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Abstract

Cellular senescence (CS) is a cell fate characterized by a stable cell cycle
arrest of dysfunctional cells. CS has an intricate role in physiology and patho-
physiology. Senescent cells play a vital role in tumor suppression, embryonic
development, and wound healing, but also in many age-related pathologies,
including paradoxically, tumor development. My thesis work represents a
comprehensive time-resolved analysis of the epigenome, transcriptome, and
metabolome layers of cells undergoing CS and is divided into three subprojects.

First, I investigated the dynamics of transcription factor (TF) binding to
enhancers in oncogene-induced senescence (OIS). TFs organize in a hierar-
chical network, with pioneers shaping the enhancer landscape by recruiting
settlers and migrants to fine-tune gene expression. Specifically, I discovered
that the AP1 family members precede the majority of other TFs, priming
chromatin to initiate and coordinate the CS transcriptional response.

Second, I performed an extensive analysis of the metabolic changes asso-
ciated with CS, integrating results from fibroblasts undergoing replicative,
oncogene-induced, and DNA damage-induced senescence, in addition to a
characterization of OIS in primary myoblasts. I identified several metabolites
that accumulate or diminish in senescent cells, and those are associated with
post-translational modifications, protein synthesis, lipid biosynthesis and oxi-
dation, and energy production. In particular, alpha-ketoglutarate (aKG) and
uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) act as substrates
for chromatin modifiers, suggesting roles in gene regulation.

Third, I defined a mathematical model describing the transcriptional
evolution of cells undergoing OIS. I generated this model using the Sparse
Identification of Nonlinear Dynamics (SINDy) algorithm in a high-performance
computing environment. I validated the model with transcriptome data
derived from JUN and RELA depletion experiments. On inhibition of JUN, a
member of the AP1 family, the model simulation behaved closer to senescent
cells than on RELA, suggesting that TF rank in the chromatin binding
hierarchy may determine the predictability of its transcriptional response.

Together, my integrative analysis provides a deeper understanding of CS
and has the potential to reveal previously unknown vulnerabilities of senescent
cells that may be exploited to treat cancer and age-related diseases, promoting
a longer healthspan.

Keywords : cellular senescence, aging, epigenomics, transcriptomics,
metabolomics, systems biology
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Résumé
La sénescence cellulaire (SC) qui correspond à un destin cellulaire est caractérisée

par un arrêt stable de son cycle dont les cellules présentent un dysfonctionnement.
La SC joue un rôle complexe dans la physiologie et la physio-pathologie. Les
cellules sénescentes sont extrêmement impliquées dans la suppression de tumeurs, le
développement embryonnaire et la cicatrisation des plaies, mais aussi dans de nom-
breuses pathologies liées à l’âge, y compris, paradoxalement, dans le développement
de tumeurs. Mon travail de thèse représente une analyse exhaustive, en temps
différé, des différentes couches de l’épigénome, du transcriptome et du métabolome
des cellules qui entrent en SC. Il est divisé en trois sous-projets.

Tout d’abord, j’ai étudié la dynamique de la liaison des facteurs de transcription
(FT) aux activateurs dans la sénescence induite par oncogène (SIO). Les facteurs
de transcription s’organisent en un réseau hiérarchisé, les ”pioneers” façonnant le
paysage des activateurs en recrutant des ”settlers” et des ”migrants” pour affiner
la régulation de l’expression des gènes. Plus précisément, j’ai découvert que les
membres de la famille des AP1 précèdent la majorité des autres FT, amorçant la
chromatine afin d’initier et coordonner la réponse transcriptionnelle de la SC.

Ensuite, j’ai effectué une analyse approfondie des changements métaboliques
associée à la SC, en intégrant les résultats de fibroblastes qui entrent en sénescence
réplicative, induite par oncogènes et par dommages à l’ADN, en parallèle d’une
caractérisation de la SIO dans les myoblastes primaires. J’ai identifié plusieurs
métabolites qui s’accumulent ou diminuent dans les cellules sénescentes. Ceux-ci
sont associés à des modifications post-traductionnelles, à la synthèse des protéines, à
la biosynthèse et à l’oxydation des lipides, ainsi qu’à la production d’énergie. En par-
ticulier, l’alpha-cétoglutarate (aKG) et l’uridine diphosphate N-acétylglucosamine
(UDP-GlcNAc) agissent comme des substrats pour les modificateurs de la chroma-
tine, ce qui suggère un implication dans la régulation des gènes.

Troisièmement, j’ai défini un modèle mathématique décrivant l’évolution tran-
scriptionnelle des cellules entrant en SIO. J’ai généré ce modèle en me servant
de l’algorithme Sparse Identification of Nonlinear Dynamics (SINDy) dans un
environnement de calcul haute performance. J’ai validé le modèle avec des données
de transcriptomiques provenant des expériences d’inhibition de JUN et RELA. Lors
de l’inhibition de JUN, un membre de la famille des AP1, la simulation du modèle
s’est davantage rapprochée de la sénescence cellulaire que de RELA. Ce qui suggère
que le rang des FT dans la hiérarchie de la liaison à la chromatine pourrait être
déterminée par la prévisibilité de sa réponse transcriptionnelle.

Dans son ensemble, mon analyse intégrative permet une meilleure compréhension
de la SC et possède le potentiel de révéler des vulnérabilités jusqu’alors inconnues
des cellules sénescentes et qui pourraient être utilisées en vue de traiter le cancer
et les maladies liées à l’âge, favorisant ainsi une plus longue et meilleure qualité de
vie.

Mot-clés : sénescence cellulaire, vieillissement, épigénomique, métabolomique,

transcriptomique, biologie des systèmes
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CHAPTER 1 2

Death is the only certainty of life. It has been contemplated by humanity
since its early days, and inspired societies and individuals for millennia to
find means to slow the aging process and prolong lifespan. The alchemist Ko
Hung, who lived during the 3rd century, speculated that ingesting long-lasting
substances would lead to a prolonged life and describes the ”benefits” of
consuming gold, jade and even mercury (Davis and Kuo-fu, 1941; Wallis
et al., 2005). Gunpowder, which was later repurposed to the production of
fireworks and weapons, was invented with the aim of extending lifespan of its
consumers and its name means fire medicine (Andrade, 2016). In Europe,
Middle Age alchemists aspired to synthesize the Philosopher’s Stone, which
was meant to lend immortality to its users (Augustyn et al., 2009).

Remarkably, McCay et al. (1935) showed that mice fed with a reduced
calorie diet live longer than mice fed ad libitum, thus providing the first
empiric evidence that lifespan can be extended in animals. Five decades later,
Friedman and Johnson (1988) genetically modified the worm Caenorhabditis
elegans (C. elegans) showing that mutations in the age-1 gene increased
mean lifespan to 25 days, i.e., 65 % more than the mean lifespan of 15 days
observed in wild type worms. In 2008, Ayyadevara et al. discovered that
second-generation homozygous age-1 mutants live between 145 and 190 days,
a ten-fold increase in mean lifespan.

Further studies identified lifespan extending interventions not only in C.
elegans but also in other invertebrates and vertebrates, including mammals
(Mattison et al., 2017; Kenyon, 2010; Harrison et al., 2009; Grandison et al.,
2009). Besides extending animal lifespan, these genetic interventions also
delayed the onset of several age-related pathologies (ARPs), opening new
possibilities for extending longevity in humans. However, it became clear from
those studies that aging is a highly complex, multifactorial phenomenon that
can be identified and have been categorized by nine molecular and cellular
processes conserved during mammalian evolution, known as the ”Hallmarks
of aging”: (1) genomic instability, (2) telomere attrition, (3) epigenetic
alterations, (4) loss of proteostasis, (5) deregulated nutrient sensing, (6)
mitochondrial dysfunction, (7) cellular senescence, (8) stem cell exhaustion,
and (9) altered intercellular communication (López-Ot́ın et al., 2013).

Cellular senescence (CS), a response to diverse forms of cellular stresses and
characterized by a stable cell cycle arrest (SAGA) and a secretory phenotype
(SASP), integrates all aging hallmarks at the molecular and cellular level
and has been associated to several ARPs, including cataracts, sarcopenia,
Alzheimer’s disease and cancer (Gorgoulis et al., 2019; McHugh and Gil,
2018; Muñoz-Esṕın and Serrano, 2014). As represented in Figure 1.1, CS
arises as consequence of the distinct forms of molecular and cellular damage
characteristic of aging, causing a reduction in tissue regeneration and fitness,
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and overall organismal health. Due to its central role in aging, a deep
understanding of this process is essential to successfully develop senescence-
oriented therapies to trat ARPs and decelerate aging.

Figure 1.1: CS integrates the hallmarks of aging. CS is a response to
cellular stress, including DNA damage, telomere erosion, epigenetic perturba-
tion, as well as mitochondrial and proteostatic dysfunction. Ultimately, CS
increases inflammation and stem cell exhaustion (McHugh and Gil, 2018).
Reproduced from the article with permission - license number 1011829

1.1 Cellular senescence

CS is a damage response characterized by a stable cell cycle arrest, acting thus
as potent tumor suppressor (McHugh and Gil, 2018; Soto-Gamez and Demaria,
2017; Muñoz-Esṕın and Serrano, 2014; López-Ot́ın et al., 2013; Campisi and
Fagagna, 2007). It was first described by Hayflick and Moorhead (1961) as
a limitation in the maximum number of passages of primary fibroblasts in
culture, in a process that was later explained by the loss of telomere integrity
at each replication cycle (Allsopp et al., 1992). Aside from loss of telomere
integrity, CS can be induced also by a variety of other stressors (McHugh
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and Gil, 2018; Muñoz-Esṕın and Serrano, 2014; Campisi and Fagagna, 2007),
such as non-telomeric DNA damage caused by high oxygen levels (Parrinello
et al., 2003) or gamma radiation (Di Leonardo et al., 1994); hyperactivation
of oncogenes (Serrano et al., 1997); decline in autophagic activity, leading to
metabolic dysfunctions (Garćıa-Prat et al., 2016); and even the activation
of pathways triggered by neighboring senescent cells, a process denominated
paracrine senescence (Nelson et al., 2018; Hubackova et al., 2012; Acosta
et al., 2013).

The senescence-associated growth arrest (SAGA) is mediated by the tumor
suppressor retinoblastoma protein (RB), the activity of which is controlled
by the tumor suppressors cyclin-dependent kinase inhibitor 2A (p16) and
tumor protein 53 (p53) (Muñoz-Esṕın and Serrano, 2014; Rayess et al., 2012;
Chicas et al., 2010; Serrano et al., 1997). Senescent cells (SnC) also release
multiple proinflammatory molecules, including IL1, IL6, IL8, constituting the
so-called senescence-associated secretory phenotype (SASP) (Nelson et al.,
2018; Hubackova et al., 2012). The mechanisms regulating the SAGA and the
SASP will be discussed in detail in section 2.1. Additional phenotypic changes
associated with CS phenotype are apoptosis resistance, chromatin remodeling,
reduced autophagy as well as transcriptional and metabolic reprogramming
(McHugh and Gil, 2018; Parry and Narita, 2016; Wiley and Campisi, 2016;
Muñoz-Esṕın and Serrano, 2014). However, CS response is as diverse as
the nature of its triggers, and no universal bio-marker specific to SnC has
been discovered to-date, making SnC detection a challenge, especially in
vivo, requiring the measurement of multiple markers (Gorgoulis et al., 2019;
Muñoz-Esṕın and Serrano, 2014).

SAGA and SASP are both beneficial and detrimental for tissue homeostasis.
For example, the SAGA blocks proliferation of damaged cells, in particular
pre-cancerous cells, and malignant transformation requires a by-pass of CS
(Faget et al., 2019; Hoare and Narita, 2018). In addition, CS plays key roles
in placental structure (Gal et al., 2019), embryonic development (Villiard
et al., 2017; Storer et al., 2013) and tissue regeneration (Da Silva-Álvarez
et al., 2019; Yun et al., 2015). Under normal physiological conditions, SnCs
are eliminated by the immune system through SASP signaling. However, this
immune-surveillance mechanism starts to malfunction as we age, leading to
an accumulation of SnCs and a chronic , sterile inflammation, that can induce
proliferation and metastasis of neighboring malignant cells (Faget et al., 2019;
Hoare and Narita, 2018) and is associated with the onset of several ARPs,
such as stroke (Fukazawa et al., 2007), cataracts (He et al., 2019), Alzheimer’s
disease (Bhat et al., 2012) and osteoarthritis (Martin et al., 2004).

Baker et al. (2011) showed that progeroid mice engineered with an in-
ducible system of SnC clearance presented a delayed onset of several age-
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related pathologies, such as cataracts, sarcopenia, osteoporosis, fat loss and
cardiomyopathy. A more recent study from the same lab showed that clear-
ance of senescent cells in old mice extends lifespan by up to 25 % (Baker
et al., 2016). Those results formed the basis for the identification of so-called
senolytics, molecules that are able to kill SnCs (Fuhrmann-Stroissnigg et al.,
2017; Zhu et al., 2016; Zhu et al., 2015; Van Deursen, 2014). Indeed, the
first clinical trials of senolytics in humans took place in the treatment of
idiopathic pulmonary fibrosis, alleviating patient physical dysfunction, and
osteoarthritis (Justice et al., 2019; Unity Biotechnology, 2019).

The recent advances in OMICS technologies allowed scientists to perform
unbiased analysis, generating a large amount of data for one experiment and
revealing a complexity higher than expected. For instance, a multi-omics
analysis performed in our laboratory shows that CS is a process involving
more than 4000 differentially expressed genes, being regulated by a chang-
ing epigenetic landscape shaped by the collective activity of, at least, 300
transcription factors (TFs) (Mart́ınez-Zamudio et al., 2019). Despite the
challenge that analyzing and integrating this data presents, it also provides an
opportunity to explore the multitude and complexity of molecular interactions
and identify a plethora of agents that can be therapeutically targeted, making
this an exciting time for the field.

1.2 Thesis overview

This work presents an unprecedented and comprehensive analysis of the
epigenome, transcriptome and metabolome of cells undergoing CS.

In chapter 2 I introduce the dynamic network of TFs binding to chromatin,
regulating the gene expression program that drives CS. We observe that
Activator protein 1 (AP1) family members to be already bound to the
chromatin before CS stimulation and are thus situated at the top of the
hierarchy preceding all other TFs. This suggests those TFs shape chromatin
and prime the transcriptomic CS response. Additionally, TFs following AP1
constitute an intricate hierarchical network that differs even at enhancers of
genes with similar expression profiles, showing that co-expressed genes can
be regulated by distinct agents.

Chapter 3 contains a broad analysis of the CS metabolome. Specifically, I
investigated differences and commonalities in metabolite levels in SnC induced
by distinct inducers, namely, RAS, RAF, DNA damage (DD) and proliferative
exhaustion. I identified alpha-keto glutarate (αKG), among others, as one
metabolite differentially produced in SnC. αKG is a substrate for chromatin
modification enzymes and a known onco-metabolite that modulates gene
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expression and has the potential to be targeted in therapeutic settings.
In chapter 4, I describe the development of a mathematical model for

oncogene-induced senescence (OIS) based on time-resolved transcriptome
datasets acquired in CS cells, including the knock-down (KD) of key TFs
for its regulation. The model contains 565 differential equations describing
the behavior of the unique time profiles observed experimentally. In order to
account for the high number of coefficients to be inferred, we employed a sparse
approach running on a high performance computing (HPC) environment.
Overall, the resulting simulations time profiles correlate with the training
dataset, and the model is able to predict for conditions not included in the
training data in some cases.

In conclusion, my integrative analysis provides a deeper understanding of
CS mechanisms and highlights previously unknown potential vulnerabilities
of senescent cells that may be exploited to treat cancer and ARPs, thus
promoting a longer healthspan - the portion of our lives we are healthy, and
not just alive.
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2.1 Introduction

Cellular senescence (CS), as mentioned in Chapter 1, is a cell fate with a
complex phenotype, characterized by a durable cell cycle arrest, release of
inflammatory cytokines, chromatin remodeling, metabolic and transcriptomic
reprogramming and apoptosis resistance (Gorgoulis et al., 2019; McHugh and
Gil, 2018; Muñoz-Esṕın and Serrano, 2014; Campisi and Fagagna, 2007).

In order to characterize the dynamic transcriptomic and epigenomic
changes shaping CS, our laboratory (Mart́ınez-Zamudio et al., 2019) per-
formed time course experiments in Wistar Institute 38 (WI38) fibroblasts
undergoing RAS-OIS, collecting transcriptome, DNA accessibility and histone
modification data over the course of six days after RAS OIS. Briefly, we found
a dynamic epigenome with the temporal (in)activation of multiple enhancers,
regulated by the collective activity of a variety of transcription factors (TFs).
Gene expression changes followed seven distinct temporal profiles, as shown
in Figure 2.1A.

Figure 2.1: Transcriptional changes in CS (Mart́ınez-Zamudio et al.,
2019). [A] Heatmap depicting the dynamic expression level transitions during
CS onset. Rows represent genes, clustered in seven co-expression modules,
and columns represent time. [B] Pathway enrichment analysis for each of the
observed gene modules.

To decipher the rules underlying gene expression changes executed by
TF chromatin binding, I used in silico TF footprinting. These relationships
constitute a hierarchical network, where-in TFs termed pioneers, able to
interact with binding sites in closed chromatin, subsequently recruit so-called
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settler and migrant TFs that will modulate gene expression as a response to
senescence inducers. I generated one network for each of the seven identified
modules of co-expressed genes, and here I discuss the results obtained for
two gene modules II and VI, enriched for pathways associated with the most
prominent phenotypes of SnCs: senescence-associated growth arrest (SAGA)
and senescence-associated secretory phenotype (SASP) (Figure 2.1B).

2.1.1 Senescence-associated growth arrest

The cell cycle can be divided into four stages, G1, S, G2 and M in chronological
order (Johnson and Walker, 1999). Phase M, which stands for mitosis, is the
phase in which the one cell gives rise to two daughter cells. Their genetic
material was synthesized at phase S, where the mother’s cell DNA is replicated.
The phases G1 and G2 are called gap phases, where the cell integrates growth
factors signals and proceeds under favorable conditions to the S or M phases,
respectively. The decisions to cease G1 or G2 progression are known as the G1
and G2 checkpoints and are regulated by CDK-cyclin complexes (Malumbres
and Barbacid, 2009; Johnson and Walker, 1999). Cyclins, which were first
thought to oscillate during distinct phases of the cell cycle and later discovered
to respond to external signals such as growth factors (Johnson and Walker,
1999), bind to constitutively expressed Cyclin-dependent kinases (CDKs),
activating signaling cascades that causes cell cycle progression.

At G1 phase, cyclin D becomes expressed in the presence of mitogenic
signals (Malumbres and Barbacid, 2009), binding to CDK4 and CDK6. These
complexes phosphorylate RB, a tumor suppressor that, in its hypophosphory-
lated form, is bound to the proto-oncogene E2F (Malumbres and Barbacid,
2009; Trimarchi and Lees, 2002; Johnson and Walker, 1999). When not bound
to RB, E2F recruits the transcriptional machinery and activates the expression
of a wide variety of genes that will regulate DNA replication and cell division
(Figure 2.2). Hypophosphorylated RB can act as a transcriptional repressor
by recruiting epigenetic regulators, such as histone deacetylases (HDACs) and
the histone methyltransferase SUV39H1, to E2F target genes.

In SnCs, SAGA is mediated by cyclin-dependent kinase inhibitor 2A (p16)
and tumor protein 53 (p53), which inhibit CDK activity and impair RB
phosphorylation, thus preventing the cell from passing the G1 checkpoint, as
discussed in details in section 3.1.1 (Gorgoulis et al., 2019; Muñoz-Esṕın and
Serrano, 2014; Narita et al., 2003; Johnson and Walker, 1999).

The p16 gene is located at the INK4a/ARF locus, which contains several
genes that control cell proliferation, is de-repressed as organisms age and
frequently harbors mutations in several cancer types (López-Ot́ın et al.,
2013; Liu et al., 2009; Krishnamurthy et al., 2004). p16 directly binds to
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Figure 2.2: E2F inhibition by RB (Trimarchi and Lees, 2002). See text
for details.

CDK4 and CDK6, keeping RB in a hypophosphorylated state, thus bound
to and inactivating E2F (Sherr et al., 2016; Kim and Sharpless, 2006). The
INK4a/ARF locus is silenced by H3K27me3 marks, maintained by polycomb-
group proteins (PcG) (Rayess et al., 2012; Bracken et al., 2007). Upon CS,
the demethylase Jumonji Domain-Containing Protein 3 (JMJ3) is expressed,
activating p16 transcription (Agger et al., 2009; Barradas et al., 2009).
Similarly to RB, p16 activation is essential for the establishment of senescence-
associated heterochromatin focis (SAHFs), which have been shown to repress
E2F targets, among other genes (Narita et al., 2003). Surprisingly, SAHF
production involves a spatial chromatin reorganization and is not impacted
when histone methylases, such as Jumonji Domain Containing 2D (JMJD2D),
are inhibited (Parry and Narita, 2016; Chandra et al., 2012).

The p53 tumor suppressor gene is activated in response to DNA damage
and therefore known as one of the main guardians of the genome (Lane, 1992).
The mechanisms involved in its activation are described in section 3.1.1 and
lead to the transcription of the CDK inhibitor p21 (Fagagna, 2008; Herbig
et al., 2004). p21, encoded by the CDKN1A gene, forms a complex with
RB and E2F, blocking CDK2 from phosphorylating RB and repressing E2F
targets expression (Afshari et al., 1996; Dynlacht et al., 1994). As shown in
Figure 2.3, p53 is inhibited by Human Homolog Of Mouse Double Minute
2 (HDM2) (Campisi and Fagagna, 2007; Lane, 1992). HDM2 inhibits p53
activity both by blocking its binding site to other proteins associated to
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Figure 2.3: Cell cycle arrest induced by the p53 and p16 pathways (Campisi
and Fagagna, 2007). See text for details.

transcription and by targeting it to ubiquitination and degradation (Juven-
Gershon and Oren, 1999). This activity is blocked by the tumor suppressor
ARF, with the formation of ARF/HDM2/p53 complexes. Interestingly, the
ARF gene promoter contains E2F binding sites and is upregulated upon
E2F overexpression (Dimri et al., 2000; Juven-Gershon and Oren, 1999),
characterizing an incoherent feedforward loop regulating HDM2 and p53
activity. Moreover, p53 function is post-translationally modulated by histone
acetyltransferases, being stimulated by p300 (Gu and Roeder, 1997) and
inhibited by SIRT2 (Langley et al., 2002).

2.1.2 Senescence-associated secretory phenotype

The senescence-associated secretory phenotype (SASP) consists of a plethora
of molecules secreted by SnCs, including cytokines, growth factors, pro-
inflammatory molecules and lipids (Gorgoulis et al., 2019; Chan and Narita,
2019; Lopes-Paciencia et al., 2019; Coppé et al., 2010). The exact composition
of the SASP is dependent on the senescence inducer, and can mediate multiple
physiological effects at tissue and organism level, such as recruiting the
immune system for clearance of pre-cancerous lesions (Chien et al., 2011),
tissue regeneration and embryo patterning (Storer et al., 2013). However, it
can also exert pathological responses, such as inflammation and tumorigenesis
(Coppé et al., 2010). This process can also produce a by-stander effect by
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inducing CS in neighboring cells (Nelson et al., 2018; Hubackova et al., 2012).
The SASP is driven by several regulators, with Nuclear Factor κB (NF-κB)
and CCAAT Enhancer Binding Protein β (CEBPβ) being the most described
TFs modulating this phenomenon (Lopes-Paciencia et al., 2019; Ito et al.,
2017; Muñoz-Esṕın and Serrano, 2014). A simplified model of their regulation
is shown in Figure 2.4A.

Figure 2.4: SASP dynamic regulation in OIS [A] Simplified network

describing SASP regulation. [B] At the early phase of OIS, N1ICD is upregulated,

inhibiting CEBPβ activity and promoting an immunosuppressive and profibrotic

SASP. As N1ICD is downregulated, CEBPβ levels rise. CEBPβ activation increases

the expression of interleukins and metalloproteases, leading to a proinflammatory

and fibrolytic SASP. Adapted from (Ito et al., 2017).

NF-κB is a transcription factor family involved in inflammatory responses
(Lopes-Paciencia et al., 2019; Liu et al., 2017). Its dynamics has been studied
quantitatively and inspired several mathematical models (Benary and Wolf,
2019; Inoue et al., 2016; Lipniacki et al., 2004; Hoffmann et al., 2002). NF-κB
activation implicates either a canonical or non-canonical pathway (Liu et al.,
2017; Yılmaz et al., 2014; Ohanna et al., 2011). In the canonical pathway,
which responds to a variety of stimuli including cytokines and Tumor Necrosis
Factor (TNF) receptors, NF-κB is activated by the degradation of Inhibitor
Of Nuclear Factor Kappa B Kinase (IKK), which is bound to NF-κB in the
cytoplasm. When released from IKK, NF-κB family members can form homo-
and heterodimers and translocate to the nucleus, activating the transcription
of multiple genes involved in inflammatory response.

In CS, NF-κB is upregulated both by DNA damage response (DDR)
(Kang et al., 2015) or by reactive oxygen species (ROS) (Nelson et al., 2018;
Ohanna et al., 2011). DDR activates NF-κB by suppressing the degradation
of Transcription Factor GATA-4 (GATA4), in a process mediated by IL1α
(Kang et al., 2015). IL1α is also activated by mamalian target of Rapamycin
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(mTOR), and rapamycin was shown to reduce NF-κB levels in human tumors
(Laberge et al., 2015). ROS signaling upregulates NF-κB through P38 mitogen-
activated protein kinases (P38MAPK) (Nelson et al., 2018), which also
mediates p21 increase under Transforming Growth Factor Beta 1 (TGFβ)
activation (Frippiat et al., 2002), constituting a mechanistic link between
SASP and SAGA. Additionally, NF-κB is activated in the presence of cytosolic
DNA, responding to the cGAS–STING pathway (Dou et al., 2017). When
active, NF-κB binds to the chromatin and activates the expression of several
interleukins, including Tumor necrosis factor alpha (TNFα), IL6, IL8, IL1β
and IL1α, the latter characterizing a positive feedback loop that reinforces
CS and promotes a DDR in bystander cells (Nelson et al., 2018; Dou et al.,
2017; Kang et al., 2015; Hubackova et al., 2012).

CEBPβ cooperates with NF-κB in activating a variety of SASP compo-
nents, including IL6, IL8, IL1β and IL1α (Lopes-Paciencia et al., 2019; Ito
et al., 2017; Kuilman et al., 2008). In RAS-induced senescence, CEBPβ is
activated at later CS stages, being initially inhibited by Notch signaling (Ito
et al., 2017). As shown in Figure 2.4, early OIS produces a immunosuppressive
SASP, regulated by Notch and TGFβ. As CS progresses, Notch is cleaved,
derepressing CEBPβ and leading to a proinflammatory SASP (Ito et al., 2017;
Hoare et al., 2016).

2.1.3 Transcription factor networks

The cell fate decision that characterizes CS is orchestrated by multiple TFs,
as illustrated in sections 2.1.1 and 2.1.2. TF activity is ubiquitous in cellular
biology, mediating processes including reproduction, development, metabolism,
differentiation, stimulus response and disease in all known eukaryote organisms
(Voss and Hager, 2014; Vaquerizas et al., 2009). TFs are able to bind to DNA
due to the presence of specialized motifs, such as helix-turn-helix, zinc-fingers
and zipper-type binding sites (Luscombe et al., 2000).

Non-coding DNA regions that modulate gene expression are called cis-
regulatory regions, including, e.g., promoters and enhancers (Schoenfelder
and Fraser, 2019; Li et al., 2015; Wittkopp and Kalay, 2012). Promoters
are usually located at the transcription start site of genes and correspond
to the genomic location where transcription begins (Lenhard et al., 2012;
Yuh et al., 1998). Therefore, gene expression levels are regulated by the
affinity between the transcriptional machinery and the promoter, which is
modulated by the TFs bound to those genomic positions (Yuh et al., 1998),
among other factors. Enhancers regulate the transcriptional response by
directly binding to their target genes, and they may be located hundreds of
kilobase pairs from their targets (Schoenfelder and Fraser, 2019; Li et al., 2015;
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Wittkopp and Kalay, 2012). Promoter-enhancer contacts are mediated by TFs
and architectural proteins, including CTCF and YY1. Those cis-regulatory
regions are characterized by specific histone modifications, where promoters
correspond to regions enriched in H3K4me3 and enhancers, in H3K4me1
(Lenhard et al., 2012; Zentner et al., 2011). Additionally, active promoters
and enhancers present H3K27Ac marks, while PcG-repressed chromatin is
characterized by H3K27me3 (Schoenfelder and Fraser, 2019).

The principles underlying TF-mediated regulation of gene expression are
still controversial and there are several theories describing how they access
heterochromatin in order to activate compacted genes (Voss and Hager, 2014).
The pioneer proteins model states that certain TFs have the ability to interact
with closed chromatin and recruit chromatin modifiers and other TFs, as
illustrated in Figure 2.5 (Mayran and Drouin, 2018; Zaret and Carroll, 2011;
Voss and Hager, 2014). By shaping the epigenetic landscape, TF composition
define cell identity, determining which genes are activated and the functions
they perform (Mayran and Drouin, 2018; Zaret and Carroll, 2011; Vaquerizas
et al., 2009). TFs can also respond to internal cues by post-translational
modification (PTM), modulating their affinity both to chromatin and other
TFs (Cossec et al., 2018).

Figure 2.5: Pioneer TF chromatin binding Pioneer TFs bind to inacces-

sible chromatin regions, displacing nucleosomes and recruiting settler and migrant

TFs. Adapted from (Zaret and Carroll, 2011).

The collective activity of TFs requires systemic approaches in order to
determine transcriptional output as a function of chromatin occupancy. Jothi
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et al. (2009) used available chromatin immunoprecipitation sequencing (ChIP-
seq) yeast data to characterize its regulatory TF network. Goode et al.
(2016) combined RNA sequencing (RNA-seq), histone marks and TF ChIP-
seq data in order to determine how TFs impact on gene expression levels of
hematopoietic differentiation. Wapinski et al. (2017) and Ramirez et al. (2017)
used a similar approach, employing in silico approaches (Sherwood et al., 2014;
Piper et al., 2013) to infer TF chromatin binding at cis-regulatory regions
in fibroblasts trans-differentiating into neurons and myeloid differentiation,
respectively. Garber et al. (2012) applied a distinct paradigm on TF networks,
assessing TF chromatin binding over time in order to characterize pioneer TFs
and the following recruited TFs during dendritic cells pathogen activation.

Currently, no comprehensive multidimensional profiling study has been
performed for CS, a cell fate decision that defies our definition of cellular
identity. In this chapter, I combine epigenome, DNA accessibility and gene
expression time course data gathered by Mart́ınez-Zamudio et al. (2019) in
order to characterize the TF network controlling CS in a integrative manner.
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2.2 Results

2.2.1 The TF hierarchy driving the senescence tran-
scriptional program

To determine how TFs collectively control CS gene expression dynamics,
I used in silico time-resolved TF footprinting performed in our laboratory
(Mart́ınez-Zamudio et al., 2019). Briefly, our laboratory collected time resolved
datasets for transcriptome, epigenome (histone ChIP-seq) and chromatin
accessibility (ATAC-seq) on human WI38 lung fibroblasts undergoing RAS-
OIS. We identified seven modules of co-expressed genes corresponding to the
CS program. Genes pertaining to each expression module were associated
to their closest active enhancer, identified as genomic regions containing
H3K4me1 and H3K27Ac. We used an in silico approach denominated Protein
Interaction Quantification (PIQ) to infer TF chromatin binding based on
DNA accessibility data (Sherwood et al., 2014). The correlation between
chromatin accessibility and binding probability was used to classify each TF
as pioneer, settler or migrant (Mart́ınez-Zamudio et al., 2019; Sherwood et al.,
2014).

With the purpose of characterizing the TF chromatin binding patterns, I
calculated a set of metrics as performed by Garber et al. (2012) for 310 TFs
retrieved from the JASPAR database (Khan et al., 2017). Those metrics con-
sist of (a) total number of binding sites; (b) a dynamicity index, proportional
to the number of new regions bound or left by a TF during the time course;
(c) the ratio of regions already bound before senescence induction and (d)
the percentage of enhancers in the total number of bound regions Garber
et al. (2012). Figure 2.6A depicts a Principal Component Analysis (PCA)
containing those covariates for each TF (Abdi and Williams, 2010). This plot
shows that TFs with same classification share similar binding characteristics.
Pioneers tend to bind to a higher number of regions, and most of those regions
were already populated before RAS overexpression. The AP1 family members
are the pioneers with highest percentage of binding instances in enhancers.
Moreover, migrant TFs tend to be more specific, i.e., bind to fewer regions
and are more dynamic.

Figure 2.6B shows the dynamicity index and the number of bound regions
calculated for each TF for each module of co-expressed genes. Each heatmap
row corresponds to one TF, and TFs are ordered based on their ratio occu-
pancy/dynamicity, with the ones having highest number of bound regions
at the top and most dynamic at the bottom. The number of bound regions
is approximately constant for all gene modules, while pioneers have a low
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dynamicity index for all gene modules. Migrants, however, are more dynamic
and display heterogeneity in their dynamicity index for distinct gene modules.
In order to evaluate the enrichment of each TF classification in the list ranked
by occupancy/dynamicity ratio, we performed a Set Enrichment Analysis
(SEA) for pioneers (Figure 2.6C), settlers (Figure 2.6D) and migrants (Figure
2.6E). Pioneers and settlers are enriched at the top of the list, while migrants
are enriched at its bottom.

Figure 2.6: TF chromatin binding properties. [A] PCA depicting

six TF chromatin binding characteristics. See text for details. [B] Heatmaps

displaying TF dynamicity, chromatin coverage and classification, stratified by each

gene expression module. Each line corresponds to a TF, and the dendrograms

were ordered based on the ratio between the number of bound regions (coverage)

and the dynamicity of each TF. [C-E] SEA performed on the TF list ordered by

coverage-dynamicity ratio, depicting the enrichment for pioneers [C] and settlers

[D] at the top of the list, and migrant TFs at the bottom [E].

Aiming to identify the underlying logic that governs TF hierarchy in
driving gene expression, we built hierarchy networks as described by Garber
et al. (2012). Briefly, an edge represents a precedence relationship between
two TFs, where a directed edge from TF X to TF Y means that Y bound
to a region where X also bound at the time point or before. Each edge is
weighted by the ratio of regions bound by Y that were already bound by
X. Figure 2.8A shows the network built on ChIP-seq datasets published by
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Garber et al. (2012), and Figure 2.8B shows the original network from the
article. All the edges detected by our method are present in the original
network, and I retrieved 88,9 % of the edges from the original network.

Figure 2.7: Network inference validation. [A] Validation network in-

ferred from ChIP-seq data collected by Garber et al. (2012). [B] The original

published network (reproduced from the article with permission - license number

4684440352557).

