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Mathematical Modeling and Evolutionary Processes

Abstract: The research presented in this thesis concerns different topics in the field of Biomath-
ematics. I address diverse questions arising in biology (and related to complex systems) with
mathematical and numerical methods. These questions are: (i) Are passive-processes enough to
justify the asymmetric distribution of damaged proteins during and after yeast cytokinesis? (ii)
What processes are behind the complex patterns of expansion of Amyloid beta in the brains of
patients with Alzheimer’s disease? (iii) What is behind the clustering and cline-like dichotomy
in models of evolution along environmental gradients? (iv) How does this dichotomy affect the
spatial dynamics of invasions and range expansions? (v) How does multi-stability manifest in
these models? These questions are approached (at different scales, some fully and some partially)
with different theoretical methods. Results are expected to shed light on the biological processes
analyzed and to motivate further experimental and empirical work which can help solve lingering
uncertainties.

Keywords : Mathematical modeling, Asymmetric cell division, Aggregate-dependent aging in
yeast, Adaptive evolution, Adaptive diversification, Spatial invasions, Equation-free analysis

Modélisation Mathématique et Processus Évolutifs

Résumé: La recherche présentée dans cette thèse concerne différents sujets dans le domaine de la
biomathématique. J’aborde diverses questions en biologie (et liées aux systèmes complexes) avec
des méthodes mathématiques et numériques. Ces questions sont les suivantes: (i) Les processus
passifs sont-ils suffisants pour justifier la distribution asymétrique des protéines endommagées
pendant et après la cytokinèse de la levure? (ii) Quels processus sont à l’origine des schémas
complexes d’expansion de l’amyloïde bêta dans le cerveau des patients atteints de la maladie
d’Alzheimer? (iii) Qu’y a-t-il derrière la dichotomie de ‘clusters’ vs. ‘cline-like’ dans les modèles
d’évolution le long de gradients environnementaux? (iv) Comment cette dichotomie affecte-
t-elle la dynamique spatiale des invasions? (v) Comment la multi-stabilité se manifeste-t-elle
dans ces modèles? Ces questions sont abordées (à différentes échelles, certaines totalement et
certaines partiellement) avec différentes méthodes théoriques. Les résultats devraient permettre
de mieux comprendre les processus biologiques analysés et de motiver la poursuite des travaux
expérimentaux et empiriques susceptibles de contribuer à résoudre les incertitudes persistantes.

Mots clés : Modélisation mathématique, Division cellulaire asymétrique, Vieillissement chez la
levure, Évolution adaptative, Diversification adaptative, Invasions spatiales, Analyse sans équa-
tions
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Résumé

Cette thèse est divisée en deux sections principales. La première consiste en une recherche
utilisant des modèles empiriques pour traiter différentes questions relatives à l’agrégation des
protéines, à la protéostase et à la protéotoxicité. La deuxième partie est axée sur la théorie
(même si elle est biologiquement motivée) et concerne la recherche basée sur un modèle
mécaniste d’évolution spatialement explicite et ses prédictions concernant l’évolution de la
diversité et la dynamique spatiale de l’invasion de populations colonisatrices.

La première partie de la thèse (Chapitres II et III) présente deux projets de recherche:
un finalisée et publiée et un en cours (avec les résultats présentés sous la forme d’une ‘pro-
ceeding’ attendue a évoluer dans une autre publication). La recherche dans cette partie
était motivé expérimentalement. Des questions ouvertes en biologie cellulaire et médicale
découlant d’observations expérimentales et empiriques devaient être traitées (du moins en
partie) par des analyses mathématiques et numériques. Le premier est: les mécanismes pas-
sifs sont-ils suffisants pour expliquer la ségrégation asymétrique des protéines endommagées
entre les cellules mères et filles pendant et après la division des cellules de levure? Et le
second: Comment les processus moléculaires et mésoscopiques dictent-ils (modèlent-ils) la
dynamique de propagation et de prolifération des oligomères dans le cerveau des patients
atteints de la maladie d’Alzheimer? Quel est le lien entre les signes et symptômes macro-
scopiques et ces interactions à une échelle inférieure?

L’origine des deux questions peut être attribuée à des articles expérimentaux fondamen-
taux publiés au cours des deux dernières décennies [1–6]. Dans les deux cas, les croyances
traditionnelles concernant les processus biologiques complexes ont été remises en cause par de
nouvelles preuves expérimentales, ouvrant ainsi une fenêtre sur laquelle une analyse mathé-
matique et numérique pourrait aider à résoudre les enquêtes en cours ou récemment dévelop-
pées.

La deuxième partie de la thèse - et de ce manuscrit - (Chapitres IV et V) est centrée sur
un sujet de recherche majeur dans le domaine des mathématiques éco-évolutives. Il s’agit
d’analyser, à l’aide de méthodes mathématiques et numériques, la dynamique d’un modèle
(et de certaines de ses extensions) introduite pour la première fois dans [7]. Cette recherche a
évolué en deux articles —un non publié (disponible sur HAL [8] et figshare), qui a par la suite
été inclus dans le ‘Supporting Information’ du second [9]– et un ‘working paper’ avec des
résultats qui sont présentés ici. Le modèle original basé sur les individus stochastiques - sur
lequel cette recherche est motivée - [7] decrit la dynamique évolutive et spatiale (et leur inter-
action) d’une population le long d’un gradient environnemental et soumise aux interactions
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écologiques. Le modèle met en évidence une dynamique complexe du comportement collectif
ayant de fortes implications sur l’émergence de la diversification (et de la spéciation lorsque
la reproduction est sexuée) et sur la dynamique des invasions spatiales. Ce fragment de la
thèse étudie le comportement de ce modèle en utilisant différentes approches numériques et
mathématiques. En outre, il étudie également ses extensions et sa signification biologique,
en particulier en ce qui concerne l’émergence et l’établissement de la diversité et le comporte-
ment des modèles d’invasion lorsque l’évolution interagit à travers une adaptation locale avec
une dispersion.

Première partie

S. cerevisiae vieillissement

Objectifs de recherche

Dans cette partie de la thèse, le but est d’évaluer les processus intracellulaires potentiels
responsables de l’hérédité asymétrique des agrégats de protéines endommagés après la cy-
tokinèse, et donc du vieillissement, chez la levure, bien que l’on espère que les résultats seront
étendus à d’autres organismes plus complexes. Un travail mathématique et numérique est
nécessaire compte tenu du fait que la recherche expérimentale est restée jusqu’à présent peu
concluante. Des expériences parfois similaires ont montré des résultats fondamentalement
différents [1, 2, 10]. Cela suggère que l’organisme et les processus impliqués pourraient être
complexes et très sensibles à l’environnement expérimental.

Le premier objectif est de construire un modèle complet incluant tous les mécanismes
(possibles) essentiels pouvant potentiellement affecter la dynamique des agrégats ainsi que
les processus passifs évalués. Deux grands organites pouvant fortement interférer avec la
diffusion des agrégats sont également inclus. La fusion et la croissance d’agrégats sont aussi
incorporés, ainsi qu’une jeune cellule en croissance avec une dilution spécifique. De plus, le
mouvement des agrégats entre les deux cellules est également incorporé.

Toutes les valeurs des paramètres sont basées sur les données expérimentales existantes
tout en vérifiant soigneusement les conditions expérimentales dans lesquelles elles ont été
acquises afin d’éviter toute interprétation erronée des résultats.

Une comparaison approfondie entre les résultats fournis par le modèle et les données
expérimentales disponibles à court et à long terme est effectuée pour évaluer la robustesse de
la suffisance des mécanismes passifs. Naturellement, le modèle devrait reproduire les obser-
vations utilisées pour plaider en sa faveur, mais il semble essentiel d’évaluer ses performances
en ce qui concerne la comparaison avec d’autres données ‘externes’ de diverses publications.
Plus précisément, celle acquise dans différentes conditions expérimentales et sur différentes
échelles de temps (le cycle de vie complet).

Finalement, on vérifie si les prédictions du modèle s’améliorent ou empirent lorsque des
mécanismes actifs sont incorporés.
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Méthodologie

Le modèle à trois dimensions est construit dans le but de tester la suffisance des mécanismes
passifs. Les processus incorporés sont illustrés dans la Figure II.1 du Chapitre II. Un grand
nombre de simulations numériques de ce modèle pour des échelles de temps courtes (sur un
cycle de division) et longues (sur tout le cycle cellulaire) sont effectuées afin de calculer des
statistiques sur des quantités pour lesquelles une mesure expérimentale est disponible. Ces
statistiques sont: les volumes globaux totaux des agrégats (et les concentrations relatives
dans chaque cellule) et leurs nombres, la probabilité d’héritage par la fille d’au moins un
agrégat (le cas échéant) et du plus grand agrégat, le nombre de croisements entre comparti-
ments dans chaque direction et le déplacement quadratique moyen.

Les résultats numériques sont validés avec un modèle mathématique original constitué
d’un système d’équations différentielles ordinaires couplées. Le modèle calcule le comporte-
ment temporel du nombre moyen d’agrégats et de volumes d’agrégats dans chaque cellule et
s’inspire du travail de [11–13]. L’accord entre les modèles mathématiques et informatiques
est très précis à court et à moyen terme (jusqu’à une ou plusieurs divisions). À plus long
terme, le modèle mathématique sert de limite supérieure aux concentrations globales chez
la mère car il traite tous les agrégats de la même manière, minimisant ainsi la fusion dépen-
dante de la taille et les taux d’échappement.

Un modèle comportant différentes formes de contrôle de qualité actif peu fréquent (et
difficile à détecter expérimentalement) est également introduit. Le principe de base est
que la plupart des agrégats sont à tout moment soumis uniquement à des forces passives.
Parfois, cependant, le mouvement des agrégats peut être perturbé (individuellement) par
dérive vers le pôle de la cellule mère, confinement aux surfaces organellaires ou fixation
sur la membrane. Ces variantes permettent de vérifier si le contrôle de qualité actif peu
fréquent peut potentiellement réconcilier le travail et les conclusions d’études expérimentales
divergentes.

Résultats obtenus

À des échelles de temps courtes et moyennes (au plus un cycle de division cellulaire) et,
comme prévu, le modèle de type passif (‘passive-only-model’ POM) réussit bien à reproduire
les mesures empiriques utilisées pour justifier la suffisance de mécanismes passifs [1, 14]. En
particulier, le déplacement quadratique moyen des agrégats est en accord avec la prédiction
(à mi-temps) de [1]. Il reproduit également les résultats de [1, 14, 15] en ce qui concerne
la concentration relative de protéines mal repliées dans les deux compartiments. De plus,
le modèle reproduit également les résultats numériques et expérimentaux de [14] concernant
les nombres agrégés et les événements de fusion.

Un avertissement est émis lors de la comparaison du nombre d’événements de croisement
(dans les deux sens) calculés à l’aide du POM et des observations expérimentales de [1, 14].
Contrairement aux prévisions des événements de croisement du cou entre les deux compar-
timents de [14], elles sont très fréquentes et presque vingt fois plus importantes que celles
mesurées dans leurs expériences. Ce résultat a été validé avec les prédictions mathématiques
dérivées concernant les temps de sortie moyens des particules diffusantes dans des domaines
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confinés. De plus, il a été testé à partir de différentes valeurs de paramètres qui corre-
spondraient à différentes configurations expérimentales. Il est rappelé que l’hypothèse d’un
mouvement peu fréquent entre les compartiments était la prémisse qui consistait à écarter
le transport entre les compartiments dans le modèle de calcul de [14].

Aux longues échelles de temps (sur tout le cycle cellulaire de la levure), la divergence entre
les prévisions du modèle et leurs mesures expérimentales respectives augmente. Bien que le
nombre d’agrégats - sous les valeurs de paramètres correspondant aux taux d’agrégation dans
les cellules dans la nature - concorde avec les résultats de [16], presque toutes les prévisions
sont en désaccord avec les données expérimentales disponibles concernant l’accumulation
de protéines endommagées. Spécifiquement, les volumes d’agrégats se stabilisent après
quelques générations, ce qui contredit l’hypothèse selon laquelle les protéines endommagées
s’accumulent avec l’âge réplicatif et entraînent les cellules de levure vers un vieillissement
dépendant de l’agrégat. Les probabilités d’héritage d’au moins un agrégat et du plus grand
agrégat par la fille ne concordent pas non plus avec les mesures empiriques de [17]; ils sont
respectivement environ trois fois et dix fois plus élevés.

Le nombre de croisements entre compartiments reste supérieur de son équivalent expéri-
mental à long terme. Bien que le nombre diminue après quelques générations (ou augmente
à des taux d’agrégation faibles), à mesure que la taille des agrégats augmente, il se stabilise
généralement à une valeur supérieure d’environ un ordre de grandeur.

Lors de l’ajout du contrôle de qualité actif au POM, le désaccord avec les données expéri-
mentales est considérablement réduit. Le nombre de passages à niveau est fortement réduit
(pour tous les taux d’agrégation) à des échelles de temps courtes et longues et l’accumulation
de dommages se produit à des taux similaires aux mesures empiriques, de même que les prob-
abilités d’heritage de au moins un agrégat et du plus grand. De plus, en raison de sa faible
fréquence, le contrôle de qualité actif est également compatible avec le déplacement quadra-
tique moyen mesuré expérimentalement. Il est à noter que les résultats de ce modèle reposent
sur des paramètres pour lesquels aucune validation expérimentale n’a été effectuée.

Discussion

À des échelles de temps courtes, correspondant à un cycle de division, le modèle (pas-
sif uniquement) est capable de reproduire les résultats expérimentaux utilisés en faveur de
l’absence du contrôle de qualité actif. Cependant, le transport entre compartiments est signi-
ficativement plus fréquent que celui observé dans les expériences [1, 14]. À longue échéance,
l’accumulation de dommages graduels dans les cellules plus anciennes ne se produit que dans
des taux d’agrégation élevés, semblables à ceux observés dans les cellules induites par le
stress. Ceci contraste les observations de [18]. Lors de l’introduction du contrôle de qualité
actif, les différences avec les données expérimentales sont substantiellement améliorées, sug-
gérant sa présence dans des cellules de levure réelles.

La recherche détaillée et complète sur le sujet est présentée au chapitre II sous la forme
de la version acceptée de l’article, qui a par la suite été publiée dans Biophysical Journal [19].
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Propagation spatiale amyloïde-bêta (Aβ) dans la maladie d’Alzheimer

Objectifs de recherche

La recherche sur la dynamique spatiale de la propagation et de la prolifération de Aβ a
pour objectif général de construire (ou de contribuer à la formation de) un modèle mathé-
matique et numerique à plusieurs échelles; des processus biomoléculaires microscopiques à la
dynamique macroscopique de grands Aβ dépôts (plaques et fibrilles) en s’appuyant fortement
sur les mécanismes biologiques intervenant à chaque échelle. En partant de la dynamique
moléculaire élémentaire des peptides Aβ et de leur interaction avec un ou plusieurs neu-
rones, la complexité augmente à différentes échelles en incorporant les différents processus
biologiques connus pour avoir un effet sur la propagation de l’amyloïde.

Dans le travail présenté dans le cadre de cette thèse, l’objectif est d’introduire ce modèle
mathématique fondamental, potentiellement valable aux échelles microscopique et méso-
scopique. En outre, décrire les processus qu’il incorpore, ses motivations biomoléculaires,
sa forme sans dimension, ainsi que les résultats obtenus concernant les solutions d’équilibre
avant la nucléation primaire et sa formulation variationnelle. Le modèle de calcul utilisé
pour les simulations est basé sur la méthode des éléments finis.

Méthodologie

Le modèle mathématique, présenté au chapitre III, analyse la dynamique moléculaire des es-
pèces monomères, proto-oligomères (solubles) et oligomères (insolubles et stables) Aβ dans
un domaine spatial à deux dimensions représentant la région autour d’un ou de quelques
neurones. Il suppose un contexte in vivo dans lequel la nucléation primaire a déjà eu lieu
(puisqu’il s’agit d’un événement rare) et se concentre sur la dynamique de concentration
ultérieure, supposée déterministe. Le modèle est basé sur des observations empiriques con-
cernant le comportement de la polymérisation (agrégation) et de la dépolymérisation des
peptides Aβ jusqu’à ce qu’une taille d’oligomère insoluble de type micelle stable soit at-
teinte au moment où protéotoxicité est maximale. La taille des oligomères est supposée
être discrète (en termes de monomères) en conséquence des échelles spatiales microscopiques
considérées. Les nouveaux monomères sont produits à partir d’une source homogène située
à la membrane des neurones. Cette production est progressivement modifiée à mesure que la
concentration en oligomères augmente au voisinage des cellules. La manière exacte dont les
effets protéotoxiques des oligomères Aβ affectent la production future dépend linéairement
de l’historique de la concentration. Pour des raisons de simplicité, le modèle ne considère pas
les prions directement. Les proto-oligomères sont formés par polymérisation de monomères
et peuvent se fragmenter en proto-oligomères de taille inférieure à moins d’atteindre la taille
critique à laquelle ils deviennent stables. La diffusion est supposée être le principal moteur
déterminant la répartition spatiale des concentrations; il dépend de la taille et suit la relation
de Stokes-Einstein.

Mathématiquement, le modèle consiste en un système de i0 équations aux dérivées par-
tielles couplées (EDP de réaction-diffusion); i0 étant la taille des oligomères pour lesquels
les conformations deviennent stables et insolubles. Le terme de réaction correspond aux
vitesses de polymérisation, de dépolymérisation et de fragmentation et le terme de diffusion
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à la diffusion dépendant de la taille.

Le modèle computationnel est dérivé de la forme variationnelle du système d’équations
différentielles. Pour les simulations, une méthode d’éléments finis est utilisée.

Résultats obtenus

Les résultats incluent la formulation et l’introduction des modèles mathématique (y compris
sa forme sans dimension) et numérique. Aussi, des résultats mathématiques du système sont
obtenus. Cela concerne la dynamique de masse (et la liaison) et la solution d’équilibre pour
la concentration de monomères autour d’un seul neurone de l’état de santé du système avant
la nucléation primaire.

Avec le modèle numérique, des résultats des simulations ont été obtenus qui montrent
déjà une relation complexe entre la propagation spatiale et les paramètres du modèle. En
particulier, une relation non linéaire entre la propagation rapide des oligomères (provoquant
la mort neuronale) et les taux de fragmentation. Lorsque les taux de fragmentation sont
élevés, la diffusion rapide de petits oligomères et de monomères entraîne la propagation de
Aβ mal repliée, mais seule une faible concentration d’oligomères prétéotoxiques autour des
cellules se produit. En revanche, une très faible fragmentation donne une concentration
élevée en oligomères mais qui se propagent lentement dans tout le domaine.

Deuxième partie

Diversification adaptative dans les gradients environnementaux

Contexte scientifique

Le contexte spatial des branchements évolutifs concerne les conditions et les mécanismes
sous-jacents à l’apparition et au maintien de la diversité phénotypique et de la spéciation au
sein de populations explicitement spatiales [20–22]. C’est une extension naturelle des mod-
èles unidimensionnels puisque les formes de spéciation et de diversification sont définies en
fonction de leur contexte spatial. L’émergence de diversité ou de nouvelles espèces (en cours
de reproduction sexuée) est associée à l’apparition d’une multimodalité dans l’espace phéno-
typique, qui s’accompagne généralement d’un regroupement le long des dimensions spatiales
apparaissant comme conséquence de l’interaction entre processus évolutifs et écologiques.

Il existe un fort consensus sur le fait que la diversification (spéciation) [23–26] se produit
fréquemment dans l’allopatrie en raison de l’obstruction au mouvement et/ou du flux de
gènes par des barrières géologiques ou géographiques. Cependant, en l’absence d’obstacles
géographiques, les conditions précises qui favorisent ou entravent l’émergence de la diversité
restent floues malgré un intérêt croissant, car les preuves expérimentales et empiriques se
sont accumulées au cours des dernières années pour les organismes sexuées [27–35] et asex-
uées [33, 36–40].
.
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Objectifs de recherche

Des questions fondamentales concernant la formation et la dynamique des groupes spatiales
et phénotypiques en réponse à l’adaptation et à la dispersion locales restent sans réponse.
Premièrement, notre compréhension des conditions requises pour la formation et la persis-
tance de ces groupes est encore incomplète. En particulier, comment la mobilité individuelle
affecte-t-elle leur formation et comment l’effet de la mobilité individuelle interagit-il avec
l’échelle à laquelle les individus se disputent les ressources? Quel est le comportement des
dynamiques transitoires et leur relation avec leurs limites asymptotiques? Comment la na-
ture délimitée de l’espace géographique et phénotypique influence-t-elle la dynamique du
regroupement spatial et phénotypique? Pouvons-nous prédire les caractéristiques clés de la
structure émergente de la population, telles que la distance inter-groupale et le nombre de
groupes, à partir de paramètres individuels?

Dans la recherche présentée dans le “Supporting Information” du Chapitre IV, ces ques-
tions sont traitées selon différentes méthodes mathématiques et numériques afin de fournir
un cadre théorique plus solide pour l’étude de la diversification le long de gradients environ-
nementaux.

Méthodologie

La recherche repose sur un modèle stochastique et son approximation d’EDP [7]. La dy-
namique du système, à la fois asymptotique et transitoire, est étudiée par analyse numérique
et mathématique. En particulier, leur lien avec les paramètres individuels, les conditions
initiales et les conditions limites. Cela se fait par des simulations numériques (utilisant une
méthode explicite d’Euler) et par une analyse de stabilité de Turing (à la fois analytique
et numérique). En outre, une approche Hamilton-Jacobi basée sur la concentration [41–45]
est utilisée pour prédire les caractéristiques de modèles périodiques asymptotiques. Cette
approche est complétée par un modèle numérique qui utilise des méthodes raffinées.

Résultats et discussion

Les résultats montrent des gammes plus larges de paramètres sur lesquels se produisent
des goupes spatiales et phénotypiques; différents régimes transitoires de la dynamique des
phénotypes et la relation avec des multiples attracteurs; et sur des aperçus quantitatifs du
comportement asymptotique. Ces dernières sont basées sur l’analyse de stabilité et sur
l’approximation Hamilton-Jacobi, où les distances entre les groupes ainsi que leur direction
d’apparition sont calculées. De plus, nous présentons des simulations de la dynamique spa-
tiale sous aucune évolution, ce qui corrobore l’idée que le regroupement est renforcé par la
rétroaction entre les processus écologiques et évolutifs.

De plus, les résultats conduisent à deux résultats remarquables sur la dynamique des
clusters. Premièrement, le système présente multi-stabilité. Par conséquent, de petites vari-
ations dans les conditions initiales peuvent conduire à différents attracteurs. De plus, les
perturbations peuvent amener la population à basculer rapidement entre différents états
stables de distribution spatiale et de composition phénotypique. Ceci est exploré plus en
détail dans le travail effectué dans le chapitre V. Deuxièmement, les taux de formation de
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groupes ne sont pas constants. Lorsque la population se propage, le temps de formation
des groupes périphériques varie, ce qui entraîne une invasion fluctuante dans laquelle la
dynamique transitoire de l’adaptation locale dans les groupes établies est essentielle pour
prédire la dynamique à long terme de l’invasion.

La recherche détaillée et complète sur ce sujet est disponible sur HAL [8]. Ici, une version
modifiée est présentée dans le “Supporting Information” de l’article accepté par Ecology
Letters.

La dynamique spatiale des invasions

Contexte scientifique

Comprendre la dynamique d’invasion des populations biologiques colonisant de nouveaux en-
vironnements a acquis une importance sans précédent et substantielle au cours des dernières
années en raison des taux alarmants de destructions d’habitat dues aux expansions agricole
et urbaine, au changement climatique impulsé par l’homme et à l’exploitation minière, en-
tre autres causes diverses. Dans ce contexte, des modèles mécanistes sont nécessaires pour
traiter des problèmes liés a la prévision et le contrôle des invasions biologiques et la gestion
des translocations, et les introductions et réintroductions d’espèces.

Les modèles théoriques classiques des expansions spatiales, fondés sur les principes de
la dynamique des populations et de la génétique quantitative, ont prédit l’expansion à une
vitesse constante [46–48]. Des observations récentes montrant des invasions non constantes
ont été attribuées à des facteurs environnementaux ou stochastiques extrinsèques. Cepen-
dant, il a été suggéré ces dernières années que les facteurs écologiques pourraient également
influer sur la dynamique de l’invasion [49, 50].

Objectifs de recherche

Dans le chapitre IV, la recherche traite de la manière dont les effets combinés de l’adaptation
locale et de l’évolution de la dispersion affectent la dynamique éco-évolutive des invasions
spatiales. Cette recherche s’appuie sur les résultats résumés dans la section précédente. Plus
particulièrement, sur la manière dont la dichotomie de groupements vs expansion continue
influence les taux et les structures de répartition spatiale de la population. Il est présenté
comme la version acceptée de l’article, publiée ultérieurement dans Ecology Letters [9].

Méthodologie

La recherche repose sur deux modèles. Le premier étant le modèle introduit dans [7]. Le
second est construit comme une extension avec une dispersion qui évolue. Dans ce dernier
cas, la dispersion a un coût énergétique qui augmente les taux de mortalité naturelle à un
degré dépendant d’un nouveau paramètre θ.

Les modèles sont analysés avec des simulations du modèle stochastique et du limite
d’EDP. Les simulations permettent de mesurer les vitesses d’invasion spatiale. L’analyse de
la stabilité de Turing est étendue à la dispersion évolutive et l’approche de Hamilton Jacobi
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[41] est orientée vers l’analyse des invasions spatiales.

Enfin, différentes extensions du modèle sont explorées (avec ‘Allee Effects’, deux dimen-
sions spatiales et une pente de gradient arbitraire) pour montrer que les résultats qualitatifs
sont conservés dans des scénarios plus réalistes.

Résultats obtenus

Les premiers résultats obtenus à partir de notre analyse sont basés sur le modèle original.
Les simulations montrent que les expansions spatiales ne se produisent pas nécessairement
comme des ondes progressives en expansion. Au lieu de cela, et en fonction des paramètres,
les expansions peuvent être ‘tirées’ par la formation de groupes ou ‘poussées’ par l’expansion
frontale d’une onde progressive. De plus, les distributions transitoires peuvent ne pas refléter
les schémas asymptotiques de la population..

La vitesse d’invasion peut varier qualitativement et quantitativement en fonction des
différents régimes d’expansion. Les fronts d’invasion ‘tirés’ ont des vitesses d’invasion oscil-
lantes (qui peuvent chuter à zéro) en conséquence des phases d’invasion et d’adaptation. En
revanche, les invasions ‘poussées’ montrent des vitesses d’invasion constantes plus conformes
aux prédictions traditionnelles. Pour les valeurs du paramètre situées entre les deux cas,
l’invasion peut se dérouler à des vitesses légèrement variables.

L’approche Hamilton-Jacobi révèle que les groupes spatiales et phénotypiques s’influencent
mutuellement, ce qui explique également pourquoi les vitesses d’invasion varient.

Lorsque la dispersion et les traits de niche évoluent simultanément, la dispersion moyenne
a tendance à diminuer en raison de l’augmentation des coûts de mortalité. Toutefois, cela
n’est pas homogène, car les individus très dispersés peuvent être sélectionnés positivement
sur les fronts de la population et dans les régions situées entre les groupes. De plus,
trois régimes d’invasion alternatifs peuvent être observés. Pour une très faible dispersion,
l’invasion procède par la formation de groupes qui ‘tirent’ l’expansion. Pour une disper-
sion très élevée, l’invasion est ‘poussée’ par l’expansion d’une onde continue. En ce qui
concerne la dispersion intermédiaire, les deux régimes peuvent coïncider, en conséquence de
l’interaction des rétroactions éco-évolutives. Ces différents schémas d’expansion entraînent
différents régimes temporels de vitesse d’invasion.

Discussion

Les résultats de cette recherche sont pertinents car ils suggèrent de nouvelles explications
alternatives pour les vitesses non constantes dans les extensions de la plage de population.
En particulier, il est suggéré que l’interaction entre l’adaptation locale et l’évolution de la
dispersion, puisse conjointement justifier les fluctuations de la vitesse d’invasion.
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Analyse sans-équation de la diversification adaptative

Contexte scientifique

L’Analyse sans-équation, [51–53], a été développée au cours des dernières décennies comme
méthode pour étudier des systèmes complexes où les descriptions se situent à l’échelle mi-
croscopique et l’intérêt réside dans le comportement macroscopique. Dans ces systèmes,
les ‘règles’ régissant les actions d’un grand nombre d’individus (ou de parties) sont claires.
En revanche, les équations décrivant le comportement macroscopique (en termes de faible
nombre de quantités macroscopiques) sont considérablement difficiles à analyser ou, dans la
plupart des cas, indisponibles.

La méthode repose sur de courtes simulations des configurations microscopiques initial-
isées de manière appropriée (‘expériences numériques’) qui permettent d’estimer des quan-
tités qu’il faudrait inférer autrement par l’analyse mathématique de formules ou d’équations
explicites décrivant le comportement macroscopique. D’où le terme ‘sans équation’, puisque
ces équations n’ont pas besoin d’être explicitement écrites.

Objectifs de recherche

L’objectif de la recherche dans le Chapitre V est d’utiliser des méthodes sans équation pour
analyser les équilibres macroscopiques et la multi-stabilité dans le système stochastique in-
troduit dans [7]. Multi-stabilité des distributions asymptotiques qui se fragmentent en un
nombre différent de groupes isolés, fortement dépendants des conditions initiales et de la
frontière du domaine.

Méthodologie

Les simulations du modèle microscopique (le pas de temps microscopique) sont effectuées
selon la méthodologie décrite dans IV. La première analyse est limitée à la dépendance
macroscopique du paramètre δ (la force de la concurrence) et elle étudie chaque transition
d’équilibres asymptotiques séparément. Dans chaque cas, les macro-variables naturelles sont
les coefficients de Fourier de la densité des projections sur la ligne diagonale (c’est-à-dire où
la population se concentre normalement).

Résultats obtenus

L’implémentation de la méthode ‘semi-implicite’ peut servir de cadre général à utiliser lorsque
les systèmes microscopiques sont fortement stochastiques et que les temps de simulation sont
longs.

Les résultats des simulations ont montré une relation concernant N (la taille de la pop-
ulation) et δ. En ce qui concerne les équilibres macroscopiques et la multi-stabilité, une
très forte hystérésis a été détectée. De plus, il a été observé que près des valeurs critiques,
où la stabilité des distributions microscopiques est perdue, le système peut être fortement
désordonné, de manière similaire aux particules proches des transitions de phase.
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La recherche devrait évoluer vers le calcul d’un diagramme de bifurcation en fonction
du paramètre δ. Les résultats suggèrent une progression de ‘saddle nodes’. Si elles sont
confirmées, les prévisions permettraient de mieux comprendre la dépendance quantitative de
la multi-stabilité.
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I – Thesis Overview

This thesis is divided into two major sections. The first is data-driven and consists on
research which uses empirical models to address different questions related to protein aggre-
gation, proteostasis and proteotoxicity. The second part is theory-driven (albeit biologically
motivated) and concerns research based on a mechanistic model of spatially-explicit evolu-
tion and its predictions concerning the evolution of diversity and the spatial dynamics of
invasion of colonizing populations.

Research in the first part is based on a thorough analysis of empirical observations and
data from biological systems. Mathematical and computational models were made to answer
questions that remained elusive despite experimental and/or empirical work. In contrast, re-
search in the second part built upon an existing mechanistic mathematical model and aimed
to analyze its dynamics –and of its extensions– and their biological significance.

The first part of the thesis (Chapters II and III) presents two research projects: one
concluded and published and one in progress (with results submitted in the form of a pro-
ceeding which are expected to evolve shortly into another publication). Research in this part
was experimentally and data-driven. Specific interrogatives and open questions in Cell and
in Medical Biology arising from experimental and empirical observations were aimed to be
answered (at least partially) through mathematical and numerical analysis. The first one
being: are passive mechanisms enough to account for the asymmetric segregation of damaged
proteins between mother and daughter cells throughout and after yeast cell division? And
the second one: How do molecular and mesoscopic processes dictate (shape) the dynamics
of propagation and proliferation of oligomers in the brains of patients with Alzheimer’s Dis-
ease? How do the macroscopic signs and symptoms relate to these lower-scale interactions?

The origin of both questions can be traced to seminal experimental articles published
in the last two decades [1–6]. In both cases, traditional beliefs concerning complex biologi-
cal processes were challenged through new experimental evidence, hence opening a window
where mathematical and computational analysis could help solve the lingering or recently
developed inquiries.

The second part of the thesis –and of this manuscript– (Chapters IV and V) is centered
around one major research topic in the field of Eco-Evolutionary Mathematics. It aims to
analyze, with both mathematical and numerical methods, the dynamics of a model (and
some of its extensions) first introduced in [7]. This research evolved into two articles – one
unpublished (available on HAL [8] and figshare) which was later included as part of the
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2 Chapter I. Overview

Supporting Information of the second one [9]– and one working paper with results which
are presented here and which have opened the door to further perspective explorations.
The original stochastic individual-based model –on which this research is motivated– [7]
aims to describe the evolutionary and spatial dynamics (and their interplay) of a population
along an environmental gradient when subject to ecological interactions. The model shows
complex dynamics of collective behavior with strong implications concerning the emergence
of diversification (and speciation when reproduction is sexual) and the dynamics of spatial
invasions. This fragment of the thesis investigates the behavior of this model using different
computational and mathematical approaches. In addition, it also studies its extensions and
biological significance, particularly concerning the emergence and establishment of diversity
and the behavior of patterns of invasion when evolution interacts through local adaptation
with dispersal.
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I.1 Part I

Aging is a evolutionarily conserved process which manifests and affects living cells rang-
ing from unicellular microorganisms to complex mammalian cells [54–57]. In general, aging
occurs through a gradual decay in cellular and organelle functions which affect the most
basic cellular processes and molecular pathways, and reduce reproduction and survival rates
[56, 58]. In mammals, this deterioration increases risk of disease in general and, to a larger
extent, the risk of age-related diseases which normally involve disease-associated proteins
with complex pathways [59–61].

Throughout their lives, cells can accumulate detrimental material which accelerates ag-
ing [55, 62]. Aggregate-dependent aging refers to the a accumulation of damage in the form
of protein aggregates [63] and its rate depends on several aspects both internal (e.g ge-
netic [64]) and external (e.g environmental factors [65]). The accumulation of aggregated
damaged, oxidized or misfolded proteins (or peptides) in intracellular and extracellular com-
pounds compromises cell function and cell reproduction and can ultimately cause cell death
[66–68]. In humans, the accumulation of oxidized and misfolded proteins is the cause of age-
related diseases referred to as Amyloidosis and also have been found to play an essential role
in the development of Alzheimer’s and Parkinson’s Disease [61, 69, 70]. Although the exact
molecular mechanisms may vary, these detrimental (toxic) proteins (or peptides) normally
alter molecular pathways and metabolic functions and harmfully interact with organelles
and cell membranes, compromising their functions and their permeability [66, 71–74]. This
is referred to as proteotoxicity. It is accentuated in non-dividing cells (e.g neurons) where
damage accumulates faster thus accelerating aging (no damage is released and no cell sub-
stitution occurs). Naturally, cells have mechanisms of repair and protein refolding [74–76],
referred to as quality-control (QC) mechanisms. However, these processes can be energy
costly and eventually can not compensate for the damage caused.

One essential organelle which is most affected by aggregate accumulation is the mito-
chondria [77, 78], which eventually loses function as a consequence of diverse harmful effects
of cell aging [56, 67]. Mitochondria dysfunction in humans has been linked to Parkinson’s,
Alzheimer’s and heart disease as well as cancer and diabetes [78–80]. The exact mechanisms
in which aggregate accumulation is linked to loss of function in this organelle are believed
to be various and diverse [56], with one being through the deterioration of the Lysosome
(Vacuole in yeast) [81]. The Lysosome is one of the organelles that has been found to have
functions related to QC [82]. Likewise, one other form of QC is asymmetric cell division,
which prevents damage inheritance by newly born cells and resets cell’s life-span by fully
regenerating their offspring [58, 83].

Different factors related to aggregate-dependent aging are difficult to analyze in human
cells. Besides the technical and ethical constraints, aging processes in humans occur over
time-scales (in years) which hinder experimental and theoretical developments. Moreover,
complex molecular pathways and genetic factors in human cells can add further complica-
tions. For this reason, model organisms as budding yeast (Saccharomyces cerevisiae) –where
many age-related aspects are preserved– are frequently used to gain insight into basic aging
related cellular processes and mechanisms. For instance, aging-related genes are frequently
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identified in simpler model organisms before being searched for in humans. Moreover, exten-
sive research aims to study aging processes and why aging increases risk of diseases through
experiments with yeast [84–87]. Yeast cell aging (replicative aging) is easier to detect with
the use of fluorescent methods which use stains to detect the number of scars (divisions).

Research in Part I aims to study aggregate dependent aging (or aggregate-dependent age-
related diseases) with two different approaches. In the first paper, microscopic intracellular
processes related to asymmetric damage distribution in the model organism Saccharomyces
cerevisiae are analyzed with mathematical and computational methods. In the second, fo-
cus is set on the extracellular (spatial, non-local) propagation and proliferation of harmful
misfolded peptides (small proteins) in Alzheimer’s disease, rather than on the intracellular
molecular mechanisms of pathways which induce or hinder cell damage.

In both cases, the ultimate goal is to provide research which can help shed light on age-
related processes as well as have a potential impact in prognosis and diagnostics of age-related
diseases and on human health in general.

I.1.1 Aggregate-dependent S. cerevisiae aging

Scientific context

Biological cells assemble proteins that are fundamental for cell function and life in general
through synthesis inside the ribosome. Proteins are formed from chains of amino acids (a
protein’s primary structure) that fold according to the hydrophobic effect (the most thermo-
dynamically favorable configuration) in which hydrophobic regions (repelled by water) are
surrounded by hydrophilic regions (attracted to water) of the protein [74, 88]. This structure
minimizes contact between water molecules and hydrophobic regions and is preserved by non-
covalent bonds. Protein misfolding (and unfolding) can occur naturally or from mutations
in the DNA sequence, as well as problems in the transcription and translation phases and
from environmental stresses [74]. Moreover, aging in cells (which itself can be an outcome of
protein-aggregate accumulation) contributes to the increased formation of misfolded proteins.

Environmental causes, particularly heat (by disrupting bonds), freezing, mechanical ag-
itation, pH (alkalinization) or oxidative stress –where an increase in ROS (reactive-oxygen-
species) is not compensated by the production of antioxidants– modify the folding structure
of proteins causing exposure of hydrophobic regions [89]. In the case of the latter, oxygen is
not reduced to water (or water molecules are disrupted). This generates molecules with free
electrons (ROS) that interact with side-chains of proteins and cell membranes through a pro-
cess commonly known as oxidation. Misfolded proteins are prone to (susceptible to) binding
through their exposed hydrophobic regions, thus forming aggregates or ‘clumps’ of damaged
structures [74, 89]. Depending on the aggregation process, aggregation rates and the nature
of aggregates differ [90, 91]. In particular, aggregates can be covalent or non-covalent (e.g
binded by Van der Waals forces, hydrophobic or electrostatic interactions). Aggregation may
be reversible or irreversible; to counter the toxicity of aggregates, cells produce protein chap-
erons (HSP or heat-shock-proteins) that through their interaction with aggregates assist in
un-folding/re-folding (disaggregation) of protein aggregates [91, 92]. Nevertheless, some ag-
gregates can not be repaired and in some cases the chaperones themselves can contribute to
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further misfolding [93, 94]. This occurs, for instance with HSP104 proteins in Saccharomyces
cerevisiae. HSP104 refers to the heat-shock-protein-104 of which its production is regulated
by the HSP104 gene; the number being its size in kilodaltons. Exposed hydrophobic struc-
tures trigger continuous growth of existing aggregates through binding upon collision. These
aggregates then can interact with the phospholipid bilayer of membranes (in which one layer
is hydrophobic and the other hydrophilic) and cause damage which propagates along mem-
branes hence compromising their permeability [95].

In [96] protein aggregation, detection and quantification are explained in detail in the
context pharmaceutical procedures.

The relation between cell aging and damaged (misfolded) protein aggregate accumulation
is strongly influenced by asymmetric cell division. In early cellular organisms, reproduction
was symmetrical. Hence, (statistically speaking) all lineages would be equally susceptible to
deterioration from accumulated damage and eventually would disappear completely unless
cells developed QC mechanisms which would keep damage to a constant level over generations
[97]. Thus, aging in cells would not occur since all cells (all lineage) would be (statistically)
equivalent (without taking into account environmental factors). In contrast, if organisms
age, cell reproduction, when present, must be asymmetrical [58, 98, 99].

Asymmetrical cell division rejuvenates lineages by resetting cell’s life-span through the
formation of young progeny while simultaneously leaving behind older cells. Although ini-
tially believed to have evolve in the first Eukaryotes, it was recently found to be present
in some Procaryotic organisms [58, 100]. In [58] observation of rejuvenating asymmetric
reproduction (hence aging) was found in the species Caulobacter crescentus (procaryote) re-
sulting in a stalked old cell with reduced reproduction rates and swarmer young one. Also,
in [100] E. coli cells inheriting old poles showed diminished growth and reproduction rates
and life expectancy. The process underlaying this asymmetry was uncovered in [101], where
misfolded protein aggregates were found to co-localize with old poles during cell division and
to correlate with aging.

Similarly as with E. coli, in budding yeast S. cerevisiae, aging is strongly associated
with asymmetric cellular division and with the asymmetrical distribution of damaged and
misfolded proteins [18]. Oxidized proteins aggregates, such as Hsp-104-associated aggre-
gates affect mortality of yeast cells by deteriorating their fitness and maintenance at late
stages of the life cycle [64] and ultimately cause cell death. These protein aggregates dis-
tribute asymmetrically during and after cell division (budding) between daughter and mother
cells. An asymmetry which decreases with replicative age [18]. The cellular mechanisms (or
processes) causing this asymmetry remain unclear. In particular, whether or not an active-
quality-control (AQC) mechanism is necessary remains elusive.

The modest inheritance of Hsp-104-associated aggregates by rejuvenated progeny and
their distribution during cytokinesis has motivated substantial and diverse work ([1, 10, 14,
64] to name a few) but its cause has not been entirely clarified. Moreover, experimental
observations have been occasionally conflictive under the same (or similar) reported con-
ditions (e.g [1, 2, 10]). In [2, 10, 18, 64, 102, 103] a dependence on the formation of the
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Actin-Cytoskeleton was proposed. When suppressing the expression of the SIR2 gene (a
gene also present in humans) –linked to formation of the actin-cytoskeleton [104]– aggre-
gate concentrations (and numbers) balanced during and after division. Altered cells did not
show any significant difference with respect to wild-type (WT) cells in terms of the diameter
length of the neck connecting both compartments (the two cells). The same results were also
reported in [64] when injecting WT cells with Latrunculin-A (Lat-A) – which inhibits actin
polymerization. Hence, these works suggest that aggregates interact with actin cables and
are transported via cable flow away from the daughter cell and towards the mother.

In [105, 106] aggregates were tracked and analyzed after stress (which induces protein ag-
gregation). Small aggregates of misfolded protein were observed to accumulate in inclusions
(intracellular deposits) which locate at peri-nuclear, peri-vacuolar and peri-mithochondrial
sites (the IPOD, the JUNQ and the MAGIC). Moreover, in [16, 17] protein precursors in WT
cells were found to adhere to the endoplasmic reticulum (ER) through their interaction with
farnesylated YDj1. Once there, they were observed to accumulate to form a single deposit.
In [107] aggregates formed on the (ER) were observed to tether to mithocondrial surfaces,
which links observations in [16, 17] and [106]. Once in either of these deposits, aggregates are
either retained inside the mother cell (which hinders their crossing to daughter cells) or dis-
aggregated by proteases (enzymes). Aged mother cells were found to lose this ability, hence
explaining the more symmetrical distribution of aggregates in the latter stages of the life
cycle. Some genetic pathways, participating in this process have been found recently as well
[108]. Moreover, the trafficking routes favoring aggregation into peri-organellar deposits have
been also studied, with a possible participation of the actin cytoskeleton in this process [108].

Overall, the potential mechanisms described to this point, claim on the existence of a
complex energy-requiring mechanism which protects progeny from proteotoxicity through
clearance (transport), restriction, or dissaggregation. This is referred to as the active quality
control (AQC) machinery of S. cerevisiae.

In contrast with the AQC hypothesis, it has also been suggested that passive mechanisms
(which do not require an energetic machinery running on ATP) are sufficient to justify asym-
metric segregation and inheritance of misfolded proteins. In [1], heat-induced and naturally
formed aggregates were tracked and their motion was analyzed with no apparent directional
bias detected. Experimental results concerning aggregate movement and concentrations were
accompanied with numerical simulations of non-dimensional, non-interacting particles diffus-
ing inside a domain composed by two spheres connected by a neck. Their numerical results
were after validated with a mathematical model in [15].

In the same line, and based on the fact that formation of aggregates is concentration-
dependent (if there is a high concentration of proteins, crowding and fusion increase) [14]
builds on the results from [109] in Fission Yeast S. pombe to propose that aggregate fu-
sion, combined with bud-specific aggregate dilution are enough to justify for low aggregate
numbers in daughters. Furthermore, they support their claims with a mathematical (and
computational) model which replicates their experimental observations based on the assump-
tion of no compartmental exchange of aggregates.
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Figure I.1: Active-quality-control (AQC) mechanisms vs Passive-only mechanisms (PO).
1. Actin-cable driven transport [2, 10, 18, 64, 102, 103]. 2. Confinement to peri-organellar
deposits [105, 106]. 3. ER-mediated tethering to mitochondria [107] 4. Confinement and
aggregation in ER [16]. 5. Confined diffusion of aggregates [1]. 6. Aggregate fusion and
bud-specific dilution [14].

All the mechanisms that have been suggested to be the main drivers of the asymmetric
distribution of aggregated proteins during yeast cytokinesis are summarized in Fig. I.1
together with their references.

Research Objectives

In recent years there has been significant work dedicated to analyze the molecular mecha-
nisms in which aggregates of misfolded proteins cause mitochondrial or organelle dysfunction
(see [110]). Most, with the aim of providing biochemical developments with therapeutic ap-
plications. Throughout this part of the thesis, instead, the focus is set on evaluating the
potential intracellular processes that cause aggregate accumulation and hence aging in bud-
ding yeast –although results are hoped to be extended to other more complex organisms.
Other mathematical and computational research (e.g. [111]) has also targeted aggregate-
dependent aging in budding yeast but at different temporal and spatial scales, looking at
how relation between asymmetric reproduction, aggregate repair and aggregate retention
relate to replicative life-spans in terms of a finite energy constraint. However, theoretical
work targeting the necessity or redundancy of AQC has been uncommon and mostly com-
plementary. It has usually aimed to confirm experimentally-based hypotheses while taking
into account only the passive processes at test. Further mathematical and computational
work is required considering how experimental research has until now remained inconclusive.
Furthermore, occasionally analogous and similar experiments have shown fundamentally dif-
ferent results [1, 2, 10]. This suggests that the organism and the processes involved could be
complex and very sensitive to the experimental environment.

When available, mathematical or numerical models used in the subject have potentially
excluded essential processes which could affect their analysis. The first theoretical work
addressing the sufficiency of passive mechanisms was presented in [1]. The two-dimensional
aggregate mean-square-displacement (MSD) was found to be consistent with the equation
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r2(t) = 4Dtα –with D being the diffusion coefficient and α ' 0.75 < 1 the degree of
sub-diffusion– after comparing observations with numerical simulations of diffusing particles
inside two spheres joined by a neck. Numerical simulations matching experimental data were
tested for concentration distributions after a time equivalent to the duration of cytokinesis
and with all particles initially located in the larger compartment (the mother cell). Results
were consistent with experimental measurements on compartmental concentrations and were
validated by a mathematical model in [15]. Both models (computational and mathematical)
excluded aggregate formation, fusion and growth and potentially oversimplified the crowded
intracellular environment.

In [14] aggregation rates where measured in each of the two cells during budding as
was the probability of fusion in the event of aggregate collisions. This served as a basis to
construct a mathematical and computational model (based on the work from [109]) which
was able to reproduce experimental measurements as the mean number of aggregates and
their concentration in each compartment. The models however did not considered any cross-
compartment movement based on the observation of its scarcity nor (specifically) any large
organelles affecting aggregate motion.

