does not change the
set of values and we can apply. For later cases, we already assume, that prev
is not deleted.

– There is no link from curr to child (Line 51). The link can cease to exist only
of one of the nodes are deleted.

∗ child is deleted. Then after the write at Line 60 (64) the deleted node
child becomes reachable from the root, since prev is not deleted, and we
can apply Case 3. From hereon, we assume that child is not deleted.

∗ curr is deleted. We know that prev and child are not deleted, thus prev
already has child as its child. By that, the write at Line 60 (64) does not
change the set of values and we can apply Case 1. From hereon, we assume
that curr is not deleted.

– There is no link from prev to curr (Line 47). This can happen only if prev or
curr is deleted. But we already considered these cases.

– curr is not a data node (Line 48). Then the write in Line 60 (64) does not
change the set of values and we can apply Case 1.

89

– curr does not have exactly one child (Line 50). Since none of curr and child
are deleted, the link from curr to child exists in the tree. Thus, the only
possible way to violate is that curr has two children. Finally, the write in
Line 60 (64) unlinks a whole subtree of the other child of curr and we can
apply Case 2.

• Operation π = delete(v) restarts in Lines 66-73 and 76 (81) of Figure 5.4. This
means that at least one of the following conditions holds:
– prev is deleted (Line 76 (81)). Then the write in Line 79 (84) does not change

the set of values and we can apply Case 1. From hereon, we assume that prev
is not deleted.

– prev is not a data node (Line 76 (81)). Then after the write in Line 79 (84)
the tree contains a routing node with less than two children. Thus, σ(T) does
not satisfy the second requirement for observably correct schedules.

– The child c of prev in the direction of v is null (Line 66). Then the write in
Line 79 (84) does not change the set of values and we can apply Case 1.

– The child c of prev in the direction of v has a key different from v (Line 66).
(Note that c cannot be deleted since the link from prev to c is locked and, thus,
in the tree now.) The write in Line 79 (84) unlinks a whole subtree of c and we
can apply Case 2.

– The child c of prev in the direction of v is not a leaf (Line 73). Then the write
in Line 79 (84) removes whole subtree of c with at least one data node with the
value different from v and we can apply Case 2. In last case we assume that c
is a leaf.

– The child c of prev in the direction of v is a routing node (Line 71). Then before
the write in Line 79 (84) the tree contained a routing leaf c. Thus, σ(T − 1)
does not satisfy the second requirement for observably correct schedule.

• Operation π = delete(v) restarts in Lines 66-73 and 90-92 (98-100) of Figure 5.4.
This means that at least one of the following conditions holds:
– gprev is deleted (Line 90 (98)). Then the write in Line 96 (104) does not

change the set of values and we can apply Case 1 σ. From hereon, we assume
that gprev is not deleted.

– child is deleted, then the write in Line 96 (104) links the deleted node back to
the tree and we can apply Case 3. Later, we assume that child is not deleted.

– prev is not a child of gprev. (Line 90 (98)) Since gprev is not deleted, this
case can happen only if prev is physically deleted. From this follows that the
current child of gprev in a direction of v is child. Thus, the write in Line 96
(104) does not change the set of values and by Case 1 σ is not observably
correct. Later, we assume that prev is not deleted.

– prev is a data node (Line 91 (99)). Then the write in Line 96 (104) unlinks
prev from the tree and we can use the same reasoning as in Case 2.

– child is not a current child of prev (Line 92 (100)). However, we already
showed in the previous cases that prev and child are not deleted.

– The last four cases are identical to the last four cases for delete(v) that restarts
in Lines 66-73 and 91 (99).

We showed that the restart of operation in the execution happens only if the the cor-
responding sequential schedule is not observably correct. Thus, our algorithm is indeed
concurrency-optimal.

90

5.6. Implementation and Evaluation
Experimental Setup

For our experiments we used two machines with different architectures. The first is a 4-
processor Intel Xeon E7-4870 2.4 GHz server (Intel) with 20 threads per processor (yielding
80 hardware threads in total), 512 Gb of RAM, running Fedora 25. This machine has
Java 1.8.0_111-b14 and HotSpot VM 25.111-b14. Second machine is a 4-processor AMD
Opteron 6378 2.4 GHz server (AMD) with 16 threads per processor (yielding 64 threads
in total), 512 Gb of RAM, running Ubuntu 14.04.5. This machine has Java 1.8.0_111-b14
and HotSpot JVM 25.111-b14.

Binary Search Tree Implementations

We compare our algorithm, denoted as Concurrency-Optimal or CO, against four other
concurrent BSTs. They are: 1) the lock-based contention-friendly tree by Crain et al. ([52],
Concurrency Friendly or CF), 2) the lock-based logical ordering AVL-tree by Drachsler et
al. ([57], Logical Ordering or LO) 3) the lock-based tree by Bronson et al. ([39], BCCO)
and 4) the lock-free tree by Ellen et al. ([62], EFRB). All these implementations, including
ours, are written in Java and are available in the synchrobench repository [76]. In order
to make the comparison equitable, we remove rotation routines from the CF-, LO- and
BCCO- trees implementations. We are aware of efficient lock-free tree by Natarajan and
Mittal ([120]), but unfortunately we were unable to find it written on Java.

Experimental Methodology

For our experiments, we use the environment provided by the synchrobench library. To
compare the performance we considered the following parameters:

• Workloads. Each workload distribution is characterized by the percent x% of
update operations. This means that the tree will be requested to make 100 − x%
of contains calls, x/2% of insert calls and x/2% of delete calls. We considered
three different workload distributions: 0%, 20% and 100%.

• Tree size. On the workloads described above, the tree size depends on the size
of the key space (the size is approximately half of the range). We consider three
different key ranges [0, R), where R is 215, 219 or 221.

• Degree of contention. This depends on the number of cores in a machine. We
take enough points to reason about the behaviour of curves.

We prepopulate the tree with, approximately, R/2 values: we take each value from the
range with probability 1

2 . Then we start P processes. Each process repeatedly performs
operations: (1) with probability 1 − x, it searches for a random value taken uniformly
from range; (2) with probability x

2 , it inserts a random value taken uniformly from range;
(3) with probability x

2 , it deletes a random value taken uniformly from range.
Under such workloads, the size of the tree is always approximately half the range, R/2,

and, thus, only half of update operations succeed.
We chose the settings such that we had two extremes and one middle point. For work-

load, we chose 20% of attempted updates as a middle point.

Results

To get meaningful results we average through up to 25 runs. Each run is carried out for
10 seconds with a warmup of 5 seconds. Figure 5.6a (and resp. 5.6b) contains the results
of executions on Intel (and resp. AMD) machine. It can be seen that with the increase
of the size the performance of our algorithm becomes better relatively to CF-tree. This is

91

0 20 40 60 80

0

50

100

150

R
a
n
g
e:

21
5

Update rate: 0%

0 20 40 60 80

0

50

100

150

Update rate: 20%

0 20 40 60 80

0

20

40

60

80

Update rate: 100%

0 20 40 60 80

0

50

100

R
a
n
g
e:

21
9

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

0 20 40 60 80

0

20

40

60

Number of Threads

R
a
n
g
e:

2
2
1

0 20 40 60 80

0

20

40

Number of Threads

0 20 40 60 80

0

20

40

Number of Threads

T
h
ro
u
g
h
p
u
t,
m
o
p
s/
s

Concurrency Optimal Concurrency Friendly

Logical Ordering BCCO EFRB

(a) Evaluation of BST implementations on Intel

0 20 40 60

0

50

100

R
a
n
g
e:

21
5

Update rate: 0%

0 20 40 60

0

20

40

60

Update rate: 20%

0 20 40 60
0

10

20

30

Update rate: 100%

0 20 40 60

0

10

20

30

R
a
n
g
e:

2
1
9

0 20 40 60

0

10

20

30

0 20 40 60

0

10

20

0 20 40 60
0

5

10

15

Number of Threads

R
a
n
g
e:

22
1

0 20 40 60
0

5

10

15

Number of Threads

0 20 40 60

0

5

10

15

Number of Threads

T
h
ro
u
g
h
p
u
t,
m
o
p
s/
s

(b) Evaluation of BST implementations on AMD

Figure 5.6.: Performance evaluation of concurrent BSTs

due to the fact that with bigger size the cleanup-thread in CF-tree implementation spends
more time to clean the tree out of logically deleted vertices, thus, the traversals has more

92

chances to pass over deleted vertices, leading to longer traversals. By this fact and the
trend shown, we could assume that CO-tree outperforms CF-tree on bigger sizes. On the
other hand, BCCO-tree was much worse on 215 and became similar to CO-tree on 221.
This happened because the races for the locks become more unlikely. This helped much
to BCCO-tree, because it uses high-grained locking. On bigger sizes we expect that our
implementation will continue to perform similarly to BCCO-tree, because the difference
in our and BCCO-tree implementations is only in grabbing locks. By that, we can state
that our algorithm works well not depending on the size. Finally, in most workloads our
algorithm seems to perform better than other trees.

5.7. Conclusion
Measuring Concurrency

Measuring concurrency via comparing a concurrent data structure to its sequential coun-
terpart was originally proposed [78]. The metric was later applied to construct a concurrency-
optimal linked list [77], and to compare synchronization techniques used for concurrent
search data structures, organizing nodes in a directed acyclic graph [79]. Although lots of
efforts have been devoted to improve the performance of BSTs as under growing concur-
rency, to our knowledge, the existence of a concurrency-optimal BST has not been earlier
addressed.

Search for Concurrency-Optimal Data Structures

Concurrent BSTs have been studied extensively in literature; yet by choosing to focus on
minimizing the amount of synchronization, we identified an extremely high-performing
concurrent BST implementation. We proved our implementation to be formally correct
and established the concurrency-optimality of our algorithm. Apart from the intellectual
merit of understanding what it means for an implementation to be highly concurrent, our
findings suggest a relation between concurrency-optimality and efficiency. We hope this
work will inspire the design of other concurrency-optimal data structures that currently
lack efficient implementations.

93

6. Parallel Combining: Benefits of Explicit
Synchronization

6.1. Introduction
Efficient concurrent data structures have to balance parallelism and synchronization.
Parallelism implies performance, while synchronization maintains consistency. Efficient
“concurrency-friendly” data structures (e.g., sets based on linked lists [84, 85] or binary
search trees [52, 57]) are conventionally designed using hand-crafted fine-grained lock-
ing. In contrast, “concurrency-averse” data structures (e.g., staks and queues) are subject
to frequent sequential bottlenecks and solutions based on combining (e.g., [86]), where
all requests are synchronized and applied sequentially, perform surprisingly well com-
pared to fine-grained ones [86]. Typically, a general data structure combines features of
“concurrency-friendliness” and “concurrency-averseness”, and an immediate question is
how to implement it in the most efficient way.
In this paper, we suggest a methodology of building a concurrent data structure from its

parallel batched counterpart [13]. A parallel batched data structure applies a batch (set)
of operations using parallelism. The algorithm distributes the work between the processes
assuming the synchronized application of operations that reduces the number of possible
interleavings. As a result, designing parallel batched algorithms is much easier than their
concurrent counterparts.
In the technique proposed here, we explicitly synchronize concurrent operations, as-

semble them into batches, and apply these batches on an emulated parallel batched data
structure. Processes share a set of active requests using any combining algorithm [58]: one
of the active processes becomes a combiner and forms a batch from the requests in the
set. Under the coordination of the combiner, the owners of the collected requests, called
clients, apply the requests in the batch to the parallel batched data structure.
This technique becomes handy when the overhead on explicit synchronization of pro-

cesses is compensated by the advantages of involving clients into the combining procedure
using the parallel batched data structure. In the extreme case of concurrency-averse data
structures, such as queues and stacks, having control over the batch can be used to elimi-
nate certain requests and bypass sequential bottlenecks, even though there are no benefits
of parallelizing the execution.1 But as we show in the paper, combining and parallel
batching pay off for data structures that offer some degree of parallelism, such as dynamic
graphs and priority queues.
We discuss three applications of parallel combining and we experimentally validate the

benefits for two of them. First, we design concurrent implementations optimized for read-
dominated workloads given a sequential data structure. Intuitively, updates are performed
sequentially and read-only operations are performed by the clients in parallel under the
coordination of the combiner. In our performance analysis, we considered a dynamic graph
data structure [95] that can be accessed for adding and removing edges (updates), as well as
for checking connectivity between pairs of vertices (read-only). Second, we apply parallel
combining to the parallel batched binary search tree algorithm by Blelloch et al. [32]
in Section 3.1. Our concurrent data structure performs worse than the state-of-the-art
implementations, since the operations on them are not likely to contend. Despite this,
our implementation provides theoretical bounds on the height of the tree and the running

1Note that sequential combining [58, 65, 86, 126], typically used in the concurrency-averse case, is a
degenerate case of our parallel combining in which the combiner applies the batch sequentially.

95

time of operations in RMRs. Finally, we apply parallel combining to priority queue that
is subject to sequential bottlenecks for minimal-element extractions, while most insertions
can be applied concurrently. As a side contribution, we propose a novel parallel batched
priority queue, as no existing batched priority queue we are aware of can be efficiently used
in our context. Our perfomance analysis shows that implementations based on parallel
combining may outperform state-of-the-art algorithms.

Roadmap

The rest of the chapter is organized as follows. In Section 6.2, we outline parallel com-
bining and provide several applications. In Section 6.3, we present the parallel batched
binary search tree by Blelloch et al. [32] in a form convenient for parallel combining. In
Section 6.4, we present a novel parallel batched priority queue in a form convenient for
parallel combining. In Section 6.5, we report the results of experiments. In Section 6.6,
we overview the related work. We conclude in Section 6.7.

6.2. Parallel Combining and Applications
In this section, we describe the parallel combining technique in a parameterized form: the
parameters are specified depending on the application.

Combining Data Structure

Our technique relies on a combining data structure C (e.g., [86]) that maintains a set
of requests to data structure and determines which process is a combiner. If the set of
requests is not empty then exactly one process should be a combiner.
Elements stored in C are of Request type consisting of the following fields: 1) the

method to be called and its input; 2) the response field; 3) the status of the request with a
value from an application-specific STATUS_SET; 4) application-specific auxiliary fields. In
our applications STATUS_SET contains at least INITIAL and FINISHED values: INITIAL is
set during the initialization and FINISHED means that the request is served.
C supports three operations: 1) addRequest(r : Request) inserts request r into the

set and returns whether this process becomes a combiner or a client; 2) getRequests()
returns a non-empty set of requests; and 3) release() is issued by the combiner to make
C find another process to be a combiner.
In the rest of the paper we assume any black-box implementation of C [58, 65, 86, 126].

Specifying Parameters

To perform an operation, a process executes the following steps (Figure 6.1): 1) it inserts
the request into C using addRequest(·) and checks whether it becomes a combiner; 2) if
it is the combiner, it collects requests from C using getRequests(), then it executes
algorithm COMBINER_CODE, and, finally, calls release() to enable another active process
to become a combiner; 3) if the process is a client, it waits until the status of the request
is not INITIAL and, then, executes algorithm CLIENT_CODE.
To use our technique, one should therefore specify COMBINER_CODE, CLIENT_CODE, and

appropriately modify Request type and STATUS_SET.
Note that sequential combining [58, 65, 86, 126] is a special case of parallel combining:

we simply need to use the proper algorithm behind black box C. Now we discuss two
interesting applications of parallel combining.

6.2.1. Read-optimized Concurrent Data Structures
Parallel combining can boost a sequential data structures under read-dominated workloads,
i.e., when most operations do not modify the data structure. Such operations are called

96

1 Request:
2 method
3 input
4 res
5 status ∈ STATUS_SET
6 ...
7

8 execute(method, input):
9 req ← new Request()

10 req.method ← method
11 req.input ← input

12 req.status ← INITIAL
13 if C.addRequest(req):
14 // combiner
15 A← C.getRequests()
16 COMBINER_CODE
17 C.release()
18 else:
19 while req.status = INITIAL:
20 nop
21 CLIENT_CODE
22 return

Figure 6.1.: Parallel combining: pseudocode

1 COMBINER_CODE:
2 R ← ∅
3

4 for r ∈ A:
5 if isUpdate(r.method):
6 apply(D, r.method, r.input)
7 r.status ← FINISHED
8 else:
9 R ← R ∪ r

10

11 for r ∈ R:
12 r.status ← STARTED

13 if req.status = STARTED:
14 apply(D, req.method, req.input)
15 req.status ← FINISHED
16

17 for r ∈ R:
18 while r.status = STARTED:
19 nop
20

21 CLIENT_CODE:
22 if not isUpdate(req.method):
23 apply(D, req.method, req.input)
24 req.status ← FINISHED

Figure 6.2.: Parallel combining in application to read-optimized data structures

read-only operations, while other operations are called update operations.
Suppose that we are given a sequential data structure D that suports update and read-

only operations. Now we explain how to set parameters of parallel combining for this appli-
cation. At first, STATUS_SET consists of three elements INITIAL, STARTED and FINISHED.
Request type does not have auxiliary fields.

In COMBINER_CODE (Figure 6.2 Line 1), the combiner iterates through the set of collected
requests A: if a request contains an update operation then the combiner executes it and
sets its status to FINISHED; otherwise, the combiner adds the request to set R. Then
the combiner sets the status of requests in R to STARTED. After that the combiner checks
whether its own request is read-only. If so, it executes the method and sets the status of
its request to FINISHED. Finally, the combiner waits until the status of the requests in R
become FINISHED.
In CLIENT_CODE (Figure 6.2 Line 21), the client checks whether its method is read-only.

If so, the client executes the method and sets the status of the request to FINISHED.

Theorem 6.2.1. Algorithm in Figure 6.2 produces a linearizable concurrent data structure
from a sequential one.

Proof. Any execution can be split into combining phases (Figure 6.2 Lines 2-19) which do
not intersect. We can group the operations into batches by the combining phase in which
they are applied.

Each update operation is linearized at the point when the combiner applies this opera-
tion. Note that this is a correct linearization since all operations that are linearized before
are already applied: the operations from preceding combining phases were applied during

97

the preceding phases, while the operations from the current combining phase are applied
sequentially by the combiner.
Each read-only operation is linearized at the point when the combiner sets the status of

the corresponding request to STARTED. By the algorithm, a read-only operation observes
all update operations that are applied before and during the current combining phase.
Thus, the chosen linearization is correct.

To evaluate the approach we apply it to the sequential dynamic graph data structure
by Holm et al. [95] (Section 6.5.1).

6.2.2. Parallel Batched Algorithms

We discuss below how to build a concurrent implementation given a parallel batched one
in one of two forms: for static or dynamic multithreading.
Suppose that we are given a parallel batched implementation for dynamic multithread-

ing. One can turn it into a concurrent one using parallel combining with the work-stealing
scheduler. We enrich STATUS_SET with STARTED. In COMBINER_CODE the combiner collects
the requests and sets their status to STARTED. Then the combiner creates a working deque,
puts there a new node of computational DAG with apply function and starts the work-
stealing routine on processes-clients. Finally, the combiner waits for the clients to become
FINISHED. In CLIENT_CODE the client creates a working deque and starts the work-stealing
routine.
In the static multithreading case, each process is provided with a distinct version of

apply function. Again, we enrich STATUS_SET with STARTED. In COMBINER_CODE the com-
biner collects the requests, sets their status to STARTED, performs the code of apply and
waits for the clients to become FINISHED. In CLIENT_CODE the client waits until its re-
quest has STARTED status, performs the code of apply and sets the status of its request
to FINISHED.

We apply this technique to the binary search tree and to the priority queue. For the
binary search tree we present the parallel batched algorithm by Blelloch et al. [32] in a form
of COMBINER_CODE and CLIENT_CODE. For the priority queue we introduce a novel parallel
batched implementation in a form of COMBINER_CODE and CLIENT_CODE. We had to design
a new algorithm since no known implementation [38, 56, 132, 137] can be efficiently used
in our context: their complexity inherently depends on the total number of processes in
the system, regardless of the actual batch size.

6.3. Binary Search Tree with Parallel Combining
In this section, we explain how to implement a parallel batched binary search tree al-
gorithm by Blelloch et al. [32] in the form of COMBINER_CODE and CLIENT_CODE for the
parallel combining framework described in the previous section.
Initially, we choose a sequential balanced binary search tree implementation that sup-

ports four operations with logarithmic complexity:

1. T ← join(TL, k, TR) — takes two trees TL and TR, and a value k, and returns a
new tree for which the in-order values are a concatenation of the in-order values of
TL, k, and the in-order of TR.

2. T ← join2(TL, TR) — takes two trees TL and TR, and returns a new tree for
which the in-order values are a concatenation of the in-order values of TL and TR.

3. (TL, b, TR) ← split(T, k) — takes a tree T and a value k, and returns two trees
TL and TR, and the boolean b, where TL contains all the values of T that are less
than k, TR contains all the values of T that are greater than k, and b represents
whether k is in T .

98

4. b← contains(T, k) — takes a tree T and a value k, and returns if k is in T .

As shown in the paper by Blelloch et al. [32] at least four state-of-the-art sequential imple-
mentations satisfy the above requirements: AVL [9], Red-Black [81], Weight-balanced [123]
and Treap [138]. In our parallel batched implementation any sequential tree is represented
by an object of Tree class. This class together with the functions described above appears
in Figure 6.3 Lines 1-25.

We briefly describe the parallel batched algorithm by Blelloch et al. [32]. It is imple-
mented as one recursive function apply that takes an interval of requests S[l..r] and
a sequential binary search tree T , and applies the requests to the tree. apply(S[l..r],
T) works in three stages: (1) splits T by the argument of the middle request S[mid],
where mid = l+r

2 , into left TL and right TR trees; (2) calls fork-join with two branches:
apply(S[l..mid − 1], TL) that returns tree T ′L and apply(S[mid + 1..r], TR) that
returns tree T ′R; and, finally, (3) joins two trees T ′L and T ′R, possibly, with the argu-
ment of S[mid] if it is insert. In order to apply all requests we should call root ←
apply(S[1..|S|], root), where root stores the tree.
This algorithm works correctly: if an Insert request has argument v then the resulting

tree contains v since we join trees with v; if a Delete request has argument v then the
resulting tree does not contain v since we do not join trees with v; and the resulting tree
is perfectly balanced. The algorithm takes O(c · log(mc +1)) work and O(log c · logm) span
to apply a batch of size c to a tree of size m.
Now we describe the high-level idea behind the transformation from the described paral-

lel batched data structure into the version written for parallel combining. The main differ-
ence between the algorithms is that we wake up clients instead of calling fork-join. Suppose
that we have requests S[1..|S|] and corresponding clients-owners C[1..|S|]. When the
algorithm by Blelloch et al. calls a branch of fork-join with apply(S[l..r], T), our algo-
rithm wakes up client C[l+r2] to apply the same requests. Thus, typically, an application
of S[l..r] to tree T works in four stages: (1) client C[mid], where mid = l+r

2 , splits
T by the argument of S[mid] into TL and TR; (2) C[mid] wakes up client C[l+(mid−1)

2]
to apply S[l..mid − 1] to TL and client C[(mid+1)+r

2] to apply S[mid + 1..r] to TR;
(3) C[mid] waits until two awoken clients finish their work and return new trees; and,
finally, (4) C[mid] joins two new trees, possibly, with the argument of S[mid] if it is
insert. To start the algorithm we wake up client S[1+|S|

2] with S[1..|S|] and tree root.
We present the code of the algorithm. The code for necessary classes is presented in

Figure 6.3, COMBINER_CODE is presented in Figure 6.4 and CLIENT_CODE is presented in
Figure 6.5.
STATUS_SET consists of five elements INITIAL, CONTAINS, CONTAINS_FINISHED, UPDATE

and FINISHED.
A Request object (Figure 6.3 Lines 30-39) consists of: a method method to be called

(Insert, Delete or Contains) and its input argument v; a result res field; a status field; a
tree tree to which the client-owner c of this request should apply requests; a leftR request
of the client that is awaken by c on the left part of requests; a rightR request of the client
that is awaken by c on the right part of requests.
The purpose of the last three fields will be clear from the code.

6.3.1. Contains Phase
Combiner: preparation (Figure 6.4 Lines 11-19). First, the combiner withdraws re-
quests A from the combining data structure C (Line 11) and sorts them by their arguments
(Line 13). Then it copies all update operations from A into set U and sets the status of
all requests in A to CONTAINS (Lines 16-19).
Clients (Figure 6.5 Lines 2-6). Each client finds whether its argument appears in the
tree (Line 2) and stores the result in res field of its request. Then if the request is
contains (Line 3), the client sets the status of its request to FINISHED (Line 4) and ends

99

1 class Tree:
2 V v
3 Tree left
4 Tree right
5

6 // some balancing information
7

8 // joins two trees and value v
9 join(Tree l, V v, Tree r): Tree

10 ...
11

12 // joins two trees
13 join2(Tree l, Tree r): Tree
14 ...
15

16 // splits a tree into
17 // two trees by value v
18 // also returns whether
19 // v is present in the tree
20 split(Tree tree, V v):
21 <Tree, bool, Tree>
22 ...

