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Resumée

L’astronomie gravitationnelle a débuté en septembre 2015 avec la première détection
de la fusion de deux trous noirs par LIGO. Depuis lors, plusieurs fusions de trous noirs
et une fusion d’étoiles à neutrons ont été observées. Advanced Virgo a rejoint les deux
observatoires LIGO dans la prise de données en août 2017, augmentant fortement
les capacités de localisation du réseau. Afin d’exploiter pleinement le potentiel sci-
entifique de ce nouveau domaine, un énorme effort expérimental est nécessaire pour
améliorer la sensibilité des interféromètres. Cette thèse, développée dans ce contexte,
est composée de deux parties. La première concerne Advanced Virgo: nous avons
développé un budget de bruit automatique pour le bruit de fréquence du laser et
nous avons effectué des mesures de caractérisation optique pour les cavités de bras
kilométriques. Des pertes aller-retour aussi faibles que 80 ppm ont été mesurées. Elle
sont parmi les plus basse jamais mesurées avec un faisceau de cette taille. La deux-
ième partie concerne la conception et le développement d’une cavité de filtrage de
300 m, un prototype pour démontrer la production de lumière squeezing dépendante
de la fréquence avec les propriétés nécessaires pour une réduction du bruit quan-
tique à large bande dans KAGRA, Advanced Virgo et Advanced LIGO. Nous avons
contribué à la fois aux phases de conception et d’intégration du projet. Nous avons
d’abord fait le design optique de la cavité, y compris les spécifications pour l’optique
de la cavité et une estimation détaillée des sources de dégradation pour le squeez-
ing. Nous avons donc développé un système de contrôle pour les miroirs, assemblé
les suspensions et finalement aligné et mis la cavité en résonance avec la lumière laser.

Mots-clés: détection des ondes gravitationnelles, astronomie gravitationnelle,
Advanced Virgo, interféromètres, cavités optiques, stabilisation en fréquence du laser,
bruit quantique, cavités de filtrage, lumière squeezed dépendante de la fréquence.
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Abstract

Gravitational wave astronomy has started in September 2015 with the first detection
of a binary black-hole merger by LIGO. Since then, several black-hole mergers and
a binary neutron star merger have been observed. Advanced Virgo joined the two
LIGO detector in the observation run, in August 2017, highly increasing the local-
ization capabilities of the network. In order to fully exploit the scientific potential
of this new-born field, a huge experimental effort is needed to bring the instruments
at their design sensitivity and to further improve them. This thesis, developed in
this context, it is composed of two parts. The first is about Advanced Virgo : we
have developed an automatic noise budget for the laser frequency noise and we have
performed optical characterization measurements for the kilometric arm cavities.
Round trip Losses as low as 80 ppm have been measured. They are among the
lowest ever measured for beams of these size. The second part is about the design
and development of a 300 m filter cavity, a prototype to demonstrate the frequency
dependent squeezing production with properties needed for a broadband quantum
noise reduction in the future upgrades of KAGRA, Advanced Virgo and Advanced
LIGO. We have contributed to the design and integration phases of the project. We
have first made the optical design of the cavity, including the the specifications for
the main cavity optics and a detailed estimation of the squeezing degradation sources
. We have then developed a local control system for the mirrors, assembled the sus-
pensions, and finally aligned and brought the cavity in resonance with the laser light.

Keywords: gravitational waves detection, gravitational astronomy, Advanced
Virgo, interferometers, optical cavities, laser frequency stabilization, quantum noise,
filter cavities, frequency dependent squeezing.
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Introduction

Gravitational waves are perturbations of the space-time which propagate at the speed
of light and which are emitted by accelerating masses. Their existence has been pre-
dicted by Einstein in 1916 as a consequence of his theory of General Relativity.
In September 2015, almost one century after Einstein’s prediction, gravitational
waves have been directly detected for the first time. The discovery arrived after
more than 50 years of experimental efforts motivated by the great scientific potential
of this new tool to observe the Universe.
The two Advanced LIGO interferometers observed for the first time a gravitational
wave (GW) produced by the fusion of two black-holes at a distance of about 400
Mpc, by measuring a strain of only 10−18 m over a distance of 4 km.
Advanced Virgo, a 3 km interferometer located in Italy, joined Advanced LIGO in
August 2017, participating in the first three detectors observation of a BBH merger
(the fourth seen by LIGO) and in the first observation of a binary neutron stars
(BNS) merger, where for the first time also an electromagnetic counterpart associ-
ated to the gravitational signal has been detected.
The scientific payoff of this achievement is dramatic: with these first observations
alone, it has been possible, just to give a few examples, to prove the existence of bi-
nary black holes (BBH) and the possibility for these objects to merge, to identify the
BNS merging as progenitors of short gamma ray bursts and to have an independent
measurement of the Hubble constant.
The network of second generation gravitational-wave detectors is expected to enlarge
in the next future: a Japanese kilometric scale detector, KAGRA, is currently being
assembled in Kamioka mine and it is expected to become operational in a few years.
Future upgrades of this second generation network are already planned in order to
further increase their sensitivity and better exploit the scientific potential of gravi-
tational waves.
The first part of this manuscript describes the activities I have done in the context of
Advanced Virgo commissioning, that is the phase between the end of the integration
and the beginning of the data taking. The goal is to tune the interferometer and to
reduce the noise sources as much as possible in order to reach a sensitivity interesting
for the data taking.
The first part of the interferometer to be commissioned is the laser source and the so
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called injection system, composed of all the active and passive systems used to sta-
bilize the laser light. Among the properties of the laser light, the stability is crucial
to acquire and maintain the lock of the arm cavities: if the laser frequency is not
stable enough, the control system driving the mirror position is not able to put the
cavity on resonance.
My first activity in the context of AdVirgo commissioning was to perform a noise
budget for the frequency noise, in order to understand which are the main noises
limiting the laser frequency stability and possibly reduce them. For my analysis, I
have investigated the possible sources of frequency noise and for all of them I have
estimated (or measured when possible) a projection of their effects on the frequency
noise. The ultimate goal of this activity is to bring the frequency noise level below
1 Hz RMS, the requirement set for the arm lock acquisition.
The second activity in the context of AdVirgo commissioning was to participate to
the optical characterization on the interferometer arm cavities. The goal of this work
was to check if the optical properties of the cavities were those required to make the
interferometer work properly. The main quantities measured were the cavity finesse,
the round trip losses, the g-factor (which is related to the curvature radius of the
mirrors) and the mismatching between the injected beam and the mode which res-
onates inside the cavity. The measurement of the round trip losses is particularly
interesting for a more general purpose: as we will see in details in the third part of
this thesis, they play a key role when squeezed light is used and for this reason it is
important to have a full understanding and a reliable strategy to measure them.
The sensitivity of second generation GW detectors will be limited in a large fraction
of the spectrum by the quantum nature of the light. The use of squeezed quantum
states of light with modified noise features is being deeply investigated as a strategy
to reduce quantum noise. These states are actually vacuum states of light, whose
amplitude and phase uncertainties (which are equal in ordinary vacuum) are re-
spectively increased and reduced using non-linear crystals. They can be represented
as ellipses in the amplitude-phase plane. In order to reduce quantum noise in the
whole interferometer bandwidth this squeezing ellipses has to be rotated of an angle
which depends on the frequency. Such frequency dependence can be achieved by
reflecting a frequency-independent squeezed state by a high finesse detuned cavity,
called filter cavity. The rotation of the squeezing angle has been experimentally
demonstrated in the MHz region and, more recently, in the kHz region. The second
part of this work concerns the design and development of a full scale filter cavity
prototype, implemented in the former TAMA interferometer infrastructure, at the
National Astronomical Observatory of Japan (NAOJ). The goal of this experiment
is to demonstrate for the first time the production of frequency dependent squeezing
with a rotation angle of ∼70 Hz, which is the frequency required for an optimal
quantum noise reduction in second generation GW interferometers.
First, I have contributed to the optical design of the cavity. Since squeezed states
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are easily degraded by optical losses, it is important to design the cavity in order to
reduce as much as possible all the loss sources. Since mirror defects are responsi-
ble for most of the light scattered out of the cavity, the requirement on the mirror
flatness is a crucial parameter to be set. I used FFT simulations of the cavity with
realistic mirrors map in order to set a requirement for the mirror flatness. Along with
this analysis, I have performed a squeezing degradation budget taking into account
possible sources of squeezing degradation other than cavity losses.
In the last part of this manuscript I describe all the experimental work done in order
to achieve the lock of the cavity: the installation of the suspensions system, the
preparation and installation of the mirrors both of the cavity and the injection tele-
scope, the development of mirrors local controls and the preparation of the analog
electronic needed for the lock of the cavity.
This thesis is divided into three parts, each composed of three chapters. In the
following an outline of the structure is presented:

• PART I - Direct detection of gravitational waves

– Chapter 1 We recall the basis of GW theory, their production mecha-
nism and most promising sources. Finally we briefly discuss the scientific
interest of GW detection.

– Chapter 2 We illustrate the principle of the GW detection with Michel-
son interferometers, discussing their noise limitation and strategies to im-
prove their configuration.

– Chapter 3 We present the first network of interferometers and their re-
sults, then we describe the main upgrades which brought to the second
generation network and to the first gravitational-wave detections. We
present the observations performed and we summarize their scientific im-
plications.

• PART II - Optical and noise studies for advanced Virgo

– Chapter 4 We illustrate the main features of AdVirgo, with particular
attention to its injection system and we discuss its design sensitivity.

– Chapter 5 We present the work performed to estimate the frequency
noise budget of the pre-stabilized laser. We detail the procedure done to
automate the noise budget and the improvement history of the frequency
noise.

– Chapter 6 We describe the techniques used for the arm cavity charac-
terization and the main results obtained.
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• PART III - Filter cavity for frequency dependent squeezing produc-
tion

– Chapter 7We introduce a suitable formalism to describe squeezed states
and we use it to compute the quantum noise of the interferometer and its
potential reduction by using frequency dependent squeezing.

– Chapter 8 We present the optical design of the 300 m filter cavity in
TAMA including the simulations done to set requirements on the mirror
quality and the squeezing degradation budget. We describe the motivation
for using long filter cavity and compare their performances with those of
a technique recently proposed which uses EPR entanglement.

– Chapter 9 We describe the filter cavity installation and commissioning.

This work has been carried out from October 2014 to October 2017. The commis-
sioning activity has been performed partly on the Virgo site and at APC, for the
analysis of the data. The work on the filter cavity experiment has been carried out
during 9 months spent at NAOJ, while some preparatory works has been done at
APC.
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Direct detection of gravitational
waves
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CHAPTER 1

The gravitational radiation

In this chapter, gravitational waves (GW) are introduced in the context of Gen-
eral Relativity as solutions of linearized Einstein equations. Then, their production
mechanisms are presented as well as the most promising sources for Earth-based
detectors. In the last section we try to point out the scientific interest of their de-
tection, showing that the potential of this unprecedented tool certainly rewards the
long quest towards their detection.

1.1 Wave solution of the linearised Einstein equations

In the Einstein theory of special relativity [1], the space-time is described as a 4-
dimensional manifold where the distance between two neighboring events is

ds2 = ηµνdx
µdxν (1.1)

where ηµν is the Minkowski metric, describing flat space, which in cartesian coordi-
nate is

η =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


In General Relativity [2] this distance assumes a more general form:

ds2 = gµνdx
µdxν (1.2)

Here the metric is no longer flat and gµν accounts for the curvature of the space-
time. This representation allows to encode the effect of gravitation, which is no
longer regarded as a force but as a modification of the space-time geometry.
General relativity also provides a relation between the space-time curvature and the
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CHAPTER 1. THE GRAVITATIONAL RADIATION

matter and energy distribution which produces it: the Einstein field equations:

Gµν =
8πG

c4
Tµν (1.3)

where c is the speed of light, G is the Newton’s gravitational constant, Gµν , is the
Einstein tensor, a non linear function of the metric gµν and its derivatives and Tµν is
the stress-energy tensor, accounting for the matter and energy distribution. In many
cases, as in the vicinity of the Earth, the deviation from the flat metric induced
by the presence of a matter-energy distribution is small enough to allow the metric
tensor gµν to be written in the form

gµν = ηµν + hµν (1.4)

where hµν is a small quantity describing the deviation from the flat Minkowski metric
ηµν , thus encoding the effect of gravitation.
In this week field approximation the Einstein equations become linear. Moreover, it
is possible to choose an opportune set of coordinates such that, in the absence of
sources, they assume the form:(

∇2 − 1

c2

∂2

∂t2

)
hµν = 0 (1.5)

This is a wave equation for the space-time perturbation hµν and its solution is a
gravitational wave:

hµν(~x, t) = εµν exp i(2πft− ~k · ~x) (1.6)

where f is the frequency of the waves, ~k is the wave vector and εµν is the polarization
tensor.
This means that perturbations propagate at the speed of light in the space-time,
modifying its metric. It can be shown that these waves have only two independent
polarizations, orthogonal to the propagation direction. A general solution for a wave
propagating in the z-direction is

εµν =
(
h+ε

+
µν + h×ε

×
µν

)
exp i(2πft− ~k · ~z) (1.7)

where ε+µν and ε×µν are a basis for the polarization tensor εµν and writes:

ε+µν =


0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

 ε×µν =


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0


These two polarizations are usually referred to as plus and cross, according to the
shape of the equivalent force fields that they produce. This points out a peculiar
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feature of the gravitational wave radiation, which has been exploited for its detection:
it modifies the space-time in a differential way. In fact, the distance between test
masses changes at the wave frequency, with opposite sign in orthogonal directions.
The relative change in the distance, the strain amplitude, is the amplitude h of the
gravitational wave. The effect of the passage of a gravitational radiation on a set of
test masses is shown in Fig. 1.1 for the two polarizations.

Figure 1.1: The effect of the passage of a gravitational radiation on a set of test
masses for the plus polarization (upper line) and cross polarization (lower line). The
propagation direction is assumed orthogonal to the page.

1.2 Production and sources of gravitational waves

In analogy with electromagnetic waves, which are produced by the acceleration of
charges, gravitational waves are produced by the acceleration of masses. Also in this
case, an exact description of the wave emission can be given using retarded potentials
[3] but if the size of the source is small with respect to the wavelength, the radiation
can be usefully approximated with a multipole expansion. The energy conserva-
tion laws (as the charge conservation for the electromagnetic radiation) makes the
monopole term vanish. The linear and angular momentum conservation do the same
for the electric and magnetic dipole terms. The first non zero term of the expansion
is then the quadrupole one. Einstein found that the gravitational wave strain h at a
distance r generated by the quadrupole moment of a system is:

hij(t) =
2

r

G

c4
Q̈ij(t− r/c) (1.8)

The traceless mass quadrupole moment is defined as a function of the source mass
density ρ(~x, t)

Qij =

∫
d3xρ(xixj −

1

3
r2δij) (1.9)

where δij is the Kronecker delta. The quadrupole moment of an object of dimension
R, mass M , and an asymmetry in the mass distribution quantified by ε, can be
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CHAPTER 1. THE GRAVITATIONAL RADIATION

approximated as Q ' εR2M . If T is the characteristic timescale of the quadrupole
moment variation, and we define v a characteristic speed for the mass distribution
elements v = R/T , Eq. 1.8 can be rewritten as

h ' εG
c2

M

r

(v
c

)2
(1.10)

The multiplicative factor G/c2 ' 10−29 m/Kg is so small to make impossible the
production of detectable gravitational waves on Earth. An instructive calculation
reported in [4] estimates that the strain produced by a pair of masses of 1 tonne each,
connected by a rod of 2 m rotating at a frequency of 1 kHz, at a distance of one
GW wavelength ( λ = 300 km) is about ' 10−39 which is several order of magnitude
lower that the sensitivity achievable by current and next generation GW detectors.
Gravitational waves are carrying energy away from their sources. The rate at
which this energy is carried away, that is, the luminosity is written in terms of
the quadrupole moment as

ĖGW =
c3

16πG

∫
| ḣ |2 dS =

1

5

G

c5

...
Qij

...
Qij (1.11)

the integral is computed over a sphere of radius r and the quantity on the right-hand
side must be averaged over several periods.
Using the approximated formula for the quadrupole momentum and writing the mass
as a function of the Swartzschild radius RSch = 2GM/c2 the luminosity can be cast
in the form

ĖGW = ε
c5

G

(v
c

)6
(
RSch

R

)2

(1.12)

from which it is evident that more compact sources, with more asymmetric mass
distribution and higher velocity are emitting energy in the form of gravitational
radiation at a higher rate.

1.3 Astrophysical sources of gravitational waves

According to previous considerations, it is clear that only astrophysical sources are
capable of producing detectable gravitational waves. The expected amplitude and
frequency of the emitted radiation for different sources can be predicted after calcu-
lating the evolution of their quadrupole moment. In order to detect a gravitational
signal its amplitude should be above the detector sensitivity at the frequency of the
gravitational wave. Another important parameter to be considered is the expected
occurrence rate of the source. Signals can be divided, according to their time du-
ration with respect to the observation time, into transient signals and continuous
signals. In the following are reported the most promising astrophysical sources for
the earth based GW detectors.
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1.3.1 Compact binary coalescence

A compact binary system can be composed by two neutron stars (NS-NS), two black
holes (BH-BH) or a neutron star and a black hole (BH-NS). Gravitational radiation
is the main mechanism through which they loose energy. The strain amplitude of
the gravitational waves at a distance r from the source is:

h ' 10−21 ·
(
M
M�

)5/6( f

100 Hz

)5/6( r

15 Mpc

)−1

(1.13)

Where f is the GW frequency (which is the double of the orbital frequency) M is
the chirp Mass defined as a function of the reduced mass µ = m1m1

m1+m2
and the total

mass M = m1 +m2 as
M = µ2/3M2/5 (1.14)

The energy loss makes the orbit shrink with time, while the frequency increases and
so does the wave amplitude, according to Eq. 1.13. The wave frequency increases
with time as

f =
5

8π

(
c3

GM

)5/8

(tc − t)−3/8 (1.15)

The two compact objects will eventually merge in a single one at the time tc.
The rate of NS-NS mergers is estimated on the observed BNS systems and on the-
oretical models of their formation and evolution. It has been updated using the in-
formation on the first BNS merging detection to 1540+3200

−1220Gpc−3yr−1 [5]. The rate
of BBH mergers estimated after the first three detections were 12− 213 Gpc−3yr−1.
While the lack of detection of NS-BH during the fist LIGO observation run allowed
to set an upper limit of 3600 Gpc−3yr−1.

1.3.2 Core collapse supernovae

The collapse of the core of a massive star, also known as Supernova Type II event, is
supposed to produce a strong gravitational waves emission. Stars with masses larger
than 8M� are able to fuse elements with increasing atomic mass up to Iron. Fusion
of higher atomic mass elements is energetically unfavourable and for that reason the
core becomes inert. When it exceeds the Chandrasekhar mass of about 1.4M�, elec-
tron degeneracy pressure is no longer able to compensate for the gravitational com-
pression: the core matter is transformed in neutrons and the star begins to collapse.
When the density increases too much, neutron degeneracy makes the collapse turns
into a bounce (which can be followed by many others depending on the damping de-
gree). If the collapsing is not symmetric the change in the quadrupole moment of the
mass will give rise to a burst of gravitational waves. Since the physics of the process
is extremely complicated and still not well understood, it is difficult to have precise
estimations for the evolution of the quadrupole moment of the system. More recent
models predict a gravitational wave strain of order of 10−23−10−20 for a core collapse
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CHAPTER 1. THE GRAVITATIONAL RADIATION

event at 10 kpc, signal durations between 1 ms and few s, frequencies between 1 and
few 1 kHz and total emitted energy between 10−12 − 10−7M�c

2. If such predictions
are true, detection of core-collapse events by second-generation GW detector will be
limited to our galaxy and the Small and to Large Magellanic Clouds. The expected
rate of core collapse supernovae in the Milky Way is (0.6− 10.5) · 10−2yr−1 and it is
(1.9− 4.0) · 10−3yr−1 in the combined Magellanic Clouds [6].

1.3.3 Pulsars

Pulsars are rotating neutron stars emitting a beam of electromagnetic radiation. The
emission is originated by the presence of a misalignment between the rotation and
the magnetic axes of the star at the expenses of their rotational energy. The beam is
emitted in correspondence of the magnetic pole of the pulsar and is pointing toward
Earth once every period, giving the pulsed appearance to the radiation. After the
first observation of a pulsar made by Hewish and Bell in 1967 [7], more than 2000
pulsars have been discovered. Most of them emit at radio frequencies. In order to be
a source of gravitational waves they have to show a certain degree of asymmetry, to
allow the quadrupole moment to vary with time. The expected gravitational wave
strain is [4]

h ' 3 · 10−25 ·
( ε

10−6

)( I

10−38kg ·m2

)(
f

1 kHz

)2(10 kpc

R

)
(1.16)

were I is the moment of inertia and ε, the equatorial ellipticity, accounts for the
asymmetry of the system. Such asymmetry can have different origins, as a non-
symmetric residual strain from the star birth or a strong internal magnetic field not
aligned to the rotation axis [8]. Despite the low expected strain the fact that the
signal is continuous and can be integrated for a long time increases the SNR and thus
the chances of detection. Moreover, if the source parameters (position, frequency,
spin-down) are well identified, a targeted search can be performed. The frequency of
emitted GW is expected to be twice that rotation frequency. Many targeted searches
have been carried out on data from first-generation detectors allowing to put upper
limits on the amplitudes of the generated GW and thus on their structure asymmetry
[9, 10]. Since GW emission brings to a loss of rotational energy and decreases the
spin frequency, the observation of such a spin-down can be used to place an indirect
upper limit on its gravitational wave emission, known as spin-down limit. The most
recent research for signals from the Crab and Vela pulsars conducted on Virgo VSR4
produced a strain upper limit for Crab of 6.9 · 10−25 about a factor of 2 below the
spin-down limit. The corresponding upper limit on star ellipticity is about 3.7 · 10−4

[11].
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1.3.4 Stochastic Background

A stochastic background of gravitational radiation is a random GW signal produced
by the superposition of many weak, independent, unresolved sources. These sources
can be astrophysical such as those discussed above: unresolved compact binary coa-
lescences of black holes and neutron stars, rotating neutron stars, supernovae or can
be associated with stochastic processes in the early Universe: cosmic strings, infla-
tionary models, phase transitions and the pre-Big Bang scenario. In analogy to the
cosmic microwave background, the cosmological stochastic background is expected
to be stationary, gaussian, unpolarized and isotropic while this is not the case for
the astrophysical stochastic background since the distribution of galaxies with dis-
tances up to 100 Mpc is not isotropic and if the interval between events is short with
respect to the duration, the integrated signal may result in continuous, "popcorn
noise" background [12]. A rough computation reported in [13], based on the statistic
obtained by the BBH mergers observed [14], estimates that the total rate of binary
black hole mergers is between ∼ 1 per minute and a few per hour. Assuming for
each signal a duration between a few tenths of a second to ∼ 1 second, the fraction
of time that the signal is not present in the data is � 1. On one hand, from this
background it could be possibile to extract information on compact objects physics
such as the star formation history. On the other hand it could be a "foreground"
that would conceal the stochastic background of cosmological origin.

1.4 Why do we care about detecting gravitational waves?

Started in the 1960s, the quest for gravitational waves has been one of the longest
in the history of science. The huge effort done to detect the extremely faint effects
of the gravitational radiation are not only motivated by the will to confirm Ein-
stein predictions. So far most of the information we had about the Universe has
been extrapolated from the electromagnetic radiation coming from it. Gravitational
radiation shows complementary features with respect to the electromagnetic one:

• EM radiation is emitted by accelerated charged particles and due to the fact
that the matter is generally neutral, it is likely to encode information of small
regions of the source (and have small wavelength). On the other hand GW
radiation, being produced by acceleration of large masses can bring information
of the overall motion of the object (and have a longer wavelength).

• Since EM radiation interacts strongly with matter it is easier to be detected
but at the same time it is easily scattered or absorbed during its path from
the source to the observer. Conversely GW radiation interacts very weakly
with the matter and, despite the fact it is harder to detect, it is able to convey
uncorrupted information from remote sources.

13



CHAPTER 1. THE GRAVITATIONAL RADIATION

Thus gravitational waves represent a completely new tool to observe the Universe
and can address open questions in fundamental physics, astrophysics and cosmology.
The scientific payoffs in each of these fields are remarkable and will increase with the
number and the strength of detected events.

1.4.1 Physics with gravitational waves

Despite the fact that General Relativity (GR) is a "simple" and effective way to
describe gravity and its predictions have proven to be consistent with all the exper-
imental observations so far, alternative theories have been proposed over the years.
The main motivations were the attempt to quantize gravity and more recently to
address cosmological issues associated with dark matter and dark energy. Proposed
alternative theories give predictions which contradicts those of general relativity only
in the strong field regime. Observing compact binary coalescence will allow to study
the two-body motion of a compact-object in highly nonlinear regime, providing data
for accurately testing strong-field dynamics of general relativity, allowing to confront
and possibly rule out different theories of gravity [15].
The search for non-standard polarizations, predicted by alternative theories could
contribute to these investigations. Constrain of the speed of GW waves, which can
be determined comparing the arrival time on earth of a possible electromagnetic
counterpart provides an additional test of GR.

1.4.2 Astrophysics with gravitational waves

Detection of GW from inspiralling binary of neutron-stars can be used to obtain
physical information such as mass, spin, radius and Equation of State (EoS) of their
components. As the two body approach each other their orbits start to be perturbed
by the tidal forces thus the waveform emitted encodes information on the neutron
star structure and EoS of the nuclear matter [16].
We will see how the coincident observation of GW170817, the first gravitational
wave radiation detected from a BNS coalescence, with gamma ray burst (GRB)
could confirm that such events are progenitors of at least some of the short-duration,
hard-spectrum GRB observed. Moreover a network of gravitational wave detectors
can provide a good localization of the BNS mergers, allowing for an effective EM-
follow up, as it happened with GW170817.
Gravitational waves from merging of BBH contains the information on the spin of
the two black holes, which is an important hint to discriminate between different
formation mechanisms.
In case of a supernovae, detection of the associated GW, originated in its core, would
provide information on the general degree of asymmetry of its dynamics. Moreover it
can inform on the explosion mechanism, on the evolution of the proto-neutron star,
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the rotation rate of the collapsed core and the nuclear EoS [6].
Observation of continuous GW signals from pulsar would directly inform on the
source parameters and in particular on their ellipticity, while upper-limits on this
can be set also in case of non-detection. Studying relationship between the GW
emission frequency and the rate of EM pulses would possibly give information on
the mechanisms responsible for this asymmetry. It will be also useful to investigate
possible phase discontinuities and their relations with changes in the crust stresses.
Moreover, since not all the spinning neutron stars are supposed to emit EM radiation,
GW could be the only way to observe EM-silent neutron stars.

1.4.3 Cosmology with gravitational waves

Since the observation of a GW from a merger of compact object with a network of
detectors will allow a direct measurement of the source distance, this events can be
used as standard sirens to independently calibrated distances. If the redshift of the
source it is also known, these two informations can be combined to measure cosmo-
logical parameters such as the Hubble constant [17]. However, since a redshifting of
frequency is indistinguishable from a rescaling of the masses, the source redshift has
to be obtain in an independent way. A first option is to use the presence of an EM
counterpart from which to deduce the host galaxy of the event and thus the redshift.
This method has been succesfully used with GW170817 and its EM counterpart [18].
The possibility to extract the redshift with other means has been explored in order
to allow the measurements of cosmological parameters with GW observation alone.
The main proposed methods are:

• By using statistical approach on many observations, using error regions on the
sky derived from observations from a network of detectors to limit the possible
number of host galaxies [17, 19].

• By measuring tidal effects in binary NS-NS or BH-NS merger which depends
on the rest-frame mass (assuming to know the EoS) [20].

• By using information encoded in the postmerger signal which, according to
numerical simulations, consists in a short burst with a characteristic frequency
depending of the rest-frame mass of the sources [21].

• By exploiting the narrowness of the mass distribution of the neutron star pop-
ulation [22]: neutron star masses are expected to lie in a narrow range, once
the shape is known the measured (redshifted) masses can be compared with
expected ones to infer the redshift.

While through cosmic microwave background we can observe the Universe back
to roughly 300.000 years after Big Bang, detection of cosmological GW background
will provide a unique chance to observe the Universe at its origins up to ∼ 10−27 s
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after the Big Bang [23]. The amplitude and frequency dependence of the expected
spectrum of this background radiation is subjected to considerable uncertainty ac-
cording to the models used to predict it. Standard inflation model predicts a nearly
flat spectrum over a very wide frequency range but there are alternatives which fore-
see both increasing or decreasing with frequency. Being able to detect them will be a
test for the early universe cosmology as it will help to investigate possible competitive
mechanisms able to generate primordial GW radiation.
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CHAPTER 2

Interferometric gravitational waves detectors

In this chapter we will present the working principle of a Michelson interferometer as
a detector of gravitational waves, illustrating the features which makes it particularly
suitable for this extremely precise measurement. In the following we list and describe
the noises which limit the sensitivity of this instrument. In the last section we discuss
improvement from the simple Michelson scheme, such as the integration of resonant
cavities in the arms and addition of power and signal recycling mirrors, as strategies
to increase the detector sensitivity.

2.1 Interferometer working principle

In the previous chapter we have seen that gravitational waves modify spacetime
curvature. The most direct way to observe a gravitational wave is to measure the
change that its passing induces in the time taken by the light to travel between two
free-falling masses. Recalling that for a light-like interval ds2 = 0, if the metric is
slightly perturbed by the presence of a gravitational wave, we have

cdt2 = (ηµν + hµν)dxµdxν (2.1)

Assuming to have two suspended mirrors, the time taken by the light to go from
the input to the end mirror will be∫ τe

0
dt =

1

c

∫ L

0

√
1− h11(t)dx '

∫ L

0
(1− 1

2
h11(t))dx (2.2)

where we took a first order approximation. Moreover, for the sake of simplicity,
we assumed the mirrors to be along the x-axis and the gravitational wave to be
plus-polarized with an amplitude small enough to take only the second order of the
square root Taylor expansion. Assuming h11 = h · e2πifGWt, with the substitution
t = L/c1, Eq. 2.2 becomes

1We can neglect the effect of the gravitational wave on this relation.
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∫ τe

0
dt =

L

c
+

h

4πfGW
(e2πifGW

L
c − 1) (2.3)

The same calculation can be done for the time taken by the light to come back to
the input mirror, with the substitution t = (2L−x)/c. The round trip time becomes:∫ τrt

0
dt =

2L

c
+

h

4πfGW
(e2πifGW

2L
c − 1)︸ ︷︷ ︸

∆τrt

(2.4)

The second term, ∆τrt, represents the round trip time variation due to the
gravitational-wave perturbation. In case the GW frequency is small with respect
to the round trip time, i.e fGW � L/c, ∆τrt can be approximated at the first order
as:

∆τrt =
2L

c

h

2
(2.5)

This means that the round trip time variation induced by a gravitational wave
is a fraction h/2 of the unperturbed round trip time and it corresponds to a length
variation of

∆L

L
=
h

2
(2.6)

If we use a continuous laser of frequency f , the phase delay given by GW is:

∆φ = 2πflaser ·∆τrt (2.7)

From Eq. 2.7, it is clear that a change in the frequency causes also a phase shift,
which is indistinguishable from a time delay induced by the gravitational wave. Using
a Michelson interferometer, which compares the phase of the beams having travelled
in orthogonal arms, it is possible to cancel out frequency fluctuations as long as the
arms are symmetric. Moreover, in the presence of Fabry-Perot cavities in the arms,
it is possible to use the common length of the arms as a reference to stabilize the
laser.2 In addition the differential effect of the gravitational wave is exploited to gain
a factor of two in the signal. In fact Eq. 2.4 can be written, for a beam propagating
in the y direction, simply by considering that h11 = −h22. Assuming again a plus
polarization, we find a round trip time difference between the two arms of

∆τitf =
h

2πifGW
(ei2πfGW2L/c − 1) = h

2L

c
sinc

(
2LfGW

c

)
e2πfGWL/c (2.8)

where sincα = sinα
α .

The corresponding phase-shift, obtained by substituting ∆τitf in Eq. 2.7, is

2Alternative configurations can stabilize the laser using a cavity as a reference and detect GW
by measuring length changes of the other cavity using the stabilized laser.
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Figure 2.1: Frequency response of a simple Michelson interferometer with arm length
of 100 km (blue line), 10 km (red line) and a Michelson interferometer with Fabry-
Perot cavities of 3 km and with a finesse of 450 (yellow line).

plotted in Fig. 2.1 for a simple Michelson interferometer with arm length of 100 km
(blue line) and 10 km (red line). We remark that:

• When fGW � 2L/c the amplitude of the effect increases with the length of the
arms.

• When the frequency becomes comparable with the round trip time, the effect
starts to decay as 1/fGW.

• When fGW is an integer multiple of the round trip time c/2L no signal is
generated.

2.2 Sensitivity limits of interferometers

In order to be able to detect gravitational waves, we must ensure that the signal
produced by their passing is larger than the random variation of the output in the
absence of gravitational waves. This random variation, usually called noise, can be
regarded as a random time series s(t) and can be characterized by its single side
Power Spectral Density defined as

S(f) = lim
T→∞

2

T

∣∣∣∣∫ +T

−T
s(t)e−2iπftdt

∣∣∣∣ (2.9)
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which measures the amount of time variation in the time series, occurring at fre-
quency f [4]. Unlike the Fourier transform, the power spectrum doesn’t keep the
information of the phase of the sinusoidal components, which has no relevance for a
random time series. The amplitude spectral density is defined as

S̃(f) =
√
S(f) (2.10)

2.2.1 Shot noise

Figure 2.2: Optical scheme of a Micheson interferometer.

A Michelson interferometer, as the one sketched in Fig. 2.2 can convert a dif-
ferential change in its arms length into a change in the power exiting from the anti-
symmetric port. An evident limit to the sensitivity is thus set by the smallest power
change that we are able to detect. It can be easily shown that for a simple Michelson
interferometer, where for simplicity we took a 50:50 beamsplitter, the power at the
dark port is given by

Pout =
Pin

4
(R1 +R2)(1 + C cosφ) (2.11)

where R1 and R2 are the end mirrors power reflectivities and C is the contrast of
the interferometer defined as

C =
2r1r2

R1 +R2
(2.12)

with r1 and r2 end mirrors amplitude reflectivities.

The phase difference φ is composed by a static part φsta and a part induced by the
passing of the gravitational wave φgw. If we assume R1 = R2 = 1 and φgw << φsta,
keeping only the first order term we obtain
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Pout =
Pin

2
[1 + C cos(φsta)− C sin(φsta)φgw] (2.13)

The change in power originated by the passing of a gravitational wave is

δPgw =
Pin

2
C sin(φsta)φgw (2.14)

Its maximum, as a function of the static phase φsta, occurs when φsta = π/2, which
corresponds to the mid-fringe condition for Pout.

In the following we present a semiclassical description of the noise due to quantum
nature of light, a complete quantum description, which will be essential for describing
the use of squeezed light as a mitigation technique for this noise, will be given in the
third part of the thesis.
The arrival of photons on a photodetector are discrete independent events, thus
described by a Poissonian distribution. The probability to count N events in an
interval of time when we have an average of N̄ is

P (N) =
N̄Ne−N̄

N !
(2.15)

If N̄ >> 1, the standard deviation of the distribution σ is equal to
√
N . Given

Pout, the average number of photons N̄ impinging on a photodiode with quantum
efficiency η in a time interval δT is

N̄ =
ηPoutδT

~ω
(2.16)

thus the power fluctuation associated with the Poissonian statistic will be

δPshot =
√
N̄

~ω
ηδT

=
Pout~ω
ηδT

(2.17)

The ratio between the change in power originated by the gravitational wave (the
signal) and that originated by the indetermination in the arrival time of photons (the
shot noise) is

δPgw

δPshot
=

√
ηPinδT

~ω
C sinφ√

(1 + C cosφ)
φgw (2.18)

This time the ratio is maximized when cosφ = −1+
√

1−C2

C , which is close to the
dark fringe condition. Under this condition, the minimum detectable phase change
is found imposing δPgw = δPshot

δφmin =

√
~ω

ηPinδT
(2.19)

This corresponds to an amplitude spectral density of
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hshot =
λ

2πL

√
~ω
ηPin

' 5 · 10−21

[
1√
Hz

]
(2.20)

assuming λ = 1064 nm, L = 3 km, Pin = 20W.

2.2.2 Radiation pressure noise

The fact that photons arrive not equally spaced in time and that they carry a non-
zero momentum causes a fluctuating radiation pressure force on the test masses which
reflect the light. This is responsible for a displacement noise of the test masses lim-
iting the sensitivity of the interferometer. The fluctuation in the radiation pressure
force exerted on a perfectly reflecting mirror is related to the power fluctuation of
the light impinging on it as

δF =
2δP

c
(2.21)

As before, the power fluctuation are generated by the non constant arrival time of
the photons on the mirror and the corresponding amplitude spectral density for the
force fluctuations is

F (f) =

√
8π~P
cλ

(2.22)

which in turn corresponds to a displacement spectrum for each mass of

x(f) =
F (f)

M(2πf)2
=

1

M(2πf)2

√
2π~P
cλ

(2.23)

where M is the mirror mass. The radiation pressure noise will be

hrp(f) =
2

L
x(f) (2.24)

where the factor 2 comes from the fact that fluctuations in the two arms are anti-
correlated.3 The quantum noise is given by the sum of these two contributions:

hqn =
√
h2

shot + h2
rp (2.25)

As can be seen in Fig. 2.3, at low frequency it is dominated by the radiation pressure
which scales as 1/f2, while at high frequency it is dominated by the shot noise, which
is independent of the frequency. Given a frequency f , it is possible to find a value for
the power that minimizes hqn. The locus of all this minima, called standard quantum
limit, is

hSQL =
1

πfL

√
~
M

(2.26)

3Even if this semiclassical description brings to correct results, the complete quantum picture
proposed by Caves [24], presented in the following, will relate radiation pressure noise only to the
vacuum fluctuations entering the ITF darkport.
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Given an interferometer with arms length L and mirror masses M, the standard
quantum limit (SQL) seems to represents a lower limits for the sensitivity achievable.
Although connected to the fundamental uncertainty principle of quantum mechanics,
SQL is not a fundamental limit itself. We will see how the use of quantum states of
light with modified noise features, so called squeezed light, will allow to circumvent
this limit.