In every case, the models where validated with limited self-produced experimental data
acquired mostly under specific experimental conditions in which aggregation was induced.
Moreover, data for comparison and validation was short-termed, hence potentially mislead-
ing as no long-term effects of the mechanisms at test were analyzed.

In this research, the first purpose is to construct a comprehensive model including all
(possible) essential mechanisms which could potentially affect aggregate kinetics as well as
the passive processes being evaluated. Like [1, 14] some of the intracellular crowdedness is
captured through the diffusion coefficient. However, (two) large organelles that can strongly
interfere with aggregate diffusion are also included. Moreover, unlike [1] aggregate fusion,
appearance and growth is incorporated as well as a growing bud with bud-specific dilution.
Additionally, and different from [14] movement between both cells through the neck is also
allowed.

All the parameter values are based on existing experimental data while carefully ver-
ifying the experimental conditions under which they were acquired to avoid any possible
mis-interpretations of the results.

A thorough comparison between the results provided by the model and available short
term and long term experimental data is done to evaluate the robustness of the sufficiency
of passive mechanisms. Naturally, the model is expected to replicate observations which are
used to argue in favor, but it is believed that most essential is to evaluate its performance
concerning the comparison with other “external” data from diverse publications. Specifically,
that acquired under different experimental conditions and over different time-scales (e.g. the
complete life-cycle).

Last, it is tested on whether the model’s predictions ameliorate or worsen when potential
active mechanisms are incorporated in some form, either by confinement to organellar sur-
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faces [105–107], attachment to the cell membrane [16] or occasional transport towards the
mother cell pole [2, 18].

Methodology

The three-dimensional “Passive-Only Model” (POM) is constructed with the aim of testing
the sufficiency of passive mechanisms. The processes incorporated are shown in Fig. II.1 of
Chapter II. A large number of numerical simulations of this model for both short (over one
division cycle) and long time-scales (over the entire cell cycle) are done in order to calculate
statistics over quantities for which an experimental measurement is available. These statis-
tics are: the total aggregate volumes (and relative concentrations in each cell) and numbers,
the probability of inheritance by the daughter of at least one aggregate (when it exists) and
of the largest aggregate, the number of cross-compartment crossings in each direction and
the MSD.

The numerical and computational results are validated with an original mathematical
model consisting of a system of coupled ordinary differential equations. The model calcu-
lates the time behavior of the average number of aggregates and of aggregate volumes in each
cell and is inspired on the work from [11–13]. The agreement between the mathematical and
the computational models is very accurate at short and medium time-scales (up to one or
a few divisions). At longer times, the mathematical model serves as an upper bound of ag-
gregate concentrations in the mother since it treats all aggregates equally, hence minimizing
the size-dependent fusion (by collision) and the escape rates.

A model where different forms of infrequent (and difficult to detect experimentally) AQC
is also introduced. The basic principle is that most aggregates are at all times subject to only
passive forces. Occasionally however, aggregate motion can be (individually) disrupted either
by drift towards the mother cell pole, confinement to organellar surfaces or attachment to
the membrane. These variants ware used to test on whether infrequent AQC can potentially
reconcile the work and the conclusions from divergent experimental studies.

Results obtained

At short and mid time scales (at most one cell division cycle), and as expected, the POM
performs well in replicating empirical measurements used to argue in favor of the sufficiency
of passive mechanisms [1, 14]. In particular, the MSD of aggregates agrees with the (mid
time-scale) prediction from [1] of α ' 0.75. However, one must note that this equation is no
longer valid considering the changes in the diffusion coefficient as a consequence of aggregate
growth and fusion. It also replicates results from [1, 14, 15] concerning the relative concen-
tration of misfolded proteins in both compartments. Moreover, the model also reproduces
the numerical and experimental results from [14] concerning aggregate numbers and fusion
events.

A red flag is raised when comparing the number of crossing events (in both directions)
calculated using the POM and from the experimental observations in [1, 14]. Unlike the
predictions from [14] neck-crossing events between both compartments are very frequent
and almost two orders of magnitude more numerous than measured in their experiments.
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For safety, this result was validated with the mathematical predictions derived from [11–13]
concerning mean exit times for diffusing particles in confined domains. Moreover, it was
tested from different parameter values which would correspond to different experimental set
ups. It is recalled that the assumption of infrequent cross-compartment movement was the
premise to discard cross compartment transport in the computational model from [14].

At long time-scales (over the entire yeast cell cycle) divergence between the model’s pre-
dictions and their respective experimental measurements increases. Although the number of
aggregates –under parameter values corresponding to aggregation rates in WT cells– agrees
with the results from [16], almost every other prediction disagrees with available experimen-
tal data concerning the accumulation of damaged proteins. Specifically, aggregate volumes
stabilize after a few generations contradicting the premise that damaged proteins accumu-
late with replicative age and drive yeast cells to aggregate-dependent aging. Probabilities of
inheritance of at least one aggregate and of the largest aggregate by the daughter also fail
to agree with the empirical measurements in [17]; they are approximately a three-fold and a
ten-fold higher respectively.

The number of cross-compartment crossings remains orders of magnitude above its exper-
imental equivalent at long time scales. Although the number decreases after a few generations
(or increases at low aggregation rates), as aggregates grow in size, it generally stabilizes at
a value approximately one order of magnitude above.

When adding AQC to the POM, the disagreement with experimental data is substantially
reduced even at low probability values of motion interference. The number of crossings
is strongly reduced (for all aggregation rates) at short and long time-scales and damage
accumulation occurs at rates similar to empirical measurements, as are the probabilities of
inheritance of at least one aggregate and of the largest. Moreover, due to its infrequency,
AQC is also consistent with the experimentally measured MSD. It is noted that results from
this model rely on parameters that have no current experimental validation.

Discussion and perspectives

The mechanisms behind the asymmetrical distribution of damaged proteins during and af-
ter yeast cytokinesis are still unclear. Accumulation of damaged or misfolded proteins is
related to proteoxicity and aggregate-dependent aging in budding yeast [18]. In particular,
the debate on whether AQC is necessary remains [1, 2, 14]. To address this issue, a compu-
tational and mathematical model is introduced. At short time-scales, corresponding to one
division cycle, the (passive-only) model is able to replicate experimental results which were
used in favor of the absence of AQC. More specifically, those concerning the establishment
of asymmetrical concentrations in both cells as a consequence of aggregate constrained dif-
fusion, fusion and growth together with bud-specific dilution. However, cross-compartment
transport is significantly more frequent than observed in experiments [1, 14]. At long time-
scales, gradual damage accumulation in older cells only occurs under high aggregation rates
similar to those observed in stress induced cells. Aggregation rates in WT cells do not lead
to the accumulation of damage but rather a constant damage release from cell division. This
contrasts the observations from [18]. When introducing AQC, differences with experimental
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data are substantially improved, suggesting its presence in real life yeast cells.

The detailed and complete research on the subject is presented in Chapter II in the form
of the accepted version of the article which was later published in Biophysical Journal [19].

After the publication of the article, evidence of a dependence on ACQ mechanism has
grown and the sufficiency of passive mechanisms has lost strength even among the authors
who initially advocated for it [1, 106]. In particular, research has identified new genetic
mechanisms which play a role in the clearance, accumulation and retention of misfolded
proteins in mother cells [108]. Moreover, other periorganellar protein deposits (the MAGIC)
have been identified a well as the mechanisms which favor their formation [106].

Although no specific extensions of this research have been discussed thoroughly, there
is a potential to work on applying similar models to analyze the intracellular mechanisms
which favor proteotoxic aggregation of phosphorylated Alpha-synuclein (aSyn). This protein
has been found to play a role in the development of synucleinophathies and Parkinson’s
disease [112]. Additionally, there has been discussion on the option of applying equation-free
methods (see below) to analyze bifurcations occurring on the asymmetric distribution of
damage when gradually varying the degree of AQC yeast cells are subject to.

I.1.2 Amyloid beta (Aβ) spatial propagation in Alzheimer’s Disease

Scientific context

Aggregation of misfolded proteins is not unique to microscopic organisms. Therefore, in
vitro experiments often use yeast as a model organism to study human diseases. This patho-
physiology has been related to a group of diseases referred to as amyloidosis, as well as with
Parkinson’s and Alzheimer’s disease (AD).

AD consists on a gradual neuron loss not consistent with habitual aging. It is strongly
associated with the Amyloid beta (Aβ) peptide (short chain of 39 to 43 amino acids) [113].
Most prominent are the Aβ40 and Aβ42 peptides. These peptides appear from the pro-
teolysis (rupture) of the Amyloid Precursor Protein (APP) which is produced by healthy
neurons and which attaches to the membrane of neuron cells with an endogenous purpose
that remains unclear although believed to be related to synapse formation, neural plasticity
and iron export [114]. Misfolded Aβ peptides are highly contagious (they misfold other Aβ
peptides) and aggregate to form insoluble oligomers which, together with the Tau proteins
(τ) are early biological markers of the disease [115, 116]. Moreover, both are believed to play
a fundamental role in its development and its progression. Brains of patients with advanced
AD, display amyloid plaques which form from aggregated fibrils which themselves are com-
posed mainly from aggregated Aβ oligomers.

The relation between the disease and the Aβ peptide is multi-scaled, although some re-
cent findings suggest that microscopic forms (small oligomers of more than 3 or 4 monomers)
are the most proteotoxic to neurons [4, 117, 118] due to their fast propagation and potential
neuronal damage. It has been suggested that these proteins interact and misfold glyco-
proteins (PrPC) to form oligomeric prions (PrPOl): exponentially-multiplying infectious
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misfolded proteins with multiple toxic interactions with biological cells [119]. In AD, pri-
ons affect membrane receptors ultimately causing abnormal and unregulated neuron death.
Prion formation is also related to numerous other diseases and neurological disorders [120].
Neuron cells are also affected at other spatial scales by amyloid deposits (see Fig. 3 in
[66]) e.g. by depletion of normal proteins or brain inflammation. The pathway in which
the Aβ pathology propagates throughout the diseased brain follows what is referred to as
the cascade hypothesis [113]. It initiates through primary nucleation (misfolding) into Aβ
monomers referred to as “seeds”. This is understood as a rare event and is followed by fast
contagion (misfolding of healthy proteins) and oligomerization (aggregation). Recent dis-
coveries show the existence of a positive feedback where infected cells increase production
of Aβ proteins leading to a further acceleration of the pathology [121]. As the pathology
progresses, fibrillar structures and plaques begin to form. These structures remain fixed or
travel slowly. However, breakage of fibrils produces new “seeds” which propagate fast and
drive the spatial progression and the development of AD [5]. It is only at advanced stages of
the disease and at longer-time-scales that the early symptoms of dementia begin to manifest
[122].

The spatial and temporal progression of biomarkers and the appearance of symptoms in
AD is highly complex and heterogeneous [122–125]. They do not occur at constant velocities
or constant rates. Instead, patients can have stable diagnostics and spatially steady (con-
figurations, invasions, contaminations) before undergoing rapid decays in health due to fast
spatial and cognitive-impairing bursts [122, 124, 125]. Despite its importance, the micro-
scopic dynamics of propagation and proliferation of (small) misfolded Aβ deposits have been
seldom studied both experimentally and theoretically. In the case of the former (as well as
of the latter, indirectly), limitations are mainly due to technical and technological difficul-
ties concerning the small size of this peptides (the monomers) (around 1 nm [117]). Only
recently, the spatial propagation and the evolution of the concentration of Aβ oligomers has
been visualized in experiments. One of which described in [126], where the progression of
seeded Aβ proteins in brains of Drosophila flies were imaged through western blot analysis.
Imaging results have been captivating and promising and have called for further state-of-
the-art theoretical and empirical work which can help understand the processes behind the
behaviors observed.

The dynamics of misfolded proteins and their role in neurodegenerative disorders have
attracted considerable mathematical and computational work [127] with a strong increase
during the last 30 years. Most seminal works have used one-dimensional systems of ODEs to
model and replicate the dynamics of aggregation and proliferation of prion proteins [128–131]
and have found that prion accumulation generally occurs under special conditions concern-
ing misfolding and refolding rates and protein concentrations. Although most of these works
rely on an infinite number of differential equations, each corresponding to an aggregate size,
[130] reduced the number to three. Different spatial extensions to these models have been
proposed under the assumption of isotropic diffusion [132], diffusion combined with a net-
work topology [133] or lattice-like domains based on cell connectivity networks [134].

Concerning AD, modeling has focused mainly on analyzing microscopic processes related
to prion replication or joint prion-Aβ dynamics [135–137]. Fewer work has aimed to under-
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Figure I.2: Multi-scale schematic representation of Aβ propagation-associated processes. 1.
Primary nucleation (protein misfolding). 2. Recruitment of healthy proteins. 3. Aggregation
of misfolded proteins. 4. Fragmentation and fusion of proto-oligomers. 5. Polymerization
and de-polymerization of misfolded monomers. 6. Production of amyloid precursor protein
(APP). 7. Neuronal apoptosis. 8. Fibril de-polymerization. 9. Fibril cleavage and fibril
formation. 10. Neuronal loss due to amyloid plaques and fibrils.

stand Aβ replication and/or spatial propagation. Although similar, some molecular processes
behind Aβ and prion aggregation and proliferation are different [138]. For instance, with
respect to size-dependent conditions related to the solubility of oligomers [139]. Early work
[140] found critical concentrations of Aβ necessary for their aggregation and nucleation with
a model composed by an infinite system of ODEs. The results showed closed agreement with
experimental data. More recently, a number of multi-scale, non-spatial models have aimed
to understand the evolution of monomer, oligomer, filament, fibril, and even plaque concen-
trations (see for instance [135–137]), some using continuous and some using discrete oligomer
sizes. The two approaches are similar at larger spatial scales but can have discrepancies at
microscopic levels [141–143]. In the case of discrete sizes, models generally use Becker-Döring
Equations to describe the concentrations of the different species. Spatial extensions of these
models have been rare with the possible exception of [144, 145] where interesting results
where achieved but where potentially essential biological factors were omitted when extrap-
olating microscopic processes to larger-spatial scales. Integration of microscopic, mesoscopic
and macroscopic scales is difficult as there different time and spatial processes intervening
at each level (e.g spreading through exosomes or axons, cerebrospinal fluid). In general,
few models have successfully integrated molecular and large scales with the majority of the
theoretical work done separately, as explained in detail in [127].

Research Objectives

The ongoing research on the spatial dynamics of Aβ propagation and proliferation has as a
general aim to construct (or contribute to the formation of) a multi-scale mathematical and
computational model that builds from microscopic biomolecular processes to macroscopic
dynamics of large Aβ deposits (plaques and fibrils) while strongly relying on the biological
mechanisms intervening at each scale (see Fig. I.2). Starting from the elementary molecular
dynamics of Aβ peptides and their interaction with a single or a handful of neurons, grad-
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ually add complexity at different scales by incorporating the different biological processes
which are known to have an effect on amyloid propagation. The purpose is to provide a
theoretical framework which can have therapeutic applications in terms of diagnostics, prog-
nostic predictions, and the design of control and mitigating strategies. These models exist
today and are used in the treatment of other diseases (e.g. tumor growth in cancer [146]).

The first step towards this ambitious goal is to build a mathematical and computational
model which is able to accurately represent and reproduce the microscopic and mesoscopic
(up to a few neurons) spatial dynamics of Aβ concentrations. For this, recent results in
experimental papers as in [126] can be used for comparison. This already imposes several
challenges arising, for instance, from the uncertainty concerning how proteotoxic species af-
fect further production of APP proteins which themselves contribute to the formation of
new Aβ monomers and of larger Aβ aggregates. Recent research has suggested a positive
dependence between neuronal damage and APP production which is followed by a strong
collapse at the time of necrosis [121]. In addition, other challenges arise from the difficulties
in measuring some of the model parameters. However, explorative simulations comparing
computational results with experimental observations can serve as a first framework for their
initial calibration. These simulations can as well be used to observe the parameter depen-
dence of the propagation and spread of amyloid concentrations and the conditions under
which it is favored or hindered. After this initial stage, the purpose is to progressively move
forward according to a feedback between the outputs of the model and the production of
experimental and empirical data which allows for further developments. For this reason the
work will progress closely with Human Rezaei and the team Macro-Assemblages Protéiques
et Maladies à Prion (INRA Jouy-en-Josas).

Mathematically, the construction of this first model poses other challenges as are demon-
strating the existence and uniqueness of solutions (well-posedness), their regularity and their
boundness in finite-time.

In the work presented as part of this thesis, the aim is to introduce this fundamental
mathematical model, potentially valid at microscopic and mesoscopic scales. In addition,
to describe the processes it incorporates, their biomolecular motivations, its dimensionless
form as well as to provide results concerning the equilibrium solutions prior to primary
nucleation and its variational formulation. Based on the latter, the computational model
used for simulations is presented, which is based on the finite element method (FEM).

Methodology

The mathematical model, introduced in Chapter III, analyzes the molecular dynamics of
monomer, proto-oligomer (soluble) and (insoluble and stable) oligomer Aβ species in a two-
dimensional spatial domain representing the region around one or a few neurons. It assumes
an in vivo context where primary nucleation has already occurred (since it is rare event) and
focuses on subsequent concentration dynamics, which are assumed to be deterministic. The
model is based on empirical observations concerning the polymerization (aggregation) and
depolymerization behavior of the Aβ peptides until a stable insoluble, micelle-like oligomer
size is reached [147, 148] where proteotoxicity is maximal. Oligomer size is assumed to be
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discrete (in terms of monomers) as a consequence of the microscopic spatial scales considered.
Spatial scales in Becker-Döring and Lifshitz–Slyozov equations are analyzed in [142, 143].
New monomers are produced from a homogeneous source located at the membrane of neu-
rons. This production is gradually altered as the oligomer concentration increases in the
surroundings of the cells. The exact way in which proteotoxic effects from the Aβ oligomers
affect further production depends linearly on the concentration history, albeit it can be
changed following recent discoveries (e.g. [121]). For simplicity, the model does not consider
prions directly but instead through proteotoxicity inflicted on neurons. The prion-like con-
tagious behavior of misfolded Aβ is considered through the rate of polymerization, hence
avoiding the necessity of considering two families of Aβ monomers. Proto-oligomers are
formed through monomer polymerization and can fragment into proto-oligomers of shorter
size unless they reach the critical size at which they become stable. Diffusion is assumed to
be the main driving force dictating the spatial spread of concentrations; it is size dependent
and follows the Stokes-Einstein relation. These processes are schematically represented in
Figs. I.2 and III.2 of Chapter III.

Mathematically, the model consists on a system of i0 coupled partial differential equa-
tions (reaction-diffusion PDEs); i0 being the size of the oligomers for which the conformations
become stable and insoluble. The reaction term corresponds to the polymerization, depoly-
merization and fragmentation rates and the diffusion term to the size-dependent diffusion.
The model was originally thought to be an extension of the (spatially) one dimensional mod-
els in [135, 137], but the molecular processes were modified, and the context changed from
in vitro to in vivo.

The computational model is derived from the variational form of the system of differen-
tial equations. For the simulations a finite elements method is used.

The parameter values are set to experimentally to existing data from available empirical
bibliography or from personal communications with Human Rezaei.

Results obtained

Other than the formulation and introduction of the mathematical (including its dimension-
less form) and computational models, other mathematical results of the system are obtained.
This concern the mass dynamics (and boundness) and the equilibrium solution for the con-
centration of monomers around a single neuron of the system’s healthy state prior to primary
nucleation. Proofs of existence and uniqueness have also been provided by Ionel Ciuperca,
Léon Matar Tine and Paul Lemarre.

With the computational model, simulation results have been obtained which already
show a complex relation between spatial propagation and the model’s parameters. Particu-
larly a non-linear relation between fast oligomer propagation (causing neuronal death) and
fragmentation rates. When fragmentation rates are high, fast diffusion of small oligomers
and monomers drives the propagation of misfolded Aβ but only a small concentration of
preteotoxic oligomers around cells occurs. In contrast, very low fragmentation yields a high
concentration of oligomers but which propagate slowly throughout the domain.
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Discussion and perspectives

The work on the spatial propagation of Aβ aggregates is presented as a preprint submitted
to ESAIM: Proceedings and Surveys. Simulation results have attracted attention from em-
piricists concerning possible strategies of delaying the expansion of the disease, with future
conversations pending concerning further directions to explore.

Short term perspectives include a robust exploration of the parameter dependence on
oligomer accumulation in the surroundings of the cells and in the speed of neuronal apop-
tosis. Also, to explore other (nonlinear) functional relations between monomer production
and oligomer concentrations which are more faithful to the latest empirical reports.

Mid-term perspectives include the extension of the model to other spatial scales of a few
tenths or hundreds of neurons and to incorporate other possible means of propagation as are
exosomes [149, 150] which have a qualitative effect on the spatial topology. Moreover, the
dimensionality of the model and the assumption of isotropic diffusion have to be analyzed.
The latter due to the environment is also being highly heterogeneous. At this scale the first
fibrillar complexes are included.

Long-term perspectives include the formulation of extensions to larger spatial scales where
processes as the formation of plaques and the recycling of cerebrospinal fluid could be in-
corporated. At all times a thorough examination and validation through comparisons with
experimental data is expected.

Concerning the mathematics of the model, proofs of existence, uniqueness and positivity
of solutions of the model have been contributed by Ionel Ciuperca, Léon Matar Tine and Paul
Lemarre (Institut Camille Jordan). An article introducing the mathematical and computa-
tional models together with more robust simulation explorations and the latest mathematical
advances is currently in preparation.
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West African chimpanzees (P. troglodytes verus)

E Nigeria / W Cameroon chimpanzees (P. troglodytes ellioti)

Central African chimpanzees (P. troglodytes troglodytes)

East African chimpanzees (P. troglodytes schweinfurthii)

Bonobos (P. paniscus)

Dahomey
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Sanaga
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Ubangi
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Congo
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Figure I.3: Geographical distribution of chimpanzee species and subspecies. Fig. inspired
from original in Hey, 2009 [151].

I.2 Part II
The evolution of diversity and the emergence and maintenance of new species are two of
the most relevant research topics in Evolutionary Biology. Albeit diversification was tradi-
tionally believed to happen only as a consequence of local adaptation to different isolated
environments (diversification occurring in Allopatry [23, 151–153], as the example in Fig.
I.3, inspired on [151]), empirical and theoretical evidence from the last half-century, mostly
attributed to advances in molecular phylogenetics, suggests that diversification is possible as
well in the absence of geographical barriers. This is paradoxical with the ‘optimization’ view
towards evolutionary processes since under its principles, deterministic convergence towards
a unique optimum predicts uniformity (up to stochastic variations) due to the prevalence
and superiority of the optimal phenotype. Moreover, it also confronts some principles of
population genetics where, in sexual populations, mating and recombination homogenize
populations and hamper linkage disequilibrium between reproductive and non-reproductive
alleles hence preventing the emergence of new species [26]. According to E.Mayr [23], similar
species coexisting in the same environment were believed to be an outcome of secondary
contact between previously isolated populations which evolved and speciated separately in
what is known as allopatric (or sometimes ecological) speciation (see for instance [154]).

The theory of evolution [155] has possibly been the most significant scientific advance of
the modern era. Although initially advocated by Darwin, early research in the field generally
excluded the feedback between ecological and evolutionary processes due to the difference in
the time-scales over which they both occur. Recently however, gathering evidence has sup-
ported that not only can ecology affect evolution (through natural selection) but that rapid
evolutionary change can also have an impact on ecological communities [156]. In principle, as
a population evolves, it produces changes in the environment through ecological interactions.
Environment which itself exerts selection pressures on the individuals’s phenotypes and in-
directly on the individuals genetic material. This results in an eco-evolutionary feedback
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Figure I.4: Evolutionary branching from disruptive selection. Fig. inspired from original in
Dieckmann et al., 1999 [164]. Evolution of quantitative trait. Dashed curve shows resource
distribution and continuous (inset) curve denotes fitness function. See article for complete
figure description.

[157–162] which qualitatively affects evolutionary trajectories and attractors. Furthermore,
it can lead to complex evolutionary dynamics which can even be potentially chaotic [163].

An remarkable outcome of eco-evolutionary feedbacks is diversification through disruptive
selection (see for instance [164, 165] or [37] for theoretical and experimental reports respec-
tively), where selection favors individuals of a population with extreme phenotypes rather
than population’s average [166–168]. It can produce a stable polymorphism and possibly lead
to reproductive isolation and sympatric speciation –speciation over the same geographical
range [164, 165, 169] (see Fig. I.4, inspired on the results from [164]). Disruptive selection
is closely associated with frequency-dependent and density-dependent selection. In both,
the population is part of the environment which through selective pressures determines the
population’s evolutionary path; the fitness landscape feedbacks on phenotype frequencies,
densities and distributions. A common example of can be found disease resistance [170, 171].

Empirical and experimental evidence of diversification and speciation occurring due to
eco-evolutionary feedbacks rather than geographic isolation has increased substantially in the
last quarter-century in both asexual [36–40, 172] and sexual organisms whether occurring in
sympatry (same geographic range) [27–34, 169, 173–175] or in parapatry (adjacent ranges)
[176–178]. These studies have focused on geographic regions where environmental changes
are constant or gradual and where there is no prevention to gene flow (see tables I.1-I.6).

Before this, theoretical work on the subject had already predicted this phenomenon.
Foundational studies of the mathematical conditions under which disruptive selection can
maintain polymorphism were presented in the seminal work of Maynard Smith [165, 167].
The disadvantage of hetero-zygotes is analyzed in models consisting on individuals with two
possible alleles A and a in a heterogeneous habitat where each homo-zygote is fitter in one
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of the two environments. Disruptive selection can maintain a polymorphism when selective
advantages are large with respect to the relative capacities of each niche. In addition, habitat
selection favors a stable polymorphism.

The work from Maynard Smith and others opened the door to the theoretical study of
adaptive diversification and adaptive speciation (evolutionary branching). More recently,
the development of mathematical and computational tools has stimulated the blossoming of
theoretical biology. In particular it has propelled the development of studies concerning the
evolution of diversity.

Evolutionary branching and the evolution of phenotypic clustering is another important
prediction from eco-evolutionary models. It can occur as a consequence of negative frequency-
dependent disruptive selection arising from resource competition [164]. For instance, once a
population has evolved to consume the most abundant resource, it can experience decreased
competition and can favor from consuming other available supplies. This can lead to an
evolutionary branching point where can similar phenotypes can stably coexist.

In general, the study of evolutionary branching can reveal conditions and mechanisms
involved in the evolution and adaptive persistence of phenotypic diversity [179, 180]; in
sexually reproducing organisms, evolutionary branching and the evolution of reproductive
isolation can reinforce one another and promote speciation (Dieckmann and Doebeli 1999
[164]) due to genetic or even plastic effects.

A growing number of models have shown that evolutionary branching and diversification
in absence of geographical barriers can be a frequent and robust outcome of evolutionary
processes as a consequence of various and diverse ecological interactions. Some examples
include resource-competition, predator prey interactions, pathogens, parasites [181] (see also
Table I.8).

Evolutionary branching is well understood, both heuristically (Metz et al. 1996 [182],
Geritz et al. 1998 [183, 184]), and from a mathematical point of view (Champagnat and
Méléard [185]). It occurs because of, and feedbacks on, ecological interactions. The math-
ematical framework under which evolutionary branching is normally studied is commonly
known as Adaptive Dynamics. It studies evolution of quantitative traits which evolve accord-
ing to rare mutation events. Ecological and evolutionary time-scales are separated so that
one can assume that resident populations reach demographic stability before nearby mu-
tants can or can not invade. Evolutionary dynamics then correspond to successive invasions
of rare individuals with positive growth rate (invasion fitness). This fitness can normally
be expressed in terms of frequency and/or density-dependent functions which correspond
to particular ecological interactions. Mathematically, the evolutionary trajectory can be
analyzed with the Canonical Equation of Adaptive Dynamics (CEAD): [186]

du

dt
= m(u)D(u)

where u is the resident trait, D(u) = ∂f(u,w)
∂w |w=u and f(u,w) the invasion fitness of a trait w

on a environment with a resident trait u. Evolutionary branching occurs when D(u∗) = 0,
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dD
du |u=u∗ < 0 (evolutionary attractor) and ∂2f(u,w)

∂w2 |w=u=u∗ > 0 (the point is invadable).

Evolutionary Branching in multi-dimensional trait spaces with co-evolving interacting
traits and in the context of spatially explicit populations is less clear. In the case of the
former, results have been conflicting [187–192]. In the case of the latter, the conditions
favoring the emergence and stability of polymorphisms remain elusive. Because ecological
interactions tend to take place locally in space among neighbor organisms, it is of special
importance to understand evolutionary branching in the context of spatially explicit popula-
tion models. This is especially true if the aim is to advance our understanding of speciation,
given the potential significance of geographic factors in the origin of new species [22].

The research done for this thesis analyzing the emergence of diversity in spatially explicit
populations has its foundations in an individual-based stochastic model introduced in [7] and
its associated PDE. The model studies the eco-evolutionary dynamics of a population along
a one-dimensional environmental gradient. In this context, adaptive diversification (speci-
ation) concerns the formation of multimodal patterns in phenotype space which generally
occur through the emergence of isolated clusters along the space-trait gradient.

The first article addressing this subject was not published but later included (in an
adapted form) as the Supporting Information of the second, where most results are shown
but the narrative is changed in order to address the effect of eco-evolutionary feedbacks in
the context of spatial invasions and evolving dispersal. The article (available in HAL [8])
deepens on the conditions required for cluster formation and for their maintenance. More-
over, it analyzes thoroughly the parameter dependence of the observed patterns (mobility
and competition and mutation ranges), the boundary effects, the transient dynamics of the
system, and the characteristics of asymptotic patterns. The article also reports on cluster-
formation rates and on the existence of multi-stability. The latter is later analyzed in a
working paper (Chapter V).

The second article, published in Ecology Letters, studies how eco-evolutionary feedbacks
shape the spatial dynamics of invading populations. In particular, how continuous and clus-
tering regimes, appearing from eco-evolutionary feedbacks, influence patterns of invasion and
invasion speeds.

This research, done in collaboration with Nicolas Champagnat and Regis Ferrière, aims
not to focus on the mathematical properties of the dynamical systems arising from these
models, but rather on the the biological relevance of the models’ predictions. The work is
presented in the form of the accepted version of the article in Ecology Letters [9] and its
Supporting Information.

Multi-stability and the complex dependence of the system’s dynamics on the model’s
parameters and the boundary conditions are the focus of ongoing work. The first part of
this work is done in collaboration with Jens Starke (University of Rostock). It is based on
the ‘Equation-free approach’ and is presented here in the form of a working paper expected
to to be submitted soon. The second part, in a work in progress with Khashayar Pakdaman,
multi-stability and the mathematical properties of the system are analyzed by tracing back
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to elementary mathematical models which already show this behavior. This work is not
presented as part of this thesis.

Before describing the research done, a short overview of the ground-breaking empirical
and theoretical results on adaptive diversification and speciation is presented in the next
sections.

Review of (a few) seminal empirical and experimental studies on diversification
and speciation

In tables I.1-I.6, some seminal experimental or empirical studies documenting possible diver-
sification or speciation in absence of geographical isolation are shown, together with a short
description of the methodology and the species and location targeted.

Demonstrating sympatric or parapatric speciation in empirical work in substantially dif-
ficult since multiple approaches are usually required to discard possible secondary contacts.
However, in controlled experimental environments, where the evolutionary dynamics of mi-
croscopic organisms (or of insect populations) can be tracked at reasonable time-scales,
conditions under which phenotypic or genetic diversity can emerge and is maintained have
been reported. Moreover, some of these studies have proved that these processes are ro-
bust, frequent and replicable. A few of these analyses are shown in table I.1. In tables I.2
and I.3 empirical reports of possible sympatric speciation in more complex organisms are
shown. Some of these works have been controversial for their possible limitations to con-
vincingly to disprove secondary contact. However, most of them have used multiple-based
approaches to address potential issues. Moreover, they generally have focused on recently
formed, or isolated environments where secondary contact is unlikely. In tables I.4-I.6 other
cases of speciation (or diversification) –in experimental designs or in empirical analyses– in
spatially-structured or in ecologically-diverse environments are shown. These works report
on overlapping spatial ranges of the species involved, although also on the necessity of space
or different ecologies for the appearance and maintenance of diversity. These works relate
directly to the research done in this thesis.

Review of (a few) seminal theoretical studies on adaptive dynamics, diversifica-
tion and speciation

In tables I.7 and I.8 a few of the major theoretical developments or contributions in the study
of eco-evolutionary dynamics and/or the emergence of biological diversity are presented.
Some of these advances, as the early theoretical developments, the field of Adaptive Dynamics
or the CEAD, have been introduced in previous sections. Here, other major groundbreaking
advances are also included and described. For instance, the introduction of the Hamilton-
Jacobi approach, which naturally constructs continuous trait dynamics –in the limit of small
mutations–from evolutionary processes of discrete mutational jumps, and which is specially
useful in studying asymptotic behavior. Also, the development of the stochastic framework
which analyzes evolutionary dynamics in finite probabilistic systems (more similar to real
environments) and how they relate to deterministic models. Specially important for this
thesis are the last two, as well as the study of diversification in spatially-explicit environments
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Sympatric speciation (diversification)
Experimental studies

Species Comment Reference
Stable polymorphism in experimental
environment. Differences in metabolism
and growth rates.

[39]

Stable polymorphism in experimental
environment. Differences in metabolism
and growth rates. Frequency-dependent
fitness detected.

[40]

Restriction Fragment Length
Polymorphism (RFLP) analysis to
reconstruct phylogeny from
polymorphism in [40].

[193]

Stable polymorphism in 5 of 12
experimental lines. Differences in
diauxie patterns (growth phases).
Frequency dependence detected.

[36]

Stable polymorphism in experimental
environment. Differences in diauxie
patterns, metabolism and growth rates.
Frequency dependence detected.

[194]

Whole-genome sequencing to detect
adaptive diversification. Detection of
different ecotypes emerging from
eco-evolutionary feedback. Similarity
with mathematical models.

[37]

Escherichia coli
Stable polymorphism in experimental
environment. Sequencing reveals 3
mutations in regulatory genes which
allow frequency-dependence necessary
for diversification.

[195]

Anopheles gambiae
and Anopheles coluzzii

mosquitoes

Introgression and Sequencing to identify
relation between speciation and
assortative mating genes in
sympatric sister species.

[196]

Table I.1: A few seminal experimental studies on sympatric speciation.
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Sympatric speciation (diversification)
Empirical studies I

Species Comment Reference

Amphilophus zaliosus
and

Amphilophus citrinellus
Midas cichlids

Convincing case of sympatric speciation
inside the recently formed Lake Apoyo
(Nicaragua) based on multi-method
approach. The two species are
reproductively isolated.

[27]

9 and 11 tilapiine
or tilapia-like cichlids

Sequencing of endemic species of lakes
Barombi Mbo and Bermin (Cameroon)
suggests monophyly, hence one
colonization by ancestors (per lake)
followed by successive cases of
sympatric speciations.

[30]

Tilapia deckerti
cichlids

Undergoing case of sympatric speciation
detected (my multi-method approach) in
Lake Ejagham (Cameroon) among two
morphs of the same species. Apparent
reproductive isolation.

[31]

Amphilophus sp.
Midas cichlids

Genome-wide analysis suggesting cases
of adaptive radiation and simpatric
speciation inside Lakes Apoyo and Xilo\’a
(Nicaragua) by reconstruction of
evolutionary history.

[197]

Amphilophus tolteca
Midas cichlids

Potential case of undergoing sympatric
speciation detected incrater lake
Asososca Managua (Nicaragua) by
morphological and isotope analysis of
benthic and limnetic populations.

[198]

Sarotherodon sp.
cichlids

Phylogenetic analysis of endemic species
to lake Barombi Mbo reveals probable
speciation in sympatry together with
secondaryhybridization.

[199]

Salvelinus alpinus
Fjellfrøsvatn arctic char

Morphological and behavioural analysis
of two sympatric morphs (littoral and
profundal) in recently the formed
postglacial Lake Fjellfrosvatn (Norway)
shows evidence of potential genetic
differences (speciation).

[200]

Salvelinus alpinus
Arctic char

Convincing cases of sympatric
speciation by morphological and genetic
analysis of populations in five Icelandic
postglacial lakes. Complete reproductive
isolation in one of them.

[28]

Table I.2: A few seminal empirical studies on sympatric speciation
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Sympatric speciation (diversification) or speciation in Sympatry
Empirical studies II

Species Comment Reference

Arecaceae Howea
Palm trees

Apparent sympatric speciation of two
endemic sister species of Lord Howe
Island determined by sequencing and
significant difference of flowering times.

[29]

18 endemic and one
non-endemic species of

Palm trees

Evidence for sympatric speciation in
populations from Lord Howe Island from
genetic and ecological analysis that
determine presence of ecological or
geographical isolation.

[201]

Littorina saxatilis
snails

Partial reproductive isolation and
assortative mating detected by
morphological and behavioral
analysis in two morphs from
Galicia (Spain). Possible case of
undergoing sympatric or
parapatric speciation (or along an
environmental gradient).

[32]

Littorina saxatilis
snails

Genetic analysis of diversification
along gradient in Yorkshire (England).
Evidence of disruptive selection
by higher diversity than expected from
cline.

[202]

Acomys cahirinus
spiny mice

Evolution Canyon, Israel &
Morphological and genetic analysis on a
individuals from the Evolution Canyon
(Israel) to determine potential incipient
speciation between ‘south-facing’ and
‘north-facing’ slope populations.

[203]

Spalax galili
blind mole rat

Genome-wide analysis on chalk and basalt
soil populations in Israel identifies more
than 300 diverging genes associated to
different ecologies in possible case of
sympatric speciation.

[204]

Heliconius melpomene,
Heliconius cydno and
Heliconius heurippa

butterflies

Case of speciation (in sympatry) occurring
in Panama, Colombia and Venezuela where
reproductive isolation occurs due
to hybrid speciation. Behavioral and
morphological analysis from laboratory
crosses.

[174]

Nesospiza
buntings

(island finches)

Morphological and phylogeographical
study of populations in the Tristan da
Cunha archipelago shows parallel cases of
adaptive radiation occurring in
sympatry. Speciation mainly ecological
(selection for different environments).

[205]

Table I.3: A few seminal empirical studies on sympatric speciation. In green are two studies
where speciation occurs in sympatry but as a consequence of other processes.



I.2 Part II 25

Speciation (diversification) in parapatry or in spatially-structured populations
Parapatric speciation

Species Comment Reference

Pollimyrus castelnaui
Mormyrid fish

Morphological data and mitochondrial
sequencing to identify parapatric
speciation in Okavango-Upper Zambezi
river systems.

[177]

Plethodon cinereus
Salamander

Genetic, climate, ecological and
morphological study in Long Island, NY.
Pure-redback populations (west) and
pure-leadback populations (east)
Different ecological preferences.
Spatial segregation of sympatric
ecotypes for parapatric
speciation.

[176]

Senecio lautus
australian groundsel

Morphological and ecological data to
analyze for reproductive isolation of
adjacent populations in the Australian
coast.

[178]

Diversification in spatially-structured populations
Stable polymorphism in experimental
environment. Adaptive radiation (rapid
diversification due to heterogeneous
environment) along a spatially-structured
environment.

[206]
(Review [207])

Pseudomonas fluorescens Sequencing of one the morphs in [206]
to identify genetic and phenotypic
characteristics.

[208]

Ring species
High genetic distance between
populations determined by
analysis of protein variation of
adjacent populations in California.

[209]

Ensatina eschscholtzii
salamander

Reports on reproductive isolation
due to genetic rather than ecological
divergence.

[210]

Phylloscopus trochiloides
greenish warbler

Genetic differences and reproductive
isolation found by sequencing and
song playback experiments on
extreme populations connected by
a chain of interbreeding ones
around the Tibetan Plateau.

[211]

Table I.4: A few seminal studies on speciation (diversification) occurring in absence of ge-
ographic isolation; in parapatry or in spatially-structured environments with possible gene-
flow.
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Other cases of adaptive radiation (rapid diversification)
Species Comment Reference

Negative impacts of environmental
gradients on diversification
processes found due to niche
specialization (diminished resource
competition).

[212]

Pseudomonas fluorescens
bacterium

Analysis of impact of position and
width of niche of ancestor on
diversification.

[213]

Anolis lizards

Morphometric analyses in Cuba,
Jamaica, Puerto Rico and
Hispaniola to asses for parallel
adaptive radiation in four different
environments.

[214]

Placental mammals

Sequencing and phylogenetic
analysis to detect parallel evolution
and for the classification of
placental mammal into 4 clades.

[215]

Tetragnatha spiders

Analysis of species assemblies in
Hawaiian islands to analyze patterns of
adaptive radiation. Detects occurrence
of similar sets of ecomorphs due to
dispersal and evolution. Maximum
number of species in communities of
intermediate age.

[216]

Cichlinae
Neotropical cichlid fishes

Density-dependent burst of adaptive
radiation detected by analyzing
cichlid fossils from Central and South
America.

[217]

Table I.5: A few seminal studies on rapid speciation (or diversification) occurring in absence
of geographic isolation or under possible gene-flow.
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Speciation (diversification) along environmental gradients
Species Comment Reference

Coregonus fontanae and
Coregonus albula
Coregonid fishes

Analysis of metabolic rates
(physiologogical adapations) to study
speciation along a temperature-depth
gradient in the post-glacial lake
Stechlin in Germany.

[218]

Sebastes mentella
Pelagic beaked redfish

Genetic analysis of speciation along a
depth gradient to identify signs
of adaptation to different depths.

[219]

Sebastes
marine rockfish (66 species)

Speciation (in parapatry) along a
depth gradient (depth-related
morphological differences) found
with phylogenetic analysis.

[220]

Table I.6: A few seminal studies on speciation (or diversification) occurring in absence of
geographic isolation along environmental gradients.

or along environmental gradients.

I.2.1 Adaptive diversification and cluster formation along environmental gradi-
ents

Scientific context

The spatial context of evolutionary branching relates to the conditions and the mechanisms
behind the appearance and maintenance of phenotypic diversity and speciation in spatially-
explicit populations [20–22]. It is a natural extension of one-dimensional trait models since
forms of speciation and diversification are defined according to their spatial context. The
emergence of diversity or of new species (under sexual reproduction) associates with the ap-
pearance of multi-modality in phenotype space, which is usually accompanied by clustering
along the spatial dimensions appearing as a consequence of the feedback between evolution-
ary processes and local ecological interactions. Here, clustering corresponds to the collective
behavior, emerging from local interactions, in which individuals gather in isolated patches
to form high-density groups interspersed with low density areas [237–241]. Clusters stand in
contrast to continuous distributions along the space-phenotype domains [21, 242–244].

There is a strong consensus that diversification (speciation) [23–26] frequently occurs in
allopatry through the obstruction of motion and/or gene-flow by geological or geographical
barriers. However, in absence of geographic obstructions, the precise conditions favoring or
hampering the emergence of diversity remain unclear despite growing interest, as experi-
mental and empirical evidence have accumulated in recent years for both sexual organisms
(sympatric speciation in [27–35], parapatric speciation in [176–178], adaptive radiation in
[175]) and asexual organisms [33, 36–40].

To address this question, mathematical and computational models typically consider an
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Adaptive Dynamics (AD) and adaptive diversification
A few ground-breaking theoretical developments

Topic Comment References (a few)
Early

theoretical
developments

Maynard Smith’s work on the conditions
for the emergence and maintenance of
diversity (polymorphism) in sympatry.

[167]
[221]
[165]

Invasion
dynamics

Mathematical framework to describe
dynamics of growth and of rare invaders
in resident populations when taking into
account ecological interactions between
the populations.

[158]
[222]

AD
Framework

Mathematical framework for the study of
evolutionary dynamics in terms of
quantitative traits. Particularly for the
study of speciation and diversification.
by taking into account ecological
interactions.

[182]
[158]
[183]
[184]

CEAD

Ordinary differential equation describing
the evolution of a quantitative trait
derived from successive mutant invasions.
I assumes that separation of time-scales
of ecological and evolutionary processes.

[186]

Stochastic
framework

Development of stochastic framework for
AD. Derivation of mathematical results
from stochastic systems of evolving traits.
Unification stochastic and deterministic
models.

[223]
[185]
[7]

The Hamilton-
Jacobi

approach

Derivation of HJ evolution equations
describing the dynamics of quantitative
traits in the limit of small mutations
(long evolutionary time-scales). Allows for
asymptotic analysis.

[224]
[225]
[226]
[45]

AD along
environmental

gradients

Derivation of models of AD in spatial
contexts. Conditions for diversification in
spatially-explicit models.

[22]
[227]
[228]

Table I.7: (Some) Important theoretical developments in adaptive dynamics and/or in the
study of diversification in eco-evolutionary models.
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Adaptive Dynamics (AD) and adaptive diversification
A few ground-breaking theoretical developments

Topic Comment References (a few)

Theoretical models of
sympatric speciation
(sexual reproduction)

Theoretical models proving the
plausibility of sympatric speciation under
sexual reproduction.

[165]
[164]
[180]
[227]
[22]

Multidimensional
adaptive

diversification

Multidimensional trait extensions of AD
models and of adaptive diversification.

[187]
[188]
[191]
[192]

Evolutionary
suicide

Theoretical demonstration of how
natural selection and evolutionary
processes can lead to low
population densities or extinction.

[229]
[230]

Other extensions
applications of AD

framework

Seminal theoretical extensions or
applications of the mathematical
framework to evolving dispersal,
host-parasite systems, predator-prey
models and data-based studies.

[231]
[232]
[233]
[234]

Other review papers
and books

[235]
[236]

Table I.8: (Some) Important theoretical developments in adaptive dynamics and/or in the
study of diversification in eco-evolutionary models.

ecological scenario where environmental conditions change gradually in space. This gradual
change can refer to variations in altitude, temperature, humidity or ocean depth among other
abiotic characteristics. Such models predict the formation of patterns of abundance which
correspond to the formation of phenotypically different sub-populations. This phenomenon
is reported in [245] where different species of fish (with common ancestors) occur in parap-
atry with respect to oceanic depth.

Taking the spatial context of evolutionary branching raises issues. In particular, one issue
of controversy has to do with boundary conditions. [227] argues that boundary conditions are
likely to cause artefactual phenotypic clustering (versus a cline-like phenotypic distribution
[246–249]) in a spatially extended population with local interactions. This contrasts the
results in [22], where phenotype and spatial heterogeneity are attributed to local disruptive
selection as in the classic case of non-spatial evolutionary branching [182]. Later, Leimar
et al. (2008) [228] takes a stability analysis approach to counter [227] by showing that the
evolution of phenotypic clustering is robust to boundary conditions.



30 Chapter I. Overview

Research Objectives

As the theory of spatial eco-evolutionary dynamics develops further, basic questions regard-
ing cluster formation and dynamics in response to local adaptation and dispersal remain
unanswered. First, our understanding of the conditions required for cluster formation and
persistence is still incomplete. In particular, how does individual mobility affect cluster for-
mation, and how does the effect of individual mobility interact with the scale over which
individuals compete for resources? What is the behavior of the transient dynamics and their
relation with their asymptotic limits? How does the bounded nature of both geographic and
phenotypic space influence the dynamics of clustering? Can we predict key characteristics
of the emerging population structure, such as inter-cluster distance and numbers of clusters,
from individual-level parameters?

In the research done throughout this thesis, these questions are addressed with differ-
ent mathematical and computational methods in light of providing a stronger theoretical
background for the study of diversification along environmental gradients.

Methodology

The research has its foundations in a stochastic individual-based model and its PDE approx-
imation [7]. Some limitations of previous approaches are removed (e.g. [228]). Instead of
classical Gaussian competition kernels [250–253], constant competition within a spatial range
and uniform competition with respect to phenotypes is incorporated. This removes spurious
effects of Gaussian competition kernels on population dynamics and allows for an unam-
biguous measurement of the competition range. Moreover, fitness frequency-dependence is
excluded from the assumptions opening the door to different adaptation and competition
traits. This reflects better the observations in [245] where adaptation relates to oceanic
depth and competition to food consumption, and those in [254], where competition occurs
due to mate choice and adaptation occurs to other abiotic characteristics [254]. Other dif-
ferences between the model and [228] can be noted: in [228], spatial dispersion occurs at
births whether here individuals move according to a diffusion during their life. Intuitively,
this favors mixing and sets more restrictive conditions for cluster formation. Mutations are
assumed to occur by jumps at individual births. Moreover, both cases of unbounded and
bounded domains are considered through periodic or mixed boundary conditions. Last, the
model does not include Allee effects, that would otherwise extinguish local populations of
extremely low density. The general links between this class of models and PDEs were stud-
ied by Fournier and Méléard [255], Champagnat et al. [185] and Champagnat and Méléard [7].