23 // returns whether tree contains value v
24 contains(Tree tree, V v): bool
25 ...
26

27 // represents the maintained tree
28 global Tree root
29

30 class Request
31 method: { Contains, Insert, Delete }
32 V v
33 bool res
34 STATUS_SET status
35

36 Tree tree
37

38 Request leftR
39 Request rightR

Figure 6.3.: Binary Search Tree. Classes

the execution. Otherwise, the request is an update and the client sets the status of its
request to CONTAINS_FINISHED (Line 6) in order to signal the combiner that it finished
the contains phase.
The combiner runs the same code as clients (Figure 6.4 Lines 21-26). Then it considers

the contains phase finished when all requests in A changes their state from CONTAINS either
to FINISHED (contains requests) or to CONTAINS_FINISHED (update requests) (Lines 28-
30).

6.3.2. Update Phase

Combiner: preparation (Figure 6.4 Lines 32-68). As the first step (Lines 32-64), the
combiner computes the results of each request and chooses at most one request for each
value of the argument to apply. The combiner iterates through batches of update requests
in U grouped by argument (Lines 38-51), i.e., U[l..r − 1]. For each batch the combiner
reads the current state of the argument (Line 36): whether it is present in the tree. Then
it logically applies requests with this argument one by one and calculates their responses.
Finally, the combiner chooses at most one request that should be applied to the tree and
adds it to set S (Lines 53-62): it is the last successful request, i.e., returns true. All
requests that are not in S can be released and their status are set to FINISHED.
Now the combiner prepares the requests in S to be applied to the binary search tree.

As discussed earlier in our algorithm client c = C[l+r2] that applies S[l..r] wakes up two
clients L on the left half and R on the right half of requests: in Line 66, the combiner
prefills the fields leftR and rightR of the request of c with the requests of L and R,
respectively. Finally, the combiner passes the tree argument to the first working client
C[1+|S|

2], i.e., the client that owns the middle request, by writing the tree into tree field
of the request (Line 67) and, then, wakes up that client by setting its status to UPDATE
(Line 68).
Clients (Figure 6.5 Lines 8-12). Each client waits until its status changes from CONTAINS_FINISHED
(Lines 8-9). If the new status is FINISHED then the client finishes its execution, otherwise,

100

1 fill_dependencies(S, l, r): Request
2 if l > r:
3 return null
4 mid ← (l + r) / 2
5 S[mid].leftR ←
6 fill_dependencies(S, l, mid - 1)
7 S[mid].rightR ←
8 fill_dependencies(S, mid + 1, r)
9 return S[mid]

10

11 A ← C.getRequests()
12

13 sort(A, by arguments)
14

15 U ← ∅
16 for r ∈ A:
17 if isUpdate(r):
18 U ← U ∪ r
19 r.status ← CONTAINS
20

21 req.res ← client_contains(req)
22

23 if isContains(req):
24 req.status ← FINISHED
25 else:
26 req.status ← CONTAINS_FINISHED
27

28 for r ∈ A:
29 while r.status = CONTAINS:
30 nop
31

32 S ← ∅
33 l ← 1
34 while l ≤ |U|:
35 r ← l
36 state ← U[l].res
37

38 while r ≤ |U| and U[l].v = U[r].v:
39 if isInsert(U[r]):
40 if state = true:

41 U[r].res ← false
42 else:
43 U[r].res ← true
44 state ← true
45 else:
46 if state = true:
47 U[r].res ← true
48 state ← false
49 else:
50 U[r].res ← false
51 r ← r + 1
52

53 applied ← false
54 for i in r - 1..l:
55 if U[i].res = true:
56 if applied = false:
57 S ← S ∪ U[i]
58 applied ← true
59 else:
60 U[i].status ← FINISHED
61 else:
62 U[i].status ← FINISHED
63

64 l ← r
65

66 main ← fill_dependencies(S, 1, |S|)
67 main.tree ← root
68 main.status ← UPDATE
69

70 while req.status = CONTAINS_FINISHED:
71 nop
72

73 if req.status = UPDATE:
74 client_update(req)
75 req.status ← FINISHED
76

77 while main.status = UPDATE:
78 nop
79 root ← main.tree

Figure 6.4.: Binary Search Tree. COMBINER_CODE

101

1 CLIENT_CODE:
2 req.res ←client_contains(req)
3 if isContains(req):
4 req.status ← FINISHED
5 return
6 req.status ← CONTAINS_FINISHED
7

8 while req.status = CONTAINS_FINISHED:
9 nop

10

11 if req.status 6= FINISHED:
12 client_update(req)
13 return
14

15 client_contains(Request req):
16 req.res ← contains(root, req.v)
17 return
18

19 client_update(Request req):
20 (l, res, r) ← split(req.tree, res.v)
21

22 if req.leftR 6= null:
23 req.leftR.tree ← l
24 req.leftR.status ← UPDATE

25 if req.rightR 6= null:
26 req.rightR.tree ← r
27 req.rightR.status ← UPDATE
28

29 if req.leftR 6= null:
30 while req.leftR.status =
31 CONTAINS_FINISHED:
32 nop
33 l ← req.leftR.tree
34

35 if req.rightR 6= null:
36 while req.rightR.status =
37 CONTAINS_FINISHED:
38 nop
39 r ← req.rightR.tree
40

41 if isInsert(req):
42 req.tree ← join(l, req.v, r)
43 else:
44 req.tree ← join2(l, r)
45

46 req.status ← FINISHED
47 return

Figure 6.5.: Binary Search Tree. CLIENT_CODE

the new status is UPDATE and the client has to perform an update (Line 12) described by
the algorithm below.

At first, the client splits the provided tree in tree field by the argument v into two trees
l and r. Then the client writes the tree l to tree field of leftR request (Line 23) and wakes
up the owner of leftR by setting its status to UPDATE (Line 24). It does the same with
rightR request (Lines 25-27). The client waits until the owner of leftR request finishes
its work (Lines 30-32) , i.e., the status changes from CONTAINS_FINISHED, and stores the
resulting tree in l (Line 33). It does the same with rightR request (Lines 35-39). Then
the client joins trees l and r with the argument of its request if the request is insert
(Line 42) and without, otherwise (Line 44). Finally, it sets the status of its request to
FINISHED and ends the execution.
The combiner runs the same code as clients (Lines 70-75). Then it waits until the first

working client finishes, i.e., its status changes from CONTAINS_FINISHED (Lines 77-78) and,
finally, updates the tree, i.e., root (Line 79).

6.3.3. Analysis

We provide theorems on correctness and time bounds.

Theorem 6.3.1. Our concurrent binary search tree implementation is linearizable.

Proof. The execution can be split into combining phases (Figure 6.4) which do not inter-
sect. We group the operations into the batches corresponding to the combining phase in
which they are applied.
Consider the i-th combining phase. We linearize all the operations from the i-th phase

right after the end of the corresponding getRequests() (Figure 6.4 Line 11) in order: at
first, contains operations and, then, update operations ordered by sorting in Figure 6.4
Line 13.

102

To prove that this linearization is correct it is enough to show for each different argument
that the operations with that argument are linearizable. Consider operations that have the
same argument v. The results of these operations definitely satisfy the sequential execution
since we apply them logically in the sorted order knowing whether v is in the tree prior
to this combining phase. (Figure 6.4 Lines 32-64) The only thing left to show is that the
resulting tree after the i-th combining phase contains v if the last successful operation is
an insert, and does not have, otherwise. This directly follows from the algorithm since we
apply to the tree only the last successful operation: if it is insert then the value is inserted
into the tree (Figure 6.5 Line 42), otherwise, the value is not inserted (Figure 6.5 Line 44).
Finally, since we join and split trees using the sequential algorithm — the resulting tree
is perfectly balanced.

Theorem 6.3.2. Suppose that the combiner collects c requests using getRequests(). To
apply the collected requests to the tree, the combiner spends O(c + logm) RMRs in CC
model, each client spends O(logm) RMRs in CC model and, in total, the algorithm spends
O(c · logm) RMRs in CC model.

Proof. Suppose that the batch consists of only update operations. This assumption slightly
simplify the presentation, but it does not affect the bounds.
The combiner gathers requests (O(c) RMRs, Line 11) and sorts them (O(c · log c) prim-

itive steps but O(c) RMRs, Line 13). Then the combiner sets the status of requests to
CONTAINS (O(c) RMRs, Line 15-19).

The clients and the combiner participate in Contains phase. At first, each client waits
for its status to change from INITIAL (1 RMR). Then the client calls contains function
(O(logm) primitive steps and RMRs, Line 2). It finishes contains phase with changing its
status to CONTAINS_FINISHED (O(1) RMRs, Lines 3-6).
The combiner waits for the change of the status of the clients (O(c) RMRs, Line 28-

30). Then it sets the responses of the clients and choose the requests to apply (O(c)
RMRs, Lines 32-64). After that, the combiner fills the dependencies between requests
(O(c) RMRs, Line 66) and wakes up the first working client (O(1) RMRs, Lines 67-68).
The clients and the combiner participate in Update phase. The client waits for its

status to change (1 RMR, Lines 8-9). Then it splits the tree (O(logm) primitive steps
and RMRs, Line 20), wakes up two clients (O(1) RMRs, Lines 22-27), waits until they
finish and change their status (O(1) RMRs, Lines 29-39) and, finally, joins the resulting
trees, possibly, with the argument of its request (O(logm) primitive steps and RMRs,
Lines 41-46).
The combiner waits the first working client to finish (O(1) RMRs, Line 77-79) and ends

the execution.
Summing up, the combiner performs O(c + logm) RMRs and each client performs

O(logm) RMRs, giving us in total O(c · logm) RMRs.

Remark 6.3.1. The above bounds also hold in DSM model for the version of the described
algorithm. For that we have to simply make spin-loops to loop on the local variables of
process. Luckily for us, in our algorithm the purpose of each spin-loop is to wake up
some process and at each point when we set the variable we know (or can deduce by
a simple modification of the algorithm) which process is going to wake up. Thus, it is
enough for each spin-loop to create a separate variable in the memory of the target process.
Such transformation (in reality, it is slightly more technical than described above) of our
algorithm provides an algorithm with the same bounds on RMRs but in DSM model.

6.4. Priority Queue with Parallel Combining
Before we introduce our novel parallel batched priority queue algorithm we have to mention
that all previous parallel batched algorithms (see Section 3.3) do not satisfy us because

103

1 class InsertSet:
2 List A, B
3

4 split(int l):
5 Pair<InsertSet, InsertSet>
6 L ← min(l, |A| + |B| - l)
7 X ← new InsertSet()
8 if |A| ≥ L:
9 for i in 1..L:

10 a ← X.A.removeFirst()
11 X.A.append(a)
12 else:
13 for i in 1..L:
14 b ← X.B.removeFirst()
15 X.B.append(b)
16

17 if L = l:
18 return (X, this)
19 else:
20 return (this, X)

21 class Node:
22 V val
23 bool locked
24 InsertSet split
25

26 class Request:
27 method: { ExtractMin, Insert }
28 V v
29 V res
30 STATUS_SET status
31 int start
32

33 // for client_insert(req)
34 // specifies the segment of leaves
35 // in a subtree of start node
36 int l, r

Figure 6.6.: Parallel Priority Queue. Classes

they are tailored to a fixed number of processes p. Such a restriction leads to two major
issues. Each of the known algorithm has a constraint on the size of batch: the algorithm
by Pinotti and Pucci [132] allows only batches with size p, the algorithm by Deo and
Prasad [56] allows only batches with size not exceeding p, and, finally, the algorithm by
Sanders [137] allows a batch to have no more than p extractMin operations. Thus it is
not possible to introduce new processes to the system and use them efficiently, when the
data structure is already constructed, and, consequently, p is chosen to be n, the total
number of processes in the system. Secondly, we expect a parallel batched implementation
to be work-efficient: it should be able to apply a batch of size c to a priority queue of
size m in a time not worse than O(c logm). Unfortunately, the known algorithms are not
work-efficient when the size of the batch is always less than p (which is the common case
in our environment, since p is chosen to be n): the algorithm by Pinotti and Pucci [132]
induces O(p · (logm + log log p)) work, the algorithm by Deo and Prasad [56] induces
O(p · logm · log p) work and the algorithm by Sanders [137] induces O(p · logm) work.

We respond to these issues with a new parallel batched algorithm that applies a batch of
size c to a queue of size m in O(c · (log c+logm)) RMRs in CC or DSM models. From this
result we can get the theoretical bounds in the Work-Span framework: O(c ·(logm+log c))
work and O(c·log c+logm) span. By that, our algorithm can use up to c ≈ logm processes
efficiently.

6.4.1. Combiner and Client. Classes

Now, we describe our novel parallel batched priority queue in the form of COMBINER_CODE
and CLIENT_CODE that fits the parallel combining framework described in Section 6.2. It
is based on the sequential binary heap by Gonnet and Munro [75] described in Section 3.3.
The code of necessary classes is presented in Figure 6.6, COMBINER_CODE is presented in
Figure 6.7, and CLIENT_CODE is presented in Figure 6.8.

We introduce a sequential object InsertSet (Figure 6.6 Lines 1-20) that consists of
two sorted linked lists A and B supporting size operation | · |. The size of InsertSet S is
|S| = |S.A| + |S.B|. InsertSet supports operation split: (X, Y) ← S.split(`), which
splits InsertSet S into two InsertSet objects X and Y , where |X| = ` and |Y | = |S| − `.

104

1 A ← C.getRequests()
2

3 if m ≤ |A|:
4 apply A sequentially
5 for r ∈ A:
6 r.status ← FINISHED
7 return
8

9 E ← ∅
10 I ← ∅
11

12 for r ∈ A:
13 if isInsert(r):
14 I ← I ∪ r
15 else:
16 E ← I ∪ r
17

18 bestE ← new int[|E|]
19 heap ← new Heap<Pair<V, int>>()
20

21 heap.insert((a[1], 1))
22

23 for i in 1..|E|:
24 (v, id) ← heap.extract_min()
25 bestE[i] ← id
26 heap.insert((a[2 · v], 2 · v))
27 heap.insert(
28 (a[2 · v + 1], 2 · v + 1))
29

30 for i in 1..|E|:
31 E[i].res ← a[bestE[i]].val
32 a[bestE[i]].locked ← true
33 E[i].start ← bestE[i]
34

35 l ← min(|E|, |I|)
36 for i in 1..l:
37 a[bestE[i]] ← I[i].v
38 I[i].status ← FINISHED
39

40 for i in l + 1..|E|:
41 a[bestE[i]] ← a[m]
42 m--
43

44 for i in 1..|E|:
45 E[i].status ← SIFT
46

47 if req.status = SIFT:
48 client_extract_min(req)
49

50 for i in 1..|E|:
51 while E[i].status = SIFT:
52 nop

53 I ← I[l + 1..|I|]
54

55 I[1].start ← 1
56 I[1].l ← 2blog2(m+|I|)c

57 I[1].r ← 2 · I[1].l - 1
58 for i in 2..|I|:
59 t ← m + i
60 power ← 1
61 while t > 1:
62 p ← t / 2
63 if 2 · p = t:
64 break
65 t ← p
66 power ← 2 · power
67

68 if t = 1:
69 t ← 2
70 I[i].start ← t + 1
71 I[i].l ← I[i].start · power
72 I[i].r ← I[i].l + power - 1
73

74 // L and R are global variables
75 // necessary for client_insert(req)
76 L ← m + 1
77 R ← m + |I|
78

79 m ← m + |I|
80

81 args ← new V[|I|]
82 for i in 1..|I|:
83 args[i] ← I[i].v
84

85 sort(args)
86

87 a[1].split ← new InsertSet()
88 for i in 1..|I|:
89 a[1].split.A.append(args[i])
90

91 for i in 1..|I|:
92 I[i].status ← SIFT
93

94 if req.status = SIFT:
95 client_insert(req)
96

97 for i in 1..|I|:
98 while I[i].status = SIFT:
99 nop

Figure 6.7.: Parallel Priority Queue. COMBINER_CODE

105

1 CLIENT_CODE:
2 if isInsert(req):
3 if req.status = SIFT:
4 client_insert(req)
5 else:
6 client_extract_min(req)
7 req.status ← FINISHED
8 return
9

10 client_extract_min(Request req):
11 v ← req.start
12 while 2 · v ≤ m:
13 while a[2 · v].locked
14 nop
15 if 2 · v + 1 ≤ m:
16 while a[2 · v + 1].locked:
17 nop
18 c ← 2 · v
19 if 2 · v + 1 ≤ m
20 and a[2 · v] > a[2 · v + 1]:
21 c ← 2 · v + 1
22 if a[c] > a[v]:
23 a[v].locked ← false
24 break
25 else:
26 swap(a[c], a[v])
27 a[c].locked ← true
28 a[v].locked ← false
29 v ← c
30 return
31

32 // Integers that specifies
33 // a segment of target nodes,
34 // i.e., m + 1 and m + |I|
35 global int L, R
36

37 targets_in_subtree(l, r): int
38 return min(r, R) - max(l, L) + 1
39

40 client_insert(Request req):
41 v ← req.start
42 while a[v].split = null:
43 nop

44 S ← a[v].split
45 a[v].split ← null
46

47 l ← req.l
48 r ← req.r
49

50 while v 6∈ [L, R]:
51 a ← S.A.first()
52 b ← S.B.first()
53 if a[v] < min(a, b):
54 x ← a[v]
55 a[v] ← min(a, b)
56 if a < b:
57 S.A.pollFirst()
58 else:
59 S.B.pollFirst()
60 S.B.append(x)
61

62 mid ← (l + r) / 2
63 inL ←
64 targets_in_subtree(l, mid)
65 inR ←
66 targets_in_subtree(mid + 1, r)
67

68 if inL = 0:
69 v ← 2 · v + 1
70 l ← mid + 1
71

72 if inR = 0:
73 v ← 2 · v
74 r ← mid
75

76 if inL 6= 0 and inR 6= 0:
77 (S, T) ← S.split(inL)
78 a[2 · v + 1].split ← T
79 v ← 2 · v
80 r ← mid
81

82 if |S.A| 6= 0:
83 a[v] ← S.A.first()
84 else:
85 a[v] ← S.B.first()
86 return

Figure 6.8.: Parallel Priority Queue. CLIENT_CODE

106

This operation is executed sequentially in O(L = min(`, |S|−`)) steps. The split operation
works as follows: 1) new InsertSet T is created (Line 7); 2) if |S.A| ≥ L then the first L
values of S.A are moved to T.A (Lines 9-11); otherwise, the first L values from S.B are
moved to T.B (Lines 13-15); note that either |S.A| or |S.B| should be at least L; 3) if
L = ` then (T, S) is returned; otherwise, (S, T) is returned (Lines 17-20).

The heap is defined by its sizem and an array a of Node objects. Node object (Figure 6.6
Lines 21-24) has three fields: value val, boolean locked and InsertSet split.
STATUS_SET consists of three items: INITIAL, SIFT and FINISHED.
A Request object (Figure 6.6 Lines 26-36) consists of: a method method to be called

and its input argument v; a result res field; a status field; a node identifier start.

6.4.2. ExtractMin Phase

Combiner: ExtractMin preparation (Figure 6.7 Lines 1-52). First, the combiner
withdraws requests A from the combining data structure C (Line 1). If the size of A is
larger than m, the combiner serves the requests sequentially (Lines 3-7). Intuitively, in
this case, there is no way to parallelize the execution. For example, if A consists of only
Insert requests and if there are more Insert requests than the number of nodes in the
corresponding binary tree, we cannot insert them in parallel.
In the following, we assume that the size of the queue is at least the size of A. The

combiner splits A into sets E and I (Lines 9-16): the set of ExtractMin requests and the
set of Insert requests. Then it finds |E| nodes v1, . . . , v|E| of heap with the smallest values
(Lines 18-28), e.g., using the Dijkstra-like algorithm in O(|E| · log |E|) primitive steps or
O(|E|) RMRs. For each request E[i], the combiner sets E[i].res to a[vi].val, a[vi].locked
to true, and E[i].start to vi (Lines 30-33).
The combiner proceeds by pairing Insert requests in I with ExtractMin requests in E

using the next procedure (Lines 35-38). Suppose that ` = min(|E|, |I|). For each i ∈ [1, `],
the combiner sets a[vi].val to I[i].v and I[i].status to FINISHED, i.e., this Insert request
becomes completed. Then, for each i ∈ [` + 1, |E|], the combiner sets a[vi].val to the
value of the last node a[m] and decreases m, as in the sequential algorithm (Lines 40-42).
Finally, the combiner sets the status of all requests in E to SIFT (Lines 44-45).
Clients: ExtractMin phase (Figure 6.8 Lines 11-29). Briefly, the clients sift down the
values in nodes v1, . . . , v|E| in parallel using hand-over-hand locking: the locked field of a
node is set whenever there is a sift down operation working on that node.
A client c waits until the status of its request becomes SIFT. c starts sifting down from

req.start. Suppose that c is currently at node v. c waits until the locked fields of the
children become false (Lines 13-17). If a[v].val, the value of v, is less than the values
in its children, then sift down is finished (Lines 23-24): c unsets a[v].locked and sets the
status of its request to FINISHED. Otherwise, let w be the child with the smallest value.
Then c swaps a[v].val and a[w].val, sets a[w].locked, unsets a[v].locked and continues with
node w (Lines 26-29).
If the request of the combiner is ExtractMin, it also runs the code above as a client

(Figure 6.7 Lines 47-48). The combiner considers the ExtractMin phase completed when
all requests in E have status FINISHED (Lines 50-52).

6.4.3. Insert Phase

Combiner: Insert preparation (Figure 6.7 Lines 53-99). For Insert requests, the
combiner removes all completed requests from I (Line 53). Nodes m+ 1, . . . ,m+ |I| have
to be leaves, because we assume that the size of I is at most the size of the queue. We
call these leaves target nodes. The combiner then finds all split nodes: nodes for which the
subtrees of both children contain at least one target node. (See Figure 6.9 for an example
of how target and split nodes can be defined.)

107

Split nodes

Target nodes

U1

U2

U3

Figure 6.9.: Split and target nodes

Since we have |I| target nodes, there are
exactly |I| − 1 split nodes u1, . . . , u|I|−1:
ui is the lowest common ancestor of nodes
m+ i and m+ i+ 1. They can be found in
O(|I|+logm) primitive steps (Lines 55-72):
starting with nodem+i go up the heap un-
til a node becomes a left child of some node
pr; this pr is ui. We omit the discussion
about the fields l and r of I[i]: they repre-
sent the smallest and the largest leaf identi-
fiers in the subtree of ui at the lowest level,
and they are used to calculate the number
of leaves at the lowest level that are newly
inserted, i.e., m+1, . . . ,m+|I|, in constant
time. The combiner sets I[1].start to the

root (the node with identifier 1), (Line 55) and, for each i ∈ [2, |I|], it sets I[i].start to the
right child of ui−1 (node 2 · ui−1 + 1) (Line 70). Then the combiner creates an InsertSet
object X, sorts the arguments of the requests in I, puts them to X.A and sets a[1].split to
X (Lines 81-89). Finally, it sets the status fields of all requests in I to SIFT (Lines 91-92).
Clients: Insert phase (Lines 41-85). Consider a client c with an incompleted request
req. It waits while a[req.start].split is null (Lines 42-43). Now c is going to insert values
from InsertSet a[req.start].split to the subtree of req.start. Let S be a local InsertSet
variable initialized with a[req.start].split. For each node v on the path, c inserts values
from S into the subtree of v. c calculates the minimum value x in S (Lines 51-53): the
first element of S.A or the first element of S.B. If a[v].val is bigger than x, then the client
removes x from S, appends a[v].val to the end of S.B and sets a[v].val to x (Lines 54-60).
Note that by the algorithm S.B contains only values that were stored in the nodes above
node v, thus, any value in S.B cannot be bigger than a[v].val and after appending a[v].val
S.B remains sorted. Then the client calculates the number inL of target nodes in the
subtree of the left child of v and the number inR of target nodes in the subtree of the
right child of v (Lines 63-66, to calculate these numbers in constant time we use fields l
and r of the request). If inL = 0, then all the values in S should be inserted into the
subtree of the right child of v, and c proceeds with the right child 2v+ 1 (Lines 69-70). If
inR = 0, then, symmetrically, c proceeds with the left child 2v (Lines 73-74). Otherwise,
if inL 6= 0 and inR 6= 0, v is a split node and, thus, there is a client that waits at the right
child 2v + 1. Hence, c splits S to (X, Y) ← S.split(inL) (Line 77): the values in X
should be inserted into the subtree of node 2v and the values in Y should be inserted into
the subtree of node 2v + 1. Then c sets a[2v + 1].split to Y , sets S to X and proceeds to
node 2v (Lines 78-80). When c reaches a leaf v it sets the value a[v].val to the only value
in S (Lines 82-85) and sets the status of the request req to FINISHED (Line 7).
If the request of the combiner is an incompleted Insert, it runs the code above as a

client (Figure 6.7 Lines 94-95). The combiner considers the Insert phase completed when
all requests in I have status FINISHED (Lines 97-99).

