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Abstract

Since the advent of quantum mechanics, the study of light-matter interactions at the
quantum level has been greatly developed as a research field. For instance, surpris-
ing theoretical predictions gave rise to experiments with unprecedented interaction
strengths between matter, and terahertz and microwave radiations. These results corre-
spond to the so-called ultrastrong coupling regime, that is reached when the interaction
energy becomes comparable to the typical energies of the light and matter when they are
not interacting. In this regime, intriguing properties can be found such as the presence
of photons even when no energy is given to the system. However, these photons cannot,
a priori, be emitted from the system to the outside world in order to be measured and
therefore demonstrate these properties.
In this thesis, we studied these intriguing properties and proposed several means to

access them experimentally. We relied on several physical platforms which are good
candidates for such studies, and for each one of these systems we devised a model that
can evidence these properties one way or another. By doing so, we explored the link
between the ultrastrong coupling regime and the generation of nonclassical states of
light. Additionally, as an outlook we showed that the light-matter interactions in one
of these platforms could be used to design quantum communication protocols. On top
of showing fundamental interest, our results fit in the line of developing applications for
quantum technologies using different experimentally available systems.

key words: light-matter interactions, ultrastrong coupling regime, nonclassical states
of light, squeezed states of light, quantum entanglement, quantum communication, in-
tersubbands devices, superconducting circuits, optomechanics
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Résumé

Depuis l’avénement de la mécanique quantique, l’étude des interactions lumière-matière
à l’échelle quantique s’est énormément développée en tant que domaine de recherche.
Par exemple, grâce à des prédictions théoriques surprenantes, des interactions d’une
force sans précédant ont été démontrées entre de la matière et des radiations terahertz
et microonde. Ces résultats correspondent à un régime dit de couplage ultrafort, atteint
lorsque l’énergie d’interaction devient comparable aux énergies propres de la lumière
et de la matière lorsque celles-ci n’interagissent pas. Dans ce régime, des propriétés
intrigantes peuvent subsister telles que la présence de photons même lorsqu’aucune
énergie n’est fournie au système. Cependant, ces photons ne peuvent, a priori, être
émis du système vers l’extérieur de manière à pouvoir être mesurés et par conséquent
démontrer ces propriétés.
Dans cette thèse, nous avons étudié ces propriétés intrigantes et proposé plusieurs

moyens permettant d’y accéder expérimentalement. Nous nous sommes appuyés sur
plusieurs plate-formes physiques qui sont de bon candidats pour ces études, et pour
chacun de ces systèmes nous avons mis au point un modèle mettant en évidence ces
propriétés d’une manière ou d’une autre. De cette façon, nous avons exploré le lien
entre le régime de couplage ultrafort et la génération d’états non-classiques de la lu-
mière. En outre, dans une étude plus ouverte nous avons montré que les interactions
lumière-matière dans l’une de ces plate-formes peuvent être utilisées pour concevoir
des protocols de communication quantique. En plus de montrer un intérêt fondamen-
tal, nos résultats s’inscrivent dans une optique de développement d’applications pour
les technologies quantiques en utilisant différents systèmes expérimentaux disponibles
actuellement.

mots clefs: interactions lumière-matière, régime de couplage ultrafort, états non-
classiques de la lumière, états comprimés de la lumière, intrication quantique, communi-
cation quantique, dispositifs intersousbandes, circuits supraconducteurs, optomécanique
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Résumé substantiel

Dans cette thèse nous avons souhaité explorer plusieurs facettes des interactions lumière-
matière dans le régime de couplage ultrafort entre deux champs bosoniques, en étudiant
la manière dont ce régime est relié à des états non-classiques de la lumière, en partic-
ulier à des états comprimés, et s’il est possible d’une manière ou d’une autre d’extraire
des propriétés de l’état fondamental de ce régime. Premièrement, nous avons conçu un
modèle dans lequel un nouveau type de couplage ultrafort est introduit, appelé régime
de couplage ultrafort dispersif. Principalement, nous avons introduit de nouveaux in-
grédients qui modifient le régime de couplage ultrafort déjà connu et atteint expéri-
mentalement dans des matériaux semi-conducteurs confinés dans des cavités résonantes
dans les fréquences terahertz ou dans le moyen-infrarouge, qui ont été les premiers sys-
tèmes à démontrer des telles forces de couplage [Günter09, Todorov09, Anappara09].
Nous avons exploré une situation où le couplage lumière-matière est dépendent du
temps, prouvé d’être requis pour permettre d’extraire des particules d’un système non
pompé [De Liberato07]. Avec ces outils, nous avons montré qu’il était possible pour
la cavité d’émettre des photons dans un état comprimé [Fedortchenko16], même si le
Hamiltonien du système ne contient pas d’interaction de compression pour un mode
bosonique. Nous avons continué d’examiner la génération d’états comprimés à l’aide du
régime de couplage ultrafort, en proposant un modèle basé sur une autre plate-forme
physique constituée de circuits supraconducteurs, une technologie qui a rapidement pro-
gressé ces dernières années jusqu’à devenir l’un des candidats les plus prometteurs pour
l’étude des interactions lumière-matière à l’échelle quantique [Schoelkopf08], l’optique
quantique pour des gammes de fréquences alternatives [You11], la simulation quan-
tique [Houck12], ou encore l’information [Devoret13] et le calcul [Ladd10] quantique. En
utilisant la versatilité de ces systèmes et leur haut degré de contrôle, nous avons conçu
un modèle où le régime de couplage ultrafort peut être simulé entre deux résonateurs
microonde. La nature particulière de l’interaction physique dans ce système le rend sem-
blable à une interaction ultraforte standard, mais dans un référentiel bien particulier.
De plus, les prédictions de ce modèle prévoient l’émission d’une radiation comprimée.
Cependant, ici les deux résonateurs microonde émettent des photons au même moment,
ce qui permet d’étudier les corrélations quantiques entre eux. Ces corrélations ont été
démontrées comme étant de même nature que les corrélations présentes dans l’état fon-
damental d’une interaction ultraforte bosonique [Fedortchenko17]. Ainsi, nous avons
conçu une plate-forme basée sur une technologie actuelle permettant d’explorer expéri-
mentalement la nature de l’état fondamental d’un tel régime. De plus, nous avons obtenu
des résultats préliminaires dans un modèle que nous avons basé sur une interaction op-
tomécanique [Aspelmeyer14]. Ces résultats montrent qu’il est possible dans ce modèle
de générer des états quantiques de la lumière ayant les mêmes corrélations quantiques
et les mêmes caractéristiques spectrales que dans la simulation quantique du couplage
ultrafort que nous avons évoqué précédemment. Cela montre que ce modèle optomé-
canique, même s’il possède un Hamiltonien très différent comparé au Hamiltonien d’un
régime de couplage ultrafort, est d’une certaine manière lié à ce régime et mérite une
étude plus approfondie. En outre, nous avons utilisé cette interaction optomécanique
pour explorer des phénomènes au-delà du cadre initial de cette thèse, en montrant qu’en
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plus d’être lié au régime de couplage ultrafort, ce modèle peut être aussi un bon candi-
dat pour l’établissement d’un réseau de communication quantique, une étape cruciale
pour un but à long terme, la mise en place de l’Internet quantique [Pirandola16]. En
particulier, nous avons montré comment effectuer deux protocoles de communication
quantique entre deux parties, où chaque partie est constituée d’un dispositif optomé-
canique correspondant à notre modèle [Felicetti17a].
Le plan de ce manuscrit ce décrit comme suit. Dans le chapitre I nous présentons les

concepts de base ainsi que les outils nécessaires pour la compréhension des résultats de
cette thèse présentés plus loin. Nous commençons par une brève vue d’ensemble des
différents régimes d’interaction lumière-matière. Ensuite, nous nous concentrons sur les
états quantiques de la lumière en présentant leur description dans l’espace des phases,
suivie par une introduction de certains de ces états, avec des efforts plus marqués sur
la description les états comprimés.
Dans le chapitre II, nous présentons nos résultats sur la génération d’états comprimés

à un mode en utilisant le régime de couplage ultrafort dispersif. Nous commençons par
introduire la plate-forme physique sur laquelle se base notre modèle, consistant d’un
puits quantique semi-conducteur confiné dans une cavité terahertz ou moyen-infrarouge.
Nous montrons brièvement comment le Hamiltonien initial fermionique peut être réécrit
en termes d’opérateurs bosoniques seulement, puis nous utilisons cette forme bosonique
du Hamiltonien pour introduire notre modèle spécifique. Nous montrons comment dans
notre modèle un effet rappelant l’effet Casimir dynamique [Moore70, Kardar99] est à
l’origine de la génération de photons comprimés.
Dans le chapitre III, nous présentons notre simulation quantique du régime de cou-

plage ultrafort avec des circuits supraconducteurs. Nous commençons par brièvement
introduire les circuits supraconducteurs et l’interaction physique dans un dispositif ap-
pelé mixer de Josephson, utilisé dans notre simulation quantique. Nous présentons en-
suite notre modèle, en montrant comment en partant du Hamiltonien physique dans le
référentiel du laboratoire nous pouvons obtenir un Hamiltonien effectif dans un référen-
tiel tournant ayant la même forme que le Hamiltonien du régime de couplage ultrafort
standard.
Dans le chapitre IV, nous présentons nos résultats sur notre modèle basé sur un

système optomécanique. Après une introduction de l’interaction optomécanique décrite
dans la théorie quantique, nous présentons notre modèle constitué d’un interféromètre,
avec ces avantages en comparaison avec un système optomécanique standard. Puis,
nous exposons des résultats préliminaires sur le lien entre notre modèle et la simulation
quantique du couplage ultrafort abordée dans le chapitre III. Enfin, nous montrons
comment le modèle développé dans ce chapitre peut être utilisé en tant que nœud d’un
réseau quantique. En particulier, nous montrons comment il est possible d’implémenter
deux protocoles de communication quantique entre deux de ces nœuds et évaluons leur
succès.
Finalement, une conclusion générale présente quelques remarques finales ainsi que des

perspectives.
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General Introduction

Among the many contributions brought to physics by the advent of the quantum theory,
the new tools it gave for the study and understanding of light-matter interactions at
a microscopic level is outstanding. Before the quantum theory, examples of phenom-
ena involving microscopic bodies and evidenced as consequences of light and matter
occupying the same space and interacting were not many. For systems at macroscopic
scales, a particularly important example of light-matter interactions is worth mention-
ing, as it plays a crucial role in this manuscript. Demonstrated early in the twentieth
century [Lebedew01, Nichols01], it is the fact that when light is shined on an object
made of matter, this light could exercise a force on the matter coming from a pressure,
called the radiation pressure. The consequence of this remarkable result nowadays is
the rapid development of a research field called quantum optomechanics that explores
fundamental as well as practical topics due to this interaction.
Going back to the twentieth century, a crucial result is the understanding of the pho-

toelectric effect [Einstein05] (for a translation in English, see [Arons65]), as the first
illustration of the particle character of light. This article laid the foundations leading to
a proper definition of the quantum theory. Rapidly after its advent, quantum physics
could be used to bring a whole new description of light, with the definition of a theory
describing its quantization [Dirac27, Fermi32]. Later, great effort was devoted to a bet-
ter description of the quantum states of light [Glauber63a, Glauber63b, Glauber63c].
The characterization of the possible states of light allowed to better understand in what
ways some states are nonclassical. One instance of such states is of particular interest for
this thesis, namely states that allow to reduce the uncertainty on the number of photons
present in the state below this uncertainty for vacuum. First presented as a theoretical
object, these states, called squeezed states [Gardiner04, Walls08], were successfully ex-
perimentally produced over the last thirty years with photons in a variety of frequency
ranges [Slusher85, Shelby86, Wu86, Yurke88, Castellanos-Beltran08, Mallet11].
Another type of quantum states relevant for this manuscript comes from a notion

introduced in the early days of the quantum theory. It concerns a particular kind of
influence between two systems that is only possible in the realm of quantum physics,
also called "spooky action at a distance" at the time [Einstein35a]. This phenomenon,
called entanglement, was intensely studied in the years that followed, and is still a
topic of great theoretical and experimental interest nowadays. Similarly as for the
squeezed states mentioned above, entangled states were experimentally achieved with
many different systems in the last three decades. For instance, entanglement between
photons, that can be seen as a form of squeezing, was successfully demonstrated in many
experiments [Silberhorn01, Bowen02, Josse04, Eichler11, Flurin12]. However, this type
of entanglement is not the only one to be experimentally explored, since entanglement
between light and matter was already tackled since few decades [Raimond01].
In fact, entangling light and matter is the harvest of many years in studying light
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and matter interaction. Indeed, in the fifties the development of optical pump-
ing [Kastler50] was crucial for the creation of both the maser [Gordon54, Gordon55]
and the laser [Schawlow58, Maiman60]. This led to the development of cavity quantum
electrodynamics in the seventies and the eighties (cavity QED) [Goy83, Heinzen87],
which deeply explored different regimes of light-matter interactions.