The dynamics of the system, both asymptotic and transient, are studied through nu-
merical and mathematical analysis. In particular, how they relate to the individual-level
parameters, initial conditions and boundary conditions. This is done through numerical
simulations (using an explicit Euler’s method) and through a Turing’s stability analysis
(both analytical and computational). In addition, a Hamilton–Jacobi approach based on
[41–45] is used to predict characteristics of asymptotic periodic patterns. This approach is
complemented with a computational model which uses refined methods.
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Results and discussion

The research reports on broader ranges of parameters over which phenotypic clustering
occurs; different transient regimes of the space-trait dynamics in relation with multiple at-
tractors, where clustering is or is not artifactual with respect to the boundary conditions;
and on quantitative insights into the long-term cluster and cline-like (continuous) patterns.
The latter are based on the stability analysis and on the Hamilton–Jacobi approximation,
where the distances between clusters as well as their direction of appearance are computed.
In addition, we present simulations of the spatial dynamics under no evolution, which cor-
roborate to show that clustering is reinforced by the feedback between both ecological and
evolutionary processes.

Moreover, the results lead to two noticeable findings about cluster dynamics. First,
the system exhibits multi-stability. Hence, small variations in initial conditions can lead to
different attractors, manifesting as different cluster patterns (where the number of clusters
changes). Also, disturbances may cause the population to switch rapidly between alternate
stable states of spatial distribution and phenotypic composition. This is explored in more
detail in the work done in Chapter V. Second, the rates of cluster formation are not con-
stant. This is analyzed in detail in the subsequent work on the eco-evolutionary dynamics of
invasion. As the population spreads from a focal location, the formation time of peripheral
clusters varies, which results in a fluctuating invasion where the transient dynamics of lo-
cal adaptation in established clusters is critical to predict the long-term dynamics of invasion.

The detailed and complete research on this subject is available on HAL [8]. Here, a
modified version is presented as part of the main text and the Supporting Information of the
article accepted by Ecology Letters.

Perspectives

Two extensions of the work done on the subject of diversification have been discussed and
are planned for the near future. The first one concerns the eco-evolutionary dynamics of
populations under a gradual variation in the environment. More specifically, the condi-
tions concerning individual mobility, adaptation and resource competition which can or can
not lead to population extinction and which uncover new evolutionary processes occurring
through the interaction of dynamic environmental conditions with eco-evolutionary feed-
backs. This work is relevant in consideration of present extinction rates [256, 257] and
population migrations due to human-mediated climate change. Nonetheless, limited studies
have incorporated eco-evolutionary processes to range dynamics [258–260].

The second extension of this work concerns the emergence of spatial and phenotypic
clustering along environmental gradients under sexual reproduction. To address the topic of
speciation rather than diversification, sexual reproduction needs to be taken into consider-
ation. The work aims on studying favorable conditions (if any) under which clustering and
phenotypic heterogeneity can occur when assortative mating is exclusively spatial. The nov-
elty of this work relies on this assumption in contrast to most existing work on the subject
[22, 165, 261].
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I.2.2 The spatial eco-evolutionary dynamics of invasion

Scientific context

Understanding the invasion dynamics of biological populations colonizing new environments
has acquired an unprecedented and substantial importance in recent years as a consequence
of the alarming rates of habitat destruction due to agricultural and urban expansions, human-
driven climate change and mining, among other various causes [262–267]. In this context,
mechanistic models are required to address problems such as predicting and controlling bio-
logical invasions and managing translocations, introductions, and reintroductions of species
[268].

Traditional theoretical models of range expansions, based on the principles of population
dynamics and quantitative genetics, have predicted wave expansions with constant speed and
hence have introduced the concept of invasion speed [46–48]. Recent observations showing
non-constant invasions have been attributed to extrinsic environmental or stochastic factors
(e.g. [269, 270]). However, and motivated on the discovery that population patterns of
abundance depend on local ecological states, it has been suggested in recent years that
ecological factors as predator-prey interactions of density dependence (in population growth
and movement) could as well influence invasion dynamics [49, 50].

Research Objectives

The question on how evolutionary processes affect population range expansions generally has
considered separately the influences of local adaptation [271] and of evolving dispersal [272].
In Chapter IV, the research addresses how the combined effects of local adaptation and of
dispersal evolution affect the eco-evolutionary dynamics of spatial invasions. This research
builds on the results summarized in the previous section. More particularly, on how the
continuous vs. clustering dichotomy ([8, 228]) shapes the rates and the structures of spatial
population spread. It is presented as the accepted version of the article, later published in
Ecology Letters [9].

Methodology

The research is based on two models. The first being the model introduced in [7] and which
is described in the previous section. The second, is constructed as an extension which in-
corporates evolving dispersal. In the latter, dispersal has an energetic cost which increases
natural death rates in a degree which depends on a new parameter θ.

The models are analyzed through simulations of the stochastic individual-based dynamics
and of their PDE limit. The PDE simulations are used to measure spatial invasion speeds
and the degree of maladaptation at the population fronts in the context of a population
which expands from a focal introduction site along a one dimensional environmental gradi-
ent.

Moreover, the Turing’s stability analysis is extended to include evolving dispersal and
the Hamilton Jacobi approach [41] is oriented towards the analysis of spatial invasions and
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range expansions.

Last, different extensions of the model are explored (with Allee Effects, two spatial di-
mensions, and arbitrary gradient steepness) to show that qualitative results are maintained
in more realistic scenarios.

Results obtained

The first results that are derived from our analysis are based on the original model which
does not incorporate evolving dispersal. Simulations show that spatial expansions do not
necessarily occur as expanding traveling waves. Instead, and depending on the diffusion
coefficient and the competition range, expansions can be ‘pulled’ by continuous cluster for-
mation, or ‘pushed’ by front expansion of a traveling wave. Moreover, transient distributions
may not reflect asymptotic population patterns since unstable continuous expansions which
break into clustering patterns can occur. Additionally, continuous expansions under can
have peaks of abundance which do not necessarily occur at the population’s front.

Invasion speed can vary qualitatively and quantitatively depending on the different ex-
pansion regimes. ‘Pulled’ invasion fronts have oscillating invasion speeds (which can drop
to zero) as a consequence of invasion and adaptation phases. In contrast, ‘pushed’ invasions
show constant invasion speeds more consistent with traditional predictions [46–48]. For pa-
rameter values in between both cases, invasion can proceed at modestly fluctuating rates.

The Hamilton-Jacobi approach applies only to clustering expansions as it is based on the
assumption of slow motion. It shows that clusters influence one another, which in turn affects
the rates of appearance of succeeding clusters further contributing to varying invasion speeds.

When dispersal and niche traits simultaneously evolve, mean dispersal tends to decrease
due to increased mortality costs. However, this is not homogeneous since highly dispersal
individuals can be positively selected at the fronts of the population and in the regions in
between clusters (when present). Moreover, three alternate invasion regimes can be observed.
As before, for very low dispersal, invasion proceeds through the formation of clusters which
‘pull’ the expansion. Similarly, for very high dispersal, invasion is ‘pushed’ by the expansion
of a continuous wave. Notably, for intermediate dispersal, both regimes can co-occur with
continuous waves breaking into a clustering expansions as a consequence of the interplay
of eco-evolutionary feedbacks with selection of lower dispersal. The value of the dispersal-
associated trait at which the transition occurs is approximated with a stability analysis.
These different expansion patterns result in diverse temporal regimes of invasion speeds
which can vary from relatively constant to strongly fluctuating. Finally, it is shown that all
of these results are maintained under the incorporation of Allee effects.

Discussion and perspectives

The results from this research are relevant since they suggest new alternate explanations for
non-constant velocities in population range expansions. This phenomenon has been detected
in empirical studies [273] and contradicts traditional theoretical predictions [48, 274, 275].
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Specifically, it is suggested that the interplay between local adaptation and dispersal evolu-
tion, together with local competition, can jointly vindicate for the fluctuations in invasion
speed.

Moreover, the research sheds light on novel forms on which selection may act on dispersal
which result in diverse spatially-dependent distributions of dispersal traits. Spatial sorting
is generally observed (fast dispersers with high densities at the front) but dispersal is gen-
erally selected against, resulting in no selection for increased dispersal, in contrast with the
observations in [276]. The dependence of invasion speeds on local adaptation rather than on
increased dispersal at fronts is consistent with [277].

Discussions on continuations of the research are still pending but a few extensions have
been already considered. In particular corresponding gradually changing environments and
non-Brownian dispersal.

I.2.3 Equation-Free analysis of adaptive diversification along environmental
gradients

Scientific context

The Equation-free framework, referred to as well as the Equation-free approach or as Equation-
free or coarse analysis [51–53], has been developed over the last decades as a method to study
complex multiscale systems where descriptions come at microscopic scales and the interest
lies on macroscopic behavior. In these systems, there is clarity concerning the ‘rules’ govern-
ing the actions of the large number of individuals (or parts). In contrast, at a coarse-scale,
equations describing macroscopic behavior (in terms of a low number of macroscopic quan-
tities) are substantially difficult to analyze or, in most cases, unavailable. Some examples of
these systems are pedestrian flows [278–280] and traffic models [278, 281] where microscopic
descriptions can be ‘naturally’ derived from the forces driving the individual actions of the
individuals.

The method relies on short simulations of appropriately initialized microscopic descrip-
tions (computational ‘experiments’) which allow to estimate quantities that are would oth-
erwise need to be inferred through mathematical analysis of explicit formulas or equations
describing macroscopic behavior. Hence the term ‘Equation-free’, since these equations need
not be explicitly written down [52].

Why and when to use Equation-free analysis

Simple systems are generally identified as those where the behavior of the system as a whole
can be inferred directly from that of the parts. The simplest being those where the macro-
scopic outputs can be calculated from the addition of the outputs of each individual (i.e.
models of exponential growth). Complex systems, on the contrary, show complex collective
behavior as a consequence of individual interactions. This emergent behavior is not directly
inferred from that at microscopic levels, but instead arises due to non-trivial effects as are,
for instance, feedback loops or nonlinear dependencies. Some examples of complex sys-
tems with emergent collective behavior are cell systems with tumor growth, embryogenesis
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or morphogenesis [282–286], ecological or economic systems wityh critical transitions [287],
eco-evolutionary systems with evolutionary suicides [229, 288] or social systems with social
dynamic trends [289, 290]. Complex systems can occasionally be analyzed through evolu-
tion equations, which are generally derived through averaging, infinite limit-sizes and/or
scalings (e.g. [185]). However, in many cases, analysis from macroscopic evolution equa-
tions is inviable, either from difficulties arising from the derivation of such equations or from
difficulties arising when analyzing emergent behavior through the mathematical analysis of
them. Moreover, the derivation of information from complex systems concerning some of
their macroscopic properties through numerical simulations can be substantially costly and
impractical. Specifically, the identification of parameter dependencies, bifurcation diagrams,
phase-transitions and the computation of equilibria (stable and unstable) can be computa-
tionally prohibitive through direct simulations of the system’s dynamics. Moreover, since
simulations build from microscopic descriptions and macroscopic and microscopic equilibria
need not be simultaneous, as at macroscopic scales the system might be at rest while its
parts are changing (e.g. molecules in a gas).

Equation-free methods [291] are used for the analysis complex systems at their macro-
scopic scales based on the observation that their behavior can be reduced to lower dimensions.
More specifically, they build upon the computation of a few macroscopic quantities which
are able to capture emergent collective behavior and observable properties. This dimension-
ality reduction of many to a few degrees of freedom is formalized in Fenichel’s theory [292].
The low-dimensional object where the dynamics can be analyzed is referred to as the slow
manifold which is where the long term dynamics of the system occur (See Fig. I.5A) given
that the spatio-temporal macroscopic and microscopic are well separated. The macroscopic
variables can be, for instance, the moments of the distribution, its Fourier components or
the average velocities and/or momentums of the individuals (as in [279]).

Equation-free methodology

The methodology relies on continuous shifts between microscopic and macroscopic scales via
the use of appropriately constructed operators, combined with (hopefully) short simulations
of the microscopic system. This is used for the identification of the macroscopic dynamics
which in turn allow for bifurcation analysis and numerical continuation in relation with the
system’s emergent behavior of interest.

The transition from microscopic to macroscopic scales is done via what is known as the
Restriction Operator R. It maps the microscopic system u from an N -dimensional space (N
being the number of particles of the system) to an m-dimensional macroscopic variable X
with m� N . In general, the restriction operator is build such that its output is (or are) the
macroscopic variables which are found to capture the long-term dynamical behavior of the
system.

In contrast, the shift from macroscopic to microscopic scales is done with the Lifting
Operator L. This operator is non-trivial and non-unique and must be appropriately chosen
so that qualitative differences in microscopic configurations are captured by a continuous
change in the macroscopic variable.
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Figure I.5: Equation-free methodology and example. Figs. inspired from originals in
Marschler et al., 2014 [293] (panel A) and Marschler et al., 2015 [278] (panels B,C).
A. Schematic drawing of convergence to slow manifold. B. Equation-free methodology.
Schematic drawing of the construction of the macroscopic time-stepper. C. Diagram of
the equation-free bifurcation analysis in [278] of a traffic model when varying the optimal
velocity parameter v0. Blue marks stable states, while red marks unstable states. Upper
branch corresponds to a traffic jam and lower branch to stable flow. Ordinate axis corre-
sponds to a macroscopic measure describing traffic flow. For full details and descriptions see
[293].

The microscopic time-stepper M corresponds to the time evolution of the microscopic
system according to the fine-scale description of the dynamics. Equation-free analysis aims to
construct a macroscopic time-stepper Φ. This is done through the lift-evolve-restrict scheme
where the state of the macroscopic variable after a time t with initial condition X(t0) is
constructed as: Φ(X(t0), t) = RM(L(X(t0)), t) (see Fig. I.5B). The coarse (macroscopic)
time-stepper can be combined with an interpolation method to compute the missing values
of X(t) (emphi.e. coarse projective integration [53, 291]). Using short simulation times δt,
the lift-evolve-restrict scheme can also be used to calculate the derivatives Ẋ, which can then
be used to approximate subsequent values of X(t0 + t) (δt < t) by extrapolating with the use
of a first order numerical integration method (patch dynamics [53, 291]). Then, the missing
gaps can be filled by interpolating, as illustrated in [53, 291, 294]. The computation of the
derivatives Ẋ allows as well for the identification of macroscopic equilibria (Ẋ = 0) and hence
of macroscopic bifurcation analysis and numerical continuation. Macroscopic equilibria can
be found using, for instance a Newton’s method, on F (X) = Ẋ.

It is possible that the Lifting Operator maps to microscopic states away from the slow
manifold. For this reason, the construction of the macroscopic time-stepper by the lift-
evolve-restrict scheme can be altered so that once the microscopic state is generated, the
microscopic dynamics are ran for a small time theal before the analysis. Then the time image
of an initial condition X(t0) is found implicitly as the solution of the equation:

RM(L(y), theal) = RM(L(X(t0)), t+ theal)
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Applications

Equation-free analysis has been used in recent years in different and diverse contexts involving
complex systems and in control theory where identification of the basins of attraction of
equilibria is essential. Some examples include micelle formation [295, 295], cell biology [296]
and lattice gas models [297]. Fig. I.5C is inspired on the bifurcation diagram from a traffic
system computed with coarse analysis and presented in [293]. The regions of stability of
traffic jams v.s free flows (or of bistability) were identified as well as the bifurcations occuring
in each of the branches. Similarly, in [279] a Hopf bifurcation was identified with respect
to the size of the door separating two crowds of pedestrians walking in opposite directions.
Equation-free analysis has even been considered in the context of experiments (which replace
numerical simulations) for mechanical oscillators [298] and in pedestrian systems (current
work from Starke and Panagiotopoulos at the University of Rostock).

Scientific context of multi-stability in eco-evolutionary models

Multi-stability has been reported in models exhibiting Turing instability where interpre-
tations are relevant to evolutionary biology. Specifically, one-dimensional [45] (or two-
dimensional [8]) models of adaptive evolution exhibiting pattern formation related with
speciation and diversification. Among these models, potentially the simplest one exhibit-
ing this phenomenon are the non-local Fisher equations, also referred to as competitive
Lotka-Volterra models.

The classical Fisher equation [299] models the spatial dynamics of genes in a population.
It is the outcome of combining the Logistic equation with a local diffusion term;

∂ n(x, t)
∂ t

= k n(x, t)(1− n(x, t)) +D
∂2 n(x, t)
∂ x2

where k, D > 0. This equation is well known to have traveling wave solutions which
converge to homogeneous distributions [300, 301]. An extension of this equation, referred to
as the non-local Fisher equation is studied in [45, 302]. It has the form:

∂ n(x, t)
∂ t

= n(x, t)(1− Φ ∗ n(x, t)) +D
∂2 n(x, t)
∂ x2

after proper re-scalings. The competition kernel Φ is positive and
∫

Φ = 1. When the
kernel is ‘box-shaped enough’ so that its Fourier transform is negative, the model exhibits
Turing instability ([302, 303]), a behavior which is maintained in extensions as the ones con-
sidered in [228, 304, 305]. Moreover, as shown with simulations (of a concentrated variant)
in [45], the system can also exhibit multi-stability of non-homogeneous patterns (at least
transiently). Fig. I.6 shows long-term solutions of the non-local Fisher equation, computed
with numerical simulations, which are potentially simultaneously stable.

Research objectives

The objective of the research in Chapter V is to use equation-free methods to analyze macro-
scopic equilibria and multi-stability in the stochastic IBM introduced in [7].
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Figure I.6: Multistability in non-local Fisher equation. Simulations inspired from Perthame
et al., 2007 [45]. Two non-homegeneous stable solutions, after a time T = 600 computed
numerically for the same parameter values but different initial conditions (5 and 6 peaks).
Diffusion coefficient: D = 5×10−5, and support-width of a box-shaped kernel: l = 2×b = 0.3.
For full details see [45].

As previously noted, simulations of the stochastic IBM and its deterministic limit –in
absence of evolving dispersal– showed a strong presence of multi-stability. Specifically, con-
cerning macroscopic distributions which fragment into a different number of isolated clusters
with a strong dependence on the initial conditions and the boundary of the domain. Multi-
stability in simpler models, as are, competitive Lotka-Volterra models also referred to as
nonlocal Fisher Equations has been previously reported (in a variant in [45]) but has rarely
been studied. In contrast, focus has been set on the Turing instability of homogeneous dis-
tributions considering its importance in the context of diversification and speciation [8, 302–
304, 306, 307]. Moreover, global stability of a non-trivial equilibrium was found in similar
ecological models in [308–311], giving rise to the questions: Why does multi-stability occur
in competitive Lotka-Volterra models (and in the first model of Chapter IV) and does not
occur in others? How does multi-stability behave in terms of the most relevant parameters?
Namely the competition range and the diffusion coefficient? The first question is the issue of
an ongoing research not included in this manuscript. The second is addressed in the research
in Chapter V, which is presented in the form of a working paper in collaboration with Jens
Starke (University of Rostock).

To understand better the presence of multi-stability and the range of parameters under
which it occurs in the model introduced in [7] and described in detail in [8, 9], equation-
free analysis can be appropriate for the following reasons. First, a mathematical analysis of
multi-stability in the models, both stochastic and deterministic, has proven to be substan-
tially puzzling. Moreover, analytical methods used in previous works have had limitations
and have relied on diverse assumptions (mathematical and biological). Limitations, given
that focus has been set on the instability of homogeneous solutions rather than on the sta-
bility of non-homogeneous ones and how these relate to each other. And assumptions which
concern, for instance, boundary conditions ([8, 45, 307]) or convergence to Dirac masses in
the limit of slow motion and small mutations (as done in the Supporting Information of
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Chapter IV). Moreover, large population sizes –used to derive the PDE– may not always
apply (under some parameter ranges) even under a proper scaling of resources. Hence, pop-
ulation sizes may be sometimes large but not large enough to analyze with the continuous
limit.

Direct simulations, either of the deterministic or the stochastic model are also alterna-
tives for analyzing multi-stability. However, coarse analysis can potentially be more robust
(less vulnerable to misinterpret transient regimes) and can detect the presence of equilibria
regardless of their nature.

In addition, coarse analysis is versatile; it can easily be extended to different boundary
conditions (most analytical work has assumed either periodic boundaries or open boundaries)
and to other extensions or generalizations as the ones described in Chapter IV. In particular,
deriving Hamilton-Jacobi equations based on the Hamilton-Jacobi approach [224] has proven
to be substantially difficult in some of these cases (e.g. see extension for Allee Effects in the
Supporting Information of Chapter IV).

Last, it is noted that the analysis is done on the stochastic rather than on the deterministic
model. First, to consider potential finite-size effects. These can refer to, for instance, a
presence of clustering which is lost in PDE models due to averaging over cluster locations,
or to a possible presence of unstable macroscopic equilibria which are asymmetric with
respect to the mid-point of the domain. Second, due to computational limitations. In
particular, those concerning the dependence of macroscopic equilibria on the parameter δ
(the competition range). This parameter (or similar measures of spread of competitive
interactions) is biologically relevant and has attracted strong interest [164]. A robust stability
analysis of equilibria in terms of this parameter requires a spatial discretization which makes
simulations of the PDE model inviable.

Methodology

Simulations of the microscopic model (the microscopic time-stepper) are done following the
methodology described in IV, which was later extended to incorporate evolving dispersal.
To facilitate the initial analysis, periodic boundary conditions are considered. This hinders
accumulation of individuals next to the extremes of the domain which complicates the dis-
tinction among the different asymptotic distributions. However, once this first approach is
successful, the work is expected to be extended to other more realistic boundary conditions.
Under periodic boundary conditions, in both dimensions, the origin of the domain is then
set as the point with highest abundance (after a discretization of the domain). In addition,
the first equation-free analysis is restricted to the macroscopic dependence on the parameter
δ (competition range).

The initial equation-free analysis that was done presented many difficulties which required
numerous refinements to the ‘standard’ methodology, and in the end had to be discarded due
to unsolvable issues. This process is described briefly before discussing the current analysis,
which is expected to solve previous problems.

After considering many candidates (see Chapter V) –most of which depended on itera-
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tive algorithms– it was observed that apparently there was a one-dimensional quantity able
to distinguish the abrupt transitions between all the asymptotic patterns (in terms of the
number of clusters). The measure was the fourth moment of the distribution projected along
the geographic dimension and restricted to a small window symmetric to the mid-point of
the domain. The choice was motivated on the moment-generating function and the projec-
tion was due to the observation that separation into clusters is normally strongest along the
spatial dimension. The phenomenon is generally emulated along the phenotypic dimension
but to a lesser degree.

The construction of the Lifting Operator and the macroscopic time-stepper required many
refinements which made the numerical analysis inconvenient. Moreover, the healing time and
the time-step length were required to be substantially long, hence complicating even further
the simulations. In the end it was observed that macroscopic trajectories crossed existing
equilibria which unveiled problems with the dimensionality-reduction that had been done.

The analysis was modified then to study each transition –from “cline-like” equilibria
to clustering patterns or between the later– separately. In each case, the natural macro-
variables are the n-th Fourier coefficients of the density of projections onto the diagonal line
(which is were the population normally concentrates). To avoid problems arising from the
boundary conditions, the edge cluster is not considered when calculating this density.

The Lifting Operator follows the following scheme: an initial number of individuals
(determined based on the parameter delta) have positions and phenotypes which are sampled
from a unimodal or multimodal distribution where the width of each cluster varies gradually
with the macroscopic variable. After this construction, multiple runs have to be averaged to
ensure that no outliers or strong noise interfere with the correct estimation of the macroscopic
time derivatives. For the equation-free analysis a ‘semi-implicit’ scheme is employed. A
healing time is incorporated (based on observations and on the number of repetitions) and
the Lifting is refined according to the rule:

X = 〈RM(L(X), theal)〉

for some equally spaced grid-points in the range of the macro-variable considered. This
avoids the need of an iterative algorithm which would extend simulation times even further.
The detailed methodology is described in Chapter V.

The choice of the healing time and the time-step length for the calculation of the deriva-
tives are easier than before. This is, since the macroscopic time-behavior is more stable and
seemingly always monotonic after convergence to the slow manifold.

Macroscopic equilibria and bifurcations are then expected to be computed using New-
ton’s method on the estimated time-derivatives and by implementing a pseudo-arc-length
condition, similarly as in [293].

Results obtained

It is noted first that the refinements done to the equation-free methodology have already been
relevant contributions of the research. The implementation of the so-called “semi-implicit”
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scheme together with the different averaging methods can serve as a general computational
framework to be used when the microscopic systems at hand are strongly stochastic and
simulation times extensive.

Simulations results have shown a power law with respect to N (the population size) and δ
(the spatial competition range). Concerning macroscopic equilibria and multi-stability, very
strong hysteresis has been detected and simultaneous co-existence (for the same parameter
values) of equilibrium distributions differing by one or two clusters has been detected. More-
over, it has been observed that close to the critical values, where stability of microscopic
distributions is lost, the system can be strongly disordered, in a fashion similar to particles
near phase transitions. Strong oscillations in skewness and transient but recurring appear-
ance of bimodal clusters has been observed.

The research is expected to evolve into the computation of a bifurcation diagram in
terms of the parameter δ, with the possibility of extending the work to other ecologically
relevant parameters. Obtained results hint towards a progressive cascade of coupled saddle
nodes (folds). If confirmed, the predictions will shed light not only on the confirmation
of the presence of multi-stability but also its nature and the characteristics of equilibria.
In particular, the research provides quantitative estimations on how competition shapes
phenotypic and spatial dynamics and distributions of populations subject to eco-evolutionary
feedbacks.

Perspectives

Short term objectives include: (i) The computation of the bifurcation diagrams occurring
in macroscopic space in terms of the parameters δ and Dm (the individual diffusion co-
efficient). Multi-stability can then be analyzed by looking at the overlapping ranges of
macroscopic stable branches from each separate diagram. (ii) An analysis of equilibria and
their bifurcations under different boundary conditions and in model extensions as the one in-
troduced in Chapter IV where dispersal evolves or where Allee effects are taken into account.

Moreover, the coarse-analysis on the eco-evolutionary dynamics of a population along a
space-trait gradient has opened numerous and relevant research directions. Specifically, per-
forming a two-dimensional bifurcation analysis based on a generalized methodology where
the macro-variables can be based on the two-principal component of the distributions.

A long-term methodological objective which has been discussed addresses the question
of how to automatically recognize in phase space the regions where the analysis can or can
not be restricted to one-dimension. No known work has been done on this subject. Another
methodological question which has been posed concerns how to chose automatically the
healing time based on the variance of macroscopic variable.

Perspectives on the analysis of multi-stability in nonlocal Fisher equations

To begin to answer the question on why multi-stability occurs in simpler models (as in [45]),
and to serve as a validation and a platform to improve the current state of the equation-free
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analysis, ongoing research looks at the most elementary traceable system where this phe-
nomenon is present. The aim being to locate the sources of multi-stability and to understand
what is essential for this phenomenon to occur.

To this end, mathematical analysis based on Fourier analysis, bifurcation and symmetry
theory [312–314] are being used together with numerical simulations using Euler’s Method
on the PDE studied in [302].
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Abstract

During cytokinesis in Saccharomyces cerevisiae, damaged proteins are distributed unequally
between the daughter and mother cells. The retention of these proteins is correlated with
yeast aging. Even though evidence suggests that aggregates are retained due to an underly-
ing molecular mechanism, the debate on whether an active mechanism is necessary for this
asymmetry remains unsolved. In particular, passive diffusion and a bud-specific dilution
remain as possible explanations. Here, we provide a computational and mathematical model
to test on whether passive mechanisms alone are sufficient to account for the aggregate dis-
tribution patterns and the aggregate kinetics observed in living cells. To our knowledge this
is the most comprehensive model available in this subject and the only one combining key
potentially essential passive-only mechanisms proposed in existing bibliography. Namely, the
geometrical effect of the dividing yeast cell on the diffusion of protein aggregates and the
possibility of aggregate binding and aggregate formation at different rates. Our results sug-
gest that although passive processes alone can reproduce certain averaged observables from
experimental bibliography, they are insufficient to vindicate aggregate activity observed in
living budding yeast cells. We complement these results by showing that under basic forms
of active-quality-control, discrepancies between the outputs of the model and experimental
bibliography are reduced.

Keywords: Asymmetric cell division, Confined diffusion, Aggregate-dependent aging in
yeast, Damage segregation.
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II.1 Introduction

Aging in unicellular organisms is strongly associated with asymmetric cellular division [58],
asymmetrical distribution of damage [101, 109], or both [18]. In asymmetrically dividing
organisms as budding yeast S. cerevisiae, this process gives rise to an “aging” and an “im-
mortal” lineage. The “aging” lineage consists of an old mother cell with a decreased survival
rate, while the “immortal” one of a new, healthy daughter cell with a longer life span and
a full replicative potential [17, 315, 316] of 25-30 generations. Studies [10, 18, 64] have ob-
served that the difference in the average life span between the two outcomes of yeast cell
division is highly connected to the asymmetrical distribution of Hsp-104-associated protein
aggregates between them. Indeed, oxidized proteins, such as Hsp-104-associated aggregates
affect mortality of yeast cells by deteriorating their fitness and maintenance at late stages of
the life cycle [17, 317, 318].

Despite being of vital importance in the understanding of aging, the mechanisms causing
the asymmetry in the inheritance of Hsp-104-associated aggregates in budding yeast remain
unclear. In particular, whether or not an active-quality-control (AQC) mechanism is neces-
sary remains indecisive. This debate has transcended to symmetrically dividing organisms
that divide damage asymmetrically, where recently it was suggested that neither fission yeast
S. pombe [109] nor E. coli [319] require active spatial-quality-control (SQC) machinery. In-
deed, in E. coli, although damage usually concentrates at the old pole cell [100], aggregates
seemingly follow Stokes-Einstein diffusion and segregate asymmetrically as a consequence
of crowding in nucleoids. Likewise, in S. pombe, where aggregates also undergo diffusion,
asymmetric distribution of damage is facilitated by aggregate fusion.

Returning to S. cerevisiae, arguing in favor of the presence of an active quality-control
machinery acting throughout budding yeast’s cytokinesis are the experimental studies [2,
10, 18, 102] which suggest a dependence on concentrations of compounds in the cytoplasm
and on the actin-cytoskeleton. Mutated yeast cells without SIR2, a gene related to actin
nucleation, show a more balanced distribution of damaged proteins among the two compart-
ments after cell division [10, 102] while not showing any differences in the neck’s diameter.
Additionally, when the formation of the actin-cytoskeleton is suppressed with Latrunculin-
A (Lat-A), which binds to the actin molecules hindering their bonding, the segregation of
Hsp104-associated proteins is hampered. Thus, experiments indicate that chemical reactions
between the actin and the Hsp-104-associated protein molecules facilitate transport of aggre-
gates away from the progeny. In addition to these studies, [105] suggests that the underlying
mechanism causing asymmetric segregation is instead (active) confinement of the Hsp104-
associated aggregates to the organellar surfaces (of the nucleus and the vacuole) inside yeast
cells. This confinement isolates damaged proteins in inclusions, namely the IPOD and the
JUNQ which are themselves attached to the surfaces of these organelles, thus avoiding their
crossing of the neck. Furthermore, attachment to mitochondria has also been claimed to
contribute to the asymmetric inheritance of aggregates [107]. More recently, [16, 17] discov-
ered the existence of a protein deposit which accumulates misfolded proteins, thus favoring
their aggregation. In [16], it was proposed that retention of the deposit inside the mother
cell occurs as its precursors bind to the endoplasmic reticulum (ER) with the mediation of
farnesylated Ydj1, predominantly to the structures close to the nuclear envelope (NE).
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The arguments against the necessity of an active quality-control machinery to justify
asymmetric segregation of damaged proteins were first present in [1, 320]. In [1] aggregate
motion was tracked and concluded to be consistent with anomalous diffusion (sub-diffusion
due to confinement), with no directional bias. According to their observations, the 2D mean-
square-displacement of aggregates behaves according to:〈

r2(t)
〉

= 4Dtα, α < 1

where t denotes time and D is the (constant) diffusion coefficient. They use this as an ar-
gument against active transport which, they argue, would be consistent with super-diffusion
(α > 1) instead. Furthermore, it is suggested that the low concentration of aggregates in the
bud is a consequence of the low probability of the aggregates’ trajectory to cross the neck and
reach the bud. Hence, aging in yeast cells could be completely stochastic. This result was
later complemented by a mathematical model presented in [15] in which aggregate concen-
tration in both compartments (the mother and the bud) was approximated throughout cell
division. They assumed a fixed number of aggregates with a fixed size and a fixed diffusion
coefficient which was later observed to be potentially inaccurate. Indeed, more recently, [14]
used both experiments and a mathematical model based on the work in [109] studying dam-
age distribution in symmetrically dividing fission yeast, to suggest that –although passive as
well– the main force behind the asymmetrical distribution of damage was aggregate fusion
combined with the bud-specific dilution rate associated with polarized growth during divi-
sion. Nevertheless, their mathematical model did not consider cross-compartment crossings
–based on the experimental evidence from [1, 14]– and focused only on the establishment of
asymmetrical distributions as a consequence of volume-based dilution rates affecting aggre-
gate formation. Thus, it either assumed a mechanism of aggregate retention by the mother
(and the daughter) or assumed geometry was enough to account for the low number of cross-
ings.

In this paper we present a computational and mathematical model aiming to study the
sufficiency of passive-only mechanisms. We believe that our model can contribute substan-
tially to the debate, as it relies on simpler experimental measurements than those required
when testing in favor of active transport or aggregate retention in perinuclear or perivacuolar
deposits.
To our knowledge, it is the first to include key passive mechanisms and the most comprehen-
sive one available. Furthermore, it relates single-division with life cycle processes to study
the impact of the asymmetrical distribution of damage on aggregate-dependent aging in
budding yeast.

In the short-term component of the model, we aim to reproduce single-division inner-cell
aggregate kinetics. It is based on experiments which analyze aggregate dynamics at short
timescales, as are those studying aggregation and damage distribution for one cell-division
cycle after heat or oxidative stress. Moreover, it generalizes both the confined-diffusion-based
models in [1, 15] and the aggregate-creation/fusion models introduced in [14, 109].
The long-term component of our model is based on experimental studies observing aggregate-
dependent aging and damage accumulation in perturbed or unperturbed WT cells over sev-
eral generations. It studies consistency between single cell-division observations and longer
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Figure II.1: The passive-only model. A,B. Schematic representations of the model’s short-
term and long-term components. C,D. Snapshot of the model’s single-division cycle simula-
tion. E. Example of a crossing of the neck.

timescale data such as expected divisions before senescence or death and damage accumula-
tion/retention over several generations.

We show that while passive-only mechanisms –as introduced in existing bibliography–
can reproduce the experimental data used to defend their sufficiency, notable differences re-
main between the results from our purely-passive model and other experimentally-quantified
observables. More specifically, we observe that the rate of aggregate movement between the
two compartments (in terms of the average amount of crossings) has been underestimated
and in reality, in absence of active mechanisms, is nearly an order of magnitude higher than
it has been measured in the experiments in [1, 14]. These differences are improved when
introducing a very small (possibly undetectable) degree of aggregate-motion-bias towards
the mother cell –as would be the case under an infrequent active transport [2, 102]– or
confinement to regions close to organelles [105] or to the cell’s membrane [16]. This result
points towards the necessity of an active quality-control mechanism –enhanced by passive
processes– to justify the kinetics and the degree of asymmetry in the segregation of damaged
proteins observed in real life budding yeast cells.

II.2 Methods

II.2.1 The single-division-cycle, passive-only model
To study aggregate kinetics and their distribution during cytokinesis, we construct the short-
term component of our passive-only model. It is schematized in Fig. II.1A together with the
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key passive mechanisms that are incorporated. Namely, that aggregates follow a diffusion
process [1] and may bind on collision, grow in size, appear at different rates depending on
their compartment and exhibit different diffusion rates depending on their volume [14, 109].

In the three-dimensional model, aggregates are either generated at the beginning (a
number N) or appear at the mother or bud compartments with constant rates 1

τm
and 1

τd
.

They have an initial radius ria, which represents the threshold of detection; the minimum
aggregate size for which experimental tracking is possible. These aggregates undergo diffusion
with a rate D(ri(t)) –where ri(t) is the radius of aggregate i at time t– inside a domain
consisting of two spheres (mother and daughter cells) of radii rm and rd(t) respectively,
joined by a neck of length ln. The bud’s radius grows with a constant rate until it reaches
its final value rd(T ) at the end of cell division (which happens after a time T ). For the
results shown in this paper we consider the two organelles of largest size: the vacuole and
the nucleus, both static and with radii rv, rn respectively.

Fusion occurs, upon aggregate collision, with a probability pb. Moreover, aggregates
grow (in volume) with a constant rate Cc which we take to be 4π

3 (ria)3/τc for consistency
with the appearance rate (τc is either τm or τd depending on the compartment). Continuous
aggregate growth relates to the observations in [17] showing that aggregates form and grow
progressively rather than due to a collapse at advanced ages. In Section S8 in the Supporting
Material, we present equivalent results for a variant of the passive-only model where the
rate of growth is proportional to the surface area of the aggregate. We show that under
appropriate parameter conversions the conclusions remain the same.

II.2.2 The life-cycle passive-only model

The long-term component of our passive-only model aims to reproduce aggregate-dependent
aging dynamics in budding yeast over many generations. For this, we look at damage in cells
throughout the entire life-cycle [315], which is composed by several divisions (all following
the short-term single-division dynamics introduced above) together with a time between
divisions Ts (taken from [321]) in which we just assume that aggregates grow, appear and
bind with the same rates as during cytokinesis. We assume that death of cells occurs after
Ndeath divisions, which we deduce from [17, 64]. The process follows the scheme presented
in Figure II.1B.

II.2.3 The active-quality-control variants of the passive-only model

We also present three extensions of the passive-only model, which implement the active-
quality-control mechanisms proposed in the experimental studies in [10, 16, 105]. In the
first, aggregate motion has a small bias towards the mother’s pole –which represents actin-
driven transport. At each time step, with a probability ps, movement in the x coordinate in
the direction of the bud is reversed, so that aggregates move only in direction of the mother
cell.

In the second, aggregate motion is confined when reaching the periphery of the nucleus
or of the vacuole –which can account for organelle-associated confinement. When the center
of the aggregate lies at a distance smaller than dc from the boundary of the organelle, then,
every minute, they are to remain confined to its surroundings with a probability pc.



II.2 Methods 49

In the third, aggregates adhere to the cell membrane and remain trapped for a random
time –which aims to represent adhesion to the ER. More precisely, when aggregates collide
against the cell membrane, they attach with a probability pa and remain stuck every passing
minute with probability pw.

We define the probability of confinement or attachment with respect to a minute-based
timescale (in contrast to seconds or to the time-step length δt) in order to facilitate experi-
mental measurements aiming to validate these models.

II.2.4 Model parameter values
The default parameter values that were used to obtain the results in this paper were provided
by T. Nyström (personal communication with T. Nyström, Department of Cell and Molecular
Biology–Microbiology, Göteborg University, Göteborg, Sweden. March 2012), deduced from
[14, 109, 321], or carefully calibrated, in the case of AQC, in order to match experimental
results. All parameter values and the references from which they were derived are gathered
in Table S1. We take into account bud-specific dilution by assuming τd to be larger than τm
by a tenfold.

II.2.5 Numerical simulations

II.2.5.1 Single-division-cycle aggregate dynamics and distribution

The numerical algorithm for the simulation of aggregate dynamics in the short-term, single-
division cycle component of the passive-only model is described in Section S1.1 in the Sup-
porting Material. In Fig. II.1C and Fig. II.1D we show two perspectives of an instant from
a simulation. Throughout the simulations of aggregate kinetics during a single division cycle
we keep track of statistics that can be used as a reference for experimental work; the number
of aggregates, the total aggregate volume, the mean-square-displacement (MSD), and the
number of cross-compartment crossings in each direction. For the latter, we only consider a
crossing when the entire aggregate (not just its center) passes from one compartment to the
other (Fig. II.1E).

II.2.5.2 Life cycle damage accumulation and aggregate dynamics

The simulations of the long-term component of the model –aiming to reproduce aggregate-
based yeast aging patterns– are detailed in Section S1.2. After each division cycle is complete,
we keep track of relevant statistics for comparison with experiments (aggregate volume,
aggregate number, probability of inheritance of at least one aggregate and of the largest
aggregate –if it exists– by the daughter and the number of crossing events in each direction),
as well as the number of aggregates in the mother and their radii in order to start the next
division cycle.

II.2.6 Mathematical analysis and validation of simulations
The work from [11, 13, 322–324] provides us with a framework to study transport between
two domains analytically. Using their results, we estimate aggregate dynamics throughout
the cell-division cycle with a system of ODEs. A similar mathematical model was presented
recently in [15]. Here, we extend their approach to include fusion and appearance of new
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aggregates.

The mathematical model designed and used is detailed in Section S2. We numerically
integrate the system of ODEs in Eq. (S2) using an explicit method in order to corroborate
the results of the stochastic simulations of aggregate dynamics during the single-division
cycle. This is an accurate approximation of the short-term component. It could also provide
an upper bound of the mother cell’s aggregation levels for the long-term component over
many generations.

II.3 Results

In this section we show the results obtained from our passive-only model (the short and
long-term components) and from its variants, and offer direct comparison with relevant ex-
perimental data gathered from available bibliography. In the case of the single-division cycle
(the short-term) component, we complement and validate some of these results with the
approximations calculated from the system ODEs in Eq. (S2).

We show that the passive-only model is able to reproduce results in agreement with
observables from experimental and modeling work defending the sufficiency of passive-only
mechanisms. Nevertheless, we observe that the average number of cross-compartment cross-
ings under the passive-only assumption remains substantially higher than its experimental
counterpart. This result is sustained at short and long timescales and under a wide range of
the relevant parameters and thus unlikely to be atypical and a consequence of the model’s
simplifications.

These differences can be improved when introducing basic, sporadic active-quality-control,
while still remaining consistent with the rest of the experimental data used for comparison.

II.3.1 Single-division and passive-only; agreement with averaged observables
from experiments supporting passive-only mechanisms and from other
experimental and modeling work

II.3.1.1 Aggregate mean-square-displacement

In [1] Fig. 2, the aggregate MSD exponent α was approximated to be around 0.75 when
tracking aggregate movement following heat-induced aggregation from a 30 minute TS from
30◦C to 42◦C.
Similarly, in our passive-only model, the degree of sub-diffusion under high aggregation
rates corresponds to α ' 0.95 at short timescales and α ' 0.71 at intermediate timescales
(Fig. II.2A) –although Eq. II.1 is not longer valid given the non-constant aggregate volumes.

Here, we provide a more precise explanation to what is referred to in [1] as diffusion with
a small degree of confinement by showing the impact of both, the geometry and aggregate
fusion and growth, on the MSD.

As observed in Figs. II.2A and II.2C, the MSD is slowed at intermediate and long
timescales as a consequence of the confined domain. Moreover, it first stabilizes around
7.6 µm2 before rising to 8.9 µm2 once cross-compartment transport is no longer rare. This
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Figure II.2: MSD of aggregates in the passive-only model. A-B. Log-log plot of the MSD
of one aggregate (top) and volume of the same aggregate for which the MSD was computed
(bottom). Dashed lines correspond to the unconstrained MSD of an aggregate of radius ria
(top) and to the volume of one aggregate with initial radius ria in absence of fusion events
(bottom). C. Same as Fig. II.2A. D. Same as Fig. II.2C for different rates of appearance
and growth of aggregates. E. Log-log plot of the MSD of a particle in 2D undergoing
unconstrained diffusion

〈
r2(t)

〉
u, diffusion inside an empty cell

〈
r2(t)

〉
d, or diffusion inside a

cell with a vacuole
〈
r2(t)

〉
a. In all three cases D = 1× 10−3. In Figs. A-C, N = 5, δt = 0.1

sec., τm = 12 min., τd = 120 min. In Figure D, N = 1, δt = 0.25 sec. All other parameters
were set to the values in Table S1. Results averaged over 1024 realizations.

transition occurs after approximately 35 minutes, which is close to the mean-first-passage-
time 1

κm
(see Section S2) of an aggregate of radius ria (approximately 32 minutes).

In Figs. II.2A-II.2B it is emphasized that not only barriers have a strong effect on the aggre-
gates’ movement but fusion and growth as well. At intermediate and large timescales, the
average volume of the aggregate rises above the constant growth of volume under the absence
of fusion. This effect is corroborated in Fig. II.2D, where the MSD is significantly slowed as
the rate of aggregation increases. If the rate is low, so that fusion events are rare and growth
is reduced, the MSD of initially equally-sized aggregates can rise to values around 13 µm2

after 100 minutes as a result of a reduction of compartmental retention by the mother. In
Fig. S1, we show the dependence of the MSD on the simulation parameter δt to emphasize
that our results are not incidental.

In two dimensions, the effect of barriers and obstacles on the diffusion of particles can
be studied analytically [105, 325–328]. We detail this procedure in Section S7.
Indeed, by representing the cell as a two-dimensional empty disc or as an annulus (when
considering only the vacuole) we are able to examine the effect of constraints (the cell mem-
brane and the organelles) on the MSD of the aggregates. One observes (Fig. II.2E) that
sub-diffusion can appear simply as a consequence of constraints, becoming stronger (at short
and intermediate timescales) when more barriers are considered.
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Figure II.3: Aggregate kinetics from the short-term component of the passive-only model. A-
C. Total aggregate volume, fraction of the total aggregate volume and number of aggregates
inside the mother (blue) and the daughter cell (red). Continuous line corresponds to the
analytical prediction when numerically integrating Eq. (S2). Dotted line corresponds to the
numerical average from the stochastic simulations of the short-term component of the model.
D,E. Same as B,C for different rates of appearance and growth of aggregates. In Figures
A-C, N = 5, δt = 0.1 sec., τm = 12 min., τd = 120 min. In Figures D,E N = 1, δt = 0.25
sec. All other parameters were set to the values in Table S1. Results averaged over 1024
realizations.

II.3.1.2 Asymmetric distribution of aggregate volume and aggregate concen-
trations during yeast cell division

We show that our passive-only model is able to reproduce the observations derived from
previous modeling approaches in [1, 14, 15]. Additionally, in Section S6, we comment on
possible limitations each of these models can have when on their own.
In Fig. II.3A we show the time-dependence of aggregate volume for the short-term compo-
nent of the passive-only model. By comparing the slopes of both curves, it can be infered that
the main drivers behind the asymmetrical distributions are the different rates of growth of
existing aggregates and of appearance of new aggregates in both compartments (bud-specific
dilution as proposed in [14]). Since this rate is constant, the function resembles a straight
line. If the rate of growth increases in proportion of the surface of the aggregate, the shape
of this function rather resembles an exponential (See Section S8). If, as in the model used
in [14], we assume no compartmental crossings, at the end of cell division we would overes-
timate aggregate volume inside the mother cell by nearly 6% and underestimate aggregate
volume inside the daughter by nearly 65%. This is shown by the values of E∗(V a

m(100)) and
E∗(V a

m(100)) in Fig. II.3B, which denote the aggregate volume in each compartment under
no transport (a closed neck) at the end of the division cycle when numerically integrating
the system of ODEs in Eq. (S2).
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Figs. II.3B and II.3D show aggregate volume concentrations in both compartments for
different aggregation rates and different N . The initial number of aggregates does not impact
strongly the asymmetrical distribution of volume due to the frequency of movement between
compartments. On the contrary, aggregation rates (Fig. II.3D) have an important impact
on the degree of asymmetry, even though their ratio among compartments is kept constant
(τd = 10×τm). At high rates (τm = 12 min., τm = 25 min.), the fraction of volume inside the
mother after 100 minutes is approximately 0.88, which is close to the results of the models in
[1] Fig. 7B and [15] Fig. 2. The effect of variations in the diffusion coefficient is weaker under
these conditions, since an increase by a tenfold or a reduction by two orders of magnitude
varies the fraction of volume in the mother by a maximum of 8% (Fig. S3). At lower
rates, resembling those in unperturbed cells, aggregate cross-compartment transport reduces
substantially the damage asymmetry by nearly 20% (Fig. II.3D). Under these conditions,
diffusion should be slowed to a fair amount (as in [1]) in order to avoid aggregate escape
from the mother and to maintain a strong asymmetrical distribution of damage.