Figure 2.3: The strain equivalent quantum noise is plotted for an interferometer with
M = 50 kg, L = 3 km, P = 10 MW. The two contribution of radiation pressure noise
and shot noise are shown in blue and red respectively.

2.2.3 Seismic Noise

Everywhere on Earth the ground is subjected to a persistent vibration originated
by different factors referred to as seismic noise. Low frequencies (below 1 Hz) are
mainly due to natural factors and in particular to ocean waves. The peak between
0.1 and 0.3 Hz, known as microseismic peak, is expected to be generated by pairs of
ocean wave trains of opposing propagation directions with half the seismic frequency
[25]. At high frequency (above 1 Hz), seismic noise is mainly produced by human
activities. A typical vibration spectrum above 1 Hz is given by [26]

xs = 10−7

(
1Hz

f

)2 m√
Hz

(2.27)

To reach a sensitivity of 10−23 at 100 Hz such noise need to be attenuated of more
than 10 orders of magnitude. Interferometers exploit the filtering behavior of the
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pendulum in order to isolate their test masses from seismic noise. The equation of
motion of a mass m suspended to a wire of length l writes mẍ = −(mg/l)(x− xsus),
thus the transfer function between the mass motion and the motion of the suspension
point is given by

x

xsus
=

f2
0

f2
0 − f2

(2.28)

where f0 = 1
2π

√
g
L is the pendulum resonance frequency. Above the resonance fre-

quency the transfer function can be approximated as:

x

xsus
' −f

2
0

f2
(2.29)

This shows that the pendulum acts as a second order lowpass filter and that com-
bining a cascade of pendulums an arbitrary level of attenuation can be obtained.
Nevertheless there are physical limitations to the number of pendulums we can use
and on how low their frequency resonance can be pushed. Pendulum-like seismic
noise attenuators used for suspending mirrors in second generation gravitational
wave detectors, are conceived to have resonance frequencies lower than 1 Hz. Below
this frequency detectors sensitivity is limited by seismic noise.

2.2.4 Newtonian Noise

The change in the gravitational field in the vicinity of the interferometer produces
a displacement noise for the test masses which is not possible to shield. Such a
change is caused by a variation of the mass distribution induced by seismic waves in
the ground and density fluctuations in the atmosphere. According to [27], given a
ground motion spectrum xg, the equivalent strain noise is

hnn =
G√
3π

ρ

L

xg
f2

(2.30)

where L is the arm length, G is the gravitational constant and ρ is the ground
density near the instrument.
The seismic contribution, together with the atmospherical one that has a similar
magnitude [28], are expected to limit the sensitivity of second and third generation
gravitational wave detectors below 20 Hz. Since there is no means to isolate test
masses from such disturbance, the strategy is, at first, to locate the instrument in
a quiet place. It has also been observed that the effects of the newtonian noise are
reduced of about one order of magnitude by going underground. For this reason
the Japanese detector KAGRA is being installed in Kamioka mine and Einstein
Telescope, the European third generation gravitational waves detector is also planned
to be built underground. The possibility to measure independently the newtonian
noise and subtract it from the data has been successfully tested [29]. Seismic arrays
have been installed around Advanced LIGO and are being currently installed in
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Advanced Virgo at this scope.

2.2.5 Thermal Noise

Thermal noise is due to the fact that each vibration mode of the mirrors and of their
suspensions is randomly excited with an energy proportional to the temperature T
of the system. In practice, this consists in a vibration of the atoms of the system
which results in a displacement noise for the test mass. The fluctuation-dissipation
theorem states that there is a relation between the response of a driven dissipative
system and the spontaneous fluctuations of a generalized variable of the system in
equilibrium [30]. From this relation is possible to deduce the power spectral density
of a dissipative force Fth acting on a system where x(t) is the position of a mass
and ẋ (t) = v (t) is its velocity. The equation of motion for the system in frequency
domain can always be written as

Fth (ω) = Z (ω) ṽ (ω) (2.31)

where Z (ω) is the impedance. By defining the admittance of the system as Y (ω) =

Z−1(ω) and recalling that in frequency domain ṽ (ω) = iωx (ω), the relation above
can be rewritten as

x(ω) = Y (ω)
Fth (ω)

iω
(2.32)

According to the fluctuation-dissipation theorem, power spectrum of the thermal
fluctuation force SF (ω) is given by

SF (ω) = 4kbT Re [Z (ω)] (2.33)

where kb is the Boltzmann constant and T is the temperature of the system. This
relation, together with Eq 2.32, allows us to compute the power spectral density for
the mass position

Sx = |Y | SF
ω2

=
4kbT

ω2
Re [Y (ω)]

In our systems, the dissipative forces causing thermal noise are mainly due to internal
damping of the material composing the mirrors and their suspensions. An effective
model to describe this effect is an extension of Hooke law [31]:

F = k [1 + iφ (Ω)]x (2.34)

where the imaginary coefficient φ, the loss angle, accounts for the dissipation of the
system, introducing a delay between the force applied and the displacement. The
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corresponding spectral density is

Sx =
4kbTkφ

φ2k2 + ω (k −Mω2)2 (2.35)

which, above the resonance, can be approximated as

Sx =
4kbTφω

2
0

Mω5
(2.36)

where ω0 is the angular frequency at resonance.

2.2.5.1 Pendulum thermal noise

We used this model to compute the pendulum thermal noise spectrum for a sus-
pended mirror. The elastic constant of the pendulum is the sum of the lossless
constant provided by gravity

kg =
Mg

L

(where M is the mirror mass and L is the wire length) and a smaller constant which
originates from the wire elasticity and is affected by losses

kel =
Nw

√
TwEI

2L2
(1 + iφw)

with Nw number of wire, E wire material Young module, L wire length, I moment
of inertia of the wire cross section, Tw tension of each wire and φw is the loss angle
of the wire. Since kg � kel we have

ktot ≈ kg
(

1 + i
kel
kg
φw

)
The loss angle is

φp =
kel
kg
φw =

Nw

√
TwEI

2gLM
φw

The ratio, kel
kg

usually referred to as dilution factor, is a measure of the loss
reduction achieved using a pendulum instead of a spring made of a material with the
same loss angle φw of the pendulum wire and this is due to the fact that gravity is
not subjected to dissipation.
The thermal spectrum above resonance is obtained by substituting the pendulum
loss angle φp in Eq. 2.36:

Sx =
4kbTφpω

2
0

Mω5
(2.37)

Typical value of φp for the steel wires used in Virgo where ∼ 10−6 (intrinsic
losses of steel wires and dilution factor are ∼ 10−3). Silica fibers used in second
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generation detectors instead of steel wires has much lower intrinsic loss of ∼ 10−7,
even with a lager dilution factor ∼ 10−2 (required by a larger uncertainty on the
fiber strength), the resulting value of φp is ∼ 10−9. The equivalent strain noise due
pendulum thermal noise for Advanced Virgo is plotted in Fig. 4.4.

2.2.5.2 Coating thermal noise

Starting from the fluctuation-dissipation theorem, the mirror thermal noise can be
computed by means of a direct approach [32]. The observable affected by thermal
noise x(t) is defined as the displacement of the mirror surface u(r,t) as sensed by the
impinging laser beam whose intensity, in our case, has a Gaussian profile I(r).

x(t) =

∫
I(r)u(r, t)dS (2.38)

To compute the thermal noise spectrum we could imagine to apply on the mirror,
for each frequency, a sinusoidal force F (r, t) with the same intensity distribution of
the laser beam. The admittance of this system Y is

Y (ω) =
iωx(ω)

F (ω)
=
v(ω)

F (ω)

its real part will account for the dissipation of the system

Re[Y ] = Re

[
v(ω)F ∗

F (ω)2

]
=
Wdiss(ω)

F (ω)2

Thanks to the fluctuation dissipation theorem, the spectrum of the mirror surface
motion induced by thermal noise is found to be

Sx =
4kbT

ω2
Re[Y ] =

4kbT

ω2

Wdiss(ω)

F (ω)2
(2.39)

where Wdiss is the dissipated energy. For a mirror with loss angle φ the dissipated
energy is given by

Wdiss = ωφUmax (2.40)

where Umax is the maximum energy stored in the mirror during an oscillation. This
corresponds to

Umax =
1− σ2

2
√
πE0w

F (ω)2 (2.41)

where σ is the Poisson ratio, E0 the mirror Young modulus and w the laser beam
radius. Finally we can find the mirror thermal noise spectrum

Sx =
4kbT

ω

(1− σ2)

2
√
πE0w

φ (2.42)
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It has been observed that the main contribution to the mirror total thermal noise is
due to the tiny reflective coating layer on the mirror surface. The reasons are that
at present the loss angle of the coating (which are composed of alternating layer of
high and low refraction indices) are much higher than that of the mirror substrate
( ∼ 10−4 respect with ∼ 10−9) and that such losses are concentrated on the mirror
surface. Moreover the fraction of the energy Umax stored in the surface due to the
application of a Gaussian force (see computation above) is larger than that on the
substrate, thus losses on the surface has a stronger impact with respect to the others.
The coating thermal noise is given by the following expression [33]:

Sx =
8kbT

ω

(1 + σ)(1− 2σ)t

πE0w2
φc

were t is the coating thickness.
Coating thermal noise for Advanced Virgo is plotted in Fig. 4.4, where it can be
seen that it is expecting to limit the sensitivity between 30 Hz and 100 Hz.

2.2.6 Other noise sources

There are many other noise sources that affect the detection operation whilst not
limiting the design sensitivity. Among them we mention

• Scattering from residual gas - Interferometers operate in vacuum to avoid
phase fluctuations induced by scattering from the residual gas. The equivalent
strain for a single species of molecule is

Svac =
(4πα)2ρ

v0L2

∫ L

0

exp [−2πfω(z)/v0

ω(z)]
dz (2.43)

where α is the polarizability, ω the beam radius, L the arm length, ρ is the
number density and v0 is the most probable speed of the particle.

• Laser noises - fluctuations in the laser frequency, power and direction fluc-
tuations can couple with the asymmetry of the arm and affect the sensitivity.
As we will see in detail in the following chapters, frequency stabilization is an
important issue to be tackled and is eventually reduced by locking the laser
frequency on the common mode of the interferometers. Classical power fluc-
tuations are reduced before entering the interferometer as well as jitter noise
which is filter by the input mode cleaner.

• Scattered light - As we will se in detail in Sec. 8.2, mirror imperfections
produce scattering of the incident beam. Scattered photons by ITF mirrors or
auxiliary optics are likely to hit vacuum pipes, chambers or other mechanical
parts and get their phase modulated by their vibrations. If they recombine
with the main laser, they produce a phase noise. Light absorbers, known as
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baffles, are placed along the vacuum pipe, near the mirrors and in other sensible
places, preventing scattered photons to recombine with the main laser beam.

• Cosmic rays - Mirrors are crossed every second by thousands of particle
(mainly muons) which transfer energy to them. The equivalent strain spec-
trum of low energy (less than 100 GeV) muons is [34]

Smuons = 10−26 − 10−27

(
100Hz

f

)
(2.44)

and is a factor 100 lower than the design sensitivity of second generation de-
tectors. Spurious signals generated by higher energy particles are expected to
be very rare and can be ruled out by comparing data of two interferometers
far from each other.

• Technical noises - The interferometers is kept at its working point by means of
many feedback loops. Numerous error signal are extracted and used, after being
opportunely filtered, to drive the actuators. Many of the noises mentioned
above can contaminate error signals and are reintroduced in the system by the
actuators. Both sensors and actuators are also affected by electronic noise.
One of the goals of the commissioning activity is to optimize feedback loops in
order to reduce these technical noises below the expected sensitivity level.

2.3 Improved interferometer configuration

We have seen in Eq. 2.20 that the sensitivity of a simple Michelson interferometer
limited by the shot noise can be increase by using longer arms and more powerful
laser. Since there are technical limitations to the maximum arm length as well as on
the maximum laser power available, the simple Michelson interferometer has been
modified adding Fabry-Perot cavities in their arms to increase the optical path and
a technique, known as power recycling, has been developed in order to increase the
power in the interferometer without increasing the input one.
Finally the possibility to shape the detector sensitivity has been by made possible
by placing an additional mirror, called signal recycling, between the ITF dark port
an the detection. In the section a detailed description of these three modifications
to the standard Michelson configuration is present.

2.3.1 Fabry-Perot cavities

We have seen that the interferometer sensitivity benefits from longer arms.4 Since, for
earth based interferometers the arm length so far has been limited to few kilometers
by technical issues, an effective way to increase the optical path is to replace the

4If we not consider technical issues, the only drawback of having long arms is the reduction of
the bandwidth shown in Fig. 2.1.
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arms with Fabry-Perot cavities.
A Fabry-Perot cavity is composed of two mirrors separated by a distance L. With
reference to the Fig. 2.4, the beams inside and outside the cavity are related as:

Figure 2.4: Fields in a Fabry-Perot cavity

Ea = t1Ein + r1Eb (2.45)

Eb = r2e
−iφEa (2.46)

Etra = t2e
−iφ/2Ea (2.47)

Eref = −r1Ein + t1Eb (2.48)

where φ = 2Lωlaser/2 and r, t are the amplitude reflectivity and transmissivity
of the mirror 1 (input mirror) and 2 (end mirror). These values, together with the
round trip phase shift φ, determine respectively the transmissivity, reflectivity and
gain of the cavity:

tcav =
Etra

Ein
=

t1t2e
−iφ/2

1− r1r2eiφ
(2.49)

rcav =
Eref

Ein
= −r1 +

r1t
2
1e
−iφ

1− r1r2eiφ
(2.50)

gcav =
Ea
Ein

=
t1

1− r1r2eiφ
(2.51)

The circulating, transmitted and reflected power are defined as the absolute
square of their respective amplitudes.

The transmitted power reads:

Tcav(φ) = |tcav(φ)|2 =
t21t

2
2

1 + r2
1r

2
2 − 2r1r2cos(φ)

(2.52)

It is a periodic function of the round trip phase shift φ and is maximized when
the condition φ/(2π) = integer is met. In this case the input beam Ein interferes
constructively with the beam inside the cavity and it is said to be resonant with
the cavity. The separation between two consecutive resonances is called free spectral
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range and can be expressed as a length in terms of the wavelength of the laser λ

∆LFSR =
λ

2
(2.53)

or as a frequency in terms of the cavity length

∆νFSR =
c

2L
(2.54)

The cavity reflectivity at the resonance (assuming lossless input mirror, i.e. t2 +r2 =

1) can be approximated as:

rcav '
r2 − r1

1− r1r2
(2.55)

According to the relative value of r1 and r2, three cases can be distinguished:

• Under-coupled cavity (r1 > r2), the promptly reflected part of the incoming
beam dominates the beam leaking out of the cavity. In the limit where r1

approaches the unity the cavity is completely decoupled from the incoming
beam.

• Over-coupled cavity (r1 < r2), the beam leaking out of the cavity dominates
the promptly reflected one. Since in this condition the phase of the reflected
beam changes across the resonance more significantly, working in over-coupled
condition is necessary when we are interested in measuring changes in the
cavity length.

• Optimally coupled cavity (r1 = r2), the power gain is maximized but there is
no reflected beam and the incident beam is fully transmitted.

Circulating, transmitted and reflected power, for the there cases, are show in
Fig. 2.5 for a cavity with a finesse of 60. Over-coupled cavities are more suitable
for gravitational waves detectors as they allow for a larger circulating power, better
exploiting the resonance effect of the cavity. Moreover the phase change of the
reflected field at the resonance, which keeps the important information about a
change in the cavity length, is larger than in under-coupled cavities.5

Given a Fabry-Perot cavity we can compute its linewidth, usually expressed as
the full width at half maximum (FWHM) of the circulating power, while the half
width at half maximum (HWHM) is known as pole frequency. It reads

Linewidth(FWHM) = 2fp =
2FSR

π
arcsin

(
1− r1r2

2
√

(r1r2)

)
(2.56)

5The largest change in the reflected phase is find for optimally coupled cavities but in that case
the reflected amplitude vanishes.
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over-coupled

under-coupled

optimally-coupled

Figure 2.5: Circulating, trasmitted and reflected fields (amplitude and phase) are
plotted for a Fabry-Perot cavity with a finesse of 60. The refectivities of the two
cavity mirrors are set in order to have a over-coupled cavity in the first plot, an
under-coupled cavity in the second plot and an optimally-coupled cavity in the third
plot.
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The ratio between the linewidth and the FSR is called finesse and accounts for the
sharpness of the resonance. It is also connected to the effective number of bounces
of the light in the cavity as

Nbounces =
2F

π
(2.57)

If the finesse is high (r1, r2 close to 1) it can be approximated as

F =
FSR

FWHM
'

π
√
r1r2

1− r1r2
(2.58)

As can be seen in Fig. 2.5, a small detuning from the resonance produces a change
in the phase of the reflected field which is larger if the cavity is over-coupled. If the
finesse is much larger than one, the slope can be approximated as

d arg(rcav)

dφ
' 2F

π
(2.59)

This means that a phase change, possibly caused by the passing of a gravitational
wave, is amplified by a factor proportional to the finesse, which is actually the number
of bounces in the cavity reported in Eq. 2.57.

Frequency response

The effect on the cavity mirrors produced by the passing of a gravitational waves
can be modeled as a sinusoidal motion of the end mirror, where the amplitude of
the oscillation, is usually much smaller than the laser wavelength λ. Such a motion
causes an additional dephasing of the reflected beam, resulting in the generation of
two acoustic sidebands at a distance of ±fgw from the carrier. The amplitude of
these effects is proportional to the amplitude of the oscillation and to the amplitude
of the field resonating in the cavity. In the condition where fgw << c/L, it can be
shown that the frequency response of the ITF with Fabry-Perot cavities reads:

∆φ = h
F

FSR

2πc

λ

1
√

1 + (
fgw
fp

)2
(2.60)

We see that the low frequency response increases with the Finesse and the cavity
behaves as a simple pole with the cut-off frequency fp, thus reducing the sensitivity
for fgw > fp.

2.3.2 Power recycling

Since the end mirrors are almost totally reflecting and arm cavity losses are small
(as we will see in Sec. 6.2), when the interferometer is set near the dark fringe, all
the light is sent back towards the laser. The interferometer is then seen from the
bright port as a mirror with a very high reflectivity (equal to the average of the arm
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cavity reflectivities). By placing an additional mirror along the path between the
laser and the beam splitter it is possible to create an additional resonant cavity in
order to increase the circulating power inside the ITF, without increasing the input
power. The recycling gain of this power recycling cavity can be computed simply
substituting in Eq. 2.51 the reflectivity of the power recycling mirror and that of the
arms cavity. The maximum is achieved when the cavity is optimally-coupled, that
is when the reflectivity of the power recycling mirror is chosen to be equal to that of
the arm cavities (assuming negligible losses).
It is interesting to notice that, unlike the arm cavities, the power recycling cavity
does not affect the bandwidth of the interferometer. This can be explained by the
fact that sidebands generated by the gravitational waves, because of their differential
nature, exit directly from the asymmetric port of the beam splitter without being
recycled and possibly filtered by the power recycling cavity. On the other hand their
amplitude, being proportional to the power circulating in the cavity, benefits from the
presence of the power recycling. In Advanced Virgo assuming (arm cavity finesse of
450 and arm round trip losses of 75 ppm) maximum power recycling gain achievable is
about 48. Transmission of the PR mirror has been chosen to be ∼ 5%, corresponding
to a lower power recycling gain of 37.5, with respect to optimal coupling it allows
to increase the strength of signals in reflection from the ITF used for the power
recycling cavity alignment and to reduce the effects of optical aberrations.

2.3.3 Signal recycling

In analogy to the power recycling technique, a mirror can be placed after the beam
splitter dark port, creating a cavity that affects only the differential signals [35]. It
will form a cavity referred to as signal recycling cavity. The presence of this mirror
will have negligible effects on the carrier, as it is not reaching the dark port. The
sidebands generated inside the cavity by the gravitational wave will see a double
cavity, made by the Fabry-Perot mirrors and the signal recycling. The effect of this
double cavity depends on the microscopic position of the SR mirror which is usually
characterized by the phase φ that the carrier field would acquire while propagating
inside it. If φ = 0, the bandwidth of the detector is increased but the sensitivity
before the cut-off frequency is reduced (broadband configuration). Conversely when
φ = π/2, the bandwidth is reduced but the sensitivity is increased (tuned configura-
tion). For the intermediate values (detuned configurations) there is a peak frequency,
depending on φ. The sensitivity below the peak is comparable to the broadband one,
while the high frequency is worse than it. To get an intuitive motivation of such a
behavior it is useful to think at the SR mirror and the input cavity mirror as an
equivalent mirror (with transmission and reflection coefficients which depend on φ)
forming a Fabry-Perot cavity together with the end mirror. For different φ we have

• φ = 0. The reflectivity of the equivalent mirror is the lowest possible. The
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sidebands will see a cavity with reduced finesse, thus the bandwith is enlarged
at the expenses of the low frequency sensitivity.

• φ = π/2. The reflectivity of the equivalent mirror is the highest possible, The
sidebands will see a cavity with increased finesse producing the opposite effect.

• 0 < φ < π/2. In this case, the equivalent mirror introduces an additional
dephasing6 in reflection with respect to the only input mirror which normally
will push them out of resonance. There exists one particular frequency for
which the additional dephasing can compensate exactly those acquired inside
the arm cavities. This causes a peak on the sensitivity accounting for the
resonance of this particular frequency which depends on φ.

The changes in the detector response according to different tuning of the signal
recycling mirror is shown in Fig. 2.6.

Figure 2.6: Detector response for different tuning of the signal recycling mirror. Plot
from [36].

6Since the length of the signal recycling cavity is much shorter than the wavelength signal, we can
neglect the phase accumulated by the propagation inside it and consider this additional dephasing
as independent of the signal frequency.
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CHAPTER 3

First detection of gravitational waves

In this chapter we will recall the path which brought to the first direct detections
of gravitational waves. In the first section the initial network of GW detectors is
presented together with the scientific results of their observation. Even if no GWs
have been observed, interesting upper limit have been set on rate and amplitude
of several possible sources. In the second section we present the second generation
GW detectors, with a short summary of the major upgrades performed from the
first generation ones, which allowed to gain an order of magnitude in the sensitivity.
Finally in the third section we present the first gravitational-waves detections: fours
binary black hole mergers and a binary neutron star merger. We briefly describe the
signal search, the information we could extract about the source and the physical
and astrophysical implication of the observations.

3.1 Initial network of ground-based GW detectors

The experimental effort to detect gravitational waves started in the 1960s with We-
ber’s resonant bars [37]. In the same period, the use of interferometers was proposed
for the first time. It was followed by a long period of prototyping and theoretical
analysis of their possible performances and scientific potential which led to proposals
to build long base-line interferometers [38].
The first generation of gravitational-wave detectors consisted of the two LIGO (4
km), located in Livingston and in Hanford, Virgo (3 km), near Pisa in Italy, GEO
(600 m) near Hannover in Germany and TAMA (300 m) near Tokyo in Japan. The
installation started in late 1990s and was followed by many years of commissioning
activities alternated with periods of joint data taking between 2002 and 2011. This
intense activity provided a deep knowledge of the interferometer performances and
limits. After undergoing some major improvements, LIGO and Virgo obtained a fi-
nal sensitivity close to the initial design sensitivity. The best sensitivity achieved
by the first generation interferometers is respectively 1.5 · 10−21/

√
Hz (TAMA),
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2 · 10−22/
√

Hz (GEO), 6 · 10−23/
√

Hz (Virgo), 2 · 10−23/
√

Hz (LIGO) [39]. The
four detectors have similar optical schemes composed by a power recycled interfer-
ometers, all of them with the exception of GEO made use of Fabry-Perot cavities to
increase the optical path of the light. In turn GEO was the only one using signal
recycling [40]. Test masses, fused silica mirrors of diameters between 10 cm (TAMA)
and 35 cm (VIRGO), were suspended with chains of pendulums providing isolation
from seismic noise. The laser power stored (λ = 1064 nm) was going from 1 kW
(TAMA) up to 50 kW (LIGO) [39]. Fig. 3.1 shows the best sensitivity achieved by
first generation GW detectors.

Figure 3.1: Best sensitivity achieved by first generation gravitational wave detectors
[39]

Observation results

Even if no gravitational wave detection has been reported from the data taken by
first generation detectors, the analysis of the data allowed to put upper limits on the
rate of coalescence of compact objects and on the amplitude of signal from pulsars,
stochastic background and of events that could have taken place in coincidence with
some external trigger (e.g. gamma ray burst).
The data collected by LIGO and Virgo between July 2009 and October 2010 were
analyzed looking for signals from binary neutron stars (NS-NS), binary black holes
(BH-BH), and binaries of a black hole and neutron star (NS-BH) with total mass
between 2 and 25M�. The sensitivity range for binary neutron stars was 40 Mpc
and further for BH-BH and NS-BH binaries.1. The upper limits found for NS-NS,

1The BNS range is defined as the sky location and source orientation averaged distance at which
the coalescence of a pair of 1.4M� neutron stars gives a matched filter signal-to-noise ratio of 8 in
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NS-BH and BH-BH were respectively 1.3 · 10−4, 3.1 · 10−5 and 6.4 · 10−6 Mpc−3yr−1

[41]. An upper limit of 3.3 · 10−7 Mpc−3yr−1 has been set also on the rate of heavier
BH-BH binaries with nonspinning components having total mass between 19 and 28
M� [42].
For what concerns the search for unmodeled signals, an upper limit on the rate of
1.3 events/year has been set for signals having hrss

2 5 · 10−22 − 5 · 10−20Hz−1/2 (the
search targeted signal shorter than 1 s, in a frequency bandwidth of 64–5000 Hz)
[43].
The lack of gravitational wave detection in the presence of an external trigger has
been used to rule out some hypothesis on the galaxy hosting a gamma ray burst
(GRB). It was the case of GRB 070201, a short-duration, hard-spectrum GRB,
electromagnetically localized in the direction of M31 (Andromeda Galaxy). Possible
progenitor events such as NS-NS or NS-BH binary coalescences or soft GRB repeaters
can also emit gravitational waves. The absence of a gravitational signal recorded in
an interval of 180 s about the time of the trigger3 ruled out the coalescence of compact
binary with masses in the range 1M� < m1 < 3M� and 1M� < m2 < 40M� in
the Andromeda Galaxy, as a progenitor of GRB 070201. Assuming the GRB 070201
had a binary neutron star merger as a progenitor, then it should have happened at
a distance D > 3.5 Mpc (assuming random inclination) [44].
Also the search for continuous signal, although it did not detect any gravitational
signal, was useful to set interesting upper limits on pulsar GW emissions. The most
stringent upper limit for Crab was of 6.9 · 10−25, about a factor of 2 below the spin-
down limit. It corresponds to an upper limit on star ellipticity of about 3.7 · 10−4.
These results were obtained from the analysis on Virgo VSR4 data. [11].
A stochastic background appears in a single detector as random fluctuations of the
output power which is indistinguishable from noise. Even if its level is expected to
be lower than the detector noise floor, unlike the noise it is supposed to be coherent
between different detectors and can be revealed by cross-correlating data from pairs
of interferometers of the network. This has been done by correlating data from the
two LIGO detectors acquired during the S5-VSR1. No signature of gravitational
wave background has been found but the analysis set an upper limit for the energy
density of the stochastic gravitational-wave background (normalized by the critical
energy density of the Universe), at 100 Hz of 6.9 · 10−6 [45].

a single detector. The BBH range considers black holes of 30M�. The horizon, instead, assumes
an optimally oriented source.

2The amplitude of the signal is expressed in terms of the root-sum-square strain amplitude hrss

arriving at the Earth, defined as in the range hrss =
√∫
|h+(t)|2 + |h×(t)|2.

3At the trigger time only LIGO Hanford detector was taking data. The presence of a network of
detectors can be exploited in case of external trigger to increase the sensitivity in a specific direction,
by imposing conditions on the relative time delay and the signal amplitude recorded by different
detectors.
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3.2 Second generation of ground-based GW detection

After a few years of data taking without detections, an, already planned, second
generation network of interferometers started to be integrated. The goal was to
increase the sensitivity of about one order of magnitude, increasing the volume of
the observable universe by a factor of 1000 in order to detect gravitational waves on
a regular basis, opening the way to gravitational astronomy. This second genera-
tion network includes the two detector of Advanced LIGO, Advanced Virgo and the
Japanese detector KAGRA.

Figure 3.2: Sensitivity of the two Advanced LIGO and Advanced Virgo during the
second observation run O2.

3.2.1 Advanced LIGO

Advanced LIGO project has been approved by the National Science Foundation in
2008. The installation, started in 2011, has been completed in few years and followed
by a commissioning period from mid 2014 to mid 2015, leading to the first observation
run O1 which lasted from September 2015 to January 2016 [46]. Design sensitivity
for the BNS inspiral range is 190 Mpc. The sensitivity of Advanced LIGO in O1 at
100 Hz was 8 · 10−241/

√
Hz, the BBH range was 1.3 Gpc and the BNS one about

75 Mpc. This represented an increase of about a factor 3-4 with respect to the best
sensitivity achieved by initial LIGO. The second observation run O2 started at the
end of November 2016 and lasted until the end of August 2017. Advanced Virgo
joined the run for the last month of observation.
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3.2.2 KAGRA

KAGRA (KAmioka GRAvitational wave detector) is a 3 km interferometer located
in the mine of Kamioka, in Japan. The project was approved in 2010 and the
integration, which officially started in January 2012, is still ongoing. A preliminary
run in a simple Michelson configuration (iKAGRA) was performed in March 2016.
In the final configuration, the KAGRA test masses will be cooled down to 20K. The
cryogenic technology, which is devised to reduce thermal noise of sapphire mirrors
has been tested on CLIO, an underground 100 m interferometer (also located in
Kamioka mine) used as a test facility for KAGRA [47]. KAGRA is expected to start
its cryogenic operation in 2018 and to reach its final configuration before 2020, joining
the second generation network. The presence of a fourth detector, with comparable
sensitivity, will bring an essential contribution to gravitational wave observations: it
will not only improve the sources’ localization, but also increase the detection rate of
almost a factor 2, by improving the network duty cycle and by allowing coherent data
analysis to reduce the spurious instrumental coincident background [48]. Moreover
it will allow for a more accurate parameter estimation [49].

3.2.3 Advanced Virgo

Advanced Virgo [50] has been approved by INFN and CNRS at the end of 2009.
The target BNS range (with signal recycling tuned in the optimal configuration)
is about 135 Mpc. Installation works started in 2012 and were completed by the
end of 2016. After some months of commissioning in August 2017 Advanced Virgo
joined the two LIGO detectors for the last month of the second observation run O2
with a sensitivity of about 27 Mpc. The following is a list of the main upgrades
concerning the technology and the configuration of second generation gravitational
wave detectors which were performed in order to improve their sensitivity of an order
of magnitude.

• Dual recycling - The possibility to shape the frequency response of the in-
terferometer by adding a semireflecting mirror on the path between the beam
splitter dark port and the detection will be exploited by second generation
detectors. GEO was the only first generation interferometer that successfully
tested this technology [40].4 As explained in Sec. 2.3.3, by microscopically ad-
justing the mirror position, it is possible to tune the sensitivity in order to target
specific astrophysical sources. Advanced LIGO was operated in the first two
observation runs in a broadband resonant sideband extraction configuration.
Both Advanced Virgo and KAGRA planned, in their design configuration, to
make use of a detuned signal recycling to be more sensitive to BNS coalescence.
At present, signal recycling has not yet been installed in Advanced Virgo, which

4We remark that the overall configuration is different since GEO does’t have Fabry-Perot cavities
in their arms.
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has started its operation in a Fabry-Perot Michelson configuration with power
recycling.

• Improved mirrors - Better quality mirrors have been used both in Advanced
Virgo and Advanced LIGO [51]. Mirror weight has been doubled (42 kg) in
Advanced Virgo to reduce the effect of the radiation pressure noise. Since a non
negligible optical absorption in the mirrors of first generation detectors resulted
in thermal lensing effect and significant distortions of the mirror surface, the
requirement for mirror absorption is less than 1 ppm/cm. Deviations from
perfect spherical surfaces (flatness and microroughness depending on the spatial
frequency of the defects) are responsible for scattering losses (see 8.2 for more
details). The flatness RMS is less than 0.5 nm for advanced Virgo mirrors
while the requirement was 8 nm for initial Virgo. Improvements in coating
losses allowed for a reduction of mirror thermal noise which is however limiting
the detector sensitivity between 50 and 300 Hz.

• More powerful laser - In order to improve the shot noise limited high fre-
quency sensitivity, advanced detectors are designed to store from 0.5 to 1 MW
in their arms cavities. This increase of a factor 10-50 with respect to the first
generation will require suitable optics to avoid thermal lensing and heavier
mirrors to reduce the effect of radiation pressure noise. Particular attention
has to be payed to reduce classical power fluctuations as at this high power
level such fluctuations move the mirrors and can affect the differential signal
in the presence of an asymmetry in the arm finesse.

• Monolithic suspensions - Thermal noise of the steel wires used to suspend
the mirrors was limiting the sensitivity of first generation detector at low fre-
quency. This was in part due to the intrinsic dissipation of the steel. In second
generation detectors, the steel wire have been replaced with fused silica fiber
(sapphire for KAGRA) with an intrinsic dissipation which is about a factor
1000 lower than steel. This technique was first successfully tested in GEO and
in an upgrade of Virgo [52]. Then, an intense activity of R&D has followed
in order to adapt the suspension design to the new optics. Despite the great
advantage in terms of noise reduction, fused silica fibers are very fragile and
can easily break if they come into contact with external bodies. The presence
of projectile particles accelerated by the vacuum pumps was responsible for
the repeated break of the fibers in Advanced Virgo. As a temporary solution,
steel wires were used for suspending the mirrors in order to allow the com-
missioning to continue while investigating the problem. The reinstallation of
monolithic suspensions is one of the planned activity for the commissioning
period fbetween the second and the third observation run.

• Arm cavities configuration - In order to allow for larger beams and re-
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duce the effect of quantum noise Advanced Virgo switched from plano-concave
Fabry-Perot cavities to bi-concave ones. The finesse of the arm cavities have
also been increased from ∼ 50 to ∼ 450.

• Thermal compensation - The planned increase of the circulating power will
cause a temperature gradient inside the optics. This produces a thermoelastic
deformation resulting in a change of the radius of curvature of the mirrors and
in a non uniformity of the optical path of the light inside the mirror which is
acting as a lens (thermal lensing effect). The installation of a ring heater around
the mirrors allows to compensate for the change in the radius of curvature. In
order to cope with the thermal lens effect, a CO2 laser in a ring shape will be
shined on a compensation plate suspended in front of the input test masses (in
the recycling cavity side).

• Vibration isolation - Advanced LIGO performed other two major changes in
its configuration. It replaced the previous vibration isolation system formed by
a bench laying on a stack of isolating layers of rubber and metal with a three-
stage hybrid active-passive system [53]. Virgo was already equipped with an
isolation system, the superattenuator, which was already compliant with second
generation requirements.

• Optical configuration - For what concerned the optical configuration in first
generation interferometers, power recycling cavity was marginally stable. This
was an effect of the combined necessity of a short cavity and a large beam.
Thermal distortion, mirrors defects and misalignment can make high order
modes resonate in such cavities, reducing the optical gain of the fundamen-
tal mode and making the control more difficult. For first generation thermal
compensation systems were used to reduce these effects. Advanced LIGO and
KAGRA opted for a different configuration with long folded stable recycling
cavities. For planning and budget reasons, Advanced Virgo has kept marginally
stable cavity configuration, relying on a more performant thermal compensa-
tion system and an increased mirror surface quality.

3.3 First detections: beginning of the gravitational as-
tronomy

3.3.1 The observations

After a few days from the beginning of their stable operation, on September 14,
2015, the two LIGO interferometers detected for the first time a signal (GW150914)
compatible with the gravitational radiation emitted by the merging of two black
holes with masses of about 36M� and 29M�, at an estimated distance between 230

43



CHAPTER 3. FIRST DETECTION OF GRAVITATIONAL WAVES

Figure 3.3: Network of second generation gravitational waves detectors. From top
right, clockwise: Advanced LIGO Hanford, KAGRA (artistic view), Advanced Virgo,
Advanced LIGO Livingston.

and 570 Mpc. The event had a signal-to-noise (SNR) ratio of 24. This was the first
direct gravitational-wave detection and was followed by other three observations of
binary black hole mergers. The second one, on December 26, 2016 (GW151226) was
identified as the coalescence of two black holes with masses respectively of 14.2M�

and 7.5M� at a distance between 250 and 620 Mpc, with a SNR of 13. The third
observation, on January 4, 2017, performed during the second observation run O2,
concerned two black holes with masses of 31.2M� and 19.4M� respectively and a
SNR of 13. The estimated distance was between 490 and 1330 Mpc. The fourth
published observation, on August 14, 2017 concerned again two black holes with
masses of 30.5M� and 25.3M� at a distance between 330 and 670 Mpc, but this
time, for the first time, the merging has been observed by a network of three detectors.
As we will detail in the following this allowed a major improvement in the localization
of the source and gave the possibility to perform some preliminary test on the nature
of gravitational-wave polarization. Lastly on August 17, 2017 the network detected,
for the first time, a gravitational-wave signal emitted by the merging of two neutron
stars with masses between 1.17M� and 1.6M� at a distance of about 40 Mpc. For
the first time an electromagnetic counterpart has been detected in association with
the gravitational wave signal. Only with this one event, marking the beginning
of multimessanger astronomy, a wealth of relevant discoveries have been done. A
summary of them is presented in the following.
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3.3.2 Binary black hole mergers

3.3.2.1 A simple proof that GW150914 was a black hole binary coales-
cence

As a first step in order to better visualize the signal, the raw strain data h(t) are
filtered using a band-pass filter to keep only the frequencies inside LIGO bandwidth
(30 - 350 Hz) and using a notch-filter to removing some particular frequencies known
to be part of the instrumental noise. After this operation, the presence of a signal,
shown in Fig. 3.4, was clear enough to be recognizable by eye5. The same is true for
the time frequency representation, which shows the typical increase of the frequency
over time expected from gravitational emission of two coalescing masses. A signal
with this kind of frequency behavior is known as chirp. In GW150914, the frequency
increased from 35 to 150 Hz in 0.2 s. Its time evolution, at the leading order, can be
used to find the chirp mass of the system by using the relation

M =
(m1m2)3/5

(m1 +m2)1/5
=
c3

G

[
5

96
π−8/3f−11/3ḟ

]
(3.1)

whereG is gravitational constant, c is the speed of light and f and ḟ are the frequency
and its time derivative measured in any moment of the inspiral phase.6 From the
measured chirp massM = 30M� we can set a lower limit on the total mass of the
system M = m1 + m2 ≥ 70M � corresponding to a Schwarzschild radius greater
than 105 km. The fact that the computed chirp mass is constant up to the merging
and that the amplitude of the oscillation increases with time are in agreement with
what we expect from a binary merging. The frequency at which the amplitude is
maximum, f ∼ 150 Hz, corresponds to the double of the orbital frequency of the two
masses. From this information, simply applying the third Kepler’s law, we can infer
that the separation of the two masses at the maximum of the frequency was only 350
km. This small value, combined with the lower limit that we have on the masses,
leads to the conclusion that the two compact objects can only be black holes.