In addition to the so-called weak coupling and strong coupling regimes tackled in
cavity QED in the last thirty years, another regime is the focus of this thesis, called the
ultrastrong coupling (USC) regime. Theoretically predicted much more recently than
the other two [Ciuti05], this regime pushes further the interaction between light and
matter, such that even in the ground state, the system is predicted to contain virtual
particles, that share entanglement. This ground state being fundamentally different
from the one in the weak or the strong coupling regimes, it has been the subject of studies
proposing to experimentally demonstrate its properties [Lolli15, Peropadre13a, Cirio16].
However, although some features of the USC regime have been demonstrated in different
physical platforms and for different frequency ranges for light [Günter09, Todorov09,
Anappara09, Niemczyk10, Forn-Díaz10], its peculiar ground state nature was not one
of them.

In this thesis, we wished to explore various facets of light-matter interactions in
the USC regime between two bosonic fields, by studying how this regime is related
to nonclassical states of light, in particularly to squeezed states, and whether it is
possible to somehow extract the ground state properties of this regime. First, we
designing a model where a novel type of USC interaction is introduced, called the
dispersive USC regime. Essentially, we introduced new ingredients which slightly mod-
ified the USC regime already achieved in semiconductors confined in terahertz or mid-
infrared cavities, which were the first ones to achieve such coupling strength [Günter09,
Todorov09, Anappara09]. We explored a situation where the light-matter coupling is
time-dependent, already proven to be a perquisite for extracting particles from a non-
driven system [De Liberato07]. With these tools, we showed that it is possible for
the cavity mode to emit squeezed photons [Fedortchenko16], even if the Hamiltonian
for the system does not contain a single-mode squeezing interaction. We continued
to investigate the generation of squeezed states with the USC regime by proposing a
model based on another physical platform this time made of superconducting circuits,
a technology that rapidly matured during the last two decades and even became one of
the most promising candidates for studying light-matter interactions at the quantum
level [Schoelkopf08], quantum optics at alternative frequency ranges [You11], quan-
tum simulation [Houck12], or quantum information [Devoret13] and quantum comput-
ing [Ladd10]. Using the versatility of these systems and their high degree of control,
we designed a model where the USC regime could be simulated between two microwave
resonators. The particular nature of the physical interaction in the system we used
makes it look like a standard USC interaction in a particular referential frame, and ad-
ditionally, the system is also predicted to emit a squeezed radiation. However, here both
microwave resonators emit photons at the same time, which allow us to study the corre-
lations between them. These correlations were found to be of the same nature than the
ones present in the ground state of a bosonic USC interaction [Fedortchenko17]. Thus,
we designed a platform using current technology that allow to experimentally explore
the nature of the ground state of such a regime. Additionally, we obtained preliminary
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results in a model we designed based on optomechanical interactions [Aspelmeyer14].
These results showed that it is possible in this model to generate quantum states of pho-
tons that have the same type of quantum correlations and the same spectral features as
in the quantum simulation we studied with superconducting circuits. This shows that
this optomechanical model, although with a very different Hamiltonian than in the USC
regime, is somehow connected to this regime and deserves a deeper study. As an out-
look, we used this optomechanical interaction to explore phenomena beyond the initial
scope of this thesis, by showing that is not only linked to the USC regime, but that it
can also be a good candidate for building a quantum communication network, which is
a crucial step in the long standing goal called quantum Internet [Pirandola16]. In par-
ticular, we showed how to perform two quantum communication protocols between two
parties where each one is made of the optomechanical device we designed [Felicetti17a].
The outline of this thesis is the following. In chapter I, we present the basic concepts

and tools crucial for the understanding of our results presented later. We begin with
a brief overview of the different kinds of light-matter interactions. Then, we focus on
quantum states of light by presenting their description in phase-space, followed by an
introduction of some of these states, distinctly focusing our efforts on squeezed states.
In chapter II, we present our results regarding the generation of single-mode squeezing

using the dispersive USC regime. We first introduce the experimental platform on which
we based our model, which consists of a semiconductor quantum well confined in a
terahertz or mid-infrared cavity. We briefly show how the initial fermionic Hamiltonian
can be rewritten in terms of bosonic operators only, and we then use this bosonic form
to introduce our specific model. We show how in our model an effect reminiscent of
the dynamical Casimir effect [Moore70, Kardar99] is at the origin of the generation of
squeezed photons.
In chapter III, we present our quantum simulation of the USC regime with super-

conducting circuits. We start by briefly introducing superconducting circuits and the
physical interaction in the so-called Josephson mixer, that we use in the quantum sim-
ulation. We then present our model, by showing how from the physical Hamiltonian of
the system in the laboratory frame we can derive an effective Hamiltonian in a rotating
frame that has the same form as the Hamiltonian in the USC regime. We show how
the quantum simulation results in an emission of a two-mode radiation which shows the
same type of properties as in the ground state of the USC regime.
In chapter IV, we present our results based on our model in an optomechanical plat-

form. After an introduction of an optomechanical interaction described in quantum
theory, we present our interferometric model and its advantages with respect to a com-
mon optomechanical set-up. Then, we show preliminary results on the link between this
model and a quantum simulation of the USC regime. Afterwards, we show how this
model can be used as a node in a quantum network. In particular, we show how to im-
plement two quantum communication protocols between such two nodes and benchmark
their success.
Finally, a general conclusion includes some final remarks and perspectives.
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I Light-matter interactions and
quantum states of light

The goal of this chapter is to present the basic concepts and tools used throughout the
manuscript, with occasional references to indicative, but not exhaustive material from
the literature. We do not yet present the original results found during this thesis, that
will be extensively developed in the next chapters, but rather focus on the essential the-
oretical background needed to apprehend these results. The prerequisites for the present
chapter are an understanding of the basics of quantum mechanics [Cohen-Tannoudji77],
a grasp of both the quantization of the electromagnetic field [Dirac27, Fermi32, Scully97]
and of the second quantization in general [Negele98], namely, being accustomed to the
use of annihilation and creation operators to describe both light and matter particles.
First, we review the different regimes of light-matter interactions that can be achieved
in a laboratory. Second, although both concepts are linked, we will independently in-
troduce quantum states of light of interest for this thesis, their theoretical description,
and have a glimpse at the possible applications for such states.

I.1 Light-matter interactions

I.1.1 From the photoelectric effect to cavity quantum electrodynamics

The fact that light could in some way influence the behavior of matter, or vice versa,
due to quantum effects, is a more than one hundred years old idea. Even before the
proper definition of a quantum theory, the particle character of light, and the con-
sequences of its interaction with electrons from the surface of a solid have been pre-
dicted [Einstein05] (for a translation in English, see [Arons65]). After additional the-
oretical progress, such as the discovery of stimulated emission [Einstein16, Einstein17]
(for a translation in English, see [Einstein97]), later in the century, important ad-
vances of artificial control of atoms in their quantum levels were made, such as optical
pumping [Kastler50], or the creation of both the maser [Gordon54, Gordon55] and the
laser [Schawlow58, Maiman60]. These selected breakthroughs, among others not shown
here for the sake of succinctness, laid the foundations of cavity quantum electrodynam-
ics (or cavity QED) [Goy83, Heinzen87], a field that aims at studying the interaction of
atoms with a radiation field confined inside a cavity. Although the study of light-matter
interactions naturally occurring in our world, such as the first example evoked here, is
a fascinating topic, in the rest of the thesis we shall focus on interactions achieved
artificially with the light confined in cavity modes.
Cavity QED can be seen as the precursor of recent subfields that study light-matter

interactions in different physical systems, yet with the observation of analog phenomena.
These recent subfields cover quantum wells in microcavities [Weisbuch92, Rapaport00],
circuits quantum electrodynamics [Blais04, Chiorescu04, Wallraff04], and to some extent
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cavity quantum optomechanics [Fabre94, Aspelmeyer14]. These topics are to be tackled
in the next Chapters, and here we wish to use the framework of cavity QED as an
illustration board for concepts and phenomena that will be needed later.

I.1.2 A simple light-matter coupling

I.1.2.1 The Hamiltonian

In order to illustrate the quantum description of light-matter interactions, let us briefly
present the most basic coupling that can occur between a two-level atom and a cavity
mode. The atom’s accessible quantum states are |g〉, the ground state, and |e〉, an
excited state, forming its Hilbert space. Essentially, in cavity QED such an interaction
is of electric-dipole nature, with the form −D̂ · Ê.1 D̂ = qR̂ is the atomic dipole
operator associated with the transition between the two states |g〉 and |e〉, and although
it is written in the same form as the classical electric dipole moment where the charge
q multiplies a displacement vector pointing from the negative to the positive charge,
here R̂ is a quantum operator. Another way to express D̂ and to see that it acts as a
transition between the two levels is the following form

D̂ = q
(
〈g|R̂|e〉 |g〉〈e|+ 〈e|R̂|g〉 |e〉〈g|

)
, (I.1)

where the operators |e〉〈g| and |g〉〈e| represent such transitions. Ê is an electric field
coupled to the two-level system, and assuming that only one mode interacts with the
atom, we have

Ê = iE
(
ε∗aâ− εaâ

†), (I.2)

where E is a normalization factor and ε is the polarization vector of the field. Note
that no spatial dependence of the field mode appears here, since Ê = Êtot(0) is the
field at r = 0. This comes from the fact that the interaction −D̂ · Ê we study here is
only valid in the electric-dipole approximation. In fact, −D̂ · Êtot(0) is derived from
the expression of the modified kinetic energy operator of the atomic charge q, due to
its interaction with a radiation field, written as (P̂− qÂ(R̂))2/2m (no additional term
is present when the magnetic interaction can be neglected and the total Hamiltonian is
written in the Coulomb gauge), where P̂ is the momentum of the charge and Â(R̂) is the
vector potential of the field at the position described by the operator R̂. Using such an
approximation means that the characteristic size of the atom is much smaller than the
wavelength of the electromagnetic field, a very common and widely used approximation.2

Now we can write the Hamiltonian of the system,

Ĥ = ωaâ
†â+ ωeg|e〉〈e|+

(
d∗ε∗d|g〉〈e|+ dεd|e〉〈g|

)(
iEε∗aâ− iEεaâ†

)
, (I.3)

where we introduced d as the dipole matrix element of the atomic transition and εd
as the unit vector describing the atomic transition polarization, with q〈e|R̂|g〉 = dεd.

1Note that here and in the rest of the manuscript, a symbol with a hat describes a quantum operator,
while a symbol written in bold stands for a vector. Accordingly, in the case of D̂ and Ê, they are
both.