6.4.4. Analysis
Now we provide theorems on correctness and time bounds.

Theorem 6.4.1. Our concurrent priority queue implementation is linearizable.

Proof. The execution can be split into combining phases (Figure 6.7 Lines 1-99) which do
not intersect. We group the operations into batches corresponding to the combining phase
in which they are applied.
Consider the i-th combining phase. We linearize all the operations from the i-th phase

right after the end of the corresponding getRequests() (Line 1) in the following order: at

108

first, we linearize ExtractMin operations in the increasing order of their responses, then,
we linearize Insert operations in any order.
To see that this linearization is correct it is enough to prove that the combiner and the

clients apply the batch correctly.

Lemma 6.4.1. Suppose that the batch of the i-th combining phase contains a ExtractMin
operations and b Insert operations with arguments x1, . . . , xb. Let V be the set of values
stored in the priority queue before the i-th phase. The combiner and the clients apply this
batch correctly:

• The minimal a values y1, . . . , ya in V are returned to ExtractMin operations.

• After an execution the set of values stored in the queue is equal to V ∪{x1, . . . , xb} \
{y1, . . . , ya}. and the values are stored in nodes with identifiers 1, . . . , |V | − b+ a.

• After an execution the heap property is satisfied for each node.

Proof. The first statement is correct, because the combiner chooses the smallest a elements
from the priority queue and sets them as the results of ExtractMin requests (Lines 18-33).
The second statement about the set of values straightforwardly follows from the algo-

rithm. During ExtractMin phase the combiner finds a smallest elements, replaces them
with x1, . . . , xmin(a,b) and with values from the last a−min(a, b) nodes of the heap: the set
of values in the priority queue becomes V ∪{x1, . . . , xmin(a,b)}\{y1, . . . , yb} and the values
are stored in nodes 1, . . . , |V | − a+ min(a, b). Then, the sift down is initiated, but it does
not change the set of values and it does not touch nodes other than 1, . . . , |V |−a+min(a, b).
During Insert phase the values xmin(a,b)+1, . . . , xb are inserted and new nodes which are
used in Insert phase are |V |−a+min(a, b)+1, . . . , |V |−a+b. Thus, the final set of values
is V ∪ {x1, . . . , xb} \ {y1, . . . , ya} and the values are stored in nodes 1, . . . , |V | − a+ b.
The third statement is slightly tricky. At first, the combiner finds a smallest elements

that should be removed and replaces them with x1, . . . , xmin(a,b) and with values from the
last a−min(a, b) nodes of the heap. Suppose that these a smallest elements were at nodes
v1, . . . , va, sorted by their depth (the length of the shortest path from the root) in non-
increasing order. These nodes form a connected subtree where va is the root of the heap.
Suppose that they do not form a connected tree or va is not the root of the heap. Then
there exists a node vi which parent p is not vj for any j. This means that the values in
nodes v1, . . . , va are not the smallest a values: by the heap property a value at p is smaller
than the value at vi.
Now a processes perform sift down from the nodes v1, . . . , va. We show that when a

node v is unlocked, i.e., its locked field is set to false, the value at v is the smallest value
in the subtree of v. This statement is enough to show that the heap property holds for all
nodes after ExtractMin phase, because at that point all nodes are unlocked.
Consider an execution of sift down. We prove the statement by induction on the number

of unlock operations. Base. No unlock happened and the statement is satisfied for all
unlocked nodes, i.e., all the nodes except for v1, . . . , va. Transition. Let us look right
before the k-th unlock: the unlock of a node v. The left child l of v should be unlocked
and, thus, l contains a value that is the smallest in its subtree. The same statement holds
for the right child r of v. v chooses the smallest value between the value at v and the
values at l and r. This value is the smallest in the subtree of v. Thus, the statement holds
for v when unlocked.
After that, the algorithm applies the incompleted b − min(a, b) Insert operations. We

name the nodes with at least one target node in the subtree as modified. Modified nodes
are the only nodes whose value can be changed and, also, each modified node is visited by
exactly one client. To prove that after the execution the heap property for each modified
node holds: we show by induction on the depth of a modified node that if a node v is
visited by a client with InsertSet S then: (1) S.A is sorted; (2) S.B is sorted and contains
only values that were stored in ancestors of v after ExtractMin phase; and (3) v contains

109

the smallest value in its subtree when the client finishes with it. Base. In the root S.A is
sorted, S.B is empty and the new value in the root is either the first value in S.A or the
current value in the root, thus, it is the smallest value in the heap. Transition from depth
k to depth k + 1. Consider a modified node v at depth k + 1 and its parent p. Suppose
that p was visited by a client with InsertSet Sp. By induction, Sp.A is sorted and Sp.B
is sorted and contains only the values that were in ancestors. Then the client chooses the
smallest value in p: either a[p], the first value of Sp.A or the first value of Sp.B. Note that
after any of these three cases Sp.A and Sp.B are sorted and Sp.B contains only values
from ancestors and node p:

• a[p] is the smallest, then Sp.A and Sp.B are not modified;

• we poll the first element of Sp.A or Sp.B; Sp.A and Sp.B are still sorted; then we
append a[p] to Sp.B, and a[p] has to be the biggest element in Sp.B, since Sp.B
contains only the values from ancestors.

Then the client splits Sp and some client, possibly, another one, works on v with IntegerSet
S. Since, S is a subset of Sp then S.A is sorted and S.B is sorted and contains only the
values from ancestors (ancestors of p and, possibly, p). Finally, the client chooses the
smallest value to appear in the subtree: the first value of S.A, the first value of S.B and
a[v].

Theorem 6.4.2. Suppose that the combiner collects c requests using getRequests().
Then the combiner and the clients apply these requests to a priority queue of size m using
O(c + logm) RMRs in CC model each and O(c · (log c + logm)) RMRs in CC model in
total.

Proof. Suppose that the batch consists of a ExtractMin operations and b Insert opera-
tions.
The combiner splits requests into two sets E and I (O(c) RMRs, Lines 9-16). Then

it finds a nodes with the smallest values (O(a log a) primitive steps, but O(a) RMRs,
Lines 18-28) using Dijkstra-like algorithm. After that, the combiner sets up ExtractMin
requests, sets their status to SIFT and pairs some Insert requests with ExtractMin requests
(O(a) RMRs, Lines 30-45).
The clients participate in ExtractMin phase. At first, each client waits for its status to

change (1 RMR). Then the client performs at most logm iterations of the loop (Line 12):
waits on the locked fields of the children (O(1) RMRs, Lines 13-17); reads the values in the
children (O(1) RMRs, Line 20); compares these values with the value at the node, possibly,
swap the values, lock the proper child and unlock the node (O(1) RMRs, Lines 22-29).
When the client stops it changes the status (1 RMR, Line 7).
The combiner waits for the change of the status of the clients (O(a) RMRs, Lines 50-52).

Summing up, in ExtractMin phase each client performs O(logm) RMRs and the combiner
performs O(a+ logm) RMRs, giving O(c+ c · logm) RMRs in total.
The combiner throws away completed Insert requests (O(b) primitive steps and 0 RMRs,

Line 53). Then it finds the split nodes (O(logm+b) primitive steps, but 0 RMRs, Lines 55-
72). After that the combiner sorts arguments of remaining Insert requests, sets their status
to SIFT and sets up the initial InsertSet (O(b · log b) primitive steps, but O(b) RMRs,
Line 81 and Line 92).
The clients participate in Insert phase. At first, a client t waits while the corresponding

InsertSet is null (1 RMR, Lines 41-43). Suppose that it reads the InsertSet S and starts
the traversal down. The client performs at most logm iterations of the loop (Line 50):
choose the smallest value (O(1) RMRs, Lines 51-60), find whether to split InsertSet (O(1)
RMRs, Lines 62-74), split InsertSet (calculated below, Line 77) and passe one InsertSet to
another client (O(1) RMRs, Lines 78-80). Now let us calculate the number of RMRs spent

110

in Line 77. Suppose that there are k iterations of the loop and the size of S at iteration i
is si. At the i-th iteration split works in O(min(si+1, si − si+1)) = O(si − si+1) primitive
steps and RMRs. Summing up through all iterations we get O(s1) = O(b) RMRs spent
by t in Line 77. Finally, t sets the value in the leaf (O(1) RMRs, Lines 82-85) and changes
the status (O(1) RMRs, Line 7).
The combiner waits for the change of the status of the clients (O(b) RMRs, Lines 97-

99). Summing up, in Insert phase the clients and the combiner perform O(b + logm)
RMRs each. Consequently, the straightforward bound on the total number of RMRs is
O(c2 + c · logm) RMRs.
To get the improved bound we carefully calculate the total number of RMRs spent on

the splits of InsertSets in Line 77. This number equals to the number of values that are
moved to newly created sets during the splits. For simplicity we suppose that inserted
values are bigger than all the values in the priority queue and, thus, each InsertSet contains
only the newly inserted values. This assumption does not affect the bound. Consider now
the inserted value v. Suppose that v was moved k times and at the i-th time it was moved
during the split of InsertSet with size si. Because v is moved during split only to the set
with the smaller size: s1 ≥ 2 · s2 ≥ . . . ≥ 2k−1 · sk. k is less than log c, because s1 ≤ c, and,
thus, v was moved no more than log c times. This means, that in total during the splits
of InsertSets no more than c · log c values are moved to new sets, giving O(c · log c) RMRs
during the splits. This gives us a total bound of O(c · (log c+ logm)) RMRs during Insert
phase.
To summarize, the combiner and the clients perform O(c + logm) RMRs each and

O(c · (log c+ logm)) RMRs in total.

Remark 6.4.1. The above bounds also hold in DSM model for the version of the described
algorithm. For that we have to simply make spin-loops to loop on the local variable of
processes. In our algorithm the purpose of each spin-loops is to wake up some process.
At most places in our algorithm when we set the variable on which we spin we know (or
can deduce by a simple modification of the algorithm) which process is going to wake up.
For each spin-loop it is enough to create a separate variable in the memory of the target
process.
The only two non-trivial spin-loops are in CLIENT_CODE (Lines 13-17) where we do not

know a process that is going to wake up. To elliviate this issue we expand each Node object
with the pointer to process proc. When the process wants to sift-down, first, it registers
itself in a[v].proc and, then, checks a[2v].locked and a[2v+ 1].locked. If some of them are
true then it spins on specifically created local variables: on notify2v if a[2v].locked is true,
and on notify2v+1 if a[2v + 1].locked is true. Then, the algorithm standardly performs
swapping routine. At the end, it unlocks the node, i.e., sets a[v].locked to false, then,
reads a process a[v/2].proc and notifies it by setting its corresponding variable notifyv.
Note that the total number of notify local variables that is needed by each process is loga-
rithmic from the size of the queue.
The described transformation (in reality, it is slightly more technical than described

above) of our algorithm provides an algorithm with the same bounds on RMRs but in
DSM model.

6.5. Experiments

We evaluate Java implementations of our data structures on a 4-processor AMD Opteron
6378 2.4 GHz server with 16 threads per processor (yielding 64 threads in total), 512 Gb
of RAM, running Ubuntu 14.04.5 with Java 1.8.0_111-b14 and HotSpot JVM 25.111-b14.

111

6.5.1. Concurrent Dynamic Graph

To illustrate how parallel combining can be used to construct read-optimized concurrent
data structures, we took the sequential dynamic graph implementation by Holm et al. [95].
This data structure supports two update methods: an insertion of an edge and a deletion
of an edge; and one read-only method: a connectivity query that tests whether two vertices
are connected.
We compare our implementation based on parallel combining (PC) against three others:

(1) Lock, based on ReentrantLock from java.util.concurrent; (2) RW Lock, based on Reen-
trantReadWriteLock from java.util.concurrent; and (3) FC, based on flat combining [86].
The code is available at https://github.com/Aksenov239/concurrent-graph.
We consider workloads parametrized with: 1) the fraction x of connectivity queries

(50%, 80% or 100%, as we consider read-dominated workloads); 2) the set of edges E:
edges of a single random tree, or edges of ten random trees; 3) the number of processes
P (from 1 to 64). We prepopulate the graph on 105 vertices with edges from E: we
insert each edge with probability 1

2 . Then we start P processes. Each process repeatedly
performs operations: 1) with probability x, it calls a connectivity query on two vertices
chosen uniformly at random; 2) with probability 1− x

2 , it inserts an edge chosen uniformly
at random from E; 3) with probability 1− x

2 , it deletes an edge chosen uniformly at random
from E.
We denote the workloads with E as a single tree as Tree workloads, and other workloads

as Trees workloads. Tree workloads are interesting because they show the degenerate
case: the dynamic graph behaves as a dynamic tree. In this case, about 50% of update
operations successfully change the spanning tree, while other update operations only check
the existence of the edge and do not modify the graph. Trees workloads are interesting
because a reasonably small number (approximately, 5-10%) of update operations modify
the set of all edges and the underlying complex data structure that maintains a spanning
forest (giving in total the squared logarithmic complexity), while other update operations
only can modify the set of edges and cannot modify the underlying complex data structure
(giving in total the logarithmic complexity).
For each setting and each algorithm, we run the corresponding workload for 10 seconds

to warmup HotSpot JVM and then we run the workload five more times for 10 seconds.
The average throughput of the last five runs is reported in Figure 6.10.
From the plots we can infer two general observations: PC exhibits the highest thoughput

over all considered implementations and it is the only one whose throughput scales up with
the number of the processes. On the 100% workload we expect the throughput curve to
be almost linear since all operations are read-only and can run in parallel. The plots
almost confirm our expectation: the curve of the throughput is a linear function with
coefficient 1

2 (instead of the ideal coefficient 1). We note that this is almost the best
we can achieve: a combiner typically collects operations of only approximately half the
number of working processes. In addition, the induced overhead is still perceptible, since
each connectivity query works in just logarithmic time. With the decrease of the fraction
of read-only operations we expect that the throughput curve becomes flatter, as plots for
the 50% and 80% workloads confirm.
It is also interesting to point out several features of other implementations. At first, FC

implementation works slightly worse than Lock and RW Lock. This might be explained as
follows. Lock implementations (ReentrantLock and ReentrantReadWriteLock) behind
Lock and RWLock implementations are based on CLH Lock [51] organized as a queue:
every competing process is appended to the queue and then waits until the previous one
releases the lock. Operations on the dynamic graph take significant amount of time, so
under high load when the process finishes its operation it appends itself to the queue in
the lock without any contention. Indeed, all other processes are likely to be in the queue
and, thus, no process can contend. By that the operations by processes are serialized with
almost no overhead. In contrast, the combining procedure in FC introduces non-negligible

112

https://github.com/Aksenov239/concurrent-graph

0 20 40 60

0.1

0.2

0.3

T
re

e
w

or
kl

oa
d

Ratio: 50%

0 20 40 60

0.2

0.4

Ratio: 80%

0 20 40 60
0

1

2

3

Ratio: 100%

0 20 40 60

0.05

0.1

0.15

Number of Processes

T
re

es
w

or
kl

oa
d

0 20 40 60

0.1

0.2

0.3

Number of Processes
0 20 40 60

0

1

2

3

Number of Processes

T
hr

ou
gh

pu
t,

m
op

s/
s

PC Lock RW Lock FC

Figure 6.10.: Dynamic graph implementations

overhead related to gathering the requests and writing them into requests structures.
Second, it is interesting to observe that, against the intuition, RWLock is not so superior

with respect to Lock on read-only workloads. As can be seen, when there are update
operations in the workload RWLock works even worse than Lock. We relate this to the fact
that the overhead hidden inside ReentrantReadWriteLock spent on manipulation with
read and write requests is bigger than the overhead spent by ReentrantLock. With the
increase of the percentage of read-only operations the difference between Lock and RWLock
diminishes and RWLock becomes dominant since read operations become more likely to
be applied concurrently (for example, on 50% it is normal to have an execution without
any parallelization: read operation, write operation, read operation, and so on). However,
on 100% one could expect that RWLock should exhibit ideal throughput. Unfortunately,
in this case, under the hood ReentrantReadWriteLock uses compare&swap on the shared
variable that represents the number of current read operations. Read-only operations take
enough time but not enough to amortize the considerable traffic introduced by concurrent
compare&swaps. Thus, the plot for RWLock is almost flat, getting even slightly worse
with the increase of the number of processes, and we blame the traffic for this.

6.5.2. Binary Search Tree

We implement our algorithm using AVL binary search tree as the sequential implemen-
tation, since it seems to be the fastest. Then we compare it with the state-of-the-art
concurrent binary search trees with relaxed AVL-balancing scheme [39, 52, 57].
We consider typical workloads parametrized by: 1) the fraction x of update queries

(0%, 20%, 100%), 2) the key range R ([0, 2 · 106] or [0, 2 · 107]), and 3) the number of
processes P (from 1 to 64). We prepopulate the tree with values from the key range:
we add a value with probability 1

2 . Then we start P processes. Each process repeatedly
performs operations: 1) with probability 1 − x, it calls a contains query given a value
chosen uniformly at random from the range; 2) with probability x

2 , it inserts a value

113

0 20 40 60

0.5

1

Number of Processes

Size: 8 · 105

0 20 40 60

0.5

1

Number of Processes

Size: 8 · 106

T
hr

ou
gh

pu
t,

m
op

s/
s

PC Linden SL Lazy SL SkipQueue
JavaLib FC Binary FC Pairing

Figure 6.11.: Priority Queue implementations

chosen uniformly at random from the range; 3) with probability x
2 , it deletes a value

chosen uniformly at random from the range.
We do not show here the plots, but we give the main conclusion: our implementation

works worse than others by up to 7 times. This is expected, since when the number of
concurrent operations on binary search tree is moderately small in comparison to the size
of the tree, the operations are performed almost without data races. Suppose that there
are no data races at all, then we can implement a parallel batched algorithm that calls
operations from a batch concurrently giving O(logm) span, where m is the size of the tree.
At the same time, the parallel batched algorithm by Blelloch et al. [32] has O(log c · logm)
span, where c is the size of the batch and m is the size of the queue. Thus, we can expect
the parallel batched algorithm to work log c ≈ 5 times slower even not considering the
explicit synchronization.
To summarize, the binary search tree is an example of a data structure that does not

benefit from parallel combining on small batches (proportional to the number of processes):
the synchronization used by the concurrent algorithm is smaller than the synchronization
used by the parallel batched algorithm.

6.5.3. Priority Queue

We run our algorithm (PC) against six state-of-the-art concurrent priority queues: (1) the
lock-free skip-list by Linden and Johnson (Linden SL [113]), (2) the lazy lock-based skip-
list (Lazy SL [90]), (3) the non-linearizable lock-free skip-list by Herlihy and Shavit
(SkipQueue [90]) as an adaptation of Lotan and Shavit’s algorithm [139], (4) the lock-
free skip-list from Java library (JavaLib), (5) the binary heap with flat combining (FC
Binary [86]), and (6) the pairing heap with flat combining (FC Pairing [86]). 2 The code
is available at https://github.com/Aksenov239/FC-heap.

We consider workloads parametrized by: 1) the initial size S (8 · 105 or 8 · 106); and
2) the number P of working processes (from 1 to 64). We prepopulate the queue with S
random integers chosen uniformly from the range [0, 231 − 1]. Then we start P processes,
and each process repeatedly performs operations: with equal probability it either inserts
a random value taken uniformly from [0, 231 − 1] or extracts the minimum value.

For each setting and each algorithm, we run the corresponding workload for 10 seconds
to warmup HotSpot JVM and then we run the workload five more times for 10 seconds.
The average throughput of the last five runs is reported in Figure 6.11.
On a small number of processes (< 15), PC performs worse than other algorithms.

2We are aware of the cache-friendly priority queue by Braginsky et al. [36], but we do not have its Java
implementation.

114

https://github.com/Aksenov239/FC-heap

With respect to Linden SL, Lazy SL, SkipQueue and JavaLib this can be explained by
two different issues:

• Synchronization incurred by PC is not compensated by the work done;

• Typically, a combiner collects operations of only approximately half the processes,
thus, we “overserialize”, i.e., only n

2 operations can be performed in parallel.

In contrast, on small number of processes, the other four algorithms can perform operations
almost with no contention. With respect to algorithms based on flat combining, FC Binary
and FC Pairing, our algorithm is simply slower on one process than the simplest sequential
binary and pairing heap algorithms.
With the increase of the number of processes the synchronization overhead significantly

increases for all algorithms (in addition to the fact that FC Binary and FC Pairing cannot
scale). As a result, starting from 15 processes, PC outperforms all algorithms except
for Linden SL. Linden SL relaxes the contention during ExtractMin operations, and it
helps to keep the throughput approximately constant. At approximately 40 processes
the benefits of the parallel batched algorithm in PC starts prevailing the costs of explicit
synchronization, and our algorithms overtakes Linden SL.
It is interesting to note that FC Binary performs very well when the number of processes

is small: the overhead on the synchronization is very small, the processes are from the
same core and the simplest binary heap performs operations very fast.

6.6. Related Work
To the best of our knowledge, the first attempt to combine concurrent operations was
introduced by Yew et al. [156]. They introduced a combining tree: processes start at the
leaves and traverse upwards to gain exclusive access by reaching the root. If, during the
traversal, two processes access the same tree node, one of them adopts the operations of
another and continues the traversal, while the other stops its traversal and waits until its
operations are completed. Several improvements of this technique have been discussed,
such as adaptive combining tree [141], barrier implementations [82, 116] and counting
networks [140].
A different approach was proposed by Oyama et al. [126]. Here the data structure is

protected by a lock. A thread with a new operation to be performed adds it to a list of
submitted requests and then tries to acquire the lock. The process that acquires the lock
performs the pending requests on behalf of other processes from the list in LIFO order,
and later removes them from the list. Its main drawback is that all processes have to
perform CAS on the head of the list. The flat combining technique presented by Hendler
et al. [86] addresses this issue by replacing the list of requests with a publication list which
maintains a distinct publication record per participating process. A process puts its new
operation in its publication record, and the publication record is only maintained in the
list if the process is sufficiently active. This way the process generally does not need to
perform CAS on the head of the list. Variations of flat combining were later proposed for
various contexts [58, 64, 65, 96].
Hierarchical combining [87] is the first attempt to improve the performance of combin-

ing using the computation power of clients. The list of requests is split into blocks, and
each of these blocks has its own combiner. The combiners push the combined requests
from the block into the second layer implemented as the standard flat combining with one
combiner. This approach, however, may be sub-optimal as it does not have all clients par-
ticipating. Moreover, this approach works only for specific data structures, such as stacks
or unfair synchronous queues, where operations could be combined without accessing the
data structure.
Agrawal et al. [13] decide to use a parallel batched data structure instead of a concurrent

one in a different context. They provide provable bounds on the running time of a dynamic

115

multithreaded parallel program using P processes and a specified scheduler. The proposed
scheduler extends the work-stealing scheduler by maintaining separate batch work-stealing
deques that are accessed whenever processes have operations to be performed on the
abstract data type. A process with a task to be performed on the data structure stores it
in a request array and tries to acquire a global lock. If succeeded, the process puts the task
to perform the batch update in its batch deque. Then all the processes with requests in the
request array run the work-stealing routine on the batch deques until there are no tasks left.
The idea of [13] is similar to ours. However, our goals are different: we aim at improving
the performance of a concurrent data structure while their goal was to establish bounds
on the running time of a parallel program for dynamic multithreading. Implementing a
concurrent data structure from its parallel batched counterpart for dynamic multithreading
is only one of the applications of our parallel combining, as shown in Section 6.2.2.

6.7. Conclusion
In this chapter, we showed that parallel combining can provide performance gains and
some theoretical guarantees. We can come up with another important advantage of our
technique: it can enable the first ever concurrent data structures of some data types,
that are efficient for requests of any type, either read-only or update. As a good example
we can provide a dynamic tree — a data type that supports the same operations as the
dynamic graph, but with the condition that the graph is always a forest. It does not have
concurrent implementation but has a parallel batched one [6].
As shown in Section 6.5, our concurrent priority queue performs well compared to

state-of-the-art algorithms. We assume that one of the reasons is that the underlying
parallel batched implementation is designed for static multithreading and, thus, it has
little synchronization overhead. This might not be the case for implementations based
on dynamic multithreading, where the overhead induced by the scheduler can be much
higher. We intend to check this in the forthcoming work.