Figures 2.8A and D display the TF hierarchy network built for enhancers
corresponding to genes in the transcriptional modules II and VI, respectively.
As mentioned in section 2.1, module II is composed of several SAGA genes,
downregulated after RAS stimulation, and module VI is enriched for SASP
constituents. The AP1 family members are at the top of both networks,
preceding all other TFs and binding to thousands of regions. The simplified
networks (see section 2.5.7) contain 252 nodes and 474 edges or 250 nodes
and 420 edges, respectively.

Figures 2.8B and E depict subnetworks focusing on the E2F and p53
families, which mediate the SAGA. Most TFs are present in both networks,
such as the p53 family members tumor protein 63 (p63) and tumor protein
73 (p73), the cluster of TFs containing the E twenty-six Proto-Oncogene 1
(ETS1) family members, ETV6, ELF1, ELK4 and GABPα, and the Specificity
Protein (SP) and Kruppel Like Factor (KLF) proteins following the Early
Growth Response (EGR) family. However, the observed interactions between
those TFs present some discrepancies between the distinct modules, such as
the cobinding of p53 and MAF bZIP transcription factor G (MAFG) for genes
at module VI and not at module II. In module VI, both E2F2 and 3 and
E2F7 and 8 follow the AP1 family members when binding to the chromatin,
while E2F2 and 3 seem to follow ETS1 in module II and E2F7 and 8 did not
bind to the chromatin during CS onset.
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Figure 2.8C and F portray the TF hierarchical subnetworks focusing
on CEBPβ and NF-κB, which regulate SASP transcription. Despite both
networks sharing most of their constituting TFs, the observed interactions
are strikingly distinct. In module II, ETS1, MAFG and CEBPβ precede
NFIL3 and TEF, while NF-κB family, which includes REL-associated protein
A (RELA), follows only the AP1 family members. In module VI, NFIL3
also follows MAFG, while RELA binds to several positions already bound by
ETS1. Additionally, NF-κB is preceded by EGR and SP factors.

As suggested by Figure 2.6, the pioneer TFs concentrate at the top of the
network, while migrants are enriched at the bottom (Figures 2.8A-F). Figure
2.8G displays the percentage of incoming edges, stratified by the classification
of the source TF, taken from all networks. Pioneer TFs mostly follow pioneers,
while settler TFs follow both pioneers and settlers. Migrants succeed TFs
from any classification, however the majority of the edges are originating
from pioneers.
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Figure 2.8 (previous page): A hierarchical TF network. [A-F] TF

chromatin binding hierarchy network. Nodes represent TFs, and an oriented edge

from TF A to TF B means that at least 30 % of the regions bound by B were

bound by A at the same time point or before. In order to simplify the visualization,

we represent strongly connected components (SCC) as a single node and performed

a transitive reduction (TR). Node color is based on the average dynamicity of the

SCC members. Node border color indicates their classification as pioneer (blue),

settler (red) or migrant (green). Node border thickness encodes the percentage of

bound regions before RAS stimulation. Edge color was calculated accordingly to

the relative coverage of the outgoing TF over the incoming TF. The network has

three layers: top, core and bottom. Nodes in the top have no incoming edges and

nodes in the bottom have no outgoing edges. The core layer comprises TFs that

have both incoming and outgoing edges. [A] TF hierarchy network for genes in the

cell cycle module. [B] Inset of panel A depicting a subset of the TFs that regulate

SAGA. [C] Inset of panel A depicting a subset of the TFs that regulate SASP. [D]

TF hierarchy network for genes in the SASP module. [E] Inset of panel D depicting

a subset of the TFs that regulate SAGA. [F] Inset of panel D depicting a subset of

the TFs that regulate SASP. [G] Ratio of incoming edges based on the classification

of the TF source node. The relative and absolute number of edges corresponding to

all seven modules are displayed inside the nodes, which are colored accordingly to

TF classification as in previous panels. The thickness of links is proportional to the

relative number of TF hierarchy edges connecting nodes with the corresponding

classification.
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Aiming to determine TF network properties that lead to distinct tran-
scriptome dynamics, we compared the TF interactions observed for each
gene module. Figure 2.9 shows a Chow-Ruskey diagram comprising all seven
networks. A Chow-Ruskey diagram is a Venn diagram, where each region’s
area is proportional to the number of elements it contains (Chow and Ruskey,
2003). Each region refers to the set of edges of a TF network corresponding
to a specific gene module. Panel A contains the number of interactions shared
and specific for all networks. The following panels show edge overlaps for
the (B) top, (C) middle and (D) bottom of the networks. The top of the
networks contains a higher fraction of shared edges, while the majority of
bottom edges are more specific. In conjunction with the heatmaps at Figure
2.6B, this data suggests that the migrants at the bottom of the network fine
tune the gene expression.
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Figure 2.9: Edge overlap for networks relative to distinct transcrip-
tomic profiles. [A] Euler diagram comprising the seven gene expression modules.

Each region correspond to the set of edges belonging to the TF hierarchy networks

for each gene module. An edge is shared between two modules if its source and

target are connected in both networks. [B-D] Euler diagrams for edges with source

at [B] the top of the network, [C] connecting nodes neither from top or the bottom

of the network and [D] with target at the bottom of the network.
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2.3 Discussion

By analyzing the temporal organization of TFs chromatin binding, I observed
a complex set of interactions governing CS gene expression. As reported by
Garber et al. (2012), the TF regulatory network is layered and hierarchically
organized, with pioneer TFs preceding settlers and migrants (Figure 2.8G).

The PCA and the heatmap shown in Figures 2.6A and B depict a het-
erogeneous and dynamic TF activity, as described by Garber et al. (2012).
Pioneer TFs bind to a high number of enhancers before CS stimulation by
oncogenic RAS, suggesting a role in shaping and maintaining the fibroblast
identity and pre-coding its ability to undergo senescence. Indeed, the AP1
family members, the most enriched TFs detected in enhancers of SnC, have
been reported to be involved in fibroblasts activation during wound healing
(Bergmann et al., 2018; Florin et al., 2004) and mediate androgen receptor
signaling (Leach et al., 2017). The mechanisms through which pioneer TFs
orchestrate gene expression include nucleosome displacement and recruitment
of epigenetic modifiers (Mayran and Drouin, 2018; Radman-Livaja and Rando,
2010; Lascaris et al., 2000). Those modifications alter DNA accessibility,
exposing binding sites for TFs termed settlers and migrants that will also reg-
ulate gene expression (Voss and Hager, 2014; Lomvardas and Thanos, 2002).
As shown in Figure 2.6, settler and migrant TFs bind to fewer enhancers
and exhibit a higher diversity accordingly to the transcriptional module they
are bound to. Hence, I hypothesize that these TFs optimize transcriptional
output in a gene unspecific fashion.

The AP1 family members are bound to chromatin before stimulation of
WI38 fibroblasts into senescence, and the following TFs mostly bound to
regions already populated by them (Figures 2.8A-F). This effect was observed
in all transcriptional modules, suggesting that this family acts as a scaffold
shaping the chromatin and recruits settler and migrant TFs. This finding
provides an explanation for the diverse set of functions reported for this family,
including cell proliferation, tumorigenesis, immune response, differentiation
(Atsaves et al., 2019; Mirzaei et al., 2019; Karin et al., 1997) and, now, CS
(Mart́ınez-Zamudio et al., 2019), as their upregulation may expose binding
sites for other TFs and their depletion might suppress TF recruitment to the
chromatin.

I also observed a second tier of pioneer TFs preceding a considerable
amount of TFs in the networks, consisting of the ETS1, and the EGR, SP
and KLF families. As shown in Figures 2.8A-F, the ETS1 family members
also bind to hundreds of cis-regulatory regions in all transcriptional modules.
Additionally, ETS1 binds to some E2F targets in the cell cycle gene module
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(module II, Figure 2.8B) and to RELA and NF-κB targets in the SASP-
related gene module (module VI, Figure 2.8F). The EGR, SP and KLF
families members precede E2F4 and 6 in both studied gene modules, with
SP and KLF following both ETS1 and EGR (Figures 2.8B and E). However,
these two classes of TF do not co-bind at the chromatin, meaning that they
regulate distinct sets of genes sharing the same transcriptional profile. I
observed the same pattern in module VI, where ETS1 is followed by E2F4
and 6 and NF-κB (Figures 2.8C and F).

MAFG is known to interact with the AP1 TF family (Kannan et al.,
2012) and is classified as a settler TF due to a lower capacity of displacing
nucleosomes and opening inaccessible chromatin (Mart́ınez-Zamudio et al.,
2019). MAFG binding activity follows AP1 family members and precedes
other settler and migrant TFs (Figures 2.8A,C-F), including members of the
p53 family and TFs following CEBPβ in module VI (Figures 2.8E,F).

TFs belonging to the same family, such as AP1, ETS1 or SP/KLF, tend
to cluster together, forming dense sub-networks. Since edges represent a
co-binding event at the same time point or later, this dense sub-networks
mean those TFs consistently bind to the same regions of the genome at the
same timepoint. From a topological perspective, they form a graph structure
known as strongly connected component (SCC), where all nodes are reachable
from each other (Tarjan, 1972).

Remarkably, I observed SASP-related TFs binding to genes in module
II (Figure 2.8C) and cell cycle-related TFs binding to genes in module VI
(Figure 2.8E). This finding shows that the same TF can produce a distinct
effect on transcriptional output, yet the conditions determining this behavior
still remain to be elucidated. Yuh et al. (1998) performed a series of elegantly
designed experiments showing how distinct promoter segments of the sea
urchin Endo16 gene contribute to its expression, where TFs biding to some
segments could act as amplifiers, switches or inhibitors, constituting an analog
computing biochemical device. Therefore, genome sequence at cis-regulatory
regions determines TF binding and its impact of gene expression. Additionally,
this computation can be performed at other regulatory layers, including PTMs
at the protein level. As mentioned before, RB hypophosphorylation prevents
E2F chromatin binding and recruit epigenomic silencers at its target genes.
Deacetylation of AP1 or NF-κB by SIRT1 also repress the expression of
targets (Xie et al., 2013; Zhang et al., 2010; Yeung et al., 2004).

Since a similar set of TFs participate in the regulation of genes with
distinct output, I compared their association in each network. The Euler
diagram represented in Figure 2.9A reveals that most edges are either shared
among the networks built for all seven identified gene modules or belonging
to a single TF hierarchy network. As mentioned in the previous section, the
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cause of this effect still needs to be addressed by further studies, with potential
causes including the genome sequence of each enhancer recruiting a specific
TF set or even PTMs that change TF affinity to its targets. Interestingly,
the portion of interactions unique to each transcriptional module is higher at
the bottom of the networks (Figure 2.9D), when compared to the TFs at the
top of the network. This corroborates the hypothesis that late TFs fine-tune
gene expression, producing the observed distinct temporal transcriptional
patterns.

In order to validate the TF role in gene regulation, our laboratory con-
ducted small interferring RNA (siRNA)-mediated experiments for three TFs
at different levels of the network, namely Jun Proto-Oncogene (JUN), ETS1
and RELA, on SnC six days after induction, as explained in details in section
4.5.1 (Mart́ınez-Zamudio et al., 2019). As shown in Figure 2.10A, targeting
TFs at the top of the hierarchy disrupts a higher number of genes, while the
effect of perturbing a TF at lower layers of the network produces smaller
gene expression changes. The overlap of differentially expressed genes in
each experiment suggests those TFs cooperate in regulating a subset of their
targets. This result indicate that the generated hierarchy networks describe
the TF interactions regulating CS transcription. Importantly, we could show
that depletion of the AP1 family member JUN, at the top of the TF network,
reverses the senescence clock (Mart́ınez-Zamudio et al., 2019). As shown
in Figure 2.10B, the transcriptional state of SnCs at day 6 after RAS-OIS
induction submitted to JUN siRNA-mediated inhibition is similar to the state
of cells 3 days after RAS over-expression.

2.4 Conclusions and Perspectives

In order to describe the molecular machinery controlling CS expression, I
used time course epigenomic and transcriptomic data to depict co-binding TF
interactions over time. My analysis revealed a layered hierarchical network,
with TF activity increasing in dynamicity and specificity over time. Early
binding activity is shared across gene modules and performed by AP1 pioneer
TFs, able to displace nucleosomes and recruit settlers and migrants, that
present a lower chromatin affinity and fine-tune gene expression (Knaap and
Verrijzer, 2016; Voss and Hager, 2014).

Despite a comprehensive analysis of the TF landscape at chromatin, our
analysis only covers 519 TFs currently registered at the JASPAR database
(Khan et al., 2017). The number of TFs in humans is estimated between
1700 and 1900 distinct proteins (Vaquerizas et al., 2009). My developed
methodology, associated to more comprehensive datasets, will be able to
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Figure 2.10: SnCs TF perturbation transcriptional response. [A]

Venn diagram showing the number of target genes differentially expressed under

TF inhibition by siRNA when compared to unperturbed SnC. [B] PCA depicting

the transcriptome of cells undergoing CS (in red) and SnCs two days after siRNA-

mediated TF inhibition of JUN, ETS1 and RELA. (Mart́ınez-Zamudio et al.,

2019).

provide a more comprehensive description of the hierarchical TF activity as
public databases become more complete. Furthermore, it can also be applied
in other studies where the order at which TF bind to the chromatin is relevant,
such as embryonic development or cell differentiation.

This work describes the evolution of TF chromatin binding only at distal
cis-regulatory regions, termed enhancers. We made this choice based on pre-
vious reports that gene expression changes correlate with a dynamic enhancer
landscape, while promoter activity remains constant even in situations where
transcriptional changes are observed (Goode et al., 2016; Tasdemir et al.,
2016; Lara-Astiaso et al., 2014). Additionally, our time course epigenomic
data also revealed a considerable increase in active enhancer regions during
CS onset (Mart́ınez-Zamudio et al., 2019). Still, no comprehensive analysis of
the TF activity at promoter level has been performed in the context of CS as
described for enhancers and may be a subject of future studies.

An interesting future application of this analysis involves the inference
of the grammar underlying TF organization (Dunn, 2017; D’Ulizia et al.,
2011). Mart́ınez-Zamudio et al. (2019) determined the most frequent TF
associations by applying a text-mining technique, integrating those results
with the chromatin state changes in CS. Grammar inference consists of finding
a set of rules that are able to derivate a sequence of tokens by the expansion
of those rules (Chomsky, 1957). As we collect time course data on TF
chromatin binding, we will be able to apply grammar inference techniques
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in order to model how TF interact and the context dependency of those
interactions. Furthermore, this knowledge may orient DNA sequence editing
(Cong et al., 2013) therapies by targeting cis-regulatory regions and rewiring
the gene regulatory network (GRN) logic, instead of the genome coding
regions themselves (Sanz et al., 2017; Vaz-Drago et al., 2017; Diederichs et al.,
2016).

This study provides a deeper understanding of how TFs govern CS gene
expression, by highlighting the main factors shaping the chromatin in a time-
dependent manner. Further studies on our proposed candidates will lead to
new possibilities of senescence-modulating therapies in order to treat ARPs
and cancer.
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2.5 Materials and methods

2.5.1 Cell culture

WI38 fibroblasts were cultured as described by Mart́ınez-Zamudio et al. (2019).
Cells undergoing RAS-induced senescence were collected at six timepoints (0,
24, 48, 72, 96 and 144 h). Additionally, we harvested WI38 fibroblasts 0, 12,
24, 48, 72 and 96h after fethal bovine serum (FBS) withdrawal, leading to a
quiescent state of reversible cell cycle arrest.

2.5.2 Gene expression analysis

RNA purification and analysis was performed as reported by Mart́ınez-
Zamudio et al. (2019). Briefly, the RNA from two replicates for each sample
were purified and analyzed using Affymetrix Human Transcriptome Arrays
2.0. After preprocessing and normalization, genes with differential expression
associated to both time and treatment (RAS induction or quiescence entry)
were clustered using the Weighted Gene Correlation Analysis (WGCNA) tool
(Langfelder and Horvath, 2008), resulting in seven modules of co-expressed
genes.

2.5.3 Histone modification ChIP-seq and chromatin state
differential analysis

Fibroblasts undergoing OIS after 0, 72 and 144h were collected for histone
modification ChIP-seq and sequencing and data preprocessing was performed
as previously described (Mart́ınez-Zamudio et al., 2019). Two biological
replicates were collected for each timepoint and chromatin immunoprecipitated
using antibodies against H3K4me1, H3K4me3, H3K27Ac and H3K27me3
was sequenced. Preprocessed and normalized reads were used to classify
genomic regions into distinct states, accordingly to the observed combination
of histone modifications. Regions containing H3K4me1 were considered as
putative enhancers, while regions containing H3K4me3 were classified as
promoters. H3K27Ac is a mark of active cis-regulatory regions (enhancers or
promoters), while H3K27me3 characterizes Polycomb repressed chromatin.

2.5.4 ATAC-seq

DNA accessibility data was collected, preprocessed and normalized for the
six timepoints mentioned in section 2.5.1 of WI38 fibroblasts entering CS, as
documented in Mart́ınez-Zamudio et al. (2019).
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2.5.5 Transcription factor footprinting

The binding of TFs to the chromatin was inferred in silico for a set of 310
TFs retrieved from the JASPAR database (Khan et al., 2017), using the PIQ
tool (Sherwood et al., 2014) as performed by (Mart́ınez-Zamudio et al., 2019).

2.5.6 Transcription factor chromatin binding proper-
ties

With the aim of characterizing the chromatin binding properties of each
TF, I computed the dynamicity, the total number of bound regions, the
fraction of bound regions at enhancers and the fraction of bound regions
before stimulation.

Dynamicity

I quantified the dynamicity of a TF accordingly to the following expression:

d(A) =
∑

t
nt(A)
TRt∑

t
tt(A)
TRt

where d(A) is the dynamicity of TF A; nt(A) is the number of regions
bound by A for the first time at time point t; tt(A) is the number of regions
bound by A at time point t and TRt is the number of regions bound by any
TF in time point t. The factor TRt was added to the expression to account
for differences in the amount of reads sequenced by the Assay for transposase
accessible chromatin (ATAC-seq)-seq protocol and normalizes the number of
regions bound by TF A based on the number of bound regions detected at its
corresponding time point. Notice that, if all samples have the same amount
of TF binding events, this expression is reduced to the quotient of the sum of
the regions first bound at each time point by the sum of all regions bound by
the TF at each time point.

By using this definition, the function d(A) maps the activity of a TF to
the interval [ 1

Nt
, 1], where Nt is the number of time points in the time course,

and is higher as the TF binds to previously not bound regions or leaves
already bound regions. In the case of a TF that, for every time point, leaves
all its previous bound regions and binds to only regions not previously bound,
the numerator will be identical to the denominator, leading to d(A) = 1.
Alternatively, if a TF remains on the same regions it has bound at t = 0,
then

∑
t nt = n0 and

∑
t tt = Nt ∗ n0, resulting in d(A) = 1

Nt
. Additionally,

one can observe that, if the same region is bound by TF A in different time
points, it will contribute once to the numerator of the expression, while it will
contribute to the denominator once for each time point it has been bound to.
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Total number of bound regions

The number of bound regions was calculated by the following the expression:

R(A) =
∑

t
nt(A)
TRt
×

∑
t TRt

Nt

where R(A) is the normalized number of bound regions by TF A during
the time course and nt(A), TRt and Nt are defined as in section 2.5.6. The
first factor is a normalized sum of the regions bound by TF A, counting each
region only once. The second factor scales the result by the mean of the
number of regions bound by all TFs on each day.

TF percentage of binding at enhancers

The ratio of binding at enhancers, relative to all cis-regulatory regions, was
assessed as:

PE(A) = RE(A)
RE(A)+RP (A)

where PE(A) is the percentage of bound regions in enhancers for TF A;
RE(A) is the number of regions bound by TF A marked as enhancers and
RP (A) is the number of regions bound by TF A marked as promoters.

TF prestimulation

For each TF, I computed the ratio of regions bound at Day 0, relative to the
number of regions bound during the whole time course. I used the following
definition for the prestimulation factor for each TF:

p(A) =
nD0(A)

TRD0∑
t
nt(A)
TRt

where p(A) corresponds to the prestimulation of TF A and nt(A) and TRt

are defined as in section 2.5.6. The numerator of this expression corresponds
to the normalized number of regions bound by TF A at t = D0, while the
denominator is the normalized number of regions bound by TF A during the
whole time course. Notice the denominator also corresponds to factor R(A)
in section 2.5.6 before scaling.
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TF binding characteristics and transcriptional modules

In order to characterize the binding activity of each TF for the different gene
modules, I performed a hierarchical clustering of the data relative to the
dynamicity and the number of bound regions. The TFs were clustered based
on the Euclidean distance of both parameters for each gene module as depicted
in Figure 2.6, which was generated with the help of the ComplexHeatmap (Gu
et al., 2016) and circlize (Gu et al., 2014) R packages. During the computation,
I used the mean of the ratio dynamicity - number of bound regions to reorder
the dendrogram branches, as implemented by the R package vegan (Oksanen
et al., 2019).

I assessed the significance of pioneer (respectively, migrant) TF enrichment
at the top (respectively, bottom) of the ranked clustered list by employing a
SEA implemented in the package fgsea (Sergushichev, 2016).

2.5.7 TF chromatin binding hierarchy network

In order to assess the TF chromatin binding hierarchy, i.e., TFs required for
the binding of a specific TF, we generated a network for each gene module
depicting the precedence of TF chromatin binding. The algorithms mentioned
were implemented in R (R Core Team, 2017) and all networks were visualized
in CytoScape (Shannon et al., 2003).

Computing precedence relationships

The edges in the generated networks represent the precedence relationship
of TFs: an oriented edge from TF A to TF B, represented as (A, B), means
that A was present in at least 30 % of the cis-regulatory regions bound by
B at the same instant of before (Garber et al., 2012). To account for the
difference in the amount of reads sequenced for each sample in the ATAC-seq,
we normalized the number of regions bound based on the first day they
appeared. The weight of an edge from A to B is given by:

wA→B =
∑

t
Rt(A,B)

Rt∑
t
Rt(B)
Rt

where Rt(B) stands for the number of regions first bound by TF B at
time point t; Rt(A,B), for the number of regions first bound by TF B at time
point t that were bound by TF A at time point t or before; and Rt represents
the total number of regions bound by any TF in time point t.

The networks were handled using the igraph R package (Csardi and Nepusz,
2006).
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Network simplification

Aiming to analyze the hierarchical relationship of TFs and simplify the
interpretation of the network, we performed two operations over each gene
module network: Vertex Sort (Jothi et al., 2009) and transitive reduction
(TR) (Aho et al., 1972).

Briefly, the vertex sort algorithm assigns two parameters for each node
in the network: the distance, in edges, between the node and the bottom
of the network; and the distance between the node and the top of the
network. Combined, those parameters allow for the topological ordering of
the network, which consists in listing its nodes such that nodes at the top
precede downstream nodes. We then defined the ’top layer’ as the set of
nodes with lowest distance to the top of the network, i.e., nodes that have
no incoming edges or nodes that assemble a SCC (Tarjan, 1972) with all
upstream nodes. Analogously, the ’bottom layer’ was defined as the set of
nodes with lowest distance to the bottom of the network, i.e., nodes with no
outgoing edges or that form a SCC with all downstream nodes. The ’core
layer’ comprises nodes that link top layer and bottom layer. We also provide
a R implementation of Vertex Sort (Mart́ınez-Zamudio et al., 2019).

The transitive reduction (TR), in turn, simplifies the network visualization
by generating the network with the smallest number of edges that keeps the
reachability of the original network (Aho et al., 1972). In other words, if
there’s at least one path between any two nodes in the original network, there
will be a path between those nodes in the network’s TR. The TR is performed
by removing any edge (A, C) when the edges (A, B) and (B, C) exist.

Network visualization

In order to visualize the network, I exported the adjacency matrices in the R
environment to CytoScape (Shannon et al., 2003) using the CyREST API
(Ono et al., 2015). The networks’ layout and style were automated with the
help of packages RCy3 (Shannon et al., 2013), r2cytoscape (Pai et al., 2017)
and RJSONIO (Lang, 2014).

Network validation

We validated our approach by comparing the network produced when the ChIP-
seq data produced by (Garber et al., 2012) is applied to our software. Data was
retrieved from Gene Expression Omnibus (GSE36099) and preprocessed as
described in section 2.5.3. We computed the precedence relationships among
TFs and generated the TF binding hierarchy networks for visualization. Atf4



CHAPTER 2 34

and Runx1 were removed from the analysis because data was available for
only one and two timepoints, respectively.

We compared the produced TF hierarchy network with the network shown
in Garber et al. (2012) (Figure 2.8A and B) using two metrics: sensitivity
and specificity. Sensitivity is calculated as the ratio of edges described in this
study over the edge number sum for both networks. Specificity is defined
as the ratio of the number of edges that were described to not exist in the
network produced by our software over the number of edges described to not
occur in any of both studies.

2.5.8 Proportion of incoming edges based on the clas-
sification of the TF source node

Aiming to assess the hierarchy of TFs accordingly to their chromatin de-
pendence and chromatin opening index, we computed the number of edges
connecting the sets of all TFs with a given classification for each gene module.
We then divided those values by the number of edges that target TFs with a
specific classification. Hence, the proportion of incoming edges based on TF
classification is given by:

PC1→C2 = |WC1→C2|∑
K |WK→C2|

where PC1→C2 is the proportion of edges from nodes with classification
C1 to nodes with classification C2; WC1→C2 is the set of edges from nodes
with classification C1 to nodes with classification C2; K can represent either
pioneer, settler or migrant and | · | means the cardinality of a set, i.e., the
number of elements it contains.

2.5.9 Transcription factor hierarchy networks overlap

To analyze the similarity between the networks for different transcriptional
gene modules, I generated a 7-set Chow-Ruskey diagram (Chow and Ruskey,
2003), where each set contains the edges present in the TF hierarchy network
relative to a gene module. Edges in two different networks are considered
equal if they link nodes corresponding to the same TFs in their respective
networks. The intersections of all possible combinations was computed with
the use of the R package Vennerable (Swinton, 2019). The same procedure
was repeated for specific subsets fo each network, comprising of edges at their
top, core and bottom layers, as defined in section 2.5.7.
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3.1 Introduction

In chapter 2, I described how TFs associate and impact dynamic gene expres-
sion changes during CS. TFs activity is hierarchical, with pioneer TFs making
closed chromatin accessible to settler and migrant TFs, which regulate cell
fate decision. TF activity also responds to changes in the cell metabolic state,
as their conformation can be affected by PTMs and influence their function.
As mentioned in section 2.1.1, hypophosphorylated RB binds to chromatin,
inhibiting E2F targets (Trimarchi and Lees, 2002). Low ATP levels induce p53
phosphorylation by AMP-activated protein kinase (AMPK), stabilizing p300
binding and the deposition of acetylation marks on the chromatin (Maclaine
and Hupp, 2009; Jones et al., 2005). AP1 and NF-κB deacetylation by SIRT1
reduces their transcriptional activity (Xie et al., 2013).

The metabolic state of a cell also modulates gene expression by regulating
the epigenome (Tatapudy et al., 2017; Tran et al., 2017; Knaap and Verrijzer,
2016). SIRT, which is activated by high NAD+ levels and upregulated by
physical activity, reduces histone acetylation levels, acting as a transcriptional
repressor (Grabowska et al., 2017; Xie et al., 2013; Bori et al., 2012). The
activity of the families of demethylases Jumonji and Ten-Eleven Transcription
(TET), which reduce DNA and histone methylation, depends on metabolic
cofactors such as αKG and uridine diphosphate N-acetylglucosamine (UDP-
GlcNAc) (Lewis and Hanover, 2014; Kooistra and Helin, 2012).

As mentioned in section 1.1, CS can arise as a response to a variety of
stress stimuli, including proliferative exhaustion, DD and super-physiological
activation of oncogenes (Gorgoulis et al., 2019; McHugh and Gil, 2018;
Muñoz-Esṕın and Serrano, 2014; Campisi and Fagagna, 2007). Consequently,
the phenotypic transformations occurring in SnC are stressor-dependent,
presenting both common and unique response features.

3.1.1 Causes of cellular senescence

Similarly to the aging process itself, CS is a complex phenomenon, controlled
by a variety of cross-talking pathways. As mentioned before, Allsopp et
al. (1992) observed the first type of CS to be a consequence of telomere
integrity loss during cell replication. In addition, several phenomena have
been shown to induce CS, eliciting distinct responses depending on the nature
of the inducer (McHugh and Gil, 2018; He and Sharpless, 2017; Muñoz-Esṕın
and Serrano, 2014; Van Deursen, 2014; Campisi and Fagagna, 2007). CS
induction is not restricted to stochastic variation in the cell and includes
genetic programs such as wound healing and development, culminating with
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the dephosphorylation of RB, as described in section 2.1.1 (Narita et al., 2003;
Johnson and Walker, 1999; Helin, 1998). The known molecular mechanisms
that mediate CS are summarized in Figure 3.1.

Figure 3.1: Molecular causes of CS (Muñoz-Esṕın and Serrano, 2014).

Replicative senescence

Telomeres constitute the chromosome extremities, consisting of 6 base pair (bp)
sequence (TTAGGG) repetitions (Harley et al., 1990), with a single-strand 3’
overhang in mammals (Schmutz and Lange, 2016; Palm and Lange, 2008).
Telomere extremities are organized in a structure called t-loop, in which the
3’ overhang invades the telomeric double-stranded DNA (Schmutz and Lange,
2016; Palm and Lange, 2008). T-loops are maintained by telomeric repeat
binding factor 2 (TRF2), a subunit of the Shelterin complex, which protects
telomeres from DD sensors (Schmutz and Lange, 2016; Palm and Lange,
2008). Telomere length can differ in different tissues, ranging from 3 kbp to 17
kbp, and is reduced at each replication cycle (Harley et al., 1990). Telomere
shortening leads to a displacement of TRF2, exposing the telomere terminus to
the DNA repair machinery (Schmutz and Lange, 2016; Palm and Lange, 2008;
Fagagna, 2008). The PI3K-related kinases ATM and ATR respond primarily
to double-strand break (DSB) and single-strand break (SSB), respectively
(Palm and Lange, 2008), and both can phosphorylate the histone H2A histone
family member X (H2AX) into γ-H2AX (Schmutz and Lange, 2016; Palm and
Lange, 2008; Fagagna, 2008; Campisi and Fagagna, 2007). γ-H2AX recruits a
variety of factors, including MDC1, MRE11 and TP53BP1 (Takai et al., 2003;
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Paull et al., 2000), leading to the recruiting of ATM, characterizing a positive
feedback response and the formation of structures called DNA segments with
chromatin alterations reinforcing senescence (DNA-SCARS) (Klement and
Goodarzi, 2014; Rodier et al., 2011; Fagagna, 2008). Additionally, ATM
and ATR can phosphorylate CHK1 and 2, which phosphorylate p53 (Bartek
and Lukas, 2003). p21 transcription (Fagagna, 2008; Herbig et al., 2004).
As mentioned in section 2.1.1, p53/p21 activation arrests cell proliferation
together with RB and E2F (Afshari et al., 1996; Dynlacht et al., 1994).

DNA Damage-induced senescence

DDR is not limited to telomeres and can be triggered by other agents, including
drugs, hydrogen peroxide (H2O2) and irradiation (McHugh and Gil, 2018;
Klement and Goodarzi, 2014; Herbig et al., 2004; Sedelnikova et al., 2004).
Doxorubicin and etoposide are drugs used in cancer treatment, interfering with
DNA integrity through several mechanisms, and exposure to moderate doses
has been reported to cause CS (Bielak-Zmijewska et al., 2014; Roberson et al.,
2005). Likewise, sublethal doses of H2O2 also damages chromatin structure
and induces senescence through the p53/p21 pathway (De Magalhães et al.,
2004; Poele et al., 2002). Supraphysiological oxygen levels induce CS in mouse
embryonic fibroblasts through DNA damage (Parrinello et al., 2003). Rodier
et al. (2011) induced the formation of DNA-SCARS by X-ray irradiation,
while fibroblasts exit cell cycle and overexpress p53 and several CS markers
when exposed to utra-violet radiation (UVB) (Debacq-Chainiaux et al., 2005)
and gamma rays (Di Leonardo et al., 1994).

Oncogene-induced senescence

CS can also be induced by gene mutations that transform healthy cells
into cancer cells (He and Sharpless, 2017; Muñoz-Esṕın and Serrano, 2014;
Campisi and Fagagna, 2007). The genes subject to this phenomena are
denominated oncogenes, a category with more than 50 known genes (Gorgoulis
and Halazonetis, 2010). OIS was first discovered in cultured cells by Serrano
et al. (1997), and later also observed in vivo in mice following oncogenic RAS
activation (Sarkisian et al., 2007). RAS-OIS is followed by a short period of
hyper-proliferation that triggers a DDR and is dependent on both ATM, p16
and p53 expression (Di Micco et al., 2006).

RAF is an oncogene directly downstream of RAS that also induces CS
when over-expressed (Dhomen et al., 2009; Zhu et al., 1998). Its mutated
version BRAFV600E (where a Valine at position 600 is replaced by glutamic
acid) is associated with the formation of benign naevi (Michaloglou et al.,
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2005) that can evolve into malignant tumors when associated to mutations in
the p53 gene or CDKN2A locus (Dankort et al., 2007). Furthermore, Mitogen-
Activated Protein Kinase Kinase 1 (MEK) and Extracellular Signal-Regulated
Kinase (ERK), which act downstream of RAS and RAF, also induce CS, in
addition to AKT, CCNE, Hsp72, Myc and PTEN (Liu et al., 2018b; Gorgoulis
and Halazonetis, 2010; Gabai et al., 2009).

Stress and other senescence inducers

CS can arise as a response to reactive oxygen species (ROS) (Muñoz-Esṕın and
Serrano, 2014; Campisi and Fagagna, 2007). In human fibroblasts, RAS-OIS
in a hypoxic enviroment elicits a weaker p21 response, avoiding the onset of
the senescent phenotype (Lee et al., 1999). p21 over-expression increases ROS
and ceases proliferation of endometrial adenocarcinoma, and ROS inhibition
rescues the tumor from CS (Macip et al., 2002). RAS expression and envi-
ronmental stresses also activate the P38MAPK pathway during CS, which is
prevented upon pharmacological inhibition (Borodkina et al., 2014; Debacq-
Chainiaux et al., 2010). In human fibroblasts, RAS expression also promotes
mitochondrial biogenesis and ROS production, which is only abrogated by
inhibition of both p53 and RB (Moiseeva et al., 2009). Furthermore, inhibition
of the mitochondrial chaperone Heat Shock 70kDa Protein 9 (HSPA9) or
SIRT3/5 activates p53, promoting a senescent phenotype (Wiley et al., 2016;
Yaguchi et al., 2007; Wadhwa et al., 2002).

3.1.2 The cellular senescence metabolome

SnCs undergo considerable metabolic reprogramming and are highly metabol-
ically active, despite the suspension of their proliferating activity (Gorgoulis
and Halazonetis, 2010; McHugh and Gil, 2018; Wiley and Campisi, 2016). Con-
versely, metabolic alterations also cause and drive the CS program (McHugh
and Gil, 2018; Van Deursen, 2014). The main metabolic changes are depicted
in Figure 3.2.