2For more details on the electric-dipole approximation, see [Haroche06].
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Eq. (I.3) can be written in a more practical form

Ĥ = ~ωaâ†â+ ~ωegσ+σ− + i~G
(
σ− + σ+

)(
â− â†

)
, (I.4)

where
G = −Edεd · ε

∗
a

~
(I.5)

is the Rabi frequency [Haroche06] introduced in Eq. (I.4) by assuming that G is real,
without loss of generality. In this new expression of the Hamiltonian, we also introduced
the ladder operators σ+ = |e〉〈g| = (σ−)† and σ− = |g〉〈e| = (σ+)†, defined from the
Pauli matrices [Pauli27]

σx = |g〉〈e|+ |e〉〈g|, (I.6)
σy = i|g〉〈e| − i|e〉〈g|, (I.7)
σz = |e〉〈e| − |g〉〈g|. (I.8)

These matrices are very useful for the description of two level systems such as spins
1/2, or qubits.3

Note that here we established the zero of energy at the ground state, such that in
the Hamiltonian (I.4), the energy of the excited state |e〉 is ~ωeq = ~(ωe − ωg), the
difference between the true energies of the states. An alternative choice commonly used
in the literature is the zero of energy being in the middle of the two levels [Haroche06].
In that case, the free evolution Hamiltonian of the atom would be ~ωegσz/2 instead
of ~ωegσ+σ−. Herewith, a definition for the Rabi frequency often associated with this
other energy origin is 2Edεd · ε∗a/~.
The Hamiltonian (I.4) that we just presented is the quantum counterpart of the so-

called Rabi model. In 1936, Rabi introduced a model where an atom possessing a
nuclear spin, described quantum mechanically as a two-level system, interacts with a
rapidly varying weak magnetic field, described as a classical object [Rabi36]. In short,
it was a semi-classical approximation, and it is only three decades later that Jaynes
and Cummings introduces a fully quantum model [Jaynes63], in order to clarify the
relationship between the semiclassical theory and a theory where the radiation field is
quantized as well. Historically, even if the fully quantum model was first presented
by Jaynes and Cummings, Eq. (I.4) is most usually called the quantum Rabi model.
However, their seminal paper from 1963 was used to define what is called the Jaynes-
Cummings model, that we describe hereafter.

I.1.2.2 The rotating wave approximation

The interaction shown in Eq. (I.4) can be simplified, depending on how large the Rabi
frequency G is compared to the oscillation frequencies ωa and ωeg. This can be done
by writing the Hamiltonian in a rotating frame,

Ĥ ′ = i
dÛ †0(t)

dt
Û0(t) + Û †0(t)ĤÛ0(t). (I.9)

3A qubit is the quantum mechanical counterpart of a bit, an object that spans a two dimensional
Hilbert space and uses it to carry information [Nielsen00].
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We are making a change of reference frame, by going from the laboratory frame to a
frame that is defined by the expression of Û0(t). Here, Û0(t) = e−iĤ0t, with

Ĥ0 = ~ωaâ†â+ ~ωegσ+σ−. (I.10)

The Hamiltonian (I.9) is said to be in the interaction picture, and now writes4

Ĥ ′ = i~G
(
σ−e

−i~ωegt + σ+e
i~ωegt)(âe−i~ωat − â†ei~ωat), (I.11)

where one can distinguish two type of terms. The first type are the two terms that
oscillate at ωa − ωeg. They represent the exchange of energy quanta between light and
matter; for each annihilated photon a matter excitation is created, and vice versa. These
terms are commonly called resonant terms or rotating terms, because when ωa = ωeg,
these terms are time-independent in Eq. (I.11) and are resonant with the rotating frame.
The second type are the two terms that oscillate at ωa+ωeg. They represent the creation
of both a quantum of light and a quantum on matter, or the destruction of both quanta.
This process is fundamentally different from the energy exchange seen above, and now
the energy is not conserved throughout the dynamics. If ωa and ωeg are physical,
thus positive frequencies, these terms cannot be resonant in the interaction picture.
Therefore, they are called anti-resonant or counter-rotating terms.
If one has

|G| � ωa,eg, (I.12)
|ωa − ωeg| � (ωa + ωeg), (I.13)

then the coupling frequency is weak compared to the free frequencies, and the anti-
resonant terms are rapidly oscillating compared to the resonant ones. In that case, one
can neglect the counter rotating terms, and Eq. (I.11) becomes

Ĥ ′ = i~G
(
σ+âe

−i~(ωa−ωeg)t − σ−â†ei~(ωa−ωeg)t
)
. (I.14)

In Eq. (I.14) we have performed what is called a rotating wave approximation (or RWA).
By coming back into the laboratory frame, we are left with the following Hamiltonian

ĤRWA = ~ωaâ†â+ ~ωegσ+σ− + i~G
(
σ+â− σ−â†

)
. (I.15)

The form seen in Eq. (I.15) of the quantum Rabi model is called the Jaynes-Cummings
model, introduced by Jaynes and Cummings in 1963 [Jaynes63]. Since then, this model
has been widely studied, both theoretically and experimentally, for a variety of physical
systems.

I.1.2.3 Beyond cavity quantum electrodynamics

So far, we used the framework of a two-level atom interacting with a cavity to introduce
the quantum description of light-matter interactions. However, not only the quantum

4In order to obtain the expression for the operators in the rotating frame, one may find very useful the
Baker-Campbell-Hausdorff formula for quantum operators: eÂB̂e−Â = B̂ + [Â, B̂] + 1

2!
[Â, [Â, B̂]] +

1
3!

[Â, [Â, [Â, B̂]]] + · · · .
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Rabi model and the Jaynes-Cummings model can be studied in others physical systems,
but the same type of interaction can be found in systems where the matter excitations
are (or can be approximated by) bosonic degrees of freedom. Thus, the use of ~ωegσ+σ−
for the atom’s free Hamiltonian instead of the more commonly used ~ωegσz/2 had the
purpose of introducing the general interaction Hamiltonian

Ĥ = ~ωaâ†â+ ~ωAÂ†Â+ i~G
(
Â+ Â†

)(
â− â†

)
, (I.16)

with Â ∈ {σ−, b̂} and Â† ∈ {σ+, b̂†}, and where b̂ (b̂†) is a bosonic annihilation (creation)
operator. Accordingly, the index A in ωA stands for either eg or b. Eq. (I.16) shows
us that whether the matter is a fermion or a boson, the same form for the interaction
can be used, and the previous discussion about the RWA still applies here. However,
it is important to note that on the one hand, the bosonic case is described by bosonic
creation and annihilation operators. On the other hand, the fermionic case is not
described by fermionic creation and annihilation operators, but Pauli operators, which
represent transitions between two quantum states and not the creation or annihilation
of particles. In what follows, we will use Eq. (I.16) to introduce the different regimes of
light-matter interaction.

I.1.3 The weak coupling limit

Historically, the first regime of quantum light-matter interactions achieved was the weak
coupling regime or the weak coupling limit. Usually in this limit, the coupling frequency
is weak with respect to the free frequencies, |G| � ωa,A, hence the RWA can be used,

ĤRWA = ~ωaâ†â+ ~ωAÂ†Â+ i~G
(
Â†â− Ââ†

)
. (I.17)

However, the crucial criterion of this regime is the coupling being weak compared to
the dissipation rates of both systems,

|G| � γa,A. (I.18)

These dissipation rates are defined such that 1/γa,A represent the coherence times of
the light and matter respectively. Note that for a cavity, the dissipation rate is used to
define its quality factor,

γa = ωa/Qa. (I.19)

Naturally, the more the cavity can confine the electromagnetic field without losing
photons to the outside, the lower is its dissipation rate γa, and the higher is its quality
factor Qa. Eq. (I.18) tells us that the interaction and specifically the exchange of quanta
expressed in Eq. (I.17) does not have the time to occur periodically before the system
decays towards thermal equilibrium with its environment. Nevertheless, this regime can
be used to study interesting phenomena such as the Purcell effect. This phenomenon is
the modification of the spontaneous emission rate of a quantum system interacting with
a cavity mode. Originally, the system, say an atom, is coupled to its environment, a
continuum of vacuum modes of the electromagnetic field. Its coupling to a confined elec-
tromagnetic mode of a certain volume can enhance, or inhibit its spontaneous emission
rate. In particular, the effect depends on whether the cavity is resonant or not with the
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atom, on the quality factor of the cavity and on the volume of its mode. First reported
by Purcell et al. in 1946 [Purcell46], the effect became popular with the advent of ex-
perimental cavity QED. It has been first demonstrated with dye molecules deposited on
a thin dielectric layer over a metal substrate [Drexhage74], in atomic physics with mi-
crowaves [Goy83] and optical [Heinzen87] frequencies, in the cyclotron motion of a single
electron [Gabrielse85], as well as in doped solid-state heterostructures [Yablonovitch88].
Later, it has also been observed in other physical platforms, such as in superconducting
circuits for instance [Houck08].

I.1.4 The strong coupling regime

The strong coupling regime is the next step in the study of light-matter interactions.
In this case, the coupling G can also be very weak compared to the free oscillation
frequencies, just as in section I.1.3. Thus, the Hamiltonian (I.17) can be used again
to describe the interaction. However, the important condition for the strong coupling
regime is the following,

|G| � γa,A. (I.20)

Essentially, it means that the time scale for the light-matter interaction is now shorter
than the time scale for the relaxation of the system. Thus, the exchange of energy
mentioned in section I.1.2.2 can now take place, and even occur several times if the
coupling G is larger than the dissipations rates γa,A by more than a factor of two. If
the matter system is a spin, i.e., if Â = σ− in Eq. (I.17), then a particular oscillation
phenomenon can be witnessed, called the Rabi oscillations. These correspond to the
transition of the spin back and forth between its two quantum states, and occurs at
the Rabi frequency G. Thus, before either the cavity or the spin had the time to
completely relax, the transition is repeated over time, following this cycle: an emission
then an absorption of a photon.
This behavior is illustrated in Fig. I.1 where are depicted experimental results taken

from early demonstrations of Rabi oscillations. In Fig. I.1(a), Rydberg atoms, a nice
example of two-level systems, are sent through a microwave cavity, interact with its field
during the time they spend inside it, and are measured after they left the cavity, which
provides information about their state [Kaluzny83]. However, in this work the quality
factor of the cavity was not high enough to allow a single atom to be strongly coupled
to the cavity field, so the trick was to increase the number of atoms present inside the
cavity at the same time. In this way, the total light-matter Rabi frequency scales as the
square root of the number of atoms, and is expressed as G

√
N [Agarwal84]. Thus, in

Fig. I.1(a), as the number of atoms N is increased, one can see that the Rabi oscillations
become more and more distinguishable, but also last longer in time, and with a decrease
in the oscillation period. In Fig. I.1(b), the same technique of many atoms was used
in order to reach the strong coupling regime, and in this work sodium atoms are send
through an optical cavity [Brecha95]. The shown results are not direct measurements
of the atoms upper state population, but rather the number of photons that escape the
cavity after the interaction. However, the oscillations of these output photons are in
fact a direct evidence of the Rabi oscillations, since the atoms periodically absorb and
emits photons when they are inside the cavity.
An important property of a strongly coupled light-matter system, this time regard-
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two-level. systems in which all the levels corre-
sponding to the transitions nonresonant with the
cavity are irrelevant.
Since the setup of this experiment is basically

the same as the one we have used in other atom-
cavity experiments, ' we will describe it only
briefly here and refer the reader to those ref-
erences for more detai1. s. Figure 1 presents a
general sketch of this setup. The sodium Hyd-
berg atoms are prepared in the 36S,~, l.evel by
stepwise-pul. sed laser excitation. They then in-
teract with the Fabry-Perot resonator resonant
with a transition towards the less-excited 35P,~,
level. In order to remove the twofold degeneracy'
in the upper and lower levels and to study a true
two-level atom transition, a small dc magnetic
fiel.d is applied along the cavity axis and the cav-
ity is tuned to resonance with the