II.3.1.3 Number of aggregates during yeast cell division

In Fig. II.3C we show the time-dependence of the number of aggregates during a single cell-
division cycle. The underestimation of fusion in the stochastic numerical simulations is a
consequence of the discretization of time (and the time-step size δt = 0.1 sec.), given that we
might overlook possible contacts. This is highlighted in Fig. S1. The discrepancy disappears
at longer timescales where the number of aggregates is smaller, their size is bigger, and their
diffusion coefficient decreases. Indeed, at the end of the simulation, both approaches predict
that there will be approximately two aggregates in the mother cell and nearly one half in
the daughter.

Fig. 2A in [16] describes how aggregate deposits in unperturbed WT cells frequently
merge. Similarly, Fig. 2L in [14], shows that fusion events drop aggregate numbers from
five to two in the first minutes of cell division after a TS from 30◦C to 38◦C. Moreover,
the experimental observations in [109] suggest that not only aggregate fusion is frequent but
that it is the main driver of the asymmetrical division of damage in fission yeast. Indeed,
aggregate fusion in our passive-only model is very common, as attested by the sharp drop
in the number of aggregates from five to two in less than 10 minutes. In Fig. II.3C, unlike
Figs. 2L and 3F in [14], the average number of aggregates in the mother at the end of cell
division converges to two rather than a value close to 1.5. This is a consequence of the
high aggregation rate, since the average time of fusion of “newborn” aggregates with the
largest aggregate is larger or equal than the average time of appearance of new aggregates.
When having only one initial aggregate (and the same appearance and growth rates) this
result is unaltered (Fig. II.3E for τm = 12 min.). At lower rates, resembling those in
unperturbed cells, the number of aggregates in the mother can converge to a value close to
one (consistent with Fig. 2A in [16], where more than one aggregate in unperturbed cells was
rare) or continuously decrease until fusion becomes rare and the number of aggregates in the
mother and the daughter depend more strongly on cross-compartment movement between
the two domains (Fig. II.3E for τm ≥ 25 min.).
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Figure II.4: Differences between the outputs of the passive-only model and experimental
observations. A. Histogram of the total number of cross-compartment crossing events from
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values of β and γ after a cell division cycle. In Fig. A, N = 5, δt = 0.1 sec., τm = 12 min.,
τd = 120 min. In Figures B and C, N = 1, δt = 0.25 sec, τm = 12 min. (Fig C), τd = 120
min (Fig C). All other parameters were set to the values in Table S1. Results averaged over
1024 realizations.

II.3.2 Single-division and passive-only; disagreement with experimental observ-
ables

II.3.2.1 Average number of cross-compartment crossings during a single divi-
sion cycle

In [1] Fig. 1, the average number of cross-compartment crossing events per cell division
cycle was measured to be close to 0.25 in the case of mother to bud and 0.15 in the case
of bud to mother. These measurements were performed after a 30 minute TS from 30◦C
to 42◦C. Likewise, in [14] Fig. S6, it is shown that only 10%-30% cell divisions exhibited
bud-to-mother transport after two TS from 30◦C to 38◦C and from 30◦C to 42◦C. In our
passive-only model, in a cell with initially five aggregates of small size (as in Fig. 1 in [1])
and with only two aggregates after fusion events in the first ten minutes, the average amount
of crossings is two orders of magnitude higher than reported in [1] (Fig. II.4A). Indeed, the
average number of crossings in each direction is 11.16 (B > M) and 11.27 (M > B) and
there are runs in which they reach values over 30. Moreover, crossing events are so common
that there is almost no bias with respect to the direction (Fig. II.4A inset), showing that
most aggregates undergo multiple compartment exchanges during a single cell division cycle.

It was observed in [14] Fig. S6, that the amount of crossings significantly increased when
the TS was raised from 38◦C to 40◦C to hamper polarized growth. In both cases though, the
total amount of crossings remained under one event per cell division. Although temperature
has a strong effect in this observable –most likely due a decreased mean-escape-time from
the bud as a consequence of its smaller volume and to increased diffusion and aggregation–
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Figure II.5: Long-term dynamics of the model. A-D. Number of aggregates and total aggre-
gate volume inside mother cell (top) and inside the daughter cell (bottom) at the end of the
cell division. E. Fraction of total aggregate volume inside the daughter cell at the end of cell
division. Error bars correspond to the Standard error. In all simulations δt = 0.5 sec., all
other parameters were set to the values in Table S1. Results averaged over 1024 realizations.

it is unlikely that passive-only responses to variations in temperature can account for the
difference between the results of the model and those from experiments. This is demonstrated
in Figs. II.4A-II.4C, where the differences remains under strong variations in the initial
number of aggregates and in the appearance and growth rates. Also, under variations in the
diffusion coefficient, although as a default value we used the one measured in [14].
Moreover, the difference with experimental results is unaltered under reasonable values of the
time-step size (see Fig. S1) –and thus is unlikely to be a consequence of multiple crossings
in the event of one cross-compartment displacement.
We recall that all aggregates in the simulations have size larger or equal than the threshold
of visibility ria = 0.08 µm [1, 14] which is a conservative choice known to be larger than
the experimental limitations (personal communication with T. Nyström, Department of Cell
and Molecular Biology–Microbiology, Göteborg University, Göteborg, Sweden. March 2012).
Hence, the difference between the amount of crossings in this work and in experiments is
also not a consequence of very small aggregates which would otherwise be undetectable.

II.3.3 Long-term aggregate dynamics. Damage accumulation over a life cycle;
comparison with experiments and qualitative dependence on aggregation
rates

In Fig. II.5 and Fig. II.6 we show the results of the long-term component of our passive-
only model –in which we track the accumulation of damage in cells over many divisions– for
various appearance and growth rates 1/τm and 1/τd. Low rates (τm = 200 min, τm = 800
min.) are approximations of aggregation rates in unperturbed cells ([17] Fig. 1B), while high
rates (τm = 12 min., τm = 25 min.) approximations of aggregation rates in heat-exposed or
stressed-induced cells.
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II.3.3.1 Aggregate volume, concentration and numbers throughout the life cy-
cle

In the long-term component of the passive-only model aggregate volumes, numbers and
concentrations depend qualitatively on the parameter τm.

It has been discussed in experimental bibliography how oxidative damage gradually accu-
mulates inside cells with passing age [17, 18] and how it generally concentrates into a single
aggregate deposit [14, 16]. For small values of τm (under 100 min.) aggregate volume inside
the mother cell grows with age at an almost constant rate (Fig. II.5B). With respect to the
aggregate volume inherited by the daughter, the function rises at short ages to then drop to
nearly zero (τm = 12 min., 25 min.) or to small values (τm = 50 min.) once a large aggregate
with slower diffusion establishes (Fig. II.5A). The aggregate rarely crosses the neck and, due
to its size, has a big probability of fusing with smaller aggregates before the latter pass to
the bud. This is confirmed in Fig. II.5E where for small τm (and τd), the fraction of volume
inherited by the daughter drops to values under 0.05 after 28 generations.

For values of τm over the threshold of approximately 100 minutes (which is the duration
of cell division) and which resemble those in unperturbed cells, aggregate volume inside the
mother cell converges to a limit value. Furthermore, both the volume and the fraction of
volume inherited by the daughter cell rise in the first generations (while small aggregates
accumulate), to later stabilize after the establishment of intermediate-sized aggregates. It is
possible that at longer time-scales these curves will decrease again to values close to zero,
after large aggregates become predominant, mimicking the behavior of their higher-rate
counterparts which is best displayed by the curve for τm = 50 min. However, this appears
to be inconsistent with the number of aggregates (shown in Fig. II.5A and Fig. II.5B)
–which appears to settle in both compartments to an added value smaller or equal than one–
and with the total aggregate volume (in Fig. II.5C) –which converges to a limit value as well.

We can further confirm that the transition of gradual accumulation of damage versus
stabilization occurs close to τm = 100 min. by observing in Fig. II.6A that an inflection point
of the curve occurs in the neighborhood of this quantity. In the case of growth proportional to
the surface area the transition occurs around τm = 250 min., which is reasonable considering
that aggregate growth is exponential.

II.3.3.2 Probability of inheritance of at least one aggregate by the bud

The probability that a daughter cell inherits at least one aggregate was measured in [10] Fig.
4G to be close to 0.3 –following a TS from 30◦C to 42◦C– and to be around 0.10 in WT
unperturbed cells ([16] Fig 3C).
In Fig. II.6C we show that for values of τm smaller that 100 min., the probability drops as
the largest aggregate increases in size and its capacity of crossing the neck decreases. After,
it stabilizes at values representing the event where small aggregates avoid collision with the
largest one inside the mother and either escape to the daughter (if generated in the mother)
or remain inside of it (if generated in the daughter).

For values above or equal to the threshold occurring at τm ' 100 min., the functions rise
as a consequence of the accumulative probability of the daughter cell creating an aggregate
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Figure II.6: Long-term aggregate dynamics. A. Total aggregate volume inside the mother
cell at the end of the 28th division. Inset. Same as in Fig.II.6A but in log-log scale. B-D.
Number of crossing events from mother to bud (continuous line) and from bud to mother
(dotted line); probability of inheritance of at least one aggregate by the daughter cell at the
end of cell division (Fig.II.6C); and probability of inheritance of the largest aggregate by
the daughter cell, if it exists (Fig.II.6D), as a function of the mother’s age (in generations)
for different rates of appearance and growth of aggregates. Error bars correspond to the
Standard error. In all simulations δt = 0.5, all other parameters were set to the values in
Table S1. Results averaged over 1024 realizations.

or of inheritance of the unique aggregate (see Fig. II.5A) to later stabilize at limit values
which depend on the ratio of the volumes, the ratio of the appearance rates, and of the time
T . In both cases, most cells (at least 75%) are born aggregate-free and with a probable
full replicative life span. Moreover, depending on the aggregation rate, the probability of
a daughter cell containing at least one aggregate lies within the range 0.14-0.21 for mature
mother cells (over 10 generations old). The lower bound (τm = 800 min.) is close to the
estimate in [16], while the upper bound (τm = 12 min.) is close to the one in [10] after a TS.

II.3.3.3 Probability of inheritance of the largest aggregate by the bud

Given a positive number of aggregates, the probability that the largest one is inherited by
the daughter was approximated in [16] (Fig. 3B) to be around 0.02 for unperturbed WT
cells. We show in Fig. II.6D that, once more, there two different behaviors depending on
the parameter τm. In the first (for values smaller that 100 min.), the probability drops
gradually closer to zero as the largest aggregate increases in size and its capacity of crossing
the neck is reduced. In contrast, for values of τm over the threshold, and resembling those
in unperturbed cells, the probability of the existing aggregate to be in the daughter at the
end of the division settles above 0.2. This is substantially higher than the experimental
counterpart of 0.02 in [17].
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Figure II.7: Short-term results from the AQC variants of the passive-only model. A. Log-
log plot the MSD of an aggregate (top) and volume of the same aggregate for which the
MSD was computed (bottom). Dashed light lines correspond to the unconstrained MSD of
an aggregate of radius ria (top) and to the volume of one aggregate with initial radius ria in
absence of fusion events. B. Average number of crossing events from mother to bud (M > B)
and from bud to mother (B > M). Inset. Proportion of crossing events in both directions.
In both Figs. N = 5, δt = 0.1 sec. All other parameters were set to the values in Table S1.
Results averaged over 1024 realizations.

II.3.4 Long-term aggregate dynamics, damage accumulation over a life cycle;
differences with experiments

II.3.4.1 Average cross-compartment crossings throughout the life cycle

We show in Fig. II.6B, the average number of crossing events from our passive-only model
as a function of the age of the mother cell. Although with age, due to the formation of larger
aggregates, the number of crossing events in both directions decreases, it remains more than
a 10-fold higher than in experiments ([1] Fig.1 and [14] Fig. S6) and settles around 6 crossing
events, when τm = 12 min, and 3 crossing events when τm is larger. These crossings are
almost completely carried out by small aggregates with low mean-first-passage-time. Overall,
this either suggests that experimental data in [1] relies on a mechanism of retention or that
their threshold of detection was considerably above the one used in these simulations (derived
from [14]), which appears unlikely after observing Figs. 1A, 1B and 1C in [1] where some
aggregates have radii of approximately 0.05 µm.

II.3.5 Aggregate kinetics in cells with infrequent active-quality-control

II.3.5.1 Aggregate mean-square-displacement

We show in Fig. II.7F that sub-diffusion can also be consistent with an infrequent active
mechanism of transport or with an active mechanism of retention, since the effect of the ge-
ometry combined with fusion and growth of aggregates, remains the strongest force affecting
their displacement. That is, α ' 0.96 and α ' 0.78 at short and intermediate timescales in
the case of drift (movement only towards the mother’s pole with probability ps); α ' 0.94
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and α ' 0.65 in the case or confinement to organellar surfaces; and α ' 0.88 and α ' 0.6 in
the case of attachment to cell membranes. In all four cases, when combining the timescales,
the values of α can be considered consistent with the experimental measurements in [1].

II.3.5.2 Average number of cross-compartment crossings during a single divi-
sion cycle

When introducing active-quality-control for a single cell division cycle, the number of cross-
ings can be significantly reduced by nearly a fivefold (Fig. II.7B). Moreover, the proportion
of retro and antero movement (Fig. II.7B Inset) becomes more consistent with the experi-
mental estimations in Fig. 1A from [2].

II.3.5.3 Long-term aggregate dynamics. Damage accumulation over a life cycle;
agreement with experiments

In Fig. II.8A we show that for τm = 100 min., all of the three implemented active mecha-
nisms can be very efficient for enhancing the accumulation of damage. After 28 divisions,
the total aggregate volume inside the mother is increased by at least a threefold and does not
stabilize (similarly as in [18]). Although our results indicate that confinement to organellar
surfaces is less effective, this is merely a consequence of the overlapping restriction that we
force on the aggregates and the organelles. After 15 generations, fusion with the largest
aggregate becomes restrained since it we impose the overlapping condition with organelles.
Thus, smaller aggregates escape more easily and the retention capacity of the mother cell
is diminished. However, in absence of this restriction, and in line with the almost identical
volume growth as under drift (Fig. II.8D top) until the 15th generation, we claim that
the mother cell under this mechanism should also reach values of total aggregate volume
of 0.2 µm3, which is around a fourfold higher than the volume inside a cell in absence of
any form of active-quality-control. The effect of restrained fusion with the largest aggregate
under confinement to organellar surfaces is observed in Figs. II.8C-II.8F.

In Fig. II.8C we show the number of aggregates in both compartments with and without
active mechanisms. Absence of quality-control, together with drift and with confinement
to organelles reduces the number of aggregates in the mother cell to similar values close to
one aggregate, which is consistent with the experimental quantifications for heat-induced
cells in [14] Fig. 2L and for unperturbed cells in [16] Figs. 2 and 3. This is also in agree-
ment with the observations in [10, 17]. In the case of attachment to cell membranes, as
aggregate diffusion is reduced and thus their collision is less frequent, the number of aggre-
gates is significantly higher (it can rise to around 2.5 times the value in absence of sticky
membranes). This suggests that, should this mechanism be present in real life WT cells, it
must be complemented with a machinery supporting aggregate assembly and fusion [16, 107].

Concerning the number of aggregates in the daughter cell, all three mechanisms reduce
aggregate inheritance by the daughter cell by a fourfold. This is confirmed in Fig. II.8E
displaying the probability on inheritance of at least one aggregate by the daughter. Under
AQC, the probability is underestimated with respect to experimental measurements. Nev-
ertheless, AQC outperforms passive-only assumptions.
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Figure II.8: Long-term results from the AQC variants of the passive-only model. A. Total
aggregate volume inside the mother cell at the end of the 28th division. B. Average number
of crossing events from mother to bud (continuous line) and from bud to mother (dotted
line). C-D. Total number of aggregates and total aggregate volume inside the mother cell
(top) and inside the daughter cell (bottom). E. Probability of inheritance of at least one
aggregate by the daughter cell at the end of cell division. F. Probability of inheritance of the
largest aggregate, if it exists, by the daughter cell. Error bars correspond to the Standard
error. In all simulations δt = 0.5, τm = 100 min., τd = 1000 min., all other parameters were
set to the values in Table S1. Results averaged over 1024 realizations.

The probability of inheritance of the largest aggregate by the bud remains close to 0.02
in all three variants, which is consistent with the measurements in [16] for WT cells. In
absence of AQC, this probability stabilizes around 0.15 under an intermediate rate of ap-
pearance and growth close to the threshold value (τm = 100 min.). As shown in Fig. II.6D
for the passive-only model, even with τm = 50 min. the probability can not be under 0.05
after 28 generations.

In Fig. II.8B we show the number of crossing events between compartments under the
three forms of active quality-control. In all three variants of the original model, the amount
of crossings are reduced to values comparable with those measured in [1] Fig. 1 and [14] Fig.
S6, which are under one crossing event in each direction per cell division cycle.

II.4 Discussion

II.4.1 Single-division cycle aggregate dynamics

The results from the single-division cycle component of the passive-only model suggest that
although the passive-only assumption can reproduce the experimental data used to support
it, substantial differences remain between experimental observables and the predictions of



II.4 Discussion 61

the model.

Concerning the MSD of aggregates, we show that the degree of sub-diffusion measured
in [1] is consistent with the presence of passive-only mechanisms and can arise as a con-
sequence of the geometrical effect of the dividing yeast cell and of aggregate growth and
fusion. However, unless aggregates are subject to a frequent and consistent mechanism of
active transport, a degree of sub-diffusion should be expected as well under active-quality-
control. This suggests that an MSD consistent with sub-diffusion should not be considered
a deciding argument when dismissing its presence.

With respect to aggregate kinetics and the asymmetrical accumulation of damage inside
yeast cells, we observe that, although fusion of aggregates and bud-specific dilution can play
a mayor role in its establishment, aggregate cross-compartment transport can have a sub-
stantial impact in the level of damage asymmetry. Indeed, similarly to the second law of
thermodynamics, an open neck has a balancing effect on the appearance and growth rates of
aggregates and decreases the effect of bud-specific dilution on the asymmetrical distribution
of damage during cytokinesis. Moreover, rather than the case where aggregates would rarely
cross the neck, as observed in [1] and as interpreted in [14], the passive-only assumption
is more consistent with an interpretation where aggregate transport is frequent and where
the distribution of aggregates is strongly regulated by the relation between compartmen-
tal volumes and between aggregation rates. This result suggests that models that do not
incorporate either aggregate fusion, growth, and appearance –as the one in [1, 15]–, or cross-
compartment transport –as that in [14]–, can potentially underestimate the role of these
effects on the asymmetrical distribution of damage in real life yeast cells.

This result is corroborated by the fact that the average number of cross-compartment
crossings in our passive-only model is at least an order of magnitude higher than the one
observed and quantified in [1, 14]. We then suggest that it is likely that experimental
observations in [1, 14] (Figs. 1 and S6 respectively) rely on an underlying mechanism of
retention. Furthermore, since our active-quality-control variants of the passive-only model
are able to produce results closer to the empirical estimations.

II.4.2 Long-term aggregate dynamics

The long-term component of our passive-only model, reproducing aggregate accumulation
over many generations, shows a qualitative dependence on the rate of appearance and growth
of aggregates. Under high rates of aggregation, resembling those after heat or oxidative stress,
fusion of aggregates and bud-specific dilution can induce gradual damage accumulation in
mother cells and, therefore, aggregate-dependent aging. In contrast, if the rates are low
–resembling those in unperturbed cells– rather than becoming saturated with damage, cells
without active quality-control have aggregate volumes which stabilize by getting rid of dam-
age continuously and in near constant rates. Hence, although the distribution of damage
remains asymmetrical between mother and daughter cells, this behavior would be more con-
sistent with non-aging organisms. Therefore, as observed in [109] for fission yeast, depending
on the rate of appearance and growth, fusion alone can or can not be the sole mechanism
capable of aggregate-dependent aging in unperturbed WT cells. At low rates, resembling
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those measured in experiments in [17], other (possibly active) mechanisms of retention and
aggregate-compartmentalization are likely required for aggregate-dependent aging to evolve.

This is further confirmed by observing that the average number of cross-compartment
crossings measured in the long-term component of the passive-only model remains an or-
der of magnitude higher than measured in [1, 14]. This result is sustained under low and
high values of the aggregation rates. Thus, results from our passive-only model suggest that
although fusion indeed contributes to the asymmetrical distribution of damage, it must be
accompanied by a mechanism enhancing gradual damage accumulation and retention, spe-
cially in cells that have not been exposed to stress.

When introducing active-quality-control, in all three of our variants, consistency between
our results and most of the experimental data used for comparison (MSD, number of crossing
events, number of aggregates in cells and probability of inheritance of largest aggregate by
the daughter cell) is maintained or improved. The exception being the number of aggregates
under attachment to cell walls, which we suggest must be accompanied by a mechanism
enhancing aggregate fusion. Therefore, the presence of AQC in real life budding yeast cells
is at least probable.

Finally, we highlight that some experimental observables can accommodate to both
passive-only and AQC. Moreover, the averaged regimes of inner cell aggregate kinetics might
be similar (the number of aggregates in each compartment and the MSD for instance) un-
der both assumptions. Nevertheless, a thorough comparison with various experimentally-
measured quantities is what makes the sufficiency of passive-mechanisms improbable.

II.5 Conclusion

This paper presents a computational model complemented with a mathematical approxi-
mation generalizing the works in [14, 15], aiming to study the sufficiency of passive-only
mechanisms behind the asymmetric segregation of damaged proteins (Hsp104-associated ag-
gregates) during cytokinesis and throughout the life cycle of budding yeast cells. We analyze
whether aggregate kinetics and the asymmetrical distribution of damage observed in real life
cells is consistent with the absence of active-quality-control as suggested in [1, 14], or as a
consequence of an underlying (possibly active) mechanism that either transports or holds
the aggregates inside the mother cell [10, 16, 64, 105], which can then be intensified by the
mediation of passive processes.

Our results show that while some observables are reproducible under passive-only as-
sumptions, they fail to justify the low amount of cross-compartment movement observed in
experiments. Cross-compartment movement was absent in the model in [14] and was not
measured in the models in [1, 15] and could be an important argument in favor of active-
quality-control retention mechanisms.

Additionally, we show that aggregate fusion and bud-specific dilution can produce grad-
ual damage accumulation with age (as suggested in [14]) only under high rates of aggregate
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growth and aggregate appearance, which is the case for cells under stress but is unlikely to
be the case for unperturbed cells. The rate of aggregate appearance and growth has not
been exactly measured, but under low aggregation rates which resemble those approximated
in WT unperturbed cells, damage accumulation (and aggregate-dependent aging) occurs in
our model solely under the presence of AQC.

Last, we introduce three variants of the original passive-only model where we implement
representations of active quality-control mechanisms that have been suggested in existing
bibliography [10, 16, 105]. Although results rely on parameters that have no current ex-
perimental validation (which we encourage), simulation results from these alternate active
versions can improve the above-mentioned differences with available experimental data.

II.6 Author Contributions
M.A-R. designed and performed the research, contributed analytic and numerical tools,
analyzed results and wrote the article.

II.7 Acknowledgements
The author would like to thank Thomas Nyström for introducing him to the subject and
for his contributions. He would also like to thank Khashayar Pakdaman for his invaluable
guidance and Bernhard Mehlig for his counsel.



64 Chapter II. A Model of Aggregate Dynamics in Yeast

Supplemental Information and Supporting Figures

II.8 Numerical methods and dependence on numerical parameters

II.8.1 Short-term single division cycle

In the simulations of the short-term, single-division-cycle aggregate dynamics of our passive-
only model we first introduce the organelles inside the mother cell as spheres centered at a
random position. The centers of organelles are computed using a uniform distribution inside
a sphere of radius rm − ro, where ro is the radius of the organelle and rm the radius of the
mother cell. Organelles are not allowed to overlap with other organelles and therefore their
centers must lie at a distance larger that the addition of their radii. Next, we set an initial
number of aggregates N , represented by spheres with radius ria, with centers computed from
a uniform distribution inside a sphere of radius rm− ria, again with the restriction that they
cannot overlap or lie inside the organelles.

Aggregates are generated randomly inside the mother and bud compartments at times
taken from exponential distributions with rates 1

τm
and 1

τb
respectively. Each time this oc-

curs, the position of the aggregate is generated randomly from a uniform distribution in each
compartment –in the case of the bud, the centers are computed using a uniform distribution
inside a sphere with radius rb(t)− ria and which is centered at (xb(t), yb(t), zb(t)) which de-
notes the bud’s focus.

Aggregates undergo diffusion, with a time step of length δt (see Fig. II.9) and diffusion
coefficient D(ri(t)) = β

ri(t)γ , taken from [14]. As measured in [14], the values for β and γ

are different from β = kBTe
6πµ and γ = 1, which correspond to the traditional Stokes-Einstein

equation (Te being the absolute temperature). Additionally we increase the radii of all aggre-
gates following ri(t) = ( 3

4πCcδt+ ri(t− δt)3) 1
3 where Cc = 4π(ria)3

3τm or Cc = 4π(ria)3

3τd depending
on the compartment. These growth rates are chosen so that, in absence of fusion and cross-
compartment crossings, aggregates will have a radius ria after a time τc.

Upon contact of aggregates i and j (when the distance between aggregate centers is
smaller that the sum of their radii), binding happens with a probability pb. If this is the
case, a new aggregate of radius (ri(t)3 + rj(t)3) 1

3 is generated at the intermediate position.
In the case of collision against the cell walls (mother or bud) or against an organelle, the
position of the aggregate is recalculated assuming a completely elastic collision against the
boundary. We also considered the case where a fraction el of the energy was lost by setting
the distance after the impact to be l∗2 = l2(1 − el), l2 being the distance after a completely
elastic collision, but the results were not substantially different, with the exception of a small
increase in the amount of cross-compartment crossings (see Fig. II.10).

The process above is continued until a time T is reached, corresponding to the time at
which the neck connecting both cells closes. Meanwhile, the radius of the daughter cell –with
initial value rd(0) = ln

2 + ε– grows progressively until it reaches its final value rd(T ) at the
end of the process. The value of the parameter rd(0) was chosen so that the center of the



II.8 Numerical methods and dependence on numerical parameters 65

daughter cell was at a distance larger than rm from the center of the mother cell. In order to
keep the length of the neck constant, the position of the center of the daughter cell is varied.

II.8.2 Long-term yeast life cycle
The long-term simulations of the passive-only model have the following structure. Initially,
cells are born with zero aggregates. Before the first division and in-between divisions, simi-
larly as in [14, 109], fusion of pre-existing aggregates i and j of radii ri(0), rj(0) may occur
with rate:

K(i, j) = pb
4π
V

(D(ri(0)) +D(rj(0)))(ri(0) + rj(0)),

where V is the volume of the domain in which they are allowed to diffuse (approximately
the volume of the mother minus the volumes of organelles). Here, ri(0) is not necessarily
equal to ria but to the radius of aggregate i at the end of the last division. Additionally,
at the end of this period of duration Ts, pre-existing aggregates’ radii are increased to a
value ri(t + Ts) = ( 3

4πCmTs + ri(0)3) 1
3 and a random number of aggregates taken from a

Poisson distribution with mean Ts
τm

are generated with initial radii ria. During this period,
we generate the event times with a constant rate. The precision of this approximation
becomes considerable when the rate of growth is small, as is the case for WT unperturbed
cells. After the period between two consecutive division cycles, we run the single-division
dynamics described in Section II.8.1.

II.8.3 Dependence on δt
In Fig. II.9 we show the dependence of the short-term simulation results when varying the
parameter δt. At short and intermediate timescales the MSD is similar for all values of the
time-step size. At longer timescales, for δt = 1 sec., there appears to be an overestimation of
aggregate motion as shown in Fig. II.9A. Concerning aggregate numbers, for larger values
of δt, fusion is underestimated as a consequence of overlooked collisions. Nevertheless, after
sufficient time, for values smaller than δt = 0.5 sec. all trajectories converge to similar
values after a sufficiently long time. This underestimation of aggregate collisions impacts
the aggregate volume in the mother cell as well (Fig. II.9E). Indeed, for having constant
rates of growth for aggregates of all sizes, two aggregates increase in volume at twice the
rate of one larger aggregate. We claim that this does not impact strongly the results shown
above since aggregate numbers are always low (close to 1 or 2) given the frequency of fusion
and that for smaller growth rates the error becomes negligible. In the case where aggregate
volume becomes significantly overestimated, we also provide a variant of the model and the
mathematical approximation where aggregate growth increases with the surface area of the
aggregate (Section II.15). In this case –although in general, rates must be smaller (due to
the exponential growth of volume)– all the conclusions remain unvaried.
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Figure II.9: Dependence on δt. A-D. MSD of one aggregate throughout the simulation of the
single-division component of the model (top) and volume of the same aggregate for which
the MSD was computed (bottom) for different values of δt. F-G. Log-log plot of Fig. II.9A-
II.9B. Dashed lines correspond to the MSD of an aggregate of radius ria. E-G. Total aggregate
volume, fraction of the total aggregate volume and number of aggregates inside the mother
and the daughter cell for different values of δt. H. Total number of cross-compartment events
from mother to bud (M > B) and from bud to mother (B > M) as a function of δt. In all
figures, N = 5, τm = 12 min., τd = 120 min. All other parameters were set to the values in
Table S1. Results averaged over 1024 realizations.
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II.9 Mathematical Analysis

From [11] we know that the first order approximation of the mean-first-passage-time (MFPT)
of a particle undergoing diffusion in a domain of volume V follows E(τ) = V

2lD (1+o(1)) ' V
2lD ,

where l denotes the diameter of the disc through which particles can escape and D denotes
the diffusion coefficient. Due to the possibility of recrossings at the open window where the
probability of movement in both directions is equal, the rate of exit from the domain is κ =

1
2E(τ) '

lD
V [13]. If besides undergoing diffusion, aggregates also appear and fuse on collision,

we can model inner-cell aggregate dynamics using a system of coupled differential equations.
Let V a

m(t), V a
d (t) be the total aggregate volume (detected) at mother and daughter cells at a

time t. In addition, let Nm(t), Nd(t) be the total number of aggregates in each compartment.
We abuse notation by denoting E(Nm(t)), E(Nd(t)) by Nm(t) and Nd(t), and E(V a

m(t)),
E(V a

d (t)) by V a
m(t), V a

d (t). Lets define 〈V (t)〉m = V a
m(t)/Nm(t), 〈V (t)〉d = V a

d (t)/Nd(t) as
the average volume of an aggregate in the mother and the daughter cell respectively at a time
t. We assume that all aggregates in the mother have radius rm(t) = (3〈V (t)〉m

4π ) 1
3 and diffusion

coefficient D(rm(t)) = β
rm(t)γ . Likewise, aggregates inside the daughter all have radius equal

to rd(t) = (3〈V (t)〉d
4π ) 1

3 and diffusion coefficient D(rd(t)) = β
rd(t)γ . If V1 = Vm−Vv−Vn denotes

the volume of the mother cell inside which aggregates undergo diffusion and V2(t) denotes
the volume of the daughter at a time t then we can model the dynamics of Nm(t), Nd(t),
V a
m(t), V a

d (t) as:



dNm(t)
dt

= 1
τm
− pbNm(t) max(Nm(t)− 1, 0)16πrm(t)D(rm(t))

V1
− κm(t)Nm(t) + κd(t)Nd(t)

dNd(t)
dt

= 1
τd
− pbNd(t) max(Nd(t)− 1, 0)16πrd(t)D(rd(t))

V2(t) − κd(t)Nd(t) + κm(t)Nm(t)

dV a
m(t)
dt

= CmNm(t)− κm(t)Nm(t) 〈V (t)〉m + κd(t)Nd(t) 〈V (t)〉d + 1
τm
V i
a

dV a
d (t)
dt

= CdNd(t)− κd(t)Nd(t) 〈V (t)〉d + κm(t)Nm(t) 〈V (t)〉m + 1
τd
V i
a

(II.1)
Where κm = (ln−2rm(t))+D(rm(t))

V1
is the escape rate from the mother, κd(t) = (ln−2rd(t))+D(rd(t))

V2(t)
the escape rate of the daughter and V i

a the volume of an aggregate with radius ria. The sec-
ond term on the right of the equality in the first two equations corresponds to rate of fusion
in each one of the two domains, which was introduced in Eq. II.8.2. Here, the constant 16π
is a consequence of the assumption that all aggregates in each of the compartments have
equal radius and equal diffusion coefficient.

II.10Parameter Values of the Model
The parameter values used in the simulations of the model are shown in Table S1.
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Parameter Interpretation Value Source Additional comments
rm Radius of mother cell 2.5 µm T.N.
rd(T ) Final radius of daughter cell 1.9 µm T.N.
rv Radius of vacuole 1.1 µm T.N.
rn Radius of nucleus 0.9 µm T.N.
ln Length of neck 1.35 µm T.N.

rd0 = rd(0) Initial radius of daughter cell ln
2 + 0.025 µm - The radius of the daughter must

be larger than half the size of the
neck.

T Duration of cell division 100 min T.N.
ria Detection threshold (initial ra-

dius of aggregate)
0.08 µm [14] Estimated after a temperature

shift from 30oC to 38oC us-
ing time-lapse microscopy to ob-
serve the fluorescence intensity of
foci. Since the initial volume is
via = (0.01)(0.6 µm)3, then ria =
0.08 µm.

Ts Time between two cell division
cycles

45 min [16, 321] Two successive cell divisions oc-
cur with a difference of 145 mins.
Since we set T = 100 min we
leave Ts = 45 min. This is con-
sistent with Fig. 3A in [16] for
WT unperturbed cells.

τm Average time of appearance of
aggregates in mother cell

12 min, 25 min, 50
min, 100 min, 200
min, 400 min, 800
min

[17] Around 30% of cells form an ag-
gregate after 1-2 divisions and
thus τm ' 800 min in WT cells
and τm � 800 min after stress.

τd Average time of appearance of
aggregates in daughter cell

10× τm -

β Constant in functional rela-
tion between diffusion coeffi-
cient and radius of aggregate

1.4× 10−4 [14] Estimated after a temperature
shift from 30oC to 38oC using
time-lapse microscopy and image
analysis.

γ Power of radius of aggregate in
functional description of diffu-
sion coefficient

2.1 [14] Same as with β.

D(r(t)) Diffusion coefficient for an agg.
with radius r(t)

D(r(t)) = β/r(t)γ [14] Same as with β and γ

Ndeath Number of cell divisions before
death

28 divisions [17, 64]

pb Probability of fusion in case of
collision

0.9 [109] The reference value used was esti-
mated in fission yeast after wide-
field fluorescence microscopy.

el Proportion of energy lost in
case of collision against bound-
ary or organelles

0 -

ps Probability of movement only
in direction of mother cell’s
pole (every time step)

0.05 -

pc Probability of remaining con-
fined to organellar surfaces for
every passing minute

1 -

dc Maximum distance between
center of the aggregate and
surface of organelle for possible
confinement to organellar sur-
face

0.3 µm -

pa Probability of attachment to
cell membrane in case of col-
lision

0.5 -

pw Probability of remaining at-
tached to cell membrane after
adhesion to organellar surfaces
for every passing minute

0.9 -

Table II.1: Model parameters, values and sources. T.N refers to a personal communication from Prof. Nyström,
Department of Cell and Molecular Biology–Microbiology, Göteborg University, Göteborg, Sweden. March 2012.
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II.11Dependence on el
We show in Fig. II.10 the results of the simulations of the short-term component of our
model when varying the fraction of energy lost after collision against organelles or the cell’s
boundary. All statistics appear to be independent of the parameter el, except the number of
crossings which has a subtle increase for higher values of this parameter. This is likely to be
a consequence of aggregates remaining close to the neck once they collide to the cell walls in
its vicinity.

II.12Dependence on the diffusion coefficient

We complement the observations concerning the dependence of the model on the diffusion
rate with the results shown in Fig. II.11. For higher diffusion rates, the number of aggregates
in the mother and the daughter is low as a consequence of increased fusion.
Concerning aggregate volumes, at high diffusion rates, the volume in the mother decreases as
its retention capacity is diminished. This produces an increase in aggregate volumes inside
the daughter. At low diffusion rates, aggregates remain inside the mother and do not cross
to the bud and thus aggregate volumes are higher in the mother compartment. Neverthe-
less, the fraction of volume in each compartment does not change substantially. This is a
consequence of the high aggregation rates and of the constant growth in volume of existing
aggregates.

II.13No cross-compartment movement and no fusion

In Fig. 3A, when comparing the slopes of both curves after 40 min., we observe that the
growth rate in the mother cell is approximately 6 times higher than the growth rate in the
daughter cell. Under small or non-existent cross-compartment movement, given that the
rates differ in a tenfold, the ratio would be expected to be over 10 instead. Thus, cross-
compartment transport reduces substantially the difference between the appearance rates,
the growth rates and the initial number of aggregates between the two cells.

We show in Fig. II.12 the aggregate dynamics of the single-division component when as-
suming no compartmental crossings (i.e a closed neck) in our model. Under this assumption,
the effect of bud-specific dilution, represented by the difference in the aggregate generation
and growth rates, on the asymmetrical distribution of damage is substantially stronger, as
can be confirmed in Fig. II.12C. Moreover, aggregate numbers would be overestimated in the
daughter cell (Fig. II.12A) due to the lack of escape, and aggregate volume overestimated
and underestimated in the mother and daughter cells respectively (Fig. II.12B).

With respect to a model without fusion or appearance of new aggregates as in [1, 15],
under the diffusion rates measured in [14], asymmetrical partitioning of volume would be
substantially reduced to 68%-32% (measured with equations (II.1)). This yields a proba-
bility of approximately 0.32 for each aggregate to be inherited by the bud, which is not in
agreement with experimental quantifications [10].
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Figure II.10: Dependence on el. A-D. MSD of one aggregate throughout the single-division
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Figure II.11: Dependence on the diffusion coefficient. A. Logarithm of the diffusion rate of
an aggregate with radius ria (top) and fraction of volume inside the mother cells (bottom)
at the end of the cell division cycle. B-C. Number of aggregates and total aggregate volume
inside mother cell (top) and inside the daughter cell (bottom) at the end of the cell division
for different values of β and γ. N = 1, δt = 0.5, τm = 12 min., τd = 120 min. All other
parameters were set to the values in Table S1. Results averaged over 1024 realizations.
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Figure II.12: Aggregate kinetics under no cross-compartment transport. A-C. Same as in
Fig. 3A-3C complemented with the results from numerically integrating Eq. II.15 when
assuming no cross-compartment transport. N = 5, τm = 12 min., τd = 120 min. All other
parameters were set to the values in Table S1.
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Hence, both bud-specific dilution and cross-compartment movement have an important
role in the compartmental distribution of aggregate volumes, although their strength may
vary depending on the experimental conditions (the rate 1/τm). We then suggest that both
should be considered when modeling the asymmetrical distribution of aggregates in budding
yeast.
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II.14Mathematical Analysis of confined diffusion in 2D
The MSD of a particle undergoing diffusion with rate D in d dimensional space follows〈
r2(t)

〉
u = 2dDt.

Anomalous Diffusion corresponds to the case where
〈
r2(t)

〉
= 2dDtα, with α < 1 (sub-

diffusion) of α > 1 (super-diffusion).
In 2D space, the MSD particle undergoing diffusion inside a disk of radius a can be found
to be [325–327]:

〈
r2(t)

〉
d

= a2

1− 8
∑
n∈Z

exp
(
−β2

nDt

a2

)
1

β2
n − 1

J2
0 (βn)
J2

1 (βn)

 .
Where Ji(x) denotes the i-th Bessel function of the first kind and the βn’s are the zeros of
J ′1(x).
In the case of diffusion inside an annulus with outer and inner radii a and b respectively,
following the work done in [105, 327, 328], we are able to approximate

〈
r2(t)

〉
at intermediate

or large timescales as
〈
r2(t)

〉
' C(1− exp(−2ωDt)), where C and ω are positive constants.

As proven in [327], C = limt→∞
〈
r2(t)

〉
= 2R2

G, where RG is the radius of gyration of the
domain (the annulus) whereas ω is related to the degree of sub-diffusion at intermediate
stages (which can be computed using curve fitting tools given its difficulty).
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II.15Growth proportional to surface area
We believe that a constant rate of growth in volume is more consistent with the period of
relaxation after heat or oxidative stress since, relative to the aggregate’s size, initially growth
happens fast (for many aggregates) and then slow for fewer larger aggregates after fusion
events. In contrast, growth proportional to the surface area could be more consistent with
aggregate growth at lower rates in WT unperturbed cells. For this purpose we introduce the
following model.

We modify the rate of volume growth so that it is proportional to the surface area of the
aggregate. Since the surface area of a sphere of radius r is A = 4πr2, we now let the volume
of an aggregate increase according to dV/dt = (r(t)2/(ria)2)Cc. Here, in order for r(τc) = ria,
Cc = Cc = 4π(ria)3

τc
(so a factor of 3 larger than in the original version of the model). The

mathematical approximation for the dynamics of this variant takes the following form:



dNm(t)
dt

= 1
τm
− pbNm(t) max(Nm(t)− 1, 0)16πrm(t)D(rm(t))

V1
− κm(t)Nm(t) + κd(t)Nd(t)

dNd(t)
dt

= 1
τd
− pbNd(t) max(Nd(t)− 1, 0)16πrd(t)D(rd(t))

V2(t) − κd(t)Nd(t) + κm(t)Nm(t)

dV a
m(t)
dt

= Cm(rm(t)2/(ria)2)Nm(t)− κm(t)Nm(t) 〈V (t)〉m + κd(t)Nd(t) 〈V (t)〉d + 1
τm
V i
a

dV a
d (t)
dt

= Cd(rd(t)2/(ria)2)Nd(t)− κd(t)Nd(t) 〈V (t)〉d + κm(t)Nm(t) 〈V (t)〉m + 1
τd
V i
a

As observed in Fig. II.13, the consistency between the numerical and mathematical ap-
proximations remains remarkable. Besides aggregate volume growth, which is now growing
exponentially (and hence the fraction of volume in the mother increases as well), all other
results and conclusions remain unvaried. Fusion remains frequent, and the MSD slows down
at intermediate and long timescales. In this case, the MSD reaches a higher value and rises
faster since we only consider one initial aggregate instead of five. Thus, the aggregate expe-
riences faster diffusion at small timescales and a stronger deceleration given the increasing
volume growth rate.

Concerning Fig. II.14, all results are equivalent to those in the original model –when de-
creasing slightly the growth rates, given that exponential growth occurs at longer timescales–,
except for the number of crossings. Since, for smaller values of τm aggregates grow very fast,
the number of crossings is significantly reduced as a function of τm. Nevertheless, the num-
ber of crossings remains orders of magnitude higher than the experimental observations in [1].

With respect to the the dependence on other parameters (el, δt and β and γ), almost all
the observations above remain, with the exception of the aggregate volume growth, which is
now higher for higher diffusion values (Fig. II.15B). Accumulation in the mother is favored
with increased size and fusion and the appearance of larger aggregates.
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Figure II.13: Single-division aggregate dynamics of the model with aggregate growth propor-
tional to surface area. A-C. Number of aggregates, total aggregate volume and fraction of the
total aggregate volume inside the mother (blue) and the daughter cell (red). Continuous line
corresponds to the analytical prediction from the mathematical model with growth propor-
tional to the surface area when numerically integrating Eq. II.15. Dotted line corresponds to
the numerical average from the simulations of the short-term aggregate dynamics. D. MSD
of one aggregate throughout the short-term aggregate dynamics of the model corresponding
to a single cycle of cell division. E-F. Log-log plot of Fig. II.13D (top) and volume of the
same aggregate for which the MSD was computed (bottom). Dashed lines correspond to
the MSD of an aggregate of radius ria (top) and to the volume of one aggregate with initial
radius ria in absence of fusion events. G. Histogram of total number of cross-compartment
events from mother to bud (M > B) and from bud to mother (B > M). H Inset. Fraction
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Figure II.14: Single-division aggregate dynamics; dependence on the rate of appearance
and growth of aggregates when growth is proportional to surface area. A-C. Number of
aggregates, total aggregate volume and fraction of the total aggregate volume inside the
mother and the daughter cell. D. Number of crossing events from mother to daughter (blue
line) and from daughter to mother (red dashed line). E. MSD of one aggregate throughout
the short-term component of the model corresponding to a single cycle of cell division for
different rates of appearance and growth of aggregates. In all figures N = 1, δt = 0.25
sec. All other parameters were set to the values in Table S1. Results averaged over 1024
realizations.

Finally, as observed in Fig. II.16 and Fig. II.17, all observations made in the original
model regarding active-quality-control remain valid when aggregate growth is proportional
to the surface area (and under smaller rates of growth). Indeed, the MSD remains consistent
with sub-diffusion in all three cases, one aggregate deposit forms and is maintained in the
mother cell, the number of crossings is significantly reduced to values matching experimental
data, and the probability of inheritance by the bud of the largest aggregate drops to values
near 0.02.
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Figure II.15: Dependence on diffusion coefficient continued when growth is proportional to
surface area. A-B. Number of aggregates and total aggregate volume inside mother cell
(top) and inside the daughter cell (bottom) at the end of the cell division for different values
of β and γ. C. MSD of one aggregate throughout the short-term component of the model
corresponding to a single cycle of cell division (top) and volume of the same aggregate for
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τm = 100 min., τd = 1000 min. All other parameters were set to the values in Table S1.
Results averaged over 1024 realizations.
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Figure II.16: Single-division aggregate dynamics; Quality-control-mechanisms with aggre-
gate growth proportional to surface area. A. Average number of crossing events from mother
to bud (M > B) and from bud to mother (B > M) under different quality control mecha-
nisms. Inset. Proportion of crossing events in both directions under different quality control
mechanisms. B. MSD of one aggregate throughout a single cycle of cell division and vol-
ume of the same aggregate for which the MSD was computed for different quality-control-
mechanisms. Dashed line corresponds to the MSD of an aggregate of radius ria (top). In all
simulations, N = 1, δt = 0.1 sec., τm = 100 min., τd = 1000 min. All other parameters were
set to the values in Table S1. Results averaged over 1024 realizations.
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Figure II.17: Variants of the model with active-quality-control mechanisms and aggregate
growth proportional to surface area. A. Total aggregate volume inside the mother cell at the
end of the 28th division for different QCMs. B. Number of crossing events from mother to
bud (continuous line) and from bud to mother (dotted line) as a function of the mother’s age
(in generations) for different QCMs. C-D. Total number of aggregates and total aggregate
volume inside the mother cell (top) and inside the daughter cell (bottom) as a function
of the mother’s age (in generations) for different QCMs. E. Probability of inheritance of
at least one aggregate by the daughter cell at the end of cell division as a function of the
mother’s age (in generations) for different QCMs. F. Probability of inheritance of the largest
aggregate by the daughter cell, when in presence of aggregates, as a function of the mother’s
age (in generations) for different QCMs. Error bars correspond to the Standard error. In all
simulations δt = 0.5, τm = 800 min., τd = 8000 min., all other parameters were set to the
values in Table S1. Results averaged over 1024 realizations.
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Abstract

Recent advances in the study of Alzheimer’s Disease and the role of Aβ amyloid formation
have caused the focus of biologists to progressively shift towards the smaller protein assem-
blies, the oligomers. These appear early on in the disease progression and seem to be the
most infectious species for the neurons. We suggest a model of spatial propagation of Aβ
oligomers in the vicinity of a few neurons, without considering the formation of large fibrils
or plaques. We also include a simple representation of the oligomers neurotoxic effect. A
numerical study reveals that the oligomer spatial dynamics are very sensitive to the balance
between their diffusion and their replication, and that the outcome in terms of the progres-
sion of AD strongly depends on it.
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Introduction

Biological background: Alzheimer’s Disease and Aβ aggregation
Alzheimer’s disease (AD) is the most common of neurodegenerative diseases, a group also
including Parkinson’s disease, Huntington disease, Creutzfeldt-Jakob disease, transmissible
spongiform encephalopathies. As is the case for these other diseases, AD is associated with
the misconformation, aggregation and propagation of different proteins in the neural system
[66], namely the proteins Aβ and tau. The distinct characteristic of these proteins is their
ability to adopt different stable conformations. Misshapen conformations often lead to ag-
gregation and accumulation of the proteins into assemblies of different structure, stability
and activity.

Biologists identify two different types of structures. On one hand the proteins can assem-
ble into long linear fibrils. These fibrils in turn coalesce into large and amorphous tangles,
that constitute the visible plaques observed in most late-stage AD patients. On the other
hand, they can also assemble into smaller oligomeric species. These oligomers are soluble,
and thus more difficult to detect, but their role in AD propagation and pathology is be-
lieved to be essential [4, 147]. In fact, in the last decade it has become clear that plaques
are mostly inactive by-products of polymerization, but oligomers are the active species both
for propagation inside the brain and destruction of the neurons. The interaction between
fibrils and oligomers is unclear, but it has been shown that oligomers appear early on during
the onset of Alzheimer’s disease, while fibrils and plaques become detectable much later [147].