3.3.2.2 The signal search

In order to detect the presence of a gravitational waves transient in the data, two
types of search are used: one, specific for finding signals from compact binary coa-
lescences and the other to detect transient signals without any assumption on their
waveform. Events detected in both observatories with a consistent time delay are
assigned a detector statistics values quantifying their SNR. The significance of an
event is estimated by comparing its detection statistic value with the background,
that is the rate at which the noise in the detectors produces an event with the same

5With respect to GW150914, the second detected signal GW151226 lasted for a longer time but
with a lower strain amplitude which made indispensable the use of matched filtering to identify it.

6The equation can be integrated, removing the dependence from the derivative, to find Eq. 1.15.
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Figure 3.4: Top row: time-series data from gravitational-wave event GW150914
observed by the LIGO Hanford and Livingston. Data are filtered with a 35–350 Hz
bandpass filter and band-reject filters to remove the known instrumental spectral
lines. The Hanford strain has been shifted back in time by 6.9 ms and inverted.
Bottom row: a representation of the strain-data as a time-frequency plot. The
increase in signal frequency is well visible. Both images are taken from [54]

(or higher) detector statistic. Background is estimated by looking for coincident
events in the two detectors obtained by shifting SNR maxima of one detectors by
an amount of time longer than the propagation time between the two observatories
(which is about 10 ms). In the case of binary coalescence search, this procedure has
been repeated about 107 times, in order to have an equivalent background analysis
time of 608 000 years. The GW150914 was found to have a detection statistic of 23.1,
which is larger than any other background event. For this reason it was possible to
put only an upper limit on the false alarm rate of 1 in 203 000 years7. Considering
16 days of observation, this corresponds to a false alarm rate lower than 2 · 10−7.

3.3.3 Estimation of the source parameters

The difference in the arrival time of the signal in the two detectors allowed to localize
the event in a ring in the sky with an area of about 600 deg2. The amplitude at
the two detectors and relative phase of the signal can be used to further improve
the localization and infer the distance to the source and the binary orientation. A
coherent Bayesian analysis is applied on the data from both detectors to estimate the
source parameters. The gravitational waveform is determined by the massesm1,2 and

7Both candidates and background events are divided into three search groups according to their
template length in order to account for the varying background noise.
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angular momentum S1,2 of the binary components, their location and orientation,
the time and phase of coalescence and the eccentricity of the system. [55]. The
angular momentum is related to the magnitude of the dimensionless spin as

a1,2 =
c

Gm2
1,2

|S1,2| (3.2)

The components of the spin aligned with the orbital angular momentum, defined as

χ1,2 =
c

Gm2
1,2

S1,2 · L̂ (3.3)

are the only affecting the phase evolution of the inspiral. Following the post-
Newtonian (PN) theory, phase evolution is expanded in powers of the orbital velocity
v/c. Aligned-spin components don’t affect the signal at leading order (which is dom-
inated by chirp mass) and for this reason they can be only weakly constrained. The
most meaningful parameter for describing the spin effect on the binary phasing is
the mass-weighted combination of the orbit-aligned spins

χeff =
m1χ1 +m2χ2

M
(3.4)

which enters in the successive order of the PN expansion together with the mass ratio.
The non aligned components of the spin χp are responsible for a precession of the
orbital plane. For the parameter estimation of GW150914 and GW151226 two kinds
of model of waveform covering the inspiral, merger, and ringdown phases were used:
one assumes the spins aligned with the angular orbital momentum, the other does
not have this constraint and allows for a precession of the orbital plane. The two give
similar results [14]. For similar mass binary coalescences, the spin of the final black
hole is determined by the orbital angular momentum of the system at the merging
time. As expected, similar values around 0.7 are found for the spin of the final black
hole for the three detections. The radiated energy can be inferred by measuring the
difference between the initial and the final mass. The estimated emitted energy in
gravitational waves for GW150914 is about 3M�c

2 with a maximum instantaneous
luminosity of 200M�c

2s−1. This is the most luminous known phenomenon in the
Universe: at its peak as much power as that of 1023 suns was emitted [56]. Peak
luminosity for equal mass binaries is independent of their mass components and for
this reason they can be used as standard sirens. The source luminosity distance is
inferred from the signal amplitude. Such amplitude scales inversely with the distance
but it also depends on the orbit plane inclination. The information on the orientation
is kept in the two polarizations of the wave. In the presence of only two detectors,
almost aligned, it is difficult to infer information on the polarizations and thus on
the orbit inclination. This degeneracy results in a great uncertainty on the distance.
The redshift cannot be measured only from the gravitational-wave signal and it is
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GW150914 GW151226 GW170104 GW170814

Primary BH mass 36.2+5.2
−3.8M� 14.2+8.3

−3.7M� 31.2+8.4
6.0 M� 30.5+5.7

3.0 M�

Secondary BH mass 29.1+3.7
−4.4M� 7.5+2.3

−2.3M� 19.4+5.3
−5.9M� 25.3+2.8

−4.2M�

Chirp mass 28.1+1.8
−1.5M� 8.9+0.3

−0.3M� 21.1+2.4
−2.7M� 24.1+1.4

−1.1M�

Total mass 65.3+4.1
−3.4M� 21.8+5.9

−1.7M� 50.7+5.9
−5 M� 55.9+3.4

−2.7M�

Final BH mass 62.3+3.7
−3.1M� 20.8+6.1

−1.7M� 48.7+5.7
−4.6M� 53.2+3.2

−2.5M�

Radiated energy 3+0.5
−0.5M�c

2 1+0.1
−0.2M�c

2 2+0.6
−0.7M�c

2 2.7+0.4
−0.3M�c

2

Peak Luminosity 3.6+0.5
−0.41056 erg

s 3.3+0.8
−1.61056 erg

s 3.1+0.7
−1.31056 erg

s 3.7+0.5
−0.51056 erg

s

Effective inspiral spin −0.06+0.14
−0.14 0.21+0.20

−0.10 −0.12+0.21
−0.30 0.06+0.12

−0.12

Final BH spin 0.68+0.05
−0.06 0.74+0.06

−0.06 0.64+0.09
−0.20 0.7+0.07

−0.05

Luminosity distance 420+150
−180 Mpc 440+180

−190 Mpc 880+450
−390 Mpc 540+130

−210 Mpc

Source redshift 0.09+0.029
−0.036 0.09+0.03

−0.04 0.18+0.08
−0.07 0.11+0.03

−0.04

Table 3.1: Comparison between the properties of the four detected BH-BH coales-
cence. The masses are reported in the source-frame. They have to be multiplied by
(1 + z) to be converted in the detector frame. The redshift assumes a flat cosmology
with Hubble parameterH0 = 67.9 km s−1Mpc−1 and density parameter Ωm = 0.3065

computed assuming standard cosmology8. A summary of the parameter estimation
results for the three binary black hole coalescences detected so far is shown in Tab.
3.3.3.

3.3.4 GW170814: first three-detector BBH merger observation

Two weeks after Advanced Virgo joined O2, it recorded together with the two LIGO
a signal produced by the coalescence of a binary black hole [57]. Fig. 3.5 (top line)
shows the time series of the SNR produced by shifting the best-matched template
and computing the SNR at each time. The SNR are 13.7 for LIGO-Livingston, 7.3
for LIGO-Hanford and 4.4 for Virgo and the total three-detector network matched-
filter signal-to-noise ratio of 18. The probability that the peak observed in Virgo
SNR is due to noise has been estimated to be 0.3%.

Localization

As expected [58, 59], the main contribution to the source parameter estimation pro-
vided by the presence of Virgo (even if with a sensitivity between a factor 2 and
3 lower than the two LIGO) consisted in a substantial improvement of the source
localization. This is computed starting from the differences in the arrival time, phase
and amplitude of the signal in the three sites [58]. The 90% credible region of 1160
deg2 individuated using only the two LIGO data was reduced to 60 deg2 by adding
Virgo data. A plot of the sky localization of the four BBH mergers detected is shown

8As show in Sec. 1.4.3 this is not always true, as in case the signal has a EM counterpart.
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Figure 3.5: GW170814 event observed by LIGO Hanford, LIGO Livingston, and
Virgo. Top row: SNR time series. Bottom row: Time- frequency representation of
the strain. The plot is taken from [57]

in Fig. 3.6: the improvement due to the presence of a third detector is evident. In
general, one of the main payoffs of this improvement is that a smaller localization
region allows for a more effective EM follow-up. In the specific case of BBH merger,
we have seen in Sec. 1.4.3 that a better localization can be used to individuate prob-
able host galaxies and possibly constrain Hubble constant H0 even in the absence of
an EM counterpart.

Figure 3.6: Sky-localization of all the GW sources detected up to now. The contours
represent the 90% credible regions. Credit: LIGO/Caltech/MIT/Leo Singer (Milky
Way image: Axel Mellinger)

3.3.5 Test of general relativity

The observation of a binary black hole coalescence provided for the first time the
possibility to study two-body motion in the large-velocity, highly non-linear regime
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of gravity. Many investigations have been done in order to verify the consistency of
the observed signal with a binary black-hole merger in General Relativity (GR) [60].
At first, the amount of residual signal found in the data after having subtracted the
most-probable waveform according to GR has been used to bound possible violations
of the theory which are not predicting the same parameters for the system.
By comparing the mass and spin parameters of the final black hole inferred from the
binary’s inspiral signal with those obtained from the merger and ringdown signal it
was possible to check the consistency of the results.
A search for evidence of a modified gravitational-wave dispersion relation allowed
to put a lower limit on the Compton wavelength of the graviton of λg > 1.6 · 1013

corresponding to an upper limit on the graviton mass of 7.7·10−23eV/c2. In the post-
Newtonian approximation, the gravitational-wave phase can be expressed as power
series. From general relativity we can deduce the coefficients of such expansion.
Deviation from nominal values of these coefficients can be compared with data in
order to check to what extent they are still compatible with observations and set
constraints on their deviation. No evidence of violations of general relativity was
observed.

Polarization test

GR predicts that the metric perturbation induced by a gravitational waves has only
two polarizations among the six allowed by a generic metric theories of gravity. For
GW170814, the presence of Virgo, whose arms are not aligned with those of the
two LIGO (which are almost coaligned), provided a way to test this prediction by
projecting the GW onto the detector network. Even if in principle a generic theory
of gravity can present a combination of all the 6 polarization (2 tensor, 2 vector and
2 scalar polarization) only a simplified test has been performed, where only models
with pure scalar, pure vector and pure tensor polarization have been considered
[61]. By repeating the coherent Bayesian analysis performed to compute the source
parameter estimation and replacing the standard antenna pattern response with
those relative to pure scalar or vector polarization it has been found that the pure
tensor polarization is strongly preferred with respect to the pure vector and the pure
scalar ones [57].

3.3.6 Merging rate and astrophysical implications

Up to the first detection, BH-BH rates predictions were only based on population-
synthesis models [62], with upper limits provided by the lack of detections from
first generation detectors. The first detections revealed a population of stellar-mass
black hole mergers and provided data to constrain their rate and their mass distribu-
tions. The most up-to-date merging rate has been computed after the third detection
(GW170104). The computation has been done assuming two different source distri-
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bution models [62]. The rate, found including the results for the two models, is
12 − 213 Gpc−3yr−1. Such results are especially useful to the study of black hole
binary formation by providing constraints on different astrophysical models [63, 64].
Two formation channels are proposed to explain the origin of stellar black hole bina-
ries: isolated evolution or dynamical process in dense stellar systems. In alternative,
binaries can be formed by primordial black holes. Information on the spin can also
be used to constrain different formation models: binaries originated from dynam-
ical processes (of both stellar and primordial black holes) are expected to have a
isotropic distribution of spin. Isolated binary black hole models are supposed to
have small spin misalignment. From the three observations, misaligned spins seem
to be preferred [65]. The consistent number of detections expected in the next few
years will improve the precision of such constraints, better informing us on black
hole astrophysics.

3.3.7 GW170817: first binary neutron star merger observation

On August 17, 2016, 8 days before the end of O2, the gravitational wave emitted
during the inspiral and merging of a binary neutron star has been detected by the
two LIGO interferometer and Virgo, for the first time [5]. Such signal lasted in the
detector for about 100 s. It was observed with a combined SNR of 32.4 and is the
loudest GW signal ever recorded. As already mentioned, thanks to the identification
of an electromagnetic counterpart, it has been possible to extract an impressive
amount of relevant scientific results. A summary of them and some interesting points
of this detection are given in the following.

Can we be sure that we are observing a binary neutron star?

The fact that the binary system merging has been associated with a EM counterpart
demonstrate the presence of matter and ruled out the case of a BBH. The possibility
of having a neutron star-black hole system cannot be excluded but it is inconsistent
with the observed masses of black holes in binary systems. In fact, the binary
component masses of GW170817 have been estimated to be between 1.17 and 1.6
M�.9The incertitude is mainly due to a degeneracy in the effect on the waveform
of the mass ratio and the orbit-aligned spins of the two objects.10 Components of
BNS observed so far have masses in a range between 1.17 and 1.6 M�, while stellar
mass black observed in our galaxy are larger than 5M�. For these mass consistency
considerations the binary system which produced GW170817 has been confidently
claimed to be formed by two neutron stars.

9These values are given restricting the spin magnitude below 0.05, consistently with the values
of the observed population of binary neutron stars.

10Such constraint for the masses has been found assuming a dimension less spin below than 0.05,
according to the spins value observed so far.
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Equation of states and tidal effects

Neutron stars have an extreme high density, comparable with that of the atomic
nucleus that is ∼ 3 ·1017kg/m3. Since this value is hardly reproducible in laboratory,
GWs produced in a binary coalescence represent a valuable way to access the matter
behavior in such extreme conditions.
Investigation on the equation of state of neutron stars is one of the first scientific
target of the gravitational wave detection from a BNS merger. The GW waveform
starts to be affected from the internal structure of the binary components when the
orbit size becomes comparable with that of the two stars. This effect increases the
quadrupole momentum variation, accelerating the merging.
Each star is characterized by a parameter, known as deformability, which, given the
equation of state, depends only on its mass. The waveform is affected by a com-
bination of the deformability of the two stars. From the waveform observed, has
been possible to find constraints on the deformability of the two stars, thus disfa-
voring equations of state which predict less probable deformabilities. In particular
it was possible to discard equations of state leading to less compact stars, since the
corresponding deformabilities fall outside the 90% probability region [5].

Coincident gamma ray burst

For many years binary neutron star mergers have been considered possible progeni-
tors of short, hard-spectrum GRBs. Recent GR numerical simulation demonstrated
that binary neutron star mergers induce the formation of a relativistic jet-like and ul-
trastrong magnetic field able to produce short GRBs [66]. In correspondence with the
GW signal, a GRB, named 1701717A, was observed independently by the Gamma-
ray telescopes Fermi and INTEGRAL. The major astrophysics result of such joint
observation (whose probability of having occurred by chance has been estimated to
be 5 · 10−8) is the confirmation that at least some of the observed SGRBs are origi-
nated by the coalescence of compact objects [67].
The measured time delay of +1.74± 0.05 s between the GW and EM signal allowed
to set upper limits on the difference between the speed of the two signals between
−3 · 10−15 and 7 · 10−16 times the speed of light.11 It also allowed to constrain the
violation of the Lorentz invariance and test the equivalence principle [67].

The kilonova and other EM transients

The accurate localization (' 29 deg2 at a distance of 40+8
−14 Mpc) provided by a

three detectors observation of the GW signal allowed for an effective search of EM
counterparts by ground and space based telescopes. About 10 h after the merger, a
bright optical transient has been independently identified in the galaxy NGC 4993

11It has been assumed that the EM radiation could have been emitted in a interval which goes
from the peak of the GW emission to 10 s after it.
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by many telescopes [68]. The initial UV-blue emission faded within 48 hours while
optical and infrared emission showed an evolution toward red and started to fade
after roughly a week. The observed EM counterpart is compatible with the so called
kilonova: an electromagnetic transient which originated by a rapid neutron capture
(r-process) nucleosynthesis [69, 70, 71, 72]. During the merger phase a small part
of neutron-rich material composing the neutron stars is supposed to be ejected and
to provide a site for nucleosynthesis of heavy elements via r-process. Kilonova is
a visible/near-infrared emission which is powered by the decay of unstable nuclei
resulting from the r-process. Its occurrence, usually searched in correspondence of
GRBs, has proved that BNS coalescences are one of the process at the origin of heavy
nuclei formation in the Universe.
About respectively 9 and 16 days after the merger also X-ray and radio emissions
were detected. These late emissions are though not to be originated from the same
physical process that generated the ultraviolet, optical and near-infrared emissions
[68].
Also searchers for neutrinos or ultra-high-energy GRB have been performed but no
events associated with the BNS merger have been detected [73].

Remnant

The nature of the merger remnant depends on the masses of the binary components
and on their state equation. Different possibilities have been proposed, among them
there are long-lived neutron stars or short-lived ones, collapsing in a black hole after
about 1 s. The amplitude of the gravitational radiation expected from these model is
at least one order of magnitude lower than the present detector sensitivity, therefore
the lack of GW observation cannot rule out any scenario [74].

Hubble constant measurement

For distances below 50 Mpc the local "Hubble flow" velocity of a source is directly
proportional to its proper distance:

vH = H0d (3.5)

The proportionality constant, known as Hubble constant H0, is a measurement of
the mean expansion rate of the Universe. Thanks to the joint detection of a GW
signal and its EM counterpart it has been possible to estimate H0 independently of
any cosmic distance ladder. The EM transient has been used to identify the galaxy
hosting the BNS merger and thus its Hubble flow velocity, while the distance d has
been extract from the GW signal. The resulting Hubble constant is H0 = 70+12

−8 km
s−1mpc−1 [18], which is consistent with the previous measurements.
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BNS merging rete

The inferred merging rate of BNS computed on the basis of this only observation in
O2, using O1 upper limit as a prior, is 1540+3200

−1220Gpc−3yr−1. This value is consistent
with that derived from BNS system observed in our Galaxy. The astrophysical
background produced by unresolved BNS coalescences has a magnitude comparable
with that originated by BBH coalescence. A search for these two backgrounds has
not yet been performed on the O2 data, but it is expected to be detectable in the
next observation runs [75].
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Part II

Optical and noise studies for
Advanced Virgo
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Context and motivations

During the installation Advanced Virgo, which took place from 2012 to 2016, some
preliminary commissioning activities have been carried on on the different subsystems
progressively installed in order to speed up the commissioning of the full interferom-
eter. Part of my thesis work has been dedicated to this activities.
At the end of 2014 the Injection system was already operational and a pre-stabilization
of the laser frequency was put in place using the input mode cleaner and a rigid ref-
erence cavity. My first contribution to the Advanced Virgo commissioning was to
investigate the noises of such system and develop a noise budget for the laser fre-
quency noise. The main goal of this activity was to contribute to the noise hunting
activity in order to reduce the residual laser frequency noise below the threshold set
by the lock acquisition of the arm cavities.
In May 2016 the Fabry-Perot cavity in the north arm was locked for the first time,
followed by the west arm in August of the same year. I contributed to the optical
characterization of the cavities by measuring relevant parameters such as the round
trip losses, the mismatching and the g-factor, in order to check the proper operation
of the system and point out potential issues.
This second part of the thesis, focused on the commissioning activity of Advanced
Virgo, is divided in three chapters: an introductory one, where the main features of
Advanced Virgo are presented to complete the description given in Sec. 3.2.3 which
was mainly focusing on the upgrade from the initial Virgo. In the second chapter I
present the work done to produce a noise budget for the frequency stability and to
create a code to compute it automatically.
The third chapter is dedicated to the arm’s cavity optical characterization. The
techniques used for the measurements of the relevant parameters are discussed and
the main results are presented.
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CHAPTER 4

The Advanced Virgo detector

4.1 Injection system

The role of the so called injection system is to deliver a laser beam whose power,
frequency and direction fluctuations are low enough to allow the correct operation
of the interferometer. The stability requirements set on Advanced Virgo Technical
design report [76] are reported in Tab. 4.1.

Parameter Requirement
Transmission to the ITF 70% (assuming 175 W on TEM00 at injection input)
Power on HOM < 5%

Intensity noise 2 · 10−9/
√

Hz

Beam jitter < 10−9rad/
√

Hz
Frequency noise 1 Hz RMS

Table 4.1: Beam stability requirement.

4.1.1 Laser source

In the AdVirgo design configuration the injection system is supposed to receive 175
W on the fundamental mode at its input from the Prestabilized Laser System. The
laser system consists in 1W Nd:YAG laser emitting at 1064, amplified to 200 W by
adding coherently two beams of 100 W obtained from two parallel rod amplifiers.
Such a system has not yet been implemented and in its initial operation Advanced
Virgo is using the same laser source used in Virgo. Such system, able to deliver up
to 45 W, has been reinstalled at the beginning of 2014 and it is using the injection-
locking technique [77], where an highly stable lower power laser (called master laser)
controls the oscillation of a high power laser (called slave laser), in order to obtain a
high power beam with good stability performances.
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External 
Injection 
Bench (EIB)

Suspended Injection 
Bench1 (SIB1)

Suspended 
Injection Bench 2 

(SIB2)

Mode Cleaner 
End Mirror

to ITF

Figure 4.1: Tridimensional representation of towers and benches composing the in-
jection system.

4.1.2 External injection bench

A 3D representation of the injection system optical benches and vacuum tanks con-
taining them is presented in Fig. 4.1 while Fig. 4.2 shows a scheme of the beam
path. The external injection bench (EIB) is an in-air non suspended optical table.
It hosts Electro-optic modulators providing RF sidebands1 used for the interferom-
eter control, a Faraday isolator to prevent back reflected light to interfere with the
laser, a telescope to match the beam in the Input Mode Cleaner cavity (IMC) and
quadrant and single element photodiodes used for its lock and alignment. A Beam
Pointing Control (BPC) system, consisting in a set of quadrant photodiode and piezo
actuators is also installed to control the beam position and reduce the jitter.

4.1.3 Suspended Injection benches

The Suspended Injection Bench 1 (SIB1) is accommodated in the INJ vacuum tower
and it is composed of an upper and a lower part. The upper part hosts the IMC input
and output mirrors, which are two flat mirrors at almost 90◦ held in a monolithic
support (dihedron). The beam exiting the IMC is sent by a periscope on the lower
part of the bench, here a pick-off is extracted and sent to the a rigid reference cavity
(RFC) and on a photodiode used for the power stabilization (Pstab). The beam is
sent again in the upper part of the bench where it passes the high power Ultra-High

1Working principle of this systems is detailed in App. E
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Figure 4.2: Schematic of the beam path in the injection system [78].

Vacuum (UHV) compatible Faraday isolator which isolates the IMC from the ITF
reflection. Then it passes through the ITF Mode matching telescope and it is finally
injected into the ITF.
The beam reflected by the ITF goes back up to the UHV Faraday isolator and it
is sent to the suspended injection bench 2 (SIB2). This bench, suspended inside a
smaller vacuum tower, hosts also the beam reflected by the RFC which is sensed by
a photodiode for the lock and quadrant photodiodes for the automatic alignment.
Photodiodes are also used to monitor the beam reflected by the control of the ITF
auxiliary degrees of freedom. The possibility to tune the beam power in different
points of its path is provided by a Input Power Control system (IPC) consisting in
a half wave plate which can be controlled remotely and a pair of polarizing cubes.

4.1.4 Input mode cleaner

The Input Mode Cleaner (IMC) is a high finesse suspended triangular Fabry-Perot
cavity used in transmission. Such configuration has been chosen as it minimizes
the back reflected light. As mentioned above, the cavity is composed by two flat
mirrors accommodated on SIB1 and a curve mirror at a distance of ∼144 m which
is suspended in a dedicated vacuum chamber. The purposes of this cavity are many:

• Filtering of spatial modes - In order to maximize the coupling with the
recycling cavity, we want the injected beam to be a TEM00 as much as possible.
Since the IMC is a non-degenerate cavity, the transmission is maximum for the
fundamental mode and decreases for higher order modes (HOM) according to
the their frequency separation from it.
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• Filtering of beam jitter - A shift or a tilt of the beam with respect to
the IMC axis is seen as the presence of an HOM [79]. Since the axis of a
suspended cavity is very stable for frequencies above few Hz, the beam position
fluctuations are filtered and the transmitted TEM00 is stable with respect to
that resonating into the interferometer.

• Filtering of amplitude and frequency fluctuation - As already observed
in Sec. 2.3.1, a Fabry-Perot cavity acts as a first order low pass filter for
amplitude and frequency fluctuations above the cavity pole. The attenuation
factor is given by

G(f) =
1√

1 +
(
f
f0

)2
(4.1)

with f0 = c/(4LF ). The measured mode cleaner finesse is ∼1000, therefore
the pole is at ∼520 Hz.

• Reference for frequency stabilization - The length of the IMC above
few Hz is very stable with respect to the free running laser frequency noise.
Therefore it provides a good reference for a frequency pre-stabilisation of the
laser, needed to allow the ITF lock acquisition. This active frequency noise
reduction is achieved by locking the laser frequency on the IMC. More detail
on this pre-stabilisation technique will be given in the following chapter.

The suspended bench and the mode cleaner end mirror position are controlled by
using optical levers to reduce their motion to few tenth of µrad and allow to acquire
the lock. Once the lock is acquired, a global alignment control which uses wavefront
sensor, is engaged. More details on these control system and their effect on the laser
frequency stabilization will be given in the following chapter.

4.1.5 The reference cavity

The reference cavity (RFC) is a monolithic triangular cavity of 30 cm used at low
frequency as a reference for the frequency stabilization of the beam. In fact, at
frequency lower then few Hz, the IMC length is less stable due to the motion of the
suspended mirrors. The RFC has a finesse of ∼ 920 [80] and it is placed in a small
separate vacuum tank in the lower part of SIB1.
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4.2 Optical configuration

The Advanced Virgo optical configuration is shown in Fig. 4.3. It consists in a dual
recycling Fabry-Perot interferometer:

Figure 4.3: Advanced Virgo optical configuration.

• Fabry-Perot cavities - With respect to Virgo which used plano-concave cav-
ities, Advanced Virgo arm cavities have a bi-concave geometry. The use of
bi-concave cavities allows to increase the beam size on the cavity mirrors thus
reducing the impact of the thermal noise. The input and the end mirrors have
a RoC of ∼1420 m and ∼1683 m, respectively. In this configuration the beam
waist is about 9.7 mm and its located almost in the middle of the cavity. The
beam size on the mirrors is about 49 mm on the input mirror and 58 mm on
the end.
The ends mirrors are almost completely reflective while the transmission of the
input beam is set to ∼ 1.4%, giving a finesse of ∼ 450. More details on arm’s
Fabry-Perot cavity will be given in Chap.6.

• Recyling cavities - The power recycling (PR) and signal recycling (SR) mir-
rors has both a RoC of 1430 and a transmissivity of 5% and 20% respectively.
They form, together with the input mirrors, the power recycling and the signal
recycling cavity. Such cavities have a length of about ∼ 12 m and beam dimen-
sion of about 50 mm. They are marginally stable, meaning that the resonance
frequencies of the higher order modes are close to that of the fundamental one.
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Since RF sidebands do not resonate in the arm cavities they are more affected
than the carrier by this degeneracy. A thermal compensation acting in the
mirrors has been developed in order to mitigate this effect.

The beam exiting the ITF from the antisymmetric port, before being detected, is
filtered by two short and high finesse bow-tie cavities, called Output Mode Cleaners
(OMC). They get rid of higher order modes in order to minimize contrast defect.

Degrees of freedom and control

In order to be in the proper working condition, the interferometer has to be on the
dark fringe, the arm cavities and recycling cavities have to be on resonance. Low
frequency drift and residual mirror motion make impossible to achieve this condition
without a global control system able to extract information on mirror position and
act on them to keep the detector in its working point. There are five degrees of
freedom to be controlled:

• CARM (Common Arm Length): it is the sum of the arm cavities length
L1 +L2 and it is used as a reference for the frequency stabilization of the laser.

• DARM (Differential Arm Length): which is the difference of the arm cavities
length |L1 − L2|. This is the degree of freedom related to the dark fringe
condition and also the one containg the gravitational wave signal.

• PRCL (Power Recycling Cavity Length) that is lpr + (l1 + l2)/2. It is related
to the resonance condition of the power recycling cavity.

• SRCL (Signal Recycling Cavity Length) that is lsr + (l1 + l2)/2. It is related
to the resonance condition of the signal recycling cavity, which is detuned in
some configurations.

• MICH (Michelson arms difference Length) that is |l1 − l2|. It is the Michelson
differential length. As DARM it is related to the dark fringe condition, even if
with a smaller weight.

Residual seismic noise is also responsible for inducing mirror rotations which af-
fect the alignment of the cavities preventing a proper operation. In order to mitigate
this effect a global angular control system (known as automatic alignment or AA) is
implemented.

4.3 Mirror suspensions and control

The system developed to suspend mirrors in Virgo, known as superattenuator [81],
has been proven to provide a very high level of isolation from seismic disturbance,
which is compliant with the requirement of Advanced Virgo. Since coupling between

64



different degrees of freedom of the mirrors are likely to appear, such system is con-
ceived to reduce seismic disturbance in the six degrees of freedom of the mirrors. An
attenuation factor of more than 10−10 above 3 Hz in all the d.o.f. has been achieved.
Each superattenuator, shown in Fig. 4.3, is hosted in a 10 m tall vacuum chamber
and its composed of three parts:

• The inverted pendulum - It consists of three aluminum legs of about ∼ 7m.
Each of them is connected to ground through a flexible joint, allowing for
pendulum oscillation in the horizontal plane [82]. The tops of the three legs are
connected to a mechanical ring (Top Ring) supporting the first seismic filter,
called Filter 0. The inverted pendulum provides attenuation of the seismic
disturbance, for frequencies above its resonant frequency. It reads

fip =
1

2π

√
k

m
− g

L
(4.2)

where k is the stiffness of the flexible joint, L is the length of the leg and m is
the mass on its top. For an inverted pendulum of given length we can change
the mass to have an arbitrarily low resonance frequency (ultimately limited by
the stability of the system), exploiting the anti-spring effect of the gravity. In
Virgo the parameters have been chosen in order to have fip ' 50 mHz. Another
advantage of this system is that it allows to move the whole suspended chain
applying very small forces to correct long term mirror drifts.
The first element of the filter chain is the so called Filter 0, surround by the
top ring. On a platform on its top a set of sensors and actuators are installed
and used to actively damp the inverted pendulum resonances.[83].

• The seismic filter chain - The chain of seismic filters suspended to the filter
0 is composed of five cylindrical drum shaped mass, of about 100 Kg. The
vertical attenuation is provided by a set of triangular cantilever spring blades
connecting the each stage to the following one. They filter vertical seismic
noise above their resonance frequency which is at about 1.5 Hz. In order to
attenuate the excitation of the rotational degrees of freedom, the filters are
suspended as close as possible to their center of mass.

• The last stage - The last stage of the suspension known as payload is located
in a dedicated ultra-high vacuum chamber. It is composed by a mass called
marionette, suspended to the last seismic filter by a central steel wire, (called
filter 7 ), the mirror, suspended to it with four wires and the relative actuators.
It also includes devices for the thermal compensation and baffles which are
rigidly connect it to the body of the Filter 7. The role of the marionette is to
control the mirror position and to allow longitudinal and angular alignment.
A set of coils and magnets are used to this purpose. Correction applied a the
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level of the marionette (and on the top stage) benefit from the pendulum filter
effect which reduces the unavoidable driving noise associated to the actuations.
For the same reason if we want to move the mirror at a frequency much higher
than the suspension resonant frequency (1-2 Hz), we need to act directly on
the mirror. To this purpose mirrors are equipped with a set of magnets which
can be pushed and pulled by using coils. Correction to compensate long term
thermal drift (f < 30 m Hz) are sent to the top the inverted pendulum and can
exploit its large dynamic.

Figure 4.4: Schematic of the superattenuator [50].

4.4 Noise budget and design sensitivity

In Fig. 4.4 the target sensitivity of Advanced Virgo is shown together with the noise
sources which contribute to limit it. The sensitivity is estimated assuming an input
power of 125 W and the signal recycling in a broadband configuration. It is limited
by the seismic noise below 3 Hz.2 Between 3 Hz and 20 Hz, it limited by Newtonian
noise and suspension thermal noise. Between 30 Hz and 100 Hz it is limited by mirror
coating noise and quantum noise and above 100 Hz it is limited only by quantum
noise. The corresponding BNS range is 120 Mpc while the BBH range is 1.18 Gpc.

2It is worth to notice that due to the superattenuator effect the slope of the seismic noise is very
steep: it limits the sensitivity to 10−12 at 0.1 Hz and to less than 10−19 at 3 Hz.

66



This estimation does not take into account the presence of technical noises such as
control noise from feedback loops used for to keep the ITF on the working point
and scattered light noise or environmental noises. In Fig. 4.6 a noise budget for the

Figure 4.5: Noise budget for Advanced Virgo sensitivity, computed using GWINC
with 125 W of injected power and tuned signal recycling (broadband configuration).

AdVirgo sensitivity during O2 is shown (BNS range 27 Mpc and 30M� BBH range
320 Mpc) [84]. The injected power is 13 W, no signal recycling was installed and the
suspension thermal noise was higher than the design one as monolithic suspensions
are not yet integrated. It is limited by control noises (ISC) up to about 30 Hz, from
thermal noise up to 100 Hz and from quantum noise above. We see that not all the
noise contributions have been identified and in some regions the sum of measured and
estimated noise does not reproduce perfectly the measured sensitivity. This results
in a discrepancy between the BNS inspiral range estimated which is 33 Mpc and that
actually measured which is 27 Mpc.
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Figure 4.6: Noise budget for the Advanced Virgo sensitivity during O2 [84].
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CHAPTER 5

Injection system noise analysis

We have seen that the change in the time taken by the light to perform a cavity round
trip (possibly generated by a gravitational wave) can be detected by measuring the
change in the light phase from the relation: ∆φ = 2πflaser∆τrt. From this relation
we see that a noise of the light frequency results in a noise of the measured phase
change that limit the precision of our measurement. One of the advantages of the
Michelson interferometer configuration is that in principle for perfectly symmetric
arms, frequency noise cancels out. However, an asymmetry of about ∼ 20 cm, called
Schnupp asymmetry, between the short Michelson arm is needed for signal read-out
purpose. Moreover, other arm cavity parameters, such as finesse and losses, are un-
avoidable sources of asymmetry. The requirement on the frequency stability is thus
determined by the level of asymmetry of the arms.
The spectrum of free running laser noise of Advanced Virgo laser can be approxi-
mated as

Slaser
104

f

[
Hz√
Hz

]
(5.1)

If we require the frequency noise to be a factor 10 below the design sensitivity,
considering an arm asymmetry of 1%, the free running laser noise has to be reduced
of ∼ 9 order of magnitudes. Arms cavities length is stable enough to provide a
reference compliant with this requirement. Anyway a first pre-stabilization of the
laser is necessary for the lock acquisition. The requirement for that is set to 1 Hz
RMS [76], since we want the noise to be much lower than the arm cavity bandwitdh
(∼ 50 Hz). This pre-stabilization is achieved by using the input mode cleaner and
the reference cavity as length references.
In this chapter a detailed description of the pre-stabilization strategy is presented
together with an analysis of the noise limiting the frequency stability. The goal of this
activity was to estimate the frequency stability of the laser after this pre-stabilization
and produce a noise budget for the frequency noise in order to contribute to its
reduction below the requirement.
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5.1 Frequency pre-stabilization loops

The laser frequency pre-stabilization is achieved within the injection system using
two loops with different bandwidth (See Fig. 5.1)[85, 86]

• a first fast pre-stabilization loop (∼ 200 kHz bandwidth) which locks the laser
frequency on the input mode cleaner (IMC) length.

• a second loop (∼ 80 Hz bandwidth) which locks the laser frequency on the
reference cavity (RFC).

In this way the suspended IMC, which is very stable at high frequency (above
few Hz), is used in that region as a length reference while the RFC is used at low
frequency. The error signal for the first loop is generated using the Pound-Drever-
Hall (PDH) technique in reflection. In the second loop the frequency of the IMC
transmitted beam is compared with the RFC length and the PDH signal in reflection
is used to control the IMC cavity length acting on its end mirror.
The correction signal applied to the laser frequency is constituted by:

• A thermal correction (up to 50 mHz) acting on the laser crystal temperature.

• A piezo correction (up to more than 10 kHz) acting on the laser crystal length.

• A EOM correction (for higher frequencies) sent to an electro-optic modulator
which is able to correct the beam frequency during its propagation.