~
e &=

~
368,~„

M~=+ 2& ~g&=
~
35P,i2, M~= - ~z& o', -polarized

transition' (the transition matrix element and fre-
quency are, respectively, d= 592 a.u. and &u/2m
= 82058 MHz). The resonator parameters are
V=1.74 cm' and T, '= co/Q = 5&&10's ', and the
singl. e-atom Rabi nutation frequency of the sys-
tem is 0,/2n = 20 kHz. The atom-cavity interac-
tion time is l.imited by the thermal. drift of the
atomic beam through the cavity waist (T~= 6ps). —
After leaving the cavity, the atoms enter a
Hydberg-state-selective detector, ' which makes
use of the field-ionization effect. This detector
allows us to determine the absolute numbers X,
and N, of atoms in the upper and lower states of
the atomic transition. The detector is coupled to
an LSI-11 computer which averages the data cor-
responding to successive pulses. In order to
study the evolution of the atom-cavity system dur-
ing the time the atoms are inside the cavity, we
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make use of a small electrode (E on Fig. 1) which
at a preset delay t& T~ after the laser excitation
allows us to apply an inhomogeneous e1.ectric
fiel.d in the cavity. This field Stark shifts the
Bydberg states out of resonance with the cavity
mode and essentially "freezes" the atomic evolu-
tion up to the detection time. ' By scanning the
time t, we can thus reconstruct the atomic evolu-
tion during the whole atom-cavity interaction
time.
Figure 2 shows as solid lines the recorded evo-

1ution of the normalized excited-state population
N, /(N, + N ) averaged over 1000 laser shots, for
increasing values of the total population N = 1V',

+N . For relatively small atom samples [N
=2000, Fig. 2(a)], the atomic evolution is irre-
versibl. e. Condition (2) is then not fulfil. led and
this case corresponds to the cavity-assisted over-
damped superradiant regime studied in detail in
previous articl. es."' The K-atom emission
process in the cavity occurs then faster than it
would in free space, essentia1. ly because of the
cavity-enhancement eff ect discussed above. The
emission is, however, not fast enough to over-
come field damping and the atoms cannot reabsorb
their own radiation. When N is increased [Figs.
2(b)-2(d)], the emission occurs even faster, and
oscillations in the atomic population evolution be-
come c1.earl. y observable, these oscil1.ations be-
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Atomic beam selective
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mm- wave
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FIG. 1. Sketch of experimental arrangement. The
millimeter-wave cavity is made of two copper spheri-
cal mirrors of 60-mm radius of curvature and 27-mm-
diam aperture, in the cofocal geometry (60 mm between
mirrors). The measured cavity finesse is 3200 at 82
6Hz.
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FIG. 2. Evolution of the normalized upper-level

population N, /N as a function of time, for increasing
total atom number N. Solid line: experiment; dotted
line: theoretical calculation. (a) Overdamped regime;
(b)-(d) self-induced ringings with increasing frequency.
Note the different time scales of (a) and (b)-(d).
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Fig. 8. Raw data for the number of counts observed per time interval of 0.625 ns, as recorded by the photon-counting electronics, with
both atoms and cavity present. Common parameters for all traces are m ≠ 0.75, a ≠ 2.7, and a ≠ 0.81. The detunings are held close
to 0 as well. Measured values of C are (a) C , 10, (b) C ≠ 51 6 11, (c) C ≠ 73 6 12, (d ) C ≠ 130 6 20.

mission coefficients T1 ≠ T2 ≠ s3.0 6 0.1d 3 1023, finesse
F ≠ 400 6 20, and peak transmission T0 ≠ 0.14 6 0.02.
From the cavity linewidth we calculate the parameter
ms; 2kygd ≠ 0.750 6 0.038. The excitation source is a
commercial (Coherent 699-21) frequency-stabilized cw dye
laser (rms linewidth 500 kHz), which is mode matched to
the TEM00 mode of the cavity with an efficiency of greater
than 94%.

After alignment to ensure perpendicularity of the ex-
citation laser with the atomic beams s61 mradd, calibra-
tions of the small-signal absorption are performed and
related to the optical-pumping fluorescence and to another
weak-field absorption signal measured downstream from
the cavity.

The laser frequency is locked to the peak of the optical-
pumping fluorescence signal. The cavity is locked to
resonance by an auxiliary frequency-tunable, Zeeman-
stabilized He–Ne laser whose light is double passed
through an acousto-optic modulator. The red He–Ne
beam enters the resonator parallel to the excitation laser,
but is displaced vertically to form a ring cavity and to be
spatially separated from the output signal.

As discussed above, we wish to probe the linear re-
sponse of the system and thus require weak intracavity

fields sx ,, 1d. In the experiment the input intensity is
switched from an initial level that satisfies the weak-field
constraint to a lower level, and the time dependence of
the intensity transmitted through the cavity is monitored
by a standard time-correlated single-photon-counting
technique.

A LeCroy 4204 time-to-digital converter records the
relative time between a trigger (start) pulse edge, which
is synchronous with the edge of the pulse that drives
the electro-optic modulator, and an arriving nuclear
instrumentation module level pulse from a constant frac-
tion discriminator, which is the result of a detected pho-
ton. Total detection efficiency, including collection of
the cavity output, quantum efficiency of the photomulti-
plier tube, and constant fraction discriminator threshold
setting, is 2%.

The digitized time interval is transferred with a dead
time of approximately 1 ms to a LeCroy 3588 histogram-
ming memory unit that increments the bin for that time
delay. After a run time (of duration ranging from 1 to
5 min) the data collection is stopped and the contents
of the memory unit are read by CAMAC commands trans-
mitted over the general-purpose interface bus (IEEE-488
standard) under the control of an IBM PC-AT. The data

(a) (b)

Figure I.1: Experimental evidence of Rabi oscillations occurring in atoms-light cou-
pling. (a) Measurement of the population of sodium Rydberg atoms interacting with
a microwave cavity. The single atom coupling being weak, strong coupling is achieved
by increasing the number of atoms present at the same time inside the cavity. Taken
from [Kaluzny83]. (b) Measured counts of emitted photons from an optical cavity in-
teracting with sodium atoms. Here the strong coupling regime is also reached with the
presence of many atoms. Taken from [Brecha95].

less whether the matter is described as two-levels systems or as quantum harmonic
oscillators, is the Rabi splitting, which is the normal-mode splitting of the light-matter
system resonances. This comes from the fact that when the coupling is sufficiently
strong to beat any dissipation process, the system hybridizes, and light and matter can
no longer be described separately. When the interaction takes place in a resonant cav-
ity, its transmission spectrum shows the new eigenfrequencies split around the original
resonance frequency, the one that correspond to the empty cavity case. Fig. I.2 shows
the measured Rabi splittings for two different physical systems. Note that the distance
between the two peaks is 2G

√
N in Fig. I.2(a) the coupling is enhanced by the number

of atoms. In Fig. I.2(b) however, this distance is equal to 2G, since in this work one
superconducting qubit is coupled to a microwave transmission line resonator (playing
the role of the cavity).

This regime has first been reached in a case where many atoms where coupled to
a microwave cavity field [Kaluzny83], and only after, a single-atom strong coupling
has been reached [Meschede85]. Later, it has also been realized beyond the realm of
cavity QED, such as with quantum wells in semiconductors [Weisbuch92, Rapaport00],
superconducting circuits [Chiorescu04, Wallraff04] (sometimes called circuit QED, anal-
ogously to cavity QED), single quantum dots embedded in various kinds of photonic res-
onators [Reithmaier04, Yoshie04, Peter05], optomechanics [Thompson08a], electrome-
chanics [Teufel11], or ion Coulomb crystals [Herskind09]. Additionally to the demon-
stration of core properties of this regime such as the Rabi oscillations [Kaluzny83], or
the Rabi splitting [Raizen89], note that strong light-matter coupling can be a useful
tool for the exploration of further important questions in quantum physics, regard-
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mission and give rise to additional peaks in the spectrum owing to
transitions between higher excited doublets30. The transmission
spectrum calculated for a thermal photon number of n ¼ 0.5 (see
green curve in Fig. 4b) is clearly incompatible with our experimental
data, indicating that the coupled system has in fact cooled to near its
ground state, and that wemeasure the coupling of a single qubit to a
single photon. The nonlinearity of the cavity QED system is also
observed at higher probe beam powers, as transitions are driven
between states higher up the dressed state ladders (not shown).
We also observe the anti-crossing between the single photon

resonator state and the first excited qubit state by tuning the qubit
into and out of resonance with a gate charge near ng ¼ 1 and
measuring the transmission spectrum (see Fig. 4c). The vacuum
Rabi peaks evolve from a state with equal weight in the photon and
qubit at ng ¼ 1 (as shown in Fig. 4b) to predominantly photon
states for ng .. 1 or ng ,, 1: The observed peak positions agree well
with calculations considering the qubit with level separation na, a
single photon in the resonator with frequency n r and a coupling
strength of g/2p; see solid lines in Fig. 4c. For a different value of flux
bias Fb such that E a/h , n r at n g ¼ 1, two anti-crossings are
observed (see Fig. 4d) again in agreement with theory.
The observation of the vacuum Rabi mode splitting and the

corresponding avoided crossings demonstrates that the strong
coupling limit of cavity QED has been achieved, and that coherent
superpositions of a single qubit and a single photon can be
generated on a superconducting chip. This opens up many new
possibilities for quantum optical experiments with circuits. Possible
applications include using the cavity as a quantum bus to couple
widely separated qubits in a quantum computer, or as a quantum
memory to store quantum information, or even as a generator
and detector of single microwave photons for quantum
communication. A
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Figure 4 Vacuum Rabi mode splitting. a, Measured transmission T 2 (blue line) versus

microwave probe frequency n RF for large detuning ðg2=Dk,, 1Þ and fit to lorentzian
(dashed red line). The peak transmission amplitude is normalized to unity. The inset shows

the dispersive dressed states level diagram. b, Measured transmission spectrum for the

resonant case D ¼ 0 at n g ¼ 1 (blue line) showing the vacuum Rabi mode splitting

compared to numerically calculated transmission spectra (red and green lines) for thermal

photon numbers of n ¼ 0.06 and 0.5, respectively. The dashed red line is the calculated

transmission for g ¼ 0 and k/2p ¼ 0.8MHz. The inset shows the resonant dressed

states level diagram. c, Resonator transmission amplitude T plotted versus probe
frequency nRF and gate charge ng forD ¼ 0 at ng ¼ 1. Blue colour corresponds to small

T, red colour to large T. Dashed lines are uncoupled qubit level separation na and

resonator resonance frequency n r. Solid lines are level separations found from exact

diagonalization of H JC. Spectrum shown in b corresponds to line cut along red arrows.

d, As in c, but for EJ /h , n r . The dominant character of the corresponding eigenstates is

indicated.
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FIG. 1. Diagram of the apparatus as discussed in the text.

where p is the transition dipole moment and V is the
effective cavity mode volume. We see that Im(k~)
(normal-mode splitting) is nonzero for the case
(x)'C/I )' =gJN & —,

' ~2rc —)/I ~, and that in this case
Re(k+ ) (normal-mode decay) is an average of cavity
and atomic polarization decay rates. ' For rc ( y,
Re(k+. ) is smaller than the spontaneous emission rate in
free space, approaching half the natural free-space rate
for x. 0. This linewidth reduction by linewidth averag-
ing results from the strong coherent coupling of atomic
and field oscillators, such that for K((y atomic excita-
tion can be hidden from decay by residing in the un-
damped field oscillator 50% of the time. Note that we
assume throughout that f«1, so that large line split-
tings and linewidth reductions occur even for the case
y'= y, and that these conclusions are valid for arbitrary
%=1,2, 3, . . . .
Our experimental technique for probing the structure

of the atom-field system follows the discussion of Agar-
wal;' we record the spectral response of the system to
weak external modulation as the frequency of the modu-
lation is swept. More specifically with reference to Fig.
1, an optically prepared beam of sodium atoms intersects
at 90' the axis of a spherical mirror cavity formed by
mirrors (m„mb ) each of radius 1 m. Two cavity
configurations are employed; cavity A has a length of 1.7
mm and a finesse 18000, while cavity 8 has a length of
3.2 mm and a finesse which varied between 20000 and
26000 over a series of experiments. The particular tran-
sition investigated is the (35~/2, F=2,mF =2) (3P3/2,
F=3,mF =3) transition at 589 nm. The cavity-plus-
atoms system is excited by a signal field of carrier fre-
quency co, which is matched to the TEMpp cavity mode
and onto which weak AM sidebands at frequency
m, ~ 0, have been generated by an electro-optic modu-
lator. For fixed cavity detuning 8=(cue —ro, )/K' and
atomic detuning 6—:(co& —ro, )/) ~, the frequency &, is
swept and the Fourier components x(+ 0, ) of the field
transmitted by the atom-cavity system are detected by
optical heterodyning with an intense local oscillator of
frequency rotc=co, —8 (with 6=59.6 MHz) in a bal-
anced detector [photodiodes (D,D')]. More explicitly,
for 0, & 6 the difference photocurrent, i in Fig. 1,
contains coherent components at frequencies 0,