The generally accepted mechanism for the onset of AD is the so-called cascade hy-
pothesis [5, 147]. The first appearance of oligomers is a rare and highly stochastic event,
possibly favored by mutations or co-factors. Monomers can spontaneously change confor-
mation and assemble into small proto-oligomers, this process is termed primary nucleation.
Once the process has started and a seed has appeared, the oligomers replicate very fast
[5, 126, 329, 330]. This second step is usually referred to as secondary nucleation. Although
the precise phenomenon that allows oligomers to replicate is not known, it can be described
as a prion-like propagation. A combination of propagation in the brain through diffusion,
recruitment of healthy Aβ monomers, and though other mechanisms such as exosomes [331].
In the later stages, fibrils and plaques accumulate in the brain.

It is of particular interest for biologists and physicians to understand the precise mecha-
nisms of propagation and replication of Aβ oligomers, especially in the early stages of AD.
Insight into the phenomena could indeed help develop therapeutical strategies [147, 332],
favor early diagnosis and predict the prognosis of the pathology. This is precisely where
our focus lies, at the very early stages of the disease when a seed has been produced and
oligomers start replicating.

Previous mathematical work
Amyloid formation and propagation has drawn strong attention among scientists and has
been the subject of numerous interdisciplinary research studies. In particular, numerical
and mathematical modeling, both stochastic and deterministic has aimed to shed light on
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the subject. Early modeling work used systems of ordinary or partial differential equations
to study the dynamics of prion aggregates [131, 333, 334] in the context of transmissible
spongiform encephalopathies (TSE). The dynamics of Aβ oligomers and prion aggregates
are similar, however different microscopic processes distinguish the two.

A more recent discovery is that Aβ oligomers interact with the prion protein (PrP) to
induce neurotoxicity, and different models of joint PrP-Aβ dynamics have been introduced
[136, 137, 335]. These models propose an elaborate description of the degenerative effect
oligomers have on the neurons, but they do not analyze the effects of their spatial spreading.
In [136, 335], a size-continuous description of the aggregates is used, and while the latter
can be a good approximation for very large aggregates it is less relevant for small oligomers.
The relation between continuous and discrete protein sizes has been studied rigorously in
[142, 333, 336]. In [137], the size of the oligomers, fibrils and plaques is discrete. Overall,
the molecular dynamics of oligomers have been investigated in the context of general models
where fibrils and plaques were also present, and with a complex description of neurotoxicity
involving the prion protein.

The spatial dynamics of aggregated species have been analyzed for Alzheimer’s Disease
[144], and for prion propagation in other neurodegenerative disorders [337]. In [144] a com-
prehensive model of amyloid spatial propagation in the form of Aβ monomers, oligomers,
fibrils (and plaques) was introduced. While this model achieves some interesting results in
the qualitative dynamics of macroscopic biomarkers (deposits and brain atrophy), some of
the parameters and hypotheses remain unjustified biologically. In particular, the extrapola-
tion of microscopic molecular dynamics to a macroscopic scale is delicate, because different
biological processes have to be taken into account at the macroscopic scale (e.g. the recycling
of cerebrospinal fluid).

In this work we intend to develop a model similar to the one proposed in [137], with a
special focus on Aβ oligomers and their spatial propagation. The scope of this model is the
early stages of AD propagation, when fibrils and plaques are most likely not yet present and
the dynamics are driven by oligomers. As studied in [144] we include diffusion of the different
molecular species, but we restrict the study to the mesoscopic scale (a few neurons), which is
also relevant with the early stages of the disease. This ensures that our hypothesis of absence
of fibrils or plaques is valid. To simplify even further the model, the neurotoxicity of the
oligomers is considered independently of any other protein. These hypotheses allow us to
build a simpler model, at the cost of restricting the scope, but with a stronger biological basis.

In the first section, we introduce the biological model as well as its mathematical for-
mulation. This formulation is presented as a partial differential equation problem and its
variational formulation. The second section describes some obtained theoretical results. The
third section discusses the parameter choice, before showing simulation results.
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Figure III.1: Representation of the modeling domain (with only one neuron represented)

III.1 A spatial model of Aβ oligomers

III.1.1 Model hypotheses and formulation

We investigate a simplified model of the propagation of Aβ oligomers in the brain. We do
not aim at modeling the spontaneous appearance of oligomers in the brain. This sporadic
event is highly stochastic and rare, but once it is seeded, the proliferation of oligomers
becomes very fast and deterministic. We aim here at describing the evolution of a small
initial number of oligomers in the vicinity of a few neurons (mesoscopic scale) using partial
differential equations. Fibrils and plaques are not considered yet, since they are not believed
to appear until a later stage of the disease.

III.1.1.1 Molecular scale

First we describe the chemical processes that we consider at the molecular scale. We consider
a domain Ω with a boundary Γ, where N ∈ N neurons ω1, ω2, ..., ωN are represented by
disks. Fig. III.1 shows a representation of one neuron in the domain Ω. The neurons actively
produce Aβ monomers with a rate λ at their membrane ∂ωk, k = 1, 2, ..., N . The Aβ
monomer production rate is homogeneous along the membrane of one neuron but depends
on its activity. The significance and the evolution of this activity will be described later on.
The Aβ monomers inside Ω are constantly evacuated or degraded by the cerebro-spinal fluid
with a rate δ.

The Aβ monomers assemble first into proto-oligomers, and then oligomers. Proto-
oligomers are small unstable polymers that grow by addition of monomers - polymerization
- with a rate ri (for size i), and that lose monomers through depolymerization with a rate
b. The polymerization rate is supposed to be size dependent, whereas the depolymerization
rate is not. Proto-oligomers can also fragment into smaller pieces. The fragmentation rate
of a size i proto-oligomer is given by β× (i−1), representing the assumption that each bond
in the chain is equally likely to break. The usual assumptions are made on the fragmentation
kernel κ(i, j) (probability of obtaining a size i aggregate from a size j aggregate) [333].
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• Symmetry: κ(i, j) = κ(j − i, j)

• Probability kernel: ∑j−1
i=1 κ(i, j) = 1 (which implies κ(i, j) = 0 for i ≥ j)

• Mass conservation: 2∑j−1
i=1 iκ(i, j) = j (the factor 2 comes from the symmetry prop-

erty)

The simplest kernel verifying these assumptions is the uniform kernel, where every configu-
ration is equally likely. This writes as κ(i, j) = 1

j−11[1≤i≤j−1] (it does not depend on i). One
can easily check that it verifies the previous assumptions. Using this kernel greatly simplifies
the fragmentation equation. Indeed, expressing the speed of fragmentation from size j to
size i gives 2β(j)κ(i, j) = 2β for 1 ≤ i ≤ j − 1 (the factor 2 once again comes from the
symmetry of the kernel). This model is the classical polymerization-fragmentation equation,
see [131, 334] for further developments.

Once proto-oligomers reach the critical size i0, they become oligomers. The oligomers are
very stable units that do not exchange monomers with the system, as suggested in previous
models [137]. This means that they neither depolymerize nor fragment. We assume that
they are the main toxic elements for the neurons.

The above assumptions are illustrated in Figure III.2. They are also summarized into
the following set of chemical reactions, where m is the local density of monomers, µi is the
local density of size i proto-oligomers (µ1 = m by convention), and µi0 that of oligomers.

∀k ∈ {1, . . . , N}, ∀x ∈ ∂ωk, ∅ λk−−→ m,

∀x ∈ Ω, m
δ−−→ ∅,

∀x ∈ Ω, ∀i ∈ {2, . . . , i0 − 2}, µi +m
ri−−⇀↽−−
b

µi+1,

∀x ∈ Ω, µi0−1 +m
ri0−1−−−→ µi0 ,

∀x ∈ Ω, ∀j ∈ {2, . . . , i0 − 1},∀i ∈ {1, . . . , j − 1}, µj
β×(j-1)−−−−→ µi + µj−i.

III.1.1.2 Mesoscopic scale

We now describe the interactions between the different molecular elements at the mesoscopic
scale. Naturally, we are interested in studying more than one neuron. The objective here is
to describe how the polymerization reaction propagates from neuron to neuron via diffusion
and induces progressive neurodegeneration.

On the scale of a few neurons, we consider spatial diffusion of all the molecular compo-
nents described before, in two dimensions. Each species is associated with a specific diffusion
coefficient depending on its size, from D1 (for Aβ monomers) to Di0 for oligomers. We as-
sume that the smaller the species, the faster it is diffused. The specific choice of the diffusion
coefficients and their scaling with size will be described later on.

Oligomers are supposed to be the toxic species. Their effect on the neurons relies on
their presence in the action perimeter Σε

k of radius ε around ωk (see Figure III.1). To model
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Figure III.2: Representation of the different processes and agents at play in the model

the fact that oligomers progressively kill the neurons, we use an equation to describe their
production rate. A healthy neuron produces Aβ monomers at maximum rate λ0, and a dead
neuron has a production rate of 0. We suggest that this production decreases with a rate
proportional to the number of oligomers in the ring Σε

k. A simple model to describe this is

dλk
dt = −τλk

∫
Σε
k

µi0(x, t) dx.

Here τ represents the lethal efficiency of the oligomers on the neurons. As said previously,
the production of Aβ happens only at the surface membrane of the neurons ∂ωk. This gives
the boundary condition for monomers on these surfaces, via a non-homogeneous Neumann
condition. For the other species (proto-oligomers and oligomers), we consider a simple non-
flux boundary condition.

On the sides of the domain Ω, different choices are possible. To model isolation from
other neurons, we can use absorbing conditions on the external boundary, but we could also
consider periodical boundary conditions to reflect the effect of a crowded brain region. For
the moment, we choose an absorbing condition.

III.1.2 Mathematical formulation

III.1.2.1 System of partial differential equations

We now introduce the mathematical problem corresponding to the model, first the local
equations, then the boundary conditions and finally the initial condition. Our goal here is



86 Chapter III. Modeling the Spatial Propagation of Aβ Oligomers

to discuss the hypotheses made in the formulation of the model, and not provide general
theoretical results. For this reason we do not specify the formal and general mathematical
problem in this work. It will be done as part of a subsequent theoretical study.

The local densities of the different elements verify the following system of partial differ-
ential equations for x ∈ Ω and t > 0

∂m

∂t
(x, t) =D1∆m+

i0−1∑
j=3

bµj −
i0−1∑
j=2

rjµjm+ 2β
i0−1∑
j=2

µj − δm,

∂µ2
∂t

(x, t) =D2∆µ2 + bµ3 − r2µ2m− βµ2 + 2β
i0−1∑
j=3

µj ,

∀i ∈ {3, . . . , i0 − 2}, ∂µi
∂t

(x, t) =Di∆µi + bµi+1 − bµi + ri−1µi−1m− riµim− β(i− 1)µi + 2β
i0−1∑
j=i+1

µj ,

∂µi0−1
∂t

(x, t) =Di0−1∆µi0−1 − bµi0−1 + ri0−2µi0−2m− ri0−1µi0−1m− β(i0 − 2)µi0−1,

∂µi0
∂t

(x, t) =Di0∆µi0 + ri0−1µi0−1m.

(III.1)

The initial conditions are chosen in the space X = {v ∈ L2(Ω)|v(x) ≥ 0, a.e. x ∈ Ω, }.

a.e.x ∈ Ω,m(x, 0) = m0(x), µ2(x, 0) = µ0
2(x), . . . , µi0(x, 0) = µ0

i0(x),
{m0, µ0

2, . . . , µ
0
i0} ∈ X

i0 .

All the boundary conditions we define are Neumann conditions, imposed upon the fluxes
of particles. The unitary normal vectors used for these definitions are pointing outwards
(relative to the domain Ω), denoted ~n|Γ on the exterior boundary Γ and ~n|∂ωk on the neurons
membrane.

On the exterior frontier, we impose an absorbing condition with a proportion γ. This
gives, for any variable ξ = m,µ2, . . . , µi0

Dξ∇ξ · ~n|Γ = −γξ.

On the neurons membrane ∂ωk for k ∈ {1, . . . , N}, we have a zero-flux condition for ξ =
µ2, . . . , µi0 and a source term for m

Dξ∇ξ · ~n|∂ωk =0,
D1∇m · ~n|∂ωk =λk(t).

The source term λk of the neuron k follows the differential equation

dλk
dt (t) =− τλk

∫
Σε
k

µi0(x, t) dx,

λk(0) =λ0.

The initial condition for System (III.1) is a perturbation of the disease-free solution. The
disease-free solution corresponds to the case when no proto-oligomers or oligomers are
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present, and the neurons are healthy. The monomer density thus verifies the boundary-
condition problem

D1∆m =δm,
D1∇m · ~n|Γ =− γm,

∀k ∈ {1, . . . , N}, D1∇m · ~n|∂ωk =λ0.

(III.2)

The initial condition form is chosen to be the solution to System (III.2). The initial condition
for proto-oligomers and oligomers is a local Gaussian distribution, both in space and in size
of assemblies. This represents the fact that the stochastic process of spontaneous misfolding
and oligomerization has already occurred, and a seed is now present to catalyze the reaction.

III.1.2.2 Variational formulation

To run numerical simulations of this system of equations, we use the finite elements method.
The first step is to express the problem under a variational form. The calculations that follow
are formal, and we assume sufficient regularity for all the functions studied. The theoretical
setting will be detailed in future work.

We rewrite System (III.1) as a system of reaction-diffusion equations (where by conven-
tion µ1 = m) 

∀i ∈ {1, . . . , i0},
∂µi
∂t

=Di∆µi + Fi(µ1, . . . , µi0),

∀i ∈ {1, . . . , i0}, Di∇µi · ~n|Γ =− γµi,
∀i ∈ {2, . . . , i0}, Di∇µi · ~n|∂ωk =0, and D1∇µ1 · ~n|∂ωk = λk(t).

The reaction terms are explicitly given by

F1(µ1, . . . , µi0) =− δµ1 + b
i0−1∑
j=3

µj + 2β
i0−1∑
j=2

µj −
i0−1∑
j=2

rjµjµ1,

F2(µ1, . . . , µi0) =bµ3 − r2µ2µ1 − βµ2 + 2β
i0−1∑
j=3

µj ,

Fi(µ1, . . . , µi0) =bµi+1 − bµi + ri−1µi−1µ1 − riµiµ1 − β(i− 1)µi + 2β
i0−1∑
j=i+1

µj ,

Fi0−1(µ1, . . . , µi0) =− bµi0−1 + ri0−2µi0−2µ1 − ri0−1µi0−1µ1 − β(i0 − 2)µi0−1,

Fi0(µ1, . . . , µi0) =ri0−1µi0−1µ1.

To discretize this system in time, we use an Euler scheme with implicit diffusion and explicit
reaction. For a pace δt and at step n, it writes

µn+1
i − µni
δt

= Di∆µn+1
i + Fi(µn1 , . . . , µni0).

By multiplying with a suitable test function, and integrating over the whole domain we get∫
Ω

(µn+1
i v − µni v) dx−

∫
Ω
δtDi∆µn+1

i v dx−
∫

Ω
δtFi(µn1 , . . . , µni0)v dx = 0.
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By the divergence theorem we are left with∫
Ω

(µn+1
i v + δtDi∇µn+1

i · ∇v) dx−
∫

Γ
δtDi(∇µn+1

i · ~n)v dx−
∑
k

∫
∂ωk

δtDi(∇µn+1
i · ~n)v dx

−
∫

Ω
µni v dx−

∫
Ω
δtFi(µn1 , . . . , µni0)v dx = 0.

The boundary conditions give us the variational formulation for each variable i = 2, . . . , i0∫
Ω

(µn+1
i v + δtDi∇µn+1

i · ∇v) dx+
∫

Γ
δtγµ

n+1
i v dx−

∫
Ω
µni v dx−

∫
Ω
δtFi(µn1 , . . . , µni0)v dx = 0,

and for the monomers∫
Ω

(µn+1
1 v + δtD1∇µn+1

1 · ∇v) dx+
∫

Γ
δtγµ

n+1
1 v dx−

N∑
k=1

∫
∂ωk

δtλ
n+1
k v dx

−
∫

Ω
µn1v dx−

∫
Ω
δtF1(µn1 , . . . , µni0)v dx = 0.

Note that since diffusion is implicit, the source term in the boundary condition is also implicit
(λn+1
k ). We evaluate it with a forward Euler scheme, requiring the equation on the monomers

to be solved last. In this case we can directly solve

λn+1
k − λnk = −δtτλn+1

k

∫
Σε
k

µn+1
i0

dx.

III.2 Theoretical results
The theoretical background allowing for the study of this model will not be formally proved
in this work. Further work will provide existence, uniqueness and positivity of solutions.

III.2.1 Analytic solution for the healthy state
Before the spontaneous appearance of the first oligomers (proto-oligomers of size two) in the
brain, the system is assumed to rest at a disease-free equilibrium state where only ordinary
monomers are present. This configuration is used in the numerical simulations as an initial
condition for the distribution of monomers. We hereby present a detailed study of this spe-
cific case.

We consider a system composed of one neuron only and assume enough distance between
susceptible neuron cells, so that the disease-free resting state of the system for multiple
neurons can be computed by the superposition of the multiple solutions for each individual
neuron. Moreover, for simplicity in the computation of solutions using polar coordinates we
assume the domain Ω to be circular with radius rΓ. Let Σ be the annular domain between
the exterior boundary Γ of radius rΓ and a circle ω of radius rN (representing the neuron
cell) both centered at the point (0, 0). Let m(x, t) denote the monomer concentration at
time t at the point x ∈ Ω.
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In absence of proto-oligomers and oligomers and from the system of equations in Eq.
(III.1), the monomer dynamics follow Eq. (III.3) given by

∂m(x, t)
∂t

= D1∆m(x, t)− δm(x, t). (III.3)

The corresponding boundary conditions are

D1∇m · ~n|Γ = −γm,

at the outer boundary and

D1∇m · ~n|∂ω =λ0.

In polar coordinates, Eq. (III.3) becomes

∂m(x, t)
∂t

= D1

(
∂2m(r, θ, t)

∂r2 + 1
r

∂m(r, θ, t)
∂r

+ 1
r2
∂2m(r, θ, t)

∂θ2

)
− δm(r, θ, t),

with Neumann boundary conditions

D1
∂m(rΓ, θ, t)

∂r
= −γm(rΓ, θ, t),

D1
∂m(rN , θ, t)

∂r
= −λ0.

with 0 < rN ≤ r ≤ rΓ. Notice that the normal vector is pointing out of Ω so the sign is
reversed in rN (−λ0).

The problem is symmetrical by rotation around (0, 0) thanks to the choice of concentrical
circles for the different boundaries, so as long as the initial condition does not depend on
θ (in polar coordinates), the solution will keep this symmetry at all times. Using this
assumption on the initial condition, we drop the dependency on θ in the following and write
m(x, t) = m(r, t). The partial differential equation becomes

∂m(r, t)
∂t

= D1

(
∂2m(r, t)
∂r2 + 1

r

∂m(r, t)
∂r

)
− δm(r, t),

with the new boundary conditions

D1
∂m(rΓ, t)

∂r
= −γm(rΓ, t),

D1
∂m(rN , t)

∂r
=− λ0.

To find the equilibrium solution m0(r) we set

D1

(
m′′0(r) + 1

r
m′0(r)

)
− δm0(r) = 0,
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with

D1m
′
0(rΓ) + γm0(rΓ) =0,
D1m

′
0(rN ) + λ0 =0.

This equation can then be written in the form of an Emden-Fowler equation or a Sturm-
Liouville equation [338]

d
dr

(
r
dm0
dr (r)

)
− r δm0(r)

D1
= 0.

Its solution exists and has the form [339, 340]

m0(r) = c1J0

(
i
√
δr√
D1

)
+ c2Y0

(
− i
√
δr√
D1

)
with c1 and c2 constants depending on the boundary conditions and J0 and Y0 Bessel func-
tions of the first and second kind respectively. In practice, this steady-state problem will
be solved numerically in order to determine the initial condition for the evolution problem.
This theoretical study provides the possibility of comparison with the numerical solution, as
well as qualitative analysis of the various parameters on the disease-free solution.

III.3 Numerical results

III.3.1 Parameter choice and model scaling

III.3.1.1 Non-dimensional equations

To ease the numerical simulation, we nondimensionalize the model. First we specify the
unit system we use. In the following we consider SI units. In particular, we express lengths
in meters and time in seconds. For concentrations we use the molar concentration unit M
(1M = 1 mol.L−1). We can now define the scales.

• Spatial scale: we define L the characteristic length of the domain. Typically L is about
100 µm.

• Time scale: the characteristic time is T , it is about 100 s.

• Concentration scales: the characteristic concentration is C0, around 10−9M .
Using these scales we can nondimensionalize the model. In the rest of this section, a super-
script ∗ will indicate nondimensional variables. We define

t∗ = t

T
, x∗ = x

L
, y∗ = y

L
, ξ∗ = ξ

C0
, ξ = µ1 . . . µi0 .

The non-dimensional operators are given by
∂

∂t
= 1
T

∂

∂t∗
,

∇ = 1
L
∇∗,

∆ = 1
L2 ∆∗.
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Now using the equations of the model, we obtain the nondimensional model. The equa-
tions are the same as (III.1), replacing the operators by the non-dimensional operators and
modifying the coefficients as follows

D∗ =D T

L2 , r
∗
i = riC0T, b

∗ = bT, β∗ = βT, δ∗ = δT, γ∗ = γ
T

L
, λ∗k = λk

T

LC0
, τ∗ = τC0T.

III.3.1.2 Parameter choices

To be consistent with biology we need to choose the coefficients appropriately. We know
from anatomy that neurons have a size of a few µm and are separated by around 10 µm in
the brain. Accordingly, the characteristic spatial scale will be L = 100 µm.

For specific data on Aβ, we refer to [341]. The diffusion coefficients will be chosen using
the Stokes-Einstein relation

D = kbT

6πµrh
,

where kb is the Boltzmann constant (kb = 1.38.10−23 m2kgs−2K−1), T the temperature,
µ the dynamical viscosity of the fluid, and rh the hydrodynamic radius of the particle
considered. In the case of Aβ particles in the cerebrospinal fluid we have (in SI units)
T = 310 K(37°C), µ = 10−3 kgm−1s−1 [342]. The hydrodynamic radius of monomers is
rh = 1 nm [343]. For oligomeric species, the hydrodynamic radius grows with the size and we
suggest it scales as i1/3 where i is the size of the oligomers (to represent 3D rearrangement of
the particle as it grows in size). This ultimately gives D1 = 2.27.10−10 m2s−1, and Di = D1

i1/3 .
This value is of the same order as measured by [341]. However when we use this value for
the diffusion coefficient in the simulations, the distribution of Aβ monomers in the spatial
scale L ≈ 100 µm is almost homogeneous. To obtain a significant variation of the monomer
distribution on this scale, the diffusion coefficient has to be reduced to D ≈ 10−14 m2.s−1.
This in turn corresponds to a displacement of 1 µm in approximately 10 s. To justify the use
of a diffusion coefficient 4 orders of magnitude than the one suggested by the Stokes-Einstein
formula, we first suggest that the cerebrospinal fluid is very crowded by other proteins and
assemblies, which impairs the diffusion of molecules. Furthermore, the spatial spreading of
the neurons could be increased in the model, because in vivo not all the neurons produce
Aβ. Without more detailed data, we choose to use D ≈ 10−14 m2.s−1.

For the production and degradation of monomers, we have some suggestions from lit-
erature [341, 343]. The disease-free equilibrium concentration of Aβ monomers in the
cerebrospinal fluid is of about Cb = 10 ng.mL−1 [344]. The molecular weight of Aβ is
4514 g.mol−1, so this concentration amounts to about Cb = 2.10−9 M . The half-life of Aβ
monomers is a few hours, which corresponds to a degradation rate δ of about 10−4 s−1. The
total production rate of a disease-free neuron (integrated over its surface) is λ0πR

2
neuron. If

we consider that the measured concentration in the cerebrospinal fluid is equivalent to that
of a single neuron in a domain of volume Vneuron = 20 µm3, the equilibrium between pro-
duction and degradation gives us the relation λ0πR

2
neuron/V = Cbδ = 2.10−13 M.s−1, from

which we evaluate λ0.
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The polymerization-depolymerization reaction is estimated to occur at rates r0 = 100M−1s−1

and b = 10−3 s−1. The fragmentation rate is more difficult to evaluate, it will be adjusted
using the simulations. The same goes for γ and τ . The parameter choices are summarized
in Table III.1.

Table III.1: Parameter values used for the simulations (unless specified otherwise). See the
main text for a detailed justification of the parameter choice.

Parameter Value Unit Description
T 50000 s Time scale
L 100 µm Length scale
C0 10−9 M Concentration scale
i0 20 - Size of oligomers
Di D1/i

1/3 m2.s−1 Diffusion coefficient of size i
D1 2.2.10−14 m2.s−1 Diffusion coefficient of monomers
δ 5.10−4 s−1 Degradation coefficient of monomers
γ 1 m.s−1 Surface absorption rate
ri r0 M−1s−1 Polymerization rate of size i
r0 107 M−1s−1 Basal poplymerization rate
b 10−3 s−1 Depolymerization rate
β 10−4 s−1 Fragmentation rate

λ0 × πR2
neuron/Vneuron 2.10−13 M.s−1 Monomer production rate of a neuron
τ 1010 M−1.s−1 Infectivity rate

Rneuron 2 µm Radius of a neuron
Vneuron 20 µm3 Apparent volume of isolation for a neuron
ε 2 µm Radius of activity for oligomers

III.3.2 Simulation results

The numerical resolution of the model is conducted using Freefem++ [345], and visualized
in Paraview [346]. The default parameter values are presented in Table III.1, and the initial
configuration for all the simulations is presented in Figure III.3.

Figure III.4 shows the results of the simulation with the default parameters (see Ta-
ble III.1). We observe the successive attacks of oligomers first on the left neuron, then
the right neuron. Their monomer production is progressively brought to 0 and after about
20000 s, both of the neurons are completely inactive. The balance between diffusion and
replication of the proto-oligomers plays a critical role in the observed dynamics. The spatial
distribution of the oligomers is strongly impacted, and their neurotoxic action is also af-
fected. It appears that there is an optimal value for the rate of fragmentation β that induces
the fastest neuron inactivation. With extremely high fragmentation rates (β > 5.10−3 s−1),
the oligomers reach both neurons, but their concentration does not reach sufficiently high
levels to completely inactivate them in less than 50000 s, as shown in Figure III.5. With
extremely low fragmentation rates (β < 10−5 s−1) the proto-oligomer distribution is shifted
towards larger, so they diffuse more slowly. In this case, the first neuron is inactivated ef-
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Figure III.3: Initial configuration used for the simulation. Left panel: Aβ monomer distri-
bution. Right panel: Aβ oligomers (of size i0) distribution.

ficiently enough, but the second is still producing at half the maximum rate after 50000 s,
see Figure III.6.

III.4 Conclusion and perspectives
This work has allowed us to build a promising model to study the spatial propagation Aβ
oligomers during the early stages of AD. The model is very restrictive, because it focuses on
the scale of a few neurons and a few hours. These limitations lead to a simpler model than
suggested by previous work [144]. Nevertheless, despite its simplicity, it already exhibits some
complex behavior and non-trivial parameter dependence. In particular, the fragmentation
rate of proto-oligomers appears to be critical in determining the dynamics of oligomers and
their efficiency at inactivating neurons. Further study of this model is planned; first by
establishing a theoretical framework (existence, uniqueness, positivity of the solutions), and
by extending the simulations to more complex cases, e.g. adding more neurons to the domain.
Also, investigating thoroughly the influence of the parameters (including, but not limited
to, the fragmentation rate), as well as that of the initial conditions. Moreover, including
a more detailed description of the neurotoxicity of the oligomers and extending this model
to a multi-scale model of the propagation of AD, taking into account fibrils, plaques and
macroscopical processes.
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(a) t = 750 s (b) t = 4500 s

(c) t = 7500 s (d) t = 12000 s

(e) Evolution of monomer production normalized by the maximum λ0 (top), oligomer concentration
in activity ring (middle) and monomer concentration in ring (bottom) for each neuron and over time.

Figure III.4: Simulation results for the default parameters (see Table III.1). For panels
(a),(b),(c) and (d), the monomer distribution is on the left, and the oligomer distribution is
on the right.
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(a) t = 300 s (b) t = 750 s

(c) t = 2400 s (d) t = 49995 s

(e) Evolution of monomer production normalized by the maximum λ0 (top), oligomer concentration
in activity ring (middle) and monomer concentration in ring (bottom) for each neuron and over time.

Figure III.5: Simulation results for β = 5.10−3 s−1 (see Table III.1 for the other paramters).
For panels (a),(b),(c) and (d), the monomer distribution is on the left, and the oligomer
distribution is on the right.
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(a) t = 750 s (b) t = 2250 s

(c) t = 7500 s (d) t = 49995 s

(e) Evolution of monomer production normalized by the maximum λ0 (top), oligomer concentration
in activity ring (middle) and monomer concentration in ring (bottom) for each neuron and over time.

Figure III.6: Simulation results for β = 1.10−5 s−1 (see Table III.1 for the other paramters).
For panels (a),(b),(c) and (d), the monomer distribution is on the left, and the oligomer
distribution is on the right.
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Abstract

Local adaptation and dispersal evolution are key evolutionary processes shaping the inva-
sion dynamics of populations colonizing new environments. Yet their interaction is largely
unresolved. Using a single-species population model along a one-dimensional environmental
gradient, we show how local competition and dispersal jointly shape the eco-evolutionary dy-
namics and speed of invasion. From a focal introduction site, the generic pattern predicted
by our model features a temporal transition from wave-like to pulsed invasion. Each regime
is driven primarily by local adaptation, while the transition is caused by eco-evolutionary
feedbacks mediated by dispersal. The interaction range and cost of dispersal arise as key
factors of the duration and speed of each phase. Our results demonstrate that spatial eco-
evolutionary feedbacks along environmental gradients can drive strong temporal variation in
the rate and structure of population spread, and must be considered to better understand
and forecast invasion rates and range dynamics.

Keywords: Spatially structured population, Adaptive evolution, Environmental gradient,
Range expansion, Population clustering.
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IV.1 Introduction

In the current era of human-mediated climate, landscape and ecosystem changes, the con-
servation and management of biodiversity makes it crucial to understand what governs the
growth and spread of populations colonizing novel environments. To this end, we need quan-
titative models that describe invasion mechanistically as the outcome of local growth and
dispersal [46, 268, 347, 348].

Mechanistic models of invasion are rooted in ecological models of population dynamics
in uniform continuous environments, in which invasion patterns are captured by traveling
wavefronts moving at constant velocity, or ‘invasion speed’ [48, 274, 275]. However, the pre-
diction of invasion continuous waves and constant invasion speed does not square with all
biological data [273, 349]. Suspected causes of discrepancy include spatial and/or temporal
variation in the abiotic environment, environmental and demographic stochasticity, non-
Brownian dispersal, Allee effects, and interspecific interactions [49, 50, 269, 270, 350–354].
Here, we examine the hypothesis that rapid local adaptation and dispersal evolution can,
through eco-evolutionary feedbacks [156, 158, 161, 355], play a significant role in shaping the
dynamics of population expansion and variation in invasion speed.

Rapid evolution has been demonstrated empirically in colonizing populations, including
local adaptation to new habitats [356, 357], the evolution of geographic clines along climatic
gradients [358, 359], and the evolution of dispersal ability [360, 361]. To investigate the
causal role of evolution in population expansion, theory has been developed to address local
adaptation on the one hand, and dispersal evolution on the other. In temporally constant
environments, quantitative genetics models of local adaptation along environmental gradi-
ents [271] predict wave-like patterns of continuous expansion at a constant speed. Given
the environmental gradient steepness, dispersal reduces invasion speed due to a negative
interaction with local adaptation through gene flow at the expansion edges [362, 363]. This
‘standing load’ is potentially aggravated by the ‘expansion load’ created by deleterious alleles
‘surfing’ at high frequency at the expansion edge [364–366].

Dispersal, however, fuels genetic variation and numerical abundance at the expansion
edge [367, 368], thus alleviating some of the maladaptive effects that limit population spread
[349, 369–372]. Individual variation in dispersal may also result in the ‘spatial sorting’ of
high-dispersal individuals at the edge of expansion, which can accelerate invasion [276, 373,
374]. The effect of dispersal variation on invasion speed will be further modulated by the
individual fitness cost of dispersal [375–378] and the response of dispersal to selection, which
is expected to vary from the core to the moving edge of the expansion [379, 380].

Given their multiple and conflicting effects on population expansion, the joint influence
of local adaptation and dispersal variation on invasion dynamics remains poorly understood
[372, 380]. This raises the need to extend current theory of species’ range and invasion
dynamics and take into account the reciprocity between ecological processes and evolutionary
change [380]. Specifically, we construct an eco-evolutionary model of invasion dynamics
that integrate local adaptation with key factors of dispersal evolution [375, 378, 381–383].
Our baseline model is derived from [7] eco-evolutionary model of local adaptation, that
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we extend to include the evolution of dispersal. The original model (without dispersal
evolution) predicted the long-term population spatial distribution to be of one of two kinds,
either continuous, or clustered [7, 228]. Population clustering refers to individuals forming
high-density groups interspersed with low density areas [237–241]. Here we examine how
the continuous/clustering dichotomy affects the transient regime of population spread. We
show that dispersal evolution interacting with local adaptation drives a generic pattern of
invasion shaped by both continuous expansion and population clustering. This pattern is also
associated with strong temporal variation in invasion speed, with invasion pulses occurring
as a consequence of eco-evolutionary feedbacks between local adaptation and dispersal on
the invasion front.

IV.2 Materials and Methods

IV.2.1 Models

We use an individual-based stochastic model of spatial eco-evolutionary dynamics which was
first introduced in [7]. The model describes a population living on a spatial linear envi-
ronmental gradient; in its baseline form, only one dimension of space is considered. Each
individual is characterized by its physical location x and two quantitative phenotypic traits:
a niche position trait along the environmental gradient, u, and a trait measuring individual
mobility (or dispersal), w. Individuals give birth asexually at a rate which depends on how
adapted they are to their local environment; the difference between the niche position trait
and the local optimum measures the degree of maladaptation. We refer to the local optimum
as the niche position trait for which the birth rate is highest. With proper rescaling we can
assume that this trait value is equal to the geographic coordinate, x. Mobility is modeled as
a diffusion (random walk) along the spatial axis of environmental variation. Individuals die
at a rate which increases with the intensity of local competition and the cost of dispersal.
Offspring inherit their parent’s traits, unless a mutation occurs, with constant probability
and independently between traits. Mutations are assumed to have small effects, which may
alter the niche trait or dispersal. For simplicity, our model assumes equal mutation proba-
bility and mutational variance for both traits.

More precisely, the birth rate B of an individual with niche position u at location x, is
given by: B(x, u) = max

{
b0 − b1(x− u)2; 0

}
. The smooth continuous variation of the max-

imum birth rate along the line x = u represents the environmental gradient. For instance,
if the physical axis represents oceanic depth [245], x > u corresponds to individuals with
niche position u being adapted to shallower waters than their current depth x. Individual
dispersal is measured by Dmw, where Dm is the intrinsic (constant) dispersal rate and w is
the evolving investment in mobility. The death rate of an individual is given by the sum of a
density-independent component, equal to d0(1+w)θ where θ scales the cost of dispersal, and
the cumulative (additive) competition effect resulting from interaction with all individuals
within a distance δ, the ‘interaction range’, irrespective of their phenotype.

By taking a large-population limit on the individual-based stochastic model, we obtain
the following deterministic approximation, which takes the form of an integro-partial differ-
ential equation [7]:
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∂ n(x, u, w, t)
∂ t

= Dmw
∂2 n(x, u, w, t)

∂ x2 + n(x, u, w, t)×(
(1− 2γ)B(x, u)− d0(1 + w)θ −

∫
X

∫
U

∫
W
1|x−y|<δn(y, a, b, t)db da dy

)
+ γ

∫
U
n(x, a, w, t)B(x, a) 1√

2πσ
exp

(
−(u− a)2

2σ2

)
da

+ γ

∫
W
n(x, u, b, t)B(x, u) 1√

2πσ
exp

(
−(w − b)2

2σ2

)
db,

(IV.1)

where (heuristically) n(x, u, w, t) is the density of the population of individuals with niche
trait u and dispersal trait w located at x at time t. U ,W and X denote the ranges of variation
of trait u, dispersal w, and location x. Parameters γ and σ2 are the mutation probability
and mutational variance, respectively. In Section IV.5 of the Supporting Information, we
provide more details about the individual-based stochastic process (simulation algorithm)
and the deterministic model (boundary conditions, numerical solving scheme).

IV.3 Results
The deterministic model provides a good approximation of the invasion dynamics generated
by the individual-based stochastic process (Section IV.5.2). In the absence of genetic varia-
tion in the niche trait, population expansion is prevented altogether, due to the inability of
the species to maintain viable populations in geographic areas where optimal conditions are
too different from its original niche (see Section IV.7). With genetic variation in the niche
trait, invasion occurs. As anticipated from [228], spatial expansion does not necessarily de-
velop as a continuous wave. Local adaptation can shape invasion through the formation of
population clusters (Figs IV.1 and IV.2).

At low dispersal (Figs. IV.1A, IV.2A), population expansion is ‘pulled’ by clusters form-
ing sequentially, in both spatial and niche trait space, with new clusters adapting gradually
to the newly colonized environment (Figs. IV.1A, IV.2E). Each new cluster is seeded pre-
dominantly by dispersers from previous outer clusters, at the edge of the distribution. (See
Sections IV.6 and IV.10.3 for the effect of interaction range, mutational variance, gradient
steepness and spatial spread of the initial population on cluster formation.)

If dispersal is above a ‘clustering threshold’, invasion proceeds as pushed by an expanding
wave (Figs. IV.1B-IV.1C, IV.2B-IV.2C). Edge adaptation to the optimum niche is initially
poor and gradually improves (Fig. IV.2F, IV.2G). For dispersal above but close to the clus-
tering threshold, the wave is unstable and the distribution breaks out into clusters (Figs.
IV.1B, IV.2B). Here the model shows that it is possible for organisms to invade in continuous
waves and yet develop patchy distributions as they spread more broadly.

For dispersal further above the clustering threshold (Figs. IV.1C, IV.2C), wave-like inva-
sion leads to a continuous distribution (Section IV.6), but adaptation lagging behind spatial
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spread results in peaks of abundance whose relative position moves during invasion: ini-
tially located at the introduction focus, relatively far from the expansion edge (Fig. IV.1C,
T = 40); then moving progressively towards the edge (Fig. IV.1C, T = 60, 80). Thus, peaks
of invaders’ abundance move outward within the population distribution during expansion,
in contrast with non-monotonous waves of invasion with invaders consistently concentrated
at the front (e.g. [384]).

Finally, for very high dispersal (Figs. IV.1D, IV.2D), colonization of the whole available
space is possible, in a wave-like pattern, even without significant local adaptation during the
invasion process. Thus, high dispersal from a focal population well adapted to the intro-
duction site makes spatial spread very rapid, even though most of the population remains
maladapted during expansion.

Invasion speed can vary dramatically in the course of population expansion. At low dis-
persal (Figs. IV.2A, IV.2E, IV.2I), there is a first, latent phase of invasion during which the
population focus spreads only locally and local maladaptation remains low. This is followed
by the first invasion pulse, which corresponds to the establishment and growth of the first
cluster; at that point invasion stops (Fig. IV.2I) while the cluster adapts (Fig. IV.2E). As
local adaptation increases, the cluster grows locally and generate enough pioneer dispersers
to reach areas of low competition, thus triggering the formation of the next cluster. The
process of cluster formation repeats itself, and invasion speed fluctuates between a constant
high value and zero.

For higher dispersal (Figs. IV.2B, IV.2F, IV.2J and IV.2C, IV.2G, IV.2K), dispersal is
responsible for a first phase of rapid invasion, which turns out to be the fastest (Fig. IV.2B,
IV.2J and IV.2C, IV.2K). Strong maladaptation at the population edge builds up rapidly
during this initial phase (Fig. IV.2F, IV.2G), which causes invasion speed to drop (Fig.
IV.2J, IV.2K). Once the population edge is sufficiently adapted, invasion resumes. Invasion
speed rapidly reaches a plateau in the case of continuous expansion (Fig. IV.2C, IV.2K) or
increases gradually in the case of expanding waves breaking down in clusters. At very high
dispersal (Fig. IV.2D, IV.2H, IV.2L), expansion into the whole spatial domain occurs very
rapidly; local adaptation is much slower (Fig. IV.2D, IV.2H), and eventually results in the
divergence of niche traits toward extreme values (Fig. IV.2D).

We can gain further insights into the cluster formation regime by using a Hamilton-Jacobi
approximation approach [41], valid for populations with low dispersal and small mutational
variance of the niche trait. We find that the inter-cluster distance is closely approximated by
the competition range (Section IV.9.2). Remarkably, clusters influence one another as they
grow and adapt. As a new cluster establishes at the edge, adaptation of the previous front
cluster slows down (Fig. IV.3, blue curve when red cluster appears). This is due to the fact
that the formerly front cluster now receives a flow of locally maladapted dispersers from the
core and the (new) edge of the range. When combined with sufficient dispersal, these large
scale, inter-cluster effects contribute to fluctuation (and possibly increase) of invasion speed
found in the case of a fragmenting expansion wave (Fig. IV.2B, IV.2J). We also note that for
not too small dispersal, where cluster formation occurs yet the Hamilton-Jacobi approxima-
tion may not apply, multi-stability is possible (Sections IV.6 and IV.8.1). Thus, we expect
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some quantitative differences in invasion dynamics resulting from the dynamical uncertainty.

We now turn to the case where niche and dispersal evolve jointly. Increasing the cost of
dispersal results in a lower clustering threshold on dispersal (Fig. IV.4). Thus, clustering
always occurs, irrespective of the cost of dispersal, provided dispersal is low enough; and in
populations experiencing a relatively low cost of dispersal, clustering occurs over a broad
range of dispersal rates.

With both niche and dispersal traits evolving, mean dispersal always tends to decrease
(Fig. IV.5A-IV.5C). However, if the dispersal rate of ancestral colonizers is far enough (above
or below) from the clustering threshold, the selection gradient against dispersal is weak (Fig.
IV.5B). Thus, three alternate patterns of spatial expansion and invasion dynamics emerge. If
ancestral dispersal is below the clustering threshold, the population expands through cluster
formation (Fig. IV.5A, IV.5D, IV.5G, IV.5J). If ancestral dispersal is far above the clustering
threshold, the population expands as a continuous wave (Fig. IV.5B, IV.5E, IV.5H, IV.5K).
For intermediate dispersal values, the evolution of dispersal drives the population across the
clustering threshold, causing the invasion regime to shift from continuous to clustering (Fig.
IV.5C, IV.5F, IV.5I, IV.5L). For colonizing populations of highly mobile individuals intro-
duced in a new environment that is sufficiently vast, the latter scenario is expected generically.

A broad range of dispersal trait values evolve in the course of the invasion (Fig. IV.5A-
IV.5C). In spite of dispersal being selected against, even at the invasion front (Fig. IV.5G-
IV.5I), there is always ‘spatial sorting’ [374] at the population edge (Fig. IV.5D-IV.5F).
In addition, in the case of clustering expansion, mean dispersal and the degree of local
(mal)adaptation, both measured in the front cluster, vary through time (Fig. IV.5G, green
curve for dispersal, blue curve for local maladaptation). Every time a new cluster forms,
mean dispersal reaches a higher value (because of high-dispersal individuals coming from
inner clusters further away from the edge) while local maladaptation is reset to a relatively
constant level; as the new cluster grows, both mean dispersal and the degree of local mal-
adaptation drop lower than they did in the previous front cluster.

Dramatic variation of invasion speed can occur (Fig. IV.5J, IV.5K, IV.5L). Dispersal evo-
lution driving invasion from wave-like to clustering causes an abrupt shift in invasion speed,
from being relatively constant to fluctuating widely (Fig. IV.5L). In the clustering regime
of invasion, invasion speed tends to increase between consecutive pulses of expansion (Fig.
IV.5J). This means that each new front cluster grows faster than the previous one. This is
somewhat unexpected given that mean dispersal in the front cluster increases (Fig. IV.5G,
green curve), hence a larger demographic cost, while the level of maladaptation remains about
the same across new front clusters (Fig. IV.5G, blue curve). In fact, a new front cluster is a
mix of individuals that come potentially from all inner clusters. Those individuals that come
from near clusters have relatively low dispersal rates (hence a low cost of dispersal) and are
less maladapted as they move up front; their birth rate is therefore relatively high. Every
time a new front cluster forms, the former front cluster is less maladapted than the previous
one (cf. blue curve dropping deeper in Fig. IV.5G). As a consequence, individuals that move
from the former front cluster, have higher fitness compared to individuals that made simi-
lar moves on a previous event of front cluster formation, hence the increase in invasion speed.
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The inclusion of Allee effects does not change the overall pattern: cycles of accelerating-
decelerating invasion, existence of a clustering threshold on dispersal, and selection against
dispersal that drives a rapid transition from wave-like to clustered invasion (Fig. IV.6,
Sections IV.5.3, IV.10.4 and IV.10.5). Allee effects also favor clustering (lower clustering
threshold, for any given cost of dispersal). In agreement with existing theory, Allee effects
tend to slow down invasion, and in the wave-like regime of population with expansion (Figs.
IV.6B), the invading wave is ‘pushed’ rather than ‘pulled’. As a consequence, mean dispersal
on the front is lower than in the rest of the range (Figs. IV.6E). In contrast, in the clustering
regime of invasion, expansion is pulled by new clusters, where spatial sorting of high-dispersal
individuals followed by selection against dispersal occur (Figs. IV.6G), as in the case without
Allee effects.

IV.4 Discussion

Local adaptation and dispersal evolution are key evolutionary processes shaping the inva-
sion dynamics of populations colonizing new environments [356, 357, 360, 385, 386]. To
resolve their interaction, we use a simple eco-evolutionary model of a single-species popula-
tion along a one-dimensional resource gradient. The predicted long-term spatial distribution
of the population (continuous or clustered) has major consequences on the invasion dynamics.
Below a threshold (clustering threshold) on the dispersal rate of initial colonizers, invasion
develops in pulses, driven by bouts of spatial sorting and local adaptation. For colonizers
with dispersal above the threshold, the generic pattern of invasion begins with a phase of
acceleration-deceleration, continues as a wave traveling at constant speed, until selection
against dispersal drives an abrupt transition into the pulsed regime of invasion. Whereas
our model constraints spatial dynamics to one dimension of environmental variation, simi-
lar dynamics occur if we unfold a second spatial dimension and let dispersal occur in both
directions (Section IV.10.1).

The finding of long-term population spatial distribution being either continuous (for dis-
persal above a threshold) or clustered (for dispersal below a threshold) is similar to [228], but
our model differs in three ways: First, rather than limiting individual mobility to dispersal
at birth, we assume that individuals can change location throughout their life. Intuitively,
this favors mixing and sets a priori more restrictive conditions for cluster formation. Second,
we use competition kernels that are box-shaped rather than Gaussian. This removes spuri-
ous effects of Gaussian competition kernels [182, 228, 250, 251]. Third, we exclude fitness
frequency-dependence from our assumptions, by assuming that competition intensity does
not depend on relative trait values. Even though we define competition with respect to phys-
ical location, the interplay between competition with neighbors and local adaptation results
in a correlation between physical location and trait, which can lead to fragmentation in both
dimensions [228]. Compared to [228], we found a broader range of dispersal and other pa-
rameter values for which clustering is expected, which is explained by our stability analysis
accounting for perturbations in both space and trait dimensions. Allee effects further enlarge
the range of conditions for clustering. Similarly to [228] we find that population clustering is
promoted by intermediate gradient steepness. Recent mathematical work backs up the gen-
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erality of long-term clustering as an outcome of competition within neighborhoods [387, 388].