In Fig. 5.2 a scheme of the two loops is shown. Once the interferometer is locked,
a second stage of frequency stabilization (SSFS) is engaged [85]. In this configuration
the error signal is provided by using the common arm length (CARM) as reference.
In this configuration the RFC is still used as reference at low frequency.
However, our noise analysis is performed on the injection system running in stand-
alone configuration. In order to measure the frequency stability of the pre-stabilized
laser we measure the PDH error signal in reflection from the RFC which is the result
of a comparison between the laser frequency and the RFC length. As we will see
in detail in the following section, this is a measure of the actual frequency noise
only if it is not limited by the RFC noise or by the loop sensing noise. The first
step will be thus to produce a frequency noise budget for the RFC error signal to
understand which are the noise noises limiting it. Then we will show how to to use
this information to estimate the actual frequency noise of the beam injected into the
ITF.
In the following noises which affect the RFC error signal are presented and their
impact on such signal is obtained. We stated by computed analytically the loop
equations to find the projection of each noise on the RFC error signal. We use the
following notation:
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• Noises

– νfree

[
Hz√
Hz

]
Free running laser noise

– νR

[
Hz√
Hz

]
RFC length noise (converted to equivalent frequency noise) 1

– νM

[
Hz√
Hz

]
IMC length noise (converted to equivalent frequency noise)

– νITF

[
Hz√
Hz

]
Frequency noise sent to the interferometer

– snM [V] sensing noise in the IMC reflection error signal

– snR [V] sensing noise in the RFC error signal

• Transfer functions

– AM

[
Hz
V

]
laser actuator transfer function

– FM

[
V
V

]
IMC electronic filter transfer function

– AR

[
Hz
V

]
RFC actuator transfer function

– FR

[
V
V

]
RFC electronic filter transfer function

– TM

[
Hz
Hz

]
optical transfer function for the IMC transmission

– RM

[
V
Hz

]
transfer function between the noise entering IMC [Hz] and the

PDH demodulated error signal [V]. It includes the optical response of the
cavity and the PHD calibration factor

[
V
Hz

]
– RR

[
V
Hz

]
transfer function between the noise entering RFC [Hz] and the

PDH demodulated error signal [V]. It includes the optical response of the
cavity (which can be considered flat for the RFC up to more than 105Hz)
and the PHD calibration factor

• E [V]: RFC error signal

From the block diagram 5.2 the following equations can be deduced.

E = snR +RR(νR + TMνin) (5.2)

νin = νfree +AMFM (snM +RM (νM + νin +ARFRE)) (5.3)

then

νin =

[
1

1−AMFMRM

]
(νfree +AMFMsnM +AMFMRMνM +AMFMRMARFRE)

1When comparing cavity length noise with laser frequency noise we use the relationship δν/ν =
δL/L. The conversion factor from m to Hz is ν/L = 2 · 1012Hz/m
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and

E =

[
1− TMAMFMRMARFRRR

1−AMFMRM

]−1

(5.4)

·
[
snR +RRνR + (

TMRR
1−AMFMRM

)(νfree +AMFMsnM ) +AMFMRMνM )

]
(5.5)

By defining GM = AMFMRM the pre-stabilization open loop transfer function and
GR = ARFRRR the RFC open loop transfer function, we find

E =

[
1− TMGMGR

1−GM

]−1

(snR+RRνR+
TMRR
1−GM

νfree+
TMRRGM

(1−GM )RM
snM+

TMRRGM
1−GM

νM )

Assuming a very high gain for the pre stabilization loop in the frequency region of
interest (f < 10 kHz ), that is, considering GM →∞ the previous relation becomes:

E =

[
1

1 + TMGR

]
(snR +

TMRR
RM

snM +RRνR + TMRRνM ) (5.6)

From Eq. 5.6 we read how each noise contributes to the total frequency noise mea-
sured by RFC error signal and how the RFC loop affects their projection on the RFC
error signal.

5.1.1 PDH signal calibration

This calibration factor needed to convert the RFC error signal from Volt to Hz or
meter has been obtained in two different ways:

1. As detailed in Sec. E, the PDH signal generated during a scan of the laser
frequency, is linear around the point where the cavity crosses the resonance.
This part of the signal can be fitted to extract the linear coefficient which gives
the calibration (see Fig. 5.3). In order to convert the time on the x-axis into
Hz, we used the fact that the RFC Full Width at Half Maximum (FWHM) of
the resonance peak is known, and corresponds to:

FWHM =
c

2LF
= 5.26 · 105Hz (5.7)

where we used the value L = 0.31 m and F = 920 [80].

2. The open-loop transfer function can be modeled as the product of the electronic
filter (which is known), the actuator (which has been previously calibrated) and
the optical gain which is the only free parameter. The latter can be estimated
by comparing this model with the measured open loop transfer function. This
method is less direct as it rely on the correct calibration of the actuator. The
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values obtained with these two methods are in agreement within 3%.

Figure 5.3: PDH signal and its linear fit in the central region, used to calibrate the
RFC error signal.

5.1.2 Open loop transfer functions

The open loop transfer function the RFC, GM has been measured by means of a
noise injection between 10 Hz and 500 Hz. It has been compared with the modeled
one which, as already said, is composed by the electronic corrector filter FM , the
mechanical response of the actuator AM , the optical gain RM and a pure delay due
to the digital electronic.

Corrector filter : Unity Gain Frequency: 83 Hz
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Freq Q
real zero 1 0
real zero 5 0
complex zero 11 0.7
complex zero 11 0.7
complex zero 20.5 2
complex zero 28.4 2
real zero 240 0
real pole 0 0
complex pole 2 2
complex pole 5 3
complex pole 20.5 20
complex pole 28.4 20
real pole 800 0
complex pole 2000 0.8

Actuator mechanical response : gain 16 · 10−6m/V in DC

Freq Q
complex pole 0.667 10

Delay : 800 · 10−6 s

The comparison between the modeled transfer function and the measured one is
shown in Fig. 5.4. The two curves agree above 10 Hz where the noise injection has
been performed.

5.2 Sensing noise

A noise, known as sensing noise, is introduced every time that an optical signal is
recorded by a photodiode. It is composed by shot noise, dark noise and ADC noise
if the analog signal is converted to a digital one (as in the case of RFC error signal).
The mechanisms originating this noise are discussed in the following.
Sensing noises of the photodiodes used to lock the reference cavity and the mode
cleaner affect the RFC error signal in the following way (see Eq. 5.6):

E =

[
1

1 + TMGR

]
(snR +

TMRR
RM

snM) (5.8)

since the optical gain RR of the reference cavity is much smaller than the optical
gain of the mode cleaner RM , and the two sensing noises are comparable, only the
contribution of RFC photodiode snR has been taken into account.
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Figure 5.4: Comparison between the RFC transfer function measured and the theo-
retical model.

In order to compute the sensing noise, we took into account different mechanisms
detailed in the following.

5.2.1 Shot noise

Shot noise, already described in Sec. 2.2.1, is a fundamental noise which stems from
the discrete nature of the photons causing an uncertainty in their arrival time on a
photodetector. Being a counting noise, it is governed by Poissonian statistic and, for
a DC signal, it has a flat spectral density given by

Sshot,DC =
√

2hνPin,DC

[
W√
Hz

]
(5.9)

where Pin,DC is the DC power impinging on the photodetector. Shot noise is mea-
sured as a photocurrent noise at the output of the photodiode and its value in terms
of optical power can be recovered knowing the photodiode responsivity.
Here we are interested in computing the shot noise for a modulated signal. An esti-
mation for it can be found considering a white noise with a known spectral density
amplitude. If we multiply it by a cosine (in the time domain), the spectrum of the
noise will remain flat and its amplitude will result reduced of a factor 1√

2
. Thus the

shot noise for a demodulated signal can be approximated as [87]
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Sshot,AC =
√
hνPin,DC

[
W√
Hz

]
(5.10)

We used this formula to estimate the shot noise of the demodulated RFC error signal.

5.2.2 Dark and ADC noise

The demodulated signal is digitized by means of an analog-to-digital converter (ADC)
which introduces a white noise. This noise has been found by measuring at ADC
output signal when the analog input was disconnected. We obtained:

nADC ' 2 · 10−7

[
V√
Hz

]
(5.11)

The dark noise is a voltage at the photodiode amplifier output which if present even
if there is no light impinging on it. We measured the sum of the dark noise and the
ADC noise looking at the RFC error signal when there was no light reaching the
photodiode, under the assumption that these noises are independent of the amount
of light reaching the photodiode. The noise measured was nsum ' 4.5 · 10−7 V√

Hz
.

Assuming that dark noise and ADC noise are independent, the first can be obtained
from the total measured one, knowing the ADC noise:

ndark =
√
n2
sum − n2

ADC ' 4 · 10−7

[
V√
Hz

]
(5.12)

The different contributions to the sensing noise and their sum are plotted in Fig. 5.5
along with the RFC error signal. As show in Eq. 5.8, in order to compare them, the
sensing noise has been divided by (1 + TMGR) to take into account the effect of the
loop.

5.3 Classical radiation pressure noise

We have seen in Sec. 2.2.2 that light impinging on mirrors exerts on them a force
known as radiation pressure force. Classical fluctuations in the beam power cause a
fluctuation in the radiation pressure force, by directly moving the mirrors, results in a
cavity length noise. Classical radiation pressure has been computed considering that
a beam of power P exerts on a mirror a force given by F = 2P

c ; thus the fluctuations
in the force are connected to those in the power by ∆F = 2∆P

c . From the mirror
equation of motion in frequency domain M

(
−2πf2 + ω0

2
)
x̃ = F̃ we can deduce a

relation between the spectral density of the mirror motion and the radiation pressure
force:

Sx (f) =
2

4π2cMf2
0

((
f
f0

)2
− 1

) × Sp (5.13)
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Figure 5.5: Different contributions to sensing noise and their sum compared with
the RFC error signal. According to Eq. 5.8, the sensing noise has been divided by
(1 + TMGR) to take into account the effect of the loop.

where Sp is the spectral density of the intensity fluctuation of the laser, M is the
mirror mass and f0 is the pendulum resonance frequency.
In order to estimate the fluctuations of the power inside the cavity Sp we made the
assumption that the laser relative intensity noise (RIN), that is the laser spectral
density divided by its mean power, is the same inside and outside the cavity. There-
fore in order to find Sp we measured the RIN on the IMC transmitted beam and
multiplied it for the estimated value of the power inside the cavity. We used the
approximated formula Pcav = Finesse

π · Pin, with a IMC finesse around 1000 [88]
Since the impact of the radiation pressure is inversely proportional to the mass, its
effect on the IMC input and output, which are fixed on the suspended injection
bench (SIB 1), has been neglected and only its effect on the IMC end mirror have
been taken into account. Its spectrum, compared to the RFC error signal, is plotted
in Fig. 5.6, where we have used a M = 3.4 kg and f0 = 0.669 Hz

5.4 Quantum radiation pressure noise

As observed in Sec. 2.2.2, fluctuations of the power impinging on the mirror can also
be due to the quantum fluctuation in the number of incident photons. We have seen
that as the shot noise, this is another manifestation of the particle nature of light
and this two noises can be shown to be interdependent. We estimate the quantum
radiation pressure contribution combining the spectral density of the fluctuating force
5.14

SF (f) =
2

c

√
2hνPcav (5.14)
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Figure 5.6: Classical and quantum radiation pressure noise compared with the RFC
error signal.

As in the classical case, we can take the mirror equation of motion and find the
spectral density of its displacement by inserting the spectral density of the fluctuating
force:

Sx (f) =
2

4π2cMf2
0

((
f
f0

)2
− 1

)√2hνPcav

Quantum and classical radiation pressure noise spectra, divided by (1 + TMGR),
are compared to RFC error signal in Fig. 5.6. We see that both of them are far from
being limiting factor for the laser frequency stability.

5.5 Thermal noise

Thermal noise, whose nature has been presented in Sec. 2.2.5, has been estimated
both for the IMC suspension and for the coating of its mirrors.

5.5.1 Pendulum thermal noise

In Sec. 2.2.5.1 we obtain an expression to compute suspension thermal noise that
writes:

Sx =
4kbTφpω

2
0

Mω5
(5.15)

where kb is the Boltzmann constant, M the mass of the mirror and

φp =
kel
kg
φw =

Nw

√
TwEI

2gLM
φw
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with Nw number of wire, E wire material Young module, L wire length, I moment
of inertia of the wire cross section, Tw tension of each wire and φw is the loss angle
of the wire.
We computed the square root of this quantity for both the IMC end mirror and
the suspended injection bench in order to find the amplitude spectral density of the
displacement. We used the following parameters:

SIB1 MC
Weight M 198 kg 3.4 kg
Number of wires NW 3 2
Wire length L 0.7048 m 0.555 m
Wire’s cross section moment of inertia I 5.153 · 10−13 m4; 2.485 · 10−17 m4

Wire material Maraging steel 250 C40 steel
Wire material modulus of elasticity E 2.1 · 1011Pa 2.2 · 1011Pa
Wire’s losses φw 6 · 10−5 1.9 · 10−4

The dilution factors (defined in Sec. 2.2.5.1) of the SIB1 and the MC are 9.2 · 10−6

and 7.3 · 10−4, respectively. By multiplying them for the respective material loss
angles we find φIBp = 6 · 10−11 and φMC

p = 1.4 · 10−7. The two contributions and
their incoherent sum, divided by (1 + TMGR), are compared with the RFC error
signal in Fig. 5.7.

5.5.2 Coating thermal noise

As already reported in Sec. 2.2.5 the expression of the mirror coating thermal noise
is [33]:

Sx =
8kbT

ω

(1 + σ)(1− 2σ)t

πE0w2
φc (5.16)

where σ is the Poisson ratio, E0 the mirror Young modulus, w the laser beam radius,
t is the coating thickness and φc is the loss angle
We computed the square root of this quantity for both the IMC end mirror and the
injection bench to find the amplitude spectral density of the displacement. We used:
σ = 0.17, E0 = 7 · 1010Pa, wIB = 0.005 m, wMC = 0.01 m, φIBc = 4 · 10−4, φMC

c =

5 · 10−4, coating thickness tIB = 1.8 · 10−6 m, coating thickness tMC = 6.5 · 10−6 m.
The total coating thermal noise is compared with the pendulum thermal noise and
the RFC error signal in Fig. 5.7. We see that also in this case they are at least four
orders of magnitude below the error signal spectrum, therefore they don’t limit the
frequency stability.

5.6 RFC length noise

The rigid reference cavity, described in Sec. 4.1.5, used to stabilize the laser at
low frequencies, is affected by thermal noise inducing fluctuation in its length which
projects on the RFC error signal. Some investigations have been done in the past,
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Figure 5.7: Pendulum and coating thermal noise spectrum compared with RFC error
signal. The effect of the loop has been taken into account in the comparison.

in order to measure such noise. An upper limit for this noise has been obtained
by Bondu in 1996 [86], two RFCs have been used for the measurement: a laser was
locked to one of them and the other was used as a reference to measure the frequency
stability. The error signal spectrum of the measurement cavity in Fig. 5.8 (blue line)
is the sum of the two RFC cavity noises. Another measurement of the RFC noise
has been performed by Bondu in 2008 using as reference a laser stabilized on the
Virgo arms length [86]. The spectral density for this measurement is plotted in Fig.
5.8 (green line). The two measurements seem to be in agreement.
A theoretical estimation of the RFC length noise has been done by Numata et al. [89].
They assumed that the noise is originates from thermal fluctuations and computed
numerically the contribution of the spacer and the mirrors (coating and substate).
Numata’s result has been fitted by the function

nRFC =
10−1

√
f

Hz√
Hz

(5.17)

This estimation is plotted in Fig. 5.8 (red line) together with the two measurements
by Bondu. The theory shows a good agreement with the floor of both experimental
results. We have used the estimation given by Numata as RFC length noise in our
noise budget. The projection of this noise on the RFC error signal is shown in Fig.
5.9 and it seems to be the limiting noise in the frequency region between 40 and 150
Hz.
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Figure 5.8: Theoretical estimated RFC length noise (red line) is compared with two
different experimental measurements

Figure 5.9: RFC length noise projection on the RFC error signal.

5.7 Angular control noise

In order to keep the IMC aligned with respect to the laser, the angular degrees of
freedom of the MC end mirror and the suspended injection bench are controlled. Two
different techniques are used. The Local Controls (LC) use optical levers as position
sensors with respect to the ground. They provide information only on the position
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of a mirror with respect to the ground and not on the laser beam position with
respect to the mirrors.2 Since they use the ground as reference, they are affected by
seismic noise. Moreover they are affected by an higher sensing noise. The automatic
alignment (AA) based on the wavefront sensing technique, on the other hand, uses
the fact that a cavity misalignment generates higher order modes. The amount of
higher order modes produced is measured, extracting a demodulated error signal
from quadrant photodiodes, and provides information on the cavity alignment. Two
quadrant placed in reflection with a Gouy phase shift of 90◦, modulated at 22 MHz
are used. In addition the signal from a DC quadrant placed in transmission of
the IMC end mirror is used. The sensitive degrees of freedom to be controlled are
θx, θy, θz for the SIB1 and θx, θy for the MC. The relation between their values
and the quadrant signal is expressed by the optical matrix, measured by injecting
monochromatic excitations on the actuators in order to measure the transfer function
between each degree of freedom and the quadrant signal.
Local controls are used to stabilize the mirrors during the lock acquisition and to
reduce their angular displacement below some tenths of microradians in order to
reach the linear regime of the Automatic Alignment error signals. Unlike Automatic
alignment, Local control are not compliant with the requirement set on the angular
stability for a low noise operation of the interferometer, as their sensor are affected by
an higher electronic noise and long term drift [90]. Two different control schemes are
possible: a fast control which uses only global signal with a bandwidth of tens of Hz
and a drift control where the global control are used with a control bandwidth of few
mHz while at higher frequency local controls are used. In order to measure the noise
contribution of the angular control noise to RFC error, we measured the transfer
function between the correction applied to the marionette and the RFC error signal.
This has been done by means of a noise injection on the marionette. The transfer
functions for the three injection bench degrees of freedom θx, θy, θz are shown in Fig.
5.10. The contribution of the angular control noise of the injection bench to RFC
error signal is found by multiplying the spectrum of the correction signal in normal
condition with the absolute value of the measured transfer function.

Nproj(f) = |TF (f)|with noise · |ASD(f)|no noise (5.18)

As it can be seen in Fig. 5.11 the IB angular control noise represents the limiting
noise in the RFC error signal up to 40 Hz. Noise injections on the IMC end mirrors
showed a very low coherence with RFC error signal, thus their projection are not
included in the noise budget.

2More details on this technique and on its implementation can be found in Sec. 9.3.
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Figure 5.10: Transfer functions between the correction applied to the marionetta and
the RFC error signal for the 3 degree of freedom of the injection bench.

Figure 5.11: Injection Bench angular control noise projections.
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5.8 Beam pointing control (BPC) noise

The beam pointing noise, usually referred to as jitter noise, consists in a shift or
a tilt of the input beam axis with respect to the IMC cavity axis. A jitter of the
beam which enters the interferometer couples with a possible asymmetry between
its arms causing a phase noise. For that reason the injection system has to deliver
a beam with specific requirements in terms of jitter. A sensing system composed by
two quadrant photodiodes is used to monitor the shift and the tilt of the beam at
the IMC input [91]. A beam pick-off is taken before the IMC and it is sent to two
quadrants which are placed at a distance producing a Gouy phase shift of 90◦. In
this way each quadrant is sensitive only to one degree of freedom: the pure shift for
the so-called Near Field quadrant and the tilt for the Far Field one. These signals are
used as error signals in a feedback loop, the Beam Pointing Control (BPC), active in
the frequency range up to 10 Hz. The correction obtained filtering the error signal,
is sent to the actuators: two tip/tilt piezo mirrors placed as in Fig. 5.12.

Figure 5.12: Beam pointing control scheme from [91]

As discussed in Sec. 4.1.4 above the bandwidth of the Automatic Alignment
loop ( ∼ 1 Hz) the IMC acts as a filter for the beam jitter. The jitter, seen as
a misalignment by the cavity, produces higher order modes which cannot resonate
and are weakly transmitted. On the other hand, in the region where the Automatic
Alignment is active, the cavity is kept aligned following the beam position fluctuation
which are transmitted almost unchanged.
The projection on the RFC error signal has been found by injecting noise on the
BPC actuators and measuring the transfer function between the jitter and the RFC
error signal for all the degree of freedom: shift in x and y and tilt in θx and θy. The
transfer functions have been than multiplied for the jitter signals in normal condition
to find the noise projections that are shown in Fig. 5.13. We observe that the RFC

85



CHAPTER 5. INJECTION SYSTEM NOISE ANALYSIS

error signal is not limited by such noise.

Figure 5.13: Jitter noise projection on the RFC error signal.

The mechanism through which the jitter noise affects the RFC error signal is not
straightforward. For example, in the RFC error signal there are peaks around 10
Hz explained by the noise projection of the angular control of the input bench and
also seen by the BPC sensors. We found them to have a high coherence with the
seismometers of the external injection bench (EIB). Since the AA quadrants on the
EIB are supposed to be insensitive to seismic noise at the first order, we suppose
that motion of the external injection bench causes a real jitter of the beam which is
seen as a misalignment from the AA quadrant and then re-injected as angular con-
trol noise by their control loop. However this coupling mechanism through the AA
control loop is unlikely to act at high frequency because the AA loop is not active
at these frequencies.
From the argument above it is evident that at low frequency, angular control noise
and jitter noise can not be considered independent. For that reason they can not
be summed in quadrature to obtain the total noise. When summing all the noise
sources, a solution to avoid an overestimation of the total noise is to take into ac-
count the jitter noise projection obtained from a transfer function measured under
local controls.

All the noise projections computed above have been put together to realize a
noise budget for the RFC error signal (See Fig. 5.14). In Fig. 5.15, only the most
relevant noises are shown: we see that the frequency noise is limited by injection
bench angular control noise up to 40 Hz. From RFC thermal noise in the region
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between 50 and 120 Hz and by sensing noise above. We remark that there are some
bumps (for example at 200 Hz) and some peaks at high frequency which are not
explained by the incoherent sum of all the noises considered.

Figure 5.14: Noise budget for the RFC error signal.

Figure 5.15: Noise budget for the RFC error signal showing only limiting noises.

5.9 The "real" frequency noise

As we have anticipated, our ultimate goal is to estimate the frequency noise of the
beam that is sent to the ITF, referred to as νRFC in Fig. 5.1. Up to now, our
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analysis was performed on the RFC error signal and we produced a noise budget
showing which are the noises that limit it. Since we found out that both RFC
and sensing noise are between the limiting sources, RFC frequency noise cannot be
simply considered a measurement of the real frequency noise. The next step will be
thus to compute how this signal is related with the real frequency noise in order to
reconstruct the latter. A simplified expression in terms of noises which contribute to
RFC error signal can be deduced from Eq. 5.6 and reads

E =

[
1

1 +G

]
(snR + lnR + lnM ) (5.19)

Where G is the RFC open loop transfer function, snR is the sensing noise, lnR and
lnM are the length noise of the RFC and IMC respectively. On the other hand, the
real frequency noise sent to the ITF is [92]:

νITF =

[
1

1 +G

]
(snR + lnR) +

[
G

1 +G

]
lnM (5.20)

Where snR, lnR and lnM are assumed to be converted in Hz. By comparing the
two expressions we see that the contribution of IMC length noise is the same, but
if we consider the RFC error signal an estimation of the real frequency noise, we
underestimate RFC length noise and sensing noise in the frequency region where
G >> 1 and at the same time we overestimate them in the frequency region where
G << 1. In Fig. 5.16 the RFC error signal limiting noises have been combined
following Eq. 5.20 in order to reconstruct the frequency noise of the beam sent to
the ITF. We observed that the RMS of such reconstructed signal is slightly lower
than that obtain from the RFC error signal [92]. So we can regard RFC error signal
as an upper limit for the frequency noise of the beam sent to the ITF.

Frequency noise measurement using arm cavity

Once the north arm cavity was locked we could perform an independent measurement
of frequency noise and compare it with that obtained with the RFC. First we observed
that the north arm PDH error signal was highly coherent with the RFC error signal
in the region between 50 and 400 Hz. This suggests that the error signal is dominated
by the frequency noise in this frequency region. Since the north arm and the RFC
give independent measurements of the frequency noise, we have checked whether the
two methods give coherent results. Error signal of the arm is connected to frequency
noise by the following relation :

Earm = Carm
νITF√

1 +
(
f
f0

)2
→ νITF =

Earm

Carm
·

√
1 +

(
f

f0

)2

(5.21)

where νITF is the frequency noise, Earm is the error signal of the north cavity,
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Figure 5.16: The RFC error signal limiting combined following Eq. 5.20 in order to
reconstruct the "real" frequency noise sent to the ITF.

f0 ' 55.5 Hz is the pole of the arm (assuming a finesse of 450) the Carm is a
calibration factor from Hz to Volt. We did not take into account the effect of the
arm cavity control loop since at the time of the measurement it had a bandwidth
of 15 Hz. According to the analysis presented before, in the region 50-500 Hz, the
RFC error signal is limited by the length noise of the RFC and its sensing noise. We
have seen that the frequency noise of the laser νITF, as measured by the RFC error
signal, is related to error signal in the following way:

Erfc = Crfc
νITF

G
→ νITF = Erfc

G

Crfc
(5.22)

where G is the RFC open loop transfer function of the RFC and Crfc is the RFC
error signal calibration factor. In Fig. 5.17 we have superposed the frequency noise
νITF as measured by the north arm cavity and by the RFC. We observe that the
two spectra are in good agreement in the region between 50 and 400 Hz (where the
coherence between the two signals is high), showing that the two measurements are
consistent.
We remark that this analysis is not highly dependent from the north arm cavity
pole. The calibration factor for the north arm has been chosen in order to superpose
the two spectra and has been used to estimate the lock accuracy of the cavity. We
found 1/Crfc = 2.7 · 104 Hz/V (or 2.9 · 10−7 m/V) which corresponds to a lock
accuracy of ∼ 30 pm. This value has been found to be consistent with the result of
an independent calibration of the error signal, thus confirming our analysis.
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Figure 5.17: Comparison between the frequency noise of the prestabilized laser mea-
sured by the RFC and the north arm cavity.

5.10 Noise budget automation

The process to compute the noise budget has been automated and included as a
standard procedure in Metatron. This is a state machine based code for the automa-
tion of Advanced Virgo control [93], which has been adapted from a code developed
in LIGO, known as Guardian [94]. In Fig. 5.18 the state machine graph for the
injection node is shown. A preliminary operation in order to compute the noise
budget is to measure the transfer function between the noise in a degree of freedom
and the RFC error signal. This is done using a python script which can inject noise
of desired amplitude and shape on the IMC angular controls, on the BPC actuators
and in the RFC loop. GPS of noise injection are recorded and used by a MAT-
LAB script which computes the transfer functions. Then, another MATLAB script
is called: it measures corrections sent to the actuators in stationary conditions and
produces the noise budget. As can be observed from the state machine graph, the
noise injection is not a necessary preliminary step in the noise budget computation.
Since the transfer functions are unlikely to change very often, it is also possible to
directly run the noise budget script which in that case will used the latest computed
transfer functions.

5.11 Frequency noise improvement and conclusions

Noise budget has proven to be a useful tool in the injection system commissioning, to
monitor the frequency noise and identify possible problems in the pre-stabilization
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Figure 5.18: The state machine graph for the injection node in Metatron.

loop. In Fig. 5.19 are shown the progress in the reduction of frequency noise achieved
over four months of commissioning, which lead to meet the requirement of 1 Hz RMS.
The main improvements to reduce the noise consisted in an optimization of the RFC
loop filter and the automatic alignment system (tuning of the corrector filters, re-
ducing noise in the quadrant error signal) in the increasing of the power, the use of
more performant photodiodes for the RFC loop which were also suspended and put
in vacuum and in the replacement of the electronic.
The activity described in this chapter and the main results obtained can be summa-
rized as follows

• We performed for the first time a complete noise budget for the RFC error
signal.

• We use it to deduce the real frequency noise of the pre-stabilized laser, injected
into the ITF.

• We have automated the noise budget and use for the noise hunting activity,
contributing to reduce frequency noise below the requirement

• Once the requirement was achieved we could lock the arm cavities. Then we
could confirmed our frequency noise estimation by comparing it to the cavity
error signal and finding a good agreement between the two.
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Figure 5.19: Improvement of the RFC error signal up to the requirement of 1 Hz
RMS.

92



CHAPTER 6

Optical Characterization of the arm cavities

In this chapter we present the techniques used to measure optical parameters of the
arm cavities and the main results we obtained. The quantity measured are the finesse,
the round trip losses (RTL), the cavity g-factor, the misalignment and mismatching.
The main goal of this activity is to check that all these parameters are compliant
with a proper operation of the interferometer. Moreover, inconsistent results in these
measurements have often triggered investigation and point out issues such as beam
clipping or alignment problems. We remark that the techniques presented here can
be also used for the characterization of the quantum filter cavity presented in the
third part of this thesis.
Fig. 6.1 shows the optical scheme of Advanced Virgo and in particular the location

Figure 6.1: Optical scheme of Advanced Virgo with photodiode disposition.
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of the photodiodes used for the ITF sensing and control. Each photodiode is actually
constituted by two photodiodes and a beamsplitter before them. Cavity mirrors have
been polished coated and characterized at LMA. In Tab. 6.1 we report some of the
measured parameters of the arm cavity mirrors which have been used in the following
computations.

Parameter North IM [95] North EM [96] West IM [97] West EM [98]
RoC 1424.58 m 1695 m 1424.56 m 1696 m
Transmission HR 1.377± 0.006% 4.4± 0.1 ppm 1.375± 0.007% 4.3± 0.2 ppm
Reflectivity AR 32± 10 ppm 133±ppm 58± 9 ppm 155± 15 ppm
Absorption 0.19± 0.08 ppm 0.24± 0.10 ppm 0.22± 0.06 ppm 0.24± 0.12 ppm
Flatness RMS 0.27 nm 0.5 nm 0.31 nm 0.35 nm

Table 6.1: Measured parameters of the arm cavity mirrors. Transmission and reflec-
tivity are both referred to power.

6.1 Finesse

Finesse has been defined in Eq. 2.58 as the ratio of the free spectral range (FSR)
to cavity linewidth (FWHM). The straightforward method to evaluate it consists in
measuring the FSR and the linewidth by performing a cavity free swinging. We will
see in the following that if the cavity is crossed in a time higher than its storage time,
this method is not effective since the Airy peak is distorted by dynamical effects [99].
The expected value of the finesse can be computed, knowing the reflectivity of the
mirrors, by using the formula (when r1 and r2 ' 1)

F '
π
√
r1r2

1− r1r2
(6.1)

Using the measured reflectivities reported in Tab. 6.1 we found a Finesse of 453± 2

for the north arm and 453.7± 2.3 for the west arm.

Etalon effect

The computation above doesn’t take into account the effect of the Fabry-Perot cavity
constituted by the faces of the input mirrors and known as etalon effect. In fact
input mirrors are composed of two faces: one with anti-reflectivity (AR) coating
and the other with high-reflectivity (HR) coating. They form a Fabry-Perot cavity
whose length depends on the substrate temperature, which can affect the arm cavity
behavior. The reflectivity of the arm cavity if we take into account the AR face
becomes:

recav =
−rAR + rcav exp(−iβ)

1− rARrcav exp(−iβ)
(6.2)
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where rAR is the reflectivity of the AR face and β is the phase acquired after a round-
trip inside the input mirror. It can be shown that at the resonance the reflectivity,
computed taking into account the etalon effect recav, is connected to the standard one
by the relation [86]

recav = rcav

(
1 + rAR cos(β)

1− r2
cav

rcav

)
(6.3)

The reflectivity variation is small (< 10 ppm) since in our case (1− r2
cav) << 1 and

rAR << 1.
We can then compute the change in the cavity pole and in the finesse due to the
etalon effect finding [86]

fep = fp

(
1 + rAR cos(β)

2r2
cav + rcav − 1

rcav

)
(6.4)

F e = F

(
1− rAR cos(β)

2r2
cav + rcav − 1

rcav

)
(6.5)

We see that in this case the change is more relevant. The reason for this is that
the cavity reflectivity (in over-coupled cavities) is much less dependent on the input
mirror transmissivity than the finesse or the cavity pole and thus it is less affected
by the etalon effect.
By using the values reported in Tab. 6.1 we found that the etalon effect can induce
a variation on the finesse and the cavity pole up to 1.1% for the north arm and 1.5%

for the west arm. It is important to remark that even if we can measure the finesse
with a very small statistic error, the etalon has to be considered as a systematic error
of the measurement.

Decay time

The finesse can be computed measuring the cavity storage time which is connected
to it by the relation

F = π · FSR · τsto (6.6)

The storage time can be measured by quickly extinguishing the light entering a
cavity on resonance. The power inside the cavity is expected to decrease exponen-
tially as [100]

Pcav(t) =
P0T1

(1− r1r2)2
exp(−2t/τsto) (6.7)

where P0 is the power stored in the cavity when it is locked.
A key factor to perform a good measurement is to extinguish the beam as quickly as
possible. The easiest way to do it is to unlock the IMC. In Fig. 6.2 the power decay
due to the IMC unlock is shown for the IMC transmitted power, the transmitted and
the reflected power of the arm cavity. In order to fit the transmitted power and find
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IMC transmission north arm reflectionnorth arm transmission

0.006 0.0080.007
time [s]

0.01 0.030.02
time [s]

0.00 0.020.01
time [s]

Figure 6.2: Power decay due to the IMC unlock for the IMC transmitted power, the
transmitted (B7) and the reflected power (B4) of the north arm cavity. The bump
in the reflected power is due to the fact that, when the input beam is cut, the light
exiting the cavity and coming back toward the laser is not anymore destructively
interfering with the input light.

τsto we had to take into account the effect of the IMC time decay (even if it is much
shorter than that of the cavity) and a much longer time decay due to the response
of the photodiode pre-amplifier.1.
The result of the fit, done by F. Sorrentino, gave a storage time τsto = 2.88 ms
for both the cavities. The estimated systematic error is about 1%. The finesse,
computed from Eq. 6.6 was found to be 452± 5 for the two cavities. In Fig. 6.3 the
results of this measurement (and its systematic error) have been compared with the
expected finesse computed from the measured mirror reflectivities. The error bars,
in this case, account for the etalon effect. The two show a good agreement for both
the arms.

Ringing effect

The decay time can also be extracted from the ringing effect. As anticipated, this
effect arises if the cavity decay time (also referred to as cavity storage time) is longer
than the time taken to cross the resonance

tcross =
λ

2vF
(6.8)

In this condition, the light does not have enough time to completely fill the cavity
and the incoming field beats with the evolving stored field in the cavity producing
an oscillatory behavior, referred to as ringing. The threshold velocity for observing

1This effect has been observed and quantified by closing the shutter of the photodiode
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Figure 6.3: Comparison of the finesse measured from the decay time and that com-
puted from mirrors reflectivities (considering also the etalon effect).

it is obtained when tsto = tcross. For Advanced Virgo arm cavities we have

vthre =
πλc

4F 2L
' 0.4µm/s (6.9)

An analytical expression for the behaviour of the field in the cavity is [101]

E(t) = D(t)Θ(t) (6.10)

where D(t) and Θ(t) are defined as

D(t) = (iπ/α)
1
2 t1Ae

−iβ2/α (6.11)

Θ(t) = (α/iπ)
1
2

∞∑
n=0

eiα(n−βα)2
(6.12)

and the parameters α and β are defined as

α =
kv

FSR
(6.13)

β = kvt− i L

cτsto
(6.14)

(6.15)

where k = 2π/λ and v is the speed of the mirror.
The measured transmitted power when the cavity crosses the resonance (in Fig. 6.4)
shows clearly the ringing effect. Data have been fitted with the model of Eq. 6.10,
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showing a very good agreement. From the fit, it was possible to infer the speed of
the cavity and the storage time. The finesse has been obtained from the storage
time using Eq. 6.6. The decay time for the north arm extrapolated from the fit in
Fig. 6.4 is 0.0029 s corresponding to a finesse of 455.5 which is in agreement with
what expected. The cavity speed was 2.37 µm/s, which, as expected is above the
threshold to observe the ringing effect.
The commissioning team on site have performed a similar analysis on a large number

Figure 6.4: Transmitted power when the cavity crosses the resonance showing an
evident ringing effect. Data are perfectly fitted by the model presented in Eq. 6.10

of peaks for both the arms founding a value of 467±3 and 466±3 (respectively for the
north and west arm), where the error is the standard deviation of the measurements.
This value is slightly above the error bar of the expected value (considering the etalon
effect) and that obtained from the decay time measured.

6.2 Round trip losses

Photons traveling back and forth in the arm cavities can be absorbed by the mirrors,
can fall out of the mirror if it is not large enough with respect to the beam or can
be scattered by mirrors defects. The round trip losses in a Fabry-Perot cavity are
defined via the energy conservation as [102]:

Λ2
rt =

Pin − Pr − Pt
Pcirc

(6.16)

where Pin is the input power, Pcirc, Pt, Pr are the powers circulating in the cavity,
transmitted and reflected, respectively. Losses should be as low as possible as they
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reduce the Fabry-Perot reflectivities and the recycling gain accordingly. Moreover,
an asymmetry between RTL of the two arms couples with frequency noise, resulting
in a noise at the ITF output. The interest of performing RTL measurement goes
beyond the simple verification that they are compliant with the requirement. As we
will see in the third part of this thesis, RTL play a key role when squeezed light
is used and strategies to precisely measures this quantity have been the subject of
recent investigations. [100, 103].
Mirrors defects, responsible for most of the lost light are usually characterized by their
spatial frequency.2 Long-range surface defects are expected to couple the TEM00 to
higher-order modes. This kind of losses on the fundamental mode are not taken into
account by the RTL definition given in Eq. 6.16, anyway differences between this
formula and the round trip loss defined on the TEM00 are expected to be negligible
for Advanced Virgo mirrors as low order aberrations are extremely small [104].
Virgo RTL have been estimated to be about 330 ppm [105] while the requirement
for Advanced Virgo has been set to 75 ppm.

How to measure round trip losses

Round trip losses affect different optical parameters such as the decay time, the
finesse and the cavity reflectivity and in principle they can be extrapolated from
them.
A practical way to extract losses from these quantities starts from the assumption
that losses can be considered numerically equivalent to an increase in the end mirror
transmission (which in our case is below 5 ppm) [106]:

r2 =
√

1− T2 − L '
√

1− L (6.17)

Since we are expecting to measure very low loss level the limiting factor in this kind
of measurement is represented by the precision we can obtain.
For example in the case of finesse and decay time we have seen that the etalon effect
is producing a variation up to 1.5% of their values. We can see from Fig. 6.5 that it
corresponds to the variation induced by about 300 ppm of round trip losses and it
is clear that a precise measurement of RTL below 100 ppm is not possible.
However we have shown in the previous section that the cavity reflectivity is slightly
affected by the etalon effect and then it can be a good quantity from which to extract
the losses.
The reflectivity of a the cavity at the resonance, with the approximation of Eq. 6.17
reads:

Presn = Rcav =

[
r1 − r2

1− r1r2

]2

'
[
r1 −

√
1− L

1− r1

√
1− L

]2

(6.18)

2Details about mirror defects characterization and their impact on RTL can be found in Sec.
8.2.
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Figure 6.5: Percentage change in the Finesse induced by a change in RTL

where Presn is the reflected power on resonance normalized by the incident power
Pin.