= (co, + (1,)—roLo corresponding to the coherent
heterodyne beat between the local oscillator at mLo and
the transmitted AM sidebands at co, + 0,. Hence from
the spectral density of photocurrent Auctuations @(A,)
obtained with an electronic spectrum analyzer, we are
able to extract the quantity ~x(+' (1,) ~

after suitably
accounting for the background (shot-noise) level and
overall frequency dependence of the generation and
detection system.
Transmission spectra acquired by this swept-sideband

technique are presented in Fig. 2. Figure 2(a) is taken
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FIG. 2. Transmission spectra
~
x(rt )

~
(arbitrary units) vs

sideband frequency 0, with A =0 corresponding to the position
of the carrier frequency at co, . Note that apart from an overall
vertical scaling, all spectra are independent of the magnitude
of x for x« l. (a) Empty cavity (C=0) response with
Lorentzian fit of 1.75 M Hz FWH M. Cavity plus atoms for
(b) C =36, 6 =—0.2, 0=0, s/@=0.09; (c) C=4.7, 6 =O. l,
0=—0, s/r =0.085; (d) 0=0, ~

4
~
& 0.2, displaying no splitting

(overdamped regime) but with an increased linewidth and de-
creased peak transmission for the case of approximately 1 atom
(+) compared to no atoms ( ) in the cavity. The full curves
in (a)-(c) are obtained from the Maxwell-Bloch equations as
discussed in the text, with + as our experimental points. The
times to acquire the traces are (a)-(c) 0.7 s; (d) 20-trace aver-
age, 0.4 s per trace.

mission and give rise to additional peaks in the spectrum owing to
transitions between higher excited doublets30. The transmission
spectrum calculated for a thermal photon number of n ¼ 0.5 (see
green curve in Fig. 4b) is clearly incompatible with our experimental
data, indicating that the coupled system has in fact cooled to near its
ground state, and that wemeasure the coupling of a single qubit to a
single photon. The nonlinearity of the cavity QED system is also
observed at higher probe beam powers, as transitions are driven
between states higher up the dressed state ladders (not shown).
We also observe the anti-crossing between the single photon

resonator state and the first excited qubit state by tuning the qubit
into and out of resonance with a gate charge near ng ¼ 1 and
measuring the transmission spectrum (see Fig. 4c). The vacuum
Rabi peaks evolve from a state with equal weight in the photon and
qubit at ng ¼ 1 (as shown in Fig. 4b) to predominantly photon
states for ng .. 1 or ng ,, 1: The observed peak positions agree well
with calculations considering the qubit with level separation na, a
single photon in the resonator with frequency n r and a coupling
strength of g/2p; see solid lines in Fig. 4c. For a different value of flux
bias Fb such that E a/h , n r at n g ¼ 1, two anti-crossings are
observed (see Fig. 4d) again in agreement with theory.
The observation of the vacuum Rabi mode splitting and the

corresponding avoided crossings demonstrates that the strong
coupling limit of cavity QED has been achieved, and that coherent
superpositions of a single qubit and a single photon can be
generated on a superconducting chip. This opens up many new
possibilities for quantum optical experiments with circuits. Possible
applications include using the cavity as a quantum bus to couple
widely separated qubits in a quantum computer, or as a quantum
memory to store quantum information, or even as a generator
and detector of single microwave photons for quantum
communication. A
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Figure 4 Vacuum Rabi mode splitting. a, Measured transmission T 2 (blue line) versus

microwave probe frequency n RF for large detuning ðg2=Dk,, 1Þ and fit to lorentzian
(dashed red line). The peak transmission amplitude is normalized to unity. The inset shows

the dispersive dressed states level diagram. b, Measured transmission spectrum for the

resonant case D ¼ 0 at n g ¼ 1 (blue line) showing the vacuum Rabi mode splitting

compared to numerically calculated transmission spectra (red and green lines) for thermal

photon numbers of n ¼ 0.06 and 0.5, respectively. The dashed red line is the calculated

transmission for g ¼ 0 and k/2p ¼ 0.8MHz. The inset shows the resonant dressed

states level diagram. c, Resonator transmission amplitude T plotted versus probe
frequency nRF and gate charge ng forD ¼ 0 at ng ¼ 1. Blue colour corresponds to small

T, red colour to large T. Dashed lines are uncoupled qubit level separation na and

resonator resonance frequency n r. Solid lines are level separations found from exact

diagonalization of H JC. Spectrum shown in b corresponds to line cut along red arrows.

d, As in c, but for EJ /h , n r . The dominant character of the corresponding eigenstates is

indicated.
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(a) (b)

Figure I.2: Experimental evidence of Rabi splitting in light-matter coupling. (a) Trans-
mission spectra versus the probed frequency expressed as the detuning from the carrier
frequency, in an experiment where sodium atoms are sent through an optical cavity.
The upper panel stands for an empty cavity, while the lower panel is for the case where
N , the number of interacting atoms is such that 20 ≤ N ≤ 600. Taken from [Raizen89].
(b) Measured transmission versus the microwave probe frequency, for a single super-
conducting qubit coupled to an on-chip superconducting cavity, a transmission line
resonator. The dashed red line stands for the transmission when there is no coupling.
Taken from [Wallraff04].

ing the quantum-classical boundary [Bertet01], quantum entanglement [Raimond01],
nondestructive measurement [Nogues99], or coherent state transfer [Palomaki13a] for
instance.

I.1.5 The ultrastrong coupling regime

The last regime of light-matter interactions reviewed here is the ultrastrong coupling
(or USC) regime. It is reached when the Rabi frequency becomes a significant fraction
of the free oscillation frequencies of the system, typically when

|G| & 0.1ωa,A. (I.21)

One can notice that this condition immediately violates the condition (I.12), and hence,
the RWA is no longer valid here. Instead, the system is described by the full interaction
Hamiltonian reported in Eq. (I.16), where the counter-rotating terms are present. In
the USC regime these terms play a significant role, in particular due to the fact that
now the number of excitations in the system is not conserved throughout the dynamics.
There is a common phenomenon both in the strong coupling and in the USC regime.
As explained in section I.1.4, light and matter hybridize in the strong coupling regime,
and they naturally hybridize in the USC regime as well. As a matter of fact, this
hybridization goes even further in the USC regime, as it modifies the nature of the
system’s ground state. Indeed, in the strong coupling regime the ground state is simply
an absence of any excitation, in both photonic and matter degrees of freedom. In the
USC regime however, the ground state cannot be the vacuum, as it contains a finite
number of both photonic and matter excitations. This can be rapidly understood in
the following example when one considers a bosonic matter excitation, i.e., if Â = b̂ in
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Eq. (I.16). In that case, we have the Hamiltonian of two quantum harmonic oscillators
coupled by their position (if one defines the position operator as X̂b = (b̂+ b̂†)/

√
2 for

instance)
Ĥ = ~ωaâ†â+ ~ωbb̂†b̂+ i~G

(
b̂+ b̂†

)(
â− â†

)
, (I.22)

which can be easily diagonalized. The Hamiltonian (I.22) can then be expressed in
terms of its independent normal modes,

Ĥ = ~ω1p̂
†
1p̂1 + ~ω2p̂

†
2p̂2, (I.23)

where the energies of these normal modes are ω1,2 =
√
ωa(ωa ± 2G) (if ωb = ωa). The

annihilation operators of these modes are expressed as

p̂1,2 = t1,2â+ u1,2b̂+ v1,2â
† + w1,2b̂

†, (I.24)

where the coefficients ~p1,2 = {t1,2, u1,2, v1,2, w1,2} are obtained by diagonalizing the
Hopfield matrix for our system [Hopfield58]. This matrix is obtained from the relation
[p̂1,2, Ĥ] = ω1,2p̂1,2, which is the definition of our eigenvalue problem. Note that in
order to fulfill the Bose commutation rule for the normal modes, their coefficients have
to be normalized such that |t1,2|2 + |u1,2|2−|v1,2|2−|w1,2|2 = 1 is satisfied. The ground
state of the Hamiltonian (I.23) is the absence of any excitation in the normal modes p̂1
and p̂2, that we write as |0̃〉, to distinguish it from the true vacuum |0〉. Thereby, it is
defined such that p̂1,2|0̃〉 = 0. However, one might wonder what happens for â|0̃〉, or
b̂|0̃〉 ? As a matter of fact, these operators do have non-zero eigenvalues applied to the
ground state, which can be understood by inverting Eq. (I.24),

â = t̃1p̂1 + ũ1p̂2 + ṽ1p̂
†
1 + w̃1p̂

†
2, (I.25)

b̂ = t̃2p̂1 + ũ2p̂2 + ṽ2p̂
†
1 + w̃2p̂

†
2. (I.26)

From Eqs. (I.25) and (I.26) we can immediately deduce that

〈0̃|â†â|0̃〉 = |ṽ1|2 + |w̃1|2, (I.27)

〈0̃|b̂†b̂|0̃〉 = |ṽ2|2 + |w̃2|2, (I.28)

which gives us a clear expression for the number of both the photons and the matter
excitations in the ground state. When the USC regime was first predicted and named
in 2005 [Ciuti05], the authors pointed out the fact that not only the ground state
contained excitations, but that these excitations must exhibit quantum correlations, or
entanglement, since expectation values such as 〈0̃|â†b̂|0̃〉 or 〈0̃|b̂â|0̃〉 are non vanishing.

Note that this first prediction of the USC regime occurred much later than the first
theoretical studies on the weak and the strong couplings regimes. One reason is that
for atoms coupled to cavities, there is no way to increase further the coupling strength
beyond a certain point, due to the natural possibilities of these platforms. In partic-
ular, the key parameter to tune the interaction that can be changed in those systems
is the dissipation rate of the cavity, which comes from a better and better engineering
of the cavity mirrors, and could only bring again a strong coupling, with the reso-
nances of the Rabi splitting being more sharply defined. What the authors illustrated
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in Ref. [Ciuti05], is that for bringing the Rabi frequency at the same order of magni-
tude than the free oscillation frequencies, one can no longer rely on natural systems, and
needs an ingenious artificial platform where the parameters involved in the light-matter
coupling strength could be directly tuned in an experiment. Therefore, the system pic-
tured in their work is a semiconductor quantum well where electrons interact with light,
and where the Rabi frequency depends in particular on the density of electrons and on
the number of superimposed quantum wells in the sample. These parameters can be
increased either during fabrication or by injecting more electrons in the system, which
can lead to the USC regime.

Only few years later this regime has been experimentally reached in those sys-
tems [Günter09, Todorov09, Anappara09]. Shortly after, it was reported in an-
other kind of fully controllable and rapidly progressing engineered devices, namely
artificial atoms coupled to on-chip resonators, all made of superconducting cir-
cuits [Niemczyk10, Forn-Díaz10]. Impressively, this was only few years after these
circuit QED systems reached the strong coupling regime in the first place, as men-
tioned in section I.1.4. Note that recently it has also been demonstrated in other
types of systems, such as various kinds of molecular degrees of freedom coupled to
light [Schwartz11, Kéna-Cohen13, George16]. The results of various experiments with
the USC regime can be appreciated in Fig. I.3.