AMPK induces CS by p53 phosphorylation, as a response to high AMP/ATP
and ADP/ATP levels, reducing ATP consumption and increasing mitochon-
drial biogenesis by activating PCG1α (Hardie et al., 2012; Jones et al., 2005).
Overall, p53 antagonizes glycolysis by reducing glucose intake and inhibiting
pyruvate production, while promoting fatty acid oxydation (FAO) (Wiley
and Campisi, 2016). These effects are balanced by the transcriptional activity
of its downstream effector RB (Takebayashi et al., 2015). Therefore, SnCs
display a mostly glycolytic phenotype, producing lactate and maintaining
low NAD+/NADH ratios (Wiley and Campisi, 2016; Lee et al., 2012; Veer
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Figure 3.2: CS metabolic reprogramming (Wiley and Campisi, 2016).

et al., 2007). NAD+ is both a co-factor for SIRTs and for Poly-ADP-ribose
polymerase 1 (PARP1), which activate the SASP regulator NF-κB (Gorgoulis
et al., 2019; Ohanna et al., 2011; Kim et al., 2005). Interestingly, the Mi-
tochondrial dysfunction-associated senescence (MiDAS) doesn’t secrete key
inflammatory factors as other CS inducers, such as IL1β, IL6, IL8 and VEGF
(Correia-Melo et al., 2016; Wiley and Campisi, 2016).

The SASP also relies on increased lysosome activity during CS (Herranz
et al., 2015; Narita et al., 2011). Lysosomes are organelles that metabolize
other damaged organelles and proteins, providing the building blocks for
the secreted molecules (Hernandez-Segura et al., 2018; Wiley and Campisi,
2016; Narita et al., 2011). An increased lysosomal content can be verified
by the accumulation of senescence-associated β-galactosidase (SA-β-Gal),
one of the most used biomarkers for detecting SnC (Gorgoulis et al., 2019;
Hernandez-Segura et al., 2018). Despite higher lysosomal number and size,
SnCs present lower autophagy, impairing mitochondrial renewal and increasing
ROS levels (Gorgoulis et al., 2019; Park et al., 2018). This reduced activity is
attributed to a higher pH (6.0 instead of 4.5-5), suboptimal for degradation
performance (Park et al., 2018; Lee et al., 2006). Additionally, mTOR is a
major autophagy suppressor, and its inhibition by rapamycin reduces SASP
factors levels, including IL6 and IL8 (Narita et al., 2011).

FAO is also affected in SnCs. Carnitine palmitoyltransferase (CPT1),
the outer mitochondrial membrane enzyme that limits the rate of fatty
acid synthesis (FAS), is inhibited in OIS, reducing oxygen consumption
and impairing the expression of IL6 (Quijano et al., 2012). 5-Lipoxygenase
(5LO), an enzyme that catalyzes ROS production from arachidonic acid (AA),
promotes CS through a p53-mediated mechanism (Catalano et al., 2005).
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Deoxyribonucleotides (dNTP)s are produced by ribonucleotide reductase
(RRM2) from nucleotides and consist of the monomers that compose the DNA
(Wiley and Campisi, 2016; Aird et al., 2013) . RRM2 is an E2F target (see
section 2.1.1), and therefore its expression is decreased in CS, diminishing the
availability of dNTP for DNA repair mechanisms. Additionally, its inhibition
alone can induce CS, while its addition to SnCs can recover proliferation
(Aird et al., 2013).

Notably, most metabolic changes associated with CS were also reported
to modulate lifespan in several animal models when perturbed, mediating
the aging benefits conferred by dietary restriction (DR) (Antikainen et al.,
2017; Grabowska et al., 2017; Carmona and Michan, 2016; Moskalev et al.,
2014; López-Ot́ın et al., 2013). The anti-diabetes drug metformin binds
to AMPK (Zhang et al., 2012) and is known to extend longevity of female
mice by 20 % (Anisimov et al., 2008). In humans, metformin is used not
only for the treatment of diabetes, but also cancer (Gallagher and LeRoith,
2011). Rapamycin, a known inhibitor of mTOR, also promoted increased
longevity in mice (Zhang et al., 2013; Harrison et al., 2009) and is currently
employed in the treatment of kidney diseases, tumours and as an enhancer
of immune function in immunosuppressant therapies (Saxton and Sabatini,
2017; Johnson et al., 2013). In C. elegans, sir-2 overexpression results in
50 % lifespan increase (Tissenbaum and Guarente, 2001). Additionally, sir-
2 is required for a 15 % longevity extension caused by a NAD+-rich diet
(Hashimoto et al., 2010).

3.1.3 Metabolomics

Metabolomics is a rapidly advancing field that produces a quantitative pro-
file of many small molecules (up to 1kDa) present in a biological sample
(Gorrochategui et al., 2016; Alonso et al., 2015). The metabolic state of a
cell integrates environmental cues and is the primary sensor that cells use in
fate decision, modulating the activity of epigenomic modifying enzymes and
being the substract for TF PTMs (Tatapudy et al., 2017; Tran et al., 2017;
Knaap and Verrijzer, 2016). Metabolite levels impact cell fate by modulating
the epigenome and the activity of kinases, as mentioned previously (Tran
et al., 2017; Knaap and Verrijzer, 2016). However, the metabolomic data
analysis still remains a challenge to-date, and only a small fraction of the
acquired data can be confidently associated with a known compound and be
biologically interpreted (Schymanski et al., 2015). Figure 3.3 displays the
basic steps in metabolomics data analysis.

The major techniques for acquisition of small molecular species abun-
dances are nuclear magnetic ressonance (NMR) and Mass spectrometry (MS)
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Figure 3.3: Metabolomics studies pipeline overview (Alonso et al.,
2015).

(Alonso et al., 2015). NMR studies consist of stimulating samples with an
electromagnetic field and measuring the radiation emitted by its protons
in order to characterize its containing compounds (Bothwell and Griffin,
2011). This technique provides quantitative concentration of the metabo-
lite abundances, at the cost of lower sensitivity when compared to MS. MS
methods are based on launching charged ions into an electromagnetic field
and inferring their masses from their displacement amplitude into the field,
with heavier molecules moving slower than lighter molecules (Gorrochategui
et al., 2016; Mackay et al., 2015). This approach yields a comprehensive
spectrum of the sample, which is then de-convoluted and annotated into its
constituents. Since several distinct compounds possess the same mass value,
the sample is first injected in a chromatographic column, which will elute
each metabolite at a distinct rate, thus eliminating a possible ambiguity in
data analysis (Gorrochategui et al., 2016; Alonso et al., 2015; Mackay et al.,
2015). Chromatographic separation techniques include gas chromatography
(GC) or liquid chromatography (LC). While GC allows for a reproducible and
sensitive acquisition, it only measures volatile compounds (Gorrochategui
et al., 2016). Hence, high performance liquid chromatography (HPLC) and
ultra performance liquid chromatography (UPLC) separation yield more
comprehensive results (Mackay et al., 2015).

Data processing involves the identification of peaks in the spectral raw
data, which are recorded in a feature matrix that lists the intensity of each
identified peak in each sample (Gorrochategui et al., 2016; Alonso et al.,
2015). The detected abundance of each compound depends on multiple
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factors associated to its physico-chemical parameters and affinity with the
solvent used at chromatographic separation phase (Kebarle and Verkerk,
2009). Even molecules with same concentration in a sample can produce
distinct readouts (Cech and Enke, 2001). Additionally, the acquired results
are sensitive to external influences, leading to technical variation that can be
confounded with the biological effects from the applied treatment (Rusilowicz
et al., 2016; Wehrens et al., 2016; Thévenot et al., 2015). Figure 3.4 illustrates
how the measured abundance for a specific metabolite produced by Arabidopsis
thaliana can drift as samples are injected into the spectrometer (Wehrens
et al., 2016). In order to assess and correct the read values for those variations,
quality control (QC) samples are injected at regular positions. QC samples
can be composed of a set of representative metabolites that will act as a gold
standard for later processing steps. In the case of untargeted studies, the QC
samples can be produced as a mixture of the biological sample. In case of
large-scale studies that make the acquisition in a single run impossible, those
batch effects (BEs) can be corrected by the addition of common samples
to the distinct batches and the use of computational tools, such as Combat
(Thévenot et al., 2015; Johnson et al., 2007).

Figure 3.4: Batch correction of MS data. Intensity levels for an Ara-

bidopsis thaliana unidentified metabolite measured in two distinct batches. Before

correction, the detected levels drift to lower values as samples are injected into the

mass spectrometer. The red lines indicate a linear fit of the intensities detected

at quality control (QC) samples, which correspond to the same input and are

represented as red dots. Additionally, batches B1 and B2 have distinct mean values

for the same QCs. Batch correction (BC) techniques normalize both the signal

drift and the batch averages based on the QCs, making the data acquired from

distinct batches comparable (Wehrens et al., 2016)

LC-MS methods are suitable for both targeted and untargeted metabolome
analysis (Gorrochategui et al., 2016; Alonso et al., 2015; Schymanski et al.,
2015). In targeted analysis, a small set of metabolites previously characterized
and annotated is studied. This strategy focus on a function or pathway of
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interest and is more sensitive than untargeted analysis. The untargeted
approach results in a more comprehensive and global description of the
samples composition, generating a higher amount of data that includes
uncharacterized metabolites (Gorrochategui et al., 2016; Alonso et al., 2015).
The confidence in a given metabolite annotation is classified in five distinct
levels, as depicted in Figure 3.5. Compounds with only known mass of interest
are classified as Level 5 annotation, while a determination of a molecular
formula is labeled as identification of Level 4 (Schymanski et al., 2015). A
Level 1 annotation consists of an identified molecule which spectra is similar
to those of a purified metabolite.

Figure 3.5: Metabolite identification confidence levels (Schymanski
et al., 2015).

Finally, the tools for metabolomics data analysis and biological interpreta-
tion are common to most bioinformatics studies (Gorrochategui et al., 2016;
Alonso et al., 2015). Univariate statistical methods, such as t test or Analysis
of Variance (ANOVA), lead to the identification of compounds with a statisti-
cally significant abundance in distinct conditions of interest (Thévenot et al.,
2015; Quijano et al., 2012). Furthermore, multivariate methods, including
partial least squares - discriminant analysis (PLS-DA) and PCA, highlight the
molecules and are ideal for studies comparing distinct conditions (Di Gangi
et al., 2016; Gromski et al., 2015; Abdi and Williams, 2010). Signaling
pathways associated to differentially accumulated metabolites are identified
by enrichment analysis.

In this work, I integrated time-resolved metabolomic profiles derived
from cells undergoing CS induced by oncogenic RAS and RAF, replicative
senescence and DD (etoposide), adding quiescent fibroblasts as bona fide
control. Among the metabolites that change the most in SnC were αKG and
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UDP-GlcNAc, known cofactors for chromatin modifying enzymes that regulate
gene expression (Kaochar and Tu, 2012). My comprehensive metabolome
analysis provides a deeper understanding of CS and has the potential to lay
bare previously unknown vulnerabilities of SnCs that may be exploited for
therapeutic ends to promote healthspan.
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3.2 Results

3.2.1 Biological discoveries

As many regulatory programs are triggered in response to environmental
cues, cell fate decisions are strongly influenced by the metabolic state (Tran
et al., 2017; Knaap and Verrijzer, 2016). For instance, the metabolite UDP-
GlcNAc is known to be involved in histone modifications and influences
the function of the TET family proteins, involved in DNA demethylation,
however, the underlying mechanism is still debated (Lewis and Hanover,
2014). TET function also depends on the presence of the aforementioned
αKG (Schvartzman et al., 2018). Acetyl-carnitine, which is produced in
the mitochondria, is the source of acetyl groups for the activity of histone
acetyltraferases (HATs) (Madiraju et al., 2009). Hence, the metabolome
regulates the cell’s epigenetic state and controls, along with the TF hierarchy,
gene expression.

Aiming to generate a comprehensive description of metabolic changes
associated with CS and integrate these changes with transcriptome and
epigenome, we performed time-resolved metabolic profiling of WI38 fibroblasts
undergoing replicative, oncogene-induced (RAS and RAF) and DNA damage
induced senescence (etoposide). In addition, we used quiescent fibroblasts
as control. Furthermore, we also collected the metabolome of myoblasts
undergoing RAS-OIS to compare how different cell types respond to the same
inducer. The time points collected for each dataset are represented in Figure
3.6A.

The data acquired for the 118 identified metabolites is shown in Figure
3.6B-G. Each dataset was clustered independently by using the WGCNA
tool (Langfelder and Horvath, 2008) and the obtained modules were merged
according to the trend of their average temporal profiles. In replicative
senescence, I observed that the metabolites followed two distinct trends
(Figure 3.6B). A group of 54 metabolites, including carnitine, αKG, glutamate,
glutamine ad UDP-GlcNAc, is accumulated in senescent cells. This increase
happens sharply at the end of the cells replicative life, as shown in the ”Late
accumulated” metabolite module. The second main trend in the metabolome
of replicative senescence is characterized by an oscillatory behavior over the
whole time course. This group is identified as ”Oscillatory” in Figure 3.6B
and contains metabolites such as lactate, pyruvate, nicotinamide (NAM),
palmitoleic acid and AA. When submitted to DNA damage, most identified
metabolites are accumulated, with the exception of NAM, aspartate and
myristic acid (Figure 3.6C). Upon FBS withdrawal, fibroblasts enter in a
quiescent state, characterized by a cell cycle arrest that can be reversed by
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Figure 3.6: The CS metabolome is dynamic. [A] Experimental design.

We collected time course data of WI38 cells undergoing CS due to RAS overex-

pression, RAF overexpression, DNA damage induced by addition of etoposide

and replicative exhaustion. We also acquired the metabolome of cells entering

quiescence. Additionally, we also performed a time course experiment on myoblasts

undergoing RAS-OIS. [B-G] Heatmaps depicting the metabolome evolution in each

experiment. [B] Replicative senescence. [C] DNA damage-induced CS. [D] WI38

entering quiescence. [E] RAF-OIS. [F] RAS-OIS. [G] Myoblast RAF-OIS.

serum addition. I observed that this transition is marked by a depletion of
18 identified metabolites, including carnitine, palmitoleic acid and AA, and
the increase of 47 identified metabolites, containing αKG, UDP-GlcNAc and
lactate (Figure 3.6D). Interestingly, the metabolome dynamics only stabilized
after 72h, while we observed in our laboratory that the transcriptome dynamics
reaches its regime state after 24h Mart́ınez-Zamudio et al. (2019). In an OIS
context, RAF overexpression, 48 identified metabolites were depleted, such as
AA, NAM, palmitoleic acid and glutamate (Figure 3.6E). αKG and carnitine



CHAPTER 3 48

increase over time, while UDP-GlcNAc peaks 4 days after stimulation. In
RAS-induced senescence, 73 metabolites accumulated over time, including
AA, UDP-GlcNAc, αKG and palmitoleic acid (Figure 3.6F). I also observed
a transient accumulation of 22 identified metabolites, comprising palmitic
acid. NAM is depleted over time. As fibroblasts, myoblasts undergoing RAS-
induced senescence are characterized by a general increase in the identified
metabolome (Figure 3.6G). AA, palmitoleic acid and myristic acid are depleted
10 days after stimulation, but their levels increase in late timepoints. UDP-
GlcNAc, αKG, carnitine, palmitic acid and NAM are accumulated over time.

In order to integrate those results into a comprehensive picture of CS, I
generated a riverplot (Weiner, 2017) with pairwise comparisons of each dataset,
shown in Figure 3.7A. Most of the metabolites present in replicative SnCs
are also accumulated upon DNA damage, with the exception of aspartate,
which is decreased in the latter. This observation is in line with the fact
that replicative senescent cells reach this stage due to telomere shortening,
which also triggers DDR (Allsopp et al., 1992). When comparing RAS and
RAF OIS, all metabolites accumulating upon RAF overexpression, along with
the transiently accumulated UDP-GlcNAc, are accumulated in RAS-induced
senescence. Conversely, all metabolites depleted upon RAS overexpression
were depleted in RAF-induced senescence. Upon RAS induction, 61 identified
metabolites followed the same trend in both cell types. However, all four
metabolites depleted in fibroblasts in RAS-OIS were accumulated in myoblasts.

Figure 3.7B depicts the trend observed in each dataset for metabolites
identified in all experiments. After correcting for batch effects using ComBat
(Johnson et al., 2007), I performed a PCA on the dynamic profiles of those
metabolites 3.7C, depicting the fibroblast dynamic trajectories upon CS
induction.
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Figure 3.7: Integrative visualization of CS metabolome. [A] River-

plot depicting the intersections between dynamic modules in each dataset. Each

dataset is represented by the aggregated clusters based on metabolite trends and

curves connecting two adjacent datasets correspond to a shared metabolite among

the corresponding clusters. [B] Heatmap showing 41 metabolites identified in all

datasets and their corresponding trend in all observed datasets. [C] PCA depicting

the temporal evolution of the metabolome for each perturbation. Arrows depict

the time dimension, showing the metabolome dynamics for each experiment. [D]

Loadings plot showing the top 15 metabolites with the highest contribution in the

variance between the observed samples. Arrows direction represent the correlation

between a metabolite and the samples in the PCA.

3.2.2 Developed computational methods

As described in section 3.1.3, MS data is subject to several sources of technical
variation, potentially leading to an erroneous analysis of the results (Rusilowicz
et al., 2016; Wehrens et al., 2016; Thévenot et al., 2015). This issue is
addressed by the distribution of QC samples among the biological samples
of interest. Those QC samples can be used as references to assess artifacts
present in the data due to signal drift during a single acquisition or BEs due to
data acquisition in multiple sequences. In order to generate a representative



CHAPTER 3 50

reference, QC samples are usually prepared as a mixture of the samples of
interest (Wehrens et al., 2016; Thévenot et al., 2015).

In this project, however, each time course corresponds to a distinct CS
inducer, and using the QCs samples from each batch as references for nor-
malization led to a higher similarity between uninduced fibroblasts and fully
senescent cells than to uninduced fibroblasts from distinct datasets (Figure
3.8A). Therefore, I used the first sample of each experiment, which correspond
to biological replicates acquired over time, as reference samples for batch
correction (BC).

In order to validate this procedure, we collected another dataset to be used
for BC validation. This dataset contains four samples from both Quiescence
and DD experiments, comprising a set of technical replicates from both
experiments acquired by the mass spectrometer at the same batch (Figure
3.8B). I have compared five BC strategies reported in the literature on the two
mentioned datasets and used the Validation dataset to evaluate the efficacy
of each method. Briefly, the strategies include: a) quantile normalization
(QN), rescaling based on b) average of uninduced samples, c) average of
QCs (Rusilowicz et al., 2016; Thévenot et al., 2015) or d) average of all
samples in a batch (Rusilowicz et al., 2016) and e) an algorithm imported
from transcriptomics analysis – ComBat (Johnson et al., 2007).

In order to evaluate the performance of each strategy, I compared the
values obtained for three different metrics, namely relative standard deviation
(RSD) Rusilowicz et al. (2016), repeatability (Wehrens et al., 2016) and the
Battacharyya distance (Wehrens et al., 2016). The obtained results are shown
in Figures 3.8C-E. From Figure 3.8C, ComBat preceded by QN results in the
lowest RSD and highest repeatability (also represented in Figures 3.8D,E).
Additionally, this approach has the second lowest Battacharyya distance,
slightly higher than the value computed for the data normalized based on the
uninduced samples average (Figures 3.8D,E).

Figures 3.8F-H show the computed values for each measured peak as a
function of the metric computed for the ComBat approach. ComBat yields
lower RSD (Figure 3.8F) and higher repeatability (Figure 3.8G) for most of
the normalized peaks. The obtained Battacharyya distance for each sample
is comparable when applying ComBat or any of the approaches consisting of
using a set of samples average as the normalization reference (Figure 3.8H).

ComBat efficacy is illustrated in Figures 3.8I-J. In Figure 3.8I, samples
corresponding to each batch are clustered together, while technical replicates
present a high distance. After normalization, technical replicates are clustered
together and samples collected in distinct batches follow parallel trajectories
(Figure 3.8J).
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Figure 3.8: BC methods benchmark. [A] PCA depicting distant unin-

duced samples (marks with black borders) after BC using QC as reference samples.

[B] Experimental design for BC validation. DNA damage (DD) and Quiescence

samples correspond to the same samples shown in Figure 3.6. The Validation

dataset comprises technical replicates of a subset of those samples. [C-E] Visual-

ization of the average computed values for RSD, repeatability and Bhattacharyya

distance for each approach. [F-H] Comparison between the obtained values for the

ComBat approach following QN and the other approaches for each measured peak

(or sample) based on three metrics: RSD [F], repeatability [G] and Bhattacharyya

distance [H]. Black lines show the identity function. [I-J] PCA plots depicting the

average of each sample used for BC validation before [I] and after [J] normalization

by QN and ComBat.
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3.3 Discussion

CS is a complex response, characterized by a metabolic reprogramming with
unique features dependent on the stress source (Gorgoulis and Halazonetis,
2010; McHugh and Gil, 2018; Wiley and Campisi, 2016). Besides reacting
to activated and inhibited signaling pathways, metabolites also regulate the
epigenome and gene expression. The metabolome provides substrates and
precursors for chromatin and histone modifiers, such as the demethylases
Jumonji and TET and the deacetylases sirtuins (Tatapudy et al., 2017; Tran
et al., 2017; Knaap and Verrijzer, 2016). Also, TF activity is regulated by
PTMs induced by metabolic cues, including p53 phosphorylation, or AP1
and NF-κB deacetylation (Xie et al., 2013; Maclaine and Hupp, 2009). I
performed a comprehensive time-resolved metabolome analysis on cells under-
going senescence under distinct types of stress, highlighting the production
and accumulation of several metabolites.

My results show that αKG accumulates in all studied datasets. αKG is
involved in a variety of physiological processes, including bone development,
immune system homeostasis, protein and collagen synthesis (Wang et al.,
2019; Wu et al., 2016). This molecule is an antioxidant intermediary of the
tricarboxylic acid (TCA) cycle and can be converted to and from glutamate
by Glutamate Dehydrogenase 1 (GLUD1) (Wang et al., 2019; Liu et al.,
2018a). αKG is used as an alternative energy source by tumors, which
develop a glucose-depleted micro-environment (Nguyen et al., 2019; Coloff
et al., 2016). Additionally, it can activate NF-κB by directly binding to IKK,
which enhances glucose uptake by increasing Glucose transporter 1 (GLUT1)
expression (Wang et al., 2019). αKG also acts as a substrate for the families
of demethylases TET and Jumonji (Tran et al., 2017; Knaap and Verrijzer,
2016), and a high αKG/succinate ratio is a required to maintain pluripotency
(Tischler et al., 2019; TeSlaa et al., 2016; Carey et al., 2015). In SnCs,
Agger et al. (2009) and Barradas et al. (2009) showed JMJ3 mediates the
INK4a/ARF locus derepression, activating p16 expression (see section 2.1.1).
Altogether, those facts imply that αKG is an essential agent for chromatin
plasticity and cell fate decision, including CS, with the potential to be a
target in ARPs and cancer treatment (Sica et al., 2019).

UDP-GlcNAc, which also accumulates over time in most datasets - except
in RAF-OIS, where it is transiently upregulated and depleted after day 4 -
can modulate gene expression as substrate for chromatin modifiers and TF
PTM. This molecule is produced by the hexosamine biosynthetic pathway as
a response to high glucose levels (Özcan et al., 2010). UDP-GlcNAc catalyzes
the activity of O-Linked N-Acetylglucosamine Transferase (OGT), an enzyme
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that adds O-linked N-acetylglucosamine (O-GlcNAc) as a PTM to histones,
TFs and RNA polymerase II directly (Forma et al., 2014; Lewis and Hanover,
2014; Özcan et al., 2010). OGT has been shown to modify histones H2A, H2B
and H3 when bound to TET2/3 (Forma et al., 2014; Lewis and Hanover, 2014).
Interestingly, OGT does not affect TET demethylation activity. Furthermore,
OGT loss impairs PcG repression in Drosophila melanogaster promoters
(Forma et al., 2014). O-GlcNAc modification of p53 decreases its affinity to
Mouse Double Minute 2 (MDM2) (see Figure 2.3), increasing its stability and
target transcription (Özcan et al., 2010; Yang et al., 2006). The same pattern
is observed in NF-κB dynamics, where its modification by O-GlcNAc inhibits
IKK binding in response to hyperglycemia in vascular smooth muscle cells
(Özcan et al., 2010; Yang et al., 2008). Additionally, O-GlcNAc-modified NF-
κB accumulates in the nucleus and increase TNFα and IL6 transcription in
mesangial cells (James et al., 2002). CEBPβ O-GlcNAc modification inhibits
its phosphorylation, impairing its ability to bind target gene promoters (Li
et al., 2009). phosphorylation inhibition by O-GlcNAc modification was
also reported for CREB and Myc, as both modifications target serine and
threonine residues (Özcan et al., 2010). Therefore, UDP-GlcNAc modulates
gene expression levels by a variety of mechanisms as a response to glucose,
being a promising target for further investigation in DR lifespan extension
and the response of tumors to a malignant micro-environment.

Our results show that arachidonic acid (AA) is produced in RAS-OIS
for both studied cell types (i.e, WI38 fibroblasts and myoblasts) and in DD-
induced senescence, while being downregulated in RAF-OIS and quiescent
cells. The production of AA by RAS-induced SnC was predicted by Sagini
et al. (2018), which observed an increase in ACSL3/4 expression, which
coordinate lipid biosynthesis and FAO. Here, I confirm that AA is produced
as a response to RAS both in fibroblasts and myoblasts. In replicative
senescence, AA follows an oscillatory dynamic and does not accumulate in
SnCs, as previously reported (Raederstorff et al., 1995). Interestingly, Quijano
et al. (2012) observed an accumulation of lipids in OIS, when compared to
replicative senescence. AA levels decrease with age, and this fatty acid is
the precursor of both pro- and anti-inflammatory metabolites (Das, 2018;
Yarla et al., 2017; Lorenzini et al., 2001). AA stimulates NF-κB nuclear
translocation and AA oxydative breakdown leads to a lower concentration
of NF-κB in nuclear extracts (Camandola et al., 1996). Additionally, its
inhibition by phytochemical agents prevents pancreatic cancer onset (Yarla
et al., 2017). Therefore, AA has an important role in SASP regulation and
modulation of mitochondrial ROS, which will be further characterized in
future studies.

Carnitine is accumulated in replicative CS, DD, RAS-OIS for both fi-
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broblasts and myoblasts, and depleted in quiescence and RAF-OIS. This
metabolite is essential for FAO and is known as an anti-aging agent due to
its antioxidant properties, reducing mitochondrial damage (Flanagan et al.,
2010; Chang et al., 2002). Oral administration of carnitine reduces SASP
levels in rat adipose tissue (Yang et al., 2019). In humans, a study con-
ducted in hemodialysis patients ingesting carnitine for 12 weeks reported a
decreased level of IL6 circulating in the blood, while IL1β levels remained
unchanged (Shakeri et al., 2010). Carnitine has been reported to reduce
liver inflammation in liver cancer through NF-κB inhibition (Jiang et al.,
2016). Surprisingly, carnitine supplementation induces CS in gliobastoma
and pancreatic cancer cells (Yang et al., 2019; Yamada et al., 2012). Overall,
carnitine has the potential to treat malignant tumors by inhibiting the SASP
and reducing their proliferative capacity.

When integrating the distinct CS inducers, I observe each dataset follows
a distinct temporal profile, as represented by the unique trajectories followed
in Figure 3.7C. Interestingly, fully SnCs for RAS-OIS, DD and replicative
senescence are closer in the PCA plot than their earlier transiting counter-
parts, suggesting that metabolites accumulated in those samples constitute a
metabolic signature for CS. As mentioned above and shown in Figure 3.7D,
αKG and carnitine are included in this signature.

The responses elicited by RAS and RAF OIS are considerably distinct.
The riverplot shown in Figure 3.7A and the heatmap in Figure 3.7B de-
pict 24 metabolites accumulated under RAS overexpression and depleted in
RAF activation. Interestingly, RAF is a direct phosphorylation target of
RAS, mediating ERK activation (Liu et al., 2018b; Downward, 2003). As
shown in Figure 3.9, RAS activates several signaling cascades besides the
RAF/MEK/ERK pathway, including the PI3K and Forkhead box O (FOXO)
pathways (Liu et al., 2018b; Van Deursen, 2014; Downward, 2003). Therefore,
those alternative signaling pathways may explain the distinct timescale in CS
onset and metabolic response for both inducers.

The metabolome of cells undergoing replicative senescence was organized
in two major clusters, as shown in Figure 3.6B. The Late up cluster, containing
αKG, UDP-GlcNAc and carnitine, presented lower levels until cell passage 60,
and increased sharply at cell passage 62. This dynamic is coherent with the fact
that replicative senescence is a response to telomere shortening, which triggers
a DDR when telomeres reach a critical length (Afshari et al., 1996; Dynlacht
et al., 1994). The second metabolite module observed in replicative senescence
comprised molecules with an Oscillatory dynamics during cell proliferation,
including the forementioned AA. In 3.7C, this response is illustrated by the
loops present in the replicative senescence trajectory. Those loops show
metabolites oscillating at a frequency between 15 and 20 division cycles.
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Figure 3.9: RAS signaling pathways. (Downward, 2003).

However, this result could be affected by a phenomena known as aliasing,
where a high frequency signal is measured at sampling rate lower than its
Nyquist rate (Unser, 2000; Shannon, 1949). The Nyquist rate corresponds to
twice the frequency of a signal, and sampling rates below this limit introduce
artifacts that block accurate reconstruction of the signal temporal profile from
its measurements. Since our samples were collected with an interval between
5 to 8 population doublings, more observations at a higher resolution are
needed in order to accurately state that metabolites comprising the oscillatory
module oscillate accordingly to the cell cycle.

I observed that the global profile for RAS-OIS in fibroblasts and myoblasts
is similar, with most identified metabolites being accumulated during CS
onset. Specificities regarding cell types involve aspartate, glucose, threonine
and panthotenate being transiently upregulated and NAM, folate and glycine
depleted in senescent fibroblasts, while being all accumulated in senescent
myoblasts. Furthermore, malate, G6P and sarcosine are accumulated in
fibroblasts and transiently upregulated in myoblasts during RAS-OIS.

An additional consideration from large-scale metabolomics studies is the
occurrence of instrumental biases that may introduce confounding effects in
the variable levels and lead to inaccurate conclusions, named batch effect (BE).
As stated in section 3.1.3, this is performed with a set of QC samples with
similar composition to the studied system. In this work, I used the samples
before CS induction from each dataset as a reference for BC. This technique
was validated by the acquisition of one extra batch containing a subset of
the samples belonging to both the quiescent and DD-induced senescent cells.
This approach resulted in a lower variation between corresponding samples
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measured in distinct batches and provides a solution for comprehensive
studies in which samples are produced over long periods of time. However,
this technique is limited to batches containing overlapping samples, and could
not be used to analyze fibroblasts and myoblasts quantitatively, where I only
compared the dynamic trends followed by each identified molecule.

3.4 Conclusions and Perspectives

CS is a complex response to a plethora of stressors, including telomere erosion,
DD, oncogene-activation and ROS production (Gorgoulis et al., 2019; McHugh
and Gil, 2018; Muñoz-Esṕın and Serrano, 2014; Wiley and Campisi, 2016).
The response elicited and biomarkers produced by SnCs at least in part is
dependent on each inducer, varying in time required for a proliferation arrest,
SASP composition and morphological features.

We analyzed an ensemble of time course data collected from cells undergo-
ing different types of senescence and in two different cell-types. We identified
metabolites such as αKG and UDP-GlcNAc to be accumulated in SnCs. They
are known substrates for epigenome modifiers, Jumonji and TET enzymes,
acting as potential targets for modulation of the transcriptome and cell fate
(Tran et al., 2017; Knaap and Verrijzer, 2016).

Despite the comprehensiveness of this analysis, the identified metabo-
lites correspond to less than 5 % of the measured peaks. As mentioned in
section 3.1.3, metabolite identification is still an open problem in the field
of metabolomics, where most data collected constitutes a dark matter of
peaks that remain unindentified (Wishart et al., 2017; Silva et al., 2015).
Consequently, the data produced in this study can be further explored as new
inference techniques are developed for MS projects.

My results will be further integrated with transcriptome data collected
for each CS inducer, providing a global description of the CS phenotype and
the underlying logic governing its transition. My comprehensive analysis will
provide insights for cancer suppression therapies through CS-based treatments
and healthspan extension.
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3.5 Materials and methods

3.5.1 Cell culture

WI38 fibroblasts undergoing RAS-, RAF-, replicative senescence and quies-
cence were cultured as described by Mart́ınez-Zamudio et al. (2019). DD
was induced with the addition of 20 µM Etoposide (Sigma-Aldrich # E1383-
25MG) to the culture media. Samples corresponding to each batch were
harvested at the time-points indicated in Figure 3.6.

Primary human myoblasts (SkMC) were seeded in cell culture dishes
coated with type I collagen (Sigma-Aldrich #C 8919) and cultured in the
proliferation medium (DMEM-high glucose (Sigma # D6429), 20% FBS
(Life Technologies #10270106), 50µg/ml gentamicin (Life technologies #
15750037), 0,5% Ultroser G (PALL # 15950-017) at 37oC with 5% CO2. All
experiments were conducted between PD11 and PD29 to avoid replicative
senescence, and myoblasts were passaged at a cell confluency not exceeding
50 % to avoid myogenic differentiation.

3.5.2 Liquid Chromatography and mass spectrometry

Datasets corresponding to each inducer and cell type were collected in separate
batches as described in (Mackay et al., 2015). Briefly, 5µl of samples containing
around 5 thousand cells were injected in randomized order in a QExactive
Plus Orbitrap mass spectrometer (Thermo Fisher Scientific, Les Ulis, France)
after a phase of HPLC separation using a SeQuant R©ZIC R©-pHILIC 5µm, 150
mm x 4.6 mm column. The scans were acquired in switching polarity. For
each batch, 3 QC samples were prepared with equal aliquots of one replicate
per sample and evenly injected in each experiment. For samples corresponding
to RAF-induced senescence, the QC were injected in a randomized order.
Additionally, 3 blank samples, consisting of water, were evenly injected in
each batch.

3.5.3 Mass spectrometry data pre-processing

The files generated by the mass spectrometer were converted from Thermo
Fisher .RAW format to the open data format .mzXML using the MSConvert
software (Chambers et al., 2012), where ion scans related to positive and
negative polarity were stored in independent files for each batch.

Each dataset was pre-processed independently using Bioconductor R
packages. Peaks were identified, integrated, matched across samples and filled
with the use of the XCMS R package (Smith et al., 2006), and the parameters
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for each step were chosen with cross-validation performed by the IPO package
(Libiseller et al., 2015). Peaks with an area smaller than the double of the
observed area in blank samples were removed. Peaks not detected in any
triplicate for a given sample were imputed with the minimum value detected
in the batch (Wehrens et al., 2016).