Presn =
Pres

Pin
(6.19)

The incident power Pin can be measured in two ways:

• by measuring the reflected power when the cavity is out of resonance (since
T2 ∼ 0).

• by misaligning the cavity end mirror and measuring the power reflected from
the input mirror whose reflectivity is known.

The expected change in the cavity reflectivity induced by losses in Advanced Virgo
cavities is plotted in Fig. 6.6. We see that for example a reduction of 3% in the
reflectivity corresponds to 100 ppm of losses.
The equation 6.18 can be inverted and approximated to find

L =
T1

2

1− Presn

1 + Presn

(6.20)

The losses are measured by unlocking the cavities and recording the change in the
reflected power. As can be see from the optical scheme in Fig. 6.1 the reflected
power is sensed by different photodiodes. The measurement is performed one arm
at time, while the other is misaligned in order to avoid interference due to Michelson
Fringes.
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Figure 6.6: Change in the cavity reflectivity as a function of the round trip losses.

Possible issues affecting the measurement

If a part of the incoming power does not couple with the cavity (usually in presence
of mismatching, misalignment or sidebands) it will be promptly reflected and will
not experience losses. As a consequence, the reflectivity of the cavity on resonance
will increase and the measured losses are reduced.
This effect has been confirmed by simulations but it is often unacknowledged. In
fact, there is a general belief that the presence of mismatching or misalignment would
increase the losses. This is probably due to the reasonable observation that a poor
alignment will cause the beam to be not optimally centered on the mirrors and it
will be more affected by clipping losses.
We have observed that a tilt and a shift of the beam with respect to the cavity axis,
producing 20% of misalignment, bring to a displacement of the beam on the mirror
of less than 3 cm and it corresponds to about 1 ppm of clipping losses. Thus we
conclude that this effect is negligible [107].
Assuming that RTL associated to a cavity are those measured in perfect alignment
and matching condition, we are interested in compensating the effect of not coupled
power in our reflectivity measurement. In this general case, assuming that a fraction
γ of the incoming power does not couple with the cavity, the reflected power at
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resonance can be rewritten as:

P γres = RcavPin(1− γ) + γPin (6.21)

P γres

Pin
= P γresn

= Rcav(1− γ) + γ (6.22)

From the equation above we find:

P γresn − γ
(1− γ)

= Rcav (6.23)

By comparing Eq. 6.23 and Eq. 6.18 we see that in presence of a fraction γ of non
coupled incident power, the measured reflected power P γresn has to be corrected before
being used in Eq. 6.20 to compute the RTL, according to the following relation

P resn =
P γresn − γ
(1− γ)

(6.24)

Fig. 6.7 shows the deviation of the extrapolated losses from the real ones as a function
of the mismatching, where the losses have been computed using simply the reflected
power and the corrected reflected power, respectively. The plot has been obtained
by simulating the arm cavity with the software Finesse and adding a known level
of losses and mismatching. We see that using the corrected reflected power we can
recover the true loss value.

Figure 6.7: Difference between extrapolated losses and real ones as a function of the
mismatching. Losses have been computed using the simple reflected power and the
corrected reflected power, respectively. The plot has been obtained by simulating
the arm cavity with the software Finesse and adding a known level of losses and
mismatching.
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north arm transmission (B7) north arm reflection (B1p_PD1)

north arm reflection (B4) north arm reflection (B5)

north arm transmission (B7) north arm reflection (B1p_PD1)

north arm reflection (B4) north arm reflection (B5)

north arm transmission (B7) north arm reflection (B1p_PD1)

north arm reflection (B4) north arm reflection (B5)

north arm transmission (B7) north arm reflection (B1p_PD1)

north arm reflection (B4) north arm reflection (B5)

Figure 6.8: Set of lock-unlocks performed on the north arm, done to investigate a
presumed excess of losses. B7 photodiode (top left plot) measures the transmission.
The other photodiodes measure the reflection. Their disposition is shown in Fig. 6.1.

In practice, before performing the measurement the mismatching, misalignment
and amplitude of sidebands are estimated (see Sec. 6.4) and their sum is used to
correct the measured reflected power and infer the real loss value.

Measurements results

Arm cavity RTL have been measured four times, between 2016 and July 2017, each
time by performing a series of lock-unlock. During the first measurement an excess
of losses on the north arm was observed. It confirms the presence of a dust contam-
ination on the north input mirror which was observed by eye as the scattered light
recorded by a camera was much more intense than that scattered by other cavity
mirrors [108]. The mirror has been dismounted, cleaned at LMA and resuspended.
The change in reflectivity during the set of lock-unlock relative to this measurement
are shown in Fig. 6.8. A summary of the results found is show in Tab. 6.2. The
photodiodes used for the measurement, shown in Fig. 6.1, are

• B1p - located on the detection bench collects the reflection from the first face
of the beam splitter.

• B5 - located on the detection bench collects the reflection from the second face
of the beam splitter (it sees only the north arm reflection).
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PD 02/10/16 21/11/16 05/02/17 05/07/17
NArm
(ppm)

WArm
(ppm)

NArm
(ppm)

WArm
(ppm)

NArm
(ppm)

WArm
(ppm)

NArm
(ppm)

WArm
(ppm)

B1p
(PD1) 210±15 75±6 76±5 81±5 63±3 69±3 N/A N/A

B1p
(PD2) 190±9 60±6 74±5 79±5 61±2 59±2 56±5 61±5

B4
(PD1) 490±50 200±100 248±35 256±35 N/A N/A N/A N/A

B5
(PD1) 440±28 N/A 91±7 N/A 311±8 N/A 230±10 N/A

Table 6.2: Summary of the loss measurements seen from different photodiodes. Only
the losses measured by B1p photodiodes are consistent with the upper limits set from
the recycling gain measurement.

• B4 - located on the suspended power recycling bench (SPRB) collects a pick-off
of the reflected beam just before the power recycling mirror.

Normally each of them is composed of two photodiodes (PD1 and PD2) after a
beam splitter but, at the time of the measurements, only B1p has the two photodi-
odes available.
We observed that results from different photodiodes are often not in agreement be-
tween each other.
Our conclusion are:

• Since an upper limit for the losses of 100 ppm has been set by the measurement
of the recycling gain, photodiodes showing losses higher than this value have
been considered not reliable.

• Photodiodes of B1p are the only ones showing consistent results over time,
which are also compatible with upper limits. Therefore we tend to trust their
results and conclude that the losses are in a range of 65-75 ppm, thus compliant
with Advanced Virgo requirements.

• The origin of the discrepancy between observation from different photodiodes is
not really understood. We suspect that it can be due to a not perfect centering
of the beam on the photodiode combined with a change of the shape and the
position of the beam between the lock and unlock state.

Comparison with expected losses

FFT simulation performed with measured mirror maps predicted a loss value between
10-15 ppm, as we will se in detail in Chap. 8 such simulations does not consider
light scattered at angle larger than few mrad, which are induced by higher spatial
frequency defects non included in the maps. Losses due to higher frequency spatial
defects (usually known as roughness) can be measured from a scattering angle of few
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degree and have been estimated to be ∼ 10 ppm per mirror. Additional 5 ppm are
added to account for mirror absorption and transmission. The total value for the
expected losses is of about 35-40 ppm. That is roughly half of the measured losses.
The same discrepancy between measured and expected losses has been observed in
Advanced LIGO, which seems to confirm that some loss source is being neglected in
our theoretical budget. Losses due to scattering at angles between mrad and a few
degrees are being investigated as a possible cause of these differences[109].

6.3 G-factor

Mirror RoCs are chosen in order to have a stable cavity. The stability condition
reads [110]

0 <

(
1− L

R1

)(
1− L

R2

)
< 1 (6.25)

where the first and the second factor, indicated as g1 and g2 are referred to as g-
parameters. The product g = g1 · g2 determines the optical mode spectrum of the
cavity, i.e the frequency (or length) separation between between the fundamental
and the higher order modes:

∆L(m+n) =
FSR

π
arccos

√
g (6.26)

Figure 6.9: Transmitted power during a free swinging of the cavity shows the cavity
optical spectrum (top plot). The evolution of the cavity length in time is recon-
structed from the free swinging (bottom plot).
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Fig. 6.9 shows a free swinging of the cavity (top plot) from which the cavity
length variation has been reconstructed (bottom plot). We obtained the cavity g-
factor by measuring the length difference between the fundamental and first higher
order mode. For the north arm we found:

gna =

(
cos

(
∆L1

FSR

)
π

)2

= 0.895± 0.057 (6.27)

which is consistent with the expected value of 0.851. For the west we found gwa =

0.86± 0.01, also consistent with the expected value of 0.850

6.4 Mismatching and misalignment

A cavity is said to be misaligned when the beam axis is tilted or shifted with respect
to its axis. Small misalignment produces higher order modes whose amplitude with
respect to the fundamental one depends on the level of misalignment. It can be
shown that to the first order the power transferred on the first order HG modes
respectively by a tilt ∆θ and a shift ∆α is [79]:

PHG10,01

P00
∼
(

∆θ

θ0

)2

(6.28)

PHG10,01

P00
∼ ∆α

w0

2

(6.29)

where θ0 = λ
πw0

is the beam divergence and w0 is the beam waist (See App. A). If
the gaussian parameters (position and size of the waist) of the incoming beam are
slightly different from those of the cavity eigenmode, the cavity and the beam are
said to be mismatched. In this case, at the first order, the power is transferred on
the Laguerre-Gauss mode with l = 0 and p = 1. Respectively for a size deviation
∆w and position deviation ∆z we have [79]:

PLG10

P00
∼
(

∆w

w0

)2

(6.30)

PLG10

P00
∼ ∆z

2zR

2

(6.31)

zR = πw2/λ is the Rayleigh range.
The amount of mismatching and misalignment is measured by comparing the hight
of the fundamental mode peak in transmission with those of the first and second order
modes.3 An example of the measurement is shown in Fig. 6.10 where the transmit-
ted power during a free swinging of the cavity has been plotted. We measured a
mismatching of ∼ 9% and a misalignment of ∼ 7%. In general the arm cavities
can be aligned in order to make the first order mode completely disappear while

3The LG10 mode resonates at the same frequency of the second order HG modes
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Figure 6.10: A part of the cavity spectrum in transmission, showing the fundamental
model together with the first and second order modes. Cavity mismatching and
misalignment are computed from peak relative hights.

the mismatching has been reduced up to ∼ 1.6% by a fine tuning of the injection
telescope.
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Conclusions - Part II

In this part we have presented the work done in the context of Advanced Virgo
commissioning. Such intense commissioning activity succeeded in making Advanced
Virgo sensitivity good enough ( ∼ 27 Mpc for BNS inspiral range) to join Advanced
LIGO in its second observation run. The joint data taking culminated with the first
three detector BBH merging observation and the first GW detection from a binary
neutron start merger.
I contributed both to the laser noise analysis and to the arm cavities optical charac-
terization. In the following I summarize the main results and lessons learnt.

Injection system frequency noise

As detailed in Chap. 5, laser frequency is pre-stabilized using as reference the input
mode cleaner and a rigid reference cavity. My activity was focused on the identifica-
tion and reduction of the noise limiting the frequency stability. The main steps and
results of this activity can be summarized as follows:

• We have realized a complete noise budget for the reference cavity error signal.

• From this noise budget we have compute the frequency noise injected in the
ITF.

• We have automated the noise budget computation in order to make it a useful
tool for the noise hunting.

• This activity contributed to reduce the frequency noise level until it met the
requirement of 1 Hz RMS, allowing a reliable lock of the arm cavities.

• Finally, we compared the estimated frequency with that measured by the arm
cavity, finding a good agreement.

Arm cavities optical characterization

The goal of this activity was to study the optical performances of the arms cavities.
Even if the cavity mirrors have already been characterized during their production,
polishing and coating, is the "in situ" characterization which has the final word. The
results of this activity can be can be summarized as follows:
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• We have verified that the finesse, g-factor, roundtrip losses, mismatching and
misalignment of the arm cavities were compliant with the requirements.

• Particular attention was dedicated to the measurement of round trip losses
for two reasons. First, as it will be shown in the next part of the thesis, the
measurement of cavity losses is extremely interesting in relation with the use
of squeezed light for quantum noise reduction. Second, since a discrepancy of
about a factor two has been observed in Advanced LIGO between measured
and simulated losses, this suggested that some loss sources could have been
neglected in the estimation. The results we obtain from Advanced Virgo con-
firmed this discrepancy.

• We used the cavity reflectivity to compute round trip losses and we present a
technique to compensate the effects of mismatching and misalignment on the
measurement.

• Discarding results from photodiodes considered not reliable, we found a value
between 65-75 ppm for the round trip losses. Even if it is the double of what
it is expected from simulations, this is, to our knowledge, among the lowest
value of RTL per unity length ever measured.4

4We will see in Sec. 8.4 that the RTL per unity length is the relevant quantity to be consider
for the estimation of the degrading effect of the losses on the squeezing.

110



Part III

Filter cavity for frequency
dependent squeezing production
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Context and motivations

As already observed in the previous chapters, quantum noise is limiting second gen-
eration gravitational-wave detectors in a large fraction of their spectrum.
In Sec. 2.2 we gave a description of the two manifestation of quantum noise i.e.
shot noise and radiation pressure noise, in a semiclassical picture. In 1981, Caves
pointed out that both of them are originated by vacuum fluctuations entering the
interferometer by the beam splitter anti-symmetric port [24]. Caves also proposed
the injection of squeezed vacuum from the dark port as a strategy to decrease quan-
tum noise without modifying the interferometer configuration.
Following Caves’ results, in the following section we introduce a completely quan-
tum formalism to describe vacuum squeezed states: in such states the amplitude
and phase uncertainty, equally distributed in an ordinary vacuum, are modified in
order to reduce one at the expense of the other. A squeezed state can be intuitively
represented as an ellipse in the quadrature plane and it is characterized by the ratio
of its axes (squeezing magnitude) and by its orientation (squeezing angle). Both
of these parameters are functions of the Fourier frequency. If the quadrature with
the reduced uncertainty is aligned with the gravitational-wave signal, the SNR is
improved with respect to that achievable with an ordinary vacuum. Since the op-
tomechanical coupling of the laser light with the interferometer test masses induces
a rotation of the squeezing ellipse, the injection of a squeezed vacuum with constant
squeezing angle, referred to as frequency-independent squeezed vacuum can reduce
quantum noise only in the part of the spectrum where the gravitational-wave signal
is aligned with the quadrature with reduced uncertainty. Effectiveness of squeezing
in reducing shot noise has been successfully tested on LIGO [111] and it is routinely
used in GEO [112].
In Fig. 6.11, the quantum noise reduction achievable by injecting frequency inde-
pendent and frequency dependent squeezing is shown. We observe that using phase
quadrature squeezing we can only reduce the high frequency quantum noise, that is
the one dominated by shot noise while we increase the noise in the radiation pressure
region. This effect is similar to the one achievable by increasing the laser power.
A broadband quantum noise reduction can be obtained by injecting a squeezed

vacuum with an angle that varies with frequency, in such a way that the signal
and the reduced noise quadrature are always aligned. This frequency-dependent
squeezing can be obtained by reflecting off a frequency-independent squeezed state
by a detuned Fabry-Perot filter cavity. In order to obtain a high level of frequency-
dependent squeezing two kinds of difficulties have to be tackled. First, the squeezing
angle should undergo a rotation in the frequency region where quantum noise switches
from radiation pressure noise to shot noise (usually below 100 Hz). We will see in
the following that this requires a filter cavity with a very long storage time of the
order of ∼3 ms. Moreover, the presence of optical losses reduces the squeezing factor,
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Figure 6.11: Quantum noise improvement achievable by injecting respectively 9 dB of
frequency independent phase squeezing (blue line) and frequency dependent squeez-
ing (green line). In the first case the improvement is only at high frequency while
at low frequency noise is increased. In the second case a broadband noise reduction
is achieved. In all the three cases the laser power is the same. In the bottom, it
is shown the optimal squeezing ellipse rotation at the frequency region where the
transition between radiation pressure and shot noise takes place.

since losses are associated with ordinary vacuum fluctuations that couple with the
squeezed states reducing their squeezing level.
The rotation of the squeezing angle has been experimentally demonstrated in the
MHz region [113] and, more recently, in the kHz region [114]. In the following chap-
ters we present the work done on the development of a 300 m filter cavity at National
Astronomical Observatory of Japan (NAOJ), using one arm of the former TAMA
interferometer. The aim of the project is to demonstrate the feasibility of frequency
dependent squeezing with rotation angle of ∼ 70 Hz by using a 100 m scale filter
cavity. In Chap. 7 we introduce the formalism necessary to describe squeezed states
and compute quantum noise in the interferometer. Then we use it to show the im-
provement achievable by using frequency independent squeezing and compute the
features of the filter cavity needed to obtain optimal results. In the following chap-
ter we will discuss the optical design for the 300 m filter cavity at NAOJ. Since the
project is mainly intended to test a technology to be implemented in a future upgrade
of KAGRA,5 the filter cavity parameters are optimize for its features. Anyway the
interest of this work goes beyond KAGRA, since a 100 m class filter cavity is also
a possible solution for a medium-term upgrade of Advanced Virgo [115] and even

5The injection of frequency-dependent squeezing is particularly suitable in this context since
increasing laser power to reduce shot noise can be difficult due to the cryogenic temperature of
the detector. Moreover, since thermal noise is low enough to make quantum noise the main noise
contribution in almost the whole spectrum, the reduction of quantum noise would have a direct and
significant effect on the detector sensitivity.
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longer filter cavities are planned for the third generation detector Einstein Telescope
[116]. In Chap. 8, we present the study we have performed to design the cavity
and in particular the simulation done in order to set requirements for the mirror
quality, to avoid excessive squeezing degradation. This study is accompanied by an
analysis of different mechanisms known to spoil squeezing in the system. We present
a complete squeezing degradation budget based on the work of Kwee et al. [117].
On the basis of these results we discuss the advantages of using long filter cavities
and show the expected improvement in KAGRA sensitivity. We also compare the
performances of long filter cavity with those of a recently proposed technique which
aims to exploit EPR entanglement to achieve a broadband quantum noise reduction.
Finally, in Chap. 9 we present in detail the experiment design and the experimental
work performed to integrate and lock the cavity.
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CHAPTER 7

Frequency dependent squeezing in the two-photon formal-
ism

In this chapter we present the proper formalism to give a completely quantum de-
scription of quantum noise. We will introduce two-photon formalism and use it to
compute quantum noise in interferometer and its possible reduction using squeezed
vacuum. Finally, again with this formalism, we describe the squeezing angle rotation
produced on a squeezed state reflected by a filter cavity and the broadband quantum
noise reduction achievable with such frequency dependent squeezed state.

7.1 Quantization of the electromagnetic field

Interferometric measurements are ultimately limited in a large fraction of the spec-
trum by the quantum nature of the light used to sense the mirror position1. Therefore
the starting point for developing the appropriate formalism to deal with this noise
is the quantization of the electromagnetic field. This is achieved, as explained in
detail in [119], by performing a Fourier expansion in terms of mode functions of the
field and interpreting the coefficients of each term of such expansion as a quantum
operator, thus imposing commutation relations on them. The resulting Hamiltonian
for the electromagnetic field can be written as

H =
∑
k

~ωk
(
â†â+

1

2

)
(7.1)

where â† and â which are ladder operators for quantum harmonic oscillator, represent
here the creation and annihilation operator of a photon with wave vector k. As for
quantum harmonic oscillators we can introduce the quadrature operators p̂k and q̂k
(which are simply the momentum and the position of the k-th oscillator). They are

1It has been demonstrated by Braginsky et al. [118] that noise in gravitational-wave detectors
is not influenced by quantization of the test masses.
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non commuting observables defined as

p̂k =
âk − â†k
i
√

2
q̂k =

âk + â†k√
2

(7.2)

thus they are respectively proportional to the real and to the imaginary part of the
complex operator â

âk =
1

2
(q̂k + ip̂k) (7.3)

Once we choose a phase reference, they can be regarded as the in-phase and out-of-
phase components of the field amplitude.

7.2 Quantum states of light

Quantization of the electromagnetic field is responsible for the introduction of quan-
tum noise as a direct consequence of the uncertainty principle. In the following we
will present some different representations of quantum light states paying special
attention to their quantum noise features.

7.2.1 Fock states

The Hamiltonian 7.1 is proportional to the number operator N̂k = âkâ
†
k which is the

observable counting the photons with wavevector k. Fock states, or number states,
are defined as eigenstates of the Hamiltonian.

H|n〉 =
1

2

∑
k

~ωknk|n〉 (7.4)

The vacuum state is defined as
âk|0〉 = 0 (7.5)

We are particularly interested in studying the noise features of the vacuum state |0〉
which can be deduced from the wave equation ψ(q). Combing Eq. 7.1 and 7.2 we
find the relation

â|0〉 =

(
q +

∂

∂q

)
φ(q) = 0 (7.6)

which is verified by

ψ(q) =
1

4
√
π

exp

(
−q

2

2

)
(7.7)

An analogous relation holds for ψ(p), using the momentum representation. The
variance of the two quadrature operators, both with mean equal to zero, is

∆q2 = 〈ψ|q2|ψ〉 − 〈ψ|q|ψ〉2 =

∫
1√
π
q2 exp(−q2)dq =

1

2
(7.8)
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∆q2 = 〈ψ|p2|ψ〉 − 〈ψ|p|ψ〉2 =

∫
1√
π
p2 exp(−p2)dq =

1

2
(7.9)

We see that even in a zero-photon state, there is a fluctuation in the quadratures of
the vacuum field. Such fluctuation stems from the Heisenberg uncertainty principle
for non-commuting operators and it is the smallest possible allowed:

∆q2∆p2 =
1

4
(7.10)

7.2.2 Coherent states

Coherent states are the most appropriate states to give a quantum description of
laser light as their amplitude and phase are simultaneously defined as precisely as
possible2. We start by defining a displacement operator [119]

D(α) = exp(αâ† − α ∗ â) (7.11)

where α = |α|eiθ is a complex number. The displacement operator takes is name
from the fact that it produce a displacement of the annihilation operator â of a
complex quantity α :

D†(α)âD(α) = â+ α (7.12)

A coherent state |α〉 is created applying the displacement operator to the vacuum
state |0〉:

|α〉 = D(α)|0〉 (7.13)

If we represent the vacuum state as an error circle centered in the origin of the
quadrature space, a coherent state |α〉 can be seen as a translation of such a state
described by a vector with length |α| and direction θ. Since the translation does not
modify the shape of the vacuum error circle, we can have an intuitive idea of the fact
that a coherent state shares the same noise features of the vacuum state. Therefore it
has equally distributed quadrature fluctuations whose product is the lowest possible
allowed by Heisenberg principle. Fig. 7.1 shows a schematic representation in the
quadrature planes of a coherent state obtained by applying the displacement operator
to the vacuum state. Coherent state are eigenvalue of the annihilation operator â

â|α〉 = α|α〉 (7.14)

It is also interesting to see what happens if we project a coherent state in an eigenstate
of the number operator |n〉

〈n|α〉 =
αn√
n!
e−

1
2
|α|2 (7.15)

2In a Fock state the number of photons is well defined but the phase is completely random.
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from this we see that the probability distribution for the number of photons of a
coherent state is a Poissonian with mean and variance equal to |α|2

Pn =
|α|2n

n!
e−

1
2
|α|2 (7.16)

It can also be shown that the wave function for the two orthogonal quadrature of a
coherent state is a Gaussian and that this is true for every state state that has the
product of their fluctuation in the two quadrature the lowest possible.

Figure 7.1: A coherent state in the optical phase space, obtained by applying the
displacement operator to a vacuum state.

7.2.3 Squeezed state

So far we have treated coherent states, observing that they are minimum uncertainty
state whose incertitude is equally distributed between their two quadratures. We can
get rid of the last condition and consider a larger category of minimum uncertainty
state allowing for the two uncertainties to be different.
It is clear that, in this case, a reduction of the noise in a quadrature will cause
an enhancement of the noise in the other one, in order to be still compliant with
Heisenberg limit. This asymmetry results in a squeezing of the error circle. Note that
usually a squeezed state is defined as a state where fluctuations in one quadrature are
lower than in coherent states. This does not necessarily mean that the uncertainty
is the minimum possible. We define the squeezing operator as [119]:

S(ε) = exp

(
1

2
ε∗â2 − 1

2
ε∗â†2

)
(7.17)

The squeezed state |α, ε〉 is obtained by applying the squeezing operator to the
vacuum state and later the displacement operator

|α, ε〉 = D(α)S(ε)|0〉 (7.18)
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The squeezing parameter is defined as

ε = re2iφ (7.19)

where r accounts for the degree of squeezing and φ for its direction. Figure 7.2 shows
a schematic representation in the quadrature planes of a squeezed state obtained by
applying the displacement operator to a vacuum squeezed state.
The variance of a generic quadrature qθ is

∆q2
θ = cosh(2r)− sinh(2r) cos[2(φ− θ)] (7.20)

It is important to stress that the ellipse normally used to give an intuitive two-
dimension representation of a squeezed state in the quadrature plane can be formally
defined by introducing the Wigner function [119]. This is a quasi-probability distri-
bution which can be used to derive separately the probability distributions of the two
non-commuting quadratures (or a linear combination of them). The error circles (re-
spectively a circle for coherent states and ellipses for squeezed one) are obtained by
cutting the Wigner function surface with an horizontal plane at a half of the maximal
height. Even if these representations are useful to picture intuitively the noise prop-
erties of these states, only distributions obtained by integrating the Wigner function
with respect to one of the two variables can be regarded as probability distributions.

Figure 7.2: Representation of a squeezed state in the quadrature planes obtained by
applying the displacement operator to a vacuum squeezed state.

7.3 Two-photon formalism

A laser beam can be described as a classical carrier at frequency ω0 surrounded by
small quantum fluctuations. In a vacuum state the classical field is zero and only the
fluctuations are left. The positive-frequency part of the electric field can be written
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as [120]:

E+ =

√
2π~ω0

Ac

∫ ∞
0

(âωe
−iωt)

dω

2π
(7.21)

where A is the effective area of the beam and âω is the annihilation operator of each
mode, which verifies the following commutation relations

[âω, âω′ ] = 0 [âω, â
†
ω′ ] = 2πδ(ω − ω′) (7.22)

In order to express the field as a sum of sidebands at a distance Ω from the carrier
much smaller than ω0 we can define the operators

â+ ≡ âω0+Ω â− ≡ âω0−Ω (7.23)

and the relative commutation relations

[â+, â
†
+′ ] = 2πδ(Ω− Ω′) [â−, â

†
−′ ] = 2πδ(Ω− Ω′) (7.24)

In terms of these sidebands operators the electric field writes

E+ =

√
2π~ω0

Ac
e−iω0t

∫ ∞
0

(â+e
−iΩt + â−e

+iΩt)
dω

2π
(7.25)

Interactions of the field with squeezers or suspended cavities, which are central in
our work, produce correlations between upper and lower sidebands. For this reason
it is useful to describe the field in terms of two-photon modes instead of single-
photon modes. It also allows us to interpret this fluctuations in terms of phase and
amplitude quadratures uncertainty. The annihilation and creation operators of these
two-photon, introduced for the first time by Caves and Shoemaker in [121, 122] are
defined as

â1 =
â+ + â†−√

2
â2 =

â+ − â†−√
2i

(7.26)

and satisfy the following commutation relations (with the approximation Ω
ω0
' 0)

[â1, â
†
2′ ] = −[â2, â

†
1′ ] = i2πδ(Ω− Ω′) (7.27)

[â1, â1′ ] = [â1, â
†
1′ ] = [â†1′ , â

†
1′ ] = [â†1, â

†
2′ ] = [â1, â2′ ] = 0 (7.28)

We can rewrite the electric field E(t) in terms of these two-photon operators:

E =

√
2π~ω
Ac

[
cos(ω0t)

∫ ∞
0

(â1e
−iΩ0t + â†1e

+iΩ0t)
dω

2π
(7.29)

+ sin(ω0t)

∫ ∞
0

(â2e
−iΩ0t + â†2e

+iΩ0t)
dω

2π

]
(7.30)
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We observe that â1 and â2 are the field amplitude of the cos(ω0t) quadrature and
sin(ω0t) quadrature respectively. Electric field in terms of quadratures writes

E(â1,2, t) = cos(ω0t)E1(a1, t) + sin(ω0t)E2(a2, t) (7.31)

with

E1,2 =

√
2π~ω
Ac

∫ ∞
0

(â1,2e
−iΩ0t + â†1,2e

+iΩ0t)
dΩ

2π
(7.32)

7.4 Homodyne detection of squeezed states of light

In order to characterize squeezed states, measuring their noise at different quadra-
tures, the balanced homodyne detection technique is currently used. Application of
this technique to squeezed states has been proposed for the first time in 1983 by
Yuen and Chan [123]. It uses a a 50:50 beamsplitter to make the squeezed beam
interfere with a reference beam, called local oscillator, which has the same frequency
and tunable phase shift φ.
The two beams entering the beamsplitter can be respectively written

â = α+ δâ b̂ = (β + δb̂)eiφ (7.33)

where α and β represent the carrier and δâ and δb̂ represent the continuum of fluctu-
ating modes surrounding it. Here we used a linearized approach, since the fluctuations
are supposed to be small enough to allow neglecting those of second order and above.
Here the beam quadrature are defined as δX̂a

1 = δâ† + δâ and δX̂a
2 = i(δâ †+δâ).

The beams at the beamsplitter output

ĉ =
1√
2

(â+ b̂) d̂ =
1√
2

(â− b̂) (7.34)

are sensed by two photodiodes producing the photo-currents I1 ∝ ĉ†ĉ and I2 ∝ d̂†d̂.
If we compute the difference between the two photocurrents I1−I2, neglecting higher
order fluctuations and assuming that the local oscillator (LO) is much brighter that
the signal field (thus neglecting terms containing α), we find

I1 − I2 ' β(cos(φ)δX̂a
1 + sin(φ)δX̂a

2 ) = βδX̂a
φ (7.35)

We see that the signal fluctuation in the quadrature X̂a
φ are amplified proportionally

to the amplitude of the LO and at the same time the LO noise is suppressed. More-
over by shifting the additional phase of the LO is it possible to select the quadrature
to measure.
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Figure 7.3: Scheme of the homodyne detection.

7.5 Input output relations

The two-photon formalism is particularly effective to describe the propagation of
electromagnetic fields and relative quantum fluctuations in optical systems [124].
The two quadrature fields â1(Ω) and â2(Ω) are chosen as basis vector

ī =

(
â1(Ω)

â2(Ω)

)
(7.36)

Optical elements such as movable mirrors, beam splitters, squeezers and free space
propagation are described by appropriate matrices which applied to the input quadra-
ture vector will produce an output quadrature vector encoding the effect of the in-
teraction with each element. More optical elements can be combined in order to
describe complex systems. This formalism has been extensively used to compute
quantum noise of the interferometer in different configurations [120, 125, 126]. Noise
spectral density Sh can be obtained from the input-output relation connecting the
input fields and the gravitational-wave signal to the output field:

ō = T̄i + sh (7.37)

Where s̄ is the signal transfer function connecting a gravitational wave strain h to
the output (also know as interferometer response) and T is the transfer function for
the input vacuum field ī. In this simple case we have only considered the vacuum
field entering from the beam-splitter dark port. The (single sided) noise spectral
density is [125, 127]

Sh =

(
cos ζ sin ζ

)
T ST†

(
cos ζ

sin ζ

)
(

cos ζ sin ζ
)

s̄ s̄†

(
cos ζ

sin ζ

) (7.38)
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where the output field is projected on the homodyne field vector (cos ζ sin ζ) and
where S is the noise spectral-density matrix for the input amplitude and phase
quadratures â1 and â2 defined by the relation [120]

〈âi(Ω)â†j(Ω)〉sym = πSij(Ω)δ(Ω− Ω′) i, j = 1, 2 (7.39)

For non-squeezed input vacuum, where amplitude and phase noise are uncorrelated,
S is the identity matrix.

Two-photon squeezing operator

The effect of a squeezer on a vacuum field expressed in the two-photon formalism can
be described by a squeezing operator S(r, φ), providing the following input-output
relation:

ō = S(r, φ)̄i = R(−φ)S(r,0)R(φ)̄i (7.40)

where

R(φ) =

(
cosφ sinφ

− sinφ cosφ

)
S(r) =

(
er 0

0 e−r

)
(7.41)

The quadrature at angle φ is squeezed by a factor e−r and the orthogonal one is
antisqueezed by a factor er.

Interferometer transfer matrix

Optomechanical coupling of vacuum fluctuations with the interferometer test masses
induces correlations between phase and amplitude quadrature. The transfer matrix
has the form [126]

Titf =

(
1 0

−K(Ω) 1

)
(7.42)

The parameter K(Ω), which characterizes such coupling, is defined as

K(Ω) =

(
ΩSQL

Ω

)2 γ2
itf

Ω2 + γ2
itf

(7.43)

where γitf is the interferometer bandwidth with signal recycling and ΩSQL is the
approximate frequency at which radiation pressure noise switches to shot noise.

ΩSQL =

[
tsr

1 + rsr

]
8

c

√
Parmω0

mTarm
(7.44)

γifo =

[
1 + rsr

1− rsr

]
Tarmc

4Larm
(7.45)

where tsr and rsr are the signal recycling mirror amplitude transmissivity and re-
flectivity, Parm is the intracavity power, Tarm is the arm cavity input mirror power
transmissivity, ω0 is the angular frequency of the carrier field, m is the mirror mass.
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It is interesting to notice that the interferometer transfer matrix can be written as a
combination of squeezing and rotation operators:

Titf = S(ritf , φitf)R(θitf) (7.46)

with

ritf = − arcsinh(K/2)

φitf =
1

2
arccot(K/2)

θitf = − arctan(K/2)

The input output relation for a broadband, tuned dual-recycled interferometer is
given by [126]:(

ô1

ô2

)
= e2iφ

(
1 0

−K(Ω) 0

)(
â1

â2

)
+ eiφ

(
0√

2K(Ω)

)
h(Ω)

hSQL
(7.47)

which can be used with Eq. 7.38 to find the quantum noise spectral density:

Sh =
h2

SQL

2

[
K(Ω) +

1

K(Ω)

]
≥ h2

SQL =
8~

mΩ2L2
(7.48)

The first term, coming from the fluctuation of the input amplitude quadrature â1,
represents the radiation pressure component which is directly proportional to the
optical power. The second term, coming from the fluctuation of the input phase
quadrature â2, represents the shot noise part of the quantum noise which is inversely
proportional to the optical power.
If we assume to inject a squeezed state at the beam splitter dark port, we find the
following input-output relation

ō = S(ritf , φitf)R(θitf)S(r, φ)̄i + s̄h

which corresponds to a noise spectral density

Sh =

(
cos ζ sin ζ

)
Titf(K)R(−φ)S(2r, 0)R(φ)T†itf(K)

(
cos ζ

sin ζ

)
(

cos ζ sin ζ
)

s̄ s̄†

(
cos ζ

sin ζ

) (7.49)

It can be shown that the minimum noise is achieved by tuning the frequency de-
pendence of the squeezing angle in order to select always the quadrature with the
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minimum noise. In this case we have

Sh = e−2r

∑
n

(
cos ζ sin ζ

)
T T†

(
cos ζ

sin ζ

)
(

cos ζ sin ζ
)

s̄ s̄†

(
cos ζ

sin ζ

) (7.50)

which corresponds to an overall reduction of the quantum noise without squeezing
of a factor e−2r. The required frequency dependence for the squeezing angle is

φ = arctan(K)− cotan(ζ) (7.51)

This means that since input field quadrature are rotated (and squeezed) by the
interferometer, the squeezing angle of the injected squeezed vacuum should also
rotate in order to counteract this effect, keeping the reduced noise quadrature always
aligned with the gravitational-wave signal.

7.5.1 Filter cavity in the two-photon formalism

In the previous section we have shown that an optimal quantum noise reduction is
achievable by injecting frequency dependent squeezed state with a proper rotation
angle to compensate that induced by the reflection from the ITF.
Kimble et al. in 2001 [120] proposed for the first time to impress such frequency
dependence by filtering the standard frequency-independent squeezed state using a
detuned high-finesse Fabry-Perot cavity. In this case, only quantum fluctuations
which lie in the cavity bandwidth enter the cavity and experience a dephasing, those
outside are promptly reflected and are not affected by it. In order to impart a
proper quadrature rotation, the cavity has to be kept detuned from the resonance.
This produces an asymmetry for the reflectivity seen by upper and lower sidebands
which results in a frequency dependent quadrature rotation. The effect of such a
rotation depends only on the pole γfc and on the detuning ∆ωfc of the cavity. It can
be obtained from the formula of the reflectivity in a Fabry-Perot cavity (Eq. 2.50)
and in the two photon formalism, assuming a lossless cavity, it reads [120, 125]

ō = eiαmR(αp)̄i (7.52)

where the rotation angle is

αp = arctan

(
2γfc∆ωfc

γ2
fc −∆ω2

fc + Ω2

)
(7.53)

In the frequency region interested by the rotation we have Ω << γitf , and we can

approximate the optomechanical parameter of Eq. 7.43 as K '
(

ΩSQL

Ω

)2
. With this

approximation, cavity pole and detuning have to be chosen in order to satisfy Eq.
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7.51 are:
∆ωfc = γfc =

ΩSQL√
2

(7.54)

For second generation gravitational-wave detectors the transition frequency between
radiation pressure noise and shot noise is typically of the order of 2π · 70 Hz. The
correspondent storage time is 3

tst =
1

γfc
=

√
2

ΩSQL
' 3 ms (7.55)

As discussed in [114], this is an extremely long storage time, comparable with the
longest ever achieved [114, 128].