Besides the peculiar ground states properties present in the USC regime, there are
others worth studying phenomena occurring when one breaks the RWA. One example is
the Bloch-Siegert shift [Bloch40], which is a shift in the system’s energy-levels due to the
fast time-oscillating terms that are usually dropped, and it had been already observed
in an experiment with the USC regime [Forn-Díaz10] (see Fig. I.3(c)). Quantum phase
transitions can arise in this particular regime of light-matter interactions, and have been
studied in a case with many two-levels systems coupled to a bosonic field [Nataf10],
as in the Dicke model for instance [Dicke54]. Other applications of the USC regime
have been considered, such as its study in the frame of quantum memories [Kyaw15],
parity-dependent state engineering and tomography [Felicetti15], or its effect in a photon
blockade scenario [Ridolfo12]. Note that some studies explored the USC regime as a tool
for the preparation of nonclassical states [Ashhab10, Stassi16], and some analyzed or
suggested manners to access its ground state properties [Peropadre13a, Lolli15, Cirio16].
However, a clear picture of the link between the two was not yet formed, particularly
in a case where both latter and matter are described by quantum harmonic oscillators,
as opposed to the case treated in the references mentioned just above where the matter
is described as a two-level system.

I.1.6 The deep strong coupling regime

Before moving to the second major part of this chapter, let us conclude this overview
by briefly mentioning a last regime of light-matter interactions. Very recently sug-
gested [Casanova10] and called the deep strong coupling (DSC) regime, it occurs when
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extremely non-equilibrium semiconductor systems24–26. Eigenmodes
of the cavity cause characteristic minima in the Fourier spectra of the
reflected transients. All experiments are performed under ambient
conditions.

Figure 2a shows that the magnitude of the light–matter coupling is
continuously tunable by means of the control fluence, W. The spectra
are recorded at a fixed delay, tD 5 20 ps, between the near-infrared
control and the multi-terahertz probe pulse. In equilibrium (W 5 0),
a single reflectance minimum at Bvc 5 113 meV (top curve, Fig. 2a)
attests to the sole resonance of the unexcited cavity, the bare photon
mode. With increasing fluence, the system traverses all three regimes
of light–matter interaction. Starting with weak coupling
(W # 0.03W0), VR already exceeds the widths (full-width at half-
maximum, ,5 meV) of intersubband and cavity resonances for
W . 0.05W0, and two strongly coupled cavity polariton branches
are discernible. Further increase of the fluence enhances the separa-
tion of the minima to 50 meV, corresponding to a fraction of 44% of
the bare photon frequency (Fig. 2b). As discussed in ref. 13, the
apparent mode separation is not identical to the vacuum Rabi split-
ting at the anticrossing point. Only a quantitative simulation of the

energy position of the polariton dips (Fig. 2b) allows for extraction of
VR. For a correct description of our data, the theory has to go beyond
the rotating-wave approximation14,15. We include anti-resonant
terms in the light–matter Hamiltonian that scale with the ratio
2VR/v12. These contributions describe the simultaneous creation
or annihilation of two excitations with opposite in-plane wavevectors
k and give rise to a two-mode squeezed quantum vacuum14,15. By
comparison with this theory, we determine that 2VR 5 0.18v12 for
our experiment. This value is comparable to the record achieved in
delta-doped structures13 and large enough for the signatures of ultra-
strong coupling to be observable14. The scheme is expected to be
scalable further by means of higher control fluences and a larger
number of quantum wells.

The central issue is to explore how rapidly ultrastrong coupling may
be activated. Figure 3 displays amplitude spectra recorded at various
delay times, tD (W 5 W0). For tD # 250 fs, the cavity resonance (blue
arrow, Fig. 3) shows a minimum amplitude reflectivity below 10%.
The control pulse induces dramatic reflectivity changes of order one,
on the femtosecond scale. The initial bare photon state is replaced by
two coupled polariton branches appearing simultaneously at energy
positions of 93 meV and 143 meV (red arrows, Fig. 3). Most notably,
the new resonances do not develop by gradual bifurcation of the bare
cavity mode as in Fig. 2a. By contrast, switching occurs discontin-
uously once the control pulse promotes electrons into subband j1æ.

Immediately following the femtosecond control, the photoexcited
charge carriers are in a highly non-equilibrium state which may
induce enhanced dephasing of the intersubband transition. A detailed
microscopic description of the switching dynamics should thus
account for both the quantum kinetic aspects as well as the dynamics
of the ultrastrong cavity–intersubband coupling. Notably, for the large
coupling strengths achieved in our experiment, we find that dephasing
arising from the non-equilibrium nature of the carrier distributions
appears to be less important than the dynamics of the cavity polariton
splitting. The instantaneous activation of light–matter interaction is
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Figure 1 | Femtosecond control of ultrastrong light–matter coupling. a, A
bare microcavity has minimal reflectance, R(v), at the photon resonance,
vc. b, After introduction of a resonant material excitation, cavity photons
(blue) are coherently absorbed and re-emitted at rate VR, giving rise to
anticrossing cavity polaritons. c, A multiple quantum well structure (MQW)
comprising 50 undoped GaAs wells (thickness, 9 nm) separated by
Al0.33Ga0.67As barriers (thickness, 30 nm) are embedded into a planar
waveguide structure based on total internal reflection at the
Al0.33Ga0.67As–air and AlAs–GaAs interfaces, respectively (magnified view).
The quantum wells are positioned at the field antinode. The sketched band
diagram (CB, conduction band; VB, valence band) shows how electronic
transitions between subbands | 1æ and | 2æ (level spacing, Bv12 5 113 meV)
are activated by near-infrared, 12-fs control pulses (photon energy, 1.55 eV;
vertical red beam) populating level | 1æ. Intersubband transitions may then
resonantly couple to TM-polarized mid-infrared cavity photons propagating
at h 5 65u. Few-cycle TM-polarized multi-terahertz transients guided
through the prism-shaped substrate are reflected from the waveguide to
probe the ultrafast build-up of light–matter coupling in the system. The
pulse front of the near-infrared control is tilted (dotted white circle in
control beam) to match the geometry of the phase planes of the probe.
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Figure 2 | Ultrawide optical tuning of light–matter interaction. a, Terahertz
reflectance spectra measured at room temperature (293 K) for various
fluences, W (vertically off-set), of the control pulse (tD 5 20 ps). Minima
indicate eigenmodes of the system. For W 5 0, only the bare photon mode is
observed, at Bvc 5 113 meV; both branches of the intersubband cavity
polaritons are discernible for W $ 0.05W0 (W0 5 0.1 mJ cm22). a.u., arbitrary
units. b, Asymmetric polariton splitting as a function of W: dots, experiment;
solid lines, simulation including anti-resonant light–matter interaction. For
W 5 W0, the polariton branches are observed with a relative energy distance
of 0.44Bv12 for a given angle, h 5 65u. This value corresponds to
2VR 5 0.18v12. We estimate the maximum electron density to be on the
order of 2 3 1012 cm22, consistent with the static doping concentrations of
ref. 13. The spectra are obtained by Fourier transformation of time-domain
data shown in Supplementary Fig. 1.
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2

R
2
. From the data we extract =E 80 meVLP,max and thus a vacuum

Rabi energy =E 86.7 meVR , corresponding to 73% of the matter excitation energy
( =E 118.2 meVMSP ). Both this Rabi energy and the ratio E ER MSP are the highest measured
for ISB polaritons. Furthermore the ratio between the Rabi and matter excitation energy is the
highest achieved at room temperature of all quantum systems. When the lower polariton branch
approaches the energies of GaInAs and AlInAs optical phonons, more anticrossing features are
visible, demonstrating the existence of phonon–plasmon–polariton modes.

We simulated the reflectivity spectra by using a Finite Elements commercial solver, by
taking into account the geometry of the cavities, the permittivity of the multisubband plasmon
(equation (4)), the dispersion of the optical phonons and that of the Au layers [38]. The optical
phonon dispersion has been included in our simulations as a two-pole dispersion relation for
each of the ternary alloys [39]:
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where the suffixes LO and TO refer, respectively, to the longitudinal and the transverse optical
phonon frequency of the two bulk binary semiconductors 1 and 2 forming the ternary alloy
layers. A phenomenological broadening of the phonon modes γ = 0.18 meV

p
has been

introduced. This value is of the same order of magnitude as the optical phonon anharmonic
decay [40]. The solid blue lines in figure 6(a) present the simulated polaritonic dispersion, in
excellent agreement with our data. Note that, as the cavity mode has an overlap also with the
AlInAs layers, we observe a coupling of the cavity mode with the optical phonons of both
ternary alloys. As a comparison, the grey dashed line presents the dispersion calculated without
taking into account the coupling with the optical phonons. It has the same shape as the

New J. Phys. 16 (2014) 043029 B Askenazi et al

12

Figure 6. (a) Energy position of the reflectivity minima as a function of the fundamental
cavity mode energy (bullets). The star indicates the energy of the Berreman mode as
measured in transmission at Brewster angle. The blue lines present the simulated
polaritonic dispersion by including the coupling with optical phonons. For comparison,
the dashed grey line presents the simulated dispersion by only including the coupling
between the Berreman and the cavity mode. (b) Simulated effective index of the optical
modes in presence of the coupling with the Berreman mode (blue continuous lines) and,
as a comparison, for an undoped GaInAs layer (red dashed lines). The shaded regions
present the reflectivity bands of the artificial material.

same shift !BS as the resonator, but with opposite sign.
Since the qubit line width at the symmetry point around
4 GHz is very large (! 80 MHz), the Bloch-Siegert shift
cannot be clearly resolved there.

In conclusion, we have measured the Bloch-Siegert
shift in an LC resonator strongly coupled to a flux qubit.
This demonstrates the failure of the rotating-wave
approximation in this ultrastrong coupling regime of cir-
cuit QED. The large coupling of 0.82 GHz is achieved
using the kinetic inductance of the wire that is shared
by the two systems. The coupling could easily be further
enhanced by increasing the kinetic inductance or by in-
clusion of a Josephson junction [14,22]. This will allow
the exploration of the system deeply into the ultrastrong
coupling regime where g is comparable with !r.
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FIG. 4 (color online). Bloch-Siegert shift. (a) Spectrum in
proximity to the resonator frequency obtained using lower driv-
ing power than in Fig. 3 and flux pulses [16]. The solid black line
is the fit of Eq. (1) and the dashed green line is a plot of the JC
model (Eq. (1) without counterrotating terms). The dotted line
indicates the bare resonator frequency !r. A clear deviation
between the dashed line and the data can be observed around the
symmetry point of the qubit. A transition associated with thermal
population of the qubit excited state can be observed around
8 GHz. (b) Difference between measurement (blue dots) and the
prediction of the JC model (dashed green line). The solid black
curve is the same as the solid black curve in (a) and the dashed
red curve represents !1;g " !0;g. All the curves are subtracted

from the JC model. The blue dots are peak values extracted from
Lorentzian fits to frequency scans at fixed flux, with the error
bars representing the full width at half maximum of each
Lorentzian.
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Figure I.3: Experimental evidence of the USC regime. (a) Reflectance spectra as a
function of the probed frequency (113 meV = 27 THz) from a sample made of quantum
wells confined in a THz cavity, obtained by shining a THz probe on the system. Another
THz field, a control pulse, is sent on the system to activate the electronic transitions that
couple to the cavity field, and that are then evidenced in the probe field. From top to
bottom, the figure essentially shows the reflectance from weaker to stronger light-matter
coupling. Here the coupling-over-frequency ratio is above 0.1. Taken from [Günter09].
(b) Eigenenergies of a light-matter system as a function of the cavity free frequency
(100 meV = 24 THz), measured in a solid-state sample made of quantum wells confined
in a cavity. Here the coupling-over-frequency ratio is 0.73 (between the highest curves).
Taken from [Askenazi14]. (c) Bloch-Siegert shift of an LC resonator (the boson coupled
to the qubit), as a function of the external magnetic flux applied to the qubit. Taken
from [Forn-Díaz10].