Dispersal evolution plays a key role in driving the invasion regime from wave to clusters.
In general, dispersal evolution is shaped by a set of costs and benefits (reviewed e.g. in
[375, 389]). Costs of dispersal include intrinsic costs, and environmentally-mediated costs
(how risky movement is, and the fitness loss due to moving away from areas to which the pop-
ulation is adapted or into habitats of low quality). Benefits of dispersal include the potential
to found new population where competition is released, avoidance of kin competition, and
in sexual organisms, inbreeding avoidance. In temporally constant, spatially heterogeneous
environments, dispersal is generally selected against [390–394], unless there are mechanisms
to counter the risk of fitness loss due to spatial heterogeneity, such as conditional dispersal
[395] or local adaptation [396, 397]. The organisms’ life cycle is also a strong influence of
selection on dispersal; evolution of dispersal in the adult stage (as in our model) generally
involves more stringent conditions on environmental structure and variation [398].

Costs and benefits of dispersal can vary across a species’ range, and may be particu-
larly large at the range margins, where dispersers can reach previously unoccupied areas
but face Allee effects and genetic drift [364, 368, 379]. Previous theory has explored the
evolution of dispersal as a population expands across a spatially homogeneous environment
(e.g. [399, 400]) or across an environmental gradient [401]. How selection acts on dispersal
during periods of range expansion can be very different from selection on dispersal in sta-
tionary populations [400]. On an expanding front, dispersal may be strongly favored because
of spatial sorting and selection [374, 399, 402], despite spatial heterogeneity acting against
dispersal on average across the range [400, 403]. Spatial sorting refers to the fact that the
best dispersers tend to be disproportionately represented on the population front; competi-
tion release experienced by these individuals may result in larger reproductive success, hence
selection for increased dispersal.

In addition to spatial sorting and selection, kin competition may also be a strong agent
of selection on dispersal at the population front, because founder effects driving invasion
result in locally high relatedness [404, 405]. For invasion occurring along spatial gradients
of resources, kin selection for dispersal may counter the cost of maladaptation incurred by
dispersers [396, 406]. [397] analysis suggests that the balance of kin selection and maladap-
tation is determined by the strength of intraspecific competition and the intrinsic cost of
dispersal (which influence local population size), and the gradient steepness (which influ-
ences the spatial variance in selection on resource use).

In our model, several selective agents act against dispersal: the intrinsic mortality cost;
spatial heterogeneity manifested in the gradient of resources, and enhanced by population
self-structuring when dispersal is close to or below the clustering threshold; and the cost
of maladaptation. Selection against dispersal is particularly strong around the clustering
threshold. If the ancestral phenotype is above the threshold, the eco-evolutionary feedback
on dispersal can drive a macroscopic transition from wave-like to pulsed invasion: as spatial
population heterogeneity develops when dispersal becomes sufficiently close to the threshold,
selection against dispersal intensifies; lower dispersal enhances spatial variation in popula-
tion density, thus selecting even more strongly against dispersal, which eventually crosses
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the clustering threshold.

We found that spatial sorting generally occurs, but not spatial selection. High-dispersal
individuals tend to be assorted at the range margin (front cluster or wave front), but the ben-
efit of low density (reduced competition) and kin selection appear to be too weak to counter
maladaptation, resulting in selection against dispersal (‘suppressed spatial selection’ [407]).
In the wave-like invasion regime, suppressed spatial selection leads to invasion occurring at
constant speed (past the initial phase of acceleration-deceleration), rather than accelerating
[408].

In the clustered invasion regime, the consequences of suppressed spatial selection for
invasion dynamics are germane to the phenomenon of ‘elastic’ range expansion [368, 401],
whereby a population invasion progresses in alternating bouts of expansion and contraction.
In our model of clustered invasion, the rapid formation of new front clusters by spatial sort-
ing is followed by a phase of local adaptation and selection against dispersal within clusters.
This results in a dynamical pattern of alternating range expansion and pause, rather than
contraction. In addition, the speed of expansion bouts tend to increase, reflecting the more
rapid growth of newly formed clusters. The accelerating growth of new clusters is driven by
a positive feedback with local adaptation in the ‘source’ clusters: colonizers will be less mal-
adapted to their new location on the invasion front, and therefore establish faster-growing
populations that will send even less maladapted individuals to form the next front cluster.

Data-model fitting and model selection for the cane toads case [360, 408] has provided
strong support for spatial selection on dispersal causing an accelerating invasion [407]. How-
ever, the scope of the mechanism remains to be determined. Mathematical analyses of ‘cane
toad equations’ have assumed homogeneous environments, no cost of dispersal, and ‘point
local’ competition [276, 409], which limits their relevance to real systems. Fitness costs of
dispersal [377] influence the dynamics of range expansion ([376]; this work), as the form and
spatial structure of density regulation does too ([410]; this work). Recent experimental work
on laboratory systems sought out to evaluate the effect of spatial evolutionary processes on
invasion [277, 384, 411, 412]. For populations exposed to a novel environment, [277] showed
that expansion and invasion speed were strongly influenced by local adaptation, whereas spa-
tial evolutionary processes acting at the edge contributed less, which is consistent with our
predictions. Specific predictions from our model, such as changes in expansion regime and
concurrent variation in invasion speed, could be tested by setting up microcosm experiments
on environmental gradients and artificially varying interaction range and gradient steepness.

From a genetic point of view, range expansion usually leads to decreasing genetic diver-
sity, either affecting adaptation [413] or dispersal [414]. The dynamics of genetic diversity
at the margins of an expanding range can differ markedly between pulled vs. pushed waves
[415, 416]. In pulled waves, competition is relaxed on the front, where ‘pioneer’ individuals
filtered by spatial sorting can establish growing populations. Thus, the wave travels through
recurrent founding events, and genetic diversity is consistently low on the front. With Allee
effects, pioneer individuals are less likely to establish front populations that pull the wave;
instead the wave is pushed by the growth of populations at the back of the front, and no
genetic diversity is lost on the front [415]. In our model, the same effect is predicted in the
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case of wave-like invasion (Fig. IV.5B, E; Fig. IV.6E). The model predictions differ when
clustering occurs. In this case, invasion is pulled by new clusters even when Allee effects
operate (Fig. IV.6A, D, G). In contrast, Allee effects prevent new clusters to form from
the population low-density ‘nose’ ahead of the core even though competition is relaxed. In-
stead, new clusters must form through spatial sorting of high-dispersal individuals, causing
a founder effect. Thus genetic diversity is reduced, but eventually rebuilds by mutation,
which fuels local adaptation of the newly formed cluster. How fast genetic variance of both
dispersal and niche traits builds up depends on the mutation rates, which thus appear as
key parameters of the invasion dynamics in the clustering regime.

IV.4.1 Conclusions

In contrast with long-standing theory predicting that, under a wide range of conditions,
a population will asymptotically spread with a constant velocity [48, 274], there has been
growing empirical evidence that invasion speed can be variable [412, 417–420]. Empirical
studies often attributed temporal variation in invasion speed to differences in the environ-
ments encountered by the invading population [273, 421], while models pointed to potential
endogenous factors, such as demographic stoshasticity causing time lags in population ex-
pansion [422–424], and long-distance dispersal [425, 426] or Allee effects [351, 352, 417, 427]
driving pulsed invasion.

Our model offers an alternate mechanism for lags in expansion and pulsed invasion,
based on the interaction of dispersal evolution and local adaptation along an environmental
resource gradient. For dispersal below the clustering threshold, invasion accelerates when
high-dispersal individuals are spatially sorted on the population front, and pauses as the
front clusters adapts to the newly colonized habitat. Selection driving dispersal across the
clustering threshold will cause an abrupt transition from wave-like invasion at constant speed
to the clustering regime of pulsed invasion. The interaction range, cost of dispersal, and ge-
netic variance of niche and dispersal traits, thus arise as key factors of the dynamics of
invasion, in addition to gradient steepness [228, 372].

How often and to what extent do eco-evolutionary processes affect invasion dynamics
in nature, given the pervasive influences of environmental heterogeneity and demographic
stochasticity and their roles in invasion variability? To begin to answer this question, we sug-
gest that coupling models and empirical data, as was done in [407], is a promising approach.
The power of model-data integration will be enhanced by further theoretical developments
to address other important factors of population spread, including resource-consumer inter-
actions [380, 384, 428], conditional dispersal [49, 50, 400, 429], and selection on multiple
life-history traits [376, 407, 430].
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Figure IV.1: Spatial eco-evolutionary dynamics of invasion with local adaptation and con-
stant dispersal. Time-evolution of the population distribution. A. Dm = 5 × 10−5. B.
Dm = 8 × 10−5. C. Dm = 5 × 10−4. D. Dm = 2 × 10−2. At T = 0 the distribution
is Gaussian with standard deviation σ0 = 0.1 (in both dimensions) centered at (0.5, 0.5).
Large-population model given by Eq. (IV.3), parameters set to the default clustering values
in Table IV.2. In all panels cyan represents the lowest density and magenta the highest.
Density is negligible in white areas.
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Figure IV.2: Spatial eco-evolutionary dynamics of invasion with local adaptation and con-
stant dispersal. Time-evolution of spatial and niche-trait distributions for Dm = 5 × 10−5

(Panel A), Dm = 8 × 10−5 (Panel B), Dm = 5 × 10−4 (Panel C), Dm = 2 × 10−2 (Panel
D). Time-evolution of local maladaptation, measured by the distance between the local op-
timum and physical location (|x − u|) at the population front for Dm = 5 × 10−5 (Panel
E), Dm = 8× 10−5 (Panel F), Dm = 5× 10−4 (Panel G), Dm = 2× 10−2 (Panel H). Front
invasion speed for Dm = 5 × 10−5 (Panel I), Dm = 8 × 10−5 (Panel J) , Dm = 5 × 10−4

(Panel K) , Dm = 2×10−2 (Panel L). At T = 0 the population distribution is Gaussian with
standard deviation σ0 = 0.1 (in both dimensions) centered at (0.5, 0.5). Large-population
model given by Eq. (IV.3), other parameters set to the default clustering values in Table
IV.2. In all panels cyan represents the lowest density and magenta the highest. Density is
negligible in white areas.
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Figure IV.3: Spatial eco-evolutionary dynamics of invasion with local adaptation and con-
stant dispersal: dynamics of cluster emergence and adaptation. Simulation based on the
Hamilton-Jacobi equation Eq. (IV.15). Time-evolution of adaptation, measured by angular
degree between the cluster alignment and gradient (cf. Fig IV.21). Ti, i = 1, 2, 3, indicate
times at which new clusters emerge. Parameters set to the default clustering values in Table
IV.2.
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Figure IV.5: Spatial eco-evolutionary dynamics of invasion with local adaptation and evolv-
ing dispersal. (A-C) Time-evolution of spatial, niche-trait and dispersal-trait distributions.
(D-F) Local mean dispersal as a function of spatial location. (G-I) Time-evolution of local
maladaptation at the population front, measured by the distance between the local opti-
mum and physical location (|x − u|), and mean dispersal at the population front. (J-L)
Time-evolution of invasion speed. Large-population model given by Eq. (IV.1). At T = 0
the population distribution is Gaussian with standard deviation σ0 = 0.1 (in the three di-
mensions) centered at (0.5, 0.5, w0). Parameter values: w0 = 0.15 and θ = 0.75 in A, D,
G, J; w0 = 0.9 and θ = 0.75 in B, E, H, K; w0 = 0.3 and θ = 1.75 in C, F, I, L. Other
parameters set to the default values in Table IV.1. In Panels A,B and C, cyan represents
the lowest density and magenta the highest. Density is negligible in white areas.
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Figure IV.6: Spatial eco-evolutionary dynamics of invasion with local adaptation, evolving
dispersal, and Allee effect (Section IV.5.3). Large-population model given by Eq. (IV.1).
See Fig. IV.5 for panel labeling and other details.
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Supporting Information

IV.5 Stochastic model and large-population approximation
We use an individual-based stochastic model of spatial eco-evolutionary dynamics which
extends a model first introduced in [7] to include evolving dispersal. We then take a large-
population limit (as in [7]), to derive the deterministic model in Eq. (IV.1).

IV.5.1 Individual-based stochastic model with evolving dispersal

Given three smooth domains (open, connected) X ⊆ Rd (spatial domain), U ⊆ Rk (first
phenotypic domain) and W ⊆ Rl (second phenotypic domain), we consider an asexual pop-
ulation where each individual is characterized by its physical location x ∈ X and its two
phenotypic traits u ∈ U and w ∈ W. The first trait relates to the individual’s niche and the
second trait to dispersal. Individuals give birth at a rate which depends on how adapted
they are to their local environment; the degree of (mal)adaptation is measured by the dif-
ference between the individual niche trait and the local optimum. Individuals die at a rate
which increases with the intensity of local competition and with higher dispersal. Offspring
inherit their parent’s traits, unless a mutation occurs (independently on each trait); the
mutation probability is denoted by γ and is assumed to be equal in both traits. Individ-
uals’ mobility is modeled as spatial diffusion (with diffusion coefficients dependent on the
dispersal-related trait) reflected at the boundary of X . Unless specified otherwise, we take
X = U =W = (0, 1).

More precisely, the birth rate B of an individual with niche trait u and dispersal trait w
located at position x is given by

B(x, u) = max
{
b0 − b1(x− u)2; 0

}
,

where b0 > 0 and b1 > 0. The smooth continuous variation of the optimum along the line
x = u represents the environmental gradient. The death rate of an individual at (x, u, w) in
a population of Nt individuals at positions x1, . . . , xNt and traits u1, . . . , uNt , w1, . . . , wNt is
given by

d0(1 + w)θ + d1

Nt∑
i=1

1|x−xi|<δ,

where d0 measures the minimal natural death rate, θ determines the degree of increased
mortality of higher mobility and d1 scales the mortality effect of competition. Applying the
appropriate time-scaling, we assume d1 = 1 without loss of generality.

The distribution of mutational effects on the niche trait from an individual at position
(x, u, w) is Gaussian centered at u (and independent of x) with variance σ2, conditioned to
remain within U = (0, 1). The same occurs for mutational effects on the dispersal trait w.
The spatial diffusion coefficient (mobility rate) has value Dm(w).

The algorithm used to simulate the individual-based model is based on [7]. Nevertheless,
we use a slightly different acceptance/rejection procedure in order to avoid costly numerical
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computations of the exact jump rates in the process. This procedure consists on simulating
more frequent potential jump times and then deciding whether the jumps actually occur at
these times based on a given probability. This implies the probabilities of births or deaths do
not sum up to 1 since the complementary probability is that of a rejection of the potential
jump time (i.e. no jump occurs). We proceed as in this reference by constructing recursively
sequences Nk, Tk, Xk, Uk,Wk respectively of integers, positive real numbers, Nk-dimensional
vectors in X̄ and Nk-dimensional vectors in U and in W, which represent respectively the
number of individual in the k-th step of the algorithm, the end time of the k-th step and the
vectors of positions and ecological (niche) and dispersal traits of the Nk living individuals
at the end of the k-th step. We set the potential event rate to Ctot := Nk−1(b0 + 2d0 +
Nk−1/K) (K being the carrying capacity) and then decide, based on a parameter θk (a
uniformly distributed random variable on [0, Ctot]), which event can potentially occur at
time Tk = Tk−1 +Ek−1, where Ek−1 is an exponential random variable with parameter Ctot.
If θk < Nk−1b0, we randomly select an individual Ik = i, which will give birth (to a clone
or a mutant) with probability

B(Xi
Tk
,U iTk−1)
b0

. If, instead, Nk−1b0 ≤ θk ≤ Nk−1b0 + 2Nk−1d0,

a randomly selected individual Ik = i will die with probability
d0(1+W i

Tk−1)2

2d0
no matter its

position and niche trait (since the rate of natural death only depends on the dispersal-related
trait). Finally, if θ ≥ Nk−1b0+2Nk−1d0, two individuals Ik = i, Jk = j are selected randomly.
If the distance among them at time Tk is smaller than δ, then individual i dies. Otherwise
nothing happens.

IV.5.2 Large-population approximation model

Taking a large-population limit on the individual-based simulation model yields the following
deterministic approximation [7]:

∂ n(x, u, w, t)
∂ t

= Dm(w)∂
2 n(x, u, w, t)

∂ x2 + n(x, u, w, t)×(
(1− γ)2B(x, u)− d0(1 + w)θ −

∫
X

∫
U

∫
W
1|x−y|<δn(y, a, b, t)db da dy

)
+ γ

∫
U
n(x, a, w, t)B(x, a) 1√

2πσ
exp

(
−(u− a)2

2σ2

)
da

+ γ

∫
W
n(x, u, b, t)B(x, u) 1√

2πσ
exp

(
−(w − b)2

2σ2

)
db

+ γ2
∫
U

∫
W
n(x, a, b, t)B(x, a) 1√

2πσ
exp

(
−(w − b)2

2σ2

)
1√
2πσ

exp
(
−(u− a)2

2σ2

)
db da,

(IV.2)
∂ n(x, u, w, t)

∂ x

∣∣∣∣
x=0

= ∂n(x, u, w, t)
∂x

∣∣∣∣
x=1

= 0,

n(x, 0, w, t) = n(x, 1, w, t) = 0, x ∈ X , w ∈ W t ≥ 0,
n(x, u, 0, t) = n(x, u, 1, t) = 0, x ∈ X , u ∈ U t ≥ 0.

where
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B(x, u) = max{b0 − b1(x− u)2, 0}.

Note that the Neumann boundary condition in physical space corresponds to reflection
of spatial motion at the boundary of X , and the Dirichlet boundary condition in phenotype
space indicates that individuals die when their trait exits from U or W.

To understand the death by competition term in Eq. (IV.2), it is convenient to introduce
the population counting process from the stochastic individual-based model:

ft =
Nt∑
j=1

δ(xj ,uj ,wj)

which is the sum of Dirac delta functions at the points where individuals are located at time
t. The death rate for the individual-based-model can then be written as

D(x, u, w, ft) := d0(1 + w)θ +
∫
X×U×W

1|x−y|<δft(dy, da, db).

The approximation of the individual-based model by Equation (IV.2) can be formally
justified in the limit of large population as follows: when assuming a fixed amount of total
resources, a large system composed of the order of N individuals may be sustained if the
biomass of each individual scales as 1

N ; the intensity of competition must scale as 1
N as

well. Using the martingale properties of the individual-level stochastic process, [7] proved
that in the limit of large N the renormalized population process converges to a macroscopic
deterministic limit, in which the local population density is a weak solution to Eq. (IV.2).

To simulate the dynamics of the infinite population-size limit of the model we compute
n(x, u, w, t) according to Eq. (IV.2) using an explicit scheme where n(x, u, w, 0) has the form
of a Gaussian centered at (0.5, 0.5, w0) with standard deviation σ0 (in each dimension). We
use Euler’s method with a step size ∆x = ∆u = ∆w = 2.5 × 10−2 and a time-step size
∆t = 1 × 10−3. For numerical purposes we assume that the last term in Eq. (IV.2) (the
event of a double mutation) is equal to zero since mutations on niche position or dispersal
occur independently and are rare. This changes the proportion of births without mutations
from (1− γ)2 to (1− 2γ).

To calculate the invasion speed we compute the (spatial) time derivative (using Euler’s
method) of the location of the front. We compute the spatial location and niche trait of the
front as the extreme values xmin and xmax and umin and umax (lowest and highest x and u)
where the cumulative density over W satisfies the condition:

nx,u(x, u, t) :=
∫
W
n(x, u, w, t) dw ≥ 0.5× max

x∈X ,u∈U
nx,u(x, u, t), t ≥ 0.

When the front has been computed we also calculate the difference (|x−u|) as |xmax−umax|.
Due to the symmetry in the initial conditions, this is the same as computing |xmin − umin|.
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IV.5.3 Inclusion of Allee effects
We extend our model to include Allee effects. Local adaptation (u compared to x) deter-
mines the reproductive potential of an individual, and nearby density (of identical or of all
phenotypes) determines whether this potential is realized or not.
More precisely,

B(x, u, n) = max
{

(b0 − b1(x− u)2)×
∫
X 1|x−y|<δ × n(y, u, t)dy

c1 +
∫
X 1|x−y|<δ × n(y, u, t)dy ; 0

}
,

where the range of interaction (of distance δ) with nearby neighbors is the same as in the
death-by-competition term. The parameter c1 ≥ 0 scales the impact Allee effects have on
local reproduction. If c1 is too large the population goes extinct. If c1 is too small the results
of the variant resemble from those of model in Section IV.5.1. If c1 is intermediate, when
the density of neighbor individuals is low, the birth rate is close to zero and the reproductive
potential is hardly expressed. When density is high, the ratio in birth rate is close to 1, and
the reproductive potential is realized fully.

We also consider the case where:

B(x, u, n) = max
{

(b0 − b1(x− u)2)×
∫
X
∫
U 1|x−y|<δ × n(y, w, t)dw dy

c2 +
∫
X
∫
U 1|x−y|<δ × n(y, w, t)dw dy

; 0
}
.

but find that results are equivalent after appropriate re-scalings of the parameters c1 and c2
(c1 ' c2

2).

IV.5.4 Model parameters and values
The parameters of the model and their description, together with the default values are
presented in Table IV.1. The value of Dm is the threshold value at which the clustering
pattern loses stability in the model with no dispersal evolution and other parameters set to
the default values in Table IV.2.

Parameter Description Default value
b0 Maximal birth rate b0 = 2
c1 Scaling of Allee effects from identical individuals c1 = 1× 10−4

c2 Scaling of Allee effects from all individuals c2 = 1× 10−2

b1 Quadratic coefficient in the rate of decay in the birth rate b1 = 20
d0 Minimal natural death rate d0 = 1
θ Degree of mortality cost of dispersal θ = 0.75
Dm Spatial diffusion constant Dm = 1.62× 10−4

δ Spatial competition range δ = 0.1
σ Standard deviation of mutation transition measure σ = 1× 10−2

γ Mutation probability γ = 0.1

Table IV.1: Model parameters, description and default values.
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IV.5.5 Individual-based stochastic model in absence of evolving dispersal

To facilitate part of the mathematical and numerical analysis we partially work on a sim-
plified version of the model in which the dispersal rate (mobility rate) is fixed and constant
for all individuals. We later generalize our results (when possible) to the extended model
introduced in Section IV.5.1.

The model was introduced in [7] and results from removing the dispersal-associated trait
in the model introduced in Section IV.5.1. Each individual is characterized by its physical
location x ∈ X and its phenotypic trait u ∈ U (X ⊆ Rd and U ⊆ Rk are open and connected).
Individuals give birth at the rate B(x, u) introduced in Section IV.5.1. Individuals die at a
rate which increases with the intensity of local competition. The death rate of an individual
at (x, u) in a population of Nt individuals at positions x1, . . . , xNt and traits u1, . . . , uNt is
given by

d0 + d1

Nt∑
i=1

1|x−xi|<δ,

where d0 measures the natural death rate, and d1 scales the mortality effect of competition.
Again, we assume d1 = 1 without loss of generality.

Offspring inherit their parent’s trait, unless a mutation occurs. The distribution of mu-
tational effects from an individual at position (x, u) is Gaussian centered at u (and indepen-
dent of x) with variance σ2, conditioned to remain within U = (0, 1). Individuals’ mobility
is modeled as spatial diffusion reflected at the boundary of X . The spatial diffusion coeffi-
cient (mobility rate) is assumed constant with value Dm. Unless specified otherwise, we take
X = U = (0, 1).

The algorithm used to simulate the individual-based model is based on [7]. As before,
we construct recursively sequences Nk, Tk, Xk, Uk, which represent respectively the number
of individual in the k-th step of the algorithm, the end time of the k-th step and the vector
of positions and traits of the Nk living individuals at the end of the k-th step. We set the
potential event rate to Ctot := Nk−1(b0 + d0 + Nk−1/K) and then decide, based on θk (a
uniformly distributed random variable on [0, Ctot]), which event can potentially occur at
time Tk = Tk−1 +Ek−1, where Ek−1 is an exponential random variable with parameter Ctot.
If θk < Nk−1b0, we randomly select an individual Ik = i, which will give birth (to a clone
or a mutant) with probability

B(Xi
Tk
,U iTk−1)
b0

. If, instead, Nk−1b0 ≤ θk ≤ Nk−1b0 + Nk−1d0,
a randomly selected individual Ik = i dies no matter its position and trait (since the rate
of natural death is the same for all individuals). Finally, if θ ≥ Nk−1b0 + Nk−1d0, two
individuals Ik = i, Jk = j are selected randomly. If the distance among them at time Tk is
smaller than δ, then individual i dies. Otherwise nothing happens.
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IV.5.6 Large-population approximation model in absence of evolving dispersal
In the large-population limit, the distribution of the population in the model behaves ac-
cording to [7]:

∂n(x, u, t)
∂t

= Dm
∂2n(x, u, t)

∂x2 + n(x, u, t)×(
(1− γ)B(x, u)− d0 −

∫
X

∫
U
1|x−y|<δn(y, w, t)dwdy

)
+ γ

∫
U
n(x,w, t)B(x,w) 1√

2πσ
exp

(
−(u− w)2

2σ2

)
dw,

(IV.3)

∂n(x, u, t)
∂x

∣∣∣∣
x=0

= ∂n(x, u, t)
∂x

∣∣∣∣
x=1

= 0,

n(x, 0, t) = n(x, 1, t) = 0, x ∈ X , t ≥ 0.

We simulate the dynamics of the model in Eq. (IV.3) using an explicit scheme where
n(x, u, 0) has the form of a Gaussian centered at (0.5, 0.5) with standard deviation σ0 (in
each dimension).

IV.5.7 Model parameters and values in absence of evolving dispersal
The parameters of the model and their description, together with the default clustering
values are presented in Table IV.2.

Parameter Description Default value
b0 Maximal birth rate b0 = 2
b1 Quadratic coefficient in the rate of decay in the birth rate b1 = 20
d0 Natural death rate d0 = 1
Dm Spatial diffusion coefficient Dm = 5× 10−5

δ Spatial competition range δ = 0.1
σ Standard deviation of mutation transition measure σ = 1× 10−2

γ Mutation probability γ = 0.1

Table IV.2: Model parameters, description and default clustering values.
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IV.6 Population expansion in absence of evolving dispersal

We examine the effect of parameters δ (spatial range of competition), Dm (spatial motion),
and σ (mutation range) on the spatial eco-evolutionary dynamics when the dispersal (mobil-
ity) rate is equal for all individuals. We also address the influence of the initial distribution.
Figs. IV.7A and IV.7B show the formation of clusters in the stochastic individual-based
model with an initial population concentrated at a single space-phenotype position. An
expanding wave of clusters propagates the population across the space-phenotype domain.
Here, new clusters are established by individuals that colonize competition-free areas. Even
though competition is defined with respect to physical location, the interplay between spatial
competition and local adaptation results in a correlation between physical location and trait,
which leads to fragmentation in both dimensions.

Simulations of the deterministic approximation model Eq. (IV.3) give results that are
remarkably consistent (Fig. IV.7C) with the individual-based stochastic model (Figs. IV.7A
and IV.7B). The deterministic model clearly highlights the dichotomy between clustering
patterns versus cline-like states which can be defined [228] as symmetrical distributions with
respect to the line x = u, of the form n(u, x, t) = ϕ(x − u). Comparing the stochastic
and deterministic models shows that the domain boundaries and edge effects do not invali-
date the cluster dynamics and population spread predicted by the deterministic model, even
though deterministic diffusion creates non-zero density across the whole domain from the
time of introduction. Boundary conditions may affect the long-term population state, but
the transient dynamics of cluster formation and range expansion are robust to them.

Fig. IV.8 illustrates the influence of parameter variation on cluster formation and dy-
namics. Snapshots shown for the longest simulation times represent the stationary state of
the system. Three main effects are apparent. First (Fig. IV.8A), clustering may evolve in
phenotypic space and not in geographic space, as a consequence of a larger mobility rate.
Thus, individual mobility can spread the population out geographically, without preventing
phenotypic differentiation in distinct trait clusters. In this case, the population distribution
is geographically continuous, but distinct ranges of phenotypes evolve in different geographic
areas.

Second (Fig. IV.8B), the interaction (competition) range δ is a critical determinant of
population clustering. Populations with relatively short competition range evolve a cline-like
pattern. Third, Fig. IV.8C shows the effect of increasing the mutation range σ. Genetic
variation fuels the process of local adaptation, with effects potentially conflicting with indi-
vidual mobility, as alleles are exported to spatial neighborhoods where they may be poorly
adapted. Larger mutational effects tend to blur phenotypic clustering without altering geo-
graphic clustering. This response is essentially opposite to the effect of increased mobility,
with the difference that even very large mutation ranges may not completely offset pheno-
typic clustering. Considering very small mutation ranges, the stationary clustering pattern
appears unaffected; only the time of cluster formation and population spread is changed,
increasing as mutational variance decreases. In the limit of zero mutational variance, i.e. in
the absence of genetic variation, range expansion is prevented altogether, due to the inability
of the species to maintain viable populations in geographic areas where optimal conditions
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Figure IV.7: Spatial eco-evolutionary dynamics in the individual-based stochastic model
(A,B) and the deterministic large population limit (C). A and B. Initially, a population of
N = 3000 is concentrated at the point (0.5, 0.5). B. At T = 0 the distribution is a Gaussian
with standard deviation σ0 = 0.1 (in both dimensions) centered at (0.5, 0.5). Parameters
set to the default clustering values (Table IV.2). In all panels, cyan represents the lowest
density and magenta the highest. Density is negligible in white areas.

are too different from its original niche (See Section IV.7).

Fig. IV.9 further documents the effect of large mobility rates. Large mobility rates drive
fast expansion of the population across the spatial domain, in the form of two geographically
broad but phenotypically narrow and diverging clusters. Each cluster is structured into a
‘hot spot’ of adaptation at the center, and ‘cold spots’ at the margins. Throughout the
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Figure IV.8: Effect of mobility, competition, and mutation in the deterministic large
population-size limit. A. Increased diffusion rate: Dm = 5 × 10−4. B. Reduced interac-
tion range: δ = 0.05. C. Increased mutation variance σ = 0.25. At T = 0 the distribution
has the form of a Gaussian with standard deviation σ0 = 0.1 (in both dimensions) centered
at (0.5, 0.5). Other parameters set to the default clustering values in Table IV.2. In all
panels, cyan represents the lowest density and magenta the highest. Density is negligible in
white areas.

process of population spread, the adaptation hot spot of each cluster acts as a population
source fueling the highly maladapted geographic margins. The spatial spread of each cluster
is established early in the process of expansion from the site of introduction, and within
each cluster, the adaptation hot spot moves along the environmental gradient from the site
of introduction (early on) to asymptotic trait values that are close to, but distinct from
the edges of the gradient. The long-term pattern is one of relatively uniform spatial distri-
bution, with three (Fig. IV.9A) or only two (Fig. IV.9B) phenotypic clusters –a pattern
known from models of sexually reproducing organisms, to promote parapatric speciation [22].

Finally, Fig. IV.10 documents the effect of the initial spread of the population on its
spatial dynamics. In large populations well approximated by the deterministic model (Fig.
IV.10), a broad initial range can cause the population to invade as a traveling wave. Local
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Figure IV.9: Effect of mobility in the deterministic large population limit. A. Dm = 5×10−3.
B. Dm = 2×10−2. At T = 0 the distribution is a Gaussian with standard deviation σ0 = 0.1
(in both dimensions) centered at (0.5, 0.5). Other parameters set to the default clustering
values (Table IV.2). In all panels, cyan represents the lowest density and magenta the
highest. Density is negligible in white areas.
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Figure IV.10: Cluster formation in the deterministic large population limit. At T = 0 the
distribution has the form of a Gaussian with standard deviations σ0 = 0.04 (panel A) and
σ0 = 0.1 (panel B) in both dimensions centered at (0.5, 0.5). Parameters set to the default
clustering values (Table IV.2). In all panels, cyan represents the lowest density and magenta
the highest. Density is negligible in white areas.
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competition and adaptation tend to create variation in density (Fig. IV.10A), but clusters
do not separate until the population reaches the edges of the domain, where complete isola-
tion of clusters initiate and propagates back toward the center of the gradient (Fig. IV.10B).
Thus, with sufficiently broad initial conditions, the spatial eco-evolutionary dynamics drive a
continuous range expansion, followed by cluster patterning once the environmental gradient
has been fully invaded.

Simulations reported in Figs. IV.7, IV.10 and IV.13 indicate the the number of clusters
evolving asymptotically may vary. This suggests that the spatial eco-evolutionary dynamics
may be multi-stable, with slightly different initial conditions leading to alternate attractors.

Figs. IV.11, IV.12 and IV.13 show equivalent results as in Figs. IV.8, IV.9 and IV.10 for
the stochastic individual-based model.
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Figure IV.11: Effect of mobility, competition, and mutation in the individual-based stochastic
model. A. Increased mobility rate: Dm = 5× 10−4. The final population size is N = 15279.
B. Reduced interaction range: δ = 0.05. The final population size is N = 31087. C.
Increased mutation variance σ = 0.25. The final population size is N = 15592. Initially, a
population of N = 3000 is concentrated at the point (0.5, 0.5). Other parameters set to the
default clustering values in Table IV.2. In all panels, cyan represents the lowest density and
magenta the highest. Density is negligible in white areas.
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Figure IV.12: Effect of mobility in the individual-based stochastic model. A. Dm = 5×10−3.
B. Dm = 2×10−2. Initially, a population of N = 3000 is concentrated at the point (0.5, 0.5).
The final population size is N = 11646 (panel A) and N = 8478 (panel B). Other parameters
set to the default clustering values in Table IV.2. In all panels, cyan represents the lowest
density and magenta the highest. Density is negligible in white areas.
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Figure IV.13: Effect of initial conditions on cluster formation and dynamics in the individual-
based stochastic model. Initially, a population of N = 3000 is uniformly distributed in the
range [0.25, 0.75] (panel A) or in the range [0.1, 0.9] (panel B) in both dimensions. The final
population size is N = 20132 (panel A) and N = 18939 (panel B). Parameters set to the
default clustering values (Table IV.2). In all panels, cyan represents the lowest density and
magenta the highest. Density is negligible in white areas.
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IV.7 Dynamics of population expansion in the absence of evolution

IV.7.1 Clustering in the individual-based stochastic model and deterministic large-
population limit in the absence of evolution

T=5 T=90 T=150 T=450

N=3046 N=5017 N=5450 N=5238

Spatial location (x)

T
ra

it 
va

lu
e 

(u
)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Spatial location (x)

T
ra

it 
va

lu
e 

(u
)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Spatial location (x)
T

ra
it 

va
lu

e 
(u

)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Spatial location (x)

T
ra

it 
va

lu
e 

(u
)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Figure IV.14: Cluster formation in the simulations of the individual-based stochastic model
in the absence of evolution (γ = 0). The final population size is N = 5238. Initially, a
population of N = 3000 is concentrated at the point (0.5, 0.5). Parameter values set to the
default clustering parameter values in Table IV.2. In all panels, cyan represents the lowest
density and magenta the highest. Density is negligible in white areas.

We analyze the dynamics of the individual-based stochastic model and its determinis-
tic large population-size limit in the absence of evolution in both the niche trait and the
dispersal-related trait to study the dependence of clustering and adaptive diversification on
phenotypic mutations in niche traits when competition is only spatial. As observed in Figs.
IV.14 and IV.15, clustering occurs—in both cases—in the form of a multimodal distribution
under the default clustering parameter values. Complete separation of clusters does not
occur, however, due to the adaptation constraints.
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Figure IV.15: Cluster formation in the simulations of the deterministic large population-
size limit in the absence of evolution (γ = 0). At T = 0 the distribution has the form of
a Gaussian with standard deviation σ0 = 1 × 10−2 (in the spatial direction) centered at
(0.5, 0.5). Parameter values set to the default clustering parameter values in Table IV.2. In
all panels, cyan represents the lowest density and magenta the highest. Density is negligible
in white areas.
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Figure IV.16: Parameter dependence in the simulations of the individual-based stochastic
model in the absence of evolution (γ = 0). A. Increased diffusion rate: Dm = 5 × 10−4.
B. Reduced interaction range: δ = 0.05. The final population size is N = 4722 (panel A)
and N = 11442 (panel B). Initially, a population of N = 3000 is concentrated at the point
(0.5, 0.5). Other parameter values set to the default clustering parameter values in Table
IV.2. In all panels, cyan represents the lowest density and magenta the highest. Density is
negligible in white areas.

IV.7.2 Effect of parameters in the absence of evolution

As observed in Figs. IV.16 and IV.17 for both the stochastic individual-based model and its
deterministic limit and similarly as in the original model, both an increase in the diffusion
rate and a reduction in the interaction range hinder clustering and multimodality in the
absence of evolution. In both cases there is a transition to unimodality (with respect to
Figs. IV.14 and IV.15) with a larger range in the case of faster spatial motion (the transition
occurs at a lower value of D∗m) as emphasized in Section IV.7.3.

IV.7.3 Importance of niche trait evolution in the appearance of clustering

To emphasize the role of phenotypic evolution in ecological (resource-use or niche) traits
in the appearance of clustering along environmental gradients we show an example where
phenotypic mutations are essential for the appearance and evolution of clustering.

In Section IV.8.1 we show that there is an interval where perturbations only at the
spatial component would predict stability of the cline-like equilibrium while perturbations
in both dimensions would instead predict instability. This is done to show that the stability
analysis in [228] may have misestimated the ranges of stability of cline-like equilibria. For a
value of Dm in this interval, clustering occurs in presence but not in absence of phenotypic
evolution (Figs. IV.18 and IV.19). In the case of the individual-based stochastic model,
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Figure IV.17: Parameter dependence in the simulations of the deterministic large population-
size limit in the absence of evolution (γ = 0). A. Increased diffusion rate: Dm = 5×10−4. B.
Reduced interaction range: δ = 0.05. At T = 0 the distribution has the form of a Gaussian
with standard deviation σ0 = 0.1 (in the spatial dimension) centered at (0.5, 0.5). Other
parameter values set to the default clustering parameter values in Table IV.2. In all panels,
cyan represents the lowest density and magenta the highest. Density is negligible in white
areas.

although unimodality is not as stable as in Fig. IV.16, the distribution does not show a clear
multimodality as in Fig. IV.14.

In the deterministic large population-size limit (Fig. IV.19), the difference is more visi-
ble. While clustering occurs in presence of evolution –although the convergence time is much
larger than in Fig. IV.7 (the distribution has not yet fully converged to a clustering pattern
at T = 150) and the dynamics are dependent on the boundary conditions– clustering does
not occur in absence of phenotypic mutations and the unimodality of the distribution is
stable. The cluster formation dynamics are as those in Fig. IV.10B.

These results show that multimodality in the population’s distribution and clustering is
facilitated and occurs under a wider range of spatially dependent parameters when pheno-
typic evolution occurs, even under the assumption that competition is only spatial. Phe-
notypic evolution becomes essential in some cases as a consequence of the interplay and
the appearing correlation between selection (which is spatial and phenotype dependent) and
competition.
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Figure IV.18: Clustering in presence of evolution (panel A) and no clustering in the absence
of evolution (panel B with γ = 0) in the individual-based stochastic model. In both cases
Dm = 1.35 × 10−4. The final population size is N = 16974 (panel A) and N = 4791
(panel B). Initially, a population of N = 3000 is concentrated at the point (0.5, 0.5). Other
parameter values set to the default clustering parameter values in Table IV.2. In all panels,
cyan represents the lowest density and magenta the highest. Density is negligible in white
areas.
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Figure IV.19: Clustering in presence of evolution (panel A) and no clustering in the absence
of evolution (panel B with γ = 0) in the the deterministic large population-size limit. In both
cases Dm = 1.35 × 10−4. Other parameter values set to the default clustering parameter
values in Table IV.2. In all panels, cyan represents the lowest density and magenta the
highest. Density is negligible in white areas.
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IV.8 Conditions for continuous vs. clustering population expansion

IV.8.1 Turing stability analysis

We use Turing’s method for pattern formation analysis [431] to study the conditions under
which the spatial eco-evolutionary dynamics converge to a clustering pattern or a cline-like
pattern in absence of evolving dispersal. We then use this result to extend to the case where
dispersal evolves to predict when expansion and invasion occurs through the formation of
clusters of through continuous-front expansion.

To avoid artifactual boundary effects, we change the boundary conditions from Neumann
and Dirichlet to periodic boundary conditions. In this case, our models are translation invari-
ant both in space and trait. Turing’s method consists in determining a cline-like invariant
solution of (IV.3), of the form n(t, x, u) = ρ(x − u), and analyzing, either numerically or
analytically, the stability of perturbations of the stationary solution ρ(x − u). Note that,
contrary to [228] where the state space is assumed unbounded, the fact that our domain
is bounded imposes to consider periodic perturbations on [0, 1]2, and so restricts the set of
possible perturbations of the model. By the decomposition of periodic functions in Fourier
series and because the model is translation invariant, it is enough to consider perturbations
of the form:

n(0, x, u) = [1 + ε cos(2πm1u+ 2πm2x)]ρ(x− u) (IV.4)

for small ε > 0 and for any nonnegative integers m1,m2, usually called frequencies. If the
perturbation does not grow for any couple of integers (m1,m2), then the cline-like solution
is stable. If, for a certain (m1,m2), the perturbation grows, then one expects the attract-
ing state of the system (if it exists) to be distributed among approximately m1 + m2 + 1
clusters, and their distance along the line x = u can be expected to be close to multiples
of 1/(m1 + m2), where (m1,m2) 6= (0, 0) are the frequencies with higher growth rate of
the perturbation (Fig. IV.20B and Fig. IV.20C). Hence, our analysis allows to characterize
cases where the population stabilizes at cline-like or clustered equilibria and also provides
an estimate of the number of clusters.

Note that the analysis of [228] was performed only for such perturbations with m1 = 0
(Fig. IV.20C) but for any real value of m2 due to the lack of boundary conditions. Hence,
their stability analysis may have missed perturbations acting both in space and trait di-
rections –as suggested from the results in IV.7.3–, which could make the cline-like solution
unstable in cases where they would predict it to be stable.

Our analysis, detailed hereafter, shows the existence of the cline-like invariant solution
in the torus. We also show that the Lyapunov exponent (i.e. the rate of exponential growth
or decay of the perturbation) of a perturbation of the form (IV.4) can be approximated by:

λm1,m2 = −4π2(Dmm
2
2 +Dγm

2
1)−

b0 − d0 −
√
b1(Dm +Dγ)

2πδ(m1 +m2) exp
(
−2π2m2

1

√
Dm +Dγ

b1

)
sin(2πδ(m1 +m2)), (IV.5)
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where Dγ = b0γσ2

2 . This equation should provide a decomposition of the dynamics in terms
of the parameter space.

In the case of perturbation in the space direction only (m1 = 0), the Lyapunov exponent
takes the form:

λ0,m2 = −4π2Dmm
2
2 −

b0 − d0 −
√
b1(Dm +Dγ)

2πδm2
sin(2πδm2). (IV.6)

We generalize Eq. IV.5 to predict when invasion occurs through cluster formation or
through continuous-front expansion. We claim the transition between the two occurs ap-
proximately when the generalized Lyapunov exponent changes sign (for the values of m1 and
m2 for which it is maximal):

λm1,m2 = −4π2(Dm(w)m2
2 +Dγm

2
1)−

b0 − d0(1 + w)θ −
√
b1(Dm(w) +Dγ)

2πδ(m1 +m2) exp

−2π2m2
1

√
Dm(w) +Dγ

b1

 sin(2πδ(m1 +m2)).

(IV.7)

Here, w is the dispersal-associated trait at the fronts of population.

To obtain these results, our first step is to construct an approximate model for which
explicit computations are possible. If we consider σ2 to be small, and (x, u) to be near the
line x = u where the birth rate is b0, by making a second order expansion of the function

M(u) = γ

(∫
U
n(x,w, t)B(x,w) 1√

2πσ
exp

(
−(u− w)2

2σ2

)
dw −B(x, u)n(x, u, t)

)

while assuming that mutations occur at a constant rate (independent of (x, u)), we can
approximate the function M(u) with a diffusion equation with rate Dγ = b0γσ2

2 . Thus we
can replace equation (IV.3) by the simpler reaction-diffusion equation:

∂n(x, u, t)
∂t

= n(x, u, t)×(
B(x, u)− d0 −

∫
X

∫
U
1|x−y|<δ × n(y, w, t)dwdy

)
+

Dm
∂2n(x, u, t)

∂x2 +Dγ
∂2n(x, u, t)

∂u2 . (IV.8)

Since we are interested in studying time-constant cline-like solutions, we will modify
the boundary conditions in order to make competition uniform along the line x = u. Let
X̄ = U = T 1 and remove the Neumann and Dirichlet boundary conditions. Here we denote
by T 1 the one-dimensional torus of length 1. From this point on, all operations on x or u
will be defined on T 1. Hence, we will impose the condition δ < 0.5 and redefine B(x, u) as

B(x, u) = max{b0 − b1 × d(x, u)2, 0}
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where d(x, u) := min{|x− u|, 1− |x− u|} is the distance function in T 1.
Suppose then that n(x, u, t) is a cline-like distribution, that is of the form n(β, t), β :=

d(x, u) ∈ [0, 1
2 ]. We wish to write equation (IV.8) in terms of the new parameter β. We

proceed by analysing the equation term by term. First, B(x, u) can be substituted by
B(β) by simply redefining (with a slight abuse of notation) B : [0, 1

2 ] → [0, b0] as B(β) =
max{b0−b1(β)2, 0}. Consider now the term in Eq. (IV.8) representing death by competition.
Let Dc(x, n) :=

∫
X
∫
U 1d(x−y)<δ ×n(y, w, t)dwdy. We want to show that if n(x, u, t) is of the

form n(β, t), Dc(x, n) is independent of x. Let x1 ≤ x2, x1, x2 ∈ [0, 1). Because of the
new boundary conditions and the symmetry of n with respect to x and u, one has that
n(x2, u, t) = n(x1 + α, u, t) = n(x1, u − α, t) for α = x2 − x1. Thus

∫
U n(x2, u, t)du =∫

U n(x1, w, t)dw. Hence,
∫
U n(y, w, t)dw is constant for all y ∈ [0, 1). Denoting this constant

value by C we can deduce that

Dc(x, n) =
∫
X

∫
U
1|x−y|<δ × n(y, w, t)dwdy

=
∣∣∣∣∣
∫ x+δ

x−δ
1|x−y|<δ × Cdy

∣∣∣∣∣ = 2δC,

which has no dependence on x. Finally, for the diffusion terms in equation (IV.8), one obtains
that ∂2n(x,u,t)

∂x2 = ∂2n(x,u,t)
∂u2 = ∂2n(x,u,t)

∂β2 for a cline-like solution n(x, u, t) = n(β, t).
Hence, for a cline-like distribution n(β, t), observing that

∫
T1
n(β)dβ = 2

∫ 1/2
0 n(β)dβ, for

all β ∈ [0, 1/2],

∂n(β, t)
∂t

=n(β, t)
(
B(β)− d0 − 4δ

∫ 1/2

0
n(a, t)da

)
+ (Dm +Dγ)∂

2n(β, t)
∂β2 .

Since we are interested in proving the existence of a cline-like stationary solution, we
wish to study the solvability of the second order differential equation given by

n(β)
(
B(β)− d0 − 4δ

∫ 1/2

0
n(a)da

)
+ (Dm +Dγ)n′′(β) = 0 (IV.9)

with appropriate boundary conditions: due to the form of the birth rate function and the
symmetry of the torus, n(β) must be minimum at β = 1

2 and a maximum at β = 0, thus we
have the boundary conditions n′(0) = n′(1

2) = 0.
Let ρ = d0 + 4δ

∫ 1/2
0 n(a)da (an unknown quantity) and M = Dm +Dγ . We can rewrite

equation (IV.9) as

Mn′′(β) + n(β)B(β) = +ρn(β), ∀β ∈ [0, 1/2]. (IV.10)

With the boundary conditions n′(0) = n′(1/2) = 0, this is a Sturm-Liouville (S–L)
regular problem [432–434], which means that it is solvable for countably many values of ρ,
ρ0 < ρ1 < . . . and that the linear space of solutions associated to ρn has dimension 1 and is
generated by a function ψn having exactly n zeroes on [0, 1/2]. In particular, we can assume
without loss of generality that ψ0 > 0, and the only biologically relevant solutions are of the
form aψ0 for some a > 0. In order to recover a solution of (IV.9), a needs to be chosen such
that ρ0 = d0 + 4δa

∫ 1/2
0 ψ0(β)dβ. This is only possible if ρ0 > d0, hence for sufficiently small
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death rate. Note also that ρ0 depends in a non-trivial way on the birth rate B and hence on
b0 and b1.