7.5.2 Squeezing degradation due to optical losses

In a quantum description of an optical system, quantum fluctuations are expected
to enter even unused ports (as in the case of the beam splitter dark port in the
interferometer). Moreover, every time that the beam experiences a loss in the system,
we have to take into account a vacuum fluctuation entering at the lossy point. We can
conveniently model the loss as the effect of a beam splitter. We see that taking into
account the vacuum fluctuation is the only way to preserve commutation relations.
In fact if we imagine to write a naive input-output relation for a state experiencing
a loss (with power attenuation η) as

âout =
√
ηâin (7.56)

we see that commutation relations cannot be verified:

[âout, â
†
out] = η[âin, â

†
in] 6= 1 (7.57)

By modeling the process with a beam splitter where one of the two input is a vacuum
field ŵin (see figure7.4) we find(

âout

ŵout

)
=

( √
η −

√
(1− η)√

(1− η)
√
η

)(
âin

ŵin

)
(7.58)

and the commutation relations are now verified:

[âout, â
†
out] = η[âin, â

†
in] + (1− η)[âin, â

†
in] = 1 (7.59)

If the beam experiencing loss is a squeezed one, the recombination with standard
coherent vacuum causes a degradation of the squeezing feature of the beam. A real-
istic estimation of the quantum noise improvement achievable by injecting vacuum

3Here the cavity pole γfc is expressed in radians, i.e with an additional factor of 2π with respect
to de definition in 2.56.

128



Figure 7.4: The loss process represented by a beam splitter where coherent vacuum
fluctuations recombines with fluctuations of the beam experiencing the loss.

squeezing has to take into account the effect of losses on its path. For each loss,
a coherent vacuum field has to be considered. The propagation of each of them
through the system to the detector output is described by an appropriate transfer
matrix. The input-output relation 7.37 will assume the more general form [129]

ō =
∑
n

Tn̄in + s̄h (7.60)

where īn are the coherent vacuum entering from the dark port and those associated
to each loss in the path and Tn are the respective transfer matrices. This relation
can be used in Eq. 7.38 to compute the quantum noise spectral density.
In the following there is a summary of the main points presented in this chapter:

• We defined vacuum squeezed states and introduced the two-photon formalism
to describe amplitude and phase fluctuations and their modifications induced
by interaction with optical systems. Such modifications are conveniently ex-
pressed in terms of linear input-output relations. Each part of the optical
system is modeled by a two-photon operator (or transfer matrix) that has to
be applied to the quadrature vector representing amplitude and phase fluctu-
ation.

• From the input-output relations which connect vacuum fluctuations entering
the beam splitter dark port to the detector output, it is possibile to compute
the quantum noise spectrum of the interferometer.

• A description of squeezing in terms of two-photon operator is given. We ob-
served that injecting a squeezed vacuum in the beam splitter dark port we can
modify quantum noise spectrum. In particular, it can be minimized imposing
a specific frequency dependence of the squeezing angle, which is a function of
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the interferometer parameters.

• We observed that such frequency dependence can be impressed by reflecting
the squeezed vacuum off a filter cavity with a bandwidth which depends on
the interferometer parameters. The cavity has to be operated in a detuned
configuration (at half of the cavity bandwidth).

• The physical insight of this mechanism is presented: interferometer produces
a rotation of the vacuum quadrature fluctuations entering from the dark port,
which becomes evident when they are no more equally distributed, as in the
case of a squeezed state. Because of this rotation, the noise reduced quadrature
of a frequency independent squeezed state is not always aligned with the signal.
Filter cavity can be used to impress a counter-rotation to the squeezed state,
allowing to have it optimally oriented at all frequencies.
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CHAPTER 8

Filter cavity optical design

Frequency rotation of the squeezing angle by means of a filter cavity has been demon-
strated in the MHz region, for the first time by Chelkowski et al in 2005. [113]. They
used a filter cavity of 0.5 m with a linewidth of 1.47 MHz. In 2015 Oelker et al. [114]
achieved a lower rotation frequency of about 1.2 kHz using a 2 m long cavity with
a Finesse of about 30000. The filter cavity project a NAOJ aims to further reduce
the rotation frequency up to about 70 Hz, which is the frequency required for op-
timal quantum noise reduction in second generation gravitational wave detectors.
This is particularly challenging as it requires to achieve a very long cavity storage
time (∼ 3 s). The project, started in 2015, makes use of the south arms of former
TAMA interferometer at NAOJ to accommodate a 300 m filter cavity. It also aims
to demonstrate for the first time the operation of a 100 m scale filter cavity.
In this chapter we presented the design of the filter cavity. Since squeezing is easily
degraded by losses, the cavity design has to be studied in order to reduce them as
much as possible. One of the main loss sources is due to the light scattered by mir-
ror surface imperfections. We present the study done in order to set requirement for
the mirror quality, based on real mirror maps, used in Virgo. Moreover, a crucial
point is to compare the squeezing degradation from the filter cavity optical losses
with that originated by other mechanisms. Thus, we present a complete squeezing
degradation budget for the 300 m cavity, based on the work by Kwee et al. [117].
We discuss the advantages of using long filter cavities and the expected improvement
of KAGRA sensitivity produced by the implementation of this technology. Recently
a new technique relying on EPR entanglement has been proposed to obtain of fre-
quency dependent squeezing using the interferometer itself as a filter cavity. We
briefly present it and compare their performance with those of a long filter cavity.
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8.1 Choice of cavity parameters

As pointed out in Sec. 7.5.1, the main filter cavity features (linewidth and detuning)
have to be determined in order to provide an angular frequency dependence given
by

θfc(Ω) = arctan(K(Ω)) (8.1)

with K being the frequency dependent optomechanical coupling defined in 7.43. K
depends on the interferometer bandwidth γ2

itf and on ΩSQL, the frequency marking
the transition between radiation pressure noise and shot noise. As we have already
seen in Eq. 7.44, in a dual recycled interferometer, with a tuned signal-recycling
cavity, these two terms write:

ΩSQL =

[
tsr

1 + rsr

]
8

c

√
Parmω0

mTarm
(8.2)

γifo =

[
1 + rsr

1− rsr

]
Tarmc

4Larm
(8.3)

where tsr and rsr are the signal recycling mirror amplitude transmissivity and re-
flectivity, Parm is the intracavity power, Tarm is the arm cavity input mirror power
transmissivity, ω0 is the angular frequency of the carrier field, m is the mirror mass.
For KAGRA, using the parameters shown in Tab. 8.1, we have:

ΩSQL ' 2π × 76.4 Hz (8.4)

and
γifo = 2π × 382 Hz (8.5)

We observed that in the region interested by the rotation Ω << γifo and Eq. 7.43
can be simplified to obtain:

θfc(Ω) = arctan

(
ΩSQL

Ω

)2

(8.6)

Parameter Symbol Value
Carrier field frequency ω0 2π × 282 THz
Standard quantum limit frequency ΩSQL 2π × 76.4 Hz
Arm input mirror transmissivity Tarm 0.004
Signal recycling input transmissivity t2sr 0.1536
Intracavity power Parm 400 kW
Mirror mass m 22.8 kg

Table 8.1: Values and symbols for KAGRA interferometer parameters.

The required the bandwidth γfc and the detuning ∆ωfc of a lossless filter cavity
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are those already found in Eq. 7.54. In the presence of losses, the bandwidth and
the detuning can be optimized as [117]

γfc =

√
2

(2− ε)
√

1− ε
ΩSQL√

2
(8.7)

∆ωfc = γfc

√
1− ε (8.8)

where ε is a function of the filter cavity round trip losses Λ2
rt, the free spectral range

fFSR = c/2Lfc and ΩSQL:

ε =
4

2 +

√
2 + 2

√
1 +

(
2ΩSQL

fFSRΛ2
rt

)4

(8.9)

Given a filter cavity with fixed length and losses, we can compute the parameter
ε using Eq. 8.9. Then, using Eq. 8.7 and 8.8, we obtain the optimal bandwidth
and detuning. Finally, in order to compute the cavity finesse, we can write the
bandwidth γfc of a Fabry-Perot cavity in terms of the losses, length and input mirror
transmissivity t2in:

γfc =
t2in + Λ2

rt

2
fFSR (8.10)

Inverting the previous equation, we can finally compute t2in which determines the
cavity finesse. Considering losses Λ2

rt of 80 ppm (a value which will be justified in
the following section), we found ε = 0.111 and γfc = 2π×57.3. The optimal detuning
will be ∆ωfc = 2π × 54 Hz and t2in = 0.0014, corresponding to a finesse of 4480. We
highlight the fact that for Λ2

rt up to ∼ 700 ppm, the value of the finesse is almost
independent of the cavity losses.

Mirrors dimension and radius of curvature (RoC)

In order to reduce the losses due to the finite size of the mirrors, known as clipping
losses, we require the size of the beam to be as small as possible. As shown in [103],
this is also the best way to reduce the effects of large-scale mirror defects. The small-
est beam radius on the mirrors is obtained in the so called confocal configuration,
where radii of curvature are equal to the cavity length. Nevertheless this configura-
tion is marginally stable. We choose radii ∼ 400 m, reasonably larger than 300 m, to
avoid cavity instability. The exact value of the RoC has been be determined using
numerical simulations, described in the following section, in order to minimize the
losses. For a 300 m cavity with two mirrors with a RoC of 400 m, the beam diameter
at the waist and on the mirrors is respectively 0.0162 m and 0.0205 m. In order to
be able to reuse the mirror suspension developed for TAMA, we have chosen mirrors
with a diameter of 0.1 m (as done in TAMA). They are roughly five time bigger than
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the beam radius and the resulting clipping losses are completely negligible. The filter
cavity parameters are reported in Tab. 8.2

Parameter Symbol Value
Length L 300 m
Radius of curvature RoC variable
Mirror diameter d 0.1 m
Input mirror transmissivity t2in 0.0014
Finesse F 4480
Beam diameter at waist(RoC 400 m) 0.0162 m
Beam diameter at the mirror(RoC 400 m) 0.0205 m

Table 8.2: Filter cavity parameters.

8.2 Requirements on mirror quality

Mirror defects, namely deviations of the mirror surface from a perfect spherical
one, are described by the mirror map, which is a square matrix of n elements with
n = lmir/res, where lmir is the length of the surface described, and res is the
resolution of the map. Each matrix element, corresponding to a pixel with area
res2, contains a measure of the mirror surface height h (with respect to a perfect
spherical one).
We can associate to each mirror map (or to a part of it) the Root Mean Square
(RMS) of the height, defined as:

σRMS =

√√√√ 1

n

n∑
i=1

(hi − h̄)2 with h̄ =

n∑
i=1

hi (8.11)

Another useful number to quantify surface flatness is the peak-to-valley value (PV):
a measure of the difference between the highest and the lowest point.
Mirror defects can be studied in the spatial frequency domain by applying a 2D
Fourier transform to the mirror map. The lowest spatial frequency fmin coincides
with the inverse of lmir, while the maximum spatial frequency fmax is given by
1/(2 · res). A 1D Power spectral density (PSD) can be associated with the 2D
Fourier transform map [130]. For such a 1D PSD we have the relation:

σ2
RMS =

∫ fmax

fmin

PSD(f) df (8.12)

The low frequency defects, those which have a spatial frequency up to 103m−1, con-
tribute to the so-called mirror flatness while higher frequency defects are associated
with the mirror roughness. This distinction has no fundamental physical motivation,
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but it is simply due to different techniques used to measure spatial defects in the
two cases [131].
The scattering angle for light at normal incidence of wavelength λ can be written as
a function of the frequency of spatial defects as [132]:

θ = λ× f (8.13)

This equation means that a defect at spatial frequency f will scatter a fraction of
the light at angles θ or larger. As a consequence, the amount of light reflected back
at normal incidence will be reduced by the same amount. This fraction is given by
(4π × σ(f)/λ)2 where σ(f) is the amplitude of the defect at spatial frequency f .
For a given cavity length L and mirror diameter d, there is a maximum scattering
angle θlimit above which light is scattered out of the cavity:

θlimit =
d

2L
(8.14)

Using Eq. 8.13 and 8.14 we can then find a spatial frequency flimit for the mirror
defects above which the light is scattered out of the cavity:

flimit =
d

2L× λ
(8.15)

From the equation above, the losses due to defects with spatial frequency above flimit

can be estimated as [132]:

losses(f>flimit) =

(
4π × σ
λ

)2

(8.16)

where σ is the RMS for frequencies above flimit. For the filter cavity we are consid-
ering flimit = 157 m−1.
It is important to note that the RMS for frequencies lower than flimit also contributes
to losses. In fact, even if light is not immediately scattered out of the cavity, it is
likely to be transferred on higher order modes and eventually exit the cavity. Our
goal is to estimate the amount of loss induced by mirror with a known flatness in
order to set specifications on flatness needed to keep losses below a desired threshold.
The round trip losses in a Fabry-Perot cavity are defined as [102]:

Λ2
rt =

Pin − Pr − Pt
Pcirc

(8.17)

where Pin is the input power (which is assumed to be a fundamental mode), Pcirc, Pt,
Pr are the powers circulating in the cavity, transmitted and reflected, respectively.
Since we can only take advantage of the light reflected on the fundamental mode,
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the definition of Eq. 8.17 has been modified to:

Λ2
rt =

Pin − P 00
r

Pcirc
(8.18)

where P 00
r is the fraction of the reflected power which is on the fundamental mode.

We used the MATLAB package OSCAR [133] to perform a FFT simulation of the
cavity ( where we used real mirror maps) to compute the values of Pcirc and P 00

r to be
used in Eq. 8.18. We ran the simulation using five different measured mirror maps,
for mirrors used in Virgo. Four of these mirrors were produced for the initial Virgo
with a standard polishing technology. The fifth has been produced for Advanced
Virgo and is by using an ion beam polishing technique. The Virgo maps have a reso-
lution of about 350µm, while the Advanced Virgo map has a resolution of 378.4µm.
One example of the Virgo maps and the Advanced Virgo map are shown in Fig. 8.1
along with their relative PSD. The cavity parameters used in the simulation are
those reported in Tab. 8.2. The maps were only applied to the end mirror, while the
input mirror has been considered perfect. We checked that the round trip losses for
a cavity where both the mirrors have defects can be obtained by simply multiplying
by two the previous result. Results presented here have already been multiplied by
two.
Each surface has been characterized by its RMS and its PV over different diameters.
The measured values are reported in Tab. 8.3. Round trip losses for the various mir-
rors have been calculated as a function of the radius of curvature and are reported in
Fig. 8.2. The losses floor for each mirror has also been reported in the last column
of Tab. 8.3 in order to be directly compared with the mirror flatness.
The presence of peaks in the plots of Fig. 8.2 is due to power transferred to higher
order modes which are partially resonant along with the fundamental mode for cer-
tain values of the curvature radius.
Maps used in the simulation account for mirror defects with spatial frequency going
from 10 m−1 to 2 · 103m−1. This means that losses caused by mirror roughness are
not included in this estimation. A map of the roughness has been measured with
an optical profilometer for the Advanced Virgo mirror [131]. This map, obtained by
scanning an area of 0.3 mm x 0.3 mm with a resolution of 1.28µm, scans frequencies
from 3.3 ·103 to 3.9 ·105m−1. From its RMS, under the assumption that it is uniform
on the surface, we can estimate additional losses due to roughness, which should be
added to those already estimated using the flatness measurement. The RMS is 0.08
nm, which corresponds to 0.89 ppm of additional losses for a single reflection. For
the initial Virgo mirrors, the specification on the roughness RMS was 0.1 nm which
corresponds to 1.4 ppm of additional losses for a single reflection. In both cases the
losses are dominated by flatness defects.The roughness map for Advanced Virgo and
the relative PSD are shown in Fig. 8.3. The measurement of the light scattered
at angles larger than a few degrees gives losses of the order of 5 ppm [134]. These
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diameter
0.10 m

diameter
0.05 m

diameter
0.02 m

diameter
0.01 m

Mirror RMS
(nm)

PV
(nm)

RMS
(nm)

PV
(nm)

RMS
(nm)

PV
(nm)

RMS
(nm)

PV
(nm)

Losses
(ppm)

V1 2.617 15.95 1.424 9.46 0.687 6.04 0.558 5.38 57.8
V2 1.875 15.64 1.234 8.56 0.682 6.29 0.812 5.92 80.6
V3 2.499 15.34 1.360 10.51 0.754 4.31 0.430 3.31 39.8
V4 1.752 45.61 0.984 12.12 0.509 4.46 0.531 4.46 42.6
ADV 0.319 2.99 0.274 2.09 0.192 1.18 0.142 0.97 5.6

Table 8.3: RMS and PV (over different diameters) and the round trip losses floor for
each mirror map. The values indicated for the losses correspond to the floor of Fig.
8.4.

include both the losses due to the roughness discussed above and those due to point
defects. The corresponding additional round-trip losses will be 2 · 5 = 10 ppm. As
observed in Sec. 6.2, even including all these effects, still a difference exists between
the measured losses in Advanced LIGO and Advanced Virgo and simulation results.
Hypothetical losses due to scattering at angles between mrad and a few degrees (pro-
posed as a possible explanation) are not included in this budget.
The conclusions of this study are that, for our filter cavity (length 300 m, mirror
diameter 10 cm, RoC ∼ 400 m):

• An Advanced Virgo-class mirror will produce floor losses < 10 ppm and a
Virgo-class mirror will produce losses ∼ 40 − 80 ppm. In order to determine
the final specifications on the mirror flatness, the squeezing degradation given
by the cavity losses has to be compared to the other degradation mechanisms.
This analysis is performed in the following section.

• The accidental degeneracy can amplify the losses by more than an order of
magnitude. The simulation gives the safe regions, where the losses are at the
floor level.

• The precise RoC value should be chosen in some of the floor losses regions for
the RoC value.

• A precision on the RoC of ∼ 1% is necessary to guarantee the RoC to be in
these regions.

obt

Mirror dimensions

Choosing the best mirror dimension is not as straightforward as it may seem to be.
The scattering mechanisms described in the previous paragraph show that bigger
mirrors have lower levels of losses. In fact, we see from Eq. 8.15 that by increasing

137



CHAPTER 8. FILTER CAVITY OPTICAL DESIGN

Figure 8.1: Initial Virgo map (top) and Advanced Virgo map (bottom). Mirrors
maps (left), PSD (right).

Figure 8.2: Round trip losses as a function of the radius of curvature. Peaks corre-
spond to values of RoC for which the cavity is quasi-degenerate.
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Figure 8.3: Roughness maps for the Advanced Virgo configuration. Mirror map
(left), PSD (right).

the mirror diameter d, the minimum spatial frequency flimit of defects which scatter
light out of the cavity is higher. Consequently, the RMS for frequencies above flimit
in Eq. 8.16 is reduced and, consequently, the losses. However this is not the only
effect to be taken into account. We have already observed that for certain values of
the curvature radius, the cavity can be degenerate. This means that the separation
between the resonance frequency of the fundamental mode and that of a higher order
mode is small enough to make it partially resonant. If it happens, some power of the
fundamental mode is then transferred to this higher order mode, and losses in the
fundamental mode are remarkably increased. Critical RoC values are highlighted by
simulation and correspond to the peak observed in Fig. 8.2. Mirror dimensions also
have a strong impact on the appearance of such peaks.
In Fig. 8.4, round trip losses for a virgo mirror (V3) are shown as a function of the
RoC for different values of the mirror diameter. We see that for bigger diameters
more peaks are observed, i.e. there are more RoC values which make the cavity
degenerated. This number is reduced for smaller mirrors. This effect can be possibly
explained by considering the intensity profile of higher order modes. In fact, the
power of higher mode is spread on a bigger surface than the fundamental mode.
Generally, the width of a mode increases with its order, and then, a reduction of
the mirror dimension prevents the build-up of wider modes. This explanation is
confirmed by the fact that a gradual reduction of mirror dimension first eliminates
resonances of the modes with higher n.
Using smaller mirrors will reduce the number of peaks, while increasing the floor
losses level since flimit in Eq. 8.15 is reduced. Therefore mirror dimensions should be
chosen in order to strike the best balance between low floor losses and the presence
of a safe zone for the RoC reasonably far from degeneracies. Using smaller mirrors
allows us relaxing accuracy requirements on the RoC value. We can see from Fig.
8.4 that a mirror diameter of 0.075 m allows us to pick a RoC, for example of 420, for
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Figure 8.4: Round trip losses as a function of RoC for different values of the mirror
diameter. Peaks which correspond to cavity degeneracies are reduced for smaller
mirrors while the floor of round trip losses increases.

which losses remain basically constant in a range of ∼ 20 m. Therefore the required
precision on the RoC is ∼ 5%. For such a mirror dimension the contribution of
clipping losses to cavity losses are still negligible. We decided to keep the value of
0.1 m for the mirror diameter in order to be compliant with the TAMA suspension
system. If needed, diaphragms can be placed in front of the mirror to reduce their
diameter according to what we have observed.

Simple round trip simulation

Since complete FFT simulation measuring losses as a function of the RoC can require
up to few hours, we have tested a quicker method to assess losses, assuming that the
cavity is not degenerate.
A complete simulation of the cavity has been used to compute fields in our system
and then to evaluate round trip losses, according to Eq. 8.18. This simulation allows
us to take into account the effect of higher order mode resonance. In this case, light
does not exit the cavity but is partially transferred to a higher order mode. This
effect is observable by comparing the round trip losses on the fundamental mode with
those in all modes (i.e the total amount of light exiting the cavity). Coinciding with
resonance, the curves relative to the two cases show a discrepancy accounting for the
light which is still in the cavity but not on the fundamental mode. On the other
hand, when the cavity is not degenerate, the total amount of light exiting the cavity
coincides with the light lost on the fundamental mode. This quantity corresponds to
the floor losses level reported in Tab. 8.4 and has been compared with that obtained
by simply computing the power escaping the mirror aperture after a single roundtrip
[reflection from a mirror with real map, propagation for 300 m, then reflection again
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from a perfect mirror (as in the simulated cavity) and propagating again for 300 m].
In practice, we measure the lost power after a cavity round trip of the beam. The
comparison between losses obtained with the complete simulation and those found
with the simple round trip are shown in Tab. 8.4 for different mirrors maps and for
different values of the diameter and shows a good agreement. Even if the second
method is less accurate and cannot be used in the case of degeneracy, it is much
faster and can be employed to obtain a rough estimation of the floor level of the
round trip losses in the cavity. A plot of the light power exiting cavity after the first
reflection is shown in Fig. 8.5.

Mirror Diameter RTL - full sim RTL - quick sim
V1 10 cm 57.8 ppm 57.6 ppm
V2 10 cm 80.6 ppm 79.4 ppm
V4 10 cm 42.6 ppm 40.4 ppm
ADV 10 cm 5.6 ppm 5.6 ppm
V3 10 cm 39.8 ppm 38.8 ppm
V3 7.5 cm 50.4 ppm 50.0 ppm
V3 6.0 cm 62.4 ppm 62.0 ppm
V3 5.0 cm 168.6ppm 165.4 ppm

Table 8.4: Comparison between losses obtained with the complete simulation and
those found with simple round method for different mirrors maps and for different
value of the diameter. Results of the quick simulation have been multiplied by two
as in the previous case.

Figure 8.5: Amplitude of the field scattered out of the cavity by high spatial frequency
defects. The field is observed after being reflected from a mirror with a real map and
then propagated for 300 m.
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diameter
0.05 m

diameter
0.02 m

Mirror RMS
(nm)

PV
(nm)

RMS
(nm)

PV
(nm)

#1 1.96 11.5 0.52 3.28
#2 2.09 12.2 0.52 3.28
#3 1.5 8.3 0.48 3.36
#4 1.94 14.8 0.48 3.28

Table 8.5: RMS and PV (over different diameters) and the round trip losses floor for
each mirror map. The values indicated for the losses correspond to the floor of Fig.
8.4.

8.2.1 Cavity mirror specification and results

We set the specification on the mirror peak-valley (PV) to be less than 12.7 nm on
a diameter of 0.05 m and less than 6.3 nm on a diameter of 0.02 m. These values
should comfortably allow for RTL below 80 ppm. The requirement of 80 ppm for
the RTL has been set after performing a complete squeezing degradation budget, as
it will be explain in details in the following section.
Four mirrors have been purchased for the filter cavity and they have been coated
and characterized by LMA in Lyon. The results of this characterization are reported
in Tab. 8.5 and show that the mirror flatness in compliant with our requirements.
In Fig. 8.6 we show a plot of the four mirror maps. RTL computations using the
measured mirror maps are reported in Sec. 9.8. The losses floor is ∼ 40 ppm, a
factor two below our threshold.

8.3 Squeezing degradation budget

From Eq. 7.48 we can see that quantum noise in an interferometer, normalized with
respect to shot noise, can be simply expressed as

N(Ω) = 1 +K2(Ω) (8.19)

where K is the optomechanical coupling defined in Eq. 7.43. In an ideal system, the
injection of a frequency dependent squeezed vacuum from the interferometer dark
port will reduce the quantum noise to

N(Ω) = e−2σ(1 +K2(Ω)) (8.20)

where σ is connected with the squeezing magnitude usually expressed in decibel by
σdB = −20σ × log10 e.
In a real setup, two factors prevent this optimal noise reduction: first, optical losses
will decrease the squeezing level, introducing a non-squeezed vacuum; second, fluctu-
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Figure 8.6: Maps of the four filter cavity mirrors. Mirror #1 and #4 have been
installed.

ations of the squeezing angle will preclude an optimal rotation of the squeezed state.
In [117] a detailed analysis of several of these mechanisms has been applied to a 16
m filter cavity, with round trip losses of 1 ppm/m, which is considered a possible
short-term solution for Advanced LIGO [129].
The same analysis is performed here for the 300 m filter cavity, with round trip losses
of 80 ppm, corresponding to a conservative estimate for Virgo-class quality mirrors.
To ease the comparisons between the two cases, the numerical values for other sources
of squeezing degradation are exactly the same of [117], as reported in Tab. 8.6. Fig.
8.8 shows the squeezing degradation budget for the 300 m filter cavity with losses 80
ppm (0.25 ppm/m) compared with that of 16 m filter cavity with loss 16 ppm (1
ppm/m) from [117]). It shows the ratio between the quantum noise of a dual recycled
Fabry-Perot Michelson interferometer without squeezing and the quantum noise in
the presence of frequency dependent-squeezing. An initial realistic squeezing level of
9 dB has been considered and the various degradation mechanisms have been taken
into account separately and combined (black curve). In this analysis, as for [117],
the contribution of the interferometer losses has been neglected. The quantum noise
computation has been done propagating three different vacuum fields in the system.
The first, is the one entering the squeezer and then injected in the filter cavity. The
second includes vacuum fluctuations associated to losses experienced by the squeezed
vacuum before entering the interferometer. The third accounts for readout losses,
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taking place after the beam exit the interferometer. For each of this three fields īn

the associated transfer functions Tn are computed in order to find input output re-
lations of the form of Eq. 7.60 which can be used together with Eq. 7.38 to compute
the quantum noise. In the following the main degradation mechanisms taken into
account are discussed. Details of the transfer matrices computation can be found in
[117])
The expected frequency dependent squeezing achievable with a 300 m filter cavity is
∼ 4 dB below 100 Hz and ∼ 6 dB above.

Filter cavity losses

The optical losses in the filter cavity spoil the squeezing in two ways: firstly, they
corrupt squeezing with anti-squeezing by mixing the quadratures. As reported in
[117]), this mechanism is independent of the non squeezed vacuum fluctuations and
it is caused by a difference in the cavity reflection magnitude for the upper and lower
audio sidebands. Secondly, as usual, squeezed vacuum is recombined with ordinary
vacuum introduced by losses. For a 16 m cavity, the filter cavity losses represent the
main contribution to squeezing degradation up to 100-200 Hz, that is the frequency
region where sidebands vacuum enter filter cavity. Since this effect depends on the
round trip losses per meter1 [135], it is considerably reduced in a 300 m cavity with
round trip losses of 80 ppm, and at low frequencies becomes comparable with that of
the mode mismatching. For this reason it is not extremely useful to further reduce
filter cavity losses by increasing the mirror quality (for example using Advanced
Virgo-class mirrors), unless mode matching is substantially improved.

Injection and readout losses

Injection losses, Λ2
inj, (caused by scattering, absorption and imperfections in the

optics) and readout losses, Λ2
ro, (from the interferometer to the readout, including the

photodetector quantum efficiency) cause a squeezing degradation by mixing ordinary
vacuum with squeezed vacuum. Being independent of the cavity length, their impact
does not change with a longer cavity. This mechanism is the dominating source
above 100-200 Hz, assuming a losses value of 5% both for injection and readout
losses. In this region, quantum noise is by far the limiting noise: a reduction in
injection/readout losses will lead to a consistent improvement of present and future
detector sensitivity.

Mode mismatching

Following the analysis shown in [117], a squeezing degradation is also determined
by an imperfect mode matching between the squeezed field and the cavity mode

1This statement will be justify in the following section.
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(Λ2
mmFC), and between the cavity mode and the local oscillator (Λ2

mmLO). This mis-
matching allows part of the field to bypass the cavity without experiencing frequency
rotation, and is also a source of losses.
The magnitude of the mode mismatching can be easily measured. Nevertheless, the
amplitude of the squeezing degradation depends of an arbitrary phase which is dif-
ficult to quantify (see [117] for a detailed explanation). For this reason, in Fig. 8.2
we have shown the worst case scenario.
As in the case of injection and readout losses, this effect does not depend on the
filter cavity length and, for a 300 m filter cavity with a RTL of about 80 ppm, it is
comparable with the degradation due to filter cavity losses. The estimation is done
assuming a mismatch of 2% between squeezed injected field and filter cavity modes
and a mismatch of 5% between injected field and the local oscillator.

Phase Noise

The level of measured squeezing can be reduced in the presence of fluctuations be-
tween the squeezed and measured quadratures. Fast fluctuations of the squeezed
quadrature, usually referred to as phase noise, can be either frequency dependent
or independent. The frequency independent ones are those generated for example
by length fluctuation of the injection path or fluctuation of the relative phase of the
local oscillator and the squeezed field. Assuming a realistic RMS of 30 mrad for this
noise we can neglect its effect in the squeezing degradation budget.
Frequency dependent phase noise is generated by detuning fluctuations which are
determined by the lock accuracy. Being originated inside the filter cavity, they
mostly affect Fourier frequencies within its bandwidth. In a 300 m cavity, assuming
a residual length noise of about 0.3 pm (RMS), also this effect becomes completely
negligible with respect to other mechanisms.

Losses inside the interferometers

In the analysis above we have not considered the losses experience by the squeezed
vacuum, when it propagates inside the ITF. The source losses to be taken into account
are those inside the arm cavities and those in the signal extraction cavity (SEC). For
what concern KAGRA, arm round trip losses Λ2

arm are assumed to be around 100
ppm.2. The fraction of power lost at the reflection from the arms cavities, assuming
KAGRA reflectivity is

εarm =
2Λ2

arm

Tarm
' 5% (8.21)

Since the SEC loss (excluding arm cavities) are estimated to be 2000 ppm [136], that
is only 0.2%, we would expected these losses to have a smaller impact with respect
to those of the arm cavities. This is not what we found by simulating squeezing

2We have seen that slightly lower values have been measured in Advanced Virgo and Advanced
LIGO.
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degradation induce by ITF loss with GWINC, as shown in Fig. 8.7.
This is due to the effect of the signal recycling. We have seen that it forms, for a
beam entering from the dark port, a double resonant cavity together with arm cavity
input and end mirrors. We can consider the cavity formed by SR and input mirror
as an equivalent mirror. In the broadband configuration, such cavity is resonant and
the equivalent mirror reflectivity is lower than that of the input mirror alone. This
results in an increased arm bandwidth (and a reduced finesse) which reduces the
effect of arm cavity RTL. The overall conclusion is that for the arm and SEC loss
value considered, the degradation effect is below 1.5 dB, thus it is negligible with
respect to other degradation sources.

Figure 8.7: Squeezing degradation induced by losses inside the ITF in the arm cavities
and in the signal recycling cavity respectively.

Parameter Symbol Value
Filter cavity losses Λ2

rt 80 ppm
Injection losses Λ2

inj 5%

Readout losses Λ2
ro 5%

Mode-mismatch squeezer-filter cavity Λ2
mmFC 2%

Mode-mismatch squeezer-local oscillator Λ2
mmLO 5%

Filter cavity length noise (RMS) δLfc 0.3 pm
Injected squeezing σ2

dB 9 dB

Table 8.6: Parameters used in the estimation of squeezing degradation.
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Figure 8.8: Squeezing degradation budget for a 300 m filter cavity with losses 80
ppm (0.25 ppm/m) (top plot) and a 16 m filter cavity with loss16 ppm (1 ppm/m)
(bottom plot from [117]). Quantum noise relative to coherent vacuum in the signal
quadrature for a ideal system (blue curve) is compared with the one obtained taking
into account degradation mechanisms (one by one).
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8.4 Motivations for using long filter cavities

In this section we will present the motivation for using long (100 m scale) filter cavi-
ties. To do that we will show first that the relevant quantity affecting the squeezing
degradation is the round trip losses per unity length and that such quantity is re-
duced for longer cavities. Then, we will see also that a long filter cavity, using best
quality optics available, allows for frequency dependent squeezing levels, limited by
mismatching and input output losses. This can reduce quantum noise also at low
frequency, where it is dominated by radiation pressure noise.

Losses per unit length

Figure 8.9: Squeezing performances achievable with different values of losses per
unit length are plotted. 300 meter filter cavity with the best mirror quality presently
available, brings to a squeezing degradation lower than the yellow curve.

The performances of the filter cavity are ultimately affected by their total losses
E . These depend on the round trip losses Λ2

rt multiplied by the equivalent number of
round trips N . Assuming an end mirror transmission close to 1, we have N ' 1/Tin

and for the total losses we find

E ' Λ2
rt

t2in
(8.22)

We have seen in Sec. 3.3 that t2in has to be chosen in order to have the bandwidth
of the filter cavity similar to that of the interferometer: γfc = c t2in/(4L) = γitf . This
means

t2in '
4γitfL

c
(8.23)
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Figure 8.10: The plot shows some measured round-trip loss per unit length from the
literature. It was originally published in [129], than update with measurements by
Isogai et al in [100]. We added the simulated losses for filter cavity in TAMA, with
both Virgo (top point) and advanced Virgo (bottom point) mirror quality. To remove
any dependence on the choice of cavity geometry the plots are done in function of
the confocal length, i.e the length of the confocal cavity which has the same beam
dimension on the mirror as the cavity whose losses are reported. References for the
measurements in literature can be found in [129]
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by substituting this in 8.22 we find

E ' cΛ2
rt

4γitfL
∝ Λ2

rt

L
(8.24)

This means that the important quantity is the loss per unit length, as observed for
the first time in [135]. In Fig. 8.9 squeezing performances achievable with different
values of losses per unit length are plotted and it confirms that the degradation effect
(mostly affecting low frequencies) is strongly dependent on this quantity. Therefore,
it is interesting to study how this quantity depends on the length. In Fig. 8.10 some
values of round trip losses per unit length from literature are reported, also including
the simulated losses for the filter cavity in TAMA(with Virgo and advanced Virgo
mirror quality). It is evident that this quantity decreases for longer cavities, but it is
not inversely proportional to it. An empirical scaling law obtained in [100] by fitting
the data is:

Λ2
rt ' 10 ppm ·

(
Lconf

1 m

)0.3

(8.25)

which means that

E ∝ Λ2
rt

Lconf
' 10

ppm

m
·
(
Lconf

1 m

)−0.7

(8.26)

To remove any dependence on the choice of cavity geometry the plots are done in
function of the confocal length, i.e the length of the confocal cavity which has the
same beam dimension on the mirror as the cavity whose losses are reported.
Eq. 8.25 shows that round trip losses increases with length, an effect that is likely
due to the increasing of the beam dimension which makes it more affected by mirror
defects. Since this dependence is not linear with the length, but weaker, the overall
result is that round trip losses per unit length are reduced by increasing the cavity
length.
For optimal quantum noise reduction, filter cavity length has to be chosen in order to
have total losses causing a squeezing degradation lower than that induced by other
mechanisms. This is not the case for 16 m cavity in LIGO, anyway in this case the
goal is not to reduced quantum noise as much as possible but only not to exceed
thermal noise (which is limiting sensitivity at low frequency) as it would happen in
case of frequency independent squeezing injection [129].
We have seen that in a 300 m filter cavity using the best mirror available the squeezing
degradation induced by cavity losses becomes completely negligible. Moreover, since
the requirement is set on the cavity linewidth (depending on the product of the
finesse and the cavity length) a longer filter cavity allows for lower level of finesse,
making easier the control.
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8.5 Frequency dependent squeezing with EPR entangle-
ment

In 2016 Y.Ma et al. [137] proposed an alternative way for benefit from frequency
dependent squeezing without the need of a filter cavity. The main idea behind this
new technique is to inject a pair of EPR-entangled beams from the ITF dark port.
If one of the two beams is detuned from the carrier, it will see the reflection from
the ITF as that of a detuned cavity, thus it will experience frequency dependent
squeezing. Measuring a fixed quadrature (by homodyne detection) of the detuned
beam will allow to conditionally squeeze the other beam in a frequency dependent
way.
The production of two EPR entangled beams is realized by detuning the pumping
frequency of the Optical Parametric Amplifier (OPA). Normally the OPA is pumped
at a frequency ωp = 2ω0 where ω0 is the ITF carrier frequency. The OPA will
create correlated sidebands at a distance ±Ω from half of the pump frequency. If
now the pump frequency is shifted of a quantity ∆, correlations will be created
between upper and lower symmetric sidebands around half of the pumping frequency
ωp/2 = ω0 + ∆/2 (within the squeezing bandwidth). If we refer these sidebands to
the frequencies ω0 and ω0 + ∆ respectively denoted as signal and idler beam, we see
that the upper sideband of the signal beam at a frequency ω0 +∆ is correlated to the
lower sideband of the idler beam at a frequency ω0 + ∆−Ω while the lower sideband
of the signal ω0 − Ω is correlated with the upper sideband of the idler ω0 + ∆. In
terms of quadrature picture we have two beams entering the interferometer dark port
whose quadrature are EPR entangled between each other as shown in Fig. 8.11. It
means that if we denote signal and idler quadratures with â1,2 and b̂1,2 respectively,
combinations of these quadratures will show fluctuation below quantum noise and
we can infer â−θ by measuring b̂θ.
The signal beam which exits the ITF verifies the standard input-output relations of
Eq. 7.47. We have seen that the optimal noise reduction is obtained by squeezing
the quadrature â− arctan(1/K), that, in our case means detecting b̂arctan(1/K). Once
the two beams exit the interferometer we can separate them and we can detect a
fixed quadrature of the idler beam. As we have anticipated, since the idler beam
is detuned, it undergoes a frequency dependent rotation that can be optimized (by
tweaking the OPA pumping frequency, signal recycling and arm cavity length) in
order to make the detected output quadrature to be b̂out

2 = b̂arctan(1/K). The optimal
quantum noise reduction without taking into account any optical losses will be:

Sh =
h2

2 cosh 2r

(
K +

1

K

)
(8.27)

If we compare it to that achievable with standard frequency independent squeezing
injection in Eq. 7.50, we see that we loose 3 dB of squeezing with respect to it, even
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in the ideal lossless case.