116

7. On Helping and Stacks

7.1. Introduction
In a wait-free data structure, every process is guaranteed to make progress in its own speed,
regardless of the behavior of other processes [89]. It has been observed, however, that
achieving wait-freedom typically involves some helping mechanism (e.g., [64, 68, 131, 151]).
Informally, helping means that a process may perform additional work on behalf of other
processes. But how to define formally the phenomenon of helping? There are three
attempts done up to date: the linearization-based helping by Censor-Hillerl et al. [44] and
two, valency-based and universal, by Attiya et al. [23].
This chapter is devoted to the linearization-based helping, but at first we explain what

makes us take helping into the consideration. Initially, we started with a question that
was open for many years: does queue belong to Common2?
To explain the meaning of the question we provide several definitions. In the consensus

problem, each process proposes a value and is required to decide on a value such that the
following properties are satisfied in every execution:

• Termination. Every correct process decides.

• Agreement. No two processes decide on different values.

• Validity. The decided value was proposed by some process.

The consensus number of a primitive on a shared register [89] is the maximum number n
such that it is possible to solve consensus on n processes in a wait-free manner from reads,
writes and this primitive. For example, test&set, the primitive that retrieves the boolean
value from the memory cell and sets the value in the cell to true, has consensus number
2. Finally, Common2 is the family of data types that have wait-free implementions from
primitives with consensus number 2 for any number of processes.
It was proven by Afek et al. [12] that stack belongs to Common2: they provided a wait-

free algorithm implemented with reads, writes and test&set primitives. For queue, known
Common2 implementations work only in special cases: each process either only enqueues
or dequeues, and the number of processes that dequeue [111] or the number of processes
that enqueue [61] should not exceed two.
But how the question about Common2 queue implementation is related to helping?

Attiya et al. [23] searched for the wait-free implementations of stacks and queues that
do not have the non-trivial valency-based helping and are implemented only using reads,
writes and test&set primities, i.e., a relaxed version of Common2. They found that such
an implementation exists for stack, but does not exist for queue. This can give us an
intuition that queue does not belong to Common2.

The valency-based helping has the disadvantage that it cannot capture the helping be-
tween the operations that return trivial values: for example, in the case of stack, two pushes
do “help” each other. Because of that we switched our attention to the linearization-based
helping by Censor-Hillel et al. [44]. They proposed a natural formalization based on the
notion of linearization: a process p helps an operation of a process q in a given execution if
a step of p determines that an operation of q takes effect, or linearizes, before some other
operation in any possible extension. At first glance, there is no connection between the
question about Common2 queue and this definition: they claimed that stack and queue
are exact order types and, then, they proved that any exact order type does not have

117

a wait-free help-free implementation using reads, writes and compare&swap primitives.
Informally, a sequential data type is exact order if for some sequence of operations every
change in the relative order of two operations affects the result of some other operations.
However, we found that that the stack data type is not exact order. Hence, the proof
of help-free impossibility for exact order types given in [44] does not apply to stack, and
there can exist a distinction between stack and queue!

Unfortunately, we reassert the result by Censor-Hillel et al. via a direct proof that stack
does not have a wait-free and help-free implementation using reads, writes, compare&swap
and fetch&add primitives. At first, we show the result for implementations using read,
write and compare&swap operations in systems with at least three processes, and, then,
extend the proof to those additionally using fetch&add in systems with at least four
proccesses. The structure of these two proofs resembles the structure of the proofs from
the paper by Censor-Hillel et al. [44], but the underlying reasoning is novel. Unlike their
approach our proofs argue about the order of operations given their responses only after we
empty the data structure. As a result, certain steps of the proof become more technically
involved.

Roadmap

The chapter is organized as follows. In Section 7.2, we present a computational model
and necessary definitions. In Section 7.3, we recall the definition of helping and highlight
the mistake in [44]. In Section 7.4, we give our direct proof. In Section 7.5, we explain
how to build a help-free wait-free implementation of any data type given move&increment
primitive. In Section 7.6, we discuss the related work. And, finally, we conclude in
Section 7.7.

7.2. Model and Definitions

We briefly remind the model and definitions. All missed definitions can be found in
Chapter 2.
We consider a system of n processes p1, . . . , pn communicating via invocations of primi-

tives on a shared memory. During this chapter we assume that primitives are read, write,
compare&swap, fetch&add and move&increment. The definition of the last primitive ap-
pear in Section 7.5.
In this chapter, we discuss stack implementations. To simplify the reasoning all consid-

ered implementations are deterministic. Nevertheless, the provided proofs can be easily
extended to randomized implementations. For the rest of the section we fix some imple-
mentation of stack.

A program of a process specifies a sequence of operations calls on an object. The program
may include local computations and can choose which operation to execute depending on
the results of the previous operations.
A (low-level) history is a finite or infinite sequence of primitive steps. Note that in this

chapter when we mention history we mean that it is low-level (if not specified otherwise
explicitly). Each step is coupled with a specific operation that is being executed by the
process performing this step. The first step of an operation always comes with the input
parameters of the operation, and the last step of an operation is associated with the return
of the operation. Given two histories h1 and h2 we denote by h1 ◦ h2 the concatenation of
h1 and h2.

A schedule is a finite or infinite sequence of processes’ identifiers. Given a schedule, an
implementation and programs provided to the processes, one can unambiguously determine
the corresponding history. And vice versa, given a history one can always build a schedule
by substituting the steps of history to the process that performed it. Assuming a fixed
program for each process (these programs will be clear from the context), and a history

118

h, we denote by h ◦ pi the history derived from scheduling process pi to take the next step
(if any) following its program immediately after h.
The set of histories H induced by an implementation consists of all possible histories

induced by all possible processes’ programs with all possible schedules. An implementation
of a data type is linearizable if each history from the set of histories has a linearization
(Definition 2.3.2). A linearization function defined over a set of linearizable histories H
maps every history in H to its linearization. Note that a linearizable implementations
may have multiple linearization functions defined on the set of its histories.

7.3. Helping and Exact Order Types
In this section, we recall the definitions of helping and exact order type in [44], and show
that stack is not exact order.

Definition 7.3.1 (Decided before). For a history h in a set of histories H, a linearization
function f over H, and two operations op1 and op2, we say that op1 is decided before op2 in
h with respect to f and H, if there exists no extension s ∈ H of h such that op2 ≺f(s) op1.

Definition 7.3.2 (Helping). A set of histories H with a linearization function f over H
is help-free if for every h ∈ H, every two operations op1, op2, and a single computation
step γ such that h ◦ γ ∈ H it holds that if op1 is decided before op2 in h ◦ γ and op1 is not
decided before op2 in h then γ is a step in the execution of op1.
An implementation is help-free, if there exists a linearization function f such that the

set of histories of this implementation with f is help-free.

Following the formalism of [44], if S is a sequence of operations, we denote by S(n) the
first n operations in S, and by Sn the n-th operation of S. We denote by (S+op?) the set
of sequences that contains S and all sequences that are similar to S, except that a single
operation op is inserted somewhere between (or before, or after) the operations of S.

Definition 7.3.3 (Exact Order Types). An exact order type is a data type for which
there exists an operation op, an infinite sequence of operations W , and a (finite or infinite)
sequence of operations R, such that for every integer n ≥ 0 there exists an integer m ≥ 1,
such that for any sequence A from W (n + 1) ◦ (R(m) + op?) and any sequence B from
W (n) ◦ op ◦ (R(m) +Wn+1?) at least one operation in R(m) has different responses in A
and B, where ◦ is a concatenation of sequences.

It is shown in [44] that the implementations of exact order types require helping if they
use only read, write, and compare&swap primitives. The paper also sketches the proof of
a more general result for implementations that, additionally, use fetch&add. Further, it is
claimed in [44] that stack and queue are exact order types. Indeed, at first glance, if you
swap two subsequent operations, further operations have to acknowledge this difference.
However, the definition of an exact order type is slightly more complicated, as it allows
not only to swap operations but also move them. This relaxation does not affect queue,
but, unfortunately, it affects stack.

Theorem 7.3.1. Stack is not an exact order type.

Proof. We prove that for any fixed op, W , R and n there does not exist m that satisfies
Definition 7.3.3. Note that the claim is stronger than what is needed to prove the theorem:
it would be sufficient to prove that for all op, W and R, the condition does not hold for
some n. In a sense, this suggests that stack is far from being exact order.
Suppose, by contradiction, that there exists m that satisfies Definition 7.3.3 for fixed

op, W , R and n. There are four cases for op and Wn+1: pop-pop, push-pop, pop-push or
push-push. For each of these cases, we find two sequences from W (n+ 1) ◦ (R(m) + op?)
and W (n) ◦ op ◦ (R(m) + Wn+1?) for which all operations in R(m) return the same
responses.

119

• op = pop, Wn+1 = pop. Then, as two sequences we can chooseW (n+1) ◦ op ◦R(m)
and W (n) ◦ op ◦ Wn+1 ◦ R(m). In both of them the operations in R return the
same responses, since Wn+1 ◦ op and op ◦Wn+1 perform two pop operations.

• op = push(a),Wn+1 = pop. For the first sequence we take A = W (n+1) ◦ op ◦R(m).
Now, we choose the second sequence B fromW (n) ◦ op ◦ (R(m)+Wn+1?). LetWn+1
pop in A the x-th element from the bottom of the stack. We extend W (n) ◦ op in B
with operations from R(m) until some operation op′ tries to pop the x-th element
from the bottom. Note that all operations R(m) up to op′ (not including op′) return
the same results in A and B. If such op′ does not exist then we are done. Otherwise,
we insert Wn+1 right before op′, i.e., pop this element. Subsequent operations in
R(m) are not affected, i.e., results of operations in R(m) are the same in A and B.

• op = pop, Wn+1 = push(b). This case is symmetric to the previous one.

• op = push(a), Wn+1 = push(b). For the first sequence, we take A = W (n+1) ◦ op ◦
R(m). Now, we build the second sequence B from W (n) ◦ op ◦ (R(m) + Wn+1?).
Let Wn+1 push in A the x-th element from the bottom of the stack. Let us perform
W (n) ◦ op in B and start performing operations from R(m) until some operation
op′ pops the x-th element, otherwise a contradiction is established). Note that all
operations R(m) up to op′ (including op′) return the same results in A and B. If such
op′ does not exist then we are done. Otherwise, right after op′ we perform Wn+1,
i.e., push the element b in its proper position. Subsequent operations in R(m) are
not affected and, thus, the results of all operations in R(m) are the same in A and
B.

The contradiction implies that stack is not an exact order type.

7.4. Wait-Free Stack Cannot Be Help-Free

In this section, we prove that there does not exist a help-free wait-free implementation of
stack in a system with reads, writes, and compare&swaps. We then extend the proof to
the case when a system has one more primitive fetch&add.

7.4.1. Help-Free Stacks Using Reads, Writes and Compare&Swap

Suppose that there exists such a help-free stack implementation Q that uses read, write,
and compare&swap primitives. All further lemmas and theorems assume this implemen-
tation. We establish a contradiction by presenting a history h in which some operation
takes infinitely many steps without completing. All further lemmas and theorems assume
the
We start with two observations that immediately follow from the definition of lineariz-

ability.

Observation 7.4.1. In any history h:

1. Once an operation is completed it must be decided before all operations that have not
yet started;

2. If an operation is not started it cannot be decided before any operation of a different
process.

Lemma 7.4.1 (Transitivity). For any linearization function f and finite history h, if an
operation op2 is completed in h, an operation op1 is decided before op2 in h and op2 is
decided before an operation op3 in h then op1 is decided before op3 in h.

120

1 h ← ε
2 op1 ← push(1)
3 id2 ← 2
4 while true: // outer loop
5 op2 ← push(id2)
6 while true: // inner loop
7 if op1 is not decided before op2 in h ◦ p1:
8 h← h ◦ p1
9 continue

10 if op2 is not decided before op1 in h ◦ p2:
11 h← h ◦ p2
12 continue
13 break
14 h← h ◦ p2
15 h← h ◦ p1
16 while op2 is not completed:
17 h← h ◦ p2
18 id2 ← id2 + 1

Figure 7.1.: Constructing the history for the proof of Theorem 7.4.1

Proof. Suppose that op1 is not decided before op3 in h then there exists a extension s of h
for which op3 ≺f(s) op1. Since op2 is linearized in f(s) and op1 is decided before op2 then
op1 ≺f(s) op2. Together, op3 ≺f(s) op1 ≺f(s) op2 contradicting our assumption that op2 is
decided before op3 in h.

Lemma 7.4.2. For any linearization function f and finite history h, if an operation op1
of a process p1 is decided before an operation op2 of a process p2, then op1 must be decided
before any operation op that has not started in h.

Proof. Consider h′, the extension of h, in which p2 runs solo until op2 completes. Such an
extension exists, as our considered implementation Q is wait-free. By Observation 7.4.1
(1), op2 is decided before op in h′, and, consequently, by Transitivity Lemma 7.4.1, op1 is
decided before op in h′.

Since in h′, only p2 takes steps starting from h, op1 must be decided before op in h —
otherwise, h′ has a prefix h′′ such that op1 is not decided before op in h′′ and op1 is decided
before op in h′′ ◦ p2 — a contradiction with the assumption that Q is help-free.

Now we build an infinite history h in which p1 executes infinitely many failed com-
pare&swap steps, yet it never completes its operation. We assume that p1, p2 and p3
are assigned the following programs: p1 tries to perform op1 = push(1); p2 applies an
infinite sequence of operations push(2), push(3), push(4), . . .; and p3 is about to perform
an infinite sequence of pop() operations.

The algorithm for constructing this “contradiction” history is given in Figure 7.1. Ini-
tially, p1 invokes op1 = push(1) and, concurrently, p2 invokes op2 = push(2). Then we
interleave steps of p1 and p2 until a critical history h is located: op1 is decided before
op2 in h ◦ p1 and op2 is decided before op1 in h ◦ p2. We let p2 and p1 take the next
step and, then, run op2 after h ◦ p2 ◦ p1 until it completes. We will show that op1 cannot
complete and that we can reiterate the construction by allowing p2 to invoke concurrent
operations push(3), push(4), etc. In the resulting infinite history, p1 takes infinitely many
steps without completing op1.
To ensure that at each iteration op1 is not completed, we show that, at the start of

each iteration of the outer loop (Line 6), the constructed history satisfies the following
two invariants:

• op1 is not decided before op2 or before any operation of p3;

121

• the operations of p2 prior to op2 are decided before op1.

At the first iteration, the invariants trivially hold, since neither op1 nor op2 is started.

Observation 7.4.2. The order between op1 and op2 cannot be decided during (and right
after) the inner loop (Lines 6-13).

Lemma 7.4.3. During (and right after) the execution of the inner loop (Lines 6-13) op1
and op2 cannot be decided before any operation of p3.

Proof. Suppose that during an execution of the inner loop op1 or op2 is decided before
some operation of p3.
Before entering the inner loop, neither op1 nor op2 is decided before any operation of p3:

op1 is not decided because of the first invariant that holds at the beginning of this iteration,
while op2 is not started (Observation 7.4.1 (2)). Thus, at least one step is performed by
p1 or p2 during the execution of the inner loop.
Let us execute the inner loop until the first point in time when op1 or op2 is decided

before an operation of p3. Let this history be h. Note, that because Q is help-free only
one of op1 and op2 is decided before an operation of p3 in h. Suppose, that op1 is decided
before some op3 of p3, while op2 is not decided before any operation of p3. (The case when
op2 is decided before some op3 is symmetric)
Now p3 runs pop operations until it completes operation op3 and then, further, until the

first pop operation returns ⊥, i.e., the stack becomes empty. Let the resulting extension
of h be h′.
Recall that op2 is not decided before any operation of p3 in h and, since Q is help-free

and only p3 takes steps after h, op2 cannot be decided before any operation of p3 in h′.
Hence, none of the completed operations of p3 can return id2, the argument of op2, due
to the fact that all push operations have different arguments. Since the operations of p3
empty the stack and they cannot pop id2, op2 has to linearize after them, making op3 be
decided before op2 in h′. By Transitivity Lemma 7.4.1, op1 is decided before op2 in h′.
Finally, since Q is help-free and only p3 takes steps after h op1 has to be decided before
op2 in h, contradicting Observation 7.4.2.

Lemma 7.4.4. op1 and op2 cannot be completed after the inner loop (Lines 6-13).

Proof. Suppose the contrary. By Observation 7.4.1 (1), op1 has to be decided before all
operations of p3, contradicting Lemma 7.4.3.

Lemma 7.4.5. The execution of the inner loop (Lines 6-13) is finite.

Proof. Suppose that the execution is infinite. By Lemma 7.4.4, neither of op1 and op2 is
completed in h. Thus, in our infinite execution either op1 or op2 takes infinite number of
steps, contradicting wait-freedom of Q.

Lemma 7.4.6. Just before Line 14 the following holds:

1. The next primitive step by p1 and p2 is to the same memory location.

2. The next primitive step by p1 and p2 is a compare&swap.

3. The expected value of the compare&swap steps of p1 and p2 is the value that appears
in the designated address.

4. The new values of the compare&swap steps of p1 and p2 are different from the ex-
pected value.

122

Proof. Suppose that the next primitive steps by p1 and p2 are to different locations.
Consider two histories: h′ = h ◦ p1 ◦ p2 ◦ complete op1 ◦ complete op2 and h′′ = h ◦ p2 ◦ p1 ◦
complete op1 ◦complete op2. Let us look at the first two pop() operations by p3. Executed
after h′ they have to return id2 then 1, since op1 is decided before op2 in h′ and both of
them are completed. While executed after h′′ they have to return 1 then id2. But the
local states of p3 and shared memory states after h′ and h′′ are identical and, thus, two
pops of p3 must return the same values — a contradiction. The same argument will apply
when both steps by p1 and p2 are reads.
Suppose that the next operation of p1 is a write. (The case when the next operation of

p2 is write is symmetric) Consider two histories: h′ = h ◦ p2 ◦ p1 ◦ complete op1 and h′′ =
h ◦ p1 ◦ complete op1. Let the process p1 perform two pop() operations (op′1 and op′′1) and
p2 complete its operation after h′: op′1 and op′′1 have to return 1 and id2, correspondingly,
since op1 and op2 are completed and op2 is decided before op1 in h′. Again, since the
local states of p1 and the shared memory states after h′ and h′′ are identical, op′1 and op′′1
performed by p1 after h′′ must return 1 and id2. Hence, op2 has to be decided before op′′1
in h̃ = h′′ ◦ perform op′1 ◦ perform op′′1 and, by Lemma 7.4.2, op2 has to be decided before
any operation of p3 in h̃. Since only p1 performs steps after h in h̃ and Q is help-free, op2
has to be decided before any operation of p3 at h, contradicting Lemma 7.4.3. Thus, both
primitives have to be compare&swap.
By the same argument both compare&swap steps by p1 and p2 have the expected value

that is equal to the current value in the designated memory location, and the new value
is different from the expected. If it does not hold, either the local states of p1 and the
shared memory states after h ◦ p1 and h ◦ p2 ◦ p1 are identical or the local state of p2 and
the shared memory states after h ◦ p2 and h ◦ p1 ◦ p2 are identical.

Observation 7.4.3. The primitive step of p2 in Line 14 is a successful compare&swap,
and the primitive step of p1 in Line 15 is a failed compare&swap.

Observation 7.4.4. Immediately after Line 14 op2 is decided before op1.

Lemma 7.4.7. Immediately after Line 15 the order between op1 and any operation of p3
is not decided.

Proof. By Lemma 7.4.3, the order between op1 and any operation of p3 is not decided
before Line 14. Since Q is help-free, the steps by p2 cannot fix the order between op1 and
any operation of p3. Thus, the only step that can fix the order of op1 and some operation
of p3 is a step by p1 at Line 15, i.e., a failed compare&swap.
Suppose that op1 is decided before some operation op′3 of p3 after Line 15. Let h be

the history right before Line 14. Consider two histories h′ = h ◦ p2 ◦ p1 and h′′ = h ◦ p2.
Let p3 solo run pop operations after h′ until it completes operation op′3 and then, further,
until pop operation returns ⊥, i.e., the stack is empty. Since op1 is decided before op′3,
some completed operation op′′3 of p3 has to return 1: if we now complete op1 it should be
linearized before op′3. Now let p3 to perform after h′′ the same number of operations as
it did after h′. Since the local states of p3 and the shared memory states after h′ and h′′
are identical (p1 makes the failed compare&swap), op′′3 after h′′ has to return 1 as after h′.
Thus, op1 is decided before op′′3 in h′′. Since Q is help-free and p1 does not take steps after
h in h′′, op1 has to be decided before op′′3 before Line 14, contradicting Lemma 7.4.3.

Lemma 7.4.8. At the end of the outer loop (Line 18) the order between op1 and next
op2 = push(id2 + 1) is not yet decided.

Proof. The operation op2 is not started, thus, it cannot be decided before op1 by Obser-
vation 7.4.1 (2).
Suppose that op1 is decided before op2. By Lemma 7.4.2 op1 has to be decided before

all operations of p3, contradicting Lemma 7.4.7.

123

1 h ← ε
2 for i in 1..2:
3 opi ← push(i)
4 id3 ← 3
5 while true: // outer loop
6 op3 ← push(id3)
7 while true: // inner loop
8 moved ← False
9 for i in 1..3:

10 if opi is not decided before any opj in h ◦ pi:
11 h← h ◦ pi

12 moved ← True
13 if not moved:
14 break
15

16 h← h ◦ p3
17 // let pk be the process whose next primitive is compare&swap
18 h← h ◦ pk

19 while op3 is not completed:
20 h← h ◦ p3
21 id3 ← id3 + 1

Figure 7.2.: Constructing the history for the proof of Theorem 7.4.2

Thus, after this iteration of the loop the two invariants hold (Observation 7.4.4 and
Lemmas 7.4.7 and 7.4.8), and p1 took at least one primitive step.
This way we build a history in which p1 takes infinitely many steps, but op1 is never

completed. This contradicts the assumption that Q is wait-free.

Theorem 7.4.1. In a system with at least three processes and primitives read, write and
compare&swap there does not exist a wait-free and help-free stack implementation.

7.4.2. Adding Fetch&Add
Now suppose that the implementation is allowed to additionally use fetch&add primitives.
We prove that there is no wait-free and help-free stack implementation in a system with
at least four processes.
Again, by contradiction, suppose that such an implementation Q exists. We build an

infinite history h in which either p1 or p2 executes infinitely many failed compare&swap
steps, yet it never completes its operation, contradicting wait-freedom. In h, processes p1,
p2, p3 and p4 follow the following programs: for 1 ≤ i ≤ 2, pi tries to perform opi = push(i);
p3 applies an infinite sequence of operations push(3), push(4), push(5), . . .; and p4 is about
to perform an infinite sequence of pop() operations. The algorithm for constructing this
“contradiction” history is given in Figure 7.2.
Similar to the proof of Theorem 7.4.1, we show that the following three invariants hold

at the beginning of each iteration of the outer loop (Line 6):

• the order between any two operations among op1, op2 and op3 is not decided;

• op1 and op2 are not decided before any operation of p4;

• all the operations of p3 prior to op3 are decided before op1 and op2.

At the beginning of the first iteration, the invariants hold trivially, since none of opi is
started.

Observation 7.4.5. The order between opi and opj for 1 ≤ i 6= j ≤ 3 cannot be decided
during (and right after) the inner loop (Lines 7-14).

124

Proof. From the first invariant, opi cannot be decided before opj prior to the inner loop
(Lines 7-14). Since Q is help-free, during the inner loop opi can become decided before
opj only after a step by pi which is impossible due to the check in Line 10.

Lemma 7.4.9. During (and right after) an execution of the inner loop (Lines 7-14) op1,
op2 and op3 cannot be decided before any operation of p4.

Proof. Suppose that during an execution of the inner loop op1, op2 or op3 is decided before
some operation of p4.
At the beginning of the loop, none of op1, op2 and op3 is decided before any operation

of p4: op1 and op2 are not decided because of the second invariant, while op3 is not yet
started. Suppose that during the execution of the inner loop some opi becomes decided
before some operations of p4.
Let us look at the execution and find the first point in time when some opk of pk is

decided before some operation op4 of p4. Using the same argument as in the proof of
Lemma 7.4.3, we can show that opk has to be decided before any other opj contradicting
Observation 7.4.5: we let p4 run until the operation op4 is completed and, further, while
stack is not empty; op4 becomes decided before opj ; by Transitivity Lemma 7.4.1, opk is
decided before opj .