In order to make more precise the corresponding assumptions on b0, b1 and d0, let us
first integrate (IV.10) over [0, 1/2]. We obtain

∫ 1/2
0 ψ0(β)B(β)dβ = ρ0

∫ 1/2
0 ψ0(β)dβ, from

which we deduce that ρ0 ∈ (0, b0). Note also that, if the positive part in the definition of B
is removed, the principal eigenvalue problem (IV.10) on [0,+∞) with boundary conditions
n′(0) = 0 and n(+∞) = 0 becomes explicitly solvable, with eigenvalue ρ̄0 = b0 −

√
b1M and

eigenfunction

ψ̄0(β) = ψ̄0(0) exp
(
− β2

2
√
M/b1

)
.

This gives a particular solution of (IV.10) with ρ = ρ̄0 and n′(0) = 0

n(β) =


n(0) exp

(
− β2

2
√
M/b1

)
if β ≤

√
b0/b1

n(0) exp
(
− b0

2
√
Mb1

)
cos

(√
ρ̄0
M β + ϕ̄0

)
if
√
b0/b1 ≤ β ≤ 1/2,

where ϕ̄0 is a solution to

sin
(√

ρ̄0b0
Mb1

+ ϕ̄0

)
=
(

1−
√
Mb1
b0

)−1/2

.

Hence, assuming b0√
Mb1

� 1, the previous function satisfies n′(1/2) ' 0 and hence is
a good approximation to a solution of the Sturm-Liouville problem (IV.10). This function
is not positive but may take very small negative values for β close to 1

2 . Therefore, a
biologically consistent approximation of n is given by the previous formula truncated below
zero. Therefore, ρ0 ' ρ̄0 and ψ0 ' ψ̄0. This leads to the equation

b0 −
√
b1M ' ρ0 ' d0 + 4δ

∫ 1/2

0
ψ̄0(β)dβ ' d0 + 4δ

∫ ∞
0

ψ̄0(β)dβ

= d0 + 2δψ̄0(0)
√

2π
√
M/b1.

Under the assumptions d0 < b0 −
√
Mb1 and b0 �

√
Mb1, we obtain the following approxi-

mation of the cline-like stationary solution of (IV.8):

n0(β) ' b0 − d0 −
√
b1M

2δ
√

2π
√
M/b1

exp
(
− β2

2
√
M/b1

)
.

We will write this in the form:

n0(β) = C
1√

2πσ2
0

exp
(
− β2

2σ2
0

)
, (IV.11)

with C = b0−d0−
√
b1M

2δ and σ2
0 =

√
M/b1. Notice that C is the same as above when M � b1.
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Now, consider a perturbation of n0(x, u) of the form

n̂0(x, u) = (1 + εµ(x, u))n0(x, u),

where ε� 1 and µ(x, u) = µ(m1u+m2x). Here, µ(x, u) is a periodic function on the torus
(T 1)2. This requires µ(m1(u + 1) + m2x) = µ(m1u + m2x) = µ(m1u + m2(x + 1)) for all
x, u ∈ T 1, i.e. m1,m2 ∈ Z. Fourier analysis tells us that any periodic function on (T 1)2

is a linear combination of such functions, so it is enough to study each perturbation with
m1,m2 ∈ Z. By symmetry, we can restrict to m1,m2 ∈ N. We will study the dynamics of
ν(x, u, t) = n̂(x, u, t)−n0(x, u) when n̂(x, u, 0) = n̂0(x, u). Furthermore, by local linearization
of the PDE it is enough to look at solutions of the form ν(x, u, t) = exp(λt)ν(x, u, 0) =
exp(λt)(εµ(x, u)n0(x, u)). Turing’s stability method consists in computing the value of λ
and looking for values that satisfy λ > 0. Since, ∂ν(x,u,t)

∂t = ∂n̂(x,u,t)
∂t , we get:

∂ν(x, u, t)
∂t

= ν(x, u, t)×
(
B(x, u)− d0 −

∫
X

∫
U
1d(x,y)<δ × n0(y, w)dwdy

)
+Dm

∂2ν(x, u, t)
∂x2 +Dγ

∂2ν(x, u, t)
∂u2 − n̂(x, u, t)

∫
X

∫
U
1d(x,y)<δ × ν(y, w, t)dwdy.

Hence, simplifying by ε exp(λt) and considering ε� 1 we have

λµ(x, u)n0(x, u) = µ(x, u)n0(x, u)(B(x, u)− d0 − 2δC)+

Dm

(
∂2µ(x, u)
∂x2 n0(x, u) + 2∂µ(x, u)

∂x

∂n0(x, u)
∂x

+ µ(x, u)∂
2n0(x, u)
∂x2

)
+

Dγ

(
∂2µ(x, u)
∂u2 n0(x, u) + 2∂µ(x, u)

∂u

∂n0(x, u)
∂u

+ µ(x, u)∂
2n0(x, u)
∂u2

)
−

n̂(x, u, t)
∫
X
1d(x,y)<δ

∫
U
µ(y, w)n0(y, w)dwdy.

Since ε� 1, we substitute the last term in the previous equation with:

n0(x, u)
∫ x+δ

x−δ

∫
U
µ(y, w)n0(y, w)dwdy

Setting u = x (β = 0) and abusing notation by denoting n0(x, u) as n0(β) we obtain

λµ((m1 +m2)x) = (Dmm
2
2 +Dγm

2
1)µ′′((m1 +m2)x)−∫ x+δ

x−δ

∫
U
µ(y, w)n0(y, w)dwdy. (IV.12)

Suppose µ(m1u+m2x) = cos(2π(m1u+m2x)). Using (IV.11), we can compute∫ x+δ

x−δ

∫ ∞
−∞

cos(2π(m1w +m2y))n0(y, w)dwdy =

C

π(m1 +m2) exp(−2π2σ2
0m

2
1) sin(2π(m1 +m2)δ) cos(2π(m1 +m2)x).



138 Chapter IV. Spatial eco-evolutionary and invasion dynamics

Hence, µ(m1u+m2x) = cos(2π(m1u+m2x)) is a solution of equation (IV.12) if and only if

λ = −4π2(Dmm
2
2 +Dγm

2
1)−

C

π(m1 +m2) exp(−2π2σ2
0m

2
1) sin(2πδ(m1 +m2)).

Furthermore, since the Fourier decomposition of periodic functions is unique we argue that
every periodic solution of equation (IV.12) is a linear combination functions of the form
µ(m1u+m2x) = cos(2π(m1u+m2x)) with m1, m2 ∈ Z giving identical values of λ.

Using the expressions of C and σ0, we finally obtain

λ = −4π2(Dmm
2
2 +Dγm

2
1)−

b0 − d0 −
√
b1(Dm +Dγ)

2πδ(m1 +m2) exp
(
−2π2m2

1

√
Dm +Dγ

b1

)
sin(2πδ(m1 +m2)).

Replacing Dm by Dm(w) and d0 by d0(1 + w)θ we have:

λm1,m2 = −4π2(Dm(w)m2
2 +Dγm

2
1)−

b0 − d0(1 + w)θ −
√
b1(Dm(w) +Dγ)

2πδ(m1 +m2) exp

−2π2m2
1

√
Dm(w) +Dγ

b1

 sin(2πδ(m1 +m2)).

In Fig. IV.20A, we show the dependence of λm1,m2 on the values of m1 and m2 in Z,
for the default parameters presented in Table IV.2 (the parameters used in the simulations
from Fig. IV.7). Instability of the cline-like solution can be predicted as a consequence of
the existence of positive values of λm1,m2 for multiple pairs (m1,m2) of perturbations in the
form of equation (IV.4). Larger ranges of values of m1 and m2 are unnecessary since λm1,m2

decreases whenm1 andm2 become too large due to the boundness of the exponential and the
sine and the unboundness of the first term in equation (IV.5). In this case, the highest values
of λm1,m2 occur for |m1 +m2| = 7, thus suggesting an attracting distribution for the original
system fragmented into 8 clusters at a distance 1/7 from each other, as observed in Fig. IV.7.
In the torus only 7 clusters form since the ones at the boundary merge into a single one.
Nevertheless, λm1,m2 can also be positive for |m1 + m2| = 6 and |m1 + m2| = 8 suggesting
that a distribution fragmented into 7 or 9 clusters is also possible when varying characteris-
tics not considered here (for instance, the initial coverage of the population). However, these
distributions grow slower for a population close to the cline-like equilibrium. Furthermore,
the maxima of λm1,m2 occur for non-zero values of m1 at the points (m1,m2) = (2, 5) and
(m1,m2) = (−2,−5), thus showing that the effect is strongest when periodic perturbations
are made as in Fig. IV.20B instead of as in Fig. IV.20C. This is corroborated in Fig. IV.20D
and Fig. IV.20E, where values of Dm and δ exist for which a perturbation only in the spa-
tial direction would not predict instability on the cline-like equilibrium. Indeed, between
Dm ' 1 × 10−4 and Dm ' 1.62 × 10−4 and in the small range between δ ' 0.076 and
δ ' 0.08, only perturbations with (m1,m2) = (2, 5) and (m1,m2) = (−2,−5) would predict
instability. In Section IV.7, we investigate this region and compare the analysis in [228] with
ours for Dm = 1.3× 10−4. In addition, we show how in the absence of evolution, clustering
would occur under smaller parameter ranges.
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Figure IV.20: Bifurcations between clustering and cline-like stable patterns and multi-
stability. A. The exponent λm1,m2 in equation (IV.5) as a function of the integer frequencies
m1 and m2. The black dots denote the maxima: (m1,m2) = (2, 5) and (m1,m2) = (−2,−5).
Parameter values set to the default clustering parameter values in Table IV.2. B. Dashed line:
maxima of a perturbation in the form of equation (IV.4) of ρ(x−u) on the torus [0, 1]2 with
m1 = 2 and m2 = 5. Black line: line x = u. Black points denote the peaks of n(0, x, u).. C
Dashed line: maxima of a perturbation in the form of equation (IV.4) of ρ(x−u) on the torus
[0, 1]2 with m1 = 0 and m2 = 7. Black line: line x = u. Black points denote the peaks of
n(0, x, u). The growth exponents λm1,m2 (continuous line) and λnum (dashed line) are shown
as functions of Dm (panel D) and δ (panel E) for perturbations with (m1,m2) = (0, 7) (red)
and (m1,m2) = (2, 5) (blue). In the computation of λnum, ε = 1× 10−3. F. The transition
line from clustering to continuous front expansion (λm1,m2 = 0) as a function of the dispersal
trait w and the degree of mortality of dispersal θ when (m1,m2) = (2, 5) computed from
Eq. (IV.7). In Figs. IV.20A, IV.20D and IV.20E the other parameter values are set to the
default clustering parameter values in Table IV.2. In Fig. IV.20F the other parameter values
are set to the default parameter values in Table IV.1.

From Fig. IV.20 we can predict that the cline-like equilibrium distribution becomes stable
for Dm > D∗m ' 1.62×10−4 when all other parameters remain at their default values (Table
IV.2). Therefore, the transition from the attractor observed in Fig. IV.7B to the one in Fig.
IV.8A must occur close to this value. Contrary to Dm, an increase in δ above the threshold
value δ∗ ' 0.076 causes the cline-like equilibrium to become unstable. It is expected that the
dynamics will then converge towards a clustering pattern. We thus argue that the transition
observed in Fig. IV.8B occurs close to this threshold value δ∗.
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IV.8.2 Numerical validation of the Turing stability analysis

We now present the numerical scheme used for validating the results derived in this section
with respect to the exponent λm1,m2 . The numerical growth exponent λnum obtained with
this scheme is shown in Fig. IV.20. Both approaches yield similar values of mobility rate and
competition range at which the cline-like equilibrium loses stability. The agreement between
λm1,m2 and λnum is satisfactory only for values λm1,m2 which are not too negative.

To construct our numerical scheme, we set periodic boundary conditions (X̄ × U =
T 1×T 1) and start from the cline-like equilibrium’s approximation computed in the previous
subsection. Since this is only an approximation of the cline-like equilibrium, we simulate
the dynamics of this system for a time Tc to correct for imperfections. Due to the periodic
boundary conditions and the constant value of the distribution along the diagonal lines, this
will not cause an infringement of the cline-like condition (a distribution only dependent on
β = |x− u|). We set the time Tc to be the minimum time that satisfies that the maximum
difference between two consecutive time steps at all points is less than a threshold value we
set to be equal to the time step size ∆t. Based on the simulations, we observe that normally
Tc ∼ 1.

The obtained population distribution becomes the approximation of the cline-like equi-
librium used to compute numerically the Lyapunov exponents of perturbations. Since the
cline-like equilibrium may be unstable this might introduce errors. More precisely, since the
approximate cline-like solution is actually a small perturbation of the exact cline-like solu-
tion, it has a Lyapunov exponent λ̄ which might be positive. In particular, the Lyapunov
exponent of a perturbation of the approximate equilibrium is not close to λm1,m2 , but should
rather be close to max{λm1,m2 , λ̄}, hence introducing a threshold effect in the numerical
computations. This threshold effect is indeed observed for small values of λm1,m2 in Fig.
IV.20E. Note also that we cannot use the clever method of computation of the cline-like
equilibrium as done in [228] since, because of our boundary conditions, we are unable to
reduce the spatial window of numerical resolution of the PDE so that possible perturbations
have very strong frequencies and do not destabilize the equilibrium. Nevertheless, the ap-
proximation was good enough so that the dynamics always converged towards a distribution
that only depends on values of |x− u|.

After we retrieve an approximation of the cline-like equilibrium distribution n0(x, u) =
n0(|x− u|), we introduce a perturbation of the form:

n̂0(x, u) = (1 + ε cos(2(m1u+m2x)))n0(x, u), (IV.13)

ε� 1, for several integer values of m1 and m2. Next, we simulate the dynamics of n̂(x, u, t),
n̂(x, u, 0) = n̂0(x, u) and measure the growth or decay of the perturbation by calculating the
exponent:

λnum = max
i∈I

{〈 log(|n0(xi, ui)− n̂(xi, ui, nδt)|/|n0(xi, ui)− n̂0(xi, ui)|)
nδt

〉
nδt≤Tp

}
.

where δt is the time step size and I is an enumeration of the points along the line x = u of
the grid on which we simulate the dynamics of the system. Again —although λnum is not
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necessarily equal to λm1,m2— if λnum is positive, the cline-like equilibrium is unstable for per-
turbations of the form in equation (IV.13). If this is the case for at least one pair (m1,m2) it
is expected that the attracting state of the system will be distributed among isolated clusters.

In Fig. IV.20 we show the computation of λnum when varying Dm and δ for perturbations
with (m1,m2) = (0, 7) and (m1,m2) = (2, 5), this last pair resulted in the highest registered
value of λnum in the considered ranges of both parameters. As observed, results in figure
Fig. IV.20D show an almost perfect consistency with their analytical counterpart when ap-
proximating the transition value D∗m of Dm for both pairs (m1,m2) considered. Thus we
corroborate that when increasing the dispersal rate Dm, the transition from the clustering
attractor to the to cline-like one occurs at a threshold value D∗m ' 1.6 × 10−4. Again this
value would have been miscalculated if only perturbations along the spatial component had
been considered.

The numerical simulations for determining λnum as function of δ are harder due to prac-
tical issues. More precisely, the spatial discretization of space as cells of width ∆x needs
to be chosen so that δ/∆x is an integer. Given ∆x, for values of δ such that δ/∆x is an
integer, the numerical scheme is exactly the same as for δ′ = ∆xbδ/∆xc and so the com-
puted values of λ are the same. Hence, to have a precise estimate of λ as a function of
δ, we need to take very small ∆x. However, this is impractical in terms of numerical cost
since the stability condition of explicit finite difference scheme requires to take time-steps ∆t

even smaller. Therefore, our numerical validation for the dependence with respect to δ has
been validated for ∆x = 0.025, and hence for the values δ = 0.025, 0.05, 0.075, 0.1, 0.125,
shown in Fig. IV.20E. Of course, these five values are not sufficient to determine precisely
the location of the transition from cline-like to clustering patterns, predicted to be close to
δ∗ ' 0.076 from the analytical approximation (IV.6). Nevertheless, results are consistent,
indicating that the transition occurs at a value larger but close to δ = 0.075 and that λnum
is smaller when (m1,m2) = (0, 7) than when (m1,m2) = (2, 5).

In the simulations we use an explicit scheme before and after introducing the perturba-
tion. In both cases we considered a step size ∆x = ∆u = 2.5 × 10−2 and a time-step size
∆t = 1× 10−3.
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IV.9 Dynamics and asymptotics under low mobility and small mu-
tations

Here we present a Hamilton-Jacobi approach (following the work in [41]) to analyze the dy-
namics and asymptotics of clustering in the PDE model for low individual mobility and small
mutations when mobility does not evolve. A similar analysis can be performed for the gen-
eralized model with evolving dispersal. However, results would be analogous given that one
of the assumptions is low individual mobility (only expansion through formation of clusters).

The method is based on a concentration approximation of the population as a sum of
Dirac delta functions. These distribution functions are characterized by: (1) having value
zero everywhere except at one point and (2) having a positive integral over the entire do-
main. The approximation method allows to derive a Hamilton-Jacobi equation whose solu-
tion ϕ(x, u, t) is non-positive and has its zeros exactly at the points where the population
is concentrated, therefore allowing to mathematically identify the positions of the clusters
where the population aggregates.

IV.9.1 Derivation of the Hamilton-Jacobi equation

Hereafter we prove that in a periodic, invariant solution ϕ(x, u) of (IV.15) which is not iden-
tically 0 along the line x = u, the zeros of ϕ along the line x = u are necessary separated by
a distance δ/n for some n ∈ N∗. We also show that this invariant solution is stable only if its
zeros are at a distance δ. This suggest that, in cases where clustering occurs (as discussed
above), provided individual mobility is low and mutations are small, the clusters are spaced
by a distance close to δ. This is consistent with the simulations of Fig. IV.7.

We take X = U = R to make competition uniform along X ×U and to remove boundary
effects from our analysis. Let ε > 0. In order to concentrate the population’s distribution into
Dirac delta functions (by letting ε→ 0), we will redefine the diffusion coefficient as Dmε

2 and
the standard deviation of the mutation transition measure as εσ. In this case, the appropriate
time scaling to observe a limit process in the limit of small mutations and slow motion is
τ = t

ε . Hereafter we will simplify notations and use t for τ . Let nε(x, u, t) represent the
approximation of n(x, u, t) according to this rescaling and ϕε(x, u, t) := ε log(nε(x, u, t)).One
has that

ε
∂

∂t
nε(x, u, t) = ε2Dm∆xn

ε(x, u, t) + nε(x, u, t)×(
(1− γ)B(x, u)− d0 −

∫
X

∫
U
1|x−y|<δ × nε(y, w, t)dwdy

)
+ γ

∫
U
B(x,w)nε(x,w, t)Πε(w → u)dw.

Where

Πε(w → u) = 1
εσ
√

2π
exp

(
−(u− w)2

2σ2ε2

)
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denotes the rescaled mutation-transition measure concentrating mutation events in a neigh-
borhood of size ε around w. Multiplying on both sides of the equation by 1

nε(x,u,t) yields

ε

nε(x, u, t)
∂

∂t
nε(x, u, t) = (1− γ)B(x, u)− d0−∫

X

∫
U
1|x−y|<δ × nε(y, w, t)dwdy + ε2Dm∆xn

ε(x, u, t)
nε(x, u, t) +

γ

nε(x, u, t) ×
∫
U
B(x,w)nε(x,w, t) 1

εσ
√

2π
exp

(
−(u− w)2

2σ2ε2

)
dw. (IV.14)

Consider now the substitution ϕε(x, u, t) := ε log(nε(x, u, t)), or, expressed differently, nε(x, u, t) =
exp

(
ϕε(x,u,t)

ε

)
. Intuitively, what we aim for is that, when setting ε→ 0, ϕε(x, u, t) will con-

verge to a function ϕ(x, u, t) which will be negative at the points where nε(x, u, t) converges
to 0, and that will never be positive as this would make nε(x, u, t) blow up. Thus, assuming
that

∫
X
∫
U n

ε(y, w, t)dwdy is strictly positive and bounded from above (both conditions inde-
pendent of ε), we will have that, as ε→ 0, nε(x, u, t) will concentrate in Dirac delta functions
at the points where ϕε(x, u, t) → ϕ(x, u, t) = 0. As anticipated, making the substitution in
(IV.14) and introducing the change of variable z = u−w

ε we obtain

∂

∂t
ϕε(x, u, t) = (1− γ)B(x, u)− d0 −

∫
X

∫
U
1|x−y|<δ × exp

(
ϕε(y, w, t)

ε

)
dwdy

+ εDm∆xϕ
ε(x, u, t) +Dm

∣∣∣∣ ∂∂xϕε(x, u, t)
∣∣∣∣2

− γ
∫ u−1

ε

u
ε

B(x, u+ zε) exp
(
−(ϕε(x, u, t)− ϕε(x, u+ zε, t))

ε

) 1
σ
√

2π
exp

(
− z2

2σ2

)
dz.

Let µt(dy, dw) be the weak limit of nε(x, u, t) = exp(ϕ
ε(y,w,t)
ε )dwdy when ε approaches

zero. Assuming ε small suggests that ϕε(x, u, t) converges to a function ϕ(x, u, t) sat-
isfying the Hamilton–Jacobi equation (of first order with a Hamiltonian non-linearity in
(∂ϕ(x,u,t)

∂x , ∂ϕ(x,u,t)
∂u )):

∂

∂t
ϕ(x, u, t) = B(x, u)− d0 −

∫
X

∫
U
1|x−y|<δ × µt(dy, dw)

+Dm

∣∣∣∣ ∂∂xϕ(x, u, t)
∣∣∣∣2 + γB(x, u)H

(
∂ϕ(x, u, t)

∂u

)
, (IV.15)

where

H

(
∂ϕ(x, u, t)

∂u

)
:=
∫ ∞
−∞

(
exp

(
−∂ϕ(x, u, t)

∂u
z

)
− 1

) 1
σ
√

2π
exp

(
− z2

2σ2

)
dz.

Since the mutation kernel is a Gaussian we can simplify the function H
(
∂ϕ(x,u,t)

∂u

)
to be:

H

(
∂ϕ(x, u, t)

∂u

)
= exp

(
σ2

2

(
∂ϕ(x, u, t)

∂u

)2)
− 1. (IV.16)
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Since ϕε(x, u, t) = ε log(nε(x, u, t)), ϕε(x, u, t)→ ϕ(x, u, t) implies that µt(dy, dw) should
be concentrated at the zeros of ϕ at a time t, set which we denote by Ωt. Hence, the
distance between two successive zeros of ϕ at time t can be interpreted as the distance
between two consecutive clusters. In general, the proof of ϕε(x, u, t) → ϕ(x, u, t) and
exp(ϕ

ε(y,w,t)
ε )dwdy → µt(dy, dw) is difficult and has only been obtained for a few mod-

els [225, 226, 435–439]; here, we assume that convergence holds and focus on the limiting
equation.

Assuming convergence ϕε(x, u, t) → ϕ(x, u, t) and exp(ϕ
ε(y,w,t)
ε )dwdy → µt(dy, dw), we

have that ϕ(x, u, t) must satisfy the following conditions:

(i) ϕ(x, u) ≤ 0 ∀(x, u) ∈ X × U ,
(ii) sup

(x,u)∈X×U
ϕ(x, u, t) = 0,

(iii) Supp(µ) ⊆ Ωt := {(x, u) : ϕ(x, u, t) = 0},
(iv) ∀(x, u) ∈ Ωt, (1− γ)B(x, u)− d0−∫

X

∫
U
1|x−y|<δµt(dy, dw) ≤ 0,

(v) ∀(x, u) ∈ Supp(µt), {(1− γ)B(x, u)− d0

−
∫
X

∫
U
1|x−y|<δµt(dy, dw)} = 0,

where (i) is needed to prevent the solution uε to explode as ε → 0, (ii) follows from the
fact that

∫
X×U uε(t, x, u)dx du cannot vanish when ε→ 0, and (iii) is due to the fact that µt

cannot give mass at points where ϕ is negative. Conditions (iv), (v) are consequences of the
elements of Ωt being local extrema of ϕ and indicates that µt is a quasi-equilibrium for the
dynamics without mutation for all t ≥ 0 (see [438]). In particular, when Ωt = {(xi, ui); i ∈ It}
with It finite or countable, condition (iii) implies that µt(dy, dw) has the form

µt(dy, dw) =
∑
i∈It

αiδ(xi,ui)dwdy (IV.17)

for some appropriate weights (αi)i∈It . Thus, the distance between two successive zeros of ϕ
at time t can be interpreted as the distance between clusters.

In the model of evolving dispersal an analogous equation to Eq. IV.15 can be derived.
This equation is:
∂

∂t
ϕ(x, u, w, t) = (1 + γ)B(x, u)− d0(1 + w)θ −

∫
X

∫
U

∫
W
1|x−y|<δ × µt(dy, da, db)

+Dm(1 + w)
∣∣∣∣ ∂∂xϕ(x, u, w, t)

∣∣∣∣2 + γB(x, u)
(
H

(
∂ϕ(x, u, w, t)

∂u

)
+H

(
∂ϕ(x, u, w, t)

∂w

))
,

With
H

(
∂ϕ(x, u, w, t)

∂u

)
= exp

(
σ2

2

(
∂ϕ(x, u, w, t)

∂u

)2)
− 1,

and
H

(
∂ϕ(x, u, w, t)

∂w

)
= exp

(
σ2

2

(
∂ϕ(x, u, w, t)

∂w

)2)
− 1.
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As was noted, in the limit of low individual mobility (very low w), expansion only occurs
through the formation of clusters. Hence, the subsequent analysis is analogous to a model
of evolving dispersal (with w ' 0).

IV.9.2 Distance between clusters and stability of periodic asymptotic solutions

Suppose we have an invariant solution ϕ̂(x, u) to equation (IV.15). Since selection is strongest
along the line x = u, we will assume that the points for which ϕ̂(x, u) = 0 are located along
this line i.e that ui = xi i ∈ I. We will try to determine the characteristics of this solution
(the number of clusters and their spacing). To do this, let us first remove the boundary
conditions (X = U = R) and suppose, without loss of generality, that ϕ̂(0, 0) = 0 (i.e
that the population is concentrated in a Dirac delta at (0, 0)). Since we are interested in
solutions exhibiting periodic clustering patterns we make the assumption of constant positive
spacing between clusters (supported by simulations). Hence, Ωt is countable and there exists
T > 0 minimal for which ϕ̂(x, u) = ϕ̂(x + T, u + T ). Combining both conditions we have,
Ωt = {(nT, nT ), n ∈ Z}. Notice that the value of T is the distance between the Dirac delta
peaks and hence the distance between clusters. Since we are interested in the behaviour
along the line x = u, when imposing this condition, equation (IV.15) for ϕ̂(x, x), which we
denote by ϕ̂(x), becomes

0 = b0 − d0 −
∑
n∈Z

αn1|x−nT |<δ +Dm

∣∣∣∣∂ϕ̂∂x (x, x)
∣∣∣∣2 + γb0 H

(
∂ϕ̂

∂u
(x, x)

)
. (IV.18)

Since the points in Ωt are local maxima, we have that, for all n ∈ Z, ∂ϕ̂(x,u)
∂u |(nT,nT ) =

∂ϕ̂(x,u)
∂x |(nT,nT ) = 0. This last property requires some care, since actually, due to the sin-

gularity of the competition kernel, the function ϕ̂ may not admit derivatives at its local
maxima. However, we can approximate the competition kernel 1[−δ,δ] by a sequence of
smooth kernels (Kk)k≥1 and argue that the corresponding solution ϕk converges to ϕ̂, and
∂ϕk(x,u)

∂u |(nT,nT ) = ∂ϕk(x,u)
∂x |(nT,nT ) = 0 for all k ≥ 1. To make this rigorous, one would need

to use stability properties of the Hamilton-Jacobi problem with constraints (i) to (v). How-
ever, this is not known in general since for such equations, even the problem of uniqueness
is difficult [440, 441]. If we leave aside this difficulty, we obtain that, for (x, u) ∈ Ωt,

b0 − d0 −
∑
n∈Z

αn1|x−nT |<δ = 0.

Suppose now that T > δ. Consider the point (0, 0). Because of the condition stated
above and the fact that all other (xi, ui) ∈ Ωt satisfy |x− xi| > δ, one has that

b0 − d0 − α0 = 0.

Now, let 0 < ε < T − δ. By evaluating equation (IV.18) at the point (ε, ε), one has that

0 = b0 − d0 − α0 +Dm

∣∣∣∣∂ϕ̂∂x (ε, ε)
∣∣∣∣2 + γb0H

(
∂ϕ̂

∂u
(ε, ε)

)
= Dm

∣∣∣∣∂ϕ̂∂x (ε, ε)
∣∣∣∣2 + γb0H

(
∂ϕ̂

∂u
(ε, ε)

)
. (IV.19)
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We observe that, by Jensen’s inequality

H(p) = E(exp(pG)− 1) ≥ exp(pE(G))− 1 = 0

The inequality is strict unless p = 0. Therefore, equation (IV.19) implies ∂ϕ̂
∂u (ε, ε) =

∂ϕ̂
∂x (ε, ε) = 0. Since ε was arbitrary, we have that for every κ ∈ [0, T − δ), ∂

∂u ϕ̂(κ, κ) =
∂
∂x ϕ̂(κ, κ) = 0. Hence, ϕ̂(κ, κ) = 0 ∀κ ∈ [0, T −δ) which is a contradiction since Ωt was taken
to be countable.

Suppose now that T < δ, and that δ
T 6∈ N. Then, again for (0, 0) one has

b0 − d0 −
∑

n∈Z, |n|T<δ
αn1|x−nT |<δ = b0 − d0 −

b δ
T
c∑

n=−b δ
T
c

αn = 0.

Letting 0 < ε < δ−b δT c× T and using the same analysis as in the previous case one can
arrive to the same contradictions. This proves that T ≤ δ and that δ

T ∈ N.

We denote a solution with period T = δ
m , m ∈ N∗ along the axis x = u by ϕ̂m. We

now prove that solutions ϕ̂m with m > 1 are unstable. We prove this result only for ϕ̂2, the
proof is analogous for all m > 2. We suppose without loss of generality that the zeros of ϕ̂2
are located at the points

(
nδ
2 ,

nδ
2

)
, n ∈ Z, associated each with a weight αn. The stability

condition (v) implies that, for all k ∈ Z,

b0 − d0 = αk−1 + αk + αk+1.

In particular, this imples that the sequence (αk)k∈Z is 3-periodic. Let ϕ̂∗2 be a small pertur-
bation of ϕ̂2 where the only modification with respect to ϕ̂2 is that it is modified on a small
ball of radius η > 0 centered at (0, 0) such that the point (0, 0) is still a local maximum but
with a value slightly below zero. Hence the measure µ(dx, du) associated to ϕ̂∗2 satisfying
conditions (i)–(v) has no Dirac mass close to (0, 0). We denote the new weights at the zeros
of ϕ̂∗2 located at the points

(
n δ2 , n

δ
2

)
, n ∈ Z, n 6= 1, by α∗n. As above, these weights satisfy

b0 − d0 = α∗k−1 + α∗k + α∗k+1, (IV.20)

for all k ∈ Z with k 6= 0, with the convention that α∗0 = 0. Again, the sequence (α∗k)k∈Z is
3-periodic and hence α∗3k = 0 for all k ∈ Z and α∗1 + α∗2 = b0 − d0. In particular, (IV.20) is
also true for k = 0. Since α0 > 0, the fact that α∗1 +α∗2 = b0− d0 implies that we either have
α∗1 > α1 or α∗2 > α2 (maybe both). Let us assume (without loss of generality) that α∗1 > α1.

We can now consider the solution ϕ̂∗2(x, u, t) of (IV.15) with initial condition ϕ̂∗2 (with a
slight abuse of notation). For all x ∈ R such that |x| > η and x ∈ (kδ/2, (k+1)δ/2) for some
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k ∈ Z,

∂ϕ̂∗2
∂t

(x, x, 0) = b0 − d0 − α∗k−1 − α∗k − α∗k+1 − α∗k+2

+Dm

∣∣∣∣∂ϕ̂∗2∂x
(x, x, 0)

∣∣∣∣2 + γb0H

(
∂ϕ̂∗2
∂x

(x, x, 0)
)

= b0 − d0 − α∗k−1 − α∗k − α∗k+1 − α∗k+2

+Dm

∣∣∣∣∂ϕ̂2
∂x

(x, x)
∣∣∣∣2 + γb0H

(
∂ϕ̂2
∂x

(x, x)
)

= αk−1 + αk + αk+1 + αk+2 − α∗k−1 − α∗k − α∗k+1 − α∗k+2

= αk−1 − α∗k−1,

where we used in the third equality that ϕ̂2 is a stationary solution of (IV.15). Hence we
have proved that ∂ϕ̂∗

2
∂t (x, x, 0) < 0 for all |x| > η such that x ∈ (kδ/2, (k + 1)δ/2) for some

k ∈ 3Z + 2. In particular, the perturbation does not converge back to ϕ̂2, which is hence
unstable.

To conclude we need to check that the solution ϕ̂1 with period T = δ is stable. This is a
non-trivial problem, and we will only check a weak form of stability, assuming only specific
perturbations of ϕ̂1. We assume without loss of generality that the zeroes of ϕ̂1 are located
at the points (nδ, nδ). Suppose a perturbation is made in such a way that the new function
ϕ̂∗1 is different from the original solution only in a small ball of radius η > 0 centered at (0, 0)
(this point is arbitrary) such that ϕ̂∗1(0, 0) = −ε < 0 is a local maximum. Hence the measure
µ associated to ϕ̂∗1 loses a Dirac mass at (0, 0). In this case, α∗k = αk = b0 − d0 for all k 6= 1,
so that ∂ϕ̂∗

1
∂t (x, u, 0) = 0 for all (x, u) at a distance larger than δ from (0, 0) and

∂ϕ̂∗1(x, u, t)
∂t

∣∣∣∣
t=x=u=0

= b0 − d0 > 0,

since there are no neighboring maxima located at a distance smaller than δ. Hence the
solution has an initial tendency to approach ϕ̂1. However, the dynamics becomes more
complicated after time 0 since the local maxima initially at (nδ, nδ) for n 6= 0 might move.
Of course, this is not sufficient to prove stability, but this strongly suggests that stability
should hold true.

IV.9.3 Transient dynamics of clusters
Eq. (IV.15) also provides information on the transient dynamics of clusters – on their forma-
tion times, location, motion, and shape. As discussed in [442], one has to be cautious about
the conclusions regarding time scales since the speed of evolution in the Hamilton-Jacobi
model is very sensitive to the initial condition away from zero. However, the location of
clusters in the Hamilton-Jacobi equation brings interesting biological insights, as illustrated
by the simulation of Fig. IV.21. In this simulation, the dynamics of ϕ are studied numerically
by integrating equation (IV.15). The algorithm built for this purpose is non trivial and is
described in the next subsection. We consider parameter values that yield clustering. For
the initial population density we take nε(x, u, 0) = exp(−2(x−0.5)2

ε − 2(u−0.5)2

ε ), i.e. an initial
population close to the Dirac peak at (0.5, 0.5). This choice for a Gaussian distribution in
the original model translates into an initial condition where ϕ is quadratic and non-positive
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Figure IV.21: Simulations of the Hamilton-Jacobi equation. A. Snapshots of two different
profiles of ϕ(x, u, Ti), i = 1, 2, 3 at the times where ϕ develops a new pair of zeros (the times
where new clusters emerge). Top: ϕ(x, u, Ti) along the line x = u. Bottom: Contour plot
of ϕ(x, u, Ti) and position of its local maxima in yellow. B. Time-evolution of the angle (in
degrees) between each pair of clusters and the midpoint of the domain. Parameters set to
the default clustering values (Table IV.2).

with one zero at (0.5, 0.5).

Fig. IV.21A shows snapshots of the simulation at the times where new pairs of clusters
emerge (when new zeros of ϕ appear). The irregular shape of the function ϕ is due to the fact
that the interaction kernel is not continuous. Otherwise, one would expect ϕ to be smoother,
except at local minima of ϕ, where singularities are expected in Hamilton-Jacobi equations.
Fig. IV.21 confirms that, when the population is initially concentrated at the mid-point of
the 2-dimensional domain, and the dynamics converge to clustering patterns, the expected
distance between the clusters (in physical space) will be δ. In addition, the rate at which
zeros appear (which is equivalent to the rate at which new clusters form) is not constant:
the time between two consecutive clustering events increases. Even though time has been
re-scaled, properties such as the ratio of clustering times are left unaffected.
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We also observe that spatial clustering occurs faster than phenotypical clustering since
the local speed of diffusion Dm = 5 × 10−5 is larger than the local maximal speed of trait
motion b0γσ

2/2 = 0.00001, obtained by a local expansion of exp(−∂ϕ
∂uz) in the mutation

term in (IV.15) (valid since σ2 is small). This is shown in Fig. IV.21B, where clusters first
occur away from the diagonal, and then slowly shift towards the line x = u as the local
populations adapt. Because our rescaling of motion was the same both in the spatial and
phenotypic directions, clusters in the original system are expected to behave similarly.

IV.9.4 Numerical integration of the Hamilton–Jacobi equation

We take as initial condition ϕ(x, u, 0) = −(x − 0.5)2 − (u − 0.5)2 and we compute the
dynamics of ϕ according to the Hamilton–Jacobi equation (IV.15) using an explicit scheme.
In order to always satisfy condition (i) we need to use a scheme with variable time-step
where the time step is set to ∆t unless the condition of negativity is violated for at least one
point. In this case, we take the minimum time step for which the nonpositivity condition
is maintained and used it instead. We then obtain a function ϕ(x, u, t + ∆t′) admitting at
least one more zero that ϕ(x, u, t). In the next time step, some of the zeroes might disappear
if ∂tϕ(x, u, t + ∆t′) < 0 at some of these points. To compute the Hamiltonian function
H
(
∂ϕ(x,u,t)

∂u

)
, we use the expression in Eq. (IV.16).

To compute the values of the αi’s in the density function µ(dy, dw, t) (introduced in
equation (IV.17)) which satisfy conditions (iv), (v), we use the following scheme. If there is
just one pair (x, u) satisfying ϕ(x, u, t) = 0, i.e |Ωt| = 1, we set its respective coefficient α to
the unique value satisfying condition (v).

Consider now the case when |Ωt| ≥ 2. Let (xi, ui) ∈ Ωt , 1 ≤ i ≤ m := |Ωt| denote the
elements of Ωt. In order to find the appropriate values of the αi’s we first divide the set
Ωt into smaller sets Ak constructed inductively by using the following method. Initially we
construct A1 as the set containing the first element (x1, u1) of Ωt. Then, for every 1 < i ≤ m,
the pair (xi, ui) is added to a set Ak if there exists a pair (xj , uj) ∈ Ak such that |xi−xj | < δ.
If there exists more than one Ak satisfying this condition, then Ak will be redefined as the
union of such sets. One can picture the sets Ak as sets containing the pairs (xi, ui) with
correlated values of αi’s in the sense that elements of different sets do not compete among
them. Likewise, in the end, no elements from two different sets will be at a distance less
than δ. Once this is done, in each subset Ak we verify whether conditions (iv), (v) can be
satisfied when setting one of the values of the αi’s to the value imposed by condition (v) and
setting the values of the other αj ’s to zero. If this is the case for at least one element (xi, ui)
in each Ak, we take such values of the α’s to be coefficients of µ(dy, dw, t). Otherwise, if this
conditions are not satisfied we compute numerically the values of the αi’s as the solutions of
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the system appearing from imposing condition (v) to every element in |Ωt|;

b0 − b1(x1 − u1)2 − d0 −
∑
i≤m

1|x1−xi|<δαi = 0,

b0 − b1(x2 − u2)2 − d0 −
∑
i≤m

1|x2−xi|<δαi = 0,

...
b0 − b1(xm − um)2 − d0 −

∑
i≤m

1|xm−xi|<δαi = 0.

In principle we should look for other solutions for which the subset Sk of elements (xi, ui)k
associated to non-zero α’s in each set Ak has size 2, then 3 and so on. In practice, however,
we only look at cases where |Sk| = 1 or | ∪k Sk| = m and these ones were enough at short
time scales like the ones we use in our simulations.
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IV.10Extensions to the model with no evolving dispersal

IV.10.1Two-Dimensional spatial domain and one-dimensional spatial adaptation
In this section we consider an extension of the deterministic, infinite population size model
with no evolving dispersal where the physical domain X × Y ⊂ R2 is two-dimensional (Y =
X ).

Individuals are characterized by a vector (x, y, u) with spatial components x ∈ X and
y ∈ Y and a trait u ∈ U . Spatial movement is two-dimensional but the birth rate, which
depends on how adapted individuals are to their local environment only varies along one
of the spatial dimensions. As in the original one-dimensional spatial model, the degree of
(mal)adaptation is measured by the difference between the individual trait and the local
optima. Competition is two-dimensional with a range δ in both dimensions. For the sake of
simplicity in the numerical simulations we take a boxed shaped competition range of distance
δ in each dimension (the competition range is a square of side 2δ) instead of the euclidean
two dimensional distance.

More precisely, the birth rate of an individual at (x, y, u) in a population of Nt individuals
located at (xi, yi, ui), i = 1, ..., Nt remains

B(x, u) = max
{
b0 − b1(x− u)2; 0

}
,

while the death rate becomes

d0 + d1

Nt∑
i=1

1|x−xi|<δ × 1|y−yi|<δ,

Mutation events are identical as in the one-dimensional spatial model. Meanwhile, indi-
viduals undergo diffusion with mobility rates (diffusion coefficients) Dx and Dy in the first
and second spatial dimensions respectively.

The deterministic approximation of this two-dimensional spatial model is:

∂n(x, y, u, t)
∂t

= Dx
∂2n(x, y, u, t)

∂x2 +Dy
∂2n(x, y, u, t)

∂y2 + n(x, y, u, t)×(
(1− γ)B(x, u)− d0 −

∫
X

∫
Y

∫
U
1|x−a|<δ1|y−b|<δ × n(a, b, w, t)dwdbda

)
+ γ

∫
U
n(x, y, w, t)B(x,w) 1√

2πσ
exp

(
−(u− w)2

2σ2

)
dw,

(IV.21)

∂n(x, y, u, t)
∂x

∣∣∣∣
x=0

= ∂n(x, y, u, t)
∂x

∣∣∣∣
x=1

= 0,

∂n(x, y, u, t)
∂y

∣∣∣∣
y=0

= ∂n(x, y, u, t)
∂y

∣∣∣∣
y=1

= 0,

n(x, y, 0, t) = n(x, y, 1, t) = 0, x ∈ X , y ∈ Y, t ≥ 0.
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Figure IV.22: Two-dimensional physical space. A. Cline-like distribution along X and clus-
tered distribution along Y. Contour plot of the final concentration density after a time
T = 150. Diffusion rates are Dx = 5× 10−4 and Dy = 5× 10−5. B. Almost cline-like distri-
bution along Y and clustered distribution along X . Contour plot of the final concentration
density after a time T = 150. Diffusion rates are Dx = 5× 10−5 and Dy = 1.35× 10−4. At
T = 0 the distribution has the form of a Gaussian with standard deviation σ0 = 1× 10−2 in
all three dimensions and centered at (0.5, 0.5, 0.5). Other parameter values set to the default
clustering parameter values in Table IV.2. In all panels, cyan represents the lowest density
and magenta the highest. Density is negligible in white areas.

Simulations of this variant show that the spatial dynamics on each one of the spatial
dimensions appear to be independent. In each spatial direction either clustering or cline-like
propagation (as a continuous front) occurs depending on Dx and Dy respectively. Similarly,
the attractor can be a clustering or a cline-like (constant) pattern in both, either or neither
dimension depending on their mobility rates. Clustering in trait space occurs only through
clustering in the spatial dimension X .

Fig. IV.22 shows the long-term concentrations of the population in physical xy space,
and in the physical-trait spaces xu and yu after two simulations. As in the one-dimensional
spatial model we use an explicit finite difference scheme to simulate the dynamics of the nor-
malized population according to Eq. (IV.21). As shown, clustering in the spatial direction
X can occur simultaneous to cline-like (constant) distributions on the spatial direction X if
diffusion is slow in the first and fast in the second (and on the contrary). When clustering
occurs in both spatial dimensions, the number of clusters in two-dimensional physical space
is nxC × n

y
C clusters wherenxC are the number of clusters in X and Y respectively.
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Notably, and in consistency with the results in the one-dimensional spatial model de-
rived in Section IV.8.1, multistability is also present and the exact transition values values
of Dx and Dy where the model jumps between attractors –although similar– vary. More
precisely, clustering occurs under wider parameter conditions when space and trait space
interact through selection (physical dimension X and trait space U). That is: D∗x > D∗y (see
Fig. IV.22A).

The derivation of the Hamilton-Jacobi equation associated to this variant in the limit of
small mutations and slow motion is analogous to the analysis in IV.9.1. Here, the function
ϕε(x, y, u, t) is suggested to converge to ϕ(x, y, u, t) satisfying the equation:

∂

∂t
ϕ(x, y, u, t) = B(x, u)− d0 −

∫
X

∫
Y

∫
U
1|x−a|<δ1|x−b|<δ × µt(da, db, dw)

+Dx

∣∣∣∣ ∂∂xϕ(x, y, u, t)
∣∣∣∣2 +Dy

∣∣∣∣ ∂∂yϕ(x, y, u, t)
∣∣∣∣2 + γB(x, u)H

(
∂ϕ(x, y, u, t)

∂u

)
,

where H
(
∂ϕ(x,y,u,t)

∂u

)
was defined in Eq. (IV.16).

IV.10.2Two-Dimensional spatial domain and two-dimensional spatial adaptation
We consider another variant of a model where physical space is two-dimensional and where
adaptation to the local environment varies on both physical dimensions X and Y. The
model is identical to the one in the previous section with the exception of the birth rate
which becomes

B(x, y, u) = max
{
b0 − b1(x− u)2(y − u)2; 0

}
.

Without the loss of generality and due to rescaling we can assume the same form of depen-
dence in the optimal trait with respect to local optimum along both spatial dimensions. The
deterministic approximation of this variant becomes:

∂n(x, y, u, t)
∂t

= Dx
∂2n(x, y, u, t)

∂x2 +Dy
∂2n(x, y, u, t)

∂y2 + n(x, y, u, t)×(
(1− γ)B(x, y, u)− d0 −

∫
X

∫
Y

∫
U
1|x−a|<δ1|y−b|<δ × n(a, b, w, t)dwdbda

)
+ γ

∫
U
n(x, y, w, t)B(x, y, w) 1√

2πσ
exp

(
−(u− w)2

2σ2

)
dw,

(IV.22)
∂n(x, y, u, t)

∂x

∣∣∣∣
x=0

= ∂n(x, y, u, t)
∂x

∣∣∣∣
x=1

= 0,

∂n(x, y, u, t)
∂y

∣∣∣∣
y=0

= ∂n(x, y, u, t)
∂y

∣∣∣∣
y=1

= 0,

n(x, y, 0, t) = n(x, y, 1, t) = 0, x ∈ X , y ∈ Y, t ≥ 0.

Numerical simulations of Eq. (IV.22) show qualitative differences with the original one-
dimensional spatial model and with the first two-dimensional spatial variant. Although the
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Figure IV.23: Two-dimensional physical space and two-dimensional spatial adaptation. A.
Contour plot of the concentration density after a time T = 50 (top) and T = 150 (bottom).
Diffusion rates are Dx = 5× 10−4 and Dy = 5× 10−5. B. Contour plot of the concentration
density after a time T = 50 (top) and T = 150 (bottom). Diffusion rates are Dx = 5 ×
10−5 and Dy = 1.35 × 10−4. At T = 0 the distribution has the form of a Gaussian with
standard deviation σ0 = 1×10−2 in all three dimensions and centered at (0.5, 0.5, 0.5). Other
parameter values set to the default clustering parameter values in Table IV.2. In all panels,
cyan represents the lowest density and magenta the highest. Density is negligible in white
areas.
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model requires further exploration, considering its rich and complex dynamics, it can ob-
served (see Fig. IV.23) that mutation and phenotypic spread is substantially more limited.
Since the decay in the birth rate is stronger for mutants located further away from the
local optimum (although slightly), their invasion capacity is hindered which limits density
growth for other trait values. However, at longer temporal scales, once the population has
invaded physical space through cluster propagation or cline-like wave-fronts (depending on
Dx and Dy respectively), mutational effects accumulate, translating distribution along X
and Y (concentrated at the initial central value u = 0.5) to the optimal line x = y = u.
As in the other two-dimensional variant, multistability is also present and clustering and
constant patterns can simultaneously occur on each spatial projection depending on the co-
efficients Dx and Dy. Nevertheless, the transition values D∗x, D∗y are different from those in
the original one-dimensional spatial model.