Within-batch signal drift was corrected by fitting linear models to the
QC values for each peak as a function of the sample injection order (as
illustrated in Figure 3.4). The values observed for each peak were scaled to
the ratio between the observed and expected QC intensity (Brunius et al.,
2016; Thévenot et al., 2015), accordingly to the following expression:

X∗p,i = Xp,i

average
j∈QC

(Xp,j)

k∗ap+bp

where X∗p,i corresponds to the corrected intensity of peak p for the k-th
injected sample, denominated i; Xp,i to its directly observed intensity; QC is
the set of QC samples and ap and bp represent the linear and independent
coefficients from the linear regression performed over the QC peak levels as a
function of its injection order.

After normalization, peaks with a decreased coefficient of variation (CV)
were removed.

3.5.4 Compounds annotation

Metabolites were identified by comparing the measured mass-to-charge and
retention time values with an internal in-house database of compounds. After
annotation, the tables corresponding to positive and negative polarity were
merged into a single table for each acquisition batch.

3.5.5 Statistical analysis

For each batch, the data matrices were log transformed and I used ANOVA to
determine the significance of metabolite levels. p-values were corrected using
the false discovery rate (FDR) approach, and, since the obtained q-values
were reasonable for p ≤ 0.05, no q-value cutoff was applied. In total, 112
molecules were identified as differentially accumulated in at least one sample
in at least one batch.

3.5.6 Hierarchical clustering

The compounds time profiles for each dataset were clustered independently
using the WGCNA package (Langfelder and Horvath, 2008). This tool clusters
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variables in a two-step process, where the first stage groups features based on
their vicinity in a correlation network, and the second step merges clusters
having representatives with high correlation. The representative of a cluster
is computed as the median level observed for each sample of its members
(Langfelder and Horvath, 2008). The minimum cluster size and deepSplit
parameters from the first step were set, respectively to 50 and 3, resulting in a
higher number of small clusters. The soft threshold parameter was determined
for each batch separately, with the choice of the lowest value leading to a
high Scale free topology fit by applying the elbow method. In the second step,
the threshold for cluster merging was set to 0.80. For this project, I manually
merged the modules obtained by WGCNA with similar temporal dynamics
and designated the same nomenclature for the profiles from distinct batches.

3.5.7 Integrative analysis

Pairwise combinations between the merged profiles from distinct batches was
performed by the riverplot R package (Weiner, 2017). The 40 metabolites
identified in all batches were normalized using the ComBat tool (Johnson
et al., 2007) and the PCA was generated using the R package factoextra
(Kassambara and Mundt, 2017).

3.5.8 Batch correction methods benchmark

In order to quantify the batch effects (BEs) introduced in the data due to
the comprehensive nature of the project, I used the samples corresponding
to proliferating fibroblasts from each dataset as reference. I validated this
approach in an experimental dataset consisting of technical replicates from
a subset of the timecourses corresponding to cells undergoing DD-induced
senescence and quiescence. The experimental design is depicted in Figure
3.8A.

Additionally, I evaluated five batch correction (BC) methods reported
in the literature: quantile normalization (QN), implemented by the by the
oligo R package (Carvalho and Irizarry, 2010); a BC using the QC samples
form each batch as reference, as mentioned in section 3.1.3 and described at
Rusilowicz et al. (2016) and Thévenot et al. (2015); a third BC approach based
on the average of all samples in a given batch as a reference for normalization
Rusilowicz et al. (2016); a strategy using samples corresponding to biological
replicates in each batch as reference for BC (cells before CS or quiescence
induction); and the ComBat tool, which infers the parameters of a linear model
for BC using a Bayesian approach (Johnson et al., 2007). The approaches
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consisting of using a set of samples average as the normalization reference
follow the general form given by equation 3.1:

X ′p,s,b = Xp,s,b
Rp

Cp,s,b

with Rp = avg
∀i,j

(Xp,i,j)
(3.1)

Where X ′p,s,b and Xp,s,b are respectively the normalized and raw intesity of
peak p at sample s in batch b; Rp is a scaling factor computed by the average
of all detected values for a peak p in all samples in all batches and Cp,s,b is the
correction factor computed on the set of reference samples. Its computation
for each set of reference samples is given by the following equations:

QC samples : Cp,s,b = avg
i∈QC(b)

(Xp,i,b)

uninduced samples : Cp,s,b = avg
i∈D00(b)

(Xp,i,b)

all batch samples : Cp,s,b = avg
∀i∈b

(Xp,i,b)

(3.2)

Those methods were compared based on the values obtained by the
computation of three metrics: relative standard deviation (RSD), repeatability
and the Battacharyya distance.

The RSD consists of the ratio between the standard deviation (σ) and the
average intensity values (µ) measured for each peak p. This value is computed
for each sample s over all batches as determined by the following equation
(Rusilowicz et al., 2016).

RSD =
σp,s

µp,s

(3.3)

Repeatability measures the fraction of the variance between replicates of
the same sample s over all batches (Wehrens et al., 2016). Its computation
is performed for each measured peak p, dividing the variance between the
averages of all replicates for sample s by the variance of the intensity observed
in all replicates within the same sample, as shown in equation 3.4. High
repeatability is attained by samples sparsely distributed, with replicates
densely clustered. As the variance for replicates within a sample approaches
(or surpasses) the variance between samples, this quantity decreases.

Repeatability =
σ2

between;p,s

σ2
between;p,s + σ2

within;p,s

≈ σ2
biol;p,s

σ2
total;p,s

(3.4)

The Battacharyya distance DB is an extension of the Malahanobis distance.
The Malahanobis distance measures the distance between two sets of points,
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normalized by their covariance. Therefore, tighter clusters will lead to a
higher Malahanobis distance, for the same distance between their center of
mass. The Battacharyya distance extends this concept with the introduction
of a factor accounting for a distinct distribution in both sets. This metric was
calculated using the fpc R package (Hennig, 2019) and is given by (Wehrens
et al., 2016):

DB =
1

8
(µ1;s − µ2;s)

TΣ-1(µ1;s − µ2;s) +
1

2
ln(

detΣs√
detΣ1;sdetΣ2;s

) (3.5)

Where µi;s corresponds to the center of mass of sample s for batch i,
Σi;s is the covariance matrix for sample s replicates in batch i and Σs is the
covariance matrix for sample s in all batches.
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4.1 Introduction

In the previous chapters I described the hierarchical TF network and the
metabolic evolution that define CS. Together, these processes impact transcrip-
tional changes, that reallocate cell resources and coordinate the comprehensive
CS response (Gorgoulis et al., 2019; Hernandez-Segura et al., 2018; Campisi
and Fagagna, 2007). In order to unravel the dynamic molecular interactions
that implement this cell fate decision, I performed a quantitative approach.

4.1.1 The epigenetic landscape governing cell fate

Cell fate decision was first elaborated and represented by Waddington (1957)
as the trajectory of a ball placed on a slightly rugged landscape (Figure
4.1). Each position of the ball corresponds to a specific transcriptional state,
and the landscape shape determines the possible paths to be traversed, i.e.,
the possible dynamical changes in gene expression given the cell’s current
state. Biologically, these possibilities are specified by the genome code,
which encodes protein structure, promoter and enhancer nucleotide sequences,
and nucleosome PTMs, that control DNA accessibility (Mojtahedi et al.,
2016; Huang, 2012; Huang et al., 2005). Stable cell types observed in living
organisms correspond to landscape valleys, so-called attractors, implemented
by regulatory negative feedback loops (Aoki et al., 2019; Huang, 2012; Scheffer
et al., 2012). External cues and internal damage reshape the cell’s epigenetic
landscape, creating and destroying attractors still not optimized by evolution
and leading to a diseased state (Chen et al., 2012; Huang, 2012). Despite
being characterized as a cell fate, the classification of CS as an attractor state
is still debated (Gorgoulis et al., 2019; Mart́ınez-Zamudio et al., 2019).

In dynamical system theory, the Waddington landscape is known as a
phase space (Chang et al., 2017; Wang et al., 2016). Besides providing a
graphical visualization from a trajectory, the phase space is associated to
the structure of the system it describes. Figure 4.2A depicts an artificial
GRN of two genes forming a negative feedback loop with an oscillatory
dynamics depicted in Figure 4.2B. When gene x is expressed, it activates y
expression (as represented by arrow d, an time interval I). Since y represses
x (inhibitory link b), x levels diminish (time interval II). y degrades at a
rate c (time interval III), decaying until x, which is produced at a rate a,
is activated, starting a new cycle. In Figure 4.2C, the solid curve represents
the points represented the same dynamic trajectory as function of x and y,
where each axis corresponds to one variable of the system. The faded curves
correspond to trajectories of the same system under distinct initial conditions,
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Figure 4.1: Waddington epigenetic landscape (Waddington, 1957)

which oscillates with distinct amplitudes. This representation constitutes the
phase space for this artificial network, and it is analogous to the Waddington
epigenetic landscape of a cell. This simplified GRN example is mathematically
inspired in the Lotka-Volterra system, which was initially enunciated as a
prey-predator model (Chauvet et al., 2002; Volterra, 1927).

Figure 4.2: Artificial GRN. Inspired in the Lotka-Volterra prey-predator
model (Chauvet et al., 2002).

Besides illustrating the correspondence between GRN structure and its dy-
namics, the Lotka-Volterra model also exemplifies the effect of non-linearities
in the interactions between its variables, generating a behavior known as
mirage correlations (Chang et al., 2017; Sugihara et al., 2012). During time
interval II (Figure 4.2B), x and y are negatively correlated, as can be seen
by the negative inclination of the corresponding segment in the phase space
diagram (Figure 4.2C). However, sampling the time courses during time
interval I or III leads to a very low correlation between the two molecular
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species. This effect also applies to GRN inference from time course data,
as the use of distinct sampling intervals would result in different interaction
networks. Therefore, an accurate dynamical system identification requires a
strategy that accounts for non-linearities in its regulation. This is especially
true for gene expression regulation, which is often implemented by nested
feedback loops (Inoue et al., 2016; Dimri et al., 2000; Juven-Gershon and
Oren, 1999).

4.1.2 Gene regulatory networks inference

Figure 4.3: Computational techniques for network modelling (Liu and
Lauffenburger, 2009)

There is a vast literature on GRN inference of real biological systems,
which can exploit prior knowledge on its topology and available data, as shown
in Figure 4.3 (Wang et al., 2016; Liu and Lauffenburger, 2009). Bonneau
et al. (2007) integrated genome sequence, gene deletion and microarray
data in order to feed a regression-based algorithm to generate the GRN
of a member of the Archaea domain. Gong et al. (2015) used a Bayesian
network method to infer the GRN of cardiac differentiation from TF and
histone ChIP-seq and gene expression data. Kim et al. (2017) and Cho et al.
(2016) built Boolean networks from online available signaling pathways in
the context of colorectal cancer, which usually display mutations in RAS and
p53 genes. Calzone et al. (2008) developed a network modeling the RB/E2F
pathway by aggregating published results, a project that later developed into
a comprehensive reconstruction of metabolic networks in cancer and can be
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simulated by the Markovian Boolean Stochastic Simulator (MaBoSS) tool
(Sompairac et al., 2019; Stoll et al., 2017; Bonnet et al., 2015).

In the context of differential equations, the TNFα and NF-κB signaling
pathway have been modeled by several studies Mothes et al. (2015), Cho et al.
(2003), and Hoffmann et al. (2002). Chen et al. (2009) developed a system of
equations describing the effects of Erb-B2 Receptor Tyrosine Kinase (ErbB)
signaling on Mitogen Activated Protein Kinases (MAPK) and PI3K cascades.
Dalle Pezze et al. (2014) integrated mTOR signaling with ROS production
and mitochondrial biogenesis. Galvis et al. (2019) modeled cell population
growth under CS, along with markers including SA-β-Gal. Hackett et al.
(2019) inferred a genome-scale network from a comprehensive collection of
time course data under distinct TF perturbations.

4.1.3 Compressed sensing

A recently discovered paradigm, named compressed sensing (CoS), has been
applied in the reconstruction of GRN due to its robustness under minimum
data requirements (Wang et al., 2016; Chang et al., 2014; Candes et al.,
2006). Compressed sensing (CoS) works by recovering a sparse signal x0
with m components from a set y of n observations, with n << m (Candès
and Wakin, 2008; Candes et al., 2006). In other words, CoS provides the
solution of interest x0 for the under-determined linear system y = Ax0, where
matrix A has n rows and m columns, given x0 contains less than n/log(m/n)
non-null elements. Additionally, the matrix A must obey the restricted
isometry property (RIP), which guarantees that every sparse x0 will lead to
a distinct y when multiplied by A, assuring that recovery from y is indeed
possible (Candes et al., 2006). Since it allows system structure inference from
a reduced amount of measurements, this technique has been applied in several
fields, including epidemiology, meteorology and fluid dynamics (Nitzan et al.,
2017; Wang et al., 2016; Su et al., 2014).

In order to account for the non-linearities in the inferred interactions,
Brunton et al. (2016) developed an approach that builds a set of differential
equations based on time course data called ”Sparse Identification of Nonlinear
Systems (SINDy)”. Briefly, this approach consists of a sparse regression
on an expanded input matrix Θ(X) containing non-linear transformations
computed from the genes time-series data X. Therefore, our goal is to find the
coefficients ξ which satisfy ẋ = Θ(X)ξ, where ẋ represents the transcription
time derivative of a given gene.

This chapter describes the construction of the GRN governing RAS-OIS,
where I apply Sparse Identification of Nonlinear Systems (SINDy) to the
time course data collected by Mart́ınez-Zamudio et al. (2019) mentioned in
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section 2.1 using a HPC environment. When simulating the model, 46 %
of the variables displayed a correlation higher than 0.9 with the input data.
I validated the model generalization capacity by comparing its output to
datasets relative to the inhibition of two TFs, JUN and RELA, showing that
the model performance is dependent on the functions performed by each gene.
I will further refine the model with a more comprehensive dataset, aiming
at providing an accurate description of CS that has as its ultimate goal the
acceleration of therapies for ARPs and cancer.
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4.2 Results

4.2.1 Biological discoveries

Aiming to develop a quantitative model for CS, I used time-resolved RAS-OIS
and the siRNA-mediated TF depletion transcriptome datasets to design a
system of differential equations that model RAS-OIS gene expression dynamics
in silico. This system of equations will be used to:

1) simulate and predict future fibroblast phenotypic behavior in cells
undergoing senescence, allowing for the validation of hypotheses in in silico
experiments, which are more time and cost-effective (e.g., we could perform
several parallel simulations of two-week time courses in a few hours);

2) characterize the system by inspecting interactions described in the
model that were not yet validated experimentally;

3) steer the system’s state based on optimum control theory (Routh, 1877),
which ultimately allows for the design of experimental procedures that could
cause a senescent fibroblast to revert to a pre-senescent state or any other
desired cellular state/fate. For instance, Meza et al. (2005) describe a variety
of strategies to control the Lotka-Volterra system, mentioned in section 4.1.1,
based on its mathematical description, and Uhlendorf et al. (2012) illustrate
how this knowledge can be used experimentally to control a target gene.

Since genes can act collectively when regulating cell fate decisions (Voss
and Hager, 2014), a model that describes their temporal profile is required to
account for their shared interactions. This implies the presence of terms in the
equations that depend on more than one variable, which are inherently non-
linear. As mentioned in section 4.1.3, the SINDy algorithm infers non-linear
dynamics from time course data by performing a linear regression in a matrix
composed of non-linear combinations of the input time courses (Brunton et al.,
2016). Figure 4.4A illustrates the approach for a system with three variables.
The matrix Θ(X) is computed from time course data, where each time profile
composes a matrix column, and those time profiles are multiplied in order
to constitute the non-linear matrix columns. The time course derivatives
are estimated from the dynamic data and are represented by the matrix
Ẋ. The coefficients that describe the system are inferred independently for
each variable, by performing a sparse regression, in the context of the CoS
paradigm. The columns in matrix Ξ correspond to the coefficients of each
variable, and summarizes the system description.

I implemented the SINDy algorithm using the R statistical language
(R Core Team, 2017). I validated the software using two known systems
mentioned in section 4.1: the Lorentz Attractor and the Lotka-Volterra prey-
predator model. The coefficients inferred for each model are represented in
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Figures 4.4B and 4.4C, respectively, and the predicted dynamics simulated
from the inferred structure are shown in Figures 4.4D and 4.4E.

Figure 4.4: SINDy validation for known dynamic systems. [A] A

visualization of the SINDy algorithm (Brunton et al., 2016) - Copyright 2016

National Academy of Sciences. See text for details. [B-C] Coefficients amplitude

for the original (squares) and inferred models (circles) for the Lorentz [A] and

Lotka-Volterra [B] systems. [D-E] Simulated dynamics for the original model,

used for model training (shaded solid curves) and the predicted dynamics (dashed

curves) simulated from the coefficients inferred by SINDy for the Lorentz [C] and

Lotka-Volterra [D] systems.

As shown in Figure 4.4D, the inferred Lorentz model mirrors the beginning
of the time course, and deviates from the input time course after around 2500
units of time, where the variable z oscillates with increasing amplitude, while
the predicted model’s oscillations are constant in amplitude. In Figure 4.4E,
the inferred model accurately simulates the original time course.

After ensuring that my software is able to extract the patterns in a
known dataset, I applied it to the experimental datasets collected from
WI38 fibroblasts undergoing CS. Figure 4.5A shows the experimental design,
in which cells were induced to enter in the senescent state by RASV12
overexpression under tamoxifen (4-OHT) treatment (Mart́ınez-Zamudio et al.,
2019; Puvvula et al., 2014). Additionally, we collected the transcriptome
of cells undergoing senescence two days after inhibition of key transcription
factors mentioned in section 2.2.1, namely JUN, RELA and ETS1. The model
was inferred using the samples represented as arrows, and the square boxes
are the samples used for validation.

Since genes with similar expression profiles in all datasets are indistinguish-
able from a data-driven perspective and it is impossible to deconvolute their
individual contribution to the regulation of the same target, each time course
was independently clustered using the WGCNA tool (Langfelder and Horvath,
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2008), after being normalized for technical variations by ComBat (Johnson
et al., 2007). Figures 4.5B-E depict the clustered time course expression data
for each condition, and Figure 4.5F is a heatmap integrating the gene modules
obtained for the four conditions used for model training.

In order to address the high number of coefficients in the model to be
inferred, which grow exponentially with the chosen order of the model, I used
the TensorFlow library to perform the sparse regression for each variable
(Abadi et al., 2015). This package was developed for numerical computation in
high performance computing evironments and supports execution in Graphics
Processing Units (GPUs). Figure 4.6 illustrates the resulting coefficient sets
for two genes responding to RAS overexpression. Figures 4.6A and C show
the inferred coefficients for CDK6, which participates in cell cycle, and C-X-C
Motif Chemokine Ligand 8 (CXCL8), a member of the SASP, respectively.
On average, 84 % of the terms in each equation are associated to a null
coefficient. Figures 4.6B and D depict the first-order terms for the same genes,
corresponding to direct interaction from their regulators. The network’s
input and output degree distributions are displayed in Figures 4.6E and F,
respectively, with an average input and output degree of 259 for first order
terms.
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Figure 4.5: Aggregation of genes co-expressed in all experimental
conditions. [A] Experimental design. We collected transcriptomic data of WI38

cells undergoing CS due to RAS overexpression for six days. We also performed

KD of JUN and RELA at days 3 and 6 and a KD of ETS1 at day 6 using siRNA

in cells undergoing OIS, collecting cells two days after treatment. [B-E] Heat maps

depicting the data used for model construction. Each line shows the expression

profiles for a specific gene over time. These dynamic profiles were clustered using

WGCNA (Langfelder and Horvath, 2008). [B] RAS-OIS. [C] JUN KD at day 3. [D]

RELA KD at day 3. [E] ETS1 KD at day 6. [F] Heatmap integrating the clustering

depicted in panels B-E. Each line corresponds to one gene and 562 unique distinct

profiles were identified
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Figure 4.6: Inferred model structure. Coefficients inferred for the

equations related to variables containing CDK6 and CXCL8. [A,C] All inferred

coefficients for [A] CDK6 and [C] CXCL8, including second-order terms accounting

for the interaction between two variables in target gene expression regulation.

[B,D] Inferred first order terms, for [B] CDK6 and [D] CXCL8. [E-F] Node degree

distribution for [E] incoming and [F] outgoing edges.

Aiming to assess if the model was able to reproduce the data used to
generate it, I simulated the inferred coefficients with the deSolve R package
(Soetaert et al., 2010). Figures 4.7A-D display the resulting temporal simula-
tions for four genes: [A] CDK6, [B] Cyclin A2 (CCNA2), [C] IL1β and [D]
CXCL8. Figure 4.7E depicts the distribution of correlations between the time
profiles corresponding to input and prediction for all 565 variables (Bonneau
et al., 2007). 260 profiles presented a correlation higher than 0.9.

Figure 4.7: Model simulation for OIS gene expression program
following RAS induction. Interpolated experimental data (solid light blue
lines) and model simulation output (orange dashed lines) time course comparison
for [A] CDK6 and [B] CCNA2, genes involved in cell replication, and [C] IL1β and
[D] CXCL8, genes that encode cytokines secreted as part of the SASP. [E] Pearson
correlation between input and simulation profiles for all 565 unique time profiles
identified in our datasets. 260 profiles showed a correlation superior to 0.9.
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After validating that the model is able to follow the trends of the experi-
mental data, I investigated its response under the influence of noise (Figure
4.8). I ran five simulations with the addition of Gaussian noise to the system’s
initial condition. This procedure was repeated for noise with amplitude equiv-
alent to 1 %, 5% and 10 % of the maximum initial condition level of all genes.
Figures 4.8A, B and C display the results of these simulations for CDK6,
CCNA2, IL1β and CXCL8. As the perturbation at the initial condition
increases in amplitude, the simulated profiles keep similar trends. Therefore,
the initial deviation is also kept during the whole simulated time frame,
leading to a deviation in the model’s final state with amplitude proportional
to noise intensity.

Figure 4.8: Model robustness to noise. Model simulation for initial

conditions with three distinct noise intensities. Model simulation results for CDK6,

CCNA2, IL1β and CXCL8 under the influence of noise with an intensity of [A] 1

%, [B] 5 % and [C] 10 % of the maximum scaled expression at D0. Simulations

were run five times and curves with the same style for all variables correspond to

profiles from the same run.

Furthermore, I also analyzed how the model can reproduce the training
data regarding the experimentally KD of TFs. I simulated the model with
initial conditions corresponding to the timepoint at which cells were treated.
In order to implement TF KD in silico, I imputed the target TF expression
level detected in the sample collected two days after treatment to the initial
condition. For example, JUN KD at day 3 was simulated with an initial
condition where I imputed the JUN expression level detected in the KD
sample, collected two days after treatment, to the gene expression levels
measured at day 3 after RAS induction.
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Figure 4.9 depicts the results obtained by simulating JUN and RELA KD
at day 3 and ETS1 KD at day 6 for CDK6, CCNA2, IL1β and CXCL8. Out
of the 565 variables, the model achieved a correlation higher than 0.9 for 465,
434 and 505 profiles, respectively, for JUN and RELA KD at day 3 and ETS1
KD at day 6.
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Figure 4.9: Model simulation for TF KD relative to the training
datasets Expression profiles following [A-D] JUN and [F-I] RELA KD at day 3

and [K-N] ETS1 KD at day 6 for [A, F, K] CDK6, [B, G, L] CCNA2, [C, H, M]

IL1β and [D, I, N] CXCL8. Interpolated experimental data is represented by solid

light blue lines and model simulation output is depicted in orange dashed lines. [C]

In silico KD implementation: the expression value detected in the KD sample was

imputed to the previous time point. [E,J,O] Pearson correlation between input and

simulation for [E] JUN and [J] RELA KD at day 3 and [O] ETS1 KD at day 6.
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Aiming to validate the model’s performance for datasets not used for
model training, I evaluated simulations corresponding to the KD of JUN and
RELA at day 6 (represented as square blocks in Figure 4.5A). Figure 4.10
depicts the results obtained by solving the equations with gene expression data
collected from day 6 after RAS OIS as initial conditions, with imputation of
detected values for JUN and RELA in their respective datasets. Since only one
timepoint was available after TF inhibition, the correlation between simulated
and experimental profiles displayed high absolute value, with an either positive
or negative signal depending on the agreement between predicted and observed
data upon expression trend for a given gene, as can be seen in the histograms
in Figures 4.10E and 4.10J.

Under JUN inhibtion, the model obtained 325 (57 %) profiles with cor-
relation higher than 0.9 and 104 (19 %) profiles with correlation lower than
-0.9 when compared to the experimental data. The RELA KD simulation
resulted in 234 (41 %) and 188 (33 %) profiles with correlation higher than
0.9 and lower than -0.9, respectively.
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Figure 4.10: Model validation for JUN and RELA KD at day 6
Expression profiles for [A, F] CDK6, [B, G] CCNA2, [C, H] IL1β and [D, I] CXCL8.

Interpolated experimental data is represented by solid light blue lines and model

simulation output is depicted in orange dashed lines. [E,J] Pearson correlation

between input and simulation for [E] JUN and [J] RELA KD at day 6.

Aiming to investigate deeper the model’s reliability, I performed a hidden
sources analysis in order to estimate which variables that can accurately be
inferred from the experimental datasets. This analysis consists of inferring
the model with different segments of the data and assessing the variance of
each coefficient for segments with distinct sizes (Wang et al., 2016; Shen et al.,
2014; Su et al., 2014). Coefficients with higher variance as the amount of
data increases suggest that more data is needed to reliably estimate gene
regulation. Conversely, a constant or decreasing variance suggest that even a
fraction of the available data allow for dynamics prediction.

I run the model inference five times for four different number of data
points ratio (20 %, 40 %, 60 % and 80 % of the 284 rows in the Θ(X) matrix)
and calculated the average variance (σavg) of all coefficients for each model
variable. 123 profiles displayed non-increasing σavg with an increase in the
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number of data points used for inference, constituting around 22 % of the
model size. Figure 4.11A depicts σavg for 20 profiles satisfying this condition,
and Figure 4.11B illustrates the variables with increasing σavg as function of
the data input size for variables.

I evaluated the model output when simulating the 123 variables with non-
increasing σavg, for the initial conditions corresponding to the test datasets,
namely JUN and RELA KD at day 6. Only the equations relative to the
non-increasing σavg were solved, and gene expression levels corresponding
to the variables with increasing σavg were retrieved from the interpolated
experimental datasets. Figure 4.11 displays the resulting time profiles for
CDK6 and CXCL8, corresponding to profiles with non-increasing σavg. The
predicted results of JUN KD led to 67 (54 %) profiles with correlation higher
than 0.9 when compared to experimental dataset, and 8 (7 %) profiles with
correlation below -0.9. When inhibiting RELA in the model, 34 (28 %) and
54 (44 %) profiles presented correlation higher than 0.9 and lower than -0.9,
respectively.
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Figure 4.11: Hidden sources analysis and partial simulation. [A-B]

Average coefficient variance calculated from five different inferences based on a

fraction of the interpolated experimental time courses. [A] 20 variable profiles with

decreasing variance and [B] 20 variable profiles with non-decreasing variance as the

ratio of data points is increased. Expression profiles for [C, F] CDK6 and [F, G]

CXCL8. Pearson correlation between input and simulation for the 123 variables

with decreasing variance under [E] JUN and [J] RELA KD at day 6.
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Altogether, the inferred model is able to follow the trends of CS onset
under RAS overexpression and the response to TF KDs provided during the
model training. The model is able to extend this knowledge to predict the
results of the inhibition of a TF at the top of hierarchy (section 2.3), but fails
to predict gene expression transitions due to the depletion of a TF at the
bottom of the hierarchy network. I performed a hidden sources analysis to
highlight genes which dynamics can be inferred by the experimental dataset,
leading to an improvement in the results for JUN inhibition, but not RELA
inhibition. The implemented software can be applied to a more diverse
dataset and enhance the model in order to allow us to generate a systemic
understanding of CS and efficiently explore its therapeutic potential.

4.2.2 Developed computational methods

The higher generality of SINDy relies on a larger number of coefficients to be
inferred. Despite the reduction on the number of non-null coefficients in the
solutions ξi due to the CoS sparsity assumption, the total number of param-
eters can increase exponentially with the order of the model to be inferred,
considering Θ(X) is built as a set of polynomial libraries. Therefore, model
determination is requires a high running time and considerable computational
resources. Additionally, this step must be repeated for each variable in the
model, described by an independent equation.

Aiming to find an approach able to address the constraints of this project
in a timely manner, I performed a benchmark on GPU-based approaches. A
Graphics Processing Unit (GPU) is a CPU specialized for graphics processing,
which mainly consists of several linear operations repeated extensively. There-
fore, GPUs perform a limited set of functions in a highly parallel manner.
Since linear programming optimization methods rely on iteratively multiplying
matrices, GPUs are a suitable tool for CoS applications.

The benchmark consists in evaluating the performance of CPU and GPU
based tools in the recovery of a signal using the CoS paradigm. I generated
a random Gaussian Matrix Φ and an array x0, which were used to compute
the array y = Φx0. The task of each tool is to recover x0 from Φ and y. This
procedure was performed five times for four distinct sizes of Φ and x0, as
described in Table 4.1. The tools used for inference consist of the sparse
recovery implemented by the R1magic R package (Suzen, 2015), using a
Newton-type non-linear mapping (NLM); a CPUs implementation for the
Broyden–Fletcher–Goldfarb–Shannon (BFGS) algorithm in the R language
(R Core Team, 2017); and GPU-compatible implementations of the Follow
the regularized leader (FTRL) and BFGS algorithms (Abadi et al., 2015).
The results are shown in Figure 4.12.
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Figure 4.12: Optimization methods benchmark. Running time of for
four distinct tools to solve the underdetermined system y = Φx0 using the
CoS paradigm as a function of the size of the input matrix Φ.

For small Φ, the CPU methods are more efficient due to the time required
by the GPU processor to transfer the data to its memory. As the input size
increases, GPU-based approaches quickly outperforms their CPU counterparts,
with the BFGS implementation being more efficient than the FTRL algorithm
in TensorFlow (Abadi et al., 2015). The matrix Θ(X) used to infer the GRN
governing CS dynamics had approximately 400 MB in size, and the running
time for the inference of each equation ranged from 10 min to 20 min.
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4.3 Discussion

In order to characterize the GRN underlying gene expression changes in
CS, I performed a data driven model inference. The model consists of a set
of differential equations derived from time course data collected from cells
subjected to RAS over-expression. We also measured the transcriptome of
samples corresponding to TF KD at two distinct time-points after induction.

I identified 4660 genes to be differentially regulated in at least one sample
of the training dataset. When analyzed separately, the genes in each experi-
mental time course are grouped into 7 to 15 co-expression modules, as shown
in Figure 4.5. From a data-driven perspective, all genes belonging to the
same module, i.e., with temporal profiles highly correlated, provide the same
information and it is impossible to deconvolute their individual contribution
to the regulation of a given target. Yet, this co-expression behavior changes
with the perturbation performed in the cells (Figure 4.5F). I identified 562
unique gene profiles when considering all datasets simultaneously, and each
module corresponds to one variable in the inferred model. 243 gene modules
correspond to single genes, and the largest module contains 544 genes. To our
knowledge, this is the model with the largest scale and highest granularity in
the context of OIS (Guimera et al., 2017; Dalle Pezze et al., 2014; Mombach
et al., 2014).

As illustrated by the examples of CDK6 and IL8 in Figure 4.6, the inferred
model is sparse, where the equation for each variable has around 25 thousand
non-zero terms, corresponding to 15 % of the total number of coefficients.
The majority of those parameters correspond to non-linear terms in the
model (Brunton et al., 2016), describing the collective contribution of two
genes on their target expression. Therefore, the inferred GRN constitutes
a hypergraph, a generalized graph where (hyper)edges can link more than
two elements (Gallo et al., 1993). This structure has been used in order to
describe protein-protein interaction networks (Patro and Kingsford, 2013) and
gene expression regulation by protein complexes in cancer (Tian et al., 2009).
Hypergraph visualization is still an open issue and is addressed accordingly
to the specific needs of each application (Valdivia et al., 2019; Eschbach et al.,
2006). When considering only first-order terms, i.e., a term corresponding to
a single variable, the average number of non-null coefficients per equation is
212 (Figures 4.6E,F), corresponding to a proportion of 37 % non-null terms
(Figures 4.6B,D).

Figure 4.7 shows representative time profiles produced by the simulation
of the inferred equations for initial conditions relative to RAS-OIS. The
simulated profiles follow the experimentally measured gene expression levels
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until the mark of 30h, followed by an increased divergence between the
two temporal dynamics. As shown in Figure 4.7E, most variables keep the
same trend as the gene module they correspond to, with 42 % of the time
profiles resulting in a correlation higher than 0.9 when compared with the
input. Additionally, I simulated the effect of noise at the initial conditions,
as depicted in Figure 4.8. The model displays a similar overall tendency to
the unperturbed simulation. Yet, this property also means that the initial
variations are maintained during the whole timecourse, suggesting the absence
of an attractor that leads the dynamics of the model. This phenomenon can
be visualized by using the Waddington’s landscape representation (Figure
4.1). The initial perturbation can be represented as a second ball released
at the side of the represented ball from the top of the landscape, with the
distance between the balls proportional to the magnitude of the noise. The
results depicted in Figure 4.8 are analogous to two balls following parallel
trajectories, arriving at final positions with the same distance as their initial
offset.

In addition to RAS-OIS, I simulated the model using initial conditions
corresponding to the KD of TFs used as part of the training data (Figure
4.5A, arrow-shaped boxes). These simulations corresponded to a 48h interval
and are shown in Figure 4.9. A considerable portion of the simulated profiles
presented the same trend as the experimentally collected data.

I validated the model’s generalization ability by simulating TF KD at later
timepoints in CS onset. As depicted in Figure 4.10, the correlations between
the measured and inferred profiles tended to be of high amplitude. This is
due to the fact that most genes followed a monotone dynamic, either strictly
increasing or strictly decreasing over time. Therefore, equations predicting
the same trends as the observed ones led to a high positive correlation, and
variables with predicted trends opposite as the measured values resulted in
a highly negative correlation. IL1β under RELA inhibition illustrates one
exception to this rule, where the inferred dynamic peaks right before 20h
and decreases until the end of the simulation (Figure 4.10H). Overall, the
validation performance is inferior to the training performance, meaning that
some genes follow a distinct dynamic at later CS timepoints, and that this
behavior is not encoded in early timepoints. Interestingly, JUN KD yielded
a higher percentage of positive correlations than RELA KD. As shown in
chapter 2, JUN is a TF at the top of the hierarchy of TFs binding at the
chromatin, and is required for RELA regulation of SASP genes. This suggests
that the role performed by the TF and its influence in cell state impacts its
predictability, where the inhibition of a driver of cell fate leading to more
reliable results. Hackett et al. (2019) modelled the yeast GRN based on TF
KD timecourse data using a sparse approach. They collected on average 8
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timepoints after the inhibition of 201 TFs, yielding a model that explains 43
% of the variability in the data.