The proofs of the following two lemmas are identical to those of Lemmas 7.4.4 and 7.4.5.

Lemma 7.4.10. For each i, 1 ≤ i ≤ 3, opi cannot be completed after the inner loop
(Lines 7-14).

Lemma 7.4.11. The execution of the inner loop (Lines 7-14) is finite.

Lemma 7.4.12. For all i, j, 1 ≤ i 6= j ≤ 3, opi is decided before opj in h ◦ pi.

Proof. Consider an operation of process i. At the end of the inner loop opi should be
decided before some opk in h◦pi, otherwise, pi can make at least one more step during the
inner loop. Thus, by Lemma 7.4.2 opi should be decided before op4, the first operation of
p4. Let p4 run pop operations after h ◦ pi until one of them returns ⊥, i.e., the stack is
empty. Let this history be h′.
By Lemma 7.4.9, opj is not decided before any operation of p4 in h. Since Q is help-free

and only pi and p4 takes steps in h′ after h, opj cannot be decided before any operation
of p4 in h′, and, consequently, operations of p4 cannot pop an argument of opj . Since the
operations of p4 empty the stack, opj must be linearized after them. Thus, op4 is decided
before opj in h′. By Transitivity Lemma 7.4.1, opi is decided before opj in h′. Finally,
since Q is help-free and only p4 takes steps in h′ after h ◦ pi, opi is decided before opj in
h ◦ pi.

Lemma 7.4.13. Immediately before Line 16 the following holds:

1. The next primitive step by pi for 1 ≤ i ≤ 3 is to the same memory location.

2. The next primitive step by pi for 1 ≤ i ≤ 3 is fetch&add with a non-zero argument or
compare&swap for which the expected value is the value that appears in the designated
location and the new value is different from the expected one.

Proof. Suppose that for some pair pi and pj the next steps are to different memory lo-
cations. We consider two histories h′ = h ◦ pi ◦ pj ◦ complete opi ◦ complete opj and
h′′ = h ◦ pj ◦ pi ◦ complete opi ◦ complete opj . By Lemma 7.4.12, after h′, the two subse-
quent pop operations by p4 should return first the argument of opj and then the argument
of opi, while after h′′ they should return the two values in the opposite order. This is
impossible, since the local states of p4 and the shared memory states after h′ and h′′ are
identical. The same argument will apply if the next steps of some pair of processes are
read primitives.

125

Suppose that the next primitive step of some pi is a write. We take any other process
pj and build two histories: h′ = h ◦ pj ◦ pi ◦ complete opi and h′′ = h ◦ pi ◦ complete opi.
As in the proof of Lemma 7.4.6, pi performs two pop() operations (op′i and op′′i) and pj
completes its operation after h′: by Lemmas 7.4.1 and 7.4.12, op′i and op′′i have to return
the argument of opi and the argument of opj , respectively. The local states of pi and
the shared memory states after h′ and h′′ are identical, thus, op′i and op′′i after h′′ should
also return the arguments of opi and opj . Hence, opj has to be decided before op′′i in
h̃ = h′′ ◦ perform op′i ◦ perform op′′i . By Lemma 7.4.2, opj is decided before any operation
of p4 in h̃. And, finally, since Q is help-free and pj does not take steps in h̃ after h, opj
has to be decided before any operation of p4 in h, contradicting Lemma 7.4.9.

A similar argument applies to the case when the next primitive step of some pi is
fetch&add with argument zero, or compare&swap which expected value differs from the
value in the designated location or the new value is equal to the expected. We take any
other process pj (1 ≤ j ≤ 3) and build two histories h′ = h ◦ pi ◦ pj ◦ complete pj and
h′′ = h ◦ pj ◦ complete pj . The proof for the previous case applies except that now the
roles of pi and pj are swapped.

Lemma 7.4.14. At most one out of p1 and p2 can have fetch&add as their next primitive
step.

Proof. Suppose that p1 and p2 have fetch&add as their next primitive step. Consider two
histories h′ = h◦p1 ◦p2 and h′′ = h◦p2 ◦p1. From Lemma 7.4.12 op1 is decided before op2
in h′, thus, by Lemma 7.4.2, op1 is decided before the first operation op4 of p4. After h′ p4
performs k′ pop operations until one of them returns ⊥, i.e., the stack is empty. One pop
has to return 1, because if we now complete op1 it has to be linearized before op4. The
same with h′′: p4 performs k′′ pops until one of them returns ⊥, and one of these pop’s
return 2. Since the local states of p4 and the shared memory states after h′ and h′′ are
the same: two pop operations pop1() and pop2() of k′(= k′′) operations of p4 after h′ and
h′′ return 1 and 2.

Now we show that op1 and op2 are decided before op3 in h′. The same can be shown for
h′′. Consider a history h̃: h′ continued with k′ pop operations by p4. By Lemma 7.4.12,
op1 is decided before op3 in h′. From Lemma 7.4.9 and two facts that Q is help-free and
op3 does not make any steps after h in h̃, it follows that op3 cannot be decided before any
operation of p4 in h̃ and, consequently, the operations of p4 cannot pop an argument of op3.
Since k′ pops of op4 empty the stack, op3 has to linearize after them, making operation
pop2() to be decided before op3. Since pop2() returns 2, it has to be decided after op2. By
Transitivity Lemma 7.4.1, op2 is decided before op3 in h̃. Q is help-free and only p4 takes
steps after h′, thus, op2 is decided before op3 in h′.

Now consider two histories h′ ◦ complete op3 and h′′ ◦ complete op3. In both of these
histories, op1 and op2 are decided before op3. After the first history let p4 perform three
pop operations and p1 and p2 complete push(1) and push(2): the three pops return id3,
2 and 1, respectively. Analogously, after the second history three pop return id3, 1 and
2. This is impossible, since the local states of p4 and the memory states after these two
histories are identical.

Observation 7.4.6. From the previous lemma we know that the next primitive step of at
least one process p1 or p2 is compare&swap. Let it be process pk. By algorithm, p3 takes
a step at Line 16 changing the memory location either by fetch&add or by a successful
compare&swap, thus, the next step of pk at Line 18 should be a failed compare&swap.

Observation 7.4.7. Immediately after Line 16, op3 is decided before op1 and op2.

Lemma 7.4.15. Immediately after Line 18, op1 and op2 are not decided before any oper-
ation of p4.

126

Proof. We prove the claim for op1, the case of op2 is similar.
If p2 took a step at Line 18, then, by Lemma 7.4.9 and the fact that the steps by p2 or

p3 cannot fix the order between op1 and any operation of p4 due to help-freedom, op1 is
not decided before any operation of p4.
If p1 took a step at Line 18, then, by Lemma 7.4.9 and the fact that the steps by p3

cannot fix the order between op1 and any operation of p4 due to help-freedom, the only
step that could fix the order is a step by p1 at Line 18, i.e., a failed compare&swap.
Suppose that op1 is decided before some op′4 of p4 after Line 18. We consider two histories
h′ = h ◦ p3 ◦ p1 and h′′ = h ◦ p3. Let p4 run solo after h′ until it completes op′4, and
then further until some pop returns ⊥, i.e., the stack becomes empty. Since op1 is decided
before op′4, some completed operation op′′4 of p4 has to return 1: if we now complete op1
it has to be linearized before op′4. Now, let p4 to run the same number of pop operations
after h′′. Since the local states of p4 and the shared memory states after h′ and h′′ are
identical, op′′4 returns 1. Thus, op1 is decided before op′′4 in h′′. As Q is help-free and p1
does not take steps after h in h′′, op1 has to be decided before op′′4 in h, contradicting
Lemma 7.4.9.

Lemma 7.4.16. At the end of the outer loop (Line 21), the order between any two oper-
ations among op1, op2 and the next op3 = push(id3 + 1) is not yet decided.

Proof. The operation op3 is not yet started, thus, it cannot be decided before opi, i = 1, 2,
by Observation 7.4.1 (2).
Suppose that opi, i = 1, 2, is decided before opj , then by Lemma 7.4.2 opi has to be

decided before all operations of p4, contradicting Lemma 7.4.15.

We started with three invariants that hold before any iteration of the loop. By Obser-
vation 7.4.7 and Lemmas 7.4.15 and 7.4.16, the invariants hold after the iteration, and at
least one of p1 and p2 made at least one primitive step.

This way we build a history in which one of op1 and op2 never completes its operation,
even though it takes infinitely many steps. This contradicts the assumption that Q is
wait-free.

Theorem 7.4.2. In a system with at least four processes and primitives read, write,
compare&swap and fetch&add, there does not exist a wait-free and help-free stack imple-
mentation.

7.5. Universal Construction with Move&Increment
At first, we define atomic move&increment primitive. It takes two pointers to integers
to_move and to_increment. The operation copies a value from to_increment to to_move
and increments the value in to_increment.
This primitive is obviously more powerful than fetch&add, but it seems to be less

complex than atomic double compare&swap: a primitive that takes a pair of arbitrary
memory locations, a pair of expected values and a pair of new values, and sets new values
in the provided memory locations only if the current values in the memory locations are
equal to the provided expected values.

Theorem 7.5.1. In a system with n processes and primitives read, write and move&increment
any data type has a help-free wait-free implementation provided a sequential implementa-
tion.

Proof. As for the proof we simply provide such an implementation in Figure 7.3.
In the algorithm, we use an infinite array of operations operations, an identifier array

id_by_p of size n and an operation array op_by_p of size n, where n is the number of
processes. The algorithm builds a total order of operations in operations array.

127

1 operations[1...]
2 op_by_p[1..n]
3 id_by_p[1..n]
4 id ← 1
5

6 apply(pid, op): // process pid applies operation op
7 op_by_p[pid] ← op
8 move&increment(&id_by_p[pid], &id)
9

10 for j in 1..n:
11 op_id_j ← id_by_p[j]
12 op_j ← op_by_p[j]
13

14 if op_id_j ≤ id_by_p[pid] and
15 operations[op_id_j] = null:
16 operations[op_id_j] ← op_j
17

18 o ← new Object()
19 for j in 1..id_by_p[pid]:
20 o.apply(operations[j])
21

22 return o.apply(op)

Figure 7.3.: The universal help-free wait-free construction using move&increment

Process pid tries to apply an operation op by calling apply(pid, op). At first, the
process registers his operation in op_by_p[id] array (Line 7). Second, it gets an identifier
id_by_p of its operation in the sequence of all operations, i.e., the array operations
(Line 8). Then the process helps to copy all the operations into the sequence operations
that should come prior to op together with op. For that it iterates through all processes
and for each process j (pj) it reads the current identifier (Line 11) and operation (Line 12).
Then it verifies whether the operation by pjwas not yet applied (Lines 14 and 15): the
operation is op or should come prior to op and the corresponding slot in operations is
still empty. Finally, it applies the all operations in the order of array operations to new
sequential object.
Each c = apply(pid, op) call has a unique identifier id(c) calculated in Line 7. To

prove the correctness of the algorithm it is enough to show that: 1) op from a call c =
apply(pid, op) can only appear at operations[id(c)], and 2) before Line 18 of call c
all cells of operations up to id(c) are non-null.
We prove this by the identifier of the call k.
Base k = 0. No calls are performed and everything is correct.
Consider a call c = apply(pid, op) with identifier k. We know that for all calls prior

to k the two statements are correct.
Instead of proving the two statements we prove for each pj separately: all operations

of pj from the calls with identifiers up to k are copied to proper positions in operations
array before Line 18 of call c.
For pj , ppid reads a current identifier op_id_j in Line 11 and a current operation op_j

in Line 12. Suppose that op_j was written to op_by_p[j] during a call apply(j, op’)
with identifier uidop and op_id_j was written to id_by_p[j] during a call apply(j,
op”) with identifier uidid.

We note that uidid is always less than or equal to uidop, since we read identifier and
operation in the opposite order we write them.
Let lid be the identifier of the last call by pj with the identifier less than or equal to

k. Note that uidid and uidop cannot be less than lid. This is due to the fact that uidop
was already set to lid before move&increment primitive by pid during c which happened

128

prior to the read of op_id_j.
There are two cases. If uidop is bigger than lid then the call with identifier lid is

already completed when op_j is read. This means by induction that all the operations by
pj prior to k are already copied into their proper positions.
Otherwise, uidop is equal to lid. Thus, since uidid ≤ uidop, we get that uidid =

uidop = lid. Thus, the write at Line 16 by ppid can copy operation only into proper
position and it is always copied if the proper position is empty. Note that this is the only
situation when the operation is copied into operations array and it is copied only into
the proper position.
Since the operations by pj from calls before uidid are successfully copied by induction,

and the operation from the last call by pj with identifier less than ort equal to k is copied,
after Line 16 all operations by pj with identifier less than or equal to k are copied.

Note that the presented implementation is obviously wait-free. Also, it is help-free since
we can linearize any operation in Line 8. Thus, the operation is linearized by its operation
and does not require the linearization-based helping.

7.6. Related Work

Helping is often observed in wait-free (e.g., [64, 68, 131, 151]) and lock-free implementations
(e.g., [19, 97, 117, 120]): operations of a slow or crashed process may be finished by other
processes. Typically, to benefit from helping, an operation should register a descriptor
(either in a dedicated “announce” array or attached in the data items) that can be used
by concurrent processes to help completing it.
We are aware of three alternative definitions of helping: (1) linearization-based by

Censor-Hillel et al. [44] considered here, (2) valency-based by Attiya et al. [23] and
(3) universal by Attiya et al. [23].

Valency-based helping [23] captures helping through the values returned by the oper-
ations, which makes it quite restrictive. In particular, for stack, the definition cannot
capture helping relation between two push operations. They distinguish trivial and non-
trivial helping: for non-trivial helping, the operation that is being helped should return
a data-structure-specific non-trivial (e.g., non-empty for stacks and queues) value. It is
shown in [23] that any wait-free implementation of queue has non-trivial helping, while
there exists a wait-free implementation of stack without non-trivial helping. This is an
interesting result, given notorious attempts of showing that queue is in Common2 [11], i.e.,
that they can be implemented using reads, writes and primitives with consensus number
2, while stack has been shown to be in Common2 [12].
Attiya et al. [23] also introduced a very strong notion of helping — universal helping —

which essentially boils down to requiring that every invoked operation eventually takes
effect. This property is typically satisfied in universal constructions parameterized with
object types. But most algorithms that involve helping in a more conventional (weaker)
sense do not meet it, which makes the use of universal helping very limited.
Linearization-based helping [44] considered here is based on the order between two

operations in a possible linearization. Compared to valency-based definitions, this notion
of helping operates on the linearization order and, thus, can be applied to all operations,
not only to those that return (non-trivial) values. By relating “helping” to fixing positions
in the linearization, this definiton appears to be more intuitive: one process helps another
make a “progress”, i.e., linearize earlier. Censor-Hillel et al. [44] also introduced two
classes of data types: exact order types (queue as an example) and global view types
(snapshot and counter as examples). They showed that no wait-free implementation of
data types from these two classes can be help-free. By assuming stack to be exact order,
they deduced that this kind of helping is required for wait-free stack implementations. In
this chapter, we showed that stack is in fact not an exact order type, and give a direct
proof of their claim.

129

7.7. Conclusion
In this chapter, we gave a direct proof that any wait-free implementation of stack in a sys-
tem with read, write, comare&swap and fetch&add primitives is subject to linearization-
based helping. This corrects a mistake in the indirect proof via exact order types in [44].
Let us come back to the original intuition of helping as a process performing work

on behalf of other processes. One may say that linearization-based helping introduced by
Censor-Hillel et al. and used here does not adequately capture this intuition. For example,
by examining the wait-free stack implementation by Afek et al. [12], we find out that none
of the processes explicitly performs work for the others: to perform pop() a process goes
down the stack from the current top until it reaches some value or the bottom of the stack;
while to perform push(x) a process simply increments the top of the stack and deposits x
there. But we just showed that any wait-free stack implementation has linearization-based
helping, and indeed this algorithm has it. So, we might think that valency-based helping
is superior to linearization-based one, since the algorithm by Afek et al. does not have
non-trivial valency-based helping. Nevertheless, the aforementioned algorithm has trivial
valency-based helping, and, thus, the (quite unnatural) distinction between trivial and
non-trivial helping seems to be chosen specifically to allow the algorithm by Afek et al. to
be help-free.
A very interesting challenge is therefore to find a definition of linearization-based helping

that would naturally reflect help-freedom of the algorithm by Afek et al., while queue does
not have a wait-free and help-free implementation.

130

8. Performance Prediction for
Coarse-Grained Programs

8.1. Introduction

A standard design pattern found in many concurrent data structures, such as hash tables
or ordered containers, is an alternation of parallelizable sections that incur no data conflicts
and critical sections that must run sequentially and are protected with locks. A lock can
be viewed as a queue that arbitrates the order in which the critical sections are executed,
and a natural question is whether we can use theoretical analysis to predict the resulting
throughput. As a preliminary evidence to the affirmative, we describe a simple model that
can be used to predict the throughput of coarse-grained lock-based algorithms. We show
that our model works well for CLH lock, and we expect it to work for other popular lock
designs such as TTAS, MCS, etc.

Roadmap

In Section 8.2, we describe the problem in more details. In Section 8.3, we list assumptions
on the abstract machine on which data structures are executed. In Section 8.4, we obtain
a formula for the throughput. In Section 8.5, we verify our theoretical result through
experimental analysis. We conclude in Section 8.6.

8.2. Abstract Coarse-Grained Synchronization

Conventionally, the performance of a concurrent data structure is evaluated via experi-
ments, and it is notoriously difficult to account for all significant experimental parameters
so that the outcomes are meaningful. Our motivation here is to complement experimental
evaluation with an analytical model that can be used to predict the performance rather
than measure it. As a first step towards this goal, we attempt to predict the throughput
of a class of algorithms that use coarse-grained synchronization.
Consider a concurrent system with N processes that obey the following simple uniform

scheduler: at every time step, each process performs a step of computation. This scheduler,
resembling the well-known PRAM model [104], appears to be a reasonable approximation
of a real-life concurrent system. Suppose that the processes share a data structure ex-
porting a single operation(). If the operation induces a work of size P and incurs no
synchronization, the resulting throughput is N · α/P operations in a unit of time: each
process performs α/P operations in a unit of time, where α indicates the amount of work
that is performed by one process in a unit of time. One way to evaluate the constant α
experimentally is to count the total number F of operations, each of work P , completed
by N processes in time T . Then we get α = F/NP . The longer is T , the more accurate
is the estimation of α.
Now suppose that, additionally, the operation performed by each process contains a

critical section of size C. In the operation, described in Figure 8.1, every process takes a
global lock, performs the critical section of size C, releases the lock and, finally, performs
the parallel section of size P .

Here, as a unit of work, we take the number of CPU cycles spent during one iteration
of the loop in Lines 3-4 or 6-7. The iteration consists of a nop instruction, an increment

131

1 operation():
2 lock.lock()
3 for i in 1..C:
4 nop
5 lock.unlock()
6 for i in 1..P:
7 nop

Figure 8.1.: The coarse-grained operation

of a local variable and a conditional jump, giving us, approximately, four CPU cycles in
total.

8.3. Model Assumptions
Below we list basic assumptions on the abstract machine used for our analytical throughput
prediction.
First, we assume that coherence of caches is maintained by a variant of MESI proto-

col [128]. Each cache line can be in one of four states: Modified (M), Exclusive (E),
Shared (S) and Invalid (I). MESI regulates transitions between states of a cache line
and responses depending on the request (read or write) to the cache line by a process or
on the request to the memory bus. The important transitions for us are: (1) upon reading,
the state of the cache line does not change if it was not I, otherwise, the state becomes S,
and, if the state was I, then a read request is sent to the bus; (2) upon writing, the state
of the cache line becomes M, and, if the state was S or I, an invalidation request is sent to
the bus.
We assume that the caches are symmetric: for each MESI state st, there exist two

constants Rst and Wst such that any read from any cache line with status st takes Rst
work and any write to a cache line with status st takes Wst work. Tudor et al. [53]
showed that for an Intel Xeon machine (similar to the one we use in our experimental
validation below), given the relative location of a cache line with respect to the process
(whether they are located on the same socket or not), the following hypotheses hold:
(1) writes induce the same work, regardless of the state of the cache line; (2) swaps, not
concurrent with other swaps, induce the same work as writes. Therefore, we assume that
(1) W = WM = WE = WS = WI and (2) any contention-free swap induces a work of size
W .

8.4. CLH Lock
Multiple lock implementations have been previously proposed, from simple spinlocks and
TTAS to more advanced MCS [116] and CLH [51]. For our analysis, we choose CLH, as
the simplest lock among those considered to be efficient. In Figure 8.2, we inline lock and
unlock calls to CLH lock in our abstract coarse-grained operation.

8.4.1. Cost of an Operation

Let us zoom into what happens during the execution of the operation.
Note that at the beginning of an operation (unless it is the very first invocation),

my_node.locked is loaded into the cache and the corresponding cache line is in state
M, because of the set in Line 15 during the previous operation by the same process.

1. The operation starts with swap (Line 9) that induces a work of size W , if not
concurrent with other swaps, and a work of size at most X, otherwise.

132

1 class Node:
2 bool locked
3

4 global Node head ← new Node() // global
5 Node my_node // per process
6 my_node.locked ← true
7

8 operation():
9 Node next ← swap(&head, my_node) // W or X

10 while (next.locked) {} // RI or 2 ·RI

11 for i in 1..C: // C
12 nop
13 my_node.locked ← false // W
14 my_node ← next
15 my_node.locked ← true // W
16 for i in 1..P: // P
17 nop

Figure 8.2.: The coarse-grained operation with inlined lock and unlock functions

2. In Line 10, the algorithm loops on a field next.locked. During this loop one or two
cache misses happens.
One cache miss can happen at the first iteration of the loop if the read of locked
returns true. The last process that grabbed the lock already invalidated this cache
line in Line 15 during its penultimate operation. MESI reloads the cache line and
changes its state from I (or none if it was not loaded previously) to S.
The other cache miss happens in every execution when the operation reads next.locked
and gets false. In this case, the cache line was invalidated in Line 13 during the
last operation of the last process that grabbed the lock. MESI reloads the cache line
and changes its state from I (or none) to S.
Each of the described cache misses induces the work of size RI . Thus, the work
induced in Line 10 is of size RI (if only the second miss happens) or 2 ·RI (if both
misses happen).

3. In Lines 11-12, the critical section with work of size C is performed.

4. In Line 13, my_node.locked is set to false. There are two cases: if my_node.locked
is not yet loaded by any other process in Line 10 then the state remains M; otherwise,
MESI changes the state from S to M and sends a signal to invalidate this cache line.
In both cases, the induced work is of size W .

5. In Line 14, the operation performs an assignment on local variables, without con-
tributing to the total work.

6. In Line 15, my_node.locked is set to true. From the end of the while loop at Line 10
the corresponding cache line is in state S. MESI changes the state to M and sends a
signal to invalidate this cache line inducing work of size W .

7. In Lines 16-17, the parallel work of size P is performed.

8.4.2. Evaluating Throughput
To evaluate the throughput of the resulting program under the uniform scheduler, take a
closer look on how N processes continuously perform the operation from Figure 8.2.

Process 1 executes: its first swap (taking at most X units); the critical section (blue,
Lines 10-13): acknowledges the ownership of the lock by reading false in Line 10 (takes

133

1 X RI C W W P W RI C W

2 X RI C W W P W...

N X RI C W W

(a) Case 1: W + P + W ≥ (N − 1) · (RI + C + W). Each process enters the critical section
without waiting in the queue.

1 X RI C W W P W RI RI C W

2 X RI C W W P W RI...

N X RI C W W

(b) Case 2: W + P + W ≤ (N − 1) · (RI + C + W). Each process waits in the queue before
entering the critical section.

Figure 8.3.: Examples of executions of the coarse-grained algorithm from Figure 8.2. Blue
intervals depict critical sections and red intervals depict parallel sections.