The transient dynamics of the system on the spatio-phenotypic projections during the
translation along trait-space of the (initially) clustered or constant distributions to the line
x = y = u are interesting and complex, as are the long-term distributions of the population.
In the original one-dimensional spatial model and the first two-dimensional spatial variant,
the distribution in trait space inherits its structure from the distribution in the associated
spatial dimension (through selection in the birth rate). Here, since trait interacts with both
spatial dimensions, the distribution along the two space-trait projections exhibits a mixed
behavior between both physical regimes. This is seen in Figs. IV.23A and IV.23B at T = 150,
where the population distribution along U propagates in what appears as a combination of
cline-like wave fronts and clustering patterns. Moreover, meta-clusters (or clusters of clus-
ters) can also be present due to the possibility of multiple optimal evolutionary strategies
for a trait value u located and (x, y) with x 6= y.

As in the previous section. The derivation of the Hamilton-Jacobi equation associated
to this variant in the limit of small mutations and slow motion is analogous to the analysis
in IV.9.1. Here, the function ϕε(x, y, u, t) is suggested to converge to ϕ(x, y, u, t) satisfying
the equation:

∂

∂t
ϕ(x, y, u, t) = B(x, y, u)− d0 −

∫
X

∫
Y

∫
U
1|x−a|<δ1|x−b|<δ × µt(da, db, dw)

+Dx

∣∣∣∣ ∂∂xϕ(x, y, u, t)
∣∣∣∣2 +Dy

∣∣∣∣ ∂∂yϕ(x, y, u, t)
∣∣∣∣2 + γB(x, y, u)H

(
∂ϕ(x, y, u, t)

∂u

)
,

where H
(
∂ϕ(x,y,u,t)

∂u

)
was defined in Eq. (IV.16).

IV.10.3Effect of environmental gradient steepness
Here we show that results from the original model are robust to different steepness of the
environmental gradient. We modify the birth rate so that (mal)adaptation declines with a
slope g > 0. That is

B(x, u) = max
{
b0 − b1(x− gu)2; 0

}
,

with the partial differential equation for this variant being identical to Eq. (IV.3). We verify
with simulations that results from the paper hold under appropriate scalings of mutation
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Figure IV.24: Clustering under steeper environmental gradients. Contour plot of the con-
centration density at four different stages of the simulation. At T = 0 the distribution has
the form of a Gaussian with standard deviation σ0 = 1 × 10−2 in all three dimensions and
centered at (0.5, 0.5). Other parameter values set to the default clustering parameter values
in Table IV.2. In all panels, cyan represents the lowest density and magenta the highest.
Density is negligible in white areas.

related parameters. That is, clustering and cline-like equilibria can occur, multistability is
also present and Hamilton-Jacobi equations are possible to derive. We show one example of
a simulation with a gradient steepness g = 2 in Fig. IV.24. Since the initial spatial location
is far away from the optimal position (for the initial trait value), the population migrates in
space to then spread through the formation of clusters analogously to the simulations of the
original model in Fig. IV.7B.

Since the partial differential equation for this variant is identical to Eq. (IV.3), the
Hamilton-Jacobi equation –suggested to be associated with the model– is the same as Eq.
(IV.15).

IV.10.4Allee effect from nearby identical population’s density
We consider two variants of the model in which we incorporate Allee effects. In both, we
aim to capture the biological fact that local adaptation (u compared to x) determines the
reproductive potential of an individual, and then nearby density (of identical or of all phe-
notypes) determines whether this potential is realized or not.

In the first Allee effect variant we take

B(x, u, n) = max
{

(b0 − b1(x− u)2)×
∫
X 1|x−y|<δ × n(y, u, t)dy

c1 +
∫
X 1|x−y|<δ × n(y, u, t)dy ; 0

}
,

where the range of interaction (of distance δ) with nearby neighbors is the same as in the
death-by-competition term. The parameter c1 ≥ 0 needs to be chosen carefully in relation
with the integral. If c1 is too large the population goes extinct since the birth rate is low. If
c1 is too small the results of the variant are indistinguishable from those of original model.
If c1 is intermediate, when the density of neighbor identical individuals is very low, the birth
rate is close to zero and the reproductive potential is hardly expressed. When density is very
high, the ratio in birth rate is close to 1, and the reproductive potential is realized fully.

Fig. IV.25 shows the density of the population at different times from two simulations
converging to clustering and cline-like patterns respectively. As in the original model, the
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Figure IV.25: Clustering and cline-like density patterns after the inclusion of Allee Effects
from identical individuals. A. Clustering attractor. Contour plot of the concentration density
at four different stages of a simulation with Dm = 5×10−5. B. Cline-like attractor. Contour
plot of the concentration density at four different stages of the simulation withDm = 2×10−4.
At T = 0 the distribution has the form of a Gaussian with standard deviation σ0 = 1× 10−2

in all three dimensions and centered at (0.5, 0.5). In both simulations c1 = 1× 10−3. Other
parameter values set to the default clustering parameter values in Table IV.2. In all panels,
cyan represents the lowest density and magenta the highest. Density is negligible in white
areas.

population spreads through the formation of clusters and converges to a clustering pattern
if the diffusion rate is low. When spatial mobility is increased, the population spreads as
a continuous front (where the density of individuals at the extremes is higher than in the
original model) and converges to a cline-like pattern with high accumulation at the edges
due to decreased competition.

In general –for intermediate and small values of c1– the incorporation of Allee effects
(from identical individuals) to the original model does not affect qualitatively the dynamics.
Aggregation of similar individuals (and hence clustering) appears to be slightly favored
(clustering can occur for mobility rates moderately higher than D∗m) due to the increase
in the birth rate. The aggregation of individuals in Fig. IV.25B in the center and at the
borders is higher than in the original model. Furthermore, and depending on the parameter
c1, the expansion dynamics can be significantly slowed down (to the point of extinction), as
shown in Fig. IV.25 where after T = 100 the population is yet to reach the boundaries of
the domain. Moreover, even under a fourfold increase in Dm (Fig. IV.25B with respect to
Fig. IV.25A), the spatial ranges of the population appear to be the same at all times. This
suggests, that under intermediate values of c1, it is mutation that dominates the speed of
spatial invasion of the population. Since birth rates are decreased due to lower population



158 Chapter IV. Spatial eco-evolutionary and invasion dynamics

A

B
T=10 T=50 T=80 T=100

T=10 T=50 T=80 T=100

Spatial location (x)

Tr
ai

t v
al

ue
 (u

)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Spatial location (x)

Tr
ai

t v
al

ue
 (u

)
0 0.5 1

0

0.2

0.4

0.6

0.8

1

Spatial location (x)

Tr
ai

t v
al

ue
 (u

)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Spatial location (x)

Tr
ai

t v
al

ue
 (u

)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Spatial location (x)

Tr
ai

t v
al

ue
 (u

)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Spatial location (x)

Tr
ai

t v
al

ue
 (u

)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Spatial location (x)

Tr
ai

t v
al

ue
 (u

)
0 0.5 1

0

0.2

0.4

0.6

0.8

1

Spatial location (x)

Tr
ai

t v
al

ue
 (u

)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Figure IV.26: Clustering and cline-like density patterns after the inclusion of Allee Effects.
A. Clustering attractor. Contour plot of the concentration density at four different stages of
a simulation with Dm = 5× 10−5. B. Cline-like attractor. Contour plot of the concentration
density at four different stages of the simulation with Dm = 2 × 10−4. At T = 0 the
distribution has the form of a Gaussian with standard deviation σ0 = 1 × 10−2 in all three
dimensions and centered at (0.5, 0.5). In both simulations c2 = 1 × 10−3. Other parameter
values set to the default clustering parameter values in Table IV.2. In all panels, cyan
represents the lowest density and magenta the highest. Density is negligible in white areas.

density, there is an increase in the impact of adaptation on the survival and prosperity of
invading populations.

IV.10.5Allee effect from nearby population’s density

We consider a second variant of the model incorporating Allee Effects where the reproductive
potential of an individual depends on the nearby density of all phenotypes. The birth rate
has the form

B(x, u, n) = max
{

(b0 − b1(x− u)2)×
∫
X
∫
U 1|x−y|<δ × n(y, w, t)dwdy

c2 +
∫
X
∫
U 1|x−y|<δ × n(y, w, t)dwdy ; 0

}
.

Again, there is a qualitative and quantitative dependence on the parameter c2 ≥ 0. High
c2 results in population extinction. Small and intermediate values of c2 yield equivalent or
slowed versions of the original model which converge in the long term to either clustering of
cline-like distributions (Fig. IV.26). As shown in Fig. IV.26, for c2 equal to the value of
c1 used in the simulations in Fig. IV.25, the population expansion on both phenotypic and
spatial dimensions is faster (at T = 80 it has reached both boundaries). Since the reproduc-
tive potential is achieved through the nearby density of all individuals, invasion is facilitated.
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Both forms of Allee effects show equivalent results after a proper scaling of the parameter
c1. More precisely, results are equivalent for c1 = c2

2.

We note that observations from the original model are sustained under the inclusion of
both forms of Allee effects depending on c1 and c2. When this occurs, the exact transition
(critical) parameter values where the population changes between attractors change and de-
pend on the parameter. Their approximation can be computed in analogous fashion as in
IV.8.1.

In contrast, the derivation of Hamilton-Jacobi equations for the two variants is not anal-
ogous to the original model and non-trivial since the local birth rate depends on the popu-
lation’s distribution.
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IV.11Evolving dispersal and Allee effects from identical individuals
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Figure IV.27: Dynamics of invasion in physical, and trait spaces in the model of evolving
dispersal with Allee effects from nearby identical individuals. Adaptational and expansion
regimes, dispersal traits and invasion speed at front. Time-evolution of spatial, niche trait
and dispersal trait distributions when w0 = 0.15 and θ = 0.75 (Panel A), w0 = 0.9 and
θ = 0.75 (Panel D), w0 = 0.3 and θ = 1.75 (Panel G). Average dispersal trait at each spatial
location at T = 100 when w0 = 0.15 and θ = 0.75 (Panel B), w0 = 0.9 and θ = 0.75
(Panel E). Average dispersal trait at each spatial location at T = 100 (top) and T = 35
(bottom) when w0 = 0.3 and θ = 1.75 (Panel H). Time-evolution of the distance between
local optimal niche trait and the physical location (|x−u|) and of dispersal traits at the front
of the population when w0 = 0.15 and θ = 0.75 (Panel C), w0 = 0.9 and θ = 0.75 (Panel
F), w0 = 0.3 and θ = 1.75 (Panel I). At T = 0 the distribution has the form of a Gaussian
with standard deviation σ0 = 0.1 (in the three dimensions) centered at (0.5, 0.5, w0). Other
parameters set to the default values in Table IV.1. In all panels, cyan represents the lowest
density and magenta the highest. Density is negligible in white areas.
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Figure IV.28: Invasion speeds in the model of evolving dispersal with Allee effects from
nearby identical individuals. Spatial invasion speed when w0 = 0.15 and θ = 0.75 (Panel
A), w0 = 0.9 and θ = 0.75 (Panel B), w0 = 0.3 and θ = 1.75 (Panel C). At T = 0 the
distribution has the form of a Gaussian with standard deviation σ0 = 0.1 (in the three
dimensions) centered at (0.5, 0.5, w0). Other parameters set to the default values in Table
IV.1.
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Abstract

We present an equation-free approach to analyze equilibria (stable and unstable) and of
multi-stability in the stochastic dynamical system appearing when studying the evolution
of a population along a one-dimensional environmental gradient. In this system, continu-
ous or clustering patterns (with different number of clusters) emerge from local ecological
interactions between the individuals. These patterns have distinct eco-evolutionary inter-
pretations related to the evolution of diversity in absence of strong geographical barriers.
More specifically, concerning speciation or adaptive diversification through the formation
of spatially isolated clusters. We analyze the microscopic high-dimensional dynamics of a
stochastic individual–based model through a low dimensional restriction (at the slow man-
ifold) which is able to capture information such as existing equilibria (stable and unstable)
and the bifurcations occurring in terms of one its ecological parameters. Obtained results
show that the system is multi-stable with a strong presence of hysteresis due to the poten-
tial presence of successive saddle node bifurcations. Our method can be extended to other
individual-based-models of eco-evolutionary dynamics for which a mathematical analysis is
unfeasible or impractical or to multi-scale models exhibiting substantial noise.
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V.1 Introduction

Speciation events and diversification in biological populations occurring as a consequence of
geographic isolation between subpopulations has been well documented in empirical [24, 25]
and experimental work [443] and is well understood from a theoretical perspective [23, 444,
445]. When subpopulations are not geographically isolated, diversification clashes with the
principles of natural selection (i.e of ‘survival of the fittest’) and with some of the principles
of population genetics (e.g gene-flow ) [445, 446] and hence remains an issue of controversy
for both its feasibility and its frequency.

Contributing to this debate, recent seminal empirical studies have found monophyletic
populations which have diverged in conditions where geographic isolation seems unlikely
[27–34, 169, 174, 175]. These studies have been reinforced by increasing evidence from ex-
perimental work supporting the idea that ecological interactions can frequently generate
environments favoring the emergence and stability of phenotypically and genetically diverse
populations [36–40]. Moreover, theoretical analysis has demonstrated that diversification in
quantitative-trait models can occur as a consequence of disruptive selection [164], an out-
come of the ‘eco-evolutionary feedback’, where ecological and evolutionary changes exert
reciprocal influences on one another [156, 160, 162].

Mathematical models have shown how eco-evolutionary feedbacks alter population and
evolutionary dynamics and species interactions [164, 186, 447, 448] mainly in non-spatial do-
mains. However, although ecological interactions are tied to spatial constraints, the spatial
aspect of eco-evolutionary dynamics remains poorly understood [449, 450].

The work from Doebeli and Dieckmann 2003 [22], on spatially-explicit eco-evolutionary
dynamics extends earlier theory on species coexistence [250–253, 451] in non-spatial mod-
els. It predicted the emergence of clustering (a collective phenomenon emerging from local
interactions in which individuals form high-density groups interspersed with low density
areas [237–241]) along geographic and phenotypic space in a single-species inhabiting a one-
dimensional environmental gradient as a consequence of spatially-dependent eco-evolutionary
feedbacks. Clustering stands in contrast of smooth distributions across the space-phenotype
domain [21, 242–244]. This was consistent with the prediction that space favors the emer-
gence and stability of diversity[20, 21] but was a shift from the paradigm of local adaptation
along environmental gradients resulting in gradual and smooth variation in the average value
of a trait (cline-like phenotypic distributions [246–249]). Moreover, it might provide a mech-
anism for evolutionary processes of diversification in absence of geographic isolation such as
parapatric speciation [176–178] and/or speciation along environmental gradients [452].

Although recent work has contributed to the understanding spatial eco-evolutionary dy-
namics –e.g concerning boundary conditions and competition kernels and their effect on the
emergence of clustering [7, 227, 228]– the current theory on this topic leaves questions unan-
swered. First, a qualitative and quantitative understanding of the conditions required for
cluster formation and persistence is still incomplete. More specifically, concerning the way in
which spatially-intrinsic individual-level factors affect cluster formation and key characteris-
tics of the emerging population structure, such as the number of clusters and their distance.
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Furthermore, it was reported recently that spatial eco-evolutionary dynamics exhibit multi-
stability [8, 9], hence small variations in initial conditions can lead to different attractors and
disturbances may cause a population to switch rapidly between alternate spatial distribution
and phenotypic compositions. However, whether multi-stability is ubiquitous or not, and in
the case of the latter, under what conditions it is present remains elusive.

Here, we address these questions by using and ‘equation-free’ approach [51–53] (also re-
ferred to as coarse-analysis) based on a ‘microscopic’ individual-based (IB), stochastic model
of spatial eco-evolutionary dynamics introduced in [7] and used recently in [8, 9]. Equation-
free analysis is used to study complex multi-scale systems where descriptions come at micro-
scopic scales and the interest lies on macroscopic collective behavior and where equations are
unavailable or their analysis is impractical. It is particularly useful for analyzing equilibria
(stable and unstable) and for bifurcation analysis and numerical continuation (as done in
[293]). The methodology relies on successive shifts between microscopic and macroscopic
scales through appropriately constructed operators combined with short simulations of the
microscopic system.

In our case, although a macroscopic deterministic (PDE-approximation) model is avail-
able –as shown in [7, 185, 255]– its mathematical analysis, in particular concerning equilibria
and stability, is substantially difficult and challenging. Moreover, its simulation can be com-
putationally prohibitive specially when concerning its dependence on spatial parameters re-
quiring very fine multi-dimensional grid representations of the domain. Also, coarse-analysis,
in relation to direct simulations, is less vulnerable to misinterpret transient regimes and can
detect the presence of equilibria regardless of their nature.

Other reasons to justify our choice of equation-free analysis (rather than other methods)
include its versatility to changes, generalizations or extensions (these can refer to boundary
conditions, different competition kernels, incorporation of Allee effects or other ecological
situations) and its needlessness for some assumptions concerning boundaries or special scal-
ings [41, 45, 228]. Additionally, the possibility of reducing the analysis to a low dimensional
space which allows for a graphic visualization of the equilibria and the bifurcations occurring
between them. Moreover, we base the analysis on the IB stochastic model to study potential
finite size-effects which can result in mixed states simultaneously displaying combinations of
the multi-stable patterns.

In this work we analyze asymptotic population structures and relate them to an individual-
level, spatially-implicit parameter, specifically the competition spatial range of competition
experienced by each individual. We report on this relation both qualitatively and quanti-
tatively by performing a bifurcation analysis on the different transitions exhibited by the
system when changing from continuous cline-like distributions to clustering structures and
among clustering patterns showing different numbers of clusters. We find strong hystere-
sis which we predict are a consequence of successive saddle node bifurcations where stable
branches can co-occur hence explaining multi-stability. Furthermore, we extend the cur-
rent methodology to perform equation-free analysis on a highly stochastic systems. This
methodology can be extended to other stochastic models exhibiting substantial noise.
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V.2 The Model

We present the microscopic stochastic individual-based model and the equation-free methods
we use in order to study the behavior of the stochastic dynamical system in terms of the
ecologically relevant parameters.

V.2.1 Individual-based stochastic model of phenotypic evolution

We use an individual-based stochastic model introduced in [7]. We characterize each indi-
vidual from an asexual population by a position and a quantitative phenotype (a trait).

New offspring appears with rates dependent on the local adaptation of the progenitors.
The local optimal phenotype varies gradually and smoothly with space, hence representing
the environmental gradient. At birth events, progeny appears at the spatial location of the
parent. Mutations on the phenotype occur with a given probability and the new trait is
selected with a transition measure.

We implement two types of death events. The first occur at a fixed rate (for each indi-
vidual) and correspond to natural deaths. The second are deaths by competition and occur
at rates which depend on the strength of competition from nearby individuals.

Throughout their lives, individuals undergo diffusion inside the spatial domain.

Mathematical formulation

Let X ⊆ Rd (spatial domain) and U ⊆ Rk (phenotypes domain) be open, connected sets.
Individuals are characterized by their spatial location x ∈ X and their phenotype value u ∈ U .

Let (x1, . . . , xNt)T ∈ X
Nt be the spatial locations and (u1, . . . , uNt)T ∈ UNt be the phe-

notype values of a population composed of Nt individuals at a time t ≥ 0.

An individual i, i = 1, . . . , Nt at position xi ∈ X and with phenotype ui ∈ U reproduces
asexually with a rate:

B(xi, ui) = max
{
b0 − b1(xi − ui)2; 0

}
,

where b0 > 0 is the maximal birth rate and b1 > 0 scales the decline in the reproductive rate
for individuals away from their optimal spatial location.

The maximal rate occurs along the line x = u, representing the environmental gradient,
and the width of the region where it is positive is

√
b0/b1.

New offspring appearing on birth events has the trait of the parent with probability 1−γ.
Otherwise, the new trait is chosen according to a Gaussian centered at u (and independent
of x) and with variance σ2.
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The death rate of individual i is:

d0 + d1

Nt∑
i=j

1|xi−xj |<δ,

where d0 ≥ 0 is the rate of natural death, and d1 ≤ 0 the scaling for death due to pair
competition. We can (and will) assume that d1 = 1 without loss of generality due to an
appropriate time-scaling. The parameter δ represents the range of interaction (competition)
experienced by each individual.

We can rewrite the death rate as

D(xi, ui, ft) := d0 +
∫
X×U

1|xi−y|<δft(dy, dw).

with

ft =
Nt∑
j=1

δ(xj ,uj)

being the population counting process with Dirac delta functions located at the populations’
positions (at time t).

Individuals undergo diffusion -independent from each other- in the spatial domain X with
a constant diffusion coefficient Dm.

For an initial condition f0 = ∑N0
j=1 δ(xj ,uj), we denote the microscopic state at the system

after a time t by Φ(f0, t).

Boundary conditions

The impact of boundary conditions on the emergence of clustering v.s continuous (cline-
like) patterns along environmental gradients has been an issue of controversy since the phe-
nomenon was first reported [22, 227] and has remained relevant in more recent works [8, 228].
While initially a debate on whether clustering was artifactual or not [22, 227], it was later
proved that it is robust to open and closed boundaries [8, 228] and, albeit being enforced or
hindered by them, occurs due to other forces.

The original model [7] incorporates reflection of spatial motion at the boundary of X and
restricts mutations to remain within U , otherwise discarting the mutated offspring. In other
words, the boundary is reflecting on X and absorbing in U where X = U = (0, 1) ⊆ R.

Due to asymmetric competition near the boundaries, increased aggregation of individuals
is observed close to the edges (see Figs. 1 and S1 in [9]). This contributes to a disruption of
continuous distributions due to a propagated effect -from the edges and towards the center
of the domain- of unequal competition. Moreover, it alters the presence and nature of equi-
libria in general for the complete microscopic system. For this reason, and to facilitate our
analysis by studying more regular patterns, we modify the boundary conditions so that they
are periodic in both dimensions or X = U = S1. Our complete domain is then the torus
S1 × S1.
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To perform an equation-free analysis we need to construct a macroscopic variable able
to capture the macroscopic transitions in the microscopic system by reducing the dynamics
to a low-dimensional space. To calculate such variable we require a frame of reference in
the new domain (the torus). We find that the most appropriate one which facilitates this
construction corresponds to the coordinate system where origin (which is both (0, 0) and
(1, 1)) is placed at the point where the populationś density distribution has its maximum.
That is, the position in which the population is most aggregated after a discretization of the
domain into L× L squares. This fixes the position of the other clusters in such a way that
they are -in general- equally spaced and uniformly located along the diagonal in [0, 1)× [0, 1).

Model parameters and values

All the parameters of the model and their descriptions are presented in Table V.1.

Parameter Description Default value

b0 Maximal birth rate b0 = 2

b1 Quadratic coefficient in the rate of decay in the birth rate b1 = 20

d0 Natural death rate d0 = 1

Dm Spatial diffusion coefficient Dm = 5× 10−5

δ Spatial competition range δ = 0.1

σ Standard deviation of mutation transition measure (Gaussian) σ = 0.01

γ Mutation probability γ = 0.1

Table V.1: Model parameters, description and default values.

In the forthcoming analysis we will focus on the effect of the parameter δ (the competition
range distance) on the macroscopic patterns. This parameter has been observed to have the
a substantial and qualitative impact on the distributions of the population and has been
analyzed in simpler models (e.g. [45]). Other parameters like σ, γ, d0, b0 and b1 have mainly
quantitative effects (see Supporting Material from [9]) with the exception of extreme values
which cause either fast extinction or massive population growth. In contrast, the dependence
on Dm will be the subject of future work.

V.3 Methods

Equation-free analysis has its grounds in the lift-evolve-restrict scheme which relies on con-
tinuous shifts between microscopic and macroscopic scales.
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In this section we present the numerical and mathematical methods used at the different
scales which make part of our equation-free methodology.

V.3.1 Numerical simulations of the individual-based stochastic model. The mi-
croscopic time-stepper

We use an algorithm based on [7] –which was described in detail and used in [8]– to simulate
the individual-based model. We refer to this as the microscopic time-stepperM.

The algorithm uses an acceptance/rejection scheme. It constructs sequencesNk, Tk, Xk, Uk

with Nk ∈ N∗, Tk ∈ R, Xk ∈ X
Nk and Uk ∈ UNk . These sequences represent the number of

individuals, the time, the vector of spatial locations and the vector of phenotype values of
the Nk living individuals at the time of the end of k-th time step.

The potential event rate at each step is Ctot := Nk−1(b0 + d0 + Nk−1/K), where K is
the carrying capacity. We chose, based on a parameter θk (a uniformly distributed random
variable on [0, Ctot]), an event which can potentially occur at the time Tk = Tk−1 + Ek−1,
with Ek−1 being an exponentially generated random variable with parameter Ctot.

If θk < Nk−1b0, an individual Ik = i, 1 ≤ i ≤ Nk−1, is randomly selected to give birth
(to a clone or a mutant) with a probability

B(Xi
Tk
,U iTk−1)
b0

. In the event of mutation (which
occurs with probability γ), the new trait is selected using a Gaussian centered at U iTk−1 with
variance σ2. If, instead, Nk−1b0 ≤ θk ≤ Nk−1b0 +Nk−1d0, an event of natural death occurs
and an individual Ik = i, 1 ≤ i ≤ Nk−1, is erased no matter its position and trait. Finally, if
θ ≥ Nk−1b0 +Nk−1d0, two individuals Ik = i, Jk = j, 1 ≤ i, j ≤ Nk−1 are selected randomly.
If the distance among them at time Tk is smaller than δ, then individual i dies. Otherwise
nothing happens.

Spatial locations are updated for selected individuals in the acceptance/rejection scheme
before the event occurs. Otherwise, they are updated for all individuals every time step of
length Taff . To simulate spatial diffusion we use the method presented in [453]. Nevertheless,
other methods [454] are equally capable of producing equivalent results.

V.3.2 Construction of Restriction Operator and computation of the macroscopic
macro-variable

Simulations of the individual-based stochastic model show a strong dependence in the leap
from continuous to clustering patterns and between clustering patterns which display differ-
ences in the number of clusters, on the system’s parameters. In particular on δ (the com-
petition range) and Dm (the spatial diffusion coefficient). This issue was reported in [8, 9],
where the transition between continuous and clustering patterns –and their characteristics–
was studied using Turing’s method for pattern formation analysis [431] and a Hamilton-
Jacobi approach based on [41]. These analyses rely on different assumptions (e.g boundary
conditions, mutation jumps, spatial diffusion, and the shape of perturbations) and only focus
on the gain or loss of stability of the cline-like equilibrium.
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Figure V.1: Microscopic distributions and dependence on the competition range δ. Density
contour maps of the microscopic state (top) and density of the (translated) projections onto
the line x = u (bottom) after a time Tend for δ = 0.05 (panel A), δ = 0.07 (panel B), δ = 0.08
(panel C), δ = 0.095 (panel D) δ = 0.11 (panel E), δ = 0.13 (panel F), δ = 0.16 (panel G),
and δ = 0.19 (panel H). In all contour plots, magenta represents the highest density. Density
is negligible in cyan areas. See Section V.4.1 and Tables V.1 and V.2 for details on the
numerical methods and the parameters used.
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Figure V.2: Dependence of the number of clusters on the competition range δ. Number of
clusters of the long-term microscopic patterns after a time Tend when increasing (top) and
decreasing the competition range δ (bottom). See Section V.4.1 and Tables V.1 and V.2 for
details on the numerical methods and the parameters used.

In the top figures of each panel from Fig. V.1 we show contour plots of the long-term dis-
tributions observed while gradually changing the parameter δ. As observed, the macroscopic
patterns go from a nearly-continuous, “cline-like” distributions, to distributions fragmented
into a number of clusters which decreases as δ becomes greater. The way in which the long-
term number of clusters depends on δ when gradually increasing or decreasing this parameter
(with an initial condition equal to the final microscopic distribution of the earlier simulation)
is shown in Fig. V.2.

With the purpose of analyzing the macroscopic bifurcations and the behavior of these
macroscopic equilibria we search for a low dimensional macroscopic variable which is able
to: (i) capture the convergence of the microscopic system to the slow manifold and to the
macroscopic attractors, (ii) distinguish between these attractors and their respective basins
of attraction/repulsion and (iii) show the presence of -stable or unstable- equilibria (if any)
and of multi-stability in the microscopic system.

Classical measures of clustering of a data-set normally require iterative methods for their
computation and/or specific inputs such as the number of clusters in which the popula-
tion should be distributed [455–461]. These involves extensive numerical computations and
additional manual inputs (which can affect negatively the analysis given the uncertainty
concerning the number of clusters) and overall makes their use inconvenient.

Initially, we chose to look at the moments of the distribution, either on one of its dimen-
sions or along the diagonal where the population aggregates. The motivation for this choice
was the moment-generating function which uniquely defines a distribution as the probability
density or cumulative distribution functions do. Alas, although initially promising, the dy-
namics could not be properly analyzed in one dimension, given that time-trajectories often
crossed through known equilibria.
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Other natural candidates to analyze the macroscopic patterns observed are functions of
the Fourier coefficients an and bn of the distribution when projecting along the diagonal or
along one of the dimensions. This dimensionality reduction is effective even though –and as
will be described below– it requires individually isolating the different bifurcations (each one
corresponding to a macroscopic transition). This is, since each one of them (corresponding
to the appearance of a macroscopic pattern with a determined number of clusters) requires
a different macroscopic variable (corresponding to a given frequency). In order to facilitate
the visualization of the system’s dynamics we overlap all the analyses into a single one where
all equilibria can be simultaneously observed.

Macroscopic variables for the Equation-free analysis on the parameter δ

We analyze separately the bifurcations occurring with respect to macroscopic equilibria cor-
responding to distributions fragmented into n clusters (n = 10, 9, 8, 7, 6, 5, 4).

Clustering and continuous patterns generally differ by their number of clusters (0 in the
case of cline-like distributions), their inter-cluster distance, their amplitude (when normal-
ized) and their cluster-width among other characteristics (see Fig. V.1). However, they all
are (nearly) symmetric with respect to mid-point of the domain and concentrated along the
diagonal line x = u due to the functional form in which natural selection is incorporated (the
function B(x, u)). We take advantage of both properties and do the following procedure for
all values of n. First, if Xt = (x1, . . . , xN(t))T ∈ XNt denotes the vector of spatial positions
and Ut = (u1, . . . , uN(t))T ∈ UNt the vector of trait values (both according to the frame of
reference described before) of the microscopic state with Nt individuals at a time t, we take
the single component of the orthogonal projection of each pair (xi, ui)T along the diagonal
line:

hi = 1√
2

(xi, ui)T •
( 1√

2
,

1√
2

)T
,

to construct a new vector of data points Ht = (h1, . . . , hN(t))T ∈ [0, 1). Due to the
boundary conditions and the frame of reference considered, the largest cluster is divided
into four parts, each aggregated near one of the corners of the domain (see the top figures
of each panel of Fig. V.1). The positions of the individuals aggregated near the edges
(0, 1) and (1, 0) are projected to values close to (0.5, 0.5), and not to (0, 0) nor (1, 1). This
introduces a small error, where the number of individuals at the center is overestimated.
To correct this, we remove the edge cluster from the analysis and hence, only consider the
individuals located at positions (xi, ui)T with cn ≤ xi, ui ≤ Cn. We find that the best
estimation of cn and Cn such that the edge cluster is removed is cn = 0.1 − (n − 4) × 0.01
and Cn = 0.9 + (n− 4)× 0.01. Once, this condition has been imposed, we translate this new
set of data points to be symmetrical about 0 by subtracting 0.5 to each of the components
of Ht. Next, we approximate the (normalized) distribution’s density function numerically
(using MATLAB’s function histogram) to arrive at a function fn as the ones represented at
the bottom of each panel of Fig. V.1. By definition this function has an integral equal to
1 over the range (cn − 0.5, Cn − 0, 5). Since the edge cluster has been previously removed,
these functions have n − 1 peaks, from which we observe that the natural candidate for a
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macro-variable is a function of the n− 1 Fourier coefficients

an−1 = 1
Ln

∫ Cn−0.5

cn−0.5
fn(τ) cos

((n− 1)πτ
Ln

)
dτ,

bn−1 = 1
Ln

∫ Cn−0.5

cn−0.5
fn(τ) sin

((n− 1)πτ
Ln

)
dτ

where Ln = (Cn − cn)/2. Since the fn’s are symmetrical with respect to 0 we define our
macro-variable as Λn = (an−1)2. Hence, the Restriction Operators Rn are such that for a
microscopic state (Xt, Ut) ∈ XNt×UNt , Rn((Xt, Ut)) = Λn(fn) = (an−1)2 when constructing
fn by following the scheme above.

As shown in Fig. V.3, the macroscopic variable Λn is effective in recognizing macroscopic
patterns with n clusters, for which it rises from values close to zero to positive quantities.

V.3.3 Construction of the Lifting Operators

The construction of the Lifting Operators Ln is not trivial; it requires the identification of an
appropriate map from a low dimensional space, namely R, to a space with multiple dimen-
sions XN0×UN0 of microscopic states of the stochastic system withN0 individuals. As before,
we construct different Lifting Operators for each case considered, i.e n = 10, 9, 8, 7, 6, 5, 4.

Fist, the initial number of individuals N0 is chosen based on the relation observed be-
tween the long-term microscopic patterns and the parameter δ (see Fig. V.4), where using
curve fitting tools we find that it generally obeys a power-law.

The analysis of macroscopic equilibria requires the computation of the time derivatives
dΛn
dt by using short simulation bursts of the microscopic time stepper. Hence, a ‘discrete’
Lifting Operator, which only maps ranges of macroscopic variables to distributions with n-
modes (or 0 modes) is insufficient. In contrast, one desires to identify a characteristic of the
microscopic state which varies gradually (and hopefully in a one-to-one correspondence) with
the macro-variable. We observe that clusters are generally equally spaced (see Fig. V.1) so
we do not consider any measurement based on the position of the clusters. Conversely, a
measure of spread of the distribution of each cluster presents as a natural candidate as it
relates directly with the Fourier coefficients.

We generated by sampling a substantial number of microscopic states with n clusters
centered at the positions (mn ,

m
n ), m = 0, 1, . . . , n − 1 and with variance σ2

c (in both X
and U). It is assumed that each cluster has initially a Gaussian distribution (with equal
variance in both dimensions), however, as explained in Section V.3.4, we run the microscopic
dynamics for a short ‘healing-time’ with which we aim to correct potential errors bound to
this assumption. We observed a one-to-one exponential relation (in the range of interest)
between σc and Λn where:

Λn(σc) = α1 exp
(
−
(
σc − α2
α3

)2
)
.
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Figure V.3: Dependence of the macroscopic variables Λn on the competition range δ. (Top)
Forward-sweep (Middle) Backward-sweep (Bottom) Forward and backward-sweep for n = 10
(panel A), n = 9 (panel B), n = 8 (panel C), n = 7 (panel D) n = 6 (panel E), n = 5 (panel
F), and n = 4 (panel G). Panel H. Same as Fig. V.2. See Sections V.4.1 and V.4.2 and
Tables V.1 and V.2 for details on the numerical methods and the parameters used.

These relations are shown in Fig. V.5 together with their fittings and the values of α1, α2
and α3 found in each case.

We construct then our Lifting Operators Ln based on the map (Λn, δ) 7−→ (n, σc, N0),
where

σc = α3

(
− log

(Λn
α1

)) 1
2

+ α2. (V.1)

Using the triplet (n, σc, N0), we build our initial distribution. For each individual, we
first randomly select the cluster it belongs to and then generate both the position x and the
trait u by randomly sampling from Gaussian distributions.

This gives us the Lifting Operators Ln(Λn, δ) = f0 = ∑N0
i=j=1 δ(xj ,uj) where f0 is con-
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and Tables V.1 and V.2 for details on the numerical methods and the parameters used.

structed as described above.

V.3.4 Implementation of a semi-implicit scheme

It is reasonable to expect that the Lifting Operators Ln map pairs (Λn, δ) to micro-states far
from the slow manifold where the dynamics can be reduced and studied in a low-dimensional
space with equation-free methods. In particular, it is not true that the distribution of the
individuals in a cluster or in continuous patterns is a Gaussian with equal standard devia-
tion on both dimensions. With respect to ‘cline-like’ distributions, it was noted in [8, 9, 228]
that the approximation with a Gaussian can be made under appropriate conditions on Dm

and σ when the boundary conditions are periodic. To correct these intrinsic flaws in Ln,
we implement what we call a ‘semi-implicit’ scheme for the computation of the macroscopic
time-stepper based on [293].

An implicit scheme in equation-free analysis involves running the microscopic time-
stepperM for a healing time theal (after constructing the initial micro-state), hence bringing
the dynamics close to the slow manifold, and then computing using a numerical continua-
tion method the value of Λn to which the new microscopic state corresponds to. Since our
algorithm is already substantially expensive we use a ‘semi-implicit’ scheme, where instead
we make corrections to the Lifting Operators directly, by running for a small healing time,
and hence avoid using iterative methods for finding solutions afterwards. We implement this
correction (as mentioned before) by calculating the relation in Eq. (V.1) after the healing-
time.

The determination of the healing time normally requires careful attention. However, as
shown in Fig. V.6, the averaged time trajectories of Λn are quite stable (in contrast, single
realizations have a behavior which rather resembles Brownian motion). For this reason we
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Figure V.5: Dependence of the macroscopic variables Λn on the clusters’ initial standard
deviation σc for every repetition (Top) and on average together with exponential fitting
(Bottom) for n = 10 (panel A), n = 9 (panel B), n = 8 (panel C), n = 7 (panel D) n = 6
(panel E), n = 5 (panel F), and n = 4 (panel G). Panel H. Fitting coefficients and equation.
See Sections V.3.3 and V.3.4 and Tables V.1 and V.2 for details on the numerical methods
and the parameters used.
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Figure V.6: Short-term (left) and long-term (right) time-evolution of macroscopic variables
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E), n = 5 (panel F), and n = 4 (panel G). In all simulations σc = 0.075. Results averaged
over 100 repetitions (left) and 20 repetitions (right), δ = 0.07 (panel A), δ = 0.08 (panel B),
δ = 0.095 (panel C) δ = 0.11 (panel D), δ = 0.13 (panel E), δ = 0.16 (panel F), and δ = 0.19
(panel G). See Sections V.3.3 and V.3.4 and Tables V.1 and V.2 for details on the numerical
methods and the parameters used.

chose the healing time to be the shortest time for which the micro-states reach a ‘transient’
stability where the averaged variances (separately on X and U) of the first cluster become
stable. This value is shown in Table V.2. In general, we average over multiple liftings for
each value of Λn to avoid miscalculations due to inadequate initial microscopic states.

When incorporating this healing time, and when making the corrections to the estima-
tions of the relation between Λn and σc, one should observe that the following condition
holds (on average):

Λn ' Rn(M(Ln(Λn, δ), theal))).

As observed in Fig. V.7, this relation holds with great precision for all values considered
of n
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Sections V.3.3 and V.3.4 and Tables V.1 and V.2 for details on the numerical methods and
the parameters used.

V.3.5 Bifurcation analyses

Computation of the derivatives

This work aims to compute the bifurcation diagrams of each macro-variable Λn by combining
short simulation bursts of the microscopic time stepper and the “lift-heal-restrict” scheme.
Broadly, we search for the values of Λn for which the macroscopic time-stepper Φ(Λn, t; δ) =
Λn(t) is invariant on t (the macroscopic equilibria). The formal definition of Φ is:

Φ(Λn, t; δ) = 〈Rn(M(Ln(Λn, δ), theal + t)))〉,

for a fixed parameter value of δ. The average is done over a number ML Liftings.

We implement Newton’s method to search for the zeros of F (Λn; δ) = dΛn
dt . For this, we

require to numerically approximate the derivatives F (Λn; δ) = dΛn/dt, ∂F/∂Λn and ∂F/∂δ
(see below).

For a value of Λn we approximate the derivative dΛn/dt with Euler’s method with a
time-step of length ∆t;

dΛn
dt
' 1

∆t 〈R(M(L(Λn, p), theal + ∆t))−R(M(L(Λn, p), theal))〉 .

The appropriate choice of ∆t depends on ML. We find, based on the long-term behavior of
the macro-variables (shown in Fig. V.6), that this time should be generally long (around
∆t = 4) to correctly detect the changes in macroscopic behavior.

With the estimations of F (Λn; δ) = dΛn
dt , we approximate ∂F

∂Λn and ∂F
∂δ again with Euler’s

method by:
∂F

∂Λn
' 1

∆Λn
(F (Λn + ∆Λn; δ)− F (Λn; δ)),
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∂F

∂δ
' 1

∆δ (F (Λn; δ + ∆δ)− F (Λn; δ)),

where ∆Λn > 0 needs to be carefully chosen so that ideally it is larger than the variance
of the time-evolution after the time ∆t. Also, one would expect to choose ∆δ to be the small-
est value for which ∆t allows for a significant difference. In our case we rather hand-pick ∆δ
to be fine enough to (hopefully) be able to accurately compute the bifurcation diagram and
to detect the presence of multi-stability.

We note that the correct choice of ML, ∆t, ∆Λn and ∆δ involves properly analyzing the
trade-off between extensive computational times and the accurate prediction and computa-
tion of the averaged macroscopic dynamics, which is not trivial.

Computation of equilibria

We implement a pseudo-arc-length condition –similarly as in [293]– to compute the equi-
libria and the folds near the bifurcations. The method uses a Newton’s search in the two-
dimensional space of the parameter δ and the macro-variable Λn. Suppose a sequence of
equilibria (δi,Λi), i = 1, ..., p have been computed. First, a prediction of the next equilib-
rium is made as (δ̂p+1, Λ̂p+1

n ) := (δp,Λpn)+(δp,Λpn)−(δp−1,Λp−1
n ). After, we compute the next

point (δp+1,Λp+1
n ) by iterating a two-dimensional Newton’s search on a function G(Λn; δ)

defined as:

G(Λn; δ) =
(
F (Λn; δ)
Γ(Λn; δ)

)
,

where Γ(Λn; δ) = [(δ,Λn) − (δ̂p+1, Λ̂p+1
n )] · [(δp,Λmn ) − (δp−1,Λp−1

n )]. This Newton’s method
iterates according to the rule:

(δl+1,Λl+1
n ) = (δl,Λln)− J(δl,Λln)−1G(Λn; δ), l ∈ N∗,

with

J(δl,Λln) =
(
∂F/∂δ ∂F/∂Λn
∂Γ/∂δ ∂Γ/∂Λn

)∣∣∣∣∣
(δl,Λln)

.

The condition for convergence is either ||(δl+1,Λl+1
n )− (δl,Λln)|| ≤ ε1 or l = M1, where ε1

and M1 have been previously set. Once one of the convergence conditions has been satisfied,
after s iterations, we approximate the position of the equilibrium as (δs,Λsn). We determine
whether equilibria are stable or unstable based on the final value of

∂F

∂Λn

∣∣∣∣
(δs,Λsn)

.

V.3.6 Numerical parameters and values
The numerical parameters used in the methods described in the previous sections are pre-
sented in Table V.2.
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Parameter Description Default value

Taff Time-step length to update all spatial locations Taff = 0.025

Tend Long-term simulation time of the microscopic dynamics Tend = 150

theal Healing time theal = 0.05

∆t Time-step length for computation of derivatives ∆t = 4

∆Λn Step size of Λn for computation of derivatives ∆Λn = 0.4/n

∆δ Step size of δ for computation of derivatives ∆δ = 0.0025

ML Number of Liftings to average macroscopic time-stepper ML = 40

ε1 Convergence threshold in Newton’s method ε1 = 0.001

M1 Maximum of iterations in Newton’s method M1 = 50

Table V.2: Numerical parameters, description and default values.

V.4 Results

V.4.1 Dependence of the long-term microscopic system on δ

We show in Figs. V.1 and V.2 (top), using long-term numerical simulations of the micro-
scopic time-stepper, how the microscopic attractors vary when increasing the parameter δ
by a fixed step of size 0.005.

In the computation of these long-term microscopic states, we run the microscopic time
stepper for a population initially concentrated in the center of the domain for a long time
Tmax = 600. Then, for each subsequent value of δ, we take as initial condition the last state
of the microscopic system from the previous simulation and run the microscopic dynamics
for a time Tend.

As δ grows (from an initial value δ = 0.05), the cline-like equilibrium first becomes unsta-
ble before decreasing progressively the number of clusters in which the population divides.
The changes in cluster numbers seem abrupt. Once δ crosses thresholds values, the previous
number of clusters is no longer viable due to an increase in competition. This produces and
increase in deaths which in turn leads to a merger between two existing clusters. Once this
merger occurs, the remaining clusters slowly change their position in the domain until –once
again– they are equally spaced along the diagonal.

Multi-stability and strong hysteresis is detected. When decreasing the parameter δ (with
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the same step size) and taking as initial condition the last microscopic state achieved in
the previous simulation (for the largest δ), the dependence of the microscopic long-term
attractors on the parameter is strongly altered (see bottom of Fig. V.2). Hence, the dynamics
microscopic system are highly dependent on the initial conditions, with long-term patterns
that can vary by one or even two clusters under the same parameter values.

V.4.2 Computation and parameter dependence of the macro-variables
The macro-variables Λn are efficient in capturing the transition from n − 1 or n + 1 to n
clusters. This is shown in Fig. V.3, where the macro-variables are computed at the final
states of the simulation described in Section V.4.1. At the values of δ for which the number
of clusters change to n (or n/2), Λn increases and changes branches.

Hysteresis and multi-stability in the dynamics of the macro-variables are also present.
As before, (and as anticipated) the equilibria change greatly when δ increases or decreases.
During the forward and the backward sweep, Λn jumps between branches of equilibria at
different values of the parameter. The only possible exception occurs at the transition
between the cline-like equilibrium and the microscopic state of 10 clusters.

V.5 Expected results
We expect to construct the bifurcation diagrams of the macro-variables Λn using the equation-
free methodology described in previous sections. Obtained results hint towards a succession
of coupled saddle node bifurcations (folds) occurring for each n = 10, 9, 8, 7, 6, 5, 4. We expect
to explicitly find the regions of multi-stability by superposing these diagrams and finding
the regions where multiple branches co-occur. We conjecture that the results will be similar
as the diagram shown in Fig. V.8.

V.6 Conclusion and perspectives
In this work we use equation-free analysis to study the emergence and stability of macroscopic
patterns of populations along one-dimensional resource gradients. We use a microscopic
individual-based model introduced in [7]. The ‘back-bone’ of the equation-free methodol-
ogy relies in successive shifts between microscopic and macroscopic scales with the use of
carefully constructed operators. We find macroscopic quantities (the macroscopic variables)
which successfully capture characteristics of interest of microscopic behavior, namely cluster
numbers and their dependence on the parameter δ (the spatial competition range). Then, we
construct maps which link microscopic patterns to these macro-variables. With these maps,
together with short simulation bursts of the microscopic system, we intend to compute the
bifurcation diagram happening on low-dimensional space, through which we analyze as well
microscopic behavior. We plan as well in extending our results to analyze the dependence
on the parameter Dm (the individual diffusion coefficient).

Existing theoretical or numerical work on the emergence of multi-modal spatial or phe-
notypic patterns has generally relied on Turing’s stability analysis applied to homogeneous
distributions [8, 302–304, 306, 307]. This approach normally relies on different assumptions
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concerning boundary conditions, population numbers and biological simplifications. To over-
come some of this limitations, we also intend of taking advantage of the versatility of the
equation-free methodology, allowing us to extend our analysis to different boundary condi-
tions and extensions (or variants) of our original model.

Clustering in models of eco-evolutionary dynamics of populations along environmental
gradients has strong implications concerning the emergence and stability of diversity in ab-
sence of geographic isolation. Furthermore, in relation with speciation occurring in parapatry
(when reproduction is sexual). In our analysis, we aim to study the emergence of spatial
and phenotypic patterns and their relation to quantifiable data (which can be measured em-
pirically or experimentally). With this, we hope to contribute to the understanding of the
processes behind the emergence of biodiversity.
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Figure V.8: Schematic picture of expected bifurcation diagram of Λn in terms of the param-
eter δ (left) and regions of multi-stability in grey (right) for n = 10 (panel A), n = 9 (panel
B), n = 8 (panel C), n = 7 (panel D) n = 6 (panel E), n = 5 (panel F), and n = 4 (panel
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