Aiming to achieve higher model performance, I investigated the influence
of hidden sources on gene expression dynamics, as implemented by Su et al.
(2014) and described in detail by Wang et al. (2016). Briefly, equations
with increasing coefficient variance as the amount of data used for inference
increases are considered to require more observations to be reliably estimated.
I inferred the same matrix Ξ on five distinct subsets of the interpolated
data Θ(X) for four distinct percentages of the data (Figure 4.11). 22 %
of the distinct time profiles displayed non-increasing variance with higher
amounts of data, suggesting that their dynamic is entirely predicted by the
observed values, at least in RAS-OIS. Simulating only those variables yielded
an improvement on performance when using initial conditions corresponding
to JUN KD, while having a higher proportion of negative correlation values
for RELA KD. Those results corroborate the hypothesis that, as a regulator of
CS, JUN drives transcriptional output and yields more reliable results, while
RELA influence on transcription might be dependent on other properties
of the cell. Interestingly, this assay illustrates the independence of each
equation during inference. Datasets generated in the future can be used both
to improve the false predictions with further inference cycles and to validate
equations with robust predictions.

The inference of coefficients relative to second-order terms, corresponding
to pairwise interactions that regulate transcriptional output, highly increases
the number of parameters to be identified. The number of columns in the
expanded input matrix Θ(X) is proportional to the square of the number of
variables used in the inference. Therefore, the procedure of finding the set of
coefficients that model gene expression dynamics is computationally intensive.
I addressed this issue by performing model inference in a HPC environment,
leveraging the power of GPU processors. Compared to regular CPUs, GPUs
have a simpler architecture per core and are composed of hundreds to a few
thousand cores, being suitable for the execution for simple computations
repeated several times. Since the inference of matrix Ξ consists of sequential
large matrix multiplications, GRN inference can be highly sped up by the use
of this technology. The recent popularization of machine learning techniques
and its applications fostered the development of software libraries integrating
GPU functionalities (Paszke et al., 2019; Abadi et al., 2015), which facilitate
the implementation of tools by removing the need to learn architecture-specific
programming languages. Also, those libraries can be integrated into virtual
containers, e.g., Sigularity containers (Kurtzer et al., 2017), that can be
transferred between laboratories and computing facilities, therefore fostering
reproducibility. Furthermore, the software I implemented can be applied to
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larger datasets in order to generate more refined GRN for distinct contexts,
including cell differentiation and cancer development.

4.4 Conclusions and Perspectives

I used the CoS paradigm to generate a model describing the regulatory
interactions that govern CS. Due to the large number of variables, I performed
the inference in a GPU-based environment, decreasing the time required
to determine the model’s parameters. Validation with the inhibition of
two distinct TFs yielded more reliable results for a TF with the ability
to open inaccessible chromatin and recruit other TFs in order to regulate
transcriptional changes.

CoS has revolutionized the field of signal processing, with applications
in image processing, fluid dynamics and meteorological studies Wang et al.
(2016), Brunton et al. (2016), Chang et al. (2014), and Candes et al. (2006).
The innovation of this concept lies in the possibility of acquiring and storing
a signal with less measurements. Until the beginning of this century, it was
believed that one needs to collect samples at a rate at least twice the highest
frequency in the measured in order to reconstruct it properly, known as the
Nyquist rate (Unser, 2000; Shannon, 1949). Although this limit is still true
for systems with a fixed sampling rate, Candes et al. (2006) showed that,
given the data can be sparsely represented in any domain, we can recover the
signal from fewer measurements corresponding to linear combinations of the
data points.

In the context of Systems Biology, this paradigm also has the potential
to reduce the minimum amount of data required in order to build a GRN.
In general, biological networks tend to follow a scale-free distribution, where
few nodes concentrate a high number of connections, and most nodes connect
to few neighbors (Broido and Clauset, 2019; Ramirez et al., 2017; Wang
et al., 2016; Chang et al., 2014). Therefore, most edges in the networks
are null, characterizing scale-free networks as sparse networks and satisfying
the CoS sparseness requirement (Aslan et al., 2016; Del Genio et al., 2011).
Importantly, this approach may be combined with other layers of data mea-
surable by recently developed technologies, such as ATAC-seq and histone
ChIP-seq, which provide epigenome information that impact transcriptional
output (Buenrostro et al., 2015; O’Geen et al., 2011). La Manno et al. (2018)
developed a computational approach able to infer the rate of RNA synthesis
from single-cell RNA-seq data (Figure 4.13), which can be combined with the
absolute transcriptional levels to perform a GRN inference using SINDy on
thousands of data points from a single experimental assay.
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Figure 4.13: Single-cell RNA velocity. Transcriptional evolution of

embryonic neural development. Colors correspond to cell types and intermedi-

ate cell states. Arrows depict the derivative of gene expression computed from

spliced/unspliced RNA ratio (La Manno et al., 2018).

Additionally, CoS approaches have been extended to distinct frameworks
that can be used in the context of GRN inference. Hackett et al. (2019)
generated a GRN based on univariate sigmoidal functions using yeast tran-
scriptomic data. In a more general framework, Mangan et al. (2016) extended
SINDy by using an implicit formulation that allows a dynamic system de-
scription with higher order derivatives and rational functions. Kaiser et al.
(2018) combined the SINDy paradigm with an optimal control approach,
pre-selecting variables that will be used to steer the system future’s states.

GRN reconstruction will benefit from quantum computing developments
in future studies. In this work, GPU computing decreased inference running
time by diminishing the time required for each iteration of the optimization.
By exploring state superposition, quantum computers are able to perform
several iterations simultaneously, and quantum sparse regression approaches
have already been conceived (Gyongyosi and Imre, 2019; Li et al., 2018).
Despite the low number of qubits in state-of-the-art quantum computers, the
field is rapidly growing (Arute et al., 2019). Furthermore, this application
can be combined with tools such as the biglasso R package, which allows for
sparse regression with datasets larger than the primary memory of a computer
(Zeng and Breheny, 2017).

GRN inference is quickly evolving, and the development of high-throughput
techniques and computational resources have the potential to accelerate this
evolution at increasing rates. Our proposed predictive modeling approach will
provide a deeper understanding of cellular senescence and has the potential
to unravel unknown vulnerabilities of SnCs that may be exploited to promote
healthspan.
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4.5 Materials and methods

4.5.1 Cell culture, RNA extraction and microarrays

The data used in this project includes the time course transcriptome of cells un-
dergoing RAS-induced senescence as described in section 2.5.1. Additionally,
we collected gene expression data from senescent cells 48h after siRNA trans-
fection targeting JUN, ETS1 and RELA, as reported by Mart́ınez-Zamudio
et al. (2019). JUN and RELA siRNA transfection was performed 3 and 6 days
after RAS activation, and ETS1 was inhibited in SnCs 6 days after induction
(Figure 4.5A). For the assessment of BE, each KD sample was accompanied
of a control sample treated with non-targeting siRNA (Mart́ınez-Zamudio
et al., 2019).

4.5.2 Microarray transcriptome data preprocessing, sta-
tistical analysis and annotation

The raw Affymetrix HTA 2.0 data was pre-processed using Bioconductor R
packages. All samples were normalized using the robust multichip average
(RMA) tool implemented by the oligo R package (Carvalho and Irizarry, 2010)
and batch effects were removed using the Combat tool (Johnson et al., 2007).
Affymetrix probes were annotated using the hta20sttranscriptcluster.db R
package (MacDonald, 2017) and internal control probes were removed. Genes
with differential expression lower than 30 % compared to uninduced cells were
filtered.

4.5.3 Hierarchical clustering and identification of unique
expression time profiles

The training datasets, consisting of the RAS-induced senescence time course,
the inhibition of JUN and RELA at D3 and the inhibition of ETS1 at D6,
were aggregated as shown in Figure 4.5. The genes in each dataset were
clustered independently with the WGCNA tool (Langfelder and Horvath,
2008), where each sample was represented by the median of its replicates. The
parameters minimum cluster size, deepSplit and threshold for merging clusters
were set, respectively to 100, 3 and 0.85. The soft threshold parameter was
determined for each dataset separately. See section 3.5.6 for details.

Genes sharing the same modules in all time courses were aggregated,
constituting one variable in the model. In total, 4660 genes were identified
to change at least 30 % compared to replicating WI38 fibroblasts, and 562
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distinct expression profiles were identified, with 243 profiles being associated
to single genes. Since the profiles containing JUN, RELA and ETS1 also
enclosed other genes, one profile for each gene was added as an isolated
variable, constituting a model with 565 variables.

4.5.4 Model inference

In order to satisfy the RIP, the time course samples were scaled to zero mean
an unit variance (Wang et al., 2016). Each time course was interpolated by a
factor of 24 and the derivative for each variable time profile was numerically
computed using the secant method. The time-profiles for each dataset were
concatenated into a single matrix X, with rows representing the normalized
expression levels for a given time-point and columns representing one variable
in the model. The time derivatives for each dataset were also concatenated
in a single array ẋi per variable i, such that each element matches the
corresponding row in X.

Aiming to account the collective interaction of TFs in regulating gene
transcription (Voss and Hager, 2014; Garber et al., 2012), a library matrix
Θ(X) was computed by columnwise concatenating the matrix X to a second
matrix XP2 . As described in Brunton et al. (2016), the columns in matrix
XP2 consists of the pairwise multiplication of each column in X, therefore
characterizing a second-order model that describes the transcriptome dynam-
ics. In order to avoid redundancy during the inference, only the time points
corresponding to samples collected after siRNA addition were used for the
KD time courses.

As stated in section 4.1, CS gene expression dynamics is defined by the
matrix Ξ, which columns ξi correspond to the coefficients representing the
influence of each term in variable i. Formally,

Ẋ = Θ(X)Ξ (4.1)

Where Ẋ represents the concatenated derivatives of each time course for
each variable, Θ(X), the concatenated time courses for each variable and the
respective second-order terms, and Ξ, the coefficients describing the impact of
the current transcriptomic state in gene expression variation for each variable.
Assuming Ξ is sparse and Θ(X) obeys the RIP, we can find the coefficients
by solving the following optimization problem for each variable (Wang et al.,
2016):

minimize ||ξi||1
subject to ẋi = Θ(X)ξi

(4.2)
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where

||ξi||1 =
M∑
j=1

ξj,i (4.3)

is the L1 norm of each column ξi of Ξ.
Given the high number of coefficients to be inferred, the optimization was

run in a GPU-based computational environment containing NVIDIA R©accelerators
Tesla K80, Tesla P100 and Tesla M40, with memory ranging from 12 GB to
24 GB. The size of matrix Θ(X) is approximately 420 MB. The optimization
was performed using the SciPy (Jones et al., 2001) implementation of the
BFGS algorithm.

4.5.5 Model simulation

All model simulations were run with the R package deSolve (Soetaert et al.,
2010). At each solver iteration, the model’s current state was concatenated
with another array consisting of its own pairwise multiplied elements, analo-
gous to the computation of the Θ(X) matrix described in section 4.5.4. This
expanded array was multiplied by the inferred Ξ matrix, yielding the variation
in gene expression given a specific state.

4.5.6 Model assessment

In order to assess the performance of 565 variables, I built histograms depicting
the correlation between a prediction and its corresponding expected profile
as performed by Bonneau et al. (2007).

4.5.7 Canonical systems tool validation

In order to validate the inference implementation, I applied it to two canonical
systems: a 3D Lotka-Volterra prey-predator model (Chauvet et al., 2002) and
the chaotic Lorentz attractor (Brunton et al., 2016).

The Lotka-Volterra model is described by the following equations:

ẋ = ax− by
ẏ = cx− dy − ez
ż = fy − gz

(4.4)

And the Lorentz attractor:
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ẋ = σ(y − x)

ẏ = x(ρ− z)− y
ż = xy − βz

(4.5)

In both cases, the equations were simulated as described in section 4.5.5
and the produced time courses were used as input for my R implementation of
SINDy (see section 4.5.4). The resulting set of coefficients was also simulated
as previously described.

4.5.8 Hidden sources analysis

For the purpose of assessing how many and which genes present a dynamics
that can be reliably inferred from the available data, I performed a hidden
analysis as described by Wang et al. (2016), Shen et al. (2014), and Su
et al. (2014). The matrix Θ(X) (see section 4.5.4), containing 284 rows, was
randomly sampled five times for four distinct number of data points ratio
Rm (20 %, 40 %, 60 % and 80 %) and the inference procedure described in
section 4.5.4 was run independently for each sub-sampled matrix.

For each value of Rm, the coefficient variance was computed, and the σavg
for all coefficients describing the dynamics of a single variable was assessed.
Variables with non-decreasing σavg with respect to Rm were considered to
require more data in order to have their dynamics reliably determined.

With the aim of validating the performance of the predicted model when
considering only the deducible equations, I simulated the model with initial
conditions corresponding to the validation datasets, i.e., the KD of JUN and
RELA in senescent cells at D6 after RAS induction. Equations deducible
from our datasets correspond to equations with non-increasing coefficient
variance as more data is used for its inference Wang et al. (2016), Shen et al.
(2014), and Su et al. (2014). The simulations were performed as described
in section 4.5.5, and the expression levels corresponding to variables with
non-decreasing σavg were added from the experimental time courses. The
performance of each simulation was assessed as described in section 4.5.6.

4.5.9 Inference tools benchmark

In order to evaluate the performance of distinct optimization methods on
different platforms, I used the example provided by the R1magic R package
(Suzen, 2015). An array y is computed from the product of a Gaussian Matrix
Φ and a sparse array x0 and the execution time for each tool to recover x0
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was registered for five distinct combinations of Φ and y. The recovery was
accomplished by solving the following linear program:

minimize ||x0||1
subject to y = Φx0

(4.6)

Where Φ is a matrix with m rows and n columns, y is an array with m
elements and x0 is an array with k non null elements and length n. This
procedure was repeated for four distinct sets of values m, n and k, summarized
in Table 4.1.

Tests n m k Memory

1-5 100 40 5 40kB
6-10 400 160 20 600kB
11-15 1000 400 50 4 MB
16-20 4000 1600 200 60 MB

Table 4.1: Table to test captions and labels

The evaluated optimization implementations were (a) the L1 regulariza-
tion implemented by the R1magic R package (Suzen, 2015), (b) a BFGS
implementation for CPUs (R Core Team, 2017), and GPU-compatible imple-
mentations of the (c) FTRL (Abadi et al., 2015) and (d) BFGS algorithms
(Virtanen et al., 2019).
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Conclusion

Senescent cells arise as a consequence of molecular damage and accumulate
in our organism over time (Gorgoulis et al., 2019; Karin et al., 2019; McHugh
and Gil, 2018; López-Ot́ın et al., 2013). Despite its role in tumor suppression
and tissue regeneration, chronic presence of SnC cause tissue damage and the
onset of several ARPs. Aiming to comprehensively describe the unfolding
of CS, I integrated transcriptional, epigenetic and metabolic time-resolved
datasets.

I identified the AP1 family members as pioneering TFs preceding the
binding of the majority of other TFs on the chromatin, suggesting that they
shape the epigenetic landscape governing CS transcriptional changes. TF
chromatin binding is organized in a hierarchical network, where pioneers
bind to a high number of regions and are followed by settler and migrants,
characterized by an activity restricted to fewer targets. The TF networks
corresponding to distinct modules of co-expressed genes present unique set of
interactions, with a higher overlap at their top and increased specificity at
the bottom. Furthermore, even genes with highly correlated transcriptional
profiles were bound to distinct TF combinations, suggesting that co-expression
does not necessarily imply co-regulation.

CS is characterized by a profound metabolic shift depending on the nature
of the damage inflicted on the cell. With the use of a high-throughput
approach, I identified a diverse set of metabolites accumulating in SnCs,
notably αKG and UDP-GlcNAc acting as substrates for chromatin modifiers,
suggesting an important role in the transcriptomic and epigenetic changes
associated with CS (Schvartzman et al., 2018; Lewis and Hanover, 2014). UDP-
GlcNAc also acts as a precursor to a PTM that controls TF activity in response
to glucose (Özcan et al., 2010; Li et al., 2009) AA, an essential precursor
in FAO and lipid biosynthesis (Das, 2018), is accumulated during in cells
undergoing RAS-OIS, and not in cells senescent due to replicative exhaustion,
as suggested by previous studies and confirmed by our observations (Sagini
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et al., 2018; Quijano et al., 2012; Raederstorff et al., 1995). Additionally, AA
can modulate the activity of TFs regulating the SASP (Camandola et al.,
1996). Carnitine is an antioxidant molecule that reduces inflammation levels
(Jiang et al., 2016; Shakeri et al., 2010), while inducing CS in malignant cells
(Yang et al., 2019; Yamada et al., 2012), being a potential target for clinical
applications. Overall, the metabolic response caused by distinct inducers
is diverse, suggesting that CS operates in unique ways accordingly to the
damage source.

Furthermore, I generated a mathematical model that replicates the tran-
scriptional changes characterizing RAS-OIS. This model consists of a set
of second-order polynomial differential equations inferred using the CoS
paradigm in a HPC environment. Validation with TF KD datasets yielded
better outcome for JUN inhibition when compared to RELA depletion, sug-
gesting that the effects of perturbing TFs at the top of the chromatin binding
hierarchy are more predictable. This model will be further refined in fu-
ture work with additional datasets in order to increase its performance and
generate hypotheses that will be experimentally validated.

This study represents a comprehensive description of CS, integrating the
distinct layers of regulation that characterize this cell fate. It comprises
an in-depth analysis of transcriptome and epigenome data in order to de-
scribe the collective TF activity modulating gene expression; a bioinformatics
pipeline for mass spectrometry data; and a systems biology approach to math-
ematically characterize the underlying GRN regulating dynamic changes in
transcription. Our study highlights numerous components crucial for CS onset
and maintenance, and has the potential to unravel hitherto underappreciated
vulnerabilities of SnCs that may be exploited for therapeutic ends to promote
healthspan.
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SUMMARY 

Senescent cells play important physiological- and pathophysiological roles in tumor 

suppression, tissue regeneration, and aging. While select genetic and epigenetic 

elements crucial for senescence induction were identified, the dynamics, underlying 

epigenetic mechanisms, and regulatory networks defining senescence competence, 

induction and maintenance remain poorly understood, precluding a deliberate therapeutic 

manipulation of these dynamic processes. Here, we show, using dynamic analyses of 

transcriptome and epigenome profiles, that the epigenetic state of enhancers 

predetermines their sequential activation during senescence. We demonstrate that 

activator protein 1 (AP-1) ‘imprints’ the senescence enhancer landscape effectively 

regulating transcriptional activities pertinent to the timely execution of the senescence 

program. We define and validate a hierarchical transcription factor (TF) network model 

and demonstrate its effectiveness for the design of senescence reprogramming 

experiments. Together, our findings define the dynamic nature and organizational 

principles of gene-regulatory elements driving the senescence program and reveal 

promising inroads for therapeutic manipulation of senescent cells. 

 

 

 

  



INTRODUCTION 

Cellular senescence plays beneficial roles during embryonic development, wound healing, 

and tumor suppression. Paradoxically, it is also considered a significant contributor to 

aging and age-related diseases including cancer and degenerative pathologies1. As such, 

research on therapeutic strategies exploiting senescence targeting (e.g., senolytics, 

senomorphics or pro-senescence cancer therapies) to improve healthspan has gained 

enormous momentum in recent years2. 

 Cellular senescence is a cell fate that stably arrests proliferation of damaged and 

dysfunctional cells as a complex stress response. The most prominent inducers of 

senescence are hyper-activated oncogenes (oncogene-induced senescence, OIS)  and 

therapeutic interventions to induce senescence in cancerous cells (therapy-induced 

senescence, TIS)3. The senescence arrest is accompanied by widespread changes in 

gene expression, including a senescence-associated secretory phenotype (SASP) – the 

expression and secretion of inflammatory cytokines, growth factors, proteases, and other 

molecules such as stemness factors4, which  exert both cell-autonomous and cell-

nonautonomous effects5. Importantly, although activation of the senescence program can 

pre-empt the initiation of cancer, the long-term effects of the SASP make the local tissue 

environment more vulnerable to the spread of cancer and other age-related diseases. 

Therefore, therapeutic interventions aimed at limiting SASP production are of relevance 

for cancer and many age-related diseases5-7. 

 The knowledge on epigenetic mechanisms underlying senescence has only 

recently increased revealing significant contributions of select transcription factors (TFs), 

chromatin modifiers and structural components, as well as non-coding RNAs to the 

senescent phenotype8-13. A major limitation of such studies, however, was their restriction 



to start-end-point comparisons, ignoring the dynamic nature of the senescence fate 

transition. Consequently, critical gene-regulatory aspects of the execution and 

maintenance of the senescence state remain poorly understood. Therefore, an 

integrative, temporally resolved, multidimensional profiling approach is required to 

establish essential regulatory principles that govern this key biological decision-making 

process. Such knowledge would be instrumental both for identifying stage-specific 

senescence regulators and urgently needed specific biomarkers as well as control points 

in TF and gene regulatory networks, which would pave the way for a deliberate therapeutic 

manipulation of the senescence cell fate. 

 Enhancers are key genomic regions that drive cell fate transitions. The enhancer 

landscape is established during development by the concerted action of TF networks and 

chromatin modifiers14.  The details on how this information converges in cis remain 

unclear, and we still lack valid organizational principles that explain the function of 

mammalian TF networks. In mammalian cells, enhancer elements are broadly divided into 

two major categories -active and poised. While active enhancers are characterized by the 

simultaneous presence of H3K4me1 together with H3K27ac and are associated with 

actively transcribed genes, only H3K4me1 marks poised enhancers, and their target 

genes are generally not expressed15. A subset of enhancers may also be activated de 

novo from genomic areas devoid of any TF binding and histone modifications. These 

latent or nascent enhancers serve an adaptive role in mediating stronger and faster gene 

expression upon cycles of repeated stimulation16, 17. Recent evidence showed a role for 

enhancer remodeling in driving senescence-associated gene expression12, 13, 18. 

However, it is currently unknown which enhancer elements, epigenetic marks or TFs 

render cells competent to respond to senescence-inducing signals with precise timing and 



output. A thorough understanding of how senescence competence is established, realized 

and what defines it would allow for the prediction of a positive senescence engagement 

for example in pro-senescence cancer therapies19.  

 Pioneer TFs are critical in establishing new cell fate competence by granting long-

term chromatin access to non-pioneer factors and are also crucial determinants of cell 

identity through their opening and licensing of the enhancer landscape20, 21. We can now 

reliably deduce pioneer and non-pioneer TF activity from chromatin accessibility data 

allowing for the hierarchization of TF function whereby pioneer TFs sit atop a TF binding 

hierarchy, recruiting non-pioneers such as settler and migrant TFs to gene-regulatory 

regions for optimal transcriptional output22. The pioneer TFs bestowing senescence 

potential have not been identified to date. However, their identification might be a pre-

requisite for reprogramming or manipulation of senescent cells for future therapeutic 

benefit as was shown successfully for the reprogramming to adopt full stem cell identity23.  

 In this study, we examined the possibility that the epigenetic state of enhancers 

could determine senescence cell fate. We explored this question by generating time-

resolved transcriptomes and comprehensive epigenome profiles during oncogenic RAS-

induced senescence and validated central findings in different cell biology and disease 

models of senescence, both mouse and human. Through integrative analysis and further 

functional validation, we revealed novel and unexpected links between enhancer 

chromatin, TF recruitment, and senescence potential and defined the organizational 

principles of the TF network that drive the senescence program. Together, this allowed us 

to manipulate the senescence phenotype with potential therapeutic implications. 

Specifically, we show that the senescence program is predominantly encoded at the 

enhancer level and that the enhancer landscape is dynamically reshaped at each step of 



the senescence transition. Remarkably, we find that this process is pre-determined before 

senescence induction, and AP-1 acts as a pioneer TF that ‘premarks’ prospective 

senescence enhancers to direct and localize the recruitment of other transcription factors 

into a hierarchical TF network that drives the senescence transcriptional program after 

induction. We also uncover a class of enhancers that retain an epigenomic memory after 

their inactivation during the senescence transition. These “remnant” enhancers lack 

traditional enhancer histone-modification marks but are instead “remembered” by AP-1 

TF bookmarking for eventual future re-activation. Functional perturbation of prospective 

senescence enhancers and AP-1 validated and underscored the importance of these 

entities for the timely execution of the senescence gene expression program and allowed 

for the precise reprogramming and reversal of the senescence cell fate. Importantly, we 

reveal that AP1 plays a critical role in therapy-induced senescence (TIS) of colorectal 

cancer cells and a mouse model of B cell lymphoma and show that an AP1-regulated 

senescence-associated gene signature can stratify mouse lymphomas into treatment-

responsive and recurring, treatment-resistant lymphomas in mice and humans. 

 

  



RESULTS 

We employed time-series experiments on normal, human diploid lung fibroblasts (HDF, 

strain WI38) undergoing oncogene-induced senescence (OIS) using a tamoxifen-

inducible ER:RASV12 expression system24 (RAS-OIS) in two biological replicates. We 

determined global gene expression profiles by microarrays and mapped the full set of 

accessible chromatin sites by ATAC-seq25 at 6-time points (0, 24, 48, 72, 96 and 144 h, 2 

biological replicates). Cells intended for ChIP-seq were crosslinked at 3-time-points (0, 72 

and 144h, 2 biological replicates) and used for profiling histone modifications including 

H3K4me1 (putative enhancers), H3K4me3 (promoters), H3K27ac (active enhancers and 

promoters) and H3K27me3 (polycomb repressed chromatin). From accessible chromatin 

regions determined by ATAC-seq we deduced TF binding dynamics and hierarchies 

(Figure 1a). For comparison, we included cells undergoing quiescence (Q time points: 0, 

12, 24, 48, 72 and 96h) by serum withdrawal for up to 96h. Unlike senescence arrested 

cells, quiescence arrested cells can be triggered to re-enter the cell cycle upon serum 

addition. We also validated our approach in  two additional cell biology models of 

senescence: i) oncogenic RAF-induced senescence (RAF-OIS time points: 0, 12, 24, 48, 

72, and 96 h for transcriptome and ATAC-seq analysis; 0, 48 and 96h for H3K4me1 and 

H3K27ac ChIP-seq), ii) replicative senescence (RS time points: 0, 144, 264, 432, 624, 

792, 1008 and 2112 h for transcriptome and ATAC-seq analysis; 0, 264, 1008 and 2112h 

for H3K4me1 and H3K27ac ChIP-seq analysis), and in RAS-OIS of GM21 skin fibroblasts 

(time points: 0, 192 and 336 h for transcriptome and ATAC-seq analysis). Quiescence and 

senescence were verified using senescence-associated ß-Gal (SABG) staining, 

population doublings, EdU incorporation and RT-qPCR-based expression profiling of 

genes pertinent for senecence (Supplementary Figures 1a-q) 



Multi-state establishment of the senescence transcriptional program  

To identify and visualize dynamic gene expression patterns across the entire Q and RAS-

OIS time-courses, we employed an unsupervised, self-organizing map (SOM) machine 

learning technique26 (Figure 1b) and multidimensional scaling (MDS) (Figure 1c) to our 

transcriptome data sets. Remarkably, serum-deprived fibroblasts rapidly established a Q-

specific gene expression program within 24 h after serum deprivation, which changed only 

marginally within the remainder of the time-course (Figure 1b, left column and Figure 1c), 

and mainly involves only up-regulated (Figure 1b, top right corner, red) and down-

regulated (Figure 1b, bottom left corner, blue) genes. By contrast, fibroblasts undergoing 

RAS-OIS displayed dynamic gene expression trajectories that evolved steadily, both for 

up- (red) and down-regulated metagenes (blue) (Figures 1b, right column and Figure 1c), 

which was corroborated by the expression profiles of a selection of senescence-

associated genes (Supplementary Figure S1e). Thus, RAS-OIS, unlike Q, is highly 

dynamic and does not gyrate towards a stable transcriptome end state. To substantiate 

this further we calculated the diversity and specialization of transcriptomes and gene 

specificity27 (Figure 1d). These analyses demonstrated that RAS-OIS cells exhibit a 

temporally evolving increase in transcriptional diversity, whereas Q cells exhibit a 

temporally evolving, specific gene expression program. We conclude that the RAS-OIS 

cell fate is a succession of cell states rather than a fixed cell fate with a defined end-point, 

which is the current tenet. The transcriptional diversity may provide a fertile soil for the 

eventual escape of pre-cancerous senescent cells as previously shown4, 28. 

 To further delineate the evolution of the RAS-OIS gene expression program, we 

performed dynamic differential gene expression analysis on the Q and OIS datasets29. A 

total of 4,986 genes (corresponding to 2,931 up-regulated and 2,055 down-regulated 



genes) were differentially regulated in at least one-time point (with a minimal leading log2 

fold-change of 1.2; q=5*10-4) and partitioned into seven (I-VII) gene expression modules 

with distinct functional overrepresentation profiles in line with the senescence phenotype 

(Figures 1e-f and Supplementary Figure 1u). The highly reproducible gene expression 

dynamics and modularity during RAS-OIS transition suggest a high degree of 

preprogramming of this succession of cell states, which we confirmed in additional cell 

biology models of senescence, i.e., WI-38 lung fibroblasts undergoing RAF-OIS and RS 

as well as in GM21 skin fibroblasts undergoing RAS-OIS (Supplementary Figures 1r-t).   

 Cell-fate decisions are typically associated with stable changes in gene expression 

that shift the regulatory system from one steady state to the next30. In line with this, we 

found that in RAS-OIS of WI38 fibroblasts proliferation-promoting genes of modules II and 

IV (e.g., E2F targets and G2M checkpoint such as CDKN1B, CCNB2 and CDK1) became 

increasingly repressed (i.e. senescence arrest), while pro-senescent SASP genes of 

modules VI and VII (e.g., IL1ß, IL6 and IFNGR2) became persistently induced (Figures 

1e-f and Supplementary Figure 1o). Apoptosis-related genes of module III (e.g., COL5A2, 

CCN2 and IGFBP3) were repressed very early on in the time-course (within the first 24-

48 hours during RAS-OIS induction; Figure 1f and Supplementary Figure 1u) indicating 

that the commitment to undergo senescence is a very early event made at the expense 

of apoptosis. Finally, we identified a set of genes in modules I and V involved in the 

epithelial-to-mesenchymal transition (EMT) and TNF signaling (e.g., MMP3, COL4A2, 

MRTO4) that would have gone unnoticed in a traditional start-end-point analysis because 

they follow a sharp transition. In these modules, transcript levels spiked-down (module I; 

e.g., MMP3 and COL4A2) or up (module V; e.g., MTRO4 and C1QBP) within 24 h 

following RAS-OIS induction, before transitioning to a new steady state, similar to the 



original levels (Figure 1e and Supplementary Figure 1u).  These expression patterns 

support the notion that genes of module V play a role early in the transition to RAS-OIS, 

while genes in module I play a role in the maintenance of the proliferative fibroblast state.  

Altogether, our investigation of transcriptome dynamics in different cell biology 

models of senescence defined a modular organization and transcriptional diversity of the 

senescence gene expression program, providing a framework to unravel the gene-

regulatory code underlying the senescence process.  

 

A dynamic enhancer program shapes the senescence transcriptome 

Senescence cell fate involves a global remodeling of chromatin and specifically, the 

enhancer landscape12, 13. An unanswered question, however, is how TFs and epigenetic 

modifications cooperatively shape a transcriptionally permissive enhancer landscape prior 

to gene activation to endow the cell with senescence potential. 

 To provide mechanistic insight into this question, we first comprehensively mapped 

genomic regulatory elements (i.e. putative enhancers, promoters and polycomb-

repressed chromatin) during the transition of proliferating WI38 fibroblasts to RAS-OIS, 

profiling genome-wide histone modifications by ChIP-seq and transposon-accessible 

chromatin by ATAC-seq. To capture and quantify chromatin state dynamics we used 

ChromstaR (see Materials and Methods), which identified a total of sixteen chromatin 

states in RAS-OIS (Supplementary Figure 2a). The majority of the genome (80%) was, 

irrespective of the time-point, either devoid of any of the histone modifications analyzed 

(62%) or polycomb-repressed (18%). The fraction of the genome represented by active 

and accessible chromatin states (i.e., enhancers and promoters) was comparably lower 



(20% combined). Chromatin state transitions occurred most prominently at enhancers, 

while promoters were only mildly affected (Figures 2a,b and Supplementary Figure 2a, 

see insets indicated by arrows) congruent with previous results12. Unexpectedly, we found 

that many enhancers were activated de novo (i.e., acquisition of H3K4me1 and H3K27ac) 

from unmarked chromatin at the T0-72 h and 72 h-144 h intervals, followed by the more 

stereotypical enhancer activation from a poised state (H3K4me1+ plus H3K27ac 

acquisition) and enhancer poising from the unmarked and polycomb-repressed state at 

the T0-72 h interval (acquisition of H3K4me1) (Figures 2a,b). Dynamics of sequential 

enhancer activation was preserved in WI38 fibroblasts undergoing RAF-OIS and RS 

(Supplementary Figures 2b,c). We conclude that the regulatory landscape of senescence 

is largely predetermined by sequential enhancer activation from de novo and poised 

enhancers implying the existence of a prior imprint of past cell fate decisions.  

The chronology of enhancer activation was highly concordant with the temporal 

expression pattern of the nearest genes, indicating that most of these elements indeed 

function as bona fide enhancers (Supplementary Figure 2d). In line with this, 

correspondence analysis (CA) (Supplementary Figure 2e) revealed a strong correlation 

between gene expression modules (Figure 1e) and chromatin state transitions (Figure 

2a). For example, globally up-regulated transcriptomic modules V, VI, VII projected 

proximally to chromatin state transitions involving enhancer activation congruent with the 

installation of the SASP. By contrast, dynamic enhancer inactivation associated with 

repressed transcriptomic modules (II, III, IV) congruent with installation of the senescence 

arrest. Finally, the oscillatory expression of genes in the module I associated with an 

equally oscillatory activation of its closest enhancers. Therefore, dynamic remodeling of 



the enhancer landscape reflects and defines the modular and dynamic nature of the RAS-

OIS gene expression program. 

 We next addressed the question of which TFs are key drivers for the dynamic 

enhancer remodeling driving the senescence transcriptome. To this end, we first 

intersected ATAC-seq peaks with the identified enhancer coordinates (Figure 2a,b) and 

performed a motif over-representation test. This analysis identified AP-1 super-family 

members (cJUN, FOS, FOSL1, FOSL2, BATF) as well as AP-1-associated TFs ATF3 and 

ETS1 as the most enriched motifs at any given time-point, thus, hinting at a putative 

chromatin priming and pioneer function for these TFs (Supplementary Figure 2f). Because 

AP-1 TFs are essential and inducible downstream effectors for the RAS signaling pathway 

in cellular transformation31 the possibility remains that the observed enrichment of AP-1 

TFs at enhancers is strictly dependent on oncogenic RAS signaling per se and not a 

reflection of a specific pioneering role in the enhancer landscape independent of RAS 

signaling. We therefore compared ATAC-seq peaks for TF binding sites in WI38 lung 

fibroblasts undergoing RAS-OIS, RAF-OIS, RS (which is driven by loss of telomere 

integrity), GM21 skin fibroblasts undergoing RAS-OIS and growth factor-deprived (and 

thus RAS signaling-muted) quiescent WI-38 fibroblasts (Supplementary Figures 2g-k). In 

all cases, the AP-1 motif ascended as the predominant motif enriched, thus, corroborating 

the notion that AP-1 TFs act as universal pioneers imprinting the global as well as 

senescence-associated enhancer landscape.  