RI units), performs the work of size C and releases the lock in Line 13 (takes W units);
the parallel section (red, Lines 15-17 and 9): sets my_node.locked to true (takes W),
performs the work of size P , performs a non-contended swap (takes W) and, possibly,
reads true in Line 10 (takes RI). (Here, the swap operation performed after the very first
completed critical section is counted in the parallel work, as it is executed in the absence
of contention.) Every other process i operates in the same way: it swaps as early as
possible (taking at most X), waits until process i− 1 releases the lock, and then performs
its critical (blue) and parallel (red) sections.
Depending on the parameters N , C, P ,W , and RI , two types of executions are possible.
In Case 1 (Figure 8.3a), at the moment when process 1 finishes its parallel section,

process N already finished its critical section, i.e., P + 2 ·W > (N − 1) · (C + RI + W).
Therefore, in the steady case, at every moment of time, each process does not wait and
executes either the parallel or critical section, and the read in Line 10 cannot return true
because the lock is already released. Thus, the throughput, measured as the number of
operations completed in a unit of time, equals to N · α

(P+2·W)+(C+RI+W) .
In Case 2 (Figure 8.3b), before proceeding to the next operation, process 1 has to wait

until processN completes its critical section from the previous round of operations; process
2 waits for process 1, process 3 waits for process 2, etc. Thus, there is always some process
in the critical section, giving the throughput of α

C+RI+W .
Therefore, given the number of processes N , the sizes C and P of critical and parallel

sections, the throughput can be calculated as follows:
α

C+RI+W if P + 2 ·W ≤ (N − 1) · (C +RI +W)
α·N

(P+2·W)+(C+RI+W)) otherwise

8.5. Experiments
For our measurements, we used a server with four 10-core Intel Xeon E7-4870 chips of 2.4
GHz (yielding 40 hardware processes in total), running Ubuntu Linux kernel v3.13.0-66-
generic. We compiled the code with MinGW GCC 5.2.0 (with -O0 flag to avoid compiler
optimizations, such as function inlining, that can screw up our benchmarking environ-
ment). The code is available at
https://github.com/Aksenov239/complexity-lock-with-libslock.

We considered the following experimental settings: the number of processes is 39; the
size of the critical section C ∈ {100, 500, 5000}; and the multiplier x ∈ [1, 150] (we choose

134

https://github.com/Aksenov239/complexity-lock-with-libslock

0 5 · 103 104 1.5 · 104

1,000

1,200

1,400

1,600

1,800

Parallel work, P

T
hr

ou
gh

pu
t,

op
/s

Critical work C = 100

0 2 · 104 5 · 104 8 · 104

200

400

600

Parallel work, P

Critical work C = 500

0 2 · 105 5 · 105 8 · 105

20

40

60

Parallel work, P

Critical work C = 5000

Figure 8.4.: Throughput on 39 processes for C ∈ {100, 500, 5000}

all integer values) that determined the size of the parallel section P = x · C. For each
setting, we measured the throughput for 10 seconds. Our experimental evaluation gives
α ≈ 3.5 · 105, W ≈ 40, and RI ≈ 80. The ratio between W and RI correlates with the
experimental results provided by Tudor et al. [53].
In Figure 8.4, we show our experimental results (blue curves) compared with our theo-

retical prediction (red curves). The two curves match very closely, except for the case of
small C and P where our predicted throughput underestimates the real one. We relate
this to the fact that we oversimplified the abstract machine: any write induces the work
of constant size W , regardless of the relative location of the cache line with respect to the
process. For small C and P , two processes from the same socket are more likely to take
the lock one after the other and, thus, on average, a write might induce less work than
W , and, consequently, the throughput can be higher than predicted.

8.6. Conclusion
In this short chapter, we showed that a simple theoretical analysis may quite accurately
predict the throughput of data structures implemented using coarse-grained synchroniza-
tion. For the moment, our analysis is restricted to algorithms using CLH-based locking in
systems obeying the uniform scheduler. As a future work, we intend to extend the analysis
to more realistic algorithm designs, lock implementations and architectures.

135

9. Conclusion and Future Work

In this thesis, we study how to balance synchronization and parallelism in a range of con-
current programs. We presented an automatic granularity control for parallel programs
and two novel ways (concurrency-optimality and parallel combining) to design concur-
rent data structures with potentially low synchronization overhead. Then we discussed
synchronization in a form of helping in wait-free and lock-free data structures. Finally,
we proposed a way to predict the throughput of simple coarse-grained concurrent data
structure.
Each of these contributions provides us with open questions for future research. In this

chapter, we briefly recall these questions.

Automatic Granularity Control

In the current proposal, the programmer has to provide an asymptotic cost function for
each sp-guard separately. These functions can be non-trivial and the programmer might
not be able to provide them. However, he often can provide the sizes of the data on which
the code is going to work. An interesting question is whether we can design a similar
granularity control technique that uses only the information about sizes?
The intuition tells that we can find the appropriate cost functions using some machine

learning algorithm and, after that, we can use our original algorithm. At first, new al-
gorithm produces data points for each sp-guard by measuring the execution time: these
points map a size of the data to the execution time. When the set of sample points for the
sp-guard becomes representative enough, the algorithm fits the cost function using some
machine learning algorithm, e.g., symbolic regression by genertic programming [105].
Another open question is what to do when complexity functions are not helpful, e.g.,

the execution time of the code with the same cost function fluctuates a lot. In this case,
our predictions can be useless and the performance can degrade.
As an example, consider the simplest algorithm that compares two strings, symbol by

symbol. For this algorithm, we expect the cost function to depend on the lengths of the
strings, but not on the data itself (otherwise, the cost function is not lightweight). Thus,
for the following two inputs the cost is the same while the execution time differs much:
(1) if one string consists of n symbols ’a’ and the other consists of n symbols ’b’ then the
execution time is constant; (2) if both strings consist of n symbols ’a’ then the execution
time depends on n.

As a second example, we consider a maximal matching algorithm from the PBBS
suite [142]: given a graph it finds a set of edges such that no pair of edges share a vertex
and any other edge shares a vertex with some edge from the set. The algorithm uses the
compare&swap primitive [31]. Because the pattern of the compare&swap invocations is
not fixed, the contention during the execution of the same code and with same complexity
can differ much, which results in the fluctuation of the execution time. We did not present
the results of the execution of this algorithm in Chapter 4 since our approach did not
perform well on some inputs. Sometimes our version worked up to 30% worse than the
PBBS one. Is it possible to improve our granularity control algorithm in a way that it
could handle such behaviour?

137

Concurrency-Optimal Binary Search Tree

In Chapter 5, we provided a concurrency-optimal implementation of a binary search
tree. This is the second known concurrency-optimal implementation after linked-list based
set [77]. Do there exist other data structures that can benefit from concurrency-optimality?
We expect that skip-list should be a good candidate because it can be seen as a composition
of linked lists.
Right now the concurrency-optimality proposes to measure “concurrency” of algorithms

in sets of schedules. The immediate question is whether it is possible to express this metric
quantitatively, so that it would be easier to compare “concurrency” of implementations?
For example, as a new integer metric we can propose the number of dihomotopy classes
of executions [63]. Intuitively, two executions are equivalent (or dihomotopic) if one can
be obtained from the other by permuting independent instructions. Is it the reasonable
metric?
Finally, we can imagine a design principle similar to concurrency-optimality which in-

tends to maximize the set of exported executions, i.e., interleavings of steps of a concurrent
algorithm, instead of schedules. Below we explain this idea on the example.
Consider two concurrent implementations of partially-external binary search trees. In

the first one, there is one lock per node and an insertion of a new node is performed as
follows: take a lock on the parent and set the proper child to the newly created node. In
the second one, there is a read-write lock per node and a lock per each link to the children,
and an insertion of a new node is performed as follows: take a read lock on the parent,
take a lock on a link to the proper child and set a proper child to the newly created node.
It is obvious that the second implementation is more fine-grained and it allows more

executions than the first one: two new nodes can be added as a left and a right child
almost concurrently. This separation of one lock per node into two locks on the links was
proven to provide better performance in practice [120].
Can we provide a formal guide for this approach: specify the ways to increase the

number of executions and specify the granularity, i.e., the number of executions, after
which the performance starts to degrade?

Parallel Combining

In Chapter 6 we provide three application of the parallel combining technique. However,
for two of them, binary search trees and priority queues, there already existed efficient
fine-grained concurrent implementations. An immediate question is: which new concurrent
data structures can we create from their parallel batched counterparts? For sure, we can
build a concurrent dynamic tree since its parallel batched version is known [6]: it exports
the same operations as a dynamic graph but must remain a tree (forest) at any moment of
time. Also, we expect that it should be possible to design a parallel batched dynamic graph
from a parallel batched dynamic tree and, consequently, it should be possible to design a
concurrent dynamic graph that is more efficient than its coarse-grained implementations.
Right now, to use parallel combining, we have to provide a code of a parallel batched

data structure in a form of COMBINER_CODE and CLIENT_CODE. It is less convenient than
using the original code, typically written for dynamic multithreading, without changes.
It is known that, the algorithms for dynamic multithreading are typically executed using
some scheduler, for example, work-stealing [115]. Thus, the follow-up question is: can
we implement efficient scheduler that uses only the processes from a specified subset, i.e.,
clients? This question is not entirely trivial, since up-to-date schedulers use all processes,
and not the specific subset.
In Chapter 6 we consider only the linearizability correctness criterion. We present a

new weaker notion of correctness: for each operation op there exist a linearizable set of
operations S that contains: (1) op, (2) all operations finished before the invocation of op,

138

and, (3) possibly, some other operations.
As an example, we build a simple concurrent implementation of a persistent binary

search tree that satisfies our criterion while the linearized implementation is unknown and
we expect it to be non-trivial. A persistent data structure [59] is a data structure that
creates a new version on an update and provides an access to all the previous versions.
We get our concurrent persistent binary search tree using parallel combining. Suppose

that before the current combining phase the tree is T . During the combining phase the
algorithm works in two phases: (1) we apply each operation to T separately in parallel
using standard sequential persistent algorithm, i.e., as a resulting version an operation
gets a tree T with this operation applied; (2) we apply all operations together to T using
the parallel batched persistent algorithm similar to the algorithm by Blelloch et al. [32].
This implementation satisfies our criterion: for each operation op, the set S contains op
and all operations that were applied in preceding combining phases — the version of the
tree returned by op is a tree that satisfies some sequential application of operations from
S.

It would be interesting to investigate this correctness criterion further and find other
data structures that can benefit from it, i.e., the implementation with new criteria is more
efficient than the linearizable implementation.

On Helping and Stacks

In Chapter 7, we only considered helping in wait-free implementations. Thus, an immedi-
ate question is whether it is possible to consider helping for lock-free algorithms. Can we
identify data types that do not have a lock-free help-free implementation?
As shown in this thesis, linearization-based helping does not distinguish stack and queue:

none of these data structures has a wait-free help-free implementation. But examining the
wait-free stack by Afek et al. [12], we find out that none of the processes explicitly performs
work for the others: to perform pop() a process goes down the stack from the current
top until it reaches some value or the bottom of the stack; while to perform push(x) a
process simply increments the top of the stack and deposits x there. Thus, this algorithm
does not have helping in the simplest intuitive form. However, there is no paradox, since
linearization-based helping is still present in this algorithm.
Therefore, we might think that valency-based helping [23] is more suitable. The al-

gorithm by Afek et al. does not have non-trivial (valency-based) helping. Nevertheless,
valency-based helping has two issues: (1) the aforementioned algorithm by Afek et al.
does have trivial helping, i.e., one pop can make another pop to return ⊥, and the quite
unnatural distinction between trivial and non-trivial helping seems to be chosen specifi-
cally to allow this algorithm to be help-free; (2) the definition does not capture helping in
operations that do not return non-trivial responses, for example, no operation helps push
operation on stack by default.

Thus, it is appealing to find a variant of linearization-based helping that would capture
help-freedom of the algorithm by Afek et al.

Performance Prediction of Coarse-Grained Programs

To perform our simplistic theoretical analysis in Chapter 8 we posed several constraints
and it would interesting to get rid of them.
At first, can we replace CLH Lock by other popular lock designs such as TTAS, MCS,

etc.?
Second, we assumed that the architecture has symmetric cache and read and write costs

are independent on the status of a cache line. Can we introduce more details and make
the architecture more realistic?

139

Finally, all considered programs have only one lock, one critical and one parallel sections
of fixed size. It would be interesting to investigate throughput of more complex programs,
for example, programs with several locks or with the parallel section of variable size.

140

10. Bibliography
[1] http://snap.stanford.edu/. 65

[2] Umut A Acar and Guy E Blelloch. Algorithm Design: Theory and Practice. 2017.
20, 49

[3] Umut A Acar, Arthur Charguéraud, and Mike Rainey. Scheduling parallel programs
by work stealing with private deques. In ACM SIGPLAN Notices, volume 48, pages
219–228. ACM, 2013. 68

[4] Umut A Acar, Arthur Charguéraud, and Mike Rainey. A work-efficient algorithm for
parallel unordered depth-first search. In High Performance Computing, Networking,
Storage and Analysis, 2015 SC-International Conference for, pages 1–12. IEEE,
2015. 64

[5] Umut A Acar, Arthur Charguéraud, and Mike Rainey. Oracle-guided scheduling
for controlling granularity in implicitly parallel languages. Journal of Functional
Programming, 26, 2016. 38

[6] Umut A Acar, Vitaly Aksenov, and Sam Westrick. Brief announcement: Parallel dy-
namic tree contraction via self-adjusting computation. In Proceedings of the twenty-
ninth ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 275–277. ACM, 2017. 16, 116, 138

[7] Umut A Acar, Vitaly Aksenov, and Sam Westrick. Brief-announsement: Parallel dy-
namic tree contraction via self-adjusting computation. In Proceedings of the twenty-
ninth ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 275–277. ACM, 2017.

[8] Umut A Acar, Vitaly Aksenov, Arthur Charguéraud, and Mike Rainey. Perfor-
mance challenges in modular parallel programs. In Proceedings of the twenty third
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), pages 381–382. ACM, 2018.

[9] G Adelson-Velsky and E Landis. An algorithm for the organization of information.
145:263–266, 1962. 27, 99

[10] Sarita V Adve and Kourosh Gharachorloo. Shared memory consistency models: A
tutorial. computer, 29(12):66–76, 1996. 19

[11] Yehuda Afek, Eytan Weisberger, and Hanan Weisman. A completeness theorem
for a class of synchronization objects. In Proceedings of the twelfth annual ACM
symposium on Principles of distributed computing, pages 159–170. ACM, 1993. 129

[12] Yehuda Afek, Eli Gafni, and Adam Morrison. Common2 extended to stacks and
unbounded concurrency. Distributed Computing, 20(4):239–252, 2007. 117, 129,
130, 139

[13] Kunal Agrawal, Jeremy T Fineman, Kefu Lu, Brendan Sheridan, Jim Sukha, and
Robert Utterback. Provably good scheduling for parallel programs that use data
structures through implicit batching. In Proceedings of the twenty-sixth annual ACM
symposium on Parallelism in algorithms and architectures, pages 84–95. ACM, 2014.
16, 95, 115, 116

141

http://snap.stanford.edu/

[14] Vitaly Aksenov, Petr Kuznetsov, and Anatoly Shalyto. On helping and stacks. In
Proceedings of NETYS 2018.

[15] Vitaly Aksenov, Vincent Gramoli, Petr Kuznetsov, Anna Malova, and Srivatsan
Ravi. A concurrency-optimal binary search tree. In European Conference on Parallel
Processing (Euro-Par), pages 580–593. Springer, 2017.

[16] Vitaly Aksenov, Dan Alistarh, and Petr Kuznetsov. Brief-announcement: Perfor-
mance prediction of coarse-grained programs. In Proceedings of the thirty seventh
annual ACM Symposium on Principles of distributed computing (PODC), pages 411–
413, 2018.

[17] Vitaly Aksenov, Petr Kuznetsov, and Anatoly Shalyto. Parallel combining: Benefits
of explicit synchronization. arXiv preprint arXiv:1710.07588, 2018.

[18] James H Anderson, Yong-Jik Kim, and Ted Herman. Shared-memory mutual ex-
clusion: major research trends since 1986. Distributed computing, 16(2-3):75–110,
2003. 25

[19] Maya Arbel-Raviv and Trevor Brown. Reuse, don’t recycle: Transforming lock-
free algorithms that throw away descriptors. In 31 International Symposium on
Distributed Computing, volume 91, pages 4:1–4:16, 2017. 129

[20] Nimar S Arora, Robert D Blumofe, and C Greg Plaxton. Thread scheduling for
multiprogrammed multiprocessors. Theory of Computing Systems, 34(2):115–144,
2001. 21

[21] James Aspnes, Maurice Herlihy, and Nir Shavit. Counting networks. Journal of the
ACM (JACM), 41(5):1020–1048, 1994. 23

[22] Hagit Attiya and Jennifer Welch. Distributed computing: fundamentals, simulations,
and advanced topics, volume 19. John Wiley & Sons, 2004. 73

[23] Hagit Attiya, Armando Castañeda, and Danny Hendler. Nontrivial and universal
helping for wait-free queues and stacks. In LIPIcs-Leibniz International Proceedings
in Informatics, volume 46, 2016. 117, 129, 139

[24] Greg Barnes. A method for implementing lock-free shared-data structures. In Pro-
ceedings of the fifth annual ACM symposium on Parallel algorithms and architec-
tures, pages 261–270. ACM, 1993. 28

[25] Lars Bergstrom, Mike Rainey, John Reppy, Adam Shaw, and Matthew Fluet. Lazy
tree splitting. In ACM Sigplan Notices, volume 45, pages 93–104. ACM, 2010. 38,
72

[26] Guy E Blelloch. Scans as primitive parallel operations. IEEE Transactions on
computers, 38(11):1526–1538, 1989. 19

[27] Guy E Blelloch. Nesl: A nested data-parallel language. 1991. 21, 37

[28] Guy E Blelloch. Programming parallel algorithms. Communications of the ACM,
39(3):85–97, 1996. 21

[29] Guy E Blelloch and Margaret Reid-Miller. Fast set operations using treaps. In
Proceedings of the tenth annual ACM symposium on Parallel algorithms and archi-
tectures, pages 16–26. ACM, 1998. 28

[30] Guy E Blelloch, Gary L Miller, Jonathan C Hardwick, and Dafna Talmor. Design
and implementation of a practical parallel delaunay algorithm. Algorithmica, 24
(3-4):243–269, 1999. 64

142

[31] Guy E Blelloch, Jeremy T Fineman, Phillip B Gibbons, and Julian Shun. Internally
deterministic parallel algorithms can be fast. In ACM SIGPLAN Notices, volume 47,
pages 181–192. ACM, 2012. 137

[32] Guy E Blelloch, Daniel Ferizovic, and Yihan Sun. Just join for parallel ordered
sets. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and
Architectures, pages 253–264. ACM, 2016. 16, 28, 95, 96, 98, 99, 114, 139

[33] Robert D Blumofe and Charles E Leiserson. Scheduling multithreaded computations
by work stealing. Journal of the ACM (JACM), 46(5):720–748, 1999. 21

[34] OpenMP Architecture Review Board. Openmp application interface. http://www.
openmp.org, 2008. 12, 21, 37

[35] Luc Bougé, Joaquim Gabarro, Xavier Messeguer, Nicolas Schabanel, et al. Height-
relaxed avl rebalancing: A unified, fine-grained approach to concurrent dictionaries.
Research Report 1998-18, LIP, ENS Lyon, 1998. 28

[36] Anastasia Braginsky, Nachshon Cohen, and Erez Petrank. Cbpq: High performance
lock-free priority queue. In European Conference on Parallel Processing, pages 460–
474. Springer, 2016. 36, 114

[37] Richard P Brent. The parallel evaluation of general arithmetic expressions. Journal
of the ACM (JACM), 21(2):201–206, 1974. 21

[38] Gerth Stølting Brodal, Jesper Larsson Träff, and Christos D Zaroliagis. A parallel
priority queue with constant time operations. Journal of Parallel and Distributed
Computing, 49(1):4–21, 1998. 98

[39] Nathan G Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. A practical
concurrent binary search tree. In ACM Sigplan Notices, volume 45, pages 257–268.
ACM, 2010. 15, 16, 17, 28, 74, 81, 91, 113

[40] Trevor Brown, Faith Ellen, and Eric Ruppert. Pragmatic primitives for non-blocking
data structures. In Proceedings of the 2013 ACM symposium on Principles of dis-
tributed computing, pages 13–22. ACM, 2013. 30

[41] Trevor Brown, Faith Ellen, and Eric Ruppert. A general technique for non-blocking
trees. In ACM SIGPLAN Notices, volume 49, pages 329–342. ACM, 2014. 16, 17,
30

[42] Zoran Budimlić, Vincent Cavé, Raghavan Raman, Jun Shirako, Sağnak Taşırlar,
Jisheng Zhao, and Vivek Sarkar. The design and implementation of the habanero-
java parallel programming language. In Proceedings of the ACM International Con-
ference Companion on Object Oriented Programming Systems Languages and Appli-
cations, pages 185–186. ACM, 2011. 21, 37

[43] Irina Calciu, Hammurabi Mendes, and Maurice Herlihy. The adaptive priority queue
with elimination and combining. In International Symposium on Distributed Com-
puting, pages 406–420. Springer, 2014. 36

[44] Keren Censor-Hillel, Erez Petrank, and Shahar Timnat. Help! In Proceedings of
the 2015 ACM Symposium on Principles of Distributed Computing, pages 241–250.
ACM, 2015. 13, 17, 117, 118, 119, 129, 130

[45] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-mat: A recursive
model for graph mining. In Proceedings of the 2004 SIAM International Conference
on Data Mining, pages 442–446. SIAM, 2004. 64

143

http://www.openmp.org
http://www.openmp.org

[46] Manuel MT Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, Gabriele
Keller, and Simon Marlow. Data parallel haskell: a status report. In Proceed-
ings of the 2007 workshop on Declarative aspects of multicore programming, pages
10–18. ACM, 2007. 37

[47] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan
Kielstra, Kemal Ebcioglu, Christoph Von Praun, and Vivek Sarkar. X10: an object-
oriented approach to non-uniform cluster computing. 40(10):519–538, 2005. 21,
37

[48] Vinay K Chaudhri and Vassos Hadzilacos. Safe locking policies for dynamic
databases. Journal of Computer and System Sciences, 57(3):260–271, 1998. 74

[49] Richard Cole. Parallel merge sort. SIAM Journal on Computing, 17(4):770–785,
1988. 11, 33

[50] Thomas H Cormen, Charles Eric Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to algorithms. The MIT press, 3rd edition, 2009. 12, 13, 14, 20, 33

[51] Travis Craig. Building fifo and priorityqueuing spin locks from atomic swap. Techni-
cal report, Technical Report TR 93-02-02, University of Washington, 02 1993., 1993.
13, 18, 112, 132

[52] Tyler Crain, Vincent Gramoli, and Michel Raynal. A contention-friendly binary
search tree. In European Conference on Parallel Processing, pages 229–240. Springer,
2013. 15, 16, 17, 29, 74, 81, 91, 95, 113

[53] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Everything you always
wanted to know about synchronization but were afraid to ask. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles, pages 33–48.
ACM, 2013. 132, 135

[54] Timothy A Davis and Yifan Hu. The university of florida sparse matrix collection.
ACM Transactions on Mathematical Software (TOMS), 38(1):1, 2011. 65

[55] SK Debray, Manuel V Hermenegildo, and Pedro López García. A methodology
for granularity-based control of parallelism in logic programs. Journal of symbolic
computation, 21(4-6):715–734, 1996. 38, 69

[56] Narsingh Deo and Sushil Prasad. Parallel heap: An optimal parallel priority queue.
The Journal of Supercomputing, 6(1):87–98, 1992. 34, 98, 104

[57] Dana Drachsler, Martin Vechev, and Eran Yahav. Practical concurrent binary search
trees via logical ordering. ACM SIGPLAN Notices, 49(8):343–356, 2014. 15, 16, 17,
29, 74, 81, 91, 95, 113

[58] Dana Drachsler-Cohen and Erez Petrank. Lcd: Local combining on demand. In
International Conference On Principles Of Distributed Systems, pages 355–371.
Springer, 2014. 16, 95, 96, 115

[59] James R Driscoll, Neil Sarnak, Daniel D Sleator, and Robert E Tarjan. Making data
structures persistent. Journal of computer and system sciences, 38(1):86–124, 1989.
139

[60] Alejandro Duran, Julita Corbalán, and Eduard Ayguadé. An adaptive cut-off for
task parallelism. In International Conference on High Performance Computing,
Networking, Storage and Analysis (SC)), pages 1–11. IEEE, 2008. 69

144

[61] David Eisenstat. Two-enqueuer queue in common2. arXiv preprint arXiv:0805.0444,
2008. 117

[62] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-
blocking binary search trees. In Proceedings of the 29th ACM SIGACT-SIGOPS
symposium on Principles of distributed computing, pages 131–140. ACM, 2010. 15,
16, 28, 29, 74, 81, 91

[63] Lisbeth Fajstrup, Eric Goubault, Emmanuel Haucourt, Samuel Mimram, and Martin
Raussen. Directed algebraic topology and concurrency. Springer, 2016. 138

[64] Panagiota Fatourou and Nikolaos D Kallimanis. A highly-efficient wait-free uni-
versal construction. In Proceedings of the twenty-third annual ACM Symposium on
Parallelism in Algorithms and Architectures, pages 325–334. ACM, 2011. 115, 117,
129