Figure 8.11: Scheme of the EPR entanglement technique for quantum noise reduc-
tion. The two EPR entangled beams are injected from the ITF dark port. Their re-
flection are separated and detected. By measuring a fixed quadrature of the detuned
beam, which experienced frequency dependent quadrature rotation, it is possible to
conditionally squeezing the other beam in a frequency dependent way.

Pros and cons with respect to filter cavities

The main advantage of the EPR entanglement technique is undoubtedly the possi-
bility to avoid using an auxiliary filter cavity, which in addition to the construction
of the infrastructure brings potential control and mode matching issues. The price
to pay, in addition to a 3 dB reduction already mentioned, is an increased effect of
the input and output losses which, in this configuration, count twice as they affect
both beams. Simulations reported in [137] shows that arm and signal recycling losses
(assumed respectively to be 100 ppm and 2000 ppm) are reducing the quantum noise
improvement of ∼ 1 dB. Even if this effect is much lower than that expected assum-
ing a filter cavity with RTL of 1 ppm/m, we have shown that using a 100 m scale
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filter cavity and the best mirror quality available, the effect of cavity losses becomes
negligible with respect to other loss mechanisms.
Assuming an initial level of squeezing of 15 dB and an optimistic level of input ad
readout losses of 5% (as we did for the filter cavity), we expected an overall quantum
noise reduction between 5-6 dB, which is comparable with what we expected from a
300 m filter cavity (with 9 dB of initial squeezing).
Practical implementations of this technique are already planned: a table top experi-
ment to demonstrate entanglement with a simple cavity and a test on GEO has been
recently presented [138, 139]. In the case of GEO, which is not limited by radiation
pressure noise at low frequency, the goal will be to use frequency dependent squeez-
ing for adapting quantum noise reduction to a detuned configuration of the signal
recycling cavity. These experiments will allow to tackle some technical difficulties
such as the separation of the entangled beams at the output, the realization of the
conditional measurement and the fine tuning of the detuning frequency and SR and
arms length to obtain the proper frequency dependence.

8.6 Improvement in KAGRA sensitivity

We can quantify the expected improvement in KAGRA sensitivity by using the esti-
mation of the achievable level of frequency-dependent squeezing using a 300 m filter
cavity. In Fig. 8.12 the quantum noise for KAGRA, without squeezing, is compared
with the quantum noise obtained using 9 dB of frequency-dependent squeezed light,
when all degradation mechanisms previously described are taken into account. We
considered both the case of a filter cavity with round trip losses of 80 ppm and that
of a perfect filter cavity. The comparison shows that no major improvements can be
obtained by reducing round trip losses under the level of ∼ 80 ppm since their effect
becomes comparable with that of other degradation mechanisms.

Fig. 8.13 shows the improvement in KAGRA sensitivity using 9 dB frequency-
dependent squeezing, considering a filter cavity with round trip losses of 80 ppm and
other degradation mechanisms. We remark that the use of squeezing allows us to
reach a sensitivity beyond the standard quantum limit around 70 Hz. In Fig. 8.14
the quantum noise of a realistic lossy system is shown along with other KAGRA
noise sources. We observe how a reduction in the only quantum noise will result in
an improvement in almost the whole KAGRA observation bandwidth.
We also remark that:

• In the frequency region below 100 Hz, thermal noise is close to quantum noise
and there is little to be gained from a further significant reduction in quan-
tum noise (obtainable by improving mismatching, injection/readout losses and
decreasing losses in the filter cavity).

• In the frequency region above 100 Hz, which is dominated by quantum noise,
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Figure 8.12: Quantum noise for KAGRA without squeezing, compared with the
quantum noise using 9 dB frequency-dependent squeezing, both in the ideal system
and when all the degradation mechanisms are taken into account. We remark that
quantum noise without squeezing is relative to official KAGRA sensitivity using a
configuration with a homodyne detection angle of 121.8◦, while quantum noise in
the presence of squeezing uses a standard homodyne angle of 90◦.

Figure 8.13: Improvement in KAGRA sensitivity using 9 dB frequency-dependent
squeezing, considering lossy cavity and other degradation mechanisms.
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Figure 8.14: The quantum noise in the presence of 9 dB of squeezing and lossy system
(filter cavity RTL 80 ppm) is compared with the other noise sources. Note that below
100 Hz, the contribution from thermal noise would prevent an improvement in the
total sensitivity even in case a further reduction of quantum noise.

there is much more room for improvements. However, a reduction of the filter
cavity optical losses would not provide a higher squeezing level, since in this
region the squeezing degradation is mainly caused by injection and readout
losses.

This suggests that a further reduction of the filter cavity losses would not be neces-
sary, while a major benefit can be obtained by protecting squeezing from losses due
to injection, detection and mismatching.
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CHAPTER 9

Filter cavity experiment integration

So far we have discussed the optical design of the filter cavity with particular atten-
tion to the requirement on mirror quality and to the analysis of different mechanisms
competing to cause squeezing degradation. From the results of this analysis we could
discuss and justify the choice of a long filter cavity and present the expected improve-
ment in KAGRA sensitivity. In this chapter we focus on the experiment integration.
We describe the optical setup for the production of frequency independent squeezing
to be injected in the cavity, the design and integration of the mode matching injection
telescope, the development of the suspended mirror local control, the preparation and
suspension of the mirrors and finally the lock of the filter cavity. A scheme of the
filter cavity integration in TAMA infrastructure is shown in Fig. 9.1.

injection telescope

fil
te

r c
av

ity

squeezed 
vacuum  
source

Figure 9.1: Scheme of the filter cavity integration in TAMA infrastructure.
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9.1 Production of frequency independent squeezing

The production of frequency independent squeezing will be the starting point in
order to impress and measure a rotation of the squeezing ellipse. The generation of
frequency independent squeezing is a well-established technology developed in the
gravitational-wave community for the purpose of reducing quantum noise at high
frequency (in the region where it is dominated by shot noise). It has been successfully
tested in GEO [112] and in LIGO Hanford observatory [111]. The technique has been
refined over the years and recently up to 15 dB of squeezing have been observed [140].
In Fig. 9.3 the schematic setup for producing frequency independent squeezing in
TAMA is shown. It is based on the design of GEO squeezing group [141]. The main
laser (a Mephisto by Innolight) is a solid state Nd:YAG laser emitting at 1064 nm
up to a power of 2 W. A piezoelectric actuator on the crystal allows to modify the
frequency of the emitted light in a range of ± 65 MHz, with a gain of ∼1 MHz/V
and a bandwidth of 100 kHz. For a larger dynamics a thermal control on the crystal
temperature is also available.
The beam exiting the laser is divided in two by a beam splitter. One side is used to
feed the SHG cavity, which doubles the laser frequency producing green light at 532
nm. In our scheme this light is used both to pump the optical parametric oscillation
cavity (OPO) for squeezing vacuum production and for the lock of the filter cavity.
As shown in Sec. 8.1 the filter cavity should have a finesse of ∼4500 for the infrared
light. In order to ease the cavity control, we decide to use green light for that purpose
and set the cavity mirrors reflectivities in order to have a much lower finesse (about
270) for it.
Before being split, the beam exiting the SHG cavity is stabilized in power with a
Mach-Zehnder interferometer (MZ). The part sent to the OPO passes through a
triangular mode cleaner cavity which acts as a filter for higher order modes and
reduces high frequency phase noise. The beam used for the control of the filter
cavity passes through an acusto-optic modulator (AOM), which induces a tunable
frequency shift and it is used to control the detuning of the infrared (squeezed)
beam with respect to the cavity resonance. The infrared beam transmitted by the
first beam splitter is filtered by a mode cleaner similar to the green one and it is used
in part as local oscillator for the homodyne detection (HMD) and in part as a test
beam to probe the filter cavity detuning. Two auxiliary lasers similar to the main one
are used. The first auxiliary laser (AUX laser 1) provides the coherent control field
used to stabilize the squeezed ellipse angle [141]. The second auxiliary laser (AUX
laser 2) is used for the OPO length control. Two phase lock loops (PLL) are used
to lock the phase of the two auxiliary lasers to the main laser with different shift.
Three resonant electro-optic modulators (EOM) are used to provide error signals for
the five cavities in the experiments: one just after the main laser with a modulation
frequency of 15.2 MHz, used for the lock of SHG and IR mode cleaner. One after
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the SHG at 78 MHz for the lock of the filter cavity and the green mode cleaner. The
last one at 90 MHz for the OPO lock. At the time of writing the SHG has been
assembled and locked, the mode cleaners has been assembled and tested. A part of
the green beam has been successfully used to lock the filter cavity and the infrared
light after the first beam splitter has been superposed to the green light and sent
in the filter cavity. In the following we give a more detailed description of the SHG
which has been already installed.

Second harmonic generator

The second harmonic generator (SHG) consists in a hemilitic cavity only resonant
for the infrared light. It is composed by a MgO : LiNbO3 non linear crystal of
dimensions 2 mm x 2.5 mm x 6.5 mm and a meniscus mirror. The crystal surface
towards the meniscus mirror is flat and treated with antireflected coating, the other
has a RoC of 12 mm and has an high reflective coating with reflectivities respectively
of 99.95% for IR and 99.8% for green. The meniscus mirror has an internal radius of
curvature of 25 mm and reflectivities ∼ 92% for IR and < 2% for green light. The
FSR is ∼ 4 GHz and the finesse for infrared light is about 75. In order to maximize
the up-conversion process where two photons at pump frequency ω are absorbed
and a photon at frequency 2ω is re-emitted, the conservation of momentum (usually
referred to as phase matching) has to be be satisfied. This is achieved changing
the refractive index of the crystal by tuning its temperature. For this purpose a
thermal control loop has been developed. The best conversion efficiency achieved
is 45%. The cavity is kept resonant for the infrared light by using a piezoelectric
actuator on the meniscus mirror. The lock is done with a standard PDH technique
in transmission, at present the correction filter is provided by a Stanford research
low-noise preamplifier.

9.2 Input telescope

The infrared squeezed beam and the auxiliary green beam used for the cavity lock
need to be matched to the cavity eigenmode. The dimension and curvature of the
beam at the input mirror has been set in Sec. 8.1. In particular the beam exiting
the optical bench need to be magnified of a factor 10. For this purpose an afocal
reflective telescope is used. It consists of two spherical mirrors: a concave one with
RoC 6 m and a convex one with RoC 0.6 m. The afocal condition is achieved by
positioning the mirrors at a distance d = f1 +f2. Were f1 and f2 are the focal length
of the concave and the convex mirror which are respectively 3 m and -0.3 m. The
nominal distance is then 2.7 m. In Fig. 9.4 is presented an overview of the optical
scheme, including the telescope. In particular it shows the path of the green and the
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Figure 9.2: Injection telescope design

infrared beam and how they are superposed.1

In Fig. 9.2 details of the disposition of injection telescope optics in the two chamber
are shown. The infrared beam coming from the optical table enters the PR cham-
bers2 from a viewport, passes through a Faraday isolator (IF in figure) and it is sent
in the BS chamber where it is reflected by the convex mirror (M1 in figure), which
is a fixed 2" mirror. It goes back in the PR chamber where it is reflected by the
concave mirror, which is a 4" suspended mirror. Finally, the beam re-enter the BS
chamber where it impinges on a suspended steering mirror (FM in figure) and it is
sent to the filter cavity input mirror.
In order to check the telescope design and find the proper beam dimension at the
Faraday isolator we simulated the beam propagation using the ABCD matrix for-
malism (see App. A). Details on this study are reported in App. C. Results of the
propagation (assuming astigmatism) done with ABCD matrices have been compared
with those found simulating the system with the optical design software Zemax. The
results are in agreement between each other.

1As this picture is mainly intended to show the green and the infrared optical path, some
simplification have been done. For example Faraday isolator on the infrared path in the first
vacuum chamber is not shown.

2The name of the vacuum chambers refers to their former function in TAMA. The injection
optics are accommodated in the former power recycling (PR) and beam splitter (BS) chamber.
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Figure 9.3: Optical scheme of the frequency independent vacuum squeezed source.
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Telescope loss sources

Along its propagation through the injection telescope, the beam is affected by losses
induced by different mechanisms. As seen in the previous section, they are critical
as they degrade the achievable squeezing level. We considered each loss mechanism
and tried to estimate the associate induced loss:

• Astigmatism - Non-normal incidence of the beam on the telescope mirrors
introduces some astigmatism. This effect has been studied by propagating sep-
arately the beam on the x and on the y plane and using appropriate ABCD
matrices for the mirror reflection which account for non normal incidence. The
losses due to the astigmatism, calculated computing the overlap integral be-
tween the astigmatic beam and the closest TEM00, are less then 0.3%. Details
of this computation can be found in Sec. C.1.

• Spherical aberrations - Gaussian beams have parabolic front waves, there-
fore they cannot perfectly match the surface of a spherical mirror. This causes
the so-called spherical aberrations on the reflected beam. In Sec. C.3 a com-
putation of the magnitude of this effect has been done. The conclusion is that,
due to the small ratio of the beam with respect to the mirrors, the associated
losses are negligible.

• Mirror defect scattering - An estimation of the losses induced by scattering
due to telescope mirrors defect has been done in C.3. The results is that,
assuming a peak-to-valley (PV) value of λ/10 = 63.3 nm, losses due to each
reflection are less then 0.8%. Because of the small RoC of the telescope mirrors
the PV specification cannot be much better than this one.
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Figure 9.4: Overview of the optical scheme. Green beam and infrared beam coming
from the optical table enter the first vacuum chamber where they are superposed on
a dichroic mirror. Then they are magnified by the afocal telescope and injected in
the cavity.

163



CHAPTER 9. FILTER CAVITY EXPERIMENT INTEGRATION

9.3 Mirrors control

In our experiment we make use of four suspended mirrors, two are part of the injec-
tion system described above and two are the mirrors constituting the filter cavity. All
are suspended by using a double pendulum suspension shown in Fig. 9.5, originally
developed for TAMA experiment. It is composed by a top stage to which four wires
are attached and used to suspend an intermediate mass. A passive damping system
consisting in a set of magnets placed around this mass is installed. The mirror, with
a diameter of 10 cm, is suspended with 2 loop wires at the intermediate mass. 3

Four magnets are glued to the mirror and can be pushed or pulled by controlling a
current flow in the correspondent coil. The double pendulum is placed on a vibration
isolation multilayer stack made of rubber and metal blocks [142].
After having installed the suspension in the vacuum chambers,4 we developed their
local controls. As already mentioned in Sec. 5.7, they consist of a monitoring system
which senses the mirror position with respect to a ground reference and a feedback
control system which acts on the mirrors. This system is used for three main pur-
poses:

• Damp pendulum resonances - As observed in Sec. 2.2.3, the use of sus-
pended mirrors is mainly due the peculiar features of the pendulum trans-
fer function. The pendulum filters the suspension point vibrations which are
transmitted to the suspended mass with an attenuation ∼ 1/f2 where f is the
Fourier frequency of the vibration. This is true only for frequency higher than
the resonance frequency of the system. At the resonance frequency, on the
contrary, ground motion displacement is amplified. An excitation of the sys-
tem at the resonance frequency can induce large displacements of the mirrors
affecting alignment and length control. Local controls are used to damp excess
of motion at low frequency (below 10 Hz), where normally these resonances
are located.

• Displace the mirror - Orientation of the mirrors has to be fine-tuned in
order to make the cavity axis coincide with the beam direction. By adding
an offset to the control loop it is possible to change the mirror position in a
controlled and repeatable way, without exciting the mirror resonances and act
on the cavity alignment.

• Keep references of mirror position- Local controls provide a way to moni-
tor and record the mirror position. References can then be used to recover the

3The telescope folding mirror installed in the former BS suspension has a diameter of 15 cm and
the suspension is slightly different.

4In the case of the input and end mirror (corresponding to TAMA test masses) an upgraded
suspension system (TAMA SAS [143]) were used. Since these were too complex for our purpose we
dismounted them and replaced them with the former double pendulum system.
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alignment of the cavity. Of course this is effective only if the reference is more
stable than the mirror position.

In the following we will detail the technique used to sense the mirror position and
how to implement the feedback loop for the mirror control.

Figure 9.5: TAMA double pendulum suspension used for filter cavity mirrors. (Fig-
ure by A.Araya and K.Arai)

9.4 Mirror position readout

A suspended mirror can be regarded as a rigid body, with six degrees of freedom:
three translation along the main axes and three rotation around them. (See Fig.
9.6.) The most relevant for us are the translation along the optical axis, referred to
as length, as it changes the cavity length, and the pitch and yaw for the rotations
as they change the direction of the cavity axis.5 The mirror motion is sensed by
measuring the displacement of an auxiliary laser beam reflected by the mirror. A
Position Sensor Device (PSD) is used for this purpose. As shown in Fig. 9.7 (for
a 2D example), a displacement of the mirror along the beam axis of an amount d
corresponds to a shift X1 of the beam position on a PSD of

X1 = 2d sinα (9.1)
5Due to the large mirror RoC the two translations orthogonal to the beam correspond to small

pitch and yaw angle and can be neglected.
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Figure 9.6: Degrees of freedom for the mirror rotation.

where α is the incidence angle of the laser on the mirror. An angular displacement

Figure 9.7: Displacement of the reflected beam induced by a shift and tilt or the
mirror.

of the mirror of an angle β corresponds to an angular displacement of the reflected
beam of

θ = 2β (9.2)

which produces a shift of the beam position on a PSD placed at a distance l from
the mirror given by

Xy
θ = l tan 2β ' 2lβ (9.3)

Here we assumed that the rotation is around the vertical axis (yaw). In case we have
a pitch, the relation 9.3 becomes

Xp
θ ' 2lβ cosα (9.4)

This device to sense mirror displacement is referred to as optical lever and the dis-
tance l is called arm of the optical lever.
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Decoupling of tilts and shift error signals

In this configuration the error signal in the PSD x-axis accounts both for a mirror
displacement along the optical axis (length) and a rotation around the vertical axis
(yaw). In order to distinguish them we can add a lens in the optical path of the

Figure 9.8: Optical scheme to decouple shift and tilt by using a lens.

beam between the mirror and the PSD, as shown in Fig. 9.8. The effect of the lens is
easily computed by using ABCDmatrix formalism [144]. IfX1 and θ1 are respectively
translation and rotation of the beam just after the reflection, the resulting translation
and rotation at a distance D from a lens, with a focal f , placed at a distance L from
the mirror, are (See Fig. 9.8.)

(
X2

θ2

)
=

(
1 D

0 1

)(
1 0

− 1
f 1

)(
1 L

0 1

)
·

(
X1

θ1

)
(9.5)

=

(
1− D

f D + L(1− D
f )

− 1
f 1− 1

f

)
·

(
X1

θ1

)
(9.6)

The displacement measured by a PSD along its x-axis will be thus

X2 =

(
1− D

f

)
·X1 +

(
L

(
1− D

f

)
+D

)
· θ (9.7)

We see that the distance D of the PSD from the lens can be opportunely chosen to
make it sensitive only to tilts or to shift. In particular, if we place the PSD on the
focal plane focal plane we are only sensible to tilts:

Df = f ⇒ X2 =

(
L

(
1−

Df

f

)
+Df

)
· θ1 = f · θ1 (9.8)

While at the image plane we are only sensible to shifts:

Di =
Lf

L− f
⇒ X2 =

(
1− Di

f

)
·X1 =

(
1− L

L− f

)
·X1 (9.9)

In Fig. 9.9 are shown the positions of the focal plane and the image plane with
respect to the lens as a function of its focal length, given a configuration where the
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mirror and the lens are at a distance L = 0.63 m, which is almost the value we
expected in our system.

Figure 9.9: Distance of the focal plane and the image plane from the lens as a
function of its focal length where the mirror and the lens are at a distance L = 0.63
m.

Combining Eq. 9.1 and Eq. 9.8 we find the relation between the beam displace-
ment X2 sensed by a PSD placed on the focal plane and the actual shift d of the
mirror (i.e. the magnification factor)

Xshift
2 =

[
2 sinα

(
1− L

L− f

)]
d (9.10)

The same can be done with Eq. 9.2 and Eq. 9.8: the relation between the beam
displacement X2 sensed by a PSD placed on the image plane and the actual tilt of
an angle β of the mirror is

Xtilt
2 = 2f · β (9.11)

In Fig. 9.10 the magnification factors are shown in function of the focal length
assuming a distance L = 0.63 m between the mirror and the lens.

9.5 Optical levers implementation

The technique described above is routinely used for the control of suspended mirrors
in GW interferometers [145]. With respect to former TAMA local controls, where
only tilts were monitored and controlled, we decided to implement the decoupling
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Figure 9.10: Magnification factors for tilt and shift as a function of the focal length
assuming a distance L = 0.63 m between the mirror and the lens.

of shift and tilt error signal for the filter cavity mirrors. One of the main difficulties
in its realization was represented by necessity to fit all the needed optics in small
shelves (22.5 cm x 18 cm) under the viewports. Such shelves were previously used
for TAMA and we decided to keep using them since their compactness and the fact
that they are attached to the vacuum chamber would limit their vibrations.
A picture of the system is shown in Fig. 9.11 while the value of some relevant
parameters is reported in Tab. 9.1.

Parameter Symbol Value
Distance mirror-lens L 0.63 m
Focal length f 0.2 m
Incidence angle α 45◦

PSD calibration C 184 · Vsum [ Vm ]

Table 9.1: Values of some parameters of the optical lever system
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Figure 9.11: Picture of the optical lever implemented for the input mirror control.
The dimension of the optics support is 22.5 cm x 18 cm.

By using these parameters we can compute the magnification factor of our system.
According to them, an output voltage Vtilt of the PDS on the focal plane corresponds
to an actual motion given by

Vshift =

[
2 sinα

(
1− L

L− f

)
· C
]
d (9.12)

and for the PSD at the image plane6

Vtilt = 2Cf · β (9.13)

Where C
[

V
m

]
is the PSD calibration which depends on the amount of power imping-

ing on the sensor.

9.5.1 PSD position accuracy

A displacement of the PSDs from their nominal position will introduce a coupling
between tilt and shift. The magnitude of such coupling for the PDS on the focal
plane (sensitive to tilts) can be computed from Eq. 9.7

Df = f + δD ⇒ X2 =

(
−δD
f

)
·X1 +

(
f + δD

(
1− L

f

))
· θ1 (9.14)

6Even here, in the case of pitch a factor cosα has to be take into account.
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while for the one on the image plane we find

Di =
Lf

L− f
+ δD ⇒ X2 =

(
− f

L− f
− δD

f

)
·X1 +

(
δD

(
1− L

f

))
·θ1 (9.15)

The coupling, defined as the ratio between the magnification factor of tilt and shift,
are plotted in Fig. 9.12 and 9.13 as a function of the displacement δD from the
nominal position for the PSD on the focal plane and that on the image plane, re-
spectively. We see that in the first case an accuracy of ±0.5 cm (which is a very
reasonable target) allows for a decoupling of 10% while for the image plane we expect
less than 0.4% of coupling.

Figure 9.12: Ratio between the magnification factor of tilt and shift as a function of
the displacement δD from the nominal position for the PSD on the focal plane
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Figure 9.13: Ratio between the magnification factor of shift and tilt as a function of
the displacement δD from the nominal position for the PSD on the image plane.

9.5.2 Optical lever tuning

An optimal decoupling of shift and tilt requires a high accuracy on the PSD position
and it is not straightforward to understand from the signals how much residual
coupling we have. The technique we used to fine-tune the position of the PSD
consists at first in identifying the resonance frequencies relative to each degree of
freedom and then exciting the resonance of a degree of freedom and move the PSD
that should be insensitive to it, in order to minimize the amplitude of its signal. If the
PSD on the focal plane is not perfectly horizontal, this can bring a coupling between
tilt and yaw. This has been reduced by rotating the signal after the acquisition.
The mechanical transfer functions of the mirror showing the resonance for the three
degrees of freedom are reported plotted in Fig. 9.15. They have been measured
by means of white noise injection on the mirror and data have been fitted to find
frequency and Q of each resonance. Since we have a double pendulum we expected
to see a pair of poles and a zero between them but the transfer function of both yaw
and length seems to have only one resonance. This is due to the magnet damping
system on the intermediate mass which acts broadening the poles and zero. Since for
yaw and length they are closely located, their effects merge and the resulting transfer
function looks like a single resonant system. Transfer function has been fitted with
the following poles and zeros:

• Yaw: One double pole at 1.48 Hz with a Q of 5.

• Pitch: Two double pole at 2 Hz and 6 Hz with a Q of 2 and 6 respectively.
One double zero at 6 Hz with a Q of 3.
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• Length: One double pole at 0.94 Hz with a Q of 4.

After having diagonalized the sensing, we optimized the driving matrix trying to
minimize the excitation of the resonance of each degree of freedom when injecting
noise on another one. A scheme of this procedure is shown in Fig. 9.14

Figure 9.14: Scheme of the procedure used to tune the local controls.

The major difficulties in this procedure were due to the fact that most of the
resonance are very damped therefore it is not easy to observe free oscillations of the
mirrors at the resonant frequency. Figures 9.18, 9.19 and 9.20 show the mechanical
transfer functions in the three degrees of freedom when white noise was injected on
one degree of freedom at time. In the first one, for example, we injected noise in yaw
and measured the mechanical transfer function and coherence in the three degrees
of freedom. In the ideal case, we should observe a perfect coherence in yaw and no
coherence in the other two degrees of freedom. We see that this is not exactly the
case since a residual coherence is present in length. The fact that resonance of yaw
at 1.5 Hz appears in the length transfer function suggests that we have a residual
coupling in the sensing (conversely excitation of the length resonance would have
meant a coupling in the driving). By comparing the magnitude of the peaks, this
coupling has been estimated to be ∼ 0.25%, which, according to what computed in
Eq. 9.14, corresponds to a displacement of the PSD from the optimal position of
∼ 1.5 mm.
The level of decoupling achieved was proven to be sufficient to stably lock the cavity.
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Figure 9.15: Mechanical transfer function of yaw. It is fitted by a double complex
pole at 1.48 Hz with a Q of 5.

Figure 9.16: Mechanical transfer function of pitch. It is fitted two double complex
pole at 2 Hz and 6 Hz with a Q of 2 and 6 respectively and a double zero at 6 Hz
with a Q of 3.
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Figure 9.17: Mechanical transfer function of length. It is fitted by a double complex
pole at 0.94 Hz with a Q of 4.

Figure 9.18: Transfer functions and coherence for the three degrees of freedom when
injecting noise on yaw through mirror’s coils.
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Figure 9.19: Transfer functions and coherence for the three degrees of freedom when
injecting noise on pitch through mirror’s coils.

Figure 9.20: Transfer functions and coherence for the three degrees of freedom when
injecting noise on length through mirror’s coils.
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9.6 Feedback loop implementation

The analog error signals relatives to the three degrees of freedom are converted into
digital signals and processed by a digital control system. This digital control is pro-
grammed in LabVIEW and together with the ADC and the DAC was used in the
past for the control of TAMA [146]. A major part of the work to implement the feed-
back loop consisted in re-programming such digital control for our purposes. Details
on the system and the codes developed can be found in Sec. D.
Such system provides a correction signal, which is sent to an appropriate combina-
tions of coils in order to move the mirror. The filter configuration is set by means
of a user interface, the filter bank, specifying poles, zeros and Q factor of the filter
transfer function in the s-domain. Then it is discretized and digital filter coefficient
are computed.
In Fig. D.2 a scheme of the control loop implemented for each degrees of freedom
of each suspension is shown. Two noise injection points and two switches have been
added. By properly combining injection points, reading points and status of the
switches it is possible to measure mechanical transfer functions, filters, open loop
and close loop transfers functions.

Filters design

Filters are designed in order to maximize the gain and, at the same time, guarantee
the stability of the feedback loop. It is important to stress that only a fraction of the
error signal spectrum (below 20 Hz) accounts for a real motion of the mirrors and it
is otherwise dominated by noise. Filters should also prevent to feed back such noise
to the mirror avoiding actuators saturation.
We designed our filters starting from the suspension mechanical transfer functions.
Among the four suspended mirror for which we implemented local controls only those
of the filter cavity have been equipped with an optical lever with a lens to decoupled
tilt and shift. Those of the injection system have a simpler system which allows to
control only the pitch and the yaw.
Our goal is to damp resonances of the pendulum and control its orientation. For
this purpose, we put a simple pole (integrator) at low frequency (0.1Hz), a complex
zero with a Q of at the first resonance frequency of each degree of freedom, and a
complex pole at 15 Hz (20 Hz for pitch). The gain has been adjusted in order to
have the unity gain frequency (UGF) just above the first resonance (around 3-4 Hz).
At that frequency, the open loop transfer function has a sloop of 1/f and the phase is
above 180◦ (as required for the stability). The measured open loop transfer function
for the three degrees of freedom are shown in Fig. 9.21. We see that for pitch, due
to the presence of a second resonance, the unity gain is crossed again at about 9 Hz.
The open loop transfer functions for the three degrees of freedom are shown in Fig.
9.21.
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Figure 9.21: Open loop transfer function for the three degrees of freedom.

9.7 Local controls performance

The integrator in the control loop of pitch and yaw allows to keep the mirror in a
certain position by adding an offset to the loop. Alternatively to obtain the same
result it is possible to apply an out-of-loop DC signal to the coils and use a filter
without integrator only to damp double pendulum resonances below 10 Hz. The
choice of one system with respect to the other depends on if the suspension is more or
less stable than the sensor. We implemented both type of controls and by comparing
the performances we decided to use the first one. With these controls we managed
to keep the cavity aligned and locked for a maximum of ∼1 hour.
In Fig. 9.22, the comparison between open loop and closed loop spectra for the three
degrees of freedom are shown. Generally, the open loop RMS angular motion when
the mirrors are not excited is about few µrad which close to the value needed for
a stable lock of the cavity. Such threshold is found from Eq. 6.28, imposing that
the total angular motion θRMS is much lower than the beam divergence θ0 = λ

πw0
∼

60µrad. The control loop reduces the RMS motion below 1µrad. Anyway at some
point an excess of motion in the suspended telescope mirrors was observed. RMS
for the pitch angular motion reaches about 10µrad and it was due to a resonance at
about 7.5 Hz probably excited by the intermediate mass touching damping magnets.
A the same time, we observed a remarkable vertical jitter of the beam at 300 m (∼3-4
mm). By taking a spectrum of the vertical motion after propagating the beam for
300 m we could identify the peak at 7.5 Hz as the cause of the jitter. We decided
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to change the filter shape in order to increase the correction in the resonance region.
To do that we moved the complex zero and pole at 3 Hz and 50 Hz respectively.
This operation was successful in reducing the pitch RMS angular motion below 2 Hz
RMS, decreasing the beam jitter accordingly.
Even if the performances of local controls were sufficiently good to allow the lock
of the cavity, the labVIEW digital control system, which is more than 10 years
old, is sometimes affected by spikes which prevent to keep a good alignment. The
installation of a new, more reliable control system is planned for the next future.
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Figure 9.22: Comparison between open loop and closed loop spectra for the three
degrees of freedom.
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9.8 Mirrors preparation and installation

Choice of the mirrors

As anticipated in Sec. 8.2.1, four mirrors have been purchased, polished and coated
for the filter cavity. The choice of which of them to install has been done performing
FFT simulations of the cavity using measured mirror maps. The RTL for the four
combinations are plotted in Fig. 9.23 as a function of the deviation from the nominal
RoCs. They all show a RTL bottom level of about 40 ppm which is compliant with
our requirement. We choose the combination for which the peaks in the losses due
to higher order mode resonances were more distant from the nominal RoC value. It
corresponds to input number 4 and output number 1 (orange line in the plot). Table
8.5 in Sec. 8.2.1 reports the flatness measured at LMA in Lyon, where the mirrors
have also been coated.

Measurement of the wedge

In order to separate the two reflected beams, filter cavity mirrors have a wedge of
400 µrad. Since the wedge was not marked on the edge of the mirrors, as it happens
usually, we had to measured it by using an autocollimator. This tool works by
projecting an image (a cross) onto the mirror and measuring the deflection of the
reflected image against a screen with a grid. If the mirror has a wedge, the reflection
of the first and second surface are not superposed, resulting in two crosses on the
screen. The line joining the crosses’ center indicates the wedge direction (i.e the
diameter with the maximum slope).

Magnets and standoff glueing

Once individuated the wedge, we glued the magnets and stand-offs in order to have
it on the horizontal plane by using Master Bond EP30-2 epoxy [147] and a custom
glueing jig developed expressly for TAMA mirrors. For each mirror we use four
cylindrical magnets with diameter 2 mm and hight 5 mm. In Fig. 9.24 are shown
some details of the glueing process.

Mirrors installation

Local controls have been developed and tested on dummy mirrors already installed
in the suspensions. Once the final mirrors have been coated and characterized, we
have suspended them in place of the dummy ones. This activity required quite a
lot of time and attention as the suspension wires are tiny (between 50 and 100 µm)
and easy to break. The mirror replacing procedure consists at first in blocking the
mirror and the intermediate mass by using the earthquake stops and a support plate,
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respectively. After that we lower suspension points of the top wires which hold the
intermediate mass. Once it is done it is possible to lower the intermediate mass and
loosen the wires which suspend the mirror. At this point the dummy mirror can be
removed and the good one can be installed. Finally the suspension points and the
intermediate mass are raised to their original position and the earthquake stops are
unscrew so that the mirror is actually suspended.

Vacuum restoration

The cavity has to operated in vacuum in order to be stably locked. TAMA has
a vacuum system [148] equipped with different gate valves that allow to separate
vacuum chambers and the ducts. During the installation of the suspensions the gate
valves were closed in order to preserve the vacuum still present in the ducts since
TAMA was operational. Such gates have small (∼ 10 cm) windows in their middle,
which let the beam pass through and allowed us to perform a pre-alignment of the
cavity. However we found out that this windows were causing major aberrations on
the beam, which was strongly astigmatic after propagating for 300 m. Since it was
not straightforward to identify the windows as the cause of such astigmatism, we
spent a lot of time trying to improve the beam shape by tuning lensing configuration
on the optical table without success. After installing the mirrors, the vacuum pumps
has been started in order to evacuate the vacuum chambers and improve the vacuum
in the duct. The final level vacuum we reached was about 8 · 10−8mbar.

Figure 9.23: Round trip losses for different combination of filter cavity mirrors as a
function of the deviation from the measured RoC.
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Figure 9.24: From top right clockwise: autocollimator used to find the wedge direc-
tion, top view of the glueing jig, glued magnet and stand-offs, test of magnet glueing
on a dummy mirror

9.9 Cavity alignment

The cavity has been aligned in order to make both the green and the infrared beam
flashing at the same time. A pre-alignment has been done before closing the vacuum
chambers by moving the suspension with picomotors to center two movable targets
placed inside the pipe at 10 m and 290 m. In the standard alignment procedure we
use local controls to move the mirrors. In order to align the green beam, we start by
completely misaligning the input mirror and we move the suspended mirrors of the
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injection system (the concave telescope mirror and the last folding mirror, see Fig.
9.4) in order to center the beam on the end mirror. We put a camera on an external
bench after the end mirror and use it as reference. Then we align the input mirror
in order to have the beam reflected by the cavity superposed to the injected one. At
that point we are able to see flashes on the camera in transmission and we tweak
the position of both input and and end cavity mirrors to get rid of higher order HG
modes as much as possible. After that, we superpose the infrared beam on the green
one by moving the two steering mirrors on the IR path on the squeezing optical
table and a dichroic mirror inside the first vacuum chamber where green beam and
infrared beam get superposed (See Fig. 9.4).
In Fig. 9.25 (top line) some flashes of the green beam recorded by the camera in
transmission are showed. When we cut the green beam, infrared flashes becomes
visible on the camera7 (bottom line of Fig. 9.25 ). Flashes have been recorded when
the cavity was not optimally aligned, anyway the TEM00 is resonating from time to
time for both beams. It is shown in the first column Fig. 9.25.
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Figure 9.25: Flashes recorded by a camera in transmission, for the green beam (top
line) and infrared beam (bottom line). The TEM00 of both beams is shown in the
first column.

9.10 Lock and optical characterization

The filter cavity is kept resonant by locking the laser frequency on the cavity length
using a standard Pound-Drever-Hall scheme in reflection [149]. The laser frequency is
phase-modulated using an EOM driven with a RF signal at 78 MHz. This produces
a pair of sidebands at a distance from the carrier given by the modulation frequency,
which are not resonant in the cavity. The reflected beat pattern of the carrier and

7The dichroic coating of cavity mirrors is such that on resonance the transmitted green light is
much powerful than the infrared one.
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the sidebands depends on the phase of the carrier and contains the information of
its deviation from the resonance. In order to provide a suitable correction signal,
the error signal is demodulated by mixing this signal with a local oscillator at the
modulation frequency and extracting the DC part with a low-pass filter. The error
signal is then filtered by an analog servo, which produces a correction sent to the
laser. The low frequency part of the signal (up to 72 mHz) is sent to the laser thermal
controller acting on the temperature of the laser crystal, higher frequency correction
are sent to the piezo actuator which modifies the laser cavity length.
The main preliminary activity in order to achieve the lock has been the preparation
of the analog servo which is described in the following.