 To elaborate this further, we analyzed our time-resolved RAS-OIS ATAC-seq data 

sets obtained in WI38 fibroblasts by adapting the “Protein Interaction Quantitation (PIQ)” 

algorithm, which was developed initially for DNAse-seq-based digital TF footprinting22. 

Importantly, PIQ allows for the functional hierarchization of TFs into pioneers, settlers, and 



migrants - whereby pioneer TFs bind nucleosome-compacted chromatin to initiate 

chromatin remodeling and to enable subsequent binding of non-pioneers (i.e., settler and 

migrant TFs). PIQ segregated TFs into pioneers (e.g., AP-1 TF family members), settlers 

(e.g., NFY and RELA subunit of NF-B) and migrants (e.g., TF RAR family members and 

SREBF1) (Figure 2c). We confirmed this TF hierarchization by inspecting a selection of 

individual TF footprints for their adjacent nucleosomal positioning (Supplementary Figure 

2l-n). AP-1 family member FOSL1, for example, bound to its cognate binding site despite 

the presence of strongly positioned flanking nucleosomes, as would be expected from a 

pioneer TF (Supplementary Figure 2l), while RELA binding required partial nucleosome 

displacement/chromatin opening, as would be expected for a settler TF (Supplementary 

Figure 2m), and SREBF1 bound to its cognate site in a near-nucleosome free context, as 

would be expected for a migrant TF (Supplementary Figure 2n). Importantly, there was a 

high correspondence between PIQ predictions and TF ChIP-seq profiling as exemplified 

for AP-1-members FOSL2 and cJUN, which we used as surrogate marks for bound AP-1 

(which is typically a complex of JUN-JUN or JUN-FOS family member dimers), and RELA 

(Supplementary Figure 2o).  

 To decode additional TF properties critical for shaping the dynamic RAS-OIS 

enhancer landscape, we applied a principal component analysis (PCA) considering 

several metrics describing TF binding characteristics (Figure 2d). This analysis revealed 

two key features: First, pioneer TFs bind statically, extensively, and most importantly 

before RAS-OIS induction (i.e., pre-stimulation) along the genome, while settler and 

migrant TFs bind more dynamically (“Dynamicity” in Figure 2d), far less frequently 

(“Windows” in Figure 2d), and on average less often before OIS induction (i.e. pre-



stimulation) along the genome. Second, and in line with the proposed pioneering activity 

of AP-1 TFs, the latter clearly stand out amongst other pioneer TFs (highlighted by black 

circle in Figure 2d) because they bind exclusively and extensively to enhancers prior to 

RAS-OIS induction whereas most of the remaining pioneer TFs tend to accumulate away 

from them. 

 In summary, we identify de novo enhancer activation and AP-1 as novel and key 

elements that pioneer and shape a transcriptionally permissive enhancer landscape in 

senescence. 

 

AP-1 pioneer TF bookmarking of senescence enhancer landscape foreshadows the 

senescence transcriptional program 

Given our unexpected finding that most of the enhancer activation occurred de novo out 

of unmarked chromatin territories, i.e., devoid of enhancer-related histone modifications 

H3K4me1 and H3K27ac and ending in an active H3K4me1+/ H3K27ac+ enhancer state at 

144h, and that AP-1 TFs act as pioneers to shape the senescence enhancer landscape, 

we explored a possible role of AP-1 as a general bookmarking agent for future and past 

enhancer activity during RAS-OIS in WI38 fibroblasts. Quantification of enhancer mark 

dynamics (Figure 3a and Supplementary Figures 3a-c) unveiled that for windows shifting 

from the “unmarked” state at T0 to an “active enhancer” state (H3K4me1+ / H3K27ac+) at 

either 72 h or 144 h, i.e. “de novo enhancers”, there is both a gradual increase in H3K4me1 

and H3K27ac levels from initial levels (T0) similar to steady-state unmarked regions but 

different from poised enhancers, to final levels (144 h) indistinguishable from constitutive 

enhancers (Figure 3a and Supplementary Figures 3a,b). By contrast, for windows shifting 



from an “active enhancer” state at T0 to an “unmarked” state at either 72 h or 144 h, that 

we refer to as “remnant enhancers”, there is a progressive decrease both in H3K4me1 

and H3K27ac levels from initial levels indistinguishable from constitutive enhancers to 

final levels similar to unmarked regions and distinct from poised enhancers (Figure 3a and 

Supplementary Figures 3a,c). The dynamic behavior of each enhancer class on average 

associated with the expression profile of nearby genes, with constitutive enhancers 

displaying constant gene expression, de novo enhancers increasing and remnant 

enhancers decreasing gene expression (Supplementary Figure 3d). 

 To directly show the functional role of de novo enhancers we used a CRISPR 

interference (CRISPRi) approach32, 33. Expression of 4 different gRNA targeting the 

dCas9-KRAB transcriptional repressor to de novo enhancers in the IL1α /IL1ß locus (g7, 

-14, -15, and -61) significantly reduced the expression of IL1ß when analyzed 8 days after 

oncogenic RAS induction (Figure 3b). Interestingly, IL1α expression was only mildly 

reduced by the two gRNAs (g61 and g7) adjacent to the IL1ß promoter (Figure 3b). While 

similar results were observed 14 days after oncogenic RAS induction (Supplementary 

Figure 3e), a control gRNA (g54) targeting a genomic region just downstream of the IL1α 

/IL1β locus did not affect either expression, while control gRNA guides g2 and g48, 

targeting sequences in-between two de novo enhancers, had moderate effects 

(Supplementary Figure 3f). Together, we render ample evidence that de novo and 

remnant enhancers are novel senescence-associated cis-regulatory modules that define 

the senescence transcriptional program.  

 We next determined whether TFs bookmark de novo enhancers for future 

activation and also, whether TFs bookmark remnant enhancers after their inactivation as 

part of a molecular memory. Indeed, as shown in Figure 3c, we found that AP-1 is the 



predominant TF bookmarking de novo and remnant enhancers. Importantly, and 

highlighting the importance of AP-1 in bookmarking de novo enhancers for future 

activation, gRNAs chosen for CRISPRi were either overlapping with AP-1 binding sites 

(g14, g15 and g61) or in close proximity (g7), i.e. ~125 bp outside of it (Figure 3b). 

Because CRISPRi can control repression over a length of two nucleosomes (~300bp)34, 

it is highly probable that g7 also affects this AP-1 binding site. Moreover, a control gRNA 

(g2) targeting a non-enhancer AP-1 site (Supplementary Figure 3f) did not affect IL1 

expression strongly suggesting that only enhancer-positioned AP-1 sites are functional. 

Finally, we validated the importance of AP-1 TFs for de novo and remnant enhancer 

bookmarking by examining their positioning also in cells undergoing replicative 

senescence, which demonstrated that AP-1 TFs here also play a leading role for 

bookmarking (Supplementary Figure 3g). We conclude that AP-1 bookmarking of de novo 

and remnant enhancers is independent of oncogenic RAS signaling and a novel and 

cardinal feature that reflects future and past transcriptional activities in senescence.  

 While performing this analysis, we noticed that only 2,480 out of 3,334 de novo 

enhancers were TF bookmarked, while the remainder (n=854) lacked any detectable TF 

binding activity (Figure 3d). Thus, de novo enhancers can be further divided into two 

subclasses: 1) “TF bookmarked de novo enhancers” and 2) “TF virgin de novo enhancers” 

that are reminiscent to previously described latent enhancers16, 35 expanding the 

senescence enhancer landscape. Next, we considered the chromatin state environment 

of the two de novo enhancer classes to further characterize them (Supplementary Figure 

3h). While a chromatin state environment already rich in constitutive enhancers 

surrounded bookmarked de novo enhancers at T0 (i.e., pre-OIS stimulation; left top and 

bottom plots), a chromatin state environment poor in constitutive enhancer elements 



surrounded virgin de novo enhancers at T0 (right top and bottom plots). Both AP-1 

bookmarked and virgin de novo enhancers became progressively activated and expanded 

upon RAS-OIS induction. Given that AP-1 premarked de novo enhancers operate within 

pre-existing, active enhancer-rich cis-regulatory regions and virgin de novo enhancers in 

poor ones, we hypothesized that this might impact absolute gene expression levels and 

kinetics upon enhancer activation. Indeed, we observed that the nearest genes associated 

with bookmarked de novo enhancers were already expressed at higher basal levels (as 

were genes proximal to poised enhancers) and reached significantly higher absolute 

expression levels with faster kinetics after RAS-OIS induction. In contrast, virgin de novo 

enhancers showed only low-to-background basal expression levels and reached 

comparatively lower absolute expression levels with slower kinetics after RAS-OIS 

induction (Figure 3e). These results argue that TF bookmarking of de novo enhancers, 

similar to traditional enhancer poising36, is a chromatin-priming event that impacts gene 

expression kinetics and absolute output. Contrary to latent enhancers, our newly identified 

virgin enhancers do not serve an adaptive role in mediating stronger and faster gene 

expression upon restimulation as observed in macrophages16, but instead serve as novel 

enhancer elements for de novo gene expression. Finally, we plotted leading gene 

expression fold-changes against the number of de novo enhancers in a given prospective 

senescence enhancer region. Remarkably, we discovered that a single de novo enhancer 

element of 100 bp can substantially activate the expression of its nearest gene and that 

there exists a positive correlation between the number of de novo enhancer elements and 

the expression increase of their nearest genes (Supplementary Figure 3i). 

 Altogether, our results provide compelling evidence that de novo and remnant 

enhancers play a critical role for ensuring that genes pertinent for senescence are 



expressed at the correct time and the correct level and highlight the importance of AP-1 

bookmarking for epigenetic memorization of past and future enhancer activity to define 

the senescence transcriptional program.  

 

A hierarchical TF network defines the senescence transcriptional program  

The combinatorial and dynamic binding of TFs to enhancers and their organization into 

TF networks are central to the spatiotemporal specificity of gene expression and a key 

determinant in cell fate decisions37. TF networks are frequently corrupted in disease and 

thus, a detailed understanding on TF networks has important implications for developing 

and improving new therapeutic strategies38. Currently, a TF network regulating 

senescence is not available, which precludes a deliberate therapeutic manipulation of the 

senescence phenotype. Importantly, TF networks deduced in silico from the integration of 

time-resolved multidimensional, genome-wide datasets improve the accuracy and 

predictive power of such networks. 

 To elucidate the combinatorial and dynamic binding of TFs to enhancers and their 

organization into TF networks, we first computed co-occurring pairs of TFs in enhancers 

in WI38 fibroblasts undergoing RAS-OIS, RAF-OIS, and RS (Figures 4a-c, Supplementary 

Figure 4a and Supplementary data: see under Code availability in Material and Methods). 

For RAS-OIS, we also applied a topic machine learning approach that dissects the 

complexity of combinatorial binding of many TFs into compact and easily interpretable 

regulatory modules or TF "lexicons" that form the thematic structures driving the RAS-OIS 

gene expression program (Figure 4d)39, 40. These analyses illustrated two key points. First, 

as shown in the co-binding matrices of Figures 4a-c and heatmap of Figure 4d, AP-1 

pioneer TFs interact genome-wide with most of the remaining non-pioneer TFs (i.e., 



settlers and migrant TFs), have the highest total number of binding sites (Figure 4d, grey 

curve) and contribute to virtually all of the 54 TF lexicons (Figure 4d, green curve) with 

lexicon 22 being the most frequently represented lexicon genome-wide (Figure 4d,  

orange curve and Supplementary Figure 4c). Our interactive heatmap of Figure 4d 

(Supplementary data: see under Code availability in Material and Methods) provides a 

valuable resource for generating new hypotheses to functionally dissect TF interactions 

in cells undergoing RAS-OIS. Second, TF lexicon usage associates with specific 

chromatin states (Supplementary Figure 4b). For example, lexicons 21 and 22 are 

exclusively used for enhancers holding most of the AP-1 binding instances, while lexicon 

50 is strongly related to polycomb repressor complex (PRC)-repressed regions and 

lexicons 44 and 52 predominantly associate with promoters (see Supplementary Figure 

4c for specific examples). Interestingly among the most prominent TFs in lexicon 50 are 

the known PRC-interacting transcriptional co-repressor complex REST and insulator 

CTCF41, 42. The latter implies that these proteins may recruit PRC to silence or structure 

genomic regions, an intriguing possibility that deserves further investigation. Moreover, 

the promoter-centric lexicon 52 holds many E2F TFs, which is in line with a primary role 

of E2Fs at promoters43.  

 Next, we developed an algorithm, based on our temporal TF co-binding information 

and a previously published TF network44, to visualize the hierarchical structure of the 

senescence TF network. In Figure 4e we show a representative example of the TF 

network of SASP gene module VI. The network has a three-layered architecture: i) a top 

layer defined exclusively by the AP-1 family of pioneer TFs ii) a core layer composed 

mostly of other pioneer and settler TFs, and iii) a bottom layer characterized by settler and 

migrant TFs (Figure 4e and Cytoscape interactive maps in Supplementary Data: see 



under Code availability in Material and Methods). The core layer itself separates into a 

multi-level and single-level core, depending on the complexity of TF connectivity to the 

top and bottom layers (Figure 4e). Remarkably, the organizational logic of the TF network 

is highly similar, if not identical, for all gene expression modules despite high transcription 

factor diversity in the core and bottom layers (Supplementary data: see under Code 

availability in Material and Methods). The TF network topology for RAS-OIS is congruent 

with the biochemical and dynamic properties of each TF category (i.e., pioneer, settler or 

migrant) in each layer of the network. As the interactions flow from the top to the bottom 

layer, there is an increasing dynamicity and number of TFs and a decreasing number of 

bound regions (Supplementary Figures 4d,e). Ranking the dynamicity index and the 

number of bound regions for all TFs in each network confirmed the hierarchical principles 

of their organization, with a common core of highly connected TFs from the top and core 

layers shared across all networks (Supplementary Figure 4f, black circle at center). 

Variability in the composition of the most dynamic TFs of the core and bottom layers 

defines the gene expression module specificity for each network and its corresponding 

specialized transcriptional output (Supplementary Figures 4g-i). Thus, TF network 

topology imposes and constrains the position of a given TF in the network and thus, its 

gene-regulatory contribution. Our data also revealed unanticipated plasticity in 

transcription factor binding leading to similar gene expression, thus, refuting the simple 

rule that co-expression behooves co-regulation45. 

 Our hierarchical TF network model for RAS-OIS enhancers predicted that the 

number of direct target genes regulated by a given TF is a function of its position in the 

TF network hierarchy. To test this prediction, we performed transient RNA interference 

(siRNA) experiments targeting AP-1-cJUN (top layer), ETS1 (multi-level core layer) and 



RELA (single-level core layer) using two independent siRNAs per TF in fully senescent 

RAS-OIS cells (144 h), determined the global transcriptome profiles and compared them 

to the transcriptomes of cells transfected with a non-targeting siRNA (siCTRL) (Figure 4f 

and Supplementary Figures 4j-l). Consistent with the TF network hierarchy, silencing of 

AP-1-cJUN affected the most substantial number direct gene targets (n=5,089), followed 

by ETS1 (n=2,431) and RELA (n=2,224), thus, confirming the master regulatory role of 

AP-1 pioneer TFs at enhancers and in the execution of the RAS-OIS gene expression 

program. Specifically, 172 genes were co-regulated by the three TFs, while 987 were co-

regulated by cJUN and ETS1, 520 by JUN and RELA, and 293 by ETS and RELA (Figure 

4F). Correspondence analysis (CA) revealed that perturbing the function of AP-1-cJUN, 

ETS1 or RELA could separate faithfully (p = 1.8 x 10-149) up-regulated (V-VII) from down-

regulated gene expression modules (I-IV) (Figure 4g), which aligns both with the CA for 

chromatin states (see Figures 2a,b) and the differential impact of the TFs on RAS-OIS-

associated enhancer activation as predicted in the TF network analysis (Figure 4e and 

Supplementary data: see under Code availability in Material and Methods).  

 We conclude that the senescence response is encoded by a universal three-

layered TF network architecture and relies strongly on the exploitation of an enhancer 

landscape implemented by AP-1 pioneer TFs to choreograph the OIS transcriptional 

program via local, diverse and dynamic interactions with settler and migrant TFs.  

 

Hierarchy Matters: Functional Perturbation of AP-1 pioneer TF, but no other TF, 

reverts the senescence clock  

Pioneer TFs have been identified as important drivers of cell fate changes during adaptive 

and cellular reprogramming as well as in cells undergoing malignant transformation46, 47. 



As such, they represent attractive targets to manipulate cell fate for diverse research and 

therapeutic purposes20. 

 The identification of AP-1-cJUN as a principal pioneer TF in fibroblasts undergoing 

RAS-OIS raised the possibility that perturbing its function could considerably change the 

transcriptional trajectory of the OIS cell fate, while perturbation of other TFs should not. 

To test this hypothesis, we depleted AP-1-cJUN, ETS1 and RELA at T0, 72 h and 144 h 

following oncogenic RAS expression using two independent siRNAs per TF, and 

compared global gene expression profiles with siCTRL treated cells at identical time-

points. Knockdown efficiency for each siRNA was verified by RT-qPCR (see 

Supplementary Figures S4j-l). Capturing their transcriptional trajectories using PCA 

illustrated that functional perturbation of ETS1 and RELA shifted trajectories along the 

second principal component (PC2, which captures siRNA-related variability) at any given 

time-point compared to the control time course, but it did not affect the timely execution 

of the RAS-OIS gene expression program, since there is not shift along the first principal 

component (PC1, which captures time-related variability). By contrast, perturbing AP-1-

cJUN function shifted trajectories both along PC1 and PC2 and effectively reverted the 

RAS-OIS transcriptional trajectory to a profile closely related to that of siCTRL-treated 

fibroblasts at 72 h after RAS-OIS induction. Silencing AP-1-cJUN expression at 72 h also 

pushed the transcriptional profile closer to control-treated cells at day T0 T0 (Figure 5A, 

blue arrow). Functional overrepresentation analyses of the target genes (direct and/or 

indirect) of each TF further supported the siJUN-mediated reversion of the RAS-OIS 

transcriptional trajectory demonstrating that depletion of AP-1-cJUN led to repression of 

the inflammatory response (i.e., the SASP) and a partial reactivation of pro-proliferation 



genes (i.e., E2F, G2M and mitotic spindle targets) (Figure 5b and Supplementary Figures 

5a-c). A complete exit of senescence is not expected here, however, as AP-1 is absolutely 

required for proliferation48, 49. 

 To quantify and visualize the temporal overlaps in differentially expressed genes 

between siJUN and siCTRL-treated cells we used an UpSet plot (Supplementary Figures 

5d) and expression heatmaps (Figure 5c and Supplementary Figures 5e-g). Congruent 

with a resetting of the senescence clock, a significant number of pro-proliferation E2F 

target genes (14%; e.g. CCNB2 or CDCA8) were up-regulated (Supplementary Figure 

5e), and NF-B-regulated SASP target genes (e.g. IL1ß or IL6) were down-regulated 

(60%) (Supplementary Figure 5F) and a subset of p53 target genes (33%) was 

dysregulated by cJUN knockdown, indicating a functional interaction between AP-1 and 

p53, which we confirmed by interrogating our TF networks (Supplementary Figures 5g-i 

and Supplementary Table S7). cJUN-depleted RAS-OIS cells also shared a similar 

expression profile for a subset of genes (27%) of the Notch-1 intracellular domain 

(NC1ID)-induced senescence (NIS) transcriptional signature50 that develops within the 

first 72-96 h of RAS-OIS (Supplementary Figure 5j). Altogether, these data identify AP-1 

as a master regulator and molecular “time-keeper” of senescence. Our detailed 

description of the layered TF network architecture will facilitate targeted disruption of TFs 

to manipulate specific features of the senescence phenotype for future therapeutic benefit. 

 

Functional role of AP-1 in therapy-induced senescence   

Senescence exerts both cell-autonomous and non-cell- autonomous effects on (pre-) 

neoplastic lesions through a durable cell-cycle arrest, its secretome (SASP), stemness 

reprogramming and anti-apoptotic effects, all of which affect tumor aggressiveness and 



clinical outcome after anti-cancer therapy4, 51. To corroborate our findings of AP-1 as a 

pioneering, master regulator of the senescence-associated gene expression program in 

fibroblasts undergoing RAS-OIS and, more specifically, the expression of SASP, 

stemness, and apoptosis mediators, we asked whether it may also play a decisive role 

during (chemo)therapy-induced senescence (TIS) in vitro and in vivo. 

 To this end, we first induced TIS by exposure to the chemotherapeutic agent 

Adriamycin (ADR) in two colorectal cancer (CRC) cell lines, HCT116 and SW480, 

overexpressing either a non-phosphorylatable, dominant-negative isoform of cJUN 

(cJUN4A) or empty vector control. Expression of cJUN4A had no measurable effect on 

senescence inducibility as indicated by a robust increase in SABG staining (Figures 6a,b) 

and a decrease in proliferation as measured by incorporation of BrdU  (Supplementary 

Figures 6a,b). However, it significantly blunted TIS-induced transcriptional upregulation of 

cJUN in both CRC cell lines, which is consistent with the role of cJUN driving its 

expression52 (Supplementary Figures 6c,d; compare empty/ADR and cJUN4A/ADR). 

Next, we measured the expression of selected AP-1-dependent SASP factors, stemness- 

and apoptosis-related genes, as well as E2F target genes that we had identified as being 

differentially expressed in fibroblasts undergoing OIS (see Figure 4f and Tables S7 and 

S8). Indeed, this analysis revealed dramatic repression of SASP (e.g., IL6, IL1ß, and 

MMP10), stemness (e.g., LIF, ABCG2, and CD44) and anti-apoptotic (e.g., BCL2A1) 

target genes only in cJUN4A-expressing, but not in empty vector control cells. These 

results, therefore, indicate that AP-1 is critical for regulating the expression of these genes 

not only in human fibroblasts undergoing OIS-RAS but also in human colorectal cancer 

cell lines undergoing TIS (Figures 6c,d). Of note, E2F -target genes (e.g., CCNB2 and 

CDCA8) remained repressed in cJUN4A-expressing CRC cell lines, which seems to 



indicate cell-type dependent differences when compared to our findings in RAS-OIS of 

fibroblasts. 

 To extend our findings to a primary tumor of different origin, we assessed the role 

of AP-1 in a well-established Eμ-myc transgenic mouse B-cell lymphoma model4. 

Consistent with the results in CRC cancer cell lines, overexpression of cJUN4A in primary 

murine B-cell lymphomas (stably expressing Bcl2 to block apoptosis) did not affect TIS 

establishment in response to ADR treatment, as documented by a robust increase in 

SABG-positive cells (Figure 6e). By contrast, it actively repressed the expression of 

selected AP-1 target genes similar to what we had observed in CRC cell lines undergoing 

ADR-TIS (Figure 6f). These results thus extend the critical role for AP-1 in the 

transcriptional regulation of the senescence-associated gene expression program from 

robust fibroblast models of senescence to disease-centered demonstrations of therapy-

induced senescence in different cancer settings of human and murine origin. 

Given these in vitro results, we hypothesized AP-1-dependent senescence to 

impinge on long-term outcome after anti-cancer therapy in vivo. To this end, we performed 

Gene Set Enrichment Analyses (GSEA), using an AP-1 senescence gene signature (see 

Table S9 and Material and Methods for details), first in a patient-reminiscent, primary Eµ-

myc lymphoma-based clinical trial-like mouse cohort exposed to Cyclophosphamide 

(CTX) in vivo. The AP-1 senescence gene signature was significantly enriched (FDR = 

0,018) at diagnosis (i.e., before any drug encounter) in lymphomas that initially responded 

to CTX treatment before eventually relapsing (designated “relapse-prone [RP]”), 

discriminating them clearly from the same set of lymphomas subsequently presenting as 

full-blown resistance to repetitive administrations of CTX (designated “resistant [RES]”) 

(Figure 6g). Consequently, we then asked whether a humanized version of this AP-1 



senescence signature would also be enriched for in human diffuse large B-cell lymphoma 

(DLBCL) material obtained at diagnosis from patients achieving lasting tumor control 

(“tumor-free”) in response to R-CHOP induction therapy (i.e., CD20 antibody Rituximab 

plus CTX/ADR/Vincristine/Prednisone standard care chemotherapy for DLBCL). 

Remarkably, two publicly available independent datasets (GSE3131253 and 

GSE9858854), comprising data on lymphoma transcriptomes at diagnosis and the clinical 

courses of DLBCL patients, exhibited a highly significant enrichment (FDR=0,0018 and 

0,0093) for the AP-1 senescence gene signature in long-term tumor-free DLBCL patients 

compared to those that relapsed after R-CHOP therapy (Figures 6h,i). Thus, these results 

designate a critical role for AP-1 in mediating TIS in vivo and are consistent with the 

previous demonstration that the ability of lymphomas to undergo TIS improves disease 

outcome53. 

Collectively, our data emphasize the physiological importance of the AP-1- 

governed senescence-associated gene expression program, highlight its contribution to 

the long-term outcome after anti-cancer therapy in vivo, and warrant further investigations 

on modulating AP-1 activity as a promising therapeutic target for senescence therapies. 

 

 

 

  



DISCUSSION  

Exploiting senescence targeting for treating age-related diseases and cancer requires a 

detailed knowledge of the transcriptional, epigenetic, and signaling mechanisms defining 

the basis and realization of the senescence program, which is currently missing. To fill 

this critical gap in our knowledge, we used a dynamic, multidimensional approach at high-

resolution to define the gene-regulatory code driving the senescence cell fate. 

 A central finding of our study is that the senescence program is defined and driven by 

a predetermined enhancer landscape that is sequentially (in)activated during the 

senescence process. AP-1 is instrumental for this predetermination by imprinting a 

prospective senescence enhancer landscape that, in the absence of traditional enhancer 

histone-modification marks, foreshadows future transcriptional activation. This is a 

surprising discovery given that AP-1 transcriptional activation has been traditionally linked 

to growth-factor and MAPK signaling54. There is, however, now accumulating evidence 

that AP-1 also plays an essential role as a pioneering factor for establishing cell type-

specific enhancers and cellular identities55, 56. In line with its role in pioneering and 

bookmarking enhancers, we show that AP-1 is also recruited de novo as a first line TF to 

“virgin” enhancers and that it serves as a molecular memory for enhancers that become 

inactivated during the senescence fate transition that we termed “remnant” enhancers. 

Based on these findings we propose a model by which “enhancer recycling” of AP-1-

bookmarked future and past enhancer activities is an evolutionary conserved mechanism 

that allows for modular and flexible, yet, efficient transcriptional responses to incoming 

signals. We stipulate that the senescence program is preserved through AP-1 binding to 

enhancer chromatin as part of epigenetic memory of the cell’s developmental (stress) 

history bypassing histone modification-dependent bookmarking to store genomic 



information. Further, given the pristine specificity of the newly identified prospective and 

remnant enhancers they can be used as urgently needed specific, rather than associated, 

senescence biomarkers and to predict a cell’s potential to undergo senescence. This latter 

carries also important translational implications for identifying cancers that would respond 

positively to pro-senescence therapy. A natural question that arises from our data is 

whether the senescence program is universal to all inducing stimuli and cell types or if 

multiple senescence programs exist. Based on the data presented here and work in 

progress, we predict that the organizational principles of the senescence program we 

defined here hold for all cell types and inducers. Additional time-resolved studies of 

various inducers in different cell types are required and currently ongoing to answer this 

question definitively. 

 Another key finding is the reversibility of senescence by an informed intervention on 

network topology that we delineated in this study. Indeed, silencing the function of a single 

TF sitting atop the TF network hierarchy, AP-1, is sufficient to revert the “senescence 

clock”. We thus define after the “telomere clock” a second, “epigenomic-enhancer clock” 

regulating the senescence process. Why does functional AP-1 perturbation not lead to 

complete senescence exit? Based on published49 and our own results we surmise that 

AP-1 depletion does not lead to a full cell cycle re-entry and proliferation, because AP-1 

plays important roles for proliferation. Thus, AP-1 confines cells to their existing 

proliferative state and therefore may be viewed as a ‘locking device’ that restricts cells to 

their current state. However, we provide compelling evidence that AP-1 is critical for the 

expression of the senescence-associated secretory phenotype (SASP) genes both in 

different cell biology models of senescence and in an in vivo model of therapy-induced 

senescence (Figures 5, 6 and Supplementary Figures 5 and 6). Importantly, we 



demonstrate that an AP-1 senescence gene signature positively correlates with disease 

outcome after TIS in lymphomas both in mouse and humans. These findings therefore 

emphasize the importance of AP-1 in endowing cancer cells with the ability to undergo 

TIS in vivo, which acts as a desirable effector principle for long-term outcome to anti-

cancer therapy53. However, continued expression and secretion of SASP and stemness 

factors could drive reprogramming and escape from the senescence arrest4, resulting in 

relapse. Therefore, while targeting AP-1 using selective inhibitors (e.g. improved T-5224 

derivatives) would be desirable to control effectively the detrimental effects of the SASP 

in promoting cancer57-59, choosing the moment of intervention will require careful 

evaluation of disease progression during anti-cancer therapy given AP-1 critical role in 

mediating TIS. In summary, we believe that AP-1 is a prime target for therapeutic 

modulation of the senescence phenotype in vivo. 

 By determining the layered architecture/organizational principles of the TF network 

that orchestrate(s) the transition to OIS, we revealed the plasticity and stability of the 

senescent phenotype. We show that a highly flexible, combinatorial TF interactome 

establishes the senescence program, which is in line with the TF network dynamics during 

hematopoietic and stem cell differentiation60, 61. In addition, we demonstrate that targeted 

engineering of specific nodes at different layers of the TF network disrupts gene 

expression with a corresponding magnitude, suggesting a path for the manipulation of the 

senescent phenotype in vivo. Pharmacological inhibition of TFs (see above for AP-1), 

signal transduction molecules, such as kinases or acetylases that converge in the 

activation of TFs, could represent a viable approach for manipulating the senescent 

phenotype in vivo62. Alternatively, small molecules that prevent TF-TF combinatorial 

interactions could also be envisioned63.  



 In conclusion, the present work emphasizes the advantages of, and indeed the need 

for, integrating time-resolved genome-wide profiles to describe and interrogate the 

transition to senescence. This approach generates detailed knowledge necessary to 

develop strategies for manipulating/engineering the senescent cell fate (and other cell fate 

transitions) in vivo for research and therapeutic purposes. Overall, our study provides a 

comprehensive resource for the generation of novel hypotheses regarding senescence 

regulation, offers important mechanistic, regulatory insights that could translate to the 

study of other cell fate transitions and provide new inroads for the diagnosis and 

manipulation of the senescence state in age-related diseases and cancer. 

  



MATERIAL AND METHODS 

Cell culture 

WI-38 fibroblasts (purchased from ECCAC) were cultured in Dulbecco’s Modified Eagle’s 

medium (DMEM) containing 10% FBS and 1X Primocin (Invivogen) at 37ºC and 3% 

oxygen. WI-38-ER:RASV12 fibroblasts were generated by retroviral transduction as 

previously described10. Senescence was induced by addition of 400 nM 4-

hydroxytamoxifen (4-OHT) to the culture medium and samples were collected and 

processed at the time points indicated in the main text. GM21- skin fibroblasts were 

cultured as WI38 fibroblasts. GM21 skin fibroblasts constitutively expressing RASV12 or 

empty vector control were generated by retroviral transduction as previously described10. 

Doxycycline-inducible oncogenic bRAFV600E retroviral construct was a gift from Carl 

Mann (CEA, Gif-sur-Yvette, France). Oncogenic RAF-induced senescence (RAF-OIS) 

was induced in WI-38 fibroblasts with 100ng/ml doxycycline, and cells were collected and 

processed correspondingly at the time points indicated in the text. Replicative senescent 

cells were generated by proliferative exhaustion under 21% O2 and were subsequently 

collected and processed at the indicated times in the main text. For the induction of 

quiescence, WI-38 fibroblasts were cultured in DMEM containing 0.2% FBS for up to 4 

consecutive days and samples were collected and processed as described in the main 

text.  

 

ATAC-seq 

The transposition reaction and library construction were performed as previously 

described25. Briefly, 50,000 cells from each time point of the senescence time course (2 

biological replicates) were collected, washed in 1X in PBS and centrifuged at 500 x g at 



4ºC for 5 min. Nuclei were extracted by incubation of cells in Nuclear Extraction Buffer 

(NEB) containing 10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL CA-

630 and immediately centrifuging at 500 x g at 4ºC for 5 min. The supernatant was 

carefully removed by pipetting, and the transposition was performed by resuspension of 

nuclei in 50 µL of Transposition Mix containing 1X TD Buffer (Illumina) and 2.5 µL Tn5 

(Illumina) for 30 min at 37ºC. DNA was extracted using the QIAGEN MinElute kit. Libraries 

were produced by PCR amplification (12-14 cycles) of tagmented DNA using the NEB 

Next High-Fidelity 2x PCR Master Mix (New England Biolabs). Library quality was 

assessed in an Agilent Bioanalyzer 2100. Paired-end sequencing was performed in an 

Illumina Hiseq 2500. Typically, 30-50 million reads per library are required for downstream 

analyses. 

 

Histone modification and transcription factor ChIP-seq 

WI-38-ER:RASV12 fibroblasts were treated with 400 nM 4-OHT for 0, 72 and 144 hours, 

doxycycline-inducible bRAFV600E-expressing WI-38 fibroblasts were treated with 100 

ng/ml doxyxcline for 0, 48 and 96 hours, replicative senescent cells (0, 264, 1008, 2112 

h) were generated as described, and 107 cells (per time point, minimum two biological 

replicates) were fixed in 1% formaldehyde for 15 min, quenched in 2M glycine for 

additional 5 min and pelleted by centrifugation at 2,000 rpm, 4ºC for 4 min. For histone 

modification ChIP-seq, nuclei were extracted in Extraction Buffer 2 (0.25 M sucrose, 10 

mM Tris-HCl pH 8.0, 10 mM MgCl2, 1% Triton X-100 and proteinase inhibitor cocktail) on 

ice for 10 min followed by centrifugation at 3,000 x g at 4ºC for 10 min. The supernatant 

was removed and nuclei were resuspended in Nuclei Lysis Buffer (50 mM Tris-HCl pH 

8.0, 10 mM EDTA, 1% SDS and proteinase inhibitor cocktail). Sonication was performed 



using a Diagenode Picoruptor until the desired average fragment size (100-500 bp) was 

obtained. Soluble chromatin was obtained by centrifugation at 11,500 rpm for 10 min at 

4ºC and chromatin was diluted 10-fold. Immunoprecipitation was performed overnight at 

4ºC with rotation using 1-2 x 106 cell equivalents per immunoprecipitation using antibodies 

(5 µg) against H3K4me1 (Abcam), H3K27ac (Abcam), H3K4me3 (Millipore, only used for 

RAS-OIS), H3K27me3 (Millipore, only used for RAS-OIS). Subsequently, 30 µL of 

Ultralink Resin (Thermo Fisher Scientific) was added and allowed to tumble for 4h at 4ºC. 