[65] Panagiota Fatourou and Nikolaos D Kallimanis. Revisiting the combining synchro-
nization technique. In ACM SIGPLAN Notices, volume 47, pages 257–266. ACM,
2012. 95, 96, 115

[66] Marc Feeley. A message passing implementation of lazy task creation. In US/Japan
Workshop on Parallel Symbolic Computing, pages 94–107. Springer, 1992. 38, 72

[67] Marc Feeley. Polling efficiently on stock hardware. In Proceedings of the conference
on Functional programming languages and computer architecture, pages 179–187.
ACM, 1993. 72

[68] Steven Feldman, Pierre Laborde, and Damian Dechev. A wait-free multi-word
compare-and-swap operation. International Journal of Parallel Programming, 43
(4):572–596, 2015. 117, 129

[69] Mikhail Fomitchev and Eric Ruppert. Lock-free linked lists and skip lists. In Pro-
ceedings of the twenty-third annual ACM symposium on Principles of distributed
computing, pages 50–59. ACM, 2004. 32

[70] Java Fork-Join. https://docs.oracle.com/javase/tutorial/essential/
concurrency/forkjoin.html. 21, 37

[71] Steven Fortune and James Wyllie. Parallelism in random access machines. In Pro-
ceedings of the tenth annual ACM symposium on Theory of computing, pages 114–
118. ACM, 1978. 19

[72] Matteo Frigo, Charles E Leiserson, and Keith H Randall. The implementation of
the cilk-5 multithreaded language. ACM Sigplan Notices, 33(5):212–223, 1998. 12,
21, 37, 68

[73] Phillip B Gibbons. A more practical pram model. In Proceedings of the first annual
ACM symposium on Parallel algorithms and architectures, pages 158–168. ACM,
1989. 20

[74] Phillip B Gibbons, Yossi Matias, and Vijaya Ramachandran. The queue-read queue-
write pram model: Accounting for contention in parallel algorithms. SIAM Journal
on Computing, pages 638–648, 1997. 19

[75] Gaston H Gonnet and J Ian Munro. Heaps on heaps. SIAM Journal on Computing,
15(4):964–971, 1986. 33, 104

[76] Vincent Gramoli. More than you ever wanted to know about synchronization: syn-
chrobench, measuring the impact of the synchronization on concurrent algorithms.
In ACM SIGPLAN Notices, volume 50, pages 1–10. ACM, 2015. 91

145

https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

[77] Vincent Gramoli, Petr Kuznetsov, Srivatsan Ravi, and Di Shang. Brief announce-
ment: a concurrency-optimal list-based set. In International Symposium on Dis-
tributed Computing, page 659, 2005. 93, 138

[78] Vincent Gramoli, Petr Kuznetsov, and Srivatsan Ravi. From sequential to con-
current: correctness and relative efficiency (brief announcement). In Principles of
Distributed Computing (PODC), pages 241–242, 2012. 93

[79] Vincent Gramoli, Petr Kuznetsov, and Srivatsan Ravi. In the search for optimal
concurrency. In Structural Information and Communication Complexity - 23rd In-
ternational Colloquium, SIROCCO, pages 143–158, 2016. 15, 73, 74, 78, 80, 93

[80] Rachid Guerraoui, Thomas A Henzinger, and Vasu Singh. Permissiveness in trans-
actional memories. In International Symposium on Distributed Computing, pages
305–319. Springer, 2008. 74

[81] Leo J Guibas and Robert Sedgewick. A dichromatic framework for balanced trees. In
Foundations of Computer Science, 1978., 19th Annual Symposium on, pages 8–21.
IEEE, 1978. 27, 99

[82] Rajiv Gupta and Charles R Hill. A scalable implementation of barrier synchroniza-
tion using an adaptive combining tree. International Journal of Parallel Program-
ming, 18(3):161–180, 1989. 115

[83] Robert H Halstead Jr. Implementation of multilisp: Lisp on a multiprocessor. In
Proceedings of the 1984 ACM Symposium on LISP and functional programming,
pages 9–17. ACM, 1984. 68

[84] Timothy L Harris. A pragmatic implementation of non-blocking linked-lists. In
International Symposium on Distributed Computing, pages 300–314. Springer, 2001.
16, 95

[85] Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William N Scherer, and
Nir Shavit. A lazy concurrent list-based set algorithm. In International Conference
On Principles Of Distributed Systems, pages 3–16. Springer, 2005. 16, 74, 95

[86] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining and
the synchronization-parallelism tradeoff. In Proceedings of the twenty-second annual
ACM symposium on Parallelism in algorithms and architectures, pages 355–364,
2010. 16, 95, 96, 112, 114, 115

[87] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Scalable flat-combining
based synchronous queues. In DISC, pages 79–93. Springer, 2010. 115

[88] M Herlihy, Y Lev, and N Shavit. A lock-free concurrent skiplist with wait-free
search. Unpublished Manuscript, Sun Microsystems Laboratories, Burlington, Mas-
sachusetts, 2007. 32, 35

[89] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming
Languages and Systems (TOPLAS), 13(1):124–149, 1991. 73, 74, 78, 117

[90] Maurice Herlihy and Nir Shavit. The art of multiprocessor programming. Morgan
Kaufmann, 2011. 17, 35, 114

[91] Maurice Herlihy and Nir Shavit. On the nature of progress. In International Con-
ference On Principles Of Distributed Systems, pages 313–328. Springer, 2011. 12,
74

146

[92] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. A simple optimistic
skiplist algorithm. In International Colloquium on Structural Information and Com-
munication Complexity, pages 124–138. Springer, 2007. 32, 35

[93] Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness condition
for concurrent objects. ACM Transactions on Programming Languages and Systems
(TOPLAS), 12(3):463–492, 1990. 11, 23, 73

[94] Tasuku Hiraishi, Masahiro Yasugi, Seiji Umatani, and Taiichi Yuasa. Backtracking-
based load balancing. In ACM Sigplan Notices, volume 44, pages 55–64. ACM, 2009.
38, 68

[95] Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Poly-logarithmic deter-
ministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge,
and biconnectivity. Journal of the ACM (JACM), 48(4):723–760, 2001. 16, 26, 95,
98, 112

[96] Brandon Holt, Jacob Nelson, Brandon Myers, Preston Briggs, Luis Ceze, Simon
Kahan, and Mark Oskin. Flat combining synchronized global data structures. In
7th International Conference on PGAS Programming Models, page 76, 2013. 115

[97] Shane V Howley and Jeremy Jones. A non-blocking internal binary search tree. In
Proceedings of the twenty-fourth annual ACM symposium on Parallelism in algo-
rithms and architectures, pages 161–171. ACM, 2012. 16, 29, 129

[98] Lorenz Huelsbergen, James R Larus, and Alexander Aiken. Using the run-time
sizes of data structures to guide parallel-thread creation. In ACM SIGPLAN Lisp
Pointers, volume 7, pages 79–90. ACM, 1994. 38, 69

[99] Galen C Hunt, Maged M Michael, Srinivasan Parthasarathy, and Michael L Scott.
An efficient algorithm for concurrent priority queue heaps. Information Processing
Letters, 60(3):151–157, 1996. 34

[100] Intel. Intel threading building blocks. https://www.threadingbuildingblocks.
org, 2011. 13, 14, 21, 37, 38, 40

[101] Intel. Intel cilk plus manual. https://software.intel.com/en-us/node/684236/,
2017. 37, 39

[102] Shintaro Iwasaki and Kenjiro Taura. A static cut-off for task parallel programs.
In International Conference on Parallel Architecture and Compilation Techniques
(PACT), pages 139–150. IEEE, 2016. 72

[103] Suresh Jagannathan, Armand Navabi, KC Sivaramakrishnan, and Lukasz Ziarek.
The design rationale for multi-mlton. In ML’10: Proceedings of the ACM SIGPLAN
Workshop on ML, 2010. 37

[104] Joseph JáJá. An introduction to parallel algorithms, volume 17. Addison-Wesley
Reading, 1992. 15, 19, 131

[105] John R Koza. Genetic programming as a means for programming computers by
natural selection. Statistics and computing, 4(2):87–112, 1994. 137

[106] Clyde P Kruskal. Searching, merging, and sorting in parallel computation. IEEE
Transactions on Computers, (10):942–946, 1983. 33

[107] Vivek Kumar, Daniel Frampton, Stephen M Blackburn, David Grove, and Olivier
Tardieu. Work-stealing without the baggage. In ACM SIGPLAN Notices, volume 47,
pages 297–314. ACM, 2012. 37, 68

147

https://www.threadingbuildingblocks.org
https://www.threadingbuildingblocks.org
https://software.intel.com/en-us/node/684236/

[108] Petr Kuznetsov and Srivatsan Ravi. On the cost of concurrency in transactional
memory. In International Conference On Principles Of Distributed Systems, pages
112–127. Springer, 2011. 74

[109] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is twitter, a
social network or a news media? In Proceedings of the 19th international conference
on World wide web, pages 591–600. ACM, 2010. 65

[110] Charles E Leiserson and Ilya B Mirman. How to survive the multicore software
revolution (or at least survive the hype). Cilk Arts, 1, 2008. 11

[111] Zongpeng Li. Non-blocking implementations of queues in asynchronous distributed
shared-memory systems. Masters thesis, University of Toronto, 2001. 117

[112] Task Parallel Library. https://docs.microsoft.com/en-us/dotnet/standard/
parallel-programming/task-parallel-library-tpl. 21, 37

[113] Jonatan Lindén and Bengt Jonsson. A skiplist-based concurrent priority queue
with minimal memory contention. In International Conference On Principles Of
Distributed Systems, pages 206–220. Springer, 2013. 17, 35, 114

[114] Yujie Liu and Michael Spear. Mounds: Array-based concurrent priority queues. In
41st International Conference on Parallel Processing, pages 1–10. IEEE, 2012. 36

[115] Michael D McCool, Arch D Robison, and James Reinders. Structured parallel pro-
gramming: patterns for efficient computation. Elsevier, 2012. 14, 37, 138

[116] John M Mellor-Crummey and Michael L Scott. Algorithms for scalable synchroniza-
tion on shared-memory multiprocessors. ACM Transactions on Computer Systems
(TOCS), 9(1):21–65, 1991. 115, 132

[117] Maged M Michael. High performance dynamic lock-free hash tables and list-based
sets. In Proceedings of the Fourteenth Annual ACM Symposium on Parallel Algo-
rithms and Architectures, pages 73–82. ACM, 2002. 129

[118] Eric Mohr, David A Kranz, and Robert H Halstead. Lazy task creation: A technique
for increasing the granularity of parallel programs. IEEE transactions on Parallel
and Distributed Systems, 2(3):264–280, 1991. 72

[119] Gordon E Moore. Cramming more components onto integrated circuits. Electronic
Magazine, pages 82–85, 1965. 11

[120] Aravind Natarajan and Neeraj Mittal. Fast concurrent lock-free binary search trees.
In ACM SIGPLAN Notices, volume 49, pages 317–328. ACM, 2014. 16, 29, 81, 91,
129, 138

[121] Aravind Natarajan, Lee H Savoie, and Neeraj Mittal. Concurrent wait-free red black
trees. In Symposium on Self-Stabilizing Systems, pages 45–60. Springer, 2013. 16,
29

[122] Gil Neiger. Set-linearizability. In Proceedings of the thirteenth annual ACM sympo-
sium on Principles of distributed computing, page 396. ACM, 1994. 23

[123] Jürg Nievergelt and Edward M Reingold. Binary search trees of bounded balance.
SIAM journal on Computing, 2(1):33–43, 1973. 27, 99

[124] The nineth dimacs implementation challenge. http://www.dis.uniroma1.it/
challenge9/, 2013. 65

148

https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl
http://www.dis.uniroma1.it/challenge9/
http://www.dis.uniroma1.it/challenge9/

[125] Otto Nurmi and Eljas Soisalon-Soininen. Chromatic binary search trees. Acta in-
formatica, 33(5):547–557, 1996. 30

[126] Yoshihiro Oyama, Kenjiro Taura, and Akinori Yonezawa. Executing parallel pro-
grams with synchronization bottlenecks efficiently. In Proceedings of the Interna-
tional Workshop on Parallel and Distributed Computing for Symbolic and Irregular
Applications, volume 16, 1999. 95, 96, 115

[127] Christos H Papadimitriou. The serializability of concurrent database updates. Jour-
nal of the ACM (JACM), 26(4):631–653, 1979. 73

[128] Mark S Papamarcos and Janak H Patel. A low-overhead coherence solution for multi-
processors with private cache memories. In ACM SIGARCH Computer Architecture
News, volume 12, pages 348–354. ACM, 1984. 132

[129] Wolfgang Paul, Uzi Vishkin, and Hubert Wagener. Parallel dictionaries on 2–3
trees. In International Colloquium on Automata, Languages, and Programming,
pages 597–609. Springer, 1983. 16

[130] Joseph D Pehoushek and Joseph S Weening. Low-cost process creation and dy-
namic partitioning in qlisp. In US/Japan Workshop on Parallel Lisp, pages 182–199.
Springer, 1989. 38, 68

[131] Yaqiong Peng and Zhiyu Hao. Fa-stack: A fast array-based stack with wait-free
progress guarantee. IEEE Transactions on Parallel and Distributed Systems, 2017.
117, 129

[132] Maria Cristina Pinotti and Geppino Pucci. Parallel priority queues. Information
Processing Letters, 40(1):33–40, 1991. 33, 98, 104

[133] Henry Crozier Plummer. On the problem of distribution in globular star clusters.
Monthly notices of the royal astronomical society, 71:460–470, 1911. 64

[134] William Pugh. Concurrent maintenance of skip lists. Technical Report CS-TR-
2222.1, University of Maryland, 1990. 31, 35

[135] William Pugh. Skip lists: a probabilistic alternative to balanced trees. Communi-
cations of the ACM, 33(6):668–676, 1990. 30

[136] Daniel Sanchez, Richard M Yoo, and Christos Kozyrakis. Flexible architectural
support for fine-grain scheduling. In ACM Sigplan Notices, volume 45, pages 311–
322. ACM, 2010. 38, 68

[137] Peter Sanders. Randomized priority queues for fast parallel access. Journal of
Parallel and Distributed Computing, 49(1):86–97, 1998. 16, 34, 98, 104

[138] Raimund Seidel and Cecilia R Aragon. Randomized search trees. Algorithmica, 16
(4-5):464–497, 1996. 27, 99

[139] Nir Shavit and Itay Lotan. Skiplist-based concurrent priority queues. In Proceeding
of 14th International Parallel and Distributed Processing Symposium, pages 263–268.
IEEE, 2000. 17, 35, 114

[140] Nir Shavit and Asaph Zemach. Diffracting trees. ACM Transactions on Computer
Systems (TOCS), 14(4):385–428, 1996. 115

[141] Nir Shavit and Asaph Zemach. Combining funnels: a dynamic approach to software
combining. Journal of Parallel and Distributed Computing, 60(11):1355–1387, 2000.
115

149

[142] Julian Shun, Guy E Blelloch, Jeremy T Fineman, Phillip B Gibbons, Aapo Ky-
rola, Harsha Vardhan Simhadri, and Kanat Tangwongsan. Brief announcement: the
problem based benchmark suite. In Proceedings of the twenty-fourth annual ACM
symposium on Parallelism in algorithms and architectures, pages 68–70. ACM, 2012.
15, 39, 41, 62, 64, 137

[143] Bjarne Stroustrup. The c++ programming language, 2013. 39

[144] Håkan Sundell and Philippas Tsigas. Scalable and lock-free concurrent dictionaries.
In Proceedings of the 2004 ACM symposium on Applied computing, pages 1438–1445.
ACM, 2004. 31, 35

[145] Håkan Sundell and Philippas Tsigas. Fast and lock-free concurrent priority queues
for multi-thread systems. Journal of Parallel and Distributed Computing, 65(5):
609–627, 2005. 35

[146] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobb’s journal, 30(3):202–210, 2005. 11

[147] Herb Sutter. Choose concurrency-friendly data structures, June 2008. 74

[148] Olivier Tardieu, Haichuan Wang, and Haibo Lin. A work-stealing scheduler for x10’s
task parallelism with suspension. ACM SIGPLAN Notices, 47(8):267–276, 2012. 68

[149] Robert E Tarjan. Efficient top-down updating of red-black trees. Technical Report
TR-006-85, 1985. 29

[150] Peter Thoman, Herbert Jordan, and Thomas Fahringer. Adaptive granularity control
in task parallel programs using multiversioning. In European Conference on Parallel
Processing, pages 164–177. Springer, 2013. 69

[151] Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Erez Petrank. Wait-free
linked-lists. In International Conference On Principles Of Distributed Systems, pages
330–344. Springer, 2012. 117, 129

[152] Jyh-Jong Tsay and Hsin-Chi Li. Lock-free concurrent tree structures for multipro-
cessor systems. In International Conference on Parallel and Distributed Systems,
pages 544–549. IEEE, 1994. 29

[153] Alexandros Tzannes, George C Caragea, Rajeev Barua, and Uzi Vishkin. Lazy
binary-splitting: a run-time adaptive work-stealing scheduler. ACM Sigplan Notices,
45(5):179–190, 2010. 38, 72

[154] Leslie G Valiant. A bridging model for parallel computation. Communications of
the ACM, 33(8):103–111, 1990. 19

[155] Joseph S Weening. Parallel execution of lisp programs. Technical report, Stanford
University, Department of Computer Science, 1989. 38, 68, 72

[156] Pen-Chung Y, Nian-Feng T, et al. Distributing hot-spot addressing in large-scale
multiprocessors. IEEE Transactions on Computers, 100(4):388–395, 1987. 115

150

A. Coûts de Synchronization dans les
Programmes Parallèles et les Structures
de Donnèes Simultanées

En 1965, le co-fondateur d’Intel, Gordon E. Moore, a fait une prédiction, connue sous le
nom de loi de Moore, que le nombre de transistors par circuit intégré augmenterait de façon
exponentielle conduisant à une augmentation exponentielle de la performance d’une puce.
Cependant, vers 2004, cette augmentation des performances est devenue économiquement
inefficace en raison des limitations matérielles. Pour résoudre ce problème, les fabricants
ont dû trouver un autre moyen d’améliorer les performances. Ils ont décidé de combiner
plusieurs unités de calcul (cœurs) sur le même processeur, nommé processeur multicœur.
Nous éviterons le terme cœur et utiliserons à la place le terme processus: un cœur est un
objet physique alors qu’un processus est une abstraction qui représente un code séquentiel
s’exécutant sur un cœur.

1 Programmes Simultanèes
L’invention des processeurs multicœur, connue sous le nom de “révolution multicœur”,
a changé la paradigme complet de l’informatique. Pour bénéficier du nouveau design
des processeurs, les algorithmes séquentiels ont dû être remplacés par des algorithmes
concurrents.

Dans cette thèse, nous considérons deux types de programmes concurrents: les pro-
grammes parallèles et les structures de données simultanées. La distinction entre ces types
de programmes repose sur la relation entre les entrées et les sorties.
Un programme parallèle, a une sortie qui répond à une spécification, comme les pro-

grammes séquentiels. Une spécification applique chaque entrée possible sur un ensemble
des sorties permises. Le principal avantage des programmes parallèles par rapport aux
programmes séquentiels est qu’ils peuvent utiliser plusieurs processus pour améliorer les
performances (Figure A.1).
Comme exemple, considérons un algorithme de tri. Sa spécification étant la suivante:

étant donné un tableau d’entrée a l’algorithme devrait sortir un tableau d’éléments de a
dans l’ordre croissant. L’algorithme séquentiel de mergesort trie un tableau de taille m en
temps O(m logm), tandis que sa version parallèle a juste besoin d’un temps O(mn · logm)
où n est le nombre de processus.
Dans des structures de données simultanées, par exemple, les piles simultanées et les

arbres binaires de recherche simultanés, les entrées et les sorties sont répartis entre les
processus concurrents (Figure A.2). L’entrée d’un processus consiste dans des opérations
appelées sur la structure de données par ce processus. Le processus effectue chaque opéra-
tion et ajoute son résultat à la sortie. Bien sûr, ces résultats devraient satisfaire certaines
propriétés de correction. En règle générale, les propriétés de correction de structures de
données simultanées sont divisées en deux catégories: sûreté et vivacité.
Une propriété de sûreté affirme que “rien de mal n’arrive jamais”. La propriété de

sûreté la plus connue connue est la linéarisation — les invocations et les réponses des
opérations de haut niveau observées dans l’exécution doivent constituer un historique
séquentiel correct.
Une propriété de vivacité affirme que “quelque chose de bien arrive finalement”. Les

propriétés de vivacité les plus communes sont:

151

input

...

output

Figure A.1.: Exécution d’un programme
parallèle

...

in
pu
t

ou
tp
ut

in
pu
t

... in
pu
t

...

ou
tp
ut

ou
tp
ut

Figure A.2.: Exécution d’une strudcture de
donnèes simultanées

• “Sans attente” (wait-freedom) — chaque processus termine son opération éventuelle-
ment;

• “Sans verrou” (lock-freedom) — au moins un processus termine son opération éventuelle-
ment;

• “Absence de famine” (starvation-freedom) — chaque processus termine son opération
éventuellement si chaque processus prend un nombre infini d’étapes;

• “Absence de blocage” (deadlock-freedom) — au moins on processus termine éventuelle-
ment son opération si chaque processus prend un nombre infini d’étapes.

Notez que “starvation-freedom” et “deadlock-freedom” permettent à l’implémentation
d’utiliser des verrous, alors que ‘wait-freedom” et “lock-freedom” ne le permettent pas.

2 La Synchronization
Pour assurer le correction des programmes parallèles et des structures de données des
concurrents, nous avons besoin de la synchronisation, c’est-à-dire, la coordination entre
les processus. De manière informelle, la synchronisation est utilisée pour gérer des conflits
sur les données partagées, par exemple, en résolvant la compétition pour les données, et
sur les ressources partagées, par exemple, l’allocation et la désallocation de mémoire.

Voyons comment la synchronisation est instanciée dans des programme parallèle. Les
programmes parallèles sont généralement écrits pour deux environnements: pour multi-
threading statique et pour multi-threading dynamique.
Pour le multi-threading statique, chaque processus est fourni avec son programme. Ces

programmes sont écrits comme une composition de super-étapes. Au cours d’une super-
étape, un processus effectue des calculs locaux indépendants. Après une super-étape, les
processus se synchronisent pour accumuler les résultats de leurs calculs indépendants.
Pour le multi-threading dynamique, le programme est écrit à l’aide de mécanisme fork-

join (ou similaire, par exemple, # pragma omp parallel dans OpenMP). Fork-join prend
deux fonctions, nommées branches, comme arguments et les exécute en parallèle jusqu’à
leur achèvement. Un appel de fork-join engage la surcharge de synchronisation au moins
sur:

1. Allocation et désallocation d’un thread: la mémoire partagée doit pouvoir traiter
demandes simultanée.

2. Planification d’un thread. Le planificateur doit accepter les requêtes simultanées
pour exécuter les threads et contrôler la migration des threads. La migration se pro-

152

duit quand un thread modifie son processus-propriétaire: cela implique généralement
une surcharge importante lors du transfert des données nécessaires.

3. Jointure des deux threads. Un processus qui termine un thread décrémente un
compteur simultané de l’appel fork-join correspondant. Si le compteur est à zéro le
processus procède au code après le fork-join, sinon, il indique au planificateur qu’il
est inactif.

Une propriété importante de la plupart des programmes parallèles (écrits pour le multi-
threading statique ou dynamique) est qu’ils sont conçus de telle manière qu’il n’existe
aucune compétition pour les données, à l’exception de la compétition décrite ci-dessus.

En revanche, la compétition pour les données survenant dans des structures de données
simultanées, sont généralement beaucoup plus diverses, car chaque processus possède ses
propres entrées et les appels d’opérations sur différents processus ne sont pas synchronisés.
En conséquence, la synchronisation est conçue individuellement à partir de rien pour
chaque structure de données concurrente. Par exemple, les structures de données basées
sur des verrous se débarrassent de la compétition pour les données en utilisant des verrous
qui permettent un accès exclusif aux données. Dans les structures de données wait-free
et lock-free, la compétition pour les données est autorisée et elle est résolu à l’aide de
différentes techniques, par exemple, l’assistance où un processus effectue des tâches pour
le compte d’autres processus. Cette complexité de la synchronisation fait que les structures
de données simultanées sont plus difficiles à concevoir que les programmes parallèles.