the coupling strengthG becomes comparable or greater than the system’s free oscillation
frequencies

|G| & ωa,A, (I.29)

thus being described by the Hamiltonian (I.16) as the USC regime. Theoretically, it has
been proven to induce non-trivial features [Casanova10, Barberena17], and non-intuitive
phenomena such as the breakdown of the Purcell effect [De Liberato14]. Additionally,
with the rapid progress of superconducting circuits, the DSC regime has been achieved
in those systems very recently [Yoshihara17b, Yoshihara17a].
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I.2 Quantum states of light

I.2.1 From the birth of a revolutionary description of light to modern
quantum optics

An important topic in quantum physics closely linked to light-matter interactions is
the study of light itself, from its general description to the various states in which it
can be found. In particular, an essential question in the previous century was about
whether light needed the tools of quantum physics for its description at all or whether
a classical treatment was sufficient. The first step towards a quantum description of
light was made by Einstein in 1905 regarding the photoelectric effect, as it is the very
first characterization of light in terms of quanta [Einstein05] (although Planck already
described radiation as elementary units of energy but without having any corpuscu-
lar picture of light in mind [Planck01]), each one carrying a finite amount of energy
directly proportional to the frequency of the radiation, used at the time only to de-
scribe its wave nature. Both his works on the photoelectric effect and the stimulated
emission [Einstein16, Einstein17] strongly contributed to the formation of a quantized
understanding of light. It was later Dirac that formalized this understanding with his
quantum theory of radiation [Dirac27, Fermi32]. However, even though in the following
decades the wave-particle duality of light became quite assimilated by the physics com-
munity, its quantum nature had little impact on the understanding of experiments that
were finely characterized by classical theory at the time. This came from the experimen-
tal difficulty in resolving the corpuscular nature of light on the one hand, and a lack of
concrete features and phenomena that would be only described by a quantum theory and
could be observed even with intense beams. Such issues were greatly dealt by Glauber,
who wrote crucial contributions towards quantum optics in his works on quantum opti-
cal coherence [Glauber63a, Glauber63b, Glauber63c]. This helped to clarify where the
difference between a classical and a quantum description of light must be drawn, and
in particular what features can only be described by the quantum theory. One of those
features is the detailed characterization of optical coherence and a method on how to
observe it experimentally. First briefly exposed in a letter [Glauber63a], this method
uses the so-called g(n) correlation functions, whose definition was thoroughly detailed
few months after [Glauber63b], and that are widely used now our days. Another feature
mentioned in his work is the Heisenberg uncertainty principle [Heisenberg27] between
the two conjugate variables describing the light in phase-space [Glauber63c]. Note that
an interest in this principle has led to the study of the so-called standard quantum
limit (SQL), which is a saturation of the Heisenberg principle [Stoler70]. In particu-
lar, the possibility of going beyond that principle has been studied, eventually called
squeezing [Lu71, Yuen75, Milburn81]. With the rapid development of experimental tech-
niques, as in nonlinear optics or instance [Wang65, Giordmaine65], squeezed states of
light have eventually been generated [Slusher85, Shelby86, Wu86]. Shortly before that,
preliminary experiments produced non classical states through antibunching [Kimble77]
and sub-Poissonian photon number statistics [Short83, Teich85]. Later, experimental
advances allowed the observation of other nonclassical states of light, such as photon
Fock states [Varcoe00, Nogues00, Lvovsky01, Bertet02, Hofheinz08] or Schrödinger cat
states [Brune96, Ourjoumtsev07, Deléglise08]. Very recently, even more exotic version
of these cat states were generated [Kirchmair13, Wang16].
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In what remains of this chapter we shall briefly introduce the concepts needed to
describe the quantum states of light using the tools of quantum physics, and give exam-
ples of some of those states. In particular, we focus on the definition of squeezed states,
since these are the nonclassical states of interest for the next chapter of this thesis.

I.2.2 Phase space description of light

When one wants to describe a quantum system, one way to get all the possible informa-
tion about its quantum state is to use the so-called density matrix ρ̂ of this system. For
describing systems with a small Hilbert space [Cohen-Tannoudji77], namely the space
that contains all the possible states available for the system, the density matrix is surely
the most adequate approach. It can be obtained experimentally with quantum tomog-
raphy for few interacting qubits for instance. However, when the Hilbert space is very
large, if not infinite, it becomes rather difficult to use the density matrix formalism. As
opposed to qubits, for a Hilbert space with infinite dimension, the quantum tomography
is out of the question. The density matrix can still be practical in few cases where the
dimension of the system is a priori too large, for instance when an anharmonicity is
introduced in the harmonic ladder of an oscillator for instance, such that one of the
low transitions is detuned enough to approximate the Hilbert space made only of the
states below this transition [Blais04]. If no anharmonicity is possible, then truncating
the Hilbert space after some cutoff value in the density matrix method could still be a
reasonable approximation, if one is sure the system will not populate states beyond the
truncation [Restrepo14a, Felicetti15]. However, if no anharmonicity nor practical cutoff
are feasible, then one needs an alternate yet fully equivalent method for describing the
quantum state under study, a method that would allow both a practical theoretical de-
scription for systems whose Hilbert space is infinite dimension, and their experimental
characterization. In the case of a quantum harmonic oscillator, a framework analogous
to the study of motion of an object in classical mechanics, called phase-space. Essen-
tially, for a one dimensional classical motion of an object of mass m, the phase-space
is a two-dimensional plane whose coordinates are the position x and the momentum
p = mẋ [Landau76]. This plane can thus contain all the information about the tra-
jectory of the object, and accordingly, about its dynamics. For a quantum harmonic
oscillator however, there is no such thing as a deterministic trajectory.5 Nevertheless,
starting from the standard Hamiltonian for a quantized harmonic oscillator describing
a single mode of the electromagnetic field

Ĥ = ~ω
(
â†â+ 1/2

)
, (I.30)

one can define operators analogous to the classical position and momentum, such that
Hamiltonian becomes

Ĥ =
P̂2

2m
+
mω2X̂ 2

2
, (I.31)

5At least not in the Copenhagen interpretation we use throughout the manuscript. For a deterministic
interpretation of quantum mechanics, see for instance [Bohm52].
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where X̂ and P̂ are related to the creation and annihilation operator of the electromag-
netic field in the following way

X̂ =

√
~

2mω

(
â+ â†

)
, (I.32)

P̂ =

√
~mω

2
i
(
â† − â

)
. (I.33)

Here of course the mass m does not correspond to a real mass since we are dealing
with an electromagnetic field, and only kept it to highlight the analogy with classical
mechanics. One way to link the position and momentum operators X̂ and P̂, also called
field quadratures, to a physical picture for the electromagnetic field can easily found by
rewriting the Hamiltonian in terms the electric field Ê and the magnetic field B̂

Ĥ =

∫ (ε0
2
Ê2 +

1

2µ0
B̂2
)
dr, (I.34)

where ε0 and µ0 are respectively the vacuum permittivity and the vacuum permeability.
By comparing both Eqs. (I.31) and (I.34) and remembering the typical expression of
the electric field given by Eq. (I.2), we can see that for a quantized electromagnetic
field the analogs for position and momentum are simply the electric and the magnetic
components of the field [Lu71]. Note that in the remainder of the manuscript we work
with the following dimensionless version of the field quadratures

X̂ =

√
mω

~
X̂ =

â+ â†√
2
, (I.35)

Ŷ =

√
1

~mω
P̂ = i

â† − â√
2
, (I.36)

and define the axes of the phase-space, which is a complex plane, since X̂ and Ŷ
are simply the real and imaginary parts of â = (X̂ + iŶ )/

√
2. Sometimes it may be

appropriate to rotate the axes by an angle φ such that

X̂φ =
âe−iφ + â†eiφ√

2
, (I.37)

and consider the pair of conjugate variables X̂φ and X̂φ+π/2 instead of X̂ and Ŷ .6

I.2.3 Coherent states, or the essential basis for describing light in
phase-space

Before showing how the conjugate variables can be of use in the phase-space representa-
tion of light, let us first introduce a basic but very states often encountered in quantum
optics. In particular, these states form a basis that is essential for the phase-space
description of light, as we will see in later sections. These states are called coherent
states, and for the sake of clarity, let us first remind two types of states that are needed

6Note that following the definition in Eq. (I.37) we have Ŷ = X̂π/2.
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to introduce them. The first one is the vacuum state, and by definition, for light the
vacuum state is the state that contains zero photons. It is represented as |0〉, and is
most commonly the ground state of the electromagnetic field7

â|0〉 = 0. (I.38)

Note that usually in the presence of several modes in vacuum, for compactness we use
|0〉 ⊗ |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉 = |0〉.
The second ones are the Fock states, or number states, represented as

|n〉 =

(
â†
)n

√
n!
|0〉, (I.39)

where n is the number of photons in the Fock state, and where we have

â|n〉 =
√
n|n− 1〉, (I.40)

â†|n〉 =
√
n+ 1|n+ 1〉. (I.41)

Now we can introduce the coherent states, commonly noted |α〉 [Glauber63a], that are
defined as the eigenvectors of the annihilation operator

â|α〉 = α|α〉, (I.42)

with the eigenvalue α, which may also be referred as the size of the coherent state.
Indeed, 〈α|n̂|α〉 = |α|2, with n̂ = â†â. α is in general a complex number, and following
the definition in Eq. (I.37), we have

Re{α} =
〈α|X̂|α〉√

2
, (I.43)

Im{α} =
〈α|Ŷ |α〉√

2
. (I.44)

These states form a basis, since8 ∫
d2α|α〉〈α| = 1̂, (I.45)

where d2α = d(Re{α})d(Im{α}) and 1̂ is the identity operator. However, the basis is
overcomplete due to the fact that the coherent states are not orthogonal

〈α|β〉 = e−|α|
2/2−|β|2/2+α?β. (I.46)

By looking at the magnitude of the scalar product |〈α|β〉|2 = e−|α−β|
2 , one can see that

the orthogonality is a limit where the difference between α and β tends to infinity. Let

7Note that this statement is not true anymore in the ultrastrong and deep strong regimes of light-
matter interactions (see sections I.1.5 and I.1.6).

8Note that here and in the rest of manuscript, we use
∫
≡
∫ +∞
−∞ , unless specified otherwise.
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us finally give the expression of a coherent state in the Fock basis9

|α〉 = e−
1
2
|α|2

∞∑
n=0

αn

n!
|n〉, (I.47)

where we can clearly see that for α = 0, we retrieve the vacuum state. This is due to
the fact that a coherent state is essentially a vacuum state displaced in phase-space.
Thus, the coherent states have the same noise as the vacuum state, namely, they both
saturate the Heisenberg uncertainty relation10

〈∆X̂〉〈∆Ŷ 〉 = 1/2, (I.48)

where
〈∆X̂〉 = 〈∆Ŷ 〉 = 1/

√
2, (I.49)

where the variance for any operator Ŝ is 〈∆Ŝ〉2 = 〈Ŝ2〉−〈Ŝ〉2. Formally, the right hand
side in Eq. (I.48) is ~/2, however, we work with the adimensioned field quadratures
defined in Eqs. (I.35) and (I.36), which is equivalent here to work with the ~ ≡ 1 units.
Note that Eqs. (I.48) and (I.49) also apply to the vacuum state. Using the phase-space
description developed in the next sections, a coherent state is a vacuum state displaced
in phase-space, thus it keeps the same variances. These coherent states have been
briefly introduced in a short letter [Glauber63a], and a more detailed definition have
been exposed few months later [Glauber63c] with all the appropriate demonstrations.
The are often referred to be the most classical states in quantum optics since they are
minimal uncertainty states. Quoting Glauber, a coherent state "represents as close an
approach to classical localization as is possible" [Glauber63c].