The resin was pelleted by centrifugation and washed three times in low salt buffer (150 

mM NaCl, 0.1% SDS, 1% Triton X-100, 20 mM EDTA, 20 mM Tris-HCl pH 8.0), one time 

in high salt buffer (500 mM NaCl, 0.1% SDS, 1% Triton X-100, 20 mM EDTA, 20 mM Tris-

HCl pH 8.0), two times in lithium chloride buffer (250 mM LiCl, 1% IGEPAL CA-630, 15 

sodium deoxycholate, 1 mM EDTA, 10 mM Tris-HCl pH 8.0) and two times in TE buffer 

(10 mM Tris-HCl, 1 mM EDTA). For transcription factor ChIP-seq, fibroblasts were treated 

as described above except that chromatin was isolated using the enzymatic SimpleChIP 

kit (Cell Signaling) according to the manufacturer’s instructions, obtaining chromatin with 

an average fragment length of 4-5 nucleosomes. Immunoprecipitation was performed 

overnight at 4ºC with rotation using 6-10 x 106 cell equivalents per immunoprecipitation 

using antibodies (5 µg) against cJUN, FOSL2 and RELA (Santa Cruz Biotechnologies) 

and processed as described above. Washed beads were resuspended in elution buffer 

(10 mM Tris-Cl pH 8.0, 5 mM EDTA, 300 mM NaCl, 0.5% SDS) treated with RNAse H (30 

min, 37 ºC) and Proteinase K (2 h, 37ºC), 1 µL glycogen (20 mg/mL, Ambion) was added, 

and decrosslinked overnight at 65 ºC. For histone modifications, DNA was recovered by 

mixing the decrosslinked supernatant with 2.2X SPRI beads followed by 4 min incubation 

at RT. The SPRI beads were washed twice in 80% ethanol, allowed to dry, and DNA was 



eluted by in 35 µL 10 mM Tris-Cl pH 8.0. For transcription factors, DNA was eluted by 

phenol/chloroform extraction (2X) followed by ethanol precipitation overnight at -20ºC. 

The DNA pellet was washed with 70% ethanol, allowed to dry, and DNA was resuspended 

in 35 µL 10 mM Tris-Cl pH 8.0. Histone modification libraries were constructed using the 

NextFlex ChIP-seq kit (Bioo Scientific) according to the manufacturer’s instructions. 

Libraries were amplified for 12 cycles. Transcription factor libraries were constructed using 

a modified protocol from the Accel-NGS 2S Plus DNA Library Kit (#21024), where we 

performed DNA extraction at each step using 25:24:1 phenol:chloroform:isoamyl alcohol 

followed by overnight ethanol precipitation of DNA at each step of the protocol. 

Additionally, we enriched for small DNA fragments using AMPure-XP beads (Beckman-

Coulter (#A63881).  Libraries were then resuspended in 20 µL of low EDTA-TE buffer. 

Libraries were quality controlled in an Agilent Technologies 4200 Tapestation (G2991-

90001) and quantified using the Invitrogen Qubit DS DNA HS Assay kit (Q32854). 

Libraries were sequenced using an Illumina High-Seq 2500. Typically, 30-50 million reads 

were required for downstream analyses. 

 

RNA and microarrays 

RNA from each time point from the different senescence models and quiescence time 

series, as well RAS-OIS cells treated with control and ETS1-, RELA- and JUN-targeting 

siRNAs (2 biological replicates) was purified using the QIAGEN RNeasy Plus kit according 

to the manufacturer’s instructions. 100 ng RNA per sample was analyzed using Affymetrix 

Human Transcriptome Arrays 2.0, according to the manufacturer’s instructions.  

 

 



EdU staining and senescence-associated beta galactosidase activity (SABG)  

Representative samples from the senescent and quiescent time series were evaluated for 

EdU incorporation using the Click-iT EdU Alexa Fluor Imaging Kit (Thermo Fisher 

Scientific) according to the manufacturer’s instructions. SABG activity was assessed as 

previously described64. Cells were imaged in a Zeiss confocal fluorescence microscope 

and images analyzed using the ZEN suite.   

 

RNA interference 

Small interfering RNAs (20 µM) targeting JUN (Dharmacon), ETS1 (QIAGEN) and RELA 

(QIAGEN) as well as non-targeting controls were transfected into WI-38-ER:RASV12 using 

siIMPORTER reagent (Millipore) according to the manufacturer’s instructions (2 biological 

replicates per transcription factor per time course experiment). Transfections were 

performed in triplicate wells and cells from each siRNA treatment were pooled for RNA 

purification.  RAS-OIS was induced with 400 nM 4-OHT concomitantly with the addition of 

DMEM containing 20% FBS 4 hours after transfection and incubated overnight. Sixteen 

hours after transfection, cells were replenished with new media containing 10% FBS and 

400 nM 4-OHT, and RNA was isolated at indicated time points and analyzed in Affymetrix 

Human Transcriptome Arrays 2.0.   

 

Expression microarray pre-processing 

Raw Affymetrix HTA 2.0 array intensity data were analyzed using open-source 

Bioconductor packages on R. The quiescence and the RAS-OIS time series data were 

normalized together (2 conditions, 2 biological replicates per condition, 6 time points per 

replicates) using the robust multi-array average normalization approach implemented in 



the oligo package. Internal control probe sets were removed and average expression 

deciles over time-points were independently defined for each treatment. Probes whose 

average expression was lower than the 4th expression decile in both conditions were 

removed for subsequent analyses. To remove sources of variation and account for batch 

effects, data were finally corrected with the sva package. To recover as much annotation 

information as possible, we combined Affymetrix HTA 2.0 annotations provided by 

Affymetrix and Ensembl through the packages hta20sttranscriptcluster.db and biomaRt. 

Principal component analysis and bi-clustering based on Pearson’s correlation and 

Ward’s aggregation criterion were used to confirm consistency between biological 

replicates and experimental conditions at each step of the pre-processing. 

 

Self-organizing maps (SOM) 

Normalized log-scaled and filtered expression values were processed using the 

unsupervised machine learning method implemented in oposSOM26 to train a self-

organizing map. This algorithm applies a neural network algorithm to project high 

dimensional data onto a two-dimensional visualization space. In this application, we used 

a two-dimensional grid of size 60 x 60 metagenes of rectangular topology. The SOM 

portraits were then plotted using a logarithmic fold-change scale. To define modules of 

co-expressed meta-genes, we used a clustering approach relying on distance matrix and 

implemented in oposSOM. Briefly, clusters of gene expression were determined based 

on the patterns of the distance map which visualizes the mean Euclidean distance of each 

SOM unit to its adjacent neighbors. This clustering algorithm – referred to as D-clustering 

– finds the SOM units referring to local maxima of their mean distance with respect to their 

neighbors. These pixels form halos edging the relevant clusters in the respective distance 



map and enable robust determination of feature clusters in the SOM. We finally performed 

a gene set over-representation analysis in each cluster considering the Molecular 

Signature Database (MSigDB) hallmark gene sets using a right-tail modified Fisher’s 

exact test and the hypergeometric distribution to provide p-value. 

 

Correlation and multidimensional analyses 

To highlight differences in expression profiles between quiescence and RAS-OIS through 

time, we used multi-dimensional scaling plot representing leading fold change, which is 

defined as the root-mean-square average of the log-fold-changes for the genes best 

distinguishing each pair of samples. To quantify the evolution of transcriptomic variability 

and noise through time, we looked at the gene expression density distributions for all 

possible pairs of treated vs T0 transcriptomes. Distributions were estimated using kernel 

density estimation of all genes’ expression in the 𝑖th T0 transcriptome and the 𝑗th treated 

transcriptome. We also computed Pearson’s correlation for each of these combinations. 

The Pearson’s correlation between two transcriptomes, 𝑋 and 𝑌 containing 𝑛 gene 

expressions, is obtained by 𝑅(𝑋, 𝑌) = ∑ (𝑥𝑖 − 𝜇𝑋) (𝑦𝑖 − 𝜇𝑌) (𝜎𝑋𝜎𝑌)⁄𝑛
𝑖=1 , where 𝑥𝑖 and 𝑦𝑖 are 

the 𝑖th observation in the vectors 𝑋 and 𝑌 respectively, 𝜇𝑋 and 𝜇𝑌 the average values of 

each transcriptome, and 𝜎𝑋 and 𝜎𝑌, the corresponding standard deviations. 

 

Information theory – derived metrics 

To evaluate transcriptome diversity and specialization, we used an approach based on 

information theory as described in 27.  

 



Gene expression time series analysis 

Normalized log-scaled and filtered expression data related to the quiescence and the OIS 

time series were further considered for differential analysis with limma65. To define an 

RAS-OIS specific transcriptomic signature, we proceeded in three steps, each relying on 

linear mixed model cubic B-splines, as nonlinear response patterns are commonly 

encountered in time course biological data. For each probe, and each treatment the 

expression was modeled as follow: 

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2 + 𝛽3𝑥

3 +∑ 𝛾𝑘(𝑥 − 𝜉𝑘)
3𝐾−1

𝑘=0 + 𝜀  

with (𝑥 − 𝜉𝑘) = {
1𝑖𝑓𝑥 ≤ 𝜉

𝑥 − 𝜉𝑖𝑓𝑥 > 𝜉
 

where 𝛽0is the average probe expression over all samples in a given condition, 𝛽1−3 the 

model coefficients, 𝐾 the number of knots, 𝜉𝑘 the 𝑘th knot and 𝜀 the error term. First, we 

defined probes responding over time to RASV12 induction. Second, we considered all 

together the quiescence and the RAS-OIS time series, as well as the interaction between 

time and treatment, and defined probes responding to one or the other treatment over 

time, as well as probes responding differently between the two treatments at any time 

point. We finally defined the set of probes responding consistently to both treatment and 

time and removed these probes from the global set of probes responding to RASV12 

induction defined at the first step. Moderated F-statistics that combine the empirical Bayes 

moderated t-statistics for all contrasts into an overall test of significance for each probe 

were used to assess the significance of the observed expression changes. At any step of 

this workflow, p-values were corrected for multiple testing using the FDR approach for a 

stringent significance level of 0.005. For validation purposes, we compressed the RAS-

OIS time-series to achieve a volcano plot representation. To this end, we computed the 



maximal absolute log2 fold change in expression in the RAS-OIS time series considering 

T0 as the reference and selected up and down regulated probes using an absolute log2 

fold change cutoff at 1.2 and a corrected p-value cutoff of 0.005. We then build a scatter-

plot plotting the log10 significance versus log2 fold-change on the y and x axes, 

respectively. Probes responding consistently to both ER: RASV12 induction and 

quiescence were finally over-plotted. 

 

Gene expression unsupervised clustering 

Probes constitutive of the RAS-OIS specific transcriptomic signature were clustered using 

the weighted gene correlated network analysis approach implemented in the WGCNA R 

package66. Standard WGCNA parameters were used for the analysis, with the exceptions 

of soft-thresholding power, which was defined using methods described by and set at 18. 

The 7 co-expressed probe clusters identified were further functionally characterized using 

gene set over-representation tests. The same approach as previously described for the 

SOM-defined clusters was used. 

 

Histone modification ChIP-seq data processing 

Reads were cleaned and trimmed using fastq-mcf from the ea-utils suite v1.1.2 to remove 

adapters, low quality bases and reads, and discard reads shorter than 25 bp after filtering. 

Reads were then aligned to the human reference genome (hg19) with bowtie v1.1.1 using 

best matches parameters (bowtie -v 2 -m 1 --best --strata). Alignment files were further 

processed with samtools v1.2 and PicardTools v1.130 to flag PCR and optical duplicates 

and remove alignments located in Encode blacklisted regions. Fragment size was 

estimated in silico for each library using spp v1.10.1. Genome-wide consistency between 



replicates was checked using custom R scripts. Enriched regions were identified for each 

replicate independently with MACS v2.1.0 with non-IPed genomic DNA as a control 

(macs2 callpeak --nomodel --shiftsize --shift-control --gsize hs -p 1e-1). These relaxed 

peak lists were then processed through the irreproducible discovery rate (IDR) pipeline67 

to generate an optimal and reproducible set of peaks for each histone modification and 

each time point. 

 

ATAC-seq data processing 

Paired-ends reads were cropped to 100bp with trimmomatic v0.3668 and cleaned using 

cutadapt v1.8.369 to remove Nextera adapters, low quality bases and reads, and discard 

reads shorter than 25 bp after filtering. Fragments were then aligned to the human 

reference genome (hg19) using bowtie2 v2.2.3 discarding inconsistent pairs and 

considering a maximum insert size of 2kb (bowtie2 -N 0 --no-mixed --no-discordant --

minins 30 --maxins 2000). Alignment files were further processed with samtools v1.2 and 

PicardTools v1.130 to flag PCR and optical duplicates and remove alignments located in 

Encode blacklisted regions. Accessible regions were identified using MACS2 v2.1.0 

without control (macs2 callpeak --gsize hs -p 1e-3). These relaxed peak lists were then 

processed through the irreproducible discovery rate (IDR) pipeline to generate an optimal 

and reproducible set of peaks for each time point. 

 

Normalized ATAC-seq and ChIP-seq signal tracks 

After verifying the consistency between biological replicates, time points and data type 

using deepTools67, alignments related to biological replicates for a given assay and a 

given time point were combined. We then binned the genome in 200bp non-overlapping 



windows and generated genome-wide read count matrices for each assay independently. 

These matrices were finally quantile normalized with custom R script and further used to 

generate genome-wide signal tracts. 

 

Histone modification ChIP-seq and ATAC-seq differential analysis 

After assessing library saturation using preseqR, alignment and peak data were imported 

and pre-processed in R using the DiffBind package68. Briefly, for a given histone 

modification type, we first defined the global reproducible peak set as the union of each 

time-specific reproducible peak sets defined previously. We then counted the number of 

reads mapping inside each of these intervals at each time point and for each replicate. 

The raw count matrix was then normalized for sequencing depth using a non-linear full 

quantile normalization as implemented in the EDASeq package70. To remove sources of 

unwanted variation and consider batch effects, data were finally corrected with the 

RUVSeq71 package considering 2 surrogate variables. Differential analyses for count data 

were performed using edgeR72 considering time and batch in the design matrix, by fitting 

a negative binomial generalized log-linear model to the read counts for each peak. Peaks 

were finally annotated using ChIPpeakAnno considering annotations provided by 

Ensembl v86.  

 

Chromatin state differential analysis 

To quantify and define combinatorial chromatin state dynamics in space and time, we 

analyzed histone modification combinations with the chromstaR package73. Briefly, after 

partitioning the genome into 100bp non-overlapping bins and counting the number of 

reads mapping into each bin at each time point and for each histone modification, this 



algorithm relies on a univariate Hidden Markov Model (HMM) with two hidden states 

(unmodified, modified). This HMM is used to fit the parameters of the two-component 

mixture of zero-inflated negative binomial distribution considered to model read counts for 

every ChIP-seq experiments. A multivariate HMM is then used to assign every bin in the 

genome to one of the multivariate components considering 2(3 time points x 4 histone modifications) 

possible states. To limit computational burden and focus on accurate differences, the 

analysis was run in differential mode with a 100bp resolution (i.e. smaller than a single 

nucleosome), such that every mark is first analyzed separately with all conditions 

combined while the full combinatorial state dynamics is rebuilt by combining the 

differential calls obtained for the four marks. We finally filtered out differential calls not 

overlapping with any histone modification and ATAC-seq reproducible peaks. To properly 

associate histone modification combinations with biologically meaningful mnemonics, we 

made an extensive comparison between the binning we obtained in WI38 fibroblasts 

undergoing RAS-OIS and IMR90 fetal lung fibroblasts chromatin states described in the 

scope of the Epigenomic Roadmap consortium. To test for association between changes 

in chromatin states through time and gene expression modules we ran a correspondence 

analysis. Briefly, genomic loci experiencing changes in chromatin states through time 

were first associated to the nearest gene. We then specifically focused on loci associated 

to genes belonging to any expression module and built a two-way contingency table 

summarizing the number of transition in states (considering all possible combinations) 

occurring in each expression module, further used as an input for a correspondence 

analysis using FactoMineR74. The significance of association between the two qualitative 

variables (transition in state and module) was assed using a 𝝌2 test. Results of the CA 

were visualized using a row-metric-preserving contribution asymmetric biplot and filtering 



for the top contributing and well-projected (squared cosine > 0.5) changes in chromatin 

states. 

 

Motif enrichment analysis in active enhancers 

For each time point independently, we defined the set of active enhancers as the overlap 

between H3K4me1, H3K27ac and ATAC-seq reproducible peaks using bedtools75. We 

then ran 3 independent motif enrichment analyses with homer v4.9 using default 

parameters. 

 

Transcription factor footprinting 

All transcription factor Position-Weight Matrices (PWM) representing eukaryote 

transcription factors were downloaded from the JASPAR database and used as an input 

for PIQ22 to predict transcription factor binding sites from the genome sequence on down-

sampled ATAC-seq alignments. For each motif, we retained only binding sites that were 

within the reproducible ATAC-seq peaks and passed the default purity cut-off (70%). We 

then computed pairwise PWM similarities based on Pearson’s correlation, and clustered 

together PWMs sharing more than 90% similarity, defining a set of 310 non-redundant 

and distinct PWMs. The Pearson’s correlation between two PWM 𝑃1 and 𝑃2 of length 𝑙 

was defined as: 

𝑟(𝑃1, 𝑃2) =
1

𝑙
×∑

∑ (𝑃𝑖,𝑏
1 − 0.25)(𝑃𝑖,𝑏

2 − 0.25)𝑏∈{𝐴,𝐶,𝐺,𝑇}

√∑ (𝑃𝑖,𝑏
1 − 0.25)

2

𝑏∈{𝐴,𝐶,𝐺,𝑇} × ∑ (𝑃𝑖,𝑏
2 − 0.25)

2

𝑏∈{𝐴,𝐶,𝐺,𝑇}

𝑙

𝑖=1

 

We further combined the bound instances identified with PIQ according to the PWM 

clustering. 



 

Transcription factor metrics 

For each transcription factor, we computed the chromatin-opening index (COI), the motif 

dependence and the chromatin dependence (CD) following the approach described in 22.  

 

Validation of PIQ predictions through ChIP-seq 

To compare PIQ prediction with RELA, JUN and FOSL2 ChIP-seq data, we first used the 

approach suggested in 22, computing how many of the total ChIP-seq peaks are 

overlapping with any potential factor motif (since ChIP-Seq peaks can result from co-factor 

binding, and methods such as digital genomic footprinting are factor agnostic). We then 

used a more sophisticated approach aiming at correlating the ChIP-seq signal intensity 

with the bound / unbound status at PWM matches. For a given transcription factor (cJUN, 

FOSL2 or RELA,), we first considered all the PWM matches located inside ATAC-seq 

reproducible peaks, we selected all the PWM matches assigned with a purity score > 0.7 

(the threshold used to define “bound” instances), and then randomly selected 3 times 

more PWM matches assigned to a purity score < 0.7 (considered as “unbound” instances) 

to obtain a global set containing 25% / 75% of bound / unbound instances for each TF. 

The selected regions were extended up to 2kb (1kb in each direction, from the middle of 

the match), and the 2kb intervals were binned in one hundred 20bp windows. We 

computed the normalized ChIP-seq and ATAC-seq signal inside each bin. The windows 

were finally ranked according to the summed ChIP-seq signal in the 10 most central bins 

(200bp). We finally run a set enrichment analysis with the fgsea package to assess 

whether bound / unbound PWM matches were enriched / depleted along this ranking and 

computed the enrichment score (ES, positive when bound instances are enriched for 



highest ChIP-seq signals, negative when unbound instances are depleted for highest 

ChIP-seq signals) and p-values which revealed the strength of the correlation. We 

performed 1,000 permutations to obtain p-values. 

 

 

Transcription factor co-binding 

For every cluster of PWM and time-point independently, we first removed all the bound 

instances identified outside enhancers. The remaining bound instances for all PWM were 

then combined for every time point using GEM regulatory module discovery40  setting at 

500 bp the minimal distance for merging nearby TF bound instances into co-binding 

regions and at 3 the minimum number of TF bound instances in a co-binding region.  

Global pairwise co-binding heatmap. At this step, we obtained a set of contingency 

matrices Mmt of dimension 𝑛𝑚𝑡 × 𝑗 with i the number of co-binding regions for the 

transcriptomic module m at the time point t and j = 310 PWM clusters, for each time point 

and each transcriptomic module. We then generated module- and time- specific 

normalized pairwise co-binding matrices Cmt by computing the normalized cross-product 

of matrices Mmt defined as: 

𝐶𝑚𝑡 =
𝑀𝑚𝑡 × 𝑀𝑚𝑡

𝑡

∑ ∑ ∑ 𝑎𝑡𝑚𝑗𝑗𝑚𝑡
× 106 

with atmj the number of bound instances for the PWM clusters j, in transcriptomic module 

m, at the time point t. To get a global picture of pairwise co-binding, we summed these 

matrices and tested for each combination of PWM clusters A and B whether the overlap 

between bound instances for A and B was significant using a hyper-geometric test defined 

as: 



𝑝(𝑄,𝑀, 𝑛, 𝑘) = ∑
(
𝑀
𝑚
)(
𝑄 − 𝑀
𝑛 −𝑚

)

(
𝑄
𝑚
)

𝑚𝑖𝑛{𝑘,𝐵}

𝑚=𝑘

 

where Q is the overall number of regions in the universe, M is the number of regions bound 

by A, n is the number of regions bound by B, and k the total number of regions bound by 

A and B. The p-values were further corrected for multiple testing using the Bonferroni 

strategy. We finally clustered the co-binding occurrence matrix using Ward’s aggregation 

criterion and projected corresponding corrected q-values on this clustering. 

Pair-wise co-binding circos plots. To generate the co-binding circos plots, we used the 

global time- and, module-specific pair-wise normalized co-binding matrix Cmt described 

above, after a logarithmic transformation. For each time-point and module independently, 

we selected the top 500 interactions based on their occurrence N. The images were 

generated using the Circos suite76. 

 

Identification of TF regulatory modules 

We used the data-sets generated using GEM regulatory module discovery described 

above. We applied a Hierarchical Dirichlet Process topic model which automatically 

determines the number of topics from the data, with the hyperparameter for the topic 

Dirichlet distribution set at 0.1 (encoding the assumption that most of the topics contains 

a few TFs) and the maximum number of iterations set at 2000. The lexicon usage for each 

time point and each transcriptomic was explored using a multiple factor analysis (MFA) 

with the R package FactoMineR, and lexicons were further selected based on their 

goodness of representation on the 3 first components (squared cosine > 0.5). 

 



TF properties 

With the aim of characterizing the binding properties of each TF, we computed the 

dynamicity, the total number of bound regions, the fraction of bound regions in enhancers 

and the fraction of bound regions before stimulation. 

Dynamicity. We quantified the dynamicity of a TF accordingly to the following expression: 

𝑑(𝐴) =
∑
𝑛𝑡(𝐴)
𝑇𝑅𝑡

∑
𝑡𝑡(𝐴)
𝑇𝑅𝑡

 

where 𝑑(𝐴) is the dynamicity of TF A; 𝑛𝑡(𝐴) is the number of regions bound by A for the 

first time at time point 𝑡 ; 𝑡𝑡(𝐴) is the number of regions bound by A at time point 𝑡 and 

𝑇𝑅𝑡 is the number of regions bound by any TF in time point 𝑡. The factor 𝑇𝑅𝑡 was added 

to the expression to account for differences in the number of reads sequenced by the 

ATAC-seq protocol and normalizes the number of regions bound by TF A based on the 

number of bound regions detected at its corresponding time point. Notice that, if all 

samples have the same amount of TF binding events, this expression is reduced to the 

quotient of the sum of the regions first bound at each time point by the sum of all regions 

bound by the TF at each time point. By using this definition, the function 𝑑(𝐴) maps the 

activity of a TF to the interval [
1

𝑁𝑡
, 1], where 𝑁𝑡 is the number of time points in the 

timecourse and is higher as the TF binds to previously not bound regions or leaves already 

bound regions. In the case of a TF that, for every time point, leaves all its previous bound 

regions and binds to only regions not previously bound, the numerator will be identical to 

the denominator, leading to 𝑑(𝐴) = 1. Alternatively, if a TF remains on the same regions 

it has bound at 𝑡 = 0 , then ∑𝑛𝑡 = 𝑛0 and ∑ 𝑡𝑡 = 𝑁𝑡 ∗ 𝑛0 , resulting in 𝑑(𝐴) =
1

𝑁𝑡
. One can 



observe that, if the same region is bound by TF A in different time points, it will contribute 

once to the numerator of the expression, while it will contribute to the denominator once 

for each time point it has been bound to. 

Total number of bound regions. The number of bound regions was calculated by the 

following the expression: 

𝑅(𝐴) =
∑
𝑛𝑡(𝐴)
𝑇𝑅𝑡

×∑𝑇𝑅𝑡

𝑁𝑡
 

where 𝑅(𝐴) is the normalized number of bound regions by TF A during the timecourse 

and 𝑛𝑡(𝐴), 𝑇𝑅𝑡 and 𝑁𝑡 are defined as above. The first factor is a normalized sum of the 

regions bound by TF A, counting each region only once. The second factor scales the 

result by the mean of the number of regions bound by all TFs on each day. 

TF percentage of binding at enhancers. The ratio of binding at enhancers, relative to all 

cis regulatory regions, was assessed by: 

𝑃𝐸(𝐴) =
𝑅𝐸(𝐴)

𝑅𝐸(𝐴) + 𝑅𝑃(𝐴)
 

where 𝑃𝐸(𝐴) is the percentage of bound regions in enhancers for TF A, 𝑅𝐸(𝐴) is the 

number of regions bound by TF A marked as enhancers and 𝑅𝑃(𝐴) is the number of 

regions bound by TF A marked as promoters. 

TF prestimulation binding. For each TF, we computed the ratio of regions bound at T0, 

relative to the number of regions bound during the whole timecourse. We used the 

following definition for the prestimulation binding factor for each TF: 

𝑝(𝐴) =

𝑛𝐷0(𝐴)
𝑇𝑅𝐷0

∑
𝑛𝑡(𝐴)
𝑇𝑅𝑡

 



where 𝑝(𝐴) corresponds to the prestimulation binding of TF A and 𝑛𝑡(𝐴) and 𝑇𝑅𝑡 are 

defined as above. The numerator of this expression corresponds to the normalized 

number of regions bound by TF A at t = T0, while the denominator is the normalized 

number of regions bound by TF A during the whole timecourse. Notice the denominator 

also corresponds to factor 𝑅(𝐴) before scaling. 

 

Hierarchical transcription factor network 

In order to assess the TF chromatin binding hierarchy, i.e. TFs required for the binding of 

a specific TF, we generated a network for each gene module depicting the precedence of 

TF chromatin binding. The algorithms mentioned were implemented in R and all networks 

were visualized in CytoScape77.  

Computing precedence relationships. The edges in the generated networks represent the 

precedence relationship of TFs: an oriented edge from TF A to TF B, represented as (A, 

B), means that A was present in at least 30 % of the cis-regulatory regions bound by B at 

the same instant or before44. To account for the difference in the number of reads 

sequenced for each sample in the ATAC-seq, we normalized the number of regions bound 

based on the first day they appeared. The weight of an edge from A to B is given by: 

𝑤𝐴→𝐵 =
∑
𝑅𝑡(𝐴, 𝐵)

𝑅𝑡

∑
𝑅𝑡(𝐵)
𝑅𝑡

 

where 𝑅𝑡(𝐵) stands for the number of regions first bound by TF B at time point 𝑡 ; 𝑅𝑡(𝐴, 𝐵), 

for the number of regions first bound by TF B at time point 𝑡 that were bound by TF A at 

time point 𝑡 or before; and 𝑅𝑡 represents the total number of regions bound by any TF in 

time point 𝑡. In order to handle the networks, we used the igraph package78. 



Network simplification. Aiming to analyze the hierarchical relationship of TFs and simplify 

the interpretation of the network, we performed two operations over each gene module 

network: Vertex Sort and transitive reduction (TR)79. Briefly, the vertex sort algorithm 

assigns two parameters for each node in the network: the distance, in edges, between the 

node and the bottom of the network; and the distance between the node and the top of 

the network. Combined, those parameters allow for the topological ordering of the 

network, which consists in listing its nodes such that nodes at the top precede downstream 

nodes. We then defined the ’top layer’ as the set of nodes with lowest distance to the top 

of the network, i.e., nodes that have no incoming edges or nodes that assemble a strongly 

connected component (SCC) with all upstream nodes. Analogously, the ’bottom layer’ was 

defined as the set of nodes with lowest distance to the bottom of the network, i.e., nodes 

with no outgoing edges or that form a SCC with all downstream nodes. The ’core layer’ 

comprises nodes that link top layer and bottom layer. Nodes in the core layer that are 

exactly one edge from both top and bottom layers constitute the ’single-level core layer’, 

while nodes that link top and bottom through paths composed of more than one edge form 

the ’multi-level core layer’. The result of this procedure for each gene module can be seen 

in Figure 4 and supplementary data. The TR, in turn, simplifies the network visualization 

by generating the network with the smallest number of edges that keeps the reachability 

of the original network. 

Network validation. We validated our approach by comparing the network produced when 

applying our method to the ChIP-seq data produced by 44 with the network they obtained. 

Transcription factor ChIP-seq peak files were retrieved from Gene Expression Omnibus 

(GSE36099, 23 TFs, and 4 time points; note that RUNX1 and ATF4 were discarded from 

the analysis since one and three time points, respectively, were missing on GEO for those 



TFs) and preprocessed as previously described to generated time resolved co-binding 

matrices, further used as an input for our networking algorithm. We computed the 

precedence relationships among TFs and generated the TF binding hierarchy networks 

for visualization. We compared the produced TF hierarchy network with the network 

shown in Figure S4 and in 44 using two metrics: sensitivity and specificity. Sensitivity is 

calculated as the ratio of edges described in this study over the edge number sum for both 

networks. Specificity is defined as the ratio of the number of edges that were described to 

not exist in the network produced by our software over the number of edges described to 

not occur in any of both studies. 

Proportion of incoming edges based on the classification of the TF source node. Aiming 

to assess the hierarchy of TFs accordingly to their chromatin dependence and chromatin-

opening index, we computed the number of edges connecting the sets of all TFs with a 

given classification for each gene module. We then divided those values by the number 

of edges that target TFs with a specific classification. Hence, the proportion of incoming 

edges based on TF classification is given by: 

𝑃𝐶1→𝐶2 =
|𝑊𝐶1→𝐶2|

∑|𝑊𝐾→𝐶2|
 

where 𝑃𝐶1→𝐶2 is the proportion of edges from nodes with classification C1 to nodes with 

classification C2; 𝑊𝐶1→𝐶2 is the set of edges from nodes with classification C1 to nodes 

with classification C2; 𝐾 can represent either pioneer, settler or migrant and |⋅| means the 

cardinality of a set, i.e. the number of elements it contains.  

 We assessed the classification precedence significance for TF interaction with a 

hypergeometric test. We consider the sample space as all possible oriented edges in a 



network with the same number of nodes for each classification as the hierarchy network 

for a given transcriptional module. Formally: 

  𝑝𝐶1→𝐶2(𝐸, 𝐸𝐶1→𝐶2,𝑊,𝑊𝐶1→𝐶2) = ∑
(𝐸𝐶1→𝐶2

𝑥
)(
𝐸−𝐸𝐶1→𝐶2
|𝑊|−𝑥

)

(
𝐸
|𝑊|)

|𝑊|
𝑥=|𝑊𝐶1→𝐶2|

 

 Where 𝐸is the number of edges on the sample space network, i.e., a fully 

connected network with the same number of nodes as the TF hierarchy network for a 

given transcriptional module (excluding self-loops),𝐸𝐶1→𝐶2is the number of edges from TFs 

with classification 𝐶1to TFs with classification 𝐶2 in the sample space network, |𝑊|is the 

number of edges on the TF hierarchy network for a given transcriptional module and 

|𝑊𝐶1→𝐶2|is the number of edges in the same network connecting TFs with classification 

𝐶1to TFs with classification 𝐶2. 

Network visualization. In order to visualize the network, we exported the adjacency 

matrices in the R environment to CytoScape using the CyREST API80. The networks’ 

layout and style were automated with the help of packages RCy381 and RJSONIO. 

 

Network mining 

With the purpose of identifying key TFs in the transition to the senescent phenotype, we 

analyzed the TF binding characteristics with their relative location in the chromatin binding 

hierarchy networks for each gene module. The figures illustrating this analysis were 

generated with the help of the ggplot2 R package. 

TF classification. For each network relative to a transcriptional gene module, the number 

of TF classified as either pioneer, settler or migrant was calculated for each layer, with the 

subdivision of the core layer as ’multi-level’ and ’single-level’ (see “Network 

simplification”). The overrepresentation of TFs with a specific classification in a given layer 



was evaluated by using a hypergeometric test. We calculated the p-value given by: 

𝑝(𝐾,𝑁, 𝑛, 𝑘) =∑
(
𝐾
𝑥
)(
𝑁 − 𝐾
𝑛 − 𝑥

)

(
𝑁
𝑛
)

 

where K is the number of TFs with a certain classification in the whole network, N is the 

number of TFs in the network; n is the number of TFs that belong to a specific layer and 

k is the number of TFs that belong to the same layer and have the referred classification. 

The p-values were corrected for multiple testing with FDR and a corrected p = 0.05 was 

considered an indicative of enrichment for that specific classification in the corresponding 

layer. 

TF dynamicity. For each network relative to a transcriptional gene module, we compared 

the distribution of the dynamicity of TFs belonging to a certain layer with the distribution 

of the dynamicity of TFs belonging to the rest of the network. We used the dynamicity 

index defined previously for each TF, considering only the regions marked as enhancers 

belonging only to the gene module relative to the network. For each layer in the network, 

we applied the Kolmogorov-Smirnov test to compare the TF dynamicity distribution for the 

chosen layer with the dynamicity distribution relative to the TFs belonging to three other 

layers in the respective network. To account for multiple hypothesis testing, we also 

performed an FDR correction, considering values of p = 0.05 as an indicative of statistical 

significance. 

TF number of binding regions. We performed the same analysis as described in the 

previous section (“TF dynamicity”) for the number of bound regions defined in section 

“Total number of bound regions”, instead of the dynamicity index. 

TF binding characteristics and transcriptional modules. In order to characterize the binding 



activity of each TF for the different gene modules, we ranked them accordingly to their 

dynamicity and their number of bound regions. Both parameters for each gene module 

are shown in Supplementary Figure 4E, which was generated with the 

ComplexHeatmap82 and circlize83 R packages. We used the mean of the ratio dynamicity 

- number of bound regions to order the TFs. We assessed the significance of pioneer 

(respectively, migrant) TF enrichment at the top (respectively, bottom) of the ranked 

clustered list by employing a set enrichment analysis implemented in the package fgsea. 

TF chromatin binding hierarchy networks overlap. To analyze the similarity between the 

networks for different transcriptional gene modules, we generated a 7-set Euler diagram, 

where each set contains the edges present in the TF hierarchy network relative to a gene 

module. Edges in two different networks are considered equal if they link nodes 

corresponding to the same TFs in their respective networks. We used the package 

Vennerable to compute the intersections of all possible network combinations and to 

create the Euler diagram in Supplementary Figures 4F-I. In this figure, the area of each 

region is proportional to the number of edges shared by the networks corresponding to 

the sets that contain the referred region and was calculated using the Chow-Ruskey 

algorithm84. A Euler diagram is similar to a Venn diagram, with the difference that the area 

of a region representing a set is proportional to the number of elements in the set. 