3 Vue d’Ensemble de Résultats
La synchronisation, mal traitée, peut induire une surcharge qui dépasse les avantages
du parallélisme. Idéalement, le programmeur devrait utiliser juste la bonne quantité de
synchronisation pour assurer l’exactitude. Dans cette thèse, nous expliquons comment
améliorer les performances dans différents cadres en réduisant la surcharge de synchroni-
sation.
Au début, nous fournissons un nouveau moyen pratique de résoudre le problème du

contrôle de la granularité. Supposons que nous ayons un programme parallèle écrit pour
le multi-threading dynamique à l’aide du méchanisme de fork-join. De manière informelle,
le problème du contrôle de la granularité consiste à décider, pour chaque fork-join dans
un programme donné, de l’appeler ou d’exécuter ses branches de manière séquentielle
afin d’obtenir les meilleures performances. D’une part, si trop d’appels sont exécutés,
la surcharge totale de la synchronisation (consacrée à l’allocation, à la planification et
à la jointure des threads) peut prendre une fraction considérable du temps d’exécution
total. D’autre part, si trop d’appels sont exécutés de manière séquentielle, nous perdons
les avantages potentiels de la machine multiprocesseur.
Ensuite, nous décrivons deux techniques pour construire des structures de données si-

multanées avec une surcharge de synchronisation potentiellement faible:

• optimalité de concurrence (concurrency-optimality), une technique qui construit une
structure de données concurrente à partir d’une implémentation séquentielle avec la
synchronisation théoriquement ”optimale”;

• combinaison parallèle (parallel combining), une technique qui utilise la synchronisa-
tion explicite pour rassembler tous les accès simultanés à une structure de données
concurrente, puis appelle un algorithme parallèle qui nécessite une petite quantité
de synchronisation, réduisant ainsi la surcharge totale de la synchronisation.

En outre, nous considérons la synchronisation dans des structures de données wait-free
et lock-free qui apparaissent généralement sous forme d’assistance. Nous identifions une
erreur dans une preuve de Censor-Hillel et al. du fait que la pile n’a pas d’implémentation
wait-free et sans assistance. Nous reprenons ce fait ensuite.

153

Enfin, nous décrivons une méthode simple qui mesure théoriquement le débit de struc-
tures de données simultanées simples de grains grossiers à base de verrous et qui exportent
une méthode: une section critique de taille C protégée par un verrou CLH suivie d’une
section parallèle de taille P .

Ci-dessous, nous décrivons les résultats avec plus de détails.

3.1 Le Problème du Contrôle de la Granularité

Au cours des dernières décennies, de nombreux langages de programmation et systèmes
de calcul parallèle ont été développés, tels que Cilk, OpenMP, Intel Threading Building
Blocks, etc., pour fournir un multi-threading dynamique (parfois appelé parallélisme im-
plicite). Bien que ces systèmes augmentent le niveau d’abstraction et masquent les détails
de synchronisation à l’utilisateur, le programmeur doit encore effectuer une optimisation
poussée afin d’améliorer les performances. Une de ces optimisations est le contrôle de
la granularité, qui nécessite que le programmeur détermine quand et comment les tâches
parallèles doivent être séquencées.

Nous présentons un algorithme automatique pour contrôler la granularité à l’aide d’un
oracle: l’oracle prédit le temps d’exécution d’un code parallèle et aide l’algorithme à
décider si le code doit être séquencé ou non. Nous prouvons que cet algorithme a les
propriétés théoriques souhaitées, c’est-à-dire que la surcharge de la synchronisation est
faible par rapport au temps d’exécution total. Enfin, nous l’implémentons en C++ en tant
qu’extension à Cilk et évaluons ses performances. Les résultats montrent que notre tech-
nique peut éliminer le réglage manuel dans de nombreux cas et correspondre étroitement
aux performances du code réglé manuellement.
Pour se faire une idée du contrôle de granularité, supposons qu’un multi-threading dy-

namique soit implémenté via la primitive fork-join. Cette primitive prend deux fonctions,
appelées branches de programme, comme arguments et les exécute en parallèle jusqu’à leur
achèvement. Malgré sa simplicité, fork-join est assez puissant pour implémenter d’autres
expressions parallèles communes, y compris des boucles parallèles et des calculs parallèles
imbriqués.
Un aspect important du multithreading dynamique est qu’il est possible d’exprimer

l’efficacité d’un programme parallèle en utilisant ce que l’on appelle le Work-Span Cadre:
le work est le temps passé à exécuter le programme en utilisant une machine idéalisée
avec un processus et le span est le temps passé à exécuter un programme en utilisant une
machine idéalisée avec un nombre infini de processus.
Largement accepté comme mesure de complexité pour les programmes parallèles, le

work et le span ne tiennent pas compte de la surcharge réelle cachée dans un appel de
fork-join — ils considérent que cet appel coûte une unité de travail (une instruction).
Cependant, dans la pratique, ce coût n’est pas négligeable — un appel de fork-join induit
au moins une allocation d’un nouveau thread, sa planification et, finalement, la jointure.
Les appels fréquents de cette primitive peuvent prendre une fraction considérable du temps
d’exécution total. Ainsi, pour chaque appel fork-join, nous devons décider de l’appeler
ou d’exécuter un algorithme séquentiel alternatif, par exemple, exécuter ses branches de
manière séquentielle. Le problème de contrôle de la granularité résultant concerne la sur-
charge de synchronisation: nous voulons appeler rarement des fork-joins afin que le temps
passé sur la surcharge de ces appels représente une petite fraction du temps d’exécution
total et, d’autre part, nous souhaitons les appeler assez souvent pour rendre les processus
occupés.
La solution la plus populaire à ce problème consiste à couvrir chaque appel fork-join

avec une garde de condition: si le work dans les deux branches dépasse une certaine
taille de grain, l’approximation du temps d’exécution est beaucoup plus grande que la
surcharge dans fork-join, alors nous sommes autorisés à l’appeler; sinon, nous exécutons
un algorithme séquentiel alternatif (par exemple, exécuter des branches séquentiellement).
Cependant, une telle approche est très gênante. Tout d’abord, un programme peut

154

avoir plusieurs appels de fork-join qui ont des gardes de conditions distincts avec dif-
férentes constantes de taille de grain. Pour améliorer les performances, il faut régler
toutes ces constantes. Ce réglage est fastidieux, surtout lorsque les constantes ne peu-
vent pas être réglées séparément. Par exemple, deux constantes de gardes de conditions
différentes correspondant à deux appels imbriqués de fork-join dépendent les unes des
autres. Il y a un autre problème de performance: chaque fois que nous voulons vérifier
si les constantes choisies fournissent de bonnes performances, le programme doit être ré-
exécuté. Deuxièmement, les constantes accordées ne sont pas portables, c’est-à-dire que
les constantes réglées pour une machine peuvent produire de mauvaises performances sur
une autre machine.
Afin de résoudre ces deux problèmes, nous présentons une technique de contrôle de

la granularité automatique sous la forme d’un sp-guard (une substitution de garde de
condition).
Au début, l’utilisateur doit fournir la fonction de coût asymptotique du code couvert

par chaque sp-guard. Notez que, comme ces fonctions ne dépendent que de l’algorithme,
elles sont portables.
Deuxièmement, l’utilisateur doit fournir une variable dépendante de la machine κ. Cela

représente la plus petite quantité de travail suffisamment grand par rapport à une surcharge
dans un appel de fork-join.

Notre algorithme de contrôle automatique de la granularité fonctionne avec chaque sp-
guard g séparément. Au début, il détermine la plus grande valeur Ng de la fonction de
coût pour laquelle le temps d’exécution séquentiel de fork-join ne dépasse pas κ. Ensuite,
lorsque fork-join va être appelée, le coût est comparé à Ng. Si Ng est inférieur au coût,
le temps d’exécution dépasse κ et nous pouvons appeler fork-join, sinon, un algorithme
séquentiel alternatif est exécuté (par exemple, deux branches sont exécutées séquentielle-
ment).
Pour notre technique de contrôle de granularité, nous fournissons une analyse théorique

dans le Work-Span Cadre ainsi qu’une analyse expérimentale rigoureuse sur un large éven-
tail de programmes parallèles issus de la suite PBBS sur trois machines avec différentes
architectures. Les expériences montrent que les performances des programmes écrits avec
notre contrôle de granularité automatique sont comparables ou meilleures que (jusqu’à 32%
plus rapides et pas plus de 6% plus lentes) les performances du code reglé manuellement.

3.2 L’Arbre Binaire de Recherche Concurrence-Optimal

L’implémentation d’une structure de données simultanée commence généralement par une
implémentation séquentielle. Lorsqu’elle est utilisée telle quelle dans un environnement
concurrent, une structure de données séquentielle peut exposer un comportement incorrect:
mises à jour perdues, réponses incorrectes, etc. Une façon de garantir le correction consiste
à protéger des parties du code séquentiel fonctionnant sur les données partagées avec
des primitives de synchronisation. De ce fait, certains ordonnancements, c’est-à-dire les
interconnexions des étapes de l’implémentation séquentielle, sont rejetés et, plus nous
synchronisons, plus nous rejetons d’ordonnancements.

En utilisant cette notion d’ordonnancements, on peut comparer la “simultanéité” des
algorithmes: l’implémentation linéarisée A est “plus concurrente” que l’implémentation
linéarisée B si l’ensemble des ordonnancements acceptés par A est un surensemble complet
des ordonnancements acceptés parB. Ainsi, une implémentation linéarisée est concurrence-
optimale si elle accepte tous les ordonnancements linéarisables. Nous nous attendons à ce
que cette implémentation fonctionne correctement car elle utilise exactement la synchro-
nisation nécessaire pour garantir la linéarisation de la structure de données. Notez que la
notion d’optimalité de concurrence (concurrency-optimality) est théorique et que, par con-
séquence, les implémentations concurrence-optimales seront performantes sur n’importe
quelle machine.

155

1

null

1

1

null
π1

2

1

null
π2π1

3

1

null

2

π1

3

π2

4

1

2
π1

3

π2

5

1

3

2

π1 π2

6

Figure A.3.: Un ordonnancement non-linéarisé

Par exemple, considérons l’arbre binaire de recherche séquentel partiellement-externe et
son ordonnancement suivant (Figure A.3):

1. initialement, l’arbre est constitué d’un nœud de valeur 1;

2. π1 = insert(2) trouve que 2 doit être dans l’enfant droit du nœud avec 1;

3. π2 = insert(3) trouve que 3 doit être dans l’enfant droit du nœud avec 1;

4. π1 et π2 créent de nouveaux nœuds;

5. π1 relie son nœud en tant qu’enfant droit du nœud avec 1;

6. π2 écrase l’enfant droit du nœud avec 1.

Cet ordonnancement est non linéarisable: l’opération insert(2) est perdue et par con-
séquent, il devrait être rejetée par toute implémentation concurrence-optimale.

Nous concevons un arbre binaire de recherche concurrence-optimal. Nous le réalisons
et le comparons aux implémentations de l’état de l’art. Pour vérifier la portabilité de la
technique concurrence-optimale nous effectuons des expériences sur deux machines avec
des architectures différentes. L’évaluation montre que notre implémentation est l’une des
meilleures et que, par conséquent, l’approche concurrence-optimale peut être un principe
de conception adéquat pour construire des structures de données portables et efficaces.

3.3 La Combinaison Parallèle

Nous avons discuté de deux méthodes portables qui tentent de fournir une synchronisation
optimale: un contrôle de la granularité automatique pour les programmes parallèles et le
principe de conception optimisant la concurrence pour la structure des données simul-
tanées. La première méthode est automatique: elle utilise le fait que la synchronisation
dans les programmes parallèles apparaît dans la forme spéciale et, par conséquent, elle
ne nécessite presque pas de modifier le programme d’origine. En revanche, l’optimalité
de concurrence exige que le programmeur conçoive la structure de données à partir de
rien, ce qui peut être non trivial. Il serait intéressant de vérifier s’il est possible de créer
automatiquement des structures de données concurrentes efficaces à partir de programmes
parallèles.

Les structures de données efficaces “compatibles avec la concurrence” (par exemple,
des ensembles basés sur des listes chaînées ou des arbres de recherche binaires) ne sont
généralement pas soumises à la compétition pour les données fréquente et sont conçues
avec un verrouillage affiné à la main. En revanche, les structures de données “contre-
concurrente” (par exemple, les piles et les files) sont sujettes à des goulots d’étranglement
séquentiels fréquents et les solutions basées sur la combinaison, où les requêtes sont syn-
chronisées en lots et chaque lot est appliqué séquentiellement, sont étonnamment bien
comparées à celles à grain fin. Une structure de données générale combine généralement
des caractéristiques de “compatibles avec la concurrence” et “contre-concurrence”, et une
question immédiate est de savoir comment la réaliser de la manière la plus efficace.

Nous proposons la combinaison parallèle, une technique qui peut être utilisée pour con-
struire une structure de données concurrente à partir de version parallèle en lots. Une

156

structure parallèle en lots est implémentée sous la forme d’un programme parallèle (fonc-
tion apply) qui applique un ensemble d’opérations de structure de données à la structure
de données séquentielle sous-jacente. En tant que critère de correction, généralement,
après l’exécution de la fonction apply, nous nous attendons à ce que les résultats des
opérations et l’état de la structure de données séquentielle sous-jacente satisfassent à une
application séquentielle des opérations. Il y a longtemps que les structure de données
parallèle en lots sont apparues, et la plus ancienne est peut-être l’arbre de recherche 2-3
par Paul et al. Comme autres exemples, nous pouvons considérer des files de priorité en
lots parallèles et des graphes en lots parallèles.
En combinaison parallèle, les processus partagent un ensemble de requêtes actives en

utilisant n’importe quel algorithme de combinaison. L’un des processus actifs devient un
combineur et forme un lot à partir des demandes définies. Ensuite, sous la coordination du
combineur, les propriétaires des requêtes collectées, appelées clients, exécutent la méthode
apply sur la structure de données parallèles en lots.
Cette technique devient pratique lorsque la surcharge de l’algorithme de combinaison est

compensée par les avantages de l’utilisation de la structure de données parallèles en lots.
Nous montrons que la combinaison et le traitement par lots parallèles sont rentables pour
les structures de données qui offrent un certain degré de parallélisme, mais qui présentent
toujours des goulots d’étranglement séquentiels.
Nous discutons de trois applications de la combinaison parallèle. Tout d’abord, nous

concevons des implémentations simultanées optimisées pour les charges de travail dom-
inées par la lecture, à partir de structures de données séquentielles. Intuitivement, les
mises à jour sont effectuées séquentiellement par le combineur et les opérations en lecture
seule sont effectuées par les clients en parallèle. Dans notre analyse des performances,
nous avons considéré une structure de données de graphe dynamique séquentielle D, qui
permet d’ajouter et de supprimer des arêtes (mises à jour), et de vérifier une connectivité
entre deux sommets (lecture seule). Nous implémentons le graphe dynamique simultané
résultant et le comparons à trois implémentations: la première utilise le verrou global pour
accéder à D; la deuxième utilise le verrou en lecture-écriture, c’est-à-dire qu’une requête
de connectivité prend le verrou en lecture et que d’autres requêtes prennent le verrou en
écriture; et enfin, le dernier utilise la combinaison à plat pour accéder à D. L’analyse
expérimentale montre que notre implémentation a un débit jusqu’à six fois supérieur sur
les charges de travail composées principalement de requêtes de connectivité pouvant être
parallélisées.
Ensuite, nous appliquons une combinaison parallèle à l’arbre de recherche binaire par-

allèles en lots. L’algorithme concurrent résultant est moins performant que les implémen-
tations de l’état de l’art, ce qui est attendu: l’arbre de recherche binaire est une structure
de données compatible avec la concurrence. Mais du point de vue théorique, notre arbre
offre la garantie (héritée de l’algorithme parallèles en lots) qu’il est toujours strictement
équilibré par rapport aux implémentations de l’état de l’art avec des schémas d’équilibrage
plus souple.
Enfin, nous appliquons la combinaison parallèle à la file prioritaire. En tant que contri-

bution secondaire, nous proposons une nouvelle file d’attente prioritaire parallèle en lots.
Nous comparons l’algorithme concurrent résultant avec les algorithmes de l’état de l’art
et montrons que notre implémentation est parmi les meilleures.
En résumé, notre analyse des performances montre que la combinaison parallèle peut

être utilisée pour construire des structures de données simultanées efficaces.

3.4 L’Assistance Comme Technique de Synchronisation

Jusqu’à présent, nous ne prenions en compte que les coûts de synchronisation dans les
structures de données concurrentes basées sur des verrous (deadlock-free ou starvation-
free). Dans de telles structures de données, la compétition pour les données est résolue en
protégeant un code fonctionnant sur les données partagées avec les mécanismes d’exclusion

157

mutuelle, à savoir des verrous.
Les garanties de wait-freedom ou lock-freedom ne peuvent pas être obtenues à l’aide de

verrous et doivent utiliser d’autres types de synchronisation. Pour garantir que ces progrès
garantissent l’absence de blocage indéfini d’un processus, il peut être nécessaire que les
processus restants aident le processus bloqué. Ce comportement est un type spécial de
synchronisation appelé assistance (helping).
Censor-Hillel et al. ont proposé une formalisation naturelle de l’assistance, basée sur

la notion de linéarisation: un processus p aide à l’opération d’un processus q dans une
exécution donnée si une étape de p détermine qu’une opération de q doit se linéariser
avant une autre opération par un processus différent dans toute extension possible. Il a
été montré que, dans un système doté de primitives de mémoire partagée: lecture, écriture,
compare&swap and fetch&add — l’assistance est nécessaire pour toutes implémentations
wait-free linéarisées d’un type de données d’ordre exact. De manière informelle, un type de
données séquentiel est d’ordre exact si, pour une séquence d’opérations, tout changement
de l’ordre relatif des deux opérations affecte le résultat d’au moins une autre opération.
Comme exemples de types de données d’ordre exact, Censor-Hillel et al. ont fourni la file
et la pile.

Cependant, nous observons que le type de données de la pile n’est pas un ordre exact.
Comme nous le montrons, dans toute exécution séquentielle sur une pile, nous pouvons
réorganiser deux opérations de telle manière qu’aucune autre opération ne puisse voir
la différence. Par conséquent, la preuve originale de Censor-Hillel et al. pour les types
d’ordre exact ne s’applique pas à la pile.
Dans cette thèse, nous présentons une preuve directe que la pile ne dispose pas d’une im-

plémentation sans assistance et wait-free. Notre preuve est similaire à celle d’origine: nous
choisissons une implémentation sans assistance et construisons un historique d’exécution
de telle sorte qu’un processus effectue un nombre infini d’étapes, mais ne termine jamais,
prouvant que l’implémentation n’est pas wait-free.

3.5 Prédiction de la Performance des Programmes à Grains Grossier
Le raisonnement à propos d’optimalité de concurrence fournit un moyen analytique de
comparer les surcharges de synchronisation des implémentations à l’aide d’ensembles
d’ordonnancement. Cependant, cette métrique peut ne pas être toujours utile pour la
capture des coûts de synchronisation. Les implémentations sont, en ce sens, incompara-
bles lorsque leurs ensembles d’ordonnancements ne sont pas liés par le confinement, bien
que leurs performances réelles puissent être très différentes. En outre, la portée des im-
plémentations qui activent la métrique basée sur la planification est limitée, par exemple,
les algorithmes lock-free sont difficiles à modéliser de cette manière.
La manière commune de comparer deux implémentations consiste à comparer leur débit

(throughput), c’est-à-dire le nombre d’opérations par unité de temps. Dans le dernier
chapitre technique de cette thèse, nous discutons d’une manière analytique d’évaluer le
débit d’une implémentation. Généralement, le débit est mesuré par des expériences et la
solidité des résultats dépend du cadre expérimental, de la charge de travail, de la machine,
etc. Il est donc intéressant de pouvoir quantifier théoriquement le débit.
Nous décrivons un modèle simple qui peut être utilisé pour prédire le débit d’un algo-

rithme à grain grossier basé sur des verrous. Nous montrons que notre modèle fonctionne
bien pour les structures de données simples qui exportent une méthode: une section cri-
tique de taille C protégée par un verrou CLH (acquérir le verrou, effectuer un travail de
taille C et libérer le verrou) suivi d’une section de taille parallèle P (simplement, travail
de taille P).

4 Publications
Les résultats présentés dans cette thèse sont apparus à l’origine dans les articles suivants:

158

[1] Umut A Acar, Vitaly Aksenov, Arthur Charguéraud, and Mike Rainey. Perfor-
mance challenges in modular parallel programs. In Proceedings of the twenty third
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), pages 381–382. ACM, 2018

[2] Vitaly Aksenov, Vincent Gramoli, Petr Kuznetsov, Anna Malova, and Srivatsan
Ravi. A concurrency-optimal binary search tree. In European Conference on Parallel
Processing (Euro-Par), pages 580–593. Springer, 2017

[3] Vitaly Aksenov, Petr Kuznetsov, and Anatoly Shalyto. Parallel combining: Benefits
of explicit synchronization. arXiv preprint arXiv:1710.07588, 2018

[4] Vitaly Aksenov, Petr Kuznetsov, and Anatoly Shalyto. On helping and stacks. In
Proceedings of NETYS 2018

[5] Vitaly Aksenov, Dan Alistarh, and Petr Kuznetsov. Brief-announcement: Perfor-
mance prediction of coarse-grained programs. In Proceedings of the thirty seventh
annual ACM Symposium on Principles of distributed computing (PODC), pages 411–
413, 2018

Parallélement à ce travail de doctorat, l’auteur a également été impliqué dans l’article
suivant.

[1] Umut A Acar, Vitaly Aksenov, and Sam Westrick. Brief-announsement: Parallel dy-
namic tree contraction via self-adjusting computation. In Proceedings of the twenty-
ninth ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 275–277. ACM, 2017

159

	Introduction
	Concurrent Programs
	Synchronization
	Overview of the Results
	Granularity Control Problem
	A Concurrency-Optimal Binary Search Tree
	Parallel Combining
	Helping as a Synchronization Technique
	Performance Prediction of Coarse-Grained Programs

	Publications
	Roadmap

	Background: Models and Definitions
	Parallel Models
	Parallel Random Access Machine
	Bulk Synchronous Parallelism
	Asynchronous Shared Memory

	Expressions of Parallel Programs
	Static Multithreading
	Dynamic Multithreading

	Data Structures
	Corectness, Progress Guarantees and Complexity Model of Concurrent Data Structures
	Data Types Considered in This Thesis

	Overview of Data Structure Implementations
	Binary Search Trees
	Parallel Batched Implementations
	Concurrent Implementations

	Skip-Lists
	Concurrent Implementations

	Priority Queues
	Sequential Binary Heap
	Parallel Batched Implementations
	Concurrent Implementations

	Automatic Oracle-Guided Granularity Control
	Introduction
	Overview
	Algorithmic Granularity Control
	Making Predictions
	Dealing with Nested Parallelism
	Dealing with Real Hardware
	Analysis Summary
	High-Level Pseudo-Code for the Estimator and Spguard
	Implementing Time Measurements
	Programming Interface

	Analysis
	Definitions and Assumptions
	Results Overview
	Additional Definitions
	Basic Auxiliary Lemmas
	Proofs

	Experimental Evaluation
	Experimental Setup
	Input Data Description
	Main PBBS Results
	Parallel BFS
	Portability Study
	Summary

	Related Work
	Conclusion

	A Concurrency-Optimal Binary Search Tree
	Introduction
	Binary Search Tree Implementation
	Sequential Implementation
	Concurrent Implementation

	Concurrency-Optimality and Correctness. Overview
	Proof of Correctness
	Structural Correctness
	Linearizability
	Deadlock-Freedom

	Proof of Concurrency-Optimality
	Implementation and Evaluation
	Conclusion

	Parallel Combining: Benefits of Explicit Synchronization
	Introduction
	Parallel Combining and Applications
	Read-optimized Concurrent Data Structures
	Parallel Batched Algorithms

	Binary Search Tree with Parallel Combining
	Contains Phase
	Update Phase
	Analysis

	Priority Queue with Parallel Combining
	Combiner and Client. Classes
	ExtractMin Phase
	Insert Phase
	Analysis

	Experiments
	Concurrent Dynamic Graph
	Binary Search Tree
	Priority Queue

	Related Work
	Conclusion

	On Helping and Stacks
	Introduction
	Model and Definitions
	Helping and Exact Order Types
	Wait-Free Stack Cannot Be Help-Free
	Help-Free Stacks Using Reads, Writes and Compare&Swap
	Adding Fetch&Add

	Universal Construction with Move&Increment
	Related Work
	Conclusion

	Performance Prediction for Coarse-Grained Programs
	Introduction
	Abstract Coarse-Grained Synchronization
	Model Assumptions
	CLH Lock
	Cost of an Operation
	Evaluating Throughput

	Experiments
	Conclusion

	Conclusion and Future Work
	Bibliography
	Coûts de Synchronization dans les Programmes Parallèles et les Structures de Donnèes Simultanées