9.10.1 Servo preparation

The open loop transfer function GOL of the lock feedback loop, shown in Fig. 9.26,
is the product of different transfer functions:

GOL

[
V

V

]
= Gopt

[
W

Hz

]
·GPD

[
V

W

]
·GMIX

[
V

V

]
·Gservo

[
V

V

]
·Gpiezo

[
Hz

V

]
·GSHG

[
Hz

Hz

]
Gopt is the optical transfer function which transduces a detuning between the cavity
length and laser frequency into an optical signal. It has a frequency dependence
determined by the cavity pole. GPD and GMIX are the gain of the photodiode and
mixer used in the demodulation chain, which can be considered flat in the region
of interest. Gpiezo is the piezo transfer function which has pole about 100 kHz.
GSHG accounts for the doubling of the frequency operated by the second harmonic
generator. The analog circuit providing Gservo was originally used at APC to lock
the frequency of a NG:YAG laser (same model of that used in our experiment) to
a 30 cm mode cleaner cavity with F = 100 [150]. Some modifications were needed
to adapt it to our purposes: we need to compensate the pole of the filter cavity
at 1.45 kHz to preserve the stability of the feedback and to modify the electronic
gain to accounts for different value of the optical gain and photodiode gain. The
computations done in order to estimate these values are reported in Sec. E. In Tab.
9.2 are reported some relevant parameters for the green light. The servo allows to
switch between two different filters, resulting in different GOL frequency dependence.
Servo gain has been set in order to have a tunable unity gain frequency with a mean
value about 8 kHz for the ”1/f4 filter" and 14 kHz for the ”1/f filter" while the
phase margins are about 45◦ and 52◦ respectively. The amplitude and phase of the
two open loop transfer functions are plotted in Fig. 9.26. The modification to the
servo has been done at APC and before to ship it to NAOJ we have test it. We
have used a Stanford Research to simulate the effect of the cavity pole and we have
measured the open loop transfer function verifing that it has the expected UGF and
phase margin.
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Parameter Symbol Value
Length L 300 m
Free spectral range FSR 500 kHz
Input mirror transmission t21 0.7%
End mirror transmission t22 2.9%
Finesse F 172
Linewidth (FSR/Finesse) dv 2.9 kHz
Cavity pole 1.45 kHz
modulation depth m 0.1 rad
Modulation frequency Ω 2π · 78 Hz
Input Power P0 0.25 mW

Table 9.2: Filter cavity parameters for green light.

"1/f filter" "1/f4 filter"

DC < f < 145Hz GOL ∝ 1/f2 GOL ∝ 1/f5

145 Hz < f < 1.54kHz GOL ∝ 1/f GOL ∝ 1/f4

1.54kHz < f < 30kHz GOL ∝ 1/f GOL ∝ 1/f

9.10.2 Lock characterization

The servo has different points where it is possible read signals and to inject noise
in order to monitor the lock and measure transfer functions. In Sec.E a detailed
description of these injection/reading points is given together with the combinations
needed to measure the different transfer functions.
In the following some characterization measurements performed on the lock are re-
ported.

Error signal calibration

The PDH filter cavity signal has been calibrated injecting a line at 28 kHz (well above
the UGF which is at 10 kHz) on an injection point summed to the piezo correction
signal. The amplitude of the 28 kHz line in Hz is obtained using the formula:

SHz = VRMS(V ) ·
√

2 · 100 · 2 · 106Hz/V = 353Hz (9.16)

where VRMS = 1.25·10−6 has been measured with a spectrum analyzer. The factor
√

2

is needed to pass from VRMS to the line amplitude. The factor 100 accounts for the
attenuation of the monitoring channel "PZTmon" and 2 · 106 Hz/V is the piezo gain
after the SHG.
Measuring the line at 28 kHz in the error signal and compensating for the cavity
frequency pole it is possible to find the calibration factor K in V/Hz. The formula
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Figure 9.26: Simulated open loop transfer functions of the feedback loop for the filter
cavity control.

used is :
SV =

K(V/Hz)

15.9
· SHz√

1 + f2
0

(9.17)

where the factor 15.9 accounts for the gain of the error signal monitor channel and
f0 = 1.45 kHz. Having measured SV =

√
2 · 38.9 · 10−3V we found

K = 1.8 · 10−4

[
V

Hz

]
(9.18)

which seems to be in agreement with the calibration obtained looking the PDH
signal when the cavity is freely swinging. In that case we measure a peak-to-peak
value of ∼ 4 V for a cavity line of 2.9 kHz, which corresponds to a K = 1.7·10−4

V/Hz . Note that when the cavity is freely swinging ringing effects can perturb this
measurement. We have also checked that reducing the frequency of the line sent to
the piezo (with the same amplitude) to 14 kHz, the amplitude of the line of the error
signal is multiplied by 2, as expected because of the cavity pole. Then we tried to
increase the amplitude of the line at first by a factor 10, thus having a line with
amplitude of 3 kHz (comparable with cavity linewidth). The cavity stays locked and
the calibration factor measured is the same measured before. Increasing further the
amplitude to ∼7 kHz (more than twice the cavity linewidth) makes the lock less
stable.

Correction signal spectrum: free running laser noise estimation

The spectrum of the PZT correction signal sent to the laser when the cavity is locked
is plotted in Fig 9.27 between 1 and 200 Hz. Since in this region the gain of the loop
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is very high, the signal is proportional to the laser frequency noise. The spectrum
above 5 Hz is well fitted by the curve

Slaser '
7.5 · 103

f

[
Hz√
Hz

]
(9.19)

which is compatible with the expected free running laser noise. For f < 5 Hz the
spectrum is likely to be limited by mirror control noise and seismic noise. Another
measurement taken at higher frequency that above 4 kHz the spectrum is limited by
a flat noise, which is compatible with the noise of the 100 kΩ resistor at the output
of the PZT monitoring signal.

Figure 9.27: PZT correction signal spectrum from which the free running laser noise
has been estimated (dotted orange line).

Error signal RMS: measurement of the lock accuracy

PDH error signal accounts for the laser frequency deviation from the resonance and
its RMS estimates the accuracy of the lock. The time series of the calibrated error
signal is shown in Fig. 9.28, together with the relative histogram. The RMS is
∼ 100Hz. Fig. 9.29 shows a plot of the error signal spectrum and its RMS which is
consistent with that computed using data in time.

Open loop transfer function

We measured the open loop transfer function by injecting noise (swept sine with
amplitude 50 mV) on "perturb" channel which is summed to the error signal. (See
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Figure 9.28: Calibrated error signal in time together with the relative histogram.
The residual RMS is about 100 Hz.

Figure 9.29: Error signal spectrum and the relative RMS.
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Figure 9.30: Measurement of the open loop lock transfer function (blue line) which
has been fitted (orange line) with the poles and zeros reported in Tab. 9.10.2

Sec. E) The UGF is at ∼10 Hz as expected and the phase margin is 42◦ degree. The
transfer function, shown in Fig. 9.30 has been fitted by the following set of poles
and zeroes.

zeros Q quantity origin
145 Hz simple 1 servo
1.54 kHz simple 4 servo
poles Q quantity origin

0.0001 Hz simple 5 servo
1.45 kHz simple 1 cavity
27 kHz simple 1 piezo
36.2 kHz simple 1 cavity
145 kHz simple 1 servo
154 kHz simple 1 servo
118 kHz 0.79 1 servo

Cavity transmitted power

The power exiting the SHG is supposed to be stabilized by using a Mach-Zehnder
interferometer. Since it has not been installed yet, cavity input power suffers from
large power fluctuation. Plot in Fig. 9.31 compares the transmitted power and the
input power measured at the reflection of a temporary beam splitter which is installed
at the place of Mach-Zehnder interferometer. As expected, the two fluctuations are
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correlated.

Figure 9.31: Top plot: power fluctuations of the input and transmitted beam. Bot-
tom plot: coherence between the two measurements.

9.10.3 Conclusion and future plans

The results of the presented work on the integration and commissioning of the filter
cavity can be summarized as follows:

• Cavity mirrors have been suspended and controlled.

• Injection optics have been installed and the injection mode-matching telescope
have been tuned.

• The SHG is working and a part of the green light produced have been used for
the cavity control.

• The cavity has been stably locked on the laser frequency with green light.

• The infrared beam used to characterize the cavity has been superposed to the
green beam.

• AOM used for shifting the relative frequency of green and infrared beam has
been installed. 8

The lock accuracy achievable with the actual compensation filter is about 100 Hz.
Since it is larger then cavity linewidth of the IR beam (∼ 100 Hz), we have planned
to modify the filter shape, increasing the gain at high frequency where most of the
RMS is accumulated. The possibility to use an EOM to increase the loop bandwidth
is being studied. The goal will be to increase the lock accuracy below 1Hz RMS in
order to make negligible its effect on the squeezing degradation induced by frequency
dependent phase noise (described in Sec. 8.3). The next step for what concern the
filter cavity will be to tune the AOM frequency shift to make also the IR beam
resonate. In this condition we will be able to characterize the cavity and measure

8In the final configuration the squeezed IR beam should be detuned at half of its bandwidth, to
obtain the proper frequency dependance.
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its round trip losses. For what concern the assembly of the squeezed vacuum source
the main milestones will be the realization of the OPO cavity for the squeezing
production and the of homodyne detection to measure it. Finally we will inject
squeezed vacuum into the filter cavity to impress a frequency dependance on the
angle of the squeezing ellipse.
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Conclusions - Part III

This last part of the thesis was described the design and realization of a 300 m
filter cavity for the production of frequency dependent squeezing. The goal of this
experiment is to demonstrate for the first time the effectiveness of such a device in
producing squeezed vacuum state with rotation angle ∼ 70 Hz, to reduce quantum
noise in the whole detector bandwidth. We studied the optical design of the cavity
and its integration in the TAMA infrastructure. In the following we summarized our
main results obtained:

• We studied the effect of optical losses by performing simulations with real
mirror maps and in parallel we produced a squeezing degradation budget taking
into account all the mechanisms responsible for reducing the squeezing level.
From the results of these two studies we set the round trip losses threshold
to 80 ppm (corresponding to Virgo quality mirrors). We found that in this
condition (starting from 9 dB of squeezing) the available squeezing is limited
to 4 dB by realistic mismatching losses (7%) below 100 Hz and to 6 dB by
realistic input output losses (5% each) above 100 Hz. This results together
with the expected improvement in KAGRA sensitivity have been published in
[151].

• We also studied the degradation induced by losses inside the ITF. We have
found out that their contribution (mainly due to signal recycling cavity losses)
is below 1.5 dB for the expected losses values (arm RTL of 100 ppm and signal
recycling of 2000 ppm) and it doesn’t compromise the results obtained for the
squeezing degradation budget, where they have not been considered.

• We discussed the opportunity to use long (100 m scale) filter cavities for pro-
ducing frequency dependent squeezing demonstrating that their use, combined
with the best mirrors available at present, brings to a negligible squeezing
degradation by cavity round trip losses.
We have also compared the performances of long filter cavities with that of
the recently proposed EPR-entanglement technique observing that major ad-
vantages can be obtain from the latter only reducing input and output losses
below 5%
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• In the last chapter we have described the experimental work performed both on
the realization of the frequency independent vacuum squeezed source and on
the filter cavity integration. A second harmonic generator has been assembled
and the 300 m filter cavity has been locked by using green light. The completion
of squeezed vacuum source as well as some improvements on the lock accuracy
and cavity characterization are planned for the next future. Once this will be
achieved, the two components will be combined to obtain frequency dependent
squeezed vacuum.
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CHAPTER 10

Conclusions and perspectives

Second generation gravitational waves detectors have ushered in gravitational-wave
astronomy. The first and successive detections of binary black hole mergers and the
first detection of a binary neutron star merger have already produced dramatic re-
sults for astrophysics and cosmology.
The role of Advanced Virgo, as a part of this network, has already proven to be
crucial for contributing to the sky-localization and it is expected to contribute to
parameter estimation of the sources. With these strong motivations, a huge effort
has been done to speed-up Advanced Virgo commissioning and join Advanced LIGO
during O2, participating to the first detection of a BBH merger by three detector
and to the first detection of a binary neutron star merger.
My contribution to this commissioning activity has been twofold. First I have real-
ized (and automated) a complete noise budget for the pre-stabilized laser frequency
noise. This activity contributed to the reduction of the frequency noise below the
requirement necessary for a stable lock of the arm cavities.
Second, I have performed the optical characterization of the arm cavities in order to
verify that optical parameters corresponds to the ones expected. A special attention
has been payed to the measurement of round trip losses, which have been found to
be the lower ever measured with this mirror size (among 65-75 ppm) although twice
higher than what we expected from simulation.
The effort to improve second generation detector sensitivity is motivated by strong
scientific interests in having more numerous and louder GW detections. This, in the
case of BBH or BNS mergers, would allow a more precise estimation of the source
parameters, investigation of the neutron star state equation, test GR and alternatives
theories, increase precision on Hubble constant estimation and also the measurement
of the astrophysical stochastic background.
The third part of this work is dedicated to test the production of frequency dependent
squeezed vacuum as a strategy to mitigate quantum noise. In order to do that we
have been implementing a frequency independent vacuum source and a 300 m filter
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CHAPTER 10. CONCLUSIONS AND PERSPECTIVES

cavity designed to impress a frequency dependence with a rotation of the squeezed
angle of ∼ 70 Hz. This is the frequency required to reduce quantum noise in the
whole detector bandwidth and it have never been achieved before. We presented a
design for the cavity. In particular we have performed FFT simulations to estimate
round trip losses due to mirrors defect. These results combined with a squeezing
degradation budget allowed to set a requirement for the round trip losses and con-
sequently for the mirror quality. Thanks to this study we could demonstrate that
using a long filter cavities, with best mirrors available, the contribution of round
trip losses on the total squeezing degradation becomes negligible and the limiting
loss sources are the mismatching and the losses in the input and output path. The
necessity of a very low loss cavity was one of the motivations to accurately measure
the round trip losses of Advanced Virgo arm cavities.
During this thesis I have contributed to the implementation and commissioning of a
filter cavity prototype at TAMA. The experience acquired with this prototype will
be valuable for the implementation of 100 m scale filter cavities already planned in
second generation interferometers upgrades.
The injection of frequency dependent squeezed vacuum from ITF dark port is the
most promising technique for reducing quantum noise so far. An alternative way
to do that, which exploits the EPR entanglement, has been recently proposed. It
has the remarkable advantage to use the ITF itself as a filter cavity, avoiding the
use of an additional cavity. Also in this case the factor limiting its effectiveness is
represented by losses, mostly by the input-output ones. Whatever the configuration
chosen for frequency dependent squeezing implementation, the reduction of losses
in the squeezing path (mainly by improving the matching and developing low loss
optical components for the input/output path) will be a priority in order to take full
advantage of such techniques.
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APPENDIX A

Electromagnetic field in Fabry-Perot cavities

Laser beams differ from plane waves since they are confined in a spatial region
around the propagation axis and they have slightly curved phase front. We start
from a monochromatic beam which is a solution of the Helmholtz equation

(
∇2 + k2

)
E(x, y, z) = 0 (A.1)

with k = ω/c. and we look for solutions of the form

E(x, y, z) = φ(x, y, z)e−ikz (A.2)

It represents a wave propagating in the z direction, with φ(x, y, z) accounting for the
changing intensity distribution in the transversal plane. The fact that the change
in the beam profile varies very slowly with z allows us to neglect its second order
derivatives ∂2φ/∂z2. Therefore by inserting Eq. A.2 in Eq. A.1 we obtain(

∂2

∂x2
+

∂2

∂y2
− 2ik

∂

∂z

)
φ(x, y, z) = 0 (A.3)

which is known as paraxial wave equation.
The simplest solution with cylindrical symmetry is referred to as Gaussian funda-
mental mode and reads

E(r, z) = E0
w0

w(z)
exp

(
iη(z)− ikr2

2R(z)
− r2

w2(z)
− ikz

)
(A.4)

In the following some relevant quantities are defined:

• Beam radius w- radius where the beam equals a fraction 1/e ' 0.368 of the
amplitude on the axis.

• Radius of curvature R - radius of curvature of the wavefront.

• Beam waist w0 - minimum radius of the beam.
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• Rayleigh range - defined as

zR =
πw0

λ
(A.5)

is the distance along the propagation direction of a beam from the waist to
the place where the radius has increased of a factor

√
2. It distinguish the

near field region (z << zR), where the wavefront is almost flat and the radius
almost constant from the far field region (z > zR), where the radius increases
linearly and the wavefront curvature is equal to the distance from the waist.
The evolution of the beam radius and radius of curvature can be written as:

w(z) = w0

√
1 + (z/zR)2 (A.6)

R(z) = z(1 + (z/zR)2) (A.7)

• Far field divergence - defined as

θ0 =
λ

πw0
(A.8)

from which is evident that the smaller the waist, the bigger the divergence
experienced by the beam.

• Gouy phase η - defined as

η(z) = arctan
z

zR
(A.9)

it is an additional phase shift acquired by gaussian beams with respect to plane
waves with the same frequency. As we will see in the following, this phase is
particularly interesting when we are dealing with Higher Order Modes.

• Complex Gaussian parameter - (or complex radius of curvature), de-
fined as

1

q(z)
=

1

R(z)
− i

zR
(A.10)

encodes the beam information and it will proven to be useful to compute its
propagation through optical systems. Its free evolution is described by the
equation:

q(z) = izR + z (A.11)

More general solutions of the paraxial wave equation can be found both in cartesian
or cylindrical coordinates. In the first case we have higher-order Hermite-Gaussian
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(HG) modes, defined as

E(x, y, z)m,n = E0
w0

w(z)
Hm

(√
2x

w(z)

)
Hn

(√
2y

w(z)

)
· (A.12)

exp

(
iη(z)(m+ n+ 1)− ikr2

2q(z)
− ikz

)
(A.13)

Where Hm are the Hermite polynomials. The horizontal index m and the vertical
index n identifies each HG mode and determine its intensity distribution on the
transversal plane. Also the Gouy phase depends of the mode order. The transverse
power profiles of the first modes is shown in Fig. A.2. Solutions in cylindrical
coordinates are known as Laguerre-Gauss (LG) modes and are defined by:

E(x, y, z)m,n = E0
w0

w(z)

(√
2r

w(z)

)|l|
L|(|l)p

(
2r2

w2(z)

)
· (A.14)

exp

(
iη(z)(2p+ l + 1)− ikr2

2q(z)
+ ilφ− ikz

)
(A.15)

Where Lm are the generalized Laguerre polynomials. The radial index p and the
azimuthal index l identifies each LG mode. Also in this case the Gouy phase depends
on the mode order.
It is easy to verify that the fundamental modes is recovered when m = n = 0 for HG
modes and p = l = 0 for LG modes.

Beam propagation and cavity modes

We have seen that the complex parameter q defined in Eq. A.10 contains all the
information about the beam. In order to propagate it through an optical system,
it is possible to associate a 2 x 2 matrix, called ray transfer matrix, to any optical
component and use it to compute the relation between q parameters of the beam at

the input and at the output of each of them. If M =

[
A B

C D

]
is the ray transferred

matrix of an optical system (usually also referred to as ABCD matrix). The relation
has the form

qout =
Aqin +B

Cqin +D
(A.16)

For what concern a Fabry-Perot cavity, the most relevant are the ones describing the
free propagation over a distance d and that describing the reflection from a mirror
with RoC R. They write respectively

Mp =

[
1 d

0 1

]
Mm =

[
1 0

− 2
R 1

]
(A.17)
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The ABCD matrix associated with a round trip in a Fabry-Perot cavity is then
MRT = Mm(R2)Mp(d)Mm(R1)Mp(d).
Eigenmodes of the cavity are self-consistent field configurations which reproduce
themselves after one round trip. The associated q parameter is solution of the equa-
tion

q =
MRT

11 qin +MRT
12

MRT
21 qin +MRT

22

(A.18)

If equation is solvable the cavity is said to be stable and it verifies the stability
condition:

0 <

(
1− d

R1

)(
1− d

R2

)
< 1 (A.19)

From q we can compute the value of the waist w0 and its distances d1 and d2 from the
mirrors (see Fig. A.1) which determine univocally a basis of HG or LG modes match-
ing the cavity geometry. The waist parameters are related to the cavity parameters
by the following relations:

w0 =

(
λ

π

)2 d(R1 − d)(R2 − d)(R1 +R2 − d)

(R1 +R2 − 2d)2
(A.20)

d1 =
d(R2 − d)

R1 +R2 − 2d
(A.21)

d2 =
d(R1 − d)

R1 +R2 − 2d
(A.22)

We also remark that self-consistency condition implies that wavefront radius of cur-
vature of the beam at the mirrors equals the RoC of mirrors itself.

Figure A.1: Matched Gaussian beam profile.

Since the Gouy phase varies with the mode order, different HOMs accumulate
different phase shifts during a cavity round trip thus they have different resonance
frequencies. The resonance condition reads

νχ =
FSR

π
arccos

(
1− d

R1

)(
1− d

R2

)
(χ+ 1) (A.23)

Where χ = m+ n for HG modes and 2p+ l for LG modes.
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Figure A.2: Transversal power pattern of Hermite-Gauss modes for m = 0, 1, 2 and
n = 0, 1, 2.
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APPENDIX B

Round trip losses from reflectivity

Here we present the derivation of the formula used for computing round trip losses
from the cavity reflectivity.
The normalized power (assuming Pin) reflected by a cavity at the resonance reads:

Pres =

[
r1 − r2

1− r1r2

]2

In our case the end mirror is almost completely reflecting. We can consider the losses
as an increased end mirror transmissivity and we have

r2 =
√

1− T2 − L '=
√

1− T2

So the cavity reflectivity becomes

Pres =

[
r1 −

√
1− L

1− r1

√
1− L

]2

=
r2

1 − 2r1

√
1− L+ 1− L

1− 2r1

√
1− L+ r2

1(1− L)

∼ r2
1 − r1(2− L) + 1− L

1− r1(2− L) + r2
1(1− L)

=
(1− r1)2 − (1− r1)L

(1− r1)2 + (1− r1)r1L

=
(1− r1)− L

(1− r1) + r1L

where from second to third line we used
√

1− L = 1− L/2.

Therefore
Pres(1− r1 + r1L) = 1− r1 − L,
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which means
L = (1− r1)

1− Pres

1 + Presr1
.

With the approximation

r1 =
√

1− T1 ∼ 1− T1

2

we get

L =
T1

2

1− Pres

1 + Pres − T1
2 Pres

' T1

2

1− Pres

1 + Pres
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APPENDIX C

Injection telescope design

We have computed the beam parameters at each point of the injection optical path
by using ABCD matrices. Since the beam parameters on the input mirror are deter-
mined by the cavity geometry we have done the computation backwards to find the
beam parameters needed at the input of the Faraday isolator. The results (assum-
ing a normal incidence for the beam on the mirror) are reported in Tab. C.1, such
parameters for the main beam on the various optics of the system are shown.

C.1 Beam astigmatism

In order to quantify the astigmatism induced on the beam from the non-normal
incidence, the beam has also been propagated separately on the x and on y plane.
The ABCD matrix describing the reflection from a mirror with radius of curvature
R for a beam with incidence angle θ on the x and on y plane is respectively

Mx =

(
1 0
−2

R cos θ 1

)
(C.1)

x x′ R w wo Z
[mm] [mrad] [m] [mm] [mm] [mm]

IM 0.0 0.1800 286.2069 10.2850 6.9485 155.5722
FM 0.3816 0.1800 286.5707 10.3614 6.9485 157.6922

M2(in) 0.86544 0.1800 287.0986 10.4590 6.9485 160.3802
M2(out) 0.86544 -0.10848 -3.0317 10.4590 0.0982 -3.0314
M1(in) 0.56893 -0.10848 -0.3008 1.0331 0.0982 -0.2981

M1(out) 0.56893 1.7879 113.0578 1.0331 1.0327 0.0878
IF 5.3749 1.7879 6.3475 1.3766 1.0327 2.7758

Table C.1: Propagation for the main beam through the telescope without taking into
account non-normal incidence on the mirrors.
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My =

(
1 0
−2

R/ cos θ 1

)
(C.2)

The results of the propagation for the main beam are shown in Tab. C.2

Rx Ry wx wy wox woy Zx Zy
[m] [m] [mm] [mm] [mm] [mm] [mm] [mm]

IM 268.2069 268.2069 10.2850 10.2850 6.9485 6.9485 155.5722 155.5722
FM 286.5707 286.5707 10.3614 10.3614 6.9485 6.9485 157.6922 157.6922

M2(in) 287.0986 287.0986 10.4590 10.4590 6.9485 6.9485 160.3802 160.3802
M2(out) -3.0296 -3.0338 10.4590 10.4590 0.0981 0.0982 -3.0293 -3.0335
M1(in) -0.2987 -0.3029 1.0266 1.0396 0.0981 0.0982 -0.2960 -0.3002

M1(out) 60.3079 33.6877 1.0266 1.0396 1.0252 1.0350 -0.1601 0.2996
IF 6.3382 6.3362 1.3223 1.4237 1.0252 1.0350 2.5279 2.9876

Table C.2: Propagation for the main beam through the telescope taking into account
non-normal incidence on the mirrors.

Overlap integral

The losses due to the astigmatism can be quantified calculating the overlap integral
between the astigmatic beam and the closest TEM00. A generic astigmatic beam at
a distance z from the waist can always be written as:

Ea(z) = Na exp

[
iηa(z)− ik

(
x2

2qx(z)
+

y2

2qy(z)

)]
(C.3)

where ηa is the Gouy phase and the normalization factor is

Na =

√
k
√
zRxzRy

πqx(z)qy(z)
(C.4)

with
qx,y(z) = z − izRx,y (C.5)

where

zRx,y =
πω2

0x,y

λ
(C.6)

The non-astigmatic fundamental mode Eb is recovered assuming qx = qy = q. The
overlap integral is defined as

O =

∫∫
E∗aEbdxdy (C.7)

and its square modulus is

|O|2 =

(
zR
|q(z)|2

√
zRxzRy

|q(z)xq(z)y|

)2 ∣∣∣∣ 1

( 1
2qx(z) −

1
2q )( 1

2qy(z) −
1
2q )

∣∣∣∣2 (C.8)
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This is a complex function with real values which can be maximize to find the best
possible coupling. For our system we find a coupling of 99.73%. The parameters of
the fundamental mode which maximize the coupling correspond to the mean value
between x and y of the waist position and radius of curvature.

C.2 Spherical aberrations

The beam phase change due to a reflection by a spherical mirror is 4πz(x, y)/λ

where z is the mirror surface equation z(x, y) = R −
√
R2 − (x2 + y2) which after

an expansion to the second order becomes [152]:

z(x, y) =
x2 + y2

2R

(
1 +

x2 + y2

4R

)
(C.9)

The first fraction represents the usual paraboloidal approximation for the phase
change while the second fraction is the correction due to the actual spherical shape
of the mirror. Such a correction is negligible if ω2/R2 << 1 where ω is the typical
size of the beam on the mirror. This is the case for all the mirrors in the injection
path, thus we can neglect the effect of spherical aberrations.

C.3 Losses due to mirror defects

Defects of the mirror make not all the incident light be reflected on the fundamental
mode. This light is considered lost for our scopes. An estimation of the amount
of lost light has been done in simulation by reflecting a beam from a mirror with a
realistic mirror map and computing the overlap integral between the reflected and the
transmitted beam. Because of the small radius of curvature of the mirrors composing
the telescope, specification on the mirror flatness can not be too good. A peak-valley
value of λ

10 is assumed, where λ = 633 nm. Mirror maps from Virgo are generally
better than that. To perform the simulation we re-scaled the maps values in order
to have a PV value of λ

10 on a diameter of 4 cm. The beam dimension assumed in
the calculation is 0.01 m. The result for different maps are shown in Tab. C.3 where
we also reported the RMS obtained after the rescaling. The same has been done for
a pick-valley value of λ

20 = 31.65 nm. The relative results are shown in Tab. C.4.

mirror pv_initial [nm] rms [nm] rms_res [nm] coupling
VEM01 8.26 1.28 9.80 0.9906
VEM04 7.34 1.06 9.13 0.9899
ADV1 6.90 0.26 2.37 0.9983
VEM09 6.97 1.11 10.18 0.9929
VEM10 6.27 0.74 7.47 0.9922

Table C.3: Losses due to reflection of a telescope mirror assuming a peak-to-valley
value of λ

10 = 63.3 nm.
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mirror pv_initial [nm] rms [nm] rms_res [nm] coupling
VEM01 8.26 1.28 4.90 0.9977
VEM04 7.34 1.06 4.57 0.995
ADV1 6.90 0.26 1.18 0.9996
VEM09 6.97 1.11 5.05 0.9982
VEM10 6.27 0.74 3.73 0.9980

Table C.4: Losses due to reflection of a telescope mirror assuming a peak-to-valley
value of λ

20 = 31.65 nm.
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APPENDIX D

Local control: transfer functions computation

The digital control system is programmed in labVIEW. Programs developed for the
control, named VIs (virtual instruments), are all part of a single project. Some of
them run on remote realtime targets and others on a supervisor PC. VIs running on
the remote target use a timed loop structure that runs synchronously with a clock.
The loop rate is set to 1 kHz. The ADC and DAC are read and written at the
beginning and end of the loop, respectively. The delay caused by the digital system
has been measured looking at the phase of the transfer function between the input
and the output of the system and it is shown in Fig. D.1. Digital filter coefficients

Figure D.1: Delay of the digital system

are calculated on the supervisor PC and saved in global variable which is passed to
the realtime target. The main VIs of the project are:

• IM_control.vi: It is the core control where data coming from ADC (input
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data) are filtered and passed to DAC (output data). It has the possibility
to inject noise at different point in the data path. Injected noise, input and
output data are saved in shared variable which are recalled from other VIs to
compute spectra or transfer functions. It is also possible to add offset to the
input data and to open the loop in different points. A scheme of the data path
for each degree of freedom is show in Fig. D.2.

• spectrum.vi: It computes the spectrum of the input data between 0.08 Hz
and 500 Hz. Default data length is 12288 points.

• transfer_function.vi: It can perform transfer functions between the injected
noise and either input or output data. According to the scheme in Fig. D.2,
with a proper combination of open switches and injected noise we can measure
mechanical transfer functions of the mirrors, open loop transfer function and
close loop transfer function.

• my_filter_bank.vi: This code run on the supervisor PC. It has an interface
to set filters for each degree of freedom. it is possible to save filter parameters
in a .txt file in order to recall them. Filter values can be changed online. The
code computes filter coefficients and store them in a global variable which is
read from the control VI.

Figure D.2: Scheme of the control loop for the three degree of freedom

Transfer functions recap

From the scheme in Fig. D.2 we can find the configuration of switches and noise
and the channels to use in transfer_function.vi to measure the desired transfer
function:
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Mechanical transfer function

• Switch 1 −→ open

• Switch 2 −→ open

• Noise −→ n2

M =
IN

n2
(D.1)

Filter transfer function

• Switch 1 −→ open

• Switch 2 −→ open

• Noise −→ n1

F =
OUT

n1
(D.2)

Open loop transfer function

• Switch 1 −→ closed

• Switch 2 −→ open

• Noise −→ n2

OUT

n2
= −FM (D.3)

Closed loop transfer function

• Switch 1 −→ closed

• Switch 2 −→ closed

• Noise −→ n2

OUT = −MF(OUT + n2)

OUT(1 + MF) = −MF · n2

OUT

n2
=
−FM

1 + FM
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APPENDIX E

Filter cavity optical gain and transfer functions

The filter cavity input beam is modulated by using a resonant electro-optic phase
modulator (EOM) driven at 78MHz. Such a device is composed by a crystal, whose
change in the refraction index is linearly dependent by the presence on an electric
field (Pockel effect). The electric field, perpendicular to the direction of the laser
beam propagation, is proportional to the applied voltage V divided by the crystal
thickness d. The induced change in the reflection index is

∆n =
n3
ereo
2d

V

where ne is the unperturbed refraction index and reo is the opportune component of
the electro-optic tensor of the crystal. The phase shift generated by this change is

m =
2π

λ
l∆n =

πln3
ereo
λd

V

If we apply a sinusoidal driving voltage V sin(Ωt), the beam exiting the EOM has
the form

Ein = Eeiωt+m sinωt)

which can be expanded in terms of Bessel functions of the first kind as 1

Ein = E[J0(m)eiωt + J1(m)ei(ω+Ω)t) − J1(m)ei(ω−Ω)t]

This shows that the phase modulation has created two sidebands at a distance Ω

from the carrier, whose amplitude depends on the modulation depth. The reflectivity
of the filter cavity for the green light can be written as

1According to Jacobi-Anger expansion Eei(ωt+m sinωt) = Eeiωt ∑n=+∞
n=−∞ Jk(m)einΩt. Since the

amplitude of the Bessel function decreases with k, if m << 1 we can keep only the first term of the
expansion.
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Rcav =
−r1 + r2 exp(i ω

FSR)

1− r1r2 exp(i ω
FSR)

and the beam reflected from the cavity is

Eref = E[Rcav(ω)J0(m)eiωt+Rcav(ω+Ω)J1(m)ei(ω+Ω)t−Rcav(ω−Ω)J1(m)ei(ω−Ω)t]

from that we can compute the power impinging on the photodiode

Pref =Pc|Rcav(ω)|2 + Ps(|Rcav(ω + Ω)|2 + |Rcav(ω − Ω)|2)

+ 2
√
PcPs[<[Rphs] cos Ωt+ =[Rphs] sin Ωt]

with Pc = P0J
2
0 (m), Ps = P0J

2
1 (m) andRphs = Rcav(ω)R∗cav(ω+Ω)−R∗cav(ω)Rcav(ω−

Ω).
The reflected power is composed by a DC part and two terms oscillating at the mod-
ulation frequency, whose amplitude is proportional respectively to the imaginary and
real part of the function Rphs and thus keep the important information on the phase
of the reflected beam. These terms arise from the beating of the carriers and the
sidebands. We neglect the beating of each sidebands with the others. In order to
extract the phase information contained in the oscillating terms, the signal, recorded
by a photodiode with a bandwidth up to 100 MHz, is demodulated by mixing it with
a local oscillator at the modulation frequency, with the phase opportunely tuned
in order to select one of the two oscillating terms. If the modulation frequency is
higher then the cavity linewidth (Ω > FSR/F ), as in our case,2 near the resonance
Rcav(ω ± Ω) ' −1 thus Rphs = i2=(Rcav(ω) is purely imaginary and only the part
proportional to the sine survives. The error signal, after the demodulation, will be

Err = GPDGMIX2
√
PcPs=(Rphs) ' GPDGMIX2P0m=(Rcav(ω)]

where GPD, GMIX GLPF are respectively, the gain of the photodiode, the gain of
the mixer and the gain of the low pass filter. The last equality holds it the region
where sidebands are not resonant, as can be seen in picture E.3 and we made the
approximation

√
P0P1 ' P0m/2. As expected the error signal is linear around the

region where it crosses the zero. Once the lock is acquired, the frequency of the laser
will be controlled in order to be always about the resonance. The linear coefficient
of the error signal about the zero point, also known as optical gain, will tell us how
many Watt correspond to a shift of 1 Hz of the laser frequency from the resonance.
Around ω = 0 we have

=(Rcav) =
r2(1− r2

1)

FSR · (1− r1r2)2
· ω

2In this case the modulation frequency is higher than the FSR, in order not to have resonant
sidebands it should be Ω mod FSR > dv.
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switching to f = ω/2π the linearised error signal will be

Err = GPDGMIX 4mP0
π

FSR

r2(1− r2
1)

(1− r1r2)2︸ ︷︷ ︸
GOPT[W/Hz]

f

We remark that if r2 = r1 ' 1 the optical gain assumes the simpler form

GOPT[W/Hz] = 4mP0
finesse

FSR
=

4mP0

dv

The peak of the error signal occurs at half hight of the transmitted power curve at a
frequency dv/2. It can be observed that the value at the maximum is roughly half of
the value of the linearized error signal at the same frequency detuning. The peak-to-
peak (PP) error signal value can be calculated from the optical gain by multiplying
it by dv/2 3 Using dv = FSR/finesse it can be written as

ErrPP[V ] = 2mP0
π

Finesse

r2(1− r2
1)

(1− r1r2)2
·GPDGMIX = 1665 ·m · P0 V

In order to have an error signal of 200 mV (a tentative value needed for a correct
operation of the servo), the modulation depth m and the input power P0 should
combine as shown in Fig. E.1. It is useful to remark that the RF max power
impinging on the photodiode is

PmaxRF [W ] = mP0
π

Finesse

r2(1− r2
1)

(1− r1r2)2
= 0.39 ·m · P0W

Parameter Value
PD amplifier gain 16 · 103 [V/A]
PD photosensitivity 0.27 [A/V]
GSHG 2 [Hz/Hz]
GPD 4.3 · 103 [V/W]
GOPT 1.3 · 10−8 [W/Hz]
GMIX 0.5 [V/V]

Table E.1: Filter cavity gains summary.

Loop scheme

A scheme of the cavity lock feedback loop is sketched in Fig. E.4. Different blocks are
detailed in Sec. 9.10.1 If we define G = G1 ·G2 ·G3 ·G4 the open loop transfer function
is simply H · G. The scheme shows points where we can read signals and points

3The factor 2 accounting for the difference from the error signal and its linearization is compen-
sated by the factor 2 needed to pass from the peak to the peak-to-peak value.
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Figure E.1: The points on the curves show the relation between m and P0 needed
to have Errpp = 200 mV.

Figure E.2: Comparison between the PDH error signal and its linearisation around
zero.
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Figure E.3: Comparison between the PDH error signal (orange line) and its approx-
imation (blue line) assuming Rcav(ω±Ω) ' −1 that, as can be seen, is valid only in
the regions where the sidebands are not resonant.
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(1/100)

eps 1 
(x 15.9)

eps 2 
(x 15.9)

laser 
piezo SHG Cavity

servo

PD +  
demod

G1 G2 G3

G4

H

Figure E.4: Scheme of the cavity lock feedback loop.
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where we can inject noise. By choosing the appropriate combination of observation
and injection points we can measure different parts of the loop transfer function. In
particular:

• H ·G → OPEN LOOP TF

Injection point: perturb

TF channels: EPS1/EPS2

Note: Open loop transfer function is show in Fig. 9.30. It allows to measure
the UGF and the phase margin. The measurement is not good at low
frequency where the gain of the loop is higher. At these frequency we
are not able to inject enough noise to dominate the error signal without
unlocking.

• H → SERVO TF

Injection point: perturb

TF channel: PZTmon/EPS2

Note: The measurement, shown in Fig. E.5, was performed with a swept
sine and no information on the coherence is available. Even though the
measurement is not very good, it seems to show the correct slope and it
becomes flat in the UGF region, as expected.

• G → OPTICAL TF

Injection point: ramp

TF channel: EPS2/PZTmon

Note: The blocks composing G should frequency independent up to few tens
of kHz except for the cavity which i supposed a pole at 1.45 KHz. Being
able to fit the pole frequency would allow a measurement of the cavity
finesse. Also in this case, the amount of noise we could inject without
unlocking was not high enough to provide a clear measurement. The TF
shown in Fig. E.6 seems to decrease at 1/f in the UGF frequency as
expected, but the phase’s measurement is very bad and it is not possible
to extrapolate a value for the cavity pole.
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Figure E.5: Electronic transfer function.

Figure E.6: Optical transfer function. The frequency dependence should be given by
the cavity pole. The amplitude is compared with a model given by a simple pole at
1.45 kHz.
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