 

Analysis of de novo and remnant enhancers 

To track combinatorial chromatin state dynamics in space and time, we integrated histone 

modification ChIP-seq signals at a sub-nucleosomal resolution considering non-

overlapping 100bp windows genome-wide using chromstaR (see above), which converts 

quantitative ChIP-seq data to qualitative chromatin states. For subsequent analysis, since 



these 100bp windows can be either isolated or organized in stretches experiencing 

consistent changes in states, we summarized the information at a higher level, and linked 

them with the histone modification peaks identified using the more classical ChIP-seq and 

ATAC-seq peak-calling approach (see flowchart). Briefly, after merging all the peaks 

identified for all the time-points, for all the histone modification and for the ATAC-seq data 

sets defining cis-regulatory regions, we determined the overlap between “poised 

enhancers“-, “de novo enhancers”-, “remnant enhancer” or “constitutive enhancers”-

flagged 100bp windows. When an overlap was found, the entire cis-regulatory regions 

were annotated according to the 100bp window it is overlapping with. This operation 

rendered a list of annotated cis-regulatory regions with de novo, constitutive, poised or 

remnant enhancer elements. We finally considered the center +/- 10kb of these elements. 

 

 

 

 

 

 

 

 

 

CRISPR interference (CRISPRi) 

hU6-gRNA-hUbc-dCas9-KRAB plasmid was a kind gift from Charles Gerbach (Addgene 

71236). gRNA cloning was as published 34. Briefly, the plasmid was digested with BsmBI 

and dephosphorylated before ligation with phosphorylated oligo pairs. The gRNA 



sequences were listed in the Table 1. The plasmid was then transfected in HEK293T cells, 

together with packaging plasmids psPAX2 and pMD2.G. 24 hours after fresh medium was 

added and the medium containing lentivirus was collected and filtered subsequently. Cells 

were infected for 3 hours. 3 days post infection, cells were passaged and selected with 

puromycin and used for analyses. 

 

Table 1. gRNA sequences 

gRNA Sequence 

ctrl caccgGTATTACTGATATTGGTGGG aaacCCCACCAATATCAGTAATACc 

2 caccgAGATGAGGTGTTGCGTGTCT aaacAGACACGCAACACCTCATCTc 

7 caccgTCTGCTCATTGGGGATCGGA aaacTCCGATCCCCAATGAGCAGAc 

14 caccgAAGGCGAAGAAGACTGACTC aaacGAGTCAGTCTTCTTCGCCTTc 

15 caccgCAATGAAATGACTCCCTCTC aaacGAGAGGGAGTCATTTCATTGc 

48 caccgGGAGAACAGTCGCATGAACA aaacTGTTCATGCGACTGTTCTCCc 

54 caccgTTCCAGGGAGTCACCTGTCC aaacGGACAGGTGACTCCCTGGAAc 

61 caccgTTGAAGCAGCACTAGTATCC aaacGGATACTAGTGCTGCTTCAAc 

 

Immunofluorescence staining and imaging of CRISPR-modified cells 

Immunofluorescence staining was performed as previously published51. Cells grown in 

96-well plates were fixed with 4% PFA and permeabilised with 0.2% Triton-X in PBS. After 

blocking, the cells were incubated with primary antibody for 1 hour, and then Alexa Fluor 

secondary antibody for 30 min. Nuclei were counterstained with DAPI. The antibodies 

were listed in Table 2. The imaging was carried out by IN Cell Analyzer 2000 (GE 



Healthcare) with the 20x objective and the quantification was processed using IN Cell 

Investigator 2.7.3 software. 

Table 2. Antibodies for CRISPRi studies 

Antibody Dilution           Cat. No. 

IL1α 1:100 R&D MAB200 

IL1β 1:100 R&D MAB201 

 

Quantitative RT-qPCR 

RNA was extracted with TRIzol (Ambion) and RNAeasy Mini Kit (Qiagen) according to the 

manufacturer’s protocol. Reverse transcription was carried out with SuperScript II RT kit 

(Invitrogen). Samples were analysed with SYBR Green PCR Master Mix (Applied 

Biosystems) in CFX96TM Real-Time PCR Detection system (Bio-Rad). Ribosomal protein 

S14 (RPS14) was used as the housekeeping gene. Primers used in CRISPR interference 

experiments are listed below in Table 3.  

Table 3. qPCR primer sequence for CRISPRi studies 

Gene Sequence 

RPS14 CTGCGAGTGCTGTCAGAGG TCACCGCCCTACACATCAAACT 

IL1α AGTGCTGCTGAAGGAGATGCCTGA CCCCTGCCAAGCACACCCAGTA 

IL1β GGAGATTCGTAGCTGGATGC AGCTGATGGCCCTAAACAGA 

 

For RAS-OIS, RAF-OIS and RS gene expression profiling in WI38 fibroblasts, Qiagen 

Quantitect primers were used using GAPDH expression as the housekeeping gene.  



For RT-qPCR analyses of colorectal cancer cell lines and lymphomas RNA was 

transcribed into cDNA using SuperScript II reverse transcriptase (Invitrogen) and oligodT 

primers. RT-qPCR was performed using Taqman Gene Expression Master Mix and 

Taqman assays (both Thermo Fisher Scientific) listed in Table S8 on a StepOnePlus 

cycler (Applied Biosystems). GAPDH was used as a housekeeping gene. 

 

Mouse strains and lymphoma generation 

All animal protocols used in this study were approved by the governmental review board 

(Landesamt Berlin), and conform to the appropriate regulatory standards. We generated 

Eµ-myc transgenic lymphomas with or without defined genetic defects in the Suv39h1 

locus and with or without retroviral Bcl2 overexpression as described previously1-3. Eµ-

Myc;Bcl2 lymphomas were further stably transduced with either cJun4A (murine cJun with 

non-phosphorylatable JNK target sites S63A; S73A; T91A; T93A) cDNA, subcloned into 

MSCV-IRES-GFP, or empty vector control. 

 

Human colorectal cancer cell lines 

Colorectal cancer (CRC) cell lines HCT116 (kindly provided by A. Relogio) and SW480 

(DSMZ; ACC-313) were transduced either with cJun4A cDNA, subcloned into MSCV-

puro, or empty vector control. HCT116 were cultured in DMEM (gibco), SW480 in RPMI-

1640 (gibco), supplemented with 10% FBS (Sigma) and 1% Penicillin/Streptomycin 

(Biochrom). 

Therapy-induced senescence 



For the induction of therapy-induced senescence (TIS), Adriamycin (ADR), a 

topoisomerase II inhibitor widely used in the clinic to treat lymphomas and other 

malignancies, was added once at a concentration of 0.05 μg/ml for Eµ-Myc;Bcl2 

lymphomas for a duration of three days and 0.1 μg/ml for CRC cell lines for a duration of 

five days. Senescence was assessed two days after drug removal by SABG activity and 

standard cell cycle analysis using 5-bromo-2′-deoxyuridine/propidium iodide (BrdU/PI)-

based flow cytometric measurement as described previously64, 85.  

 

In vivo lymphoma drug treatment 

Individual lymphomas were propagated in up to two strain-matched, non-transgenic, fully 

immune-competent 6-8-week-old wild-type mice each via tail vein injection of 106 viable 

cells. Recipient mice were treated with a single intraperitoneal dose of cyclophosphamide 

(CTX, Sigma, 300 mg/kg body weight) when their lymphadenopathy became well-

palpable (i.e. about 8-10 mm in diameter). Treatment responses were monitored by 

inspection and lymph-node palpation at least twice a week for a maximum of a 100-day 

observation period, and documented as described previously86. 

 

Gene expression profiling and data availability for mouse lymphomas 

RNA was isolated from lymphoma cells using the RNAeasy Mini kit (Qiagen) and 

hybridized to Affymetrix Mouse Gene 1.0 ST or Genome 430 2.0 microarrays according 

to the manufacturer’s instructions. Arrays were hybridized, washed and scanned by 

standard Affymetrix protocols. The mouse model-derived raw microarray data – from our 

previously published control;Bcl2, Suv39h1-;Bcl2 and Suv39h1-;Bcl2 transduced with 

4OHT-inducible Suv39h1 (Suv39h1:ER;Bcl2)  lymphomas 2,3 – were deposited at the 



Gene Expression Omnibus (GEO) repository of the National Center for Biotechnology 

Information under accession number GSE134753. Data from our clinical-trial like model 

were deposited under accession number GSE134751. For assessing long-term outcome 

after in vivo-treatments, seven or more tumor-bearing animals per arm were used. 

Survival analysis was done using the survival package in R.  Differential gene expression 

analysis was performed using limma and Empirical Bayes statistics. In order to focus on 

single genes, probesets without annotations were removed and probesets collapsed to 

the gene level using the probeset with highest statistical difference between senescent 

and non-senescent groups by an unpaired t-test prior to the analysis. P-values were 

corrected for multiple testing using the Benjamini-Hochberg method to control for false 

discovery rate.  

 

Gene set enrichment analysis (GSEA) 

“TIS_up_siJUN_down” gene list, referred to as AP1 senescence gene signature, was 

generated by intersecting genes down-regulated by siRNA-mediated cJUN depletion in 

RAS-OIS fibroblasts (see Table S7 and Figure 4F) and genes specific for therapy induced 

senescence (TIS) in Eµ-myc lymphomas (defined as differentially expressed genes in 

Adriamycin-treated TIS-competent lymphomas (GSE31099)86, but not in equally treated 

TIS-incompetent lymphomas (GSE44355)86, fold-change >2.0; adjusted p-val < 0.01). 

The resulting list of 50 genes (Table S9) was used to perform a gene set enrichment 

analysis (GSEA)87 for three independent transcriptome settings:  the transcriptome of 

native Eµ-myc lymphomas with known clinical outcome (GSE134751) and two diffuse 

large B cell lymphoma (DLBCL) patient cohorts (GSE31312 and GSE98588)88, 89. For the 

mouse transcriptome the enrichment for the gene list was compared between therapy-



naïve, initially therapy-sensitive, but destined to fail lymphomas (“Relapse Prone = RP”) 

and their matched relapses (“Resistant = RES”) after single Cyclophosphamide treatment 

(300 mg/kg, i.p.). DLBCL patient samples (all profiled at diagnosis) were classified into 

tumor-free and progressive disease categories based on disease status at last follow-up 

after standard (R)-CHOP treatment (CD20 antibody Rituximab plus 

CTX/ADR/Vincristin/Prednisone). GSEA was performed using the R package 

clusterProfiler. Probe sets were collapsed to the gene level using the correlation-based 

approach90 where correlation of probe sets representing the same gene was computed to 

decide whether to average probe sets (c > 0.2) or to use the probe set with highest 

average expression across samples (c ≤ 0.2). Probe sets without known annotation were 

removed. The signal-to-noise ratio (μA - μB)/(σA + σB) (μ = mean, σ = standard deviation) 

was used as ranking metric and statistics based on gene set permutations. FDR q values 

0.05 were considered significant. 

Data availability 

All transcriptome data are hosted on Gene Expression Omnibus (BioProject 

PRJNA439263, accession numbers GSE112084 and GSE143248). ATAC-seq, and 

ChIP-seq data (histone modification and transcription factor) are hosted on SRA 

(BioProject PRJNA439280). 

 

Code availability for reproducible science 

Interactive maps, circos plots, workflows, scripts and software developed to pre-process 

raw data, perform statistical analyses as well as data mining and integration are available 

as .html, and R Markdown files provided in Supplementary data hosted on Zenodo 



(https://zenodo.org, DOI: 10.5281/zenodo.1493872). This archive collapses all the 

material (including processed data) required to reproduce figures presented in the 
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FIGURE 1: 

Multi-state establishment of the senescence transcriptional program 

(a) Schematic overview for defining the gene-regulatory code of RAS-OIS in WI38 

fibroblasts using time-resolved, high-throughput transcriptome (microarray) and 

epigenome (ChIP-seq, and ATAC-seq) data sets. Quiescence and all additional models 

of senescence followed the same scheme and were performed in biological replicates 

(n=2) at the indicated times. 

(b) Self-organizing maps (SOMs) of gene expression profiles in WI38 fibroblasts for 

quiescence and RAS-OIS time-series experiments as logarithmic fold-change. Red spots 

mark overexpression, blue spots underexpression. 

(c) Multidimensional scaling (MDS) analysis scatter plot visualizing the level of 

similarity/dissimilarity between normalized quiescence and RAS-OIS time-series 

transcriptomes in WI38 fibroblasts. Distances between samples represent leading 

logarithmic fold-changes defined as the root-mean-squared average of the logarithmic 

fold-changes for the genes best distinguishing each pair of samples. 

(d) Scatter plot depicting the evolution of transcriptome diversity (Hj) vs. transcriptome 

specialization (σj) in cells undergoing quiescence or RAS-OIS in WI38 fibroblasts. For 

each time-point and treatment, the average Hj and σj values across biological replicates 

are given. T0 is start of time-course. 



(e) Heatmap showing seven modules (I-VII) of temporally co-expressed genes specific for 

RAS-OIS in WI38 fibroblasts defined using an unsupervised WGCNA clustering approach. 

Data are expressed as row Z-scores. Representative genes are depicted for each module. 

(f) Functional over-representation map depicting Molecular Signatures Database 

(MSigDB) hallmark gene sets associated to each transcriptomic cluster. Dots are color-

coded according to the FDR corrected p-value based on the hypergeometric distribution. 

Size is proportional to the percentage of genes in the gene set belonging to the cluster. 

 

FIGURE 2: 

A dynamic enhancer program shapes the senescence transcriptome 

(a) Arc plot visualizing dynamic chromatin state transitions for the indicated intervals 

during RAS-OIS in WI38 fibroblasts. Edge width is proportional to the number of 

transitions. 

(b) Histogram showing the total number of windows of the top 15 chromatin states 

transitions during RAS-OIS in WI38 fibroblasts. Chromatin state transitions corresponding 

to de novo enhancer activation are highlighted as white bars.  

(c) Chromatin dependence (CD) versus chromatin opening index (COI) are plotted for 

high-confidence TF sequence motifs used in our study (see Materials and Methods for 

details) during RAS-OIS in WI38 fibroblasts. Pioneer, settler and migrant TFs as defined 

by their COI and CD property are color-coded and select members of each TF class are 

listed. Same color code is used in all figures. 

(d) Biplot for principal component analysis performed with select TF binding parameters 

during RAS-OIS in WI38 fibroblasts: dynamicity, total number of bound windows (N), 

percentage of binding at enhancers, pioneer index (referred to as the number of bound 



windows pre-stimulation), chromatin opening index (COI) and chromatin dependence 

(CD). The plot depicts the projections of the TFs and the loading of the different covariates 

for the first two principal components which explain 76.9% of the total inertia. The ellipses 

delineate the 95% confidence intervals for AP-1 pioneers (blue with black outline), non-

AP-1 pioneers (blue), settlers (red), and migrants (green). 

 

FIGURE 3: 

AP-1 pioneer TF bookmarking of senescence enhancer landscape foreshadows the 

senescence transcriptional program 

(a) Distribution of fold-change in normalized enhancer marks H3K27ac and H3K4me1 

ChIP-seq signals over input in the “unmarked”-, “constitutive”-, “poised”-, “de novo”-, and 

“remnant enhancers”-flagged genomic bins at indicated time-points during RAS-OIS in 

WI38 fibroblasts (see Material and Methods for details). The cartoon at the top illustrates 

the temporal rules used to flag genomic bins. Bottom specifies the genomic coverage in 

mega bases (Mb) for each category and the corresponding number of enhancers. 

(b) WI38-ER:RASV12 fibroblasts were super-infected with dCas9-KRAB and individual 

guides (g14, 15, g61 and g7) targeting two de novo enhancers. Cells were 

pharmacologically selected and induced into RAS-OIS by 4-OHT. 8 days after RAS-OIS 

induction cells were stained by indirect immunofluorescence for IL1ß or analyzed by RT-

qPCR for the IL1α or IL1ß expression. WI38-ER:RASV12 treated with 4-OHT or DMSO 

served as positive and negative controls. Data represent mean ± SD (n=3). *p<0.05, 

***p<0.001. Comparison with ctrl 4-OHT, one-way ANOVA (Dunnett’s test). Scale bar, 

100 µm. 



(c) Rank plot depicting the summed occurrences for TF binding in de novo enhancers 

before RAS-OIS induction (left) and remnant enhancers after RAS-OIS induction (144 h)  

(right) in WI38 fibroblasts. Top ten TFs are indicated. 

(d) Distribution of total number (N) of TFs bound per enhancer for constitutive enhancers 

(dark grey), TF pre-marked de novo enhancers (orange) and TF virgin de novo enhancers 

(red). 

(e) Average absolute expression level (log2 scale) kinetics for genes associated with: 

poised (blue), TF pre-marked de novo (orange), and TF virgin de novo enhancers (red). 

Dots depict the average absolute expression level, and bars depict the standard error of 

the mean. Inset histogram illustrates the average leading log2 fold-change in expression 

(+/- standard error of the mean) for genes associated with constitutive (black), poised 

(light blue), TF pre-marked de novo (orange) and TF virgin de novo (red), and remnant 

enhancers (dark blue). 

 

FIGURE 4: 

A hierarchical TF network defines the senescence transcriptional program 

(a-c) Genome-wide transcription factor co-binding occurrence matrix summed across all 

time-points in WI-38 fibroblasts undergoing RAS-OIS (a), RAF-OIS (b) and RS (c) (left, 

shades from blue to yellow, in log10 scale). Overlap significance was calculated by a 

hypergeometric test (right, shades from blue to red, in -log10 scale). The co-binding 

occurrence matrix was clustered using Ward’s aggregation criterion and the 

corresponding corrected q-values were projected on this clustering. The graphs on the left 

and bottom show the density in pioneer, migrant and settler TFs along each axis of the 

matrix. AP-1 members are indicated. 



(d) Heatmap describing the association between individual TFs (row) and TF lexicons 

(columns). Four boxed out insets provide detailed information on TF composition of 

lexicons. A comprehensive, high-resolution and interactive heatmap is shown in 

Supplementary Data (see under Code availability in Material and Methods). The right bar 

plot shows the total number of binding sites for each TF. The top bar plot shows the total 

number of regions for each regulatory module. The bottom bar plot shows the average 

proportion of AP-1 binding sites inside each regulatory module. 

(e) Graphical representation of the hierarchical TF network for transcriptomic module VI. 

Nodes (circles) represent TFs and an oriented edge (line) connecting TFs A and B means 

that at least 30 % of the regions bound by B were also bound by A at the same time point 

or before. In order to simplify the visualization, we represent strongly connected 

components (SCCs) as a single node and performed a transitive reduction (TR). Node 

color is based on the average dynamicity of the SCC members. Node border color 

indicates their classification as pioneer (blue), settler (red) or migrant (green). Node border 

thickness encodes the percentage of bound regions before RAS stimulation. Edge color 

was calculated accordingly to the relative coverage of the outgoing TF over the incoming 

TF. The network has three layers: top, core and bottom. Nodes in the top have no 

incoming edges and nodes in the bottom have no outgoing edges. The core layer 

comprises TFs that have both incoming and outgoing edges. Interactive Cytoscape 

graphs are accessible as Supplementary data (see under Code availability in Material and 

Methods). 

(f) Venn diagram showing the specificities and overlaps in differentially expressed direct 

target genes upon siRNA-mediated AP-1-cJUN, ETS1, and RELA depletion in RAS-OIS 

WI38 fibroblasts at 144h (fully senescent cells). Genes are considered as direct targets of 



a given TF when PIQ predicts that the TF bound to an enhancer associates to this gene 

(see Materials and Methods for details). Promoters were excluded from the analysis. 

(g) Asymmetric biplot for correspondence analysis between transcriptomic clusters and 

the number of up-, down-, up-or-down- or nonregulated (stable) genes upon siRNA-

mediated AP-1-cJUN, ETS1 or RELA depletion. The p-value reflects the strength of the 

association as assessed with a 𝝌2 test. 

 

FIGURE 5: 

Hierarchy Matters: Functional Perturbation of AP-1 pioneer TF, but no other TF, 

reverts the senescence clock 

(a) Principal component analysis (PCA) on transcriptomes obtained from siRNA-mediated 

depletion of AP-1-cJUN, ETS1 or RELA at indicated timepoints of the RAS-OIS time-

course. Horizontal and vertical bars show minimal and maximal coordinates for each 

siRNA and time-point on principal components one (PC1, horizontal axis) and two (PC2, 

vertical axis). 

(b) Functional overrepresentation map showing Molecular Signature Database (MSigDB) 

hallmark pathways associated to “All”, “Direct Target” and “Indirect Target” genes 

differentially expressed after siRNA-mediated AP-1-cJUN, ETS1 or RELA depletion. 

Genes are considered as direct targets when a PIQ prediction for the given TF is falling 

inside an enhancer associated to this specific gene. Promoters are excluded from the 

analysis. The size of dots is proportional to the -log10 q-value based on the hypergeometric 

distribution obtained when testing for over-representation, and their color denote whether 

the term is enriched for an up or down-regulated gene list. 



(c) Heatmap comparing gene expression profiles of siRNA-Control-treated (siCTRL) cells 

at indicated time-points of OIS and siRNA-cJUN treated senescent RAS-OIS WI38 

fibroblasts at 144h. Data are expressed as row Z-scores. 

 

FIGURE 6: 

Functional role of AP1 in therapy-induced senescence 

(a-b) SABG staining of HCT116 and SW480 colorectal cancer cells overexpressing 

cJUN4A or an empty vector as control and treated with Adriamycin (100 ng/ml) to 

undergo TIS or left untreated. Inset, mean percentage of SABG positive cells ± SDEV. A 

representative image of 3 independent experiments is shown. Scale bars, 100 µm. 

(c-d) Heatmap of transcript levels for select AP-1 target genes (see Table S8) as 

determined by RT-qPCR in HCT116 (c), SW480 (d) cells under the conditions indicated 

in Figures 6a,b. One representative heatmap from 2 independent experiments is shown. 

Data are expressed as row Z-scores. 

(e) SABG staining in primary lymphomas from Eμ-myc transgenic mice overexpressing 

cJUN4A or an empty vector as control and treated with Adriamycin (50 ng/ml, 5 days) to 

undergo TIS or left untreated. Inset, mean percentage of SABG positive cells ± SDEV. A 

representative image of 3 independent lymphomas is shown. Scale bars, 50µm. 

(f) Heatmap of transcript levels for select AP-1 target genes (see Table S8) as determined 

by RT-qPCR under the conditions indicated in Figure 6e. Data are expressed as row Z-

scores. 

(g-i) GSEA analysis showing normalized enrichment score (NES) plots and FDRs for the 

AP-1 senescence gene signature enrichment in the transcriptomes (GSE134751) of 



therapy-naïve, initially therapy-sensitive, but destined to fail lymphomas (Relapse Prone 

= RP) and their matched relapses (Resistant = RES) after single Cyclophosphamide 

(CTX) treatment (300 mg/kg, i.p.) (g), and transcriptomes (GSE31312 and GSE98588) of 

DLBCL patients (all profiled at diagnosis) classified into tumor-free and progressive 

disease categories (i.e., tumor) based on disease status at last follow-up after standard 

(R)-CHOP treatment (CD20 antibody Rituximab plus CTX/ADR/Vincristin/Prednisone) (h-

i). 

Figure S1: 

Multi-state establishment of the senescence transcriptional program 

(a-b) Representative DAPI, EdU, SABG indirect fluorescence and phase contrast (from 

left to right) microscopy images of WI38 fibroblasts undergoing RAS-OIS or quiescence 

at indicated time-points. Insets, mean percentage of SABG positive cells ± SDEV and 

proliferative capacity expressed as percent EdU-positive staining cells ± SDEV. Scale bar, 

100µm.  

(c-q) Growth curves, EdU incorporation and representative RT-qPCR expression profiles 

of selected target genes for RAS-OIS (c-e), RAF-OIS (f-h), RS (i-k), RAS-OIS in GM21 

skin fibroblasts (l-n) and quiescence (o-q) at indicated time-points. For l-m, average +/- 

standard error of the mean of three independent infections is shown. 

(r-t) Heatmaps for temporally co-expressed differentially regulated genes and associated 

functional over-representation of MSigDB hallmark gene sets for each module described 

for RAF-OIS (r) and replicative senescence (RS) (s) in WI-38 fibroblasts, and RAS-OIS in 

GM21 skin fibroblasts (t) at the indicated time points in hours (h).  



(u) Boxplots depicting the gene expression profiles for each of the RAS-OIS 

transcriptomic modules in WI38 fibroblasts. Note the sharp transitions of modules I and 

V. Data are expressed as row Z-score. 

 

Figure S2: 

A dynamic enhancer program shapes the senescence transcriptome 

(a) Histogram showing the percentage of genome covered by each chromatin state at 

indicated time. Bottom table assigns histone modification combinations (grey: presence, 

white: absence) to biologically meaningful mnemonics. Venn diagrams highlight the 

specificities and overlaps in chromatin states associated with active (left) and poised 

enhancers (right) at indicated time-points. 

(b-c) Arc plots visualizing dynamic chromatin state transitions for RAF-OIS and replicative 

senescence at the indicated intervals. Edge width is proportional to the number of 

transitions.  

(d) Boxplots showing the distribution of relative gene expression (row Z-score) through 

time for genes associated to regions undergoing different chromatin state changes. The 

pictogram at the top of each graph describes the class of chromatin state change 

considered. 

(e) Asymmetric biplot for correspondence analysis between changes in chromatin states 

and gene expression modules. The p-value reflects the strength of the association a 

assessed using a 𝝌2 test. Only the top 20 contributing and best projected (squared cosine 

> 0.5) chromatin state changes are shown. 

(f-k) Most enriched sequence motifs in (f) active enhancers for RAS-OIS in WI38 

fibroblasts and (g-k) ATAC-seq peaks at each time point for (g) RAS-OIS (WI38), (h) RAF-



OIS (WI38, (i) replicative senescence (RS)(WI38), (j) RAS-OIS (GM21 skin fibroblasts) 

and (k) quiescence (WI38) time courses. Motif logos are shown on left of the histogram. 

Black, dotted boxes highlight the core motif for AP-1 transcription factor family members. 

Note that the transcriptional repressor BACH shares this motif. 

(l-n) ATAC-seq (grey lines for forward, black lines for reverse reads) and nucleosome (red 

line) density for (l) AP-1 FOSL1 (pioneer), (m) RELA (settler), and (n) SREBF1 (migrant). 

(o) Comparison between PIQ predictions and RELA (left), AP-1-JUN (middle) and AP-1-

FOSL2 (right) ChIP-seq. The two density heatmaps at the center of each panel illustrate 

ChIP-seq (left) and ATAC-seq (right) signals computed in 10bp non-overlapping windows 

at selected bound- (25%) and unbound- (75%) predicted PWM hits ± 1kb ranked 

according to the ChIP-seq signal in the most central 100bp. The stack histogram on the 

left shows the distribution of bound (red) and unbound (green) PWM hits as defined by 

PIQ along the ranking. The curves on the right depict the evolution of the enrichment score 

(ES) along the ranking as defined with a set enrichment analyses (SEA) comparing the 

ChIP-seq signal and the bound (red) and unbound (green) status of the PWM hit. For each 

SEA, we performed 1 000 permutations and provide the associated Benjamini–Hochberg 

adjusted p-value and ES score. 

 

Figure S3: 

AP-1 pioneer TF bookmarking of senescence enhancer landscape foreshadows the 

senescence transcriptional program 

(a) Density heatmaps of normalized H3K27ac and H3K4me1 ChIP-seq signals computed 

in 10bp non-overlapping windows at enhancers +/- 10kb grouped by enhancer status 

(constitutive, de novo or remnant) at indicated time-points after RAS-OIS induction. 



(b-c) Representative genome browser screenshots of normalized H3K4me1 (pink), 

H3K27ac (orange), H3K4me3 (blue) and H3K27me3 (green) ChIP-seq and ATAC-seq 

(light grey) profiles and chromatin states at (b) IL1ß and (c) CDC6 gene loci. Red boxes 

single-out (b) IL1ß de novo and (c) CDC6 remnant enhancers. 

(d) Boxplots depicting the distribution of relative gene expression (row Z-score) through 

time for genes associated with constitutive (left), de novo (middle) and remnant (left) 

enhancer windows. 

(e) RAS-OIS cells at day 14 infected with dCas9-KRAB and individual guides (g14, g15, 

g61, and g7) and analyzed by RT-qPCR for the expression of IL1α or IL1β as described 

in Figure 3B. Data represent mean ± SD (n=3). *p<0.05, ***p<0.001. Comparison with ctrl 

4OHT, one-way ANOVA (Dunnett’s test). 

(f) RAS-OIS cells were infected with dCas9-KRAB and individual guides (g2, g48 and g54) 

for non-enhancer regions (outside de novo enhancers) as described in Figure 3B. 8 or 14 

days after infection, cells were stained for IL1α or IL1β by indirect immunofluorescence 

and percentage positive cells were quantified (n=3 for 8 days and n=2 for 14 days). Data 

represent mean ± SD. *p<0.05, **p<0.01, ***p<0.001. Comparison with ctrl 4OHT, one-

way ANOVA (Dunnett’s test). 

(g) Rank plot depicting the summed occurrences for TFs binding in proliferating cells (T0) 

in de novo enhancers (left) and after replicative senescence in remnant enhancers (right). 

Top ten TFs are highlighted. 

(h) Metaprofiles showing the density in “active enhancer”-flagged genomic bins (top) and 

“constitutive enhancer”-flagged genomic bins (bottom) in the vicinity (+/- 50kb) of TF 

bookmarked de novo (left) and TF virgin de novo enhancers (right). The density in “active 

enhancer”-flagged genomic bins is provided for the indicated time points. 



(i) Boxplot showing the correlation between absolute leading log2 expression fold-change 

and the number of genomic bins flagged as “de novo” enhancers per enhancer. ***: p-

value < 10-3, Student’s t-test considering regions with 0 “de novo” enhancers bins as a 

control. 

 

Figure S4: 

A hierarchical TF network defines the senescence transcriptional program 

(a) Representative Circos plots summarizing pairwise transcription factor co-binding at 

enhancers for down-regulated transcriptomic module (IV, top) and up-regulated 

transcriptomic module (VI, bottom) at indicated time-points. Co-interactions involving AP-

1 are shown in black. Selected examples of gained (green) and lost (orange) interactions 

are highlighted. Pioneer TFs blue, settler TFs red, migrant TFs green. See also dynamic 

Circos plot movies in Supplementary Data (see under Code availability in Material and 

Methods). 

(b) Heatmap showing the overlap between TF lexicons (rows) and chromatin states, ChIP-

seq and ATAC-seq peaks (columns). The dendrograms were computed by applying 

hierarchical clustering on the fraction matrix with Pearson’s correlation and average 

linkage. 

(c) Representative genome browser screenshots for lexicons 22 and 50 as described in 

Figure 4E. Chromatin states are color-coded as in Figure 2. Transcription factor binding 

instances constituting each lexicon are highlighted in the inset.   

(d) Ratio of incoming edges based on the classification of the TF source node. The relative 

and absolute number of edges corresponding to all seven modules are displayed inside 

the nodes, which are colored accordingly to TF classification as in previous panels. The 



thickness of links is proportional to the relative number of TF hierarchy edges connecting 

nodes with the corresponding classification. 

(e) Number of bound regions and dynamicity index for each TF (rows) across all gene 

modules (columns). The left heatmap depicts the dynamicity index scaled by column. The 

middle heatmap depicts the square root of number of bound regions scaled by column. 

The right single-column heatmap illustrates TF classification. 

(f) Chow-Ruskey diagram showing specificities and overlaps of TF interactions in each 

gene module. Each set corresponds to the TF-TF network edges identified for a given 

transcriptomic module. The global area of each set is proportional to the number of edges 

in its respective transcriptomic module and was calculated with the Chow- Ruskey 

algorithm. 

(g-i) Chow-Ruskey diagrams for edges (g) originating only from TFs at the top of 

hierarchy, (h) connecting only TFs at the core layer or (i) reaching only TFs at the bottom. 

Note that edges at the top of the hierarchy are shared among the gene modules while 

edges towards the bottom of the hierarchy are module-specific.  

(j-l) Knockdown efficiency for siRNAs against cJUN (j), ETS1 (k) and RELA (l) was 

assessed by RT-qPCR for each time-point assessed relative to non-targeting siRNA (siC). 

 

Figure S5: 

Hierarchy Matters: Functional Perturbation of AP-1 pioneer TF, but no other TF, 

reverts the senescence clock 

(a-c) Volcano plots depicting the -log10 p-value as a function of the log2 fold-change in 

gene expression defined by a differential analysis conducted with limma to highlight the 

effect of siRNA-mediated (a) AP-1-cJUN, (b) ETS1 and (c) RELA depletion in senescent 



RAS-OIS cells at day 6 (144h). Blue dots in respective plots indicate probes corresponding 

to AP-1-cJUN, ETS1 and RELA. Black outlined dots highlight direct targets of AP-1-cJUN, 

ETS1 and RELA. 

(d) Upset plot depicting specificities and overlaps in differentially expressed genes 

between siRNA-Control and siRNA-JUN silenced OIS fibroblasts at indicated time-points. 

The yellow dots highlight gene sets specific to a single comparison set, while green dots 

highlight gene sets find in two different pair-wise comparison. 

(e-h) Venn diagrams (top) and heatmaps (bottom) depicting the overlap between genes 

belonging to (e) E2F-, (f) NFκB-, (g) p53-target and (h) N1ICD-induced senescence (NIS) 

gene signatures in RAS-OIS fibroblasts treated with si-JUN. Venn diagrams show the 

overlap of up-regulated genes after siRNA-mediated AP-1-cJUN knock-down for 

upregulated E2F- (i.e. pro-proliferation genes), p53 targets, NIS- (i.e. early SASP genes), 

and downregulated NFκB target genes (i.e. late SASP genes) RAS-OIS cells at day 6 

(144h). Bottom heatmaps show the comparison of gene expression profiles of siRNA-

Control (siCtrl) and siRNA-cJUN treated cells undergoing RAS-OIS at indicated time-

points. Data are expressed as row Z-score. E2F targets and NFκB targets were defined 

according to Molecular Signature Database (MSigDB). 

(i-j) Network representation of the interaction between AP1 TFs and p53 family TFs at 

enhancers of genes in gene modules II (i) and VI (j) as described in Figure 1E. P53 is 

highlighted by arrows.  

 

 

 



Figure S6 

Functional role of AP1 in therapy-induced senescence 

(a-b) Cell cycle analysis using BrdU incorporation and propidium iodide staining flow 

cytometry for HCT116 (a) and SW480 (b) CRC cell lines under experimental conditions 

described in Figure 6a,b. Insets, percentage of cells in respective cell cycle phase. 

(c-d) cJUN gene expression determined by RT-qPCR in HCT116 (c) and SW480 (d) CRC 

cell lines underexperimental conditions described in 6a,b. Mean of 3 independent 

experiments. 
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