I.2.4 Introducing the quasiprobability distributions

Now that we have defined the phase-space, a relevant question is how to represent a
quantum state using the quadratures defined in Eqs. (I.35) and (I.36) ? To do this
one needs to somehow write the density matrix ρ of the state as a function of the
quadratures. As a matter of fact, one would not directly plot ρ in phase-space, but
rather extract some information, if not all of it, from ρ, and plot this information in the
plane {X,Y }. This information is characterized by a function, called a distribution,
spanning all phase-space, and defined in a particular manner using ρ. There exist
different distributions, which are also called representations, and the difference between
them is the ordering in which they return expectation values of annihilation and creation
operators. To illustrate this point let us express the average of the number operator
â†â for a state ρ using some distribution that we do not specify at the moment,

〈â†â〉k = Tr{ρ(â†â)k} =

∫
fk(α)|α|2d2α. (I.50)

9For a detailed derivation, see [Glauber63c].
10Note that this is true as long as the coherent state remains pure. The saturation in Eq. (I.48) does

not hold if the state is mixed (see section I.2.8).
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Here, fk(α) is the phase-space distribution used to compute the expectation value
〈â†â〉k. However, note that 〈â†â〉k is not necessarily equal to 〈â†â〉. Indeed, the in-
dex k is very important, as it stand for the type of distribution chosen here. Choosing
a particular distribution will actually influence the formal expression of 〈â†â〉k, namely
its ordering. An ordering is a specific way annihilation and creation operators are
positioned in a product, which is important because of the non-commutativity of the
operators â and â†. There are three orderings that are most commonly used, and each
one of them has a different distribution associated to them. In the normal ordering for
instance, the product of some creation and annihilation operators is rewritten such that
creation operators appear of the right and annihilation operators appear on the left,
e.g., ((â†)mân)N = ((â†)mân). Conversely, in the anti-normal ordering, the product is
rewritten such that the annihilation operators appear on the left and the creation ones
on the right, e.g., ((â†)mân)A = (ân(â†)m). The last one is the symmetric ordering,
where the operators are symmetrized in the product. It is basically a sum over all pos-
sible symmetric combinations of the initial product. For instance, when m = n = 1 it
goes as (â†â)S = (â†â+ ââ†)/2. Now we can rewrite Eq. (I.50) and introduce the three
commonly used distributions (or functions)

〈â†â〉 = 〈â†â〉N =

∫
P (α)|α|2d2α, (I.51)

〈ââ†〉 = 〈â†â〉A =

∫
Q(α)|α|2d2α, (I.52)

〈â†â+ ââ†〉
2

= 〈â†â〉S =

∫
W (α)|α|2d2α, (I.53)

Where the function P (α) stands for the Glauber-Sudarshan P representa-
tion [Sudarshan63, Glauber63c], the function Q(α) stands for the Husimi-Q rep-
resentation [Husimi40], and the function W (α) stands for the Wigner representa-
tion [Wigner32]. We can notice that although the right hand side in Eqs. (I.51), (I.52),
and (I.53) is the same, the left hand side clearly shows that we are computing different
expectation values. Note also that these equations express expectation values in a form
clearly analogous to classical statistical physics. However, in classical physics one will
use a probability distribution in Eqs. (I.51), (I.52), and (I.53) instead of P (α), Q(α),
and W (α), since those are not necessarily ones.

I.2.5 The Glauber-Sudarshan P representation

Historically, although the Wigner function and the Husimi-Q functions were introduced
much earlier, the first such function used in the framework of modern quantum optics
was the P function [Sudarshan63, Glauber63c]. In the seminal works by Sudarshan and
Glauber, it was found by diagonally expressing the density operator ρ for a state of
light in the coherent states basis

ρ̂ =

∫
P (α)|α〉〈α|d2α, (I.54)

This diagonal representation is only possible because this basis is overcom-
plete [Carmichael99], since two coherent states are not orthogonal (see section I.2.3).
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Note that this already indicates that P (α) cannot be thought of as a probability distri-
bution. Indeed, if one expresses ρ on some complete basis {|l〉}, then each diagonal term
〈l|ρ|l〉 is a true probability, with

∑
l〈l|ρ|l〉 = 1, yet ρ may contain non-zero off-diagonal

terms 〈l|ρ|k〉. However, for the P distribution the sum over all possible αs also gives 1,∫
P (α)d2α = 1, (I.55)

and hence, conversely to 〈l|ρ|l〉, here P (α)d2α cannot be a probability because of the
diagonal form of ρ in Eq. (I.54). P (α) is rather called a quasiprobability distribution.
Note also that Eq. (I.54) shows that P (α) is naturally is the normal order, since writing
Tr{ρâ†â} using Eq. (I.54) directly leads to Eq. (I.51).11 Moreover, for some states P (α)
can even take negative values [Carmichael99]. It can be useful to describe some states,
but can also be very unpractical for describing very simple ones, such as a coherent
state.12 Mostly used theoretically, it is not the distribution experimentalist commonly
aim at reconstructing.

I.2.6 The Husimi-Q representation and heterodyne detection

The Husimi-Q function on its side can be expressed as the overlap between the state of
interest ρ and a coherent state

Q(α) =
1

π
〈α|ρ|α〉, (I.56)

and therefore is a true probability. The Q function is also normalized, as
∫
Q(α)d2α = 1.

This distribution is used not only in theory but also in experiments, and is especially
practical when one uses heterodyne measurements. The most standard example of a
heterodyne measurement consists in measuring the signal of interest by mixing it with a
signal of another frequency, called local oscillator (LO). This is accomplished by sending
the signal and the LO through a device whose function is to perform the mixing. When
the signals are mixed, the new signal has a component that oscillate at the sum of the
frequencies, and another component that oscillates at the difference ∆ω between them
(see Fig. I.4(a)). The important point is that ∆ω is low enough to be processed by
electronics, typically being in the radio frequency region.
In such a measurement scheme, both conjugate variables X̂ and Ŷ are recorded at the

same time [Yamamoto86]. However, knowing that 〈∆X̂〉〈∆Ŷ 〉 ≥ ~/2, that simultaneous
measurement comes at the price of an additional noise added to the shot noise of the
standard Heisenberg principle. It was shown five decades ago that by using two detectors
measuring two non-commuting variables is possible, where one detector measures the
quadrature X̂, while the other measures the conjugate quadrature Ŷ [Arthurs65]. In
this first model, an interaction Hamiltonian was introduced, that couples X̂ to some
quadrature Ŷ1 of detector 1, while coupling Ŷ to some quadrature Ŷ2 of detector 2.
Thus, we have two independent quantum operators Ŷ1 and Ŷ2, that commute, while
each of them contains information about X̂ and Ŷ respectively. By recording the values
11The equivalence shown in Eq. (I.51) is actually called the optical equivalence theorem[Mandel95].
12Indeed, the P function for a coherent state |β〉 is a double Dirac delta P (α) = δ(Re{α} −

Re{β})δ(Im{α} − Im{β}).
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of Ŷ1 and Ŷ2 for many runs of an experiment with the same initial conditions, one
can construct a joint probability distribution p(Y1, Y2) for the variables Ŷ1 and Ŷ2. It
is known for quite some time that such a joint probability distribution can actually
correspond to the Husimi-Q function [Arthurs65, Braunstein91, Stenholm92]

p(Y1, Y2) =
1

2
Q(Y1, Y2), (I.57)

where the right hand side is actually Q(α)/2 as in Eq. (I.56), simply by recalling α =
Y1 + iY2. It thus means that the expectation values measured in terms of Ŷ1 and
Ŷ2 by the detectors correspond to anti-normally ordered averages in terms of X̂ and
Ŷ for the system of interest (see Eq. (I.52)). While for the detailed derivation of
Eq. (I.57) we invite the reader to examine Refs. [Braunstein91, Stenholm92] in details,
we nevertheless give an intuitive picture of the previous sentence in what comes next,
with a simple illustration. We hereafter show how this measurement scheme with two
detectors, each measuring a different complementary variable, correspond to anti-normal
ordered expectation values [Müller16]. This is a simplified example whose purpose is
only to give a grasp at the principle of heterodyne detection.

The two detectors are independent, and thus, after the system-detectors interaction
their conjugated variables {X̂1(t), Ŷ1(t)} and {X̂2(t), Ŷ2(t)} obey

[X̂i(t), Ŷj(t)] = i~δij . (I.58)

However, we know that they contain information about the system’s quadratures {X̂, Ŷ }.
In fact, we can write the detector operators as follows13

X̂1(t) = X̂(0) + Λ̂(0), (I.59)

X̂2(t) = Ŷ (0) + Γ̂(0), (I.60)

where t stands for the moment after the interaction with the detectors, while t = 0
stands for prior to this interaction. Consequently [Γ̂(0), Λ̂(0)] = i~ since [X̂(0), Ŷ (0)] =
i~. Γ̂ and Λ̂ are introduced as detectors operators

Λ̂(0) = X̂1(0) +
Ŷ2(0)

2
, (I.61)

Γ̂(0) = X̂2(0)− Ŷ1(0)

2
. (I.62)

13The following is formally demonstrated in Ref. [Stenholm92].
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Then, let us shift to a description in terms of creation and annihilation operators

ν̂ =
X̂1 + iX̂2√

2
, (I.63)

â =
X̂ + iŶ√

2
, (I.64)

Â =
Γ̂ + iΛ̂√

2
, (I.65)

(I.66)

Instead of Eqs. (I.59) and (I.60), we can use

ν̂(t) = â+ iÂ†, (I.67)

in order to define a θ ordered expectation value

〈â†â〉θ = 〈sin2 θââ† + cos2 θâ†â〉. (I.68)

Now, Eq. (I.67) represents an annihilation operator ν̂(t) for the signal that is recorded,
which is a superposition between the annihilation operator â describing the quantum
state of the signal of interest and the creation operator Â† describing the quantum
state of a detector used to record the signal. In this manner, the whole scheme can
be seen as a simultaneous measurement of both quadratures X̂(0) and Ŷ (0) using only
one detector whose quadratures are Γ̂(0) and Λ̂(0). By using Eq. (I.67), we can rewrite
Eq. (I.68)

〈â†â〉θ =
(

cos2 θ + sin2 θ
)
|ν|2 + cos2 θ〈ÂÂ†〉+ sin2 θ〈Â†Â〉

= |ν|2 +
1

2
〈ÂÂ† + Â†Â〉+

cos 2θ

2
〈[Â, Â†]〉

= |ν|2 + 〈Â†Â〉+
1

2
+

cos 2θ

2
. (I.69)

where |ν|2 is the average of the operator ν̂†ν̂ found by measuring the variables X̂1 (X̂2)
and constructing their joint probability distribution p(X1, X2) shown in Eq. (I.57). Since
Â corresponds to the initial state of the detector, 〈Â†Â〉 indicates the initial population
of this the state. If 〈Â†Â〉 = 0 the detector is in its ground state, and the Eq. (I.69)
thus simplifies to

〈â†â〉θ = |ν|2 +
1

2
+

cos 2θ

2
(I.70)

now, by choosing θ = π/2, we 〈â†â〉π/2 = |ν|2, where now, given Eq. (I.68), the measured
average correspond to the following expectation value

〈ââ†〉 = |ν|2. (I.71)

Thus, such a measurement scheme using two detectors 1 and 2, that can be seen as
one detector in its ground state naturally leads to anti-normally ordered expectation
values. Note that in actual experiments the measurement scheme does not necessarily
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Figure I.4: Sketches for heterodyne and homodyne detections. M: mixer; D: detector;
BS: 50:50 beam-splitter. (a) Heterodyne detection at microwave frequecies. A mixer
M combines the signal âS with a local oscillator âLO, with the LO being detuned by
an amount ∆ω = ωLO − ωS from the signal. In what comes out from the mixer, the
component oscillating at ωLO + ωS is filtered out in the detection apparatus D, while
the component oscillating at ∆ω can be processed by the electronic circuit. Indeed,
for instance the time-oscillating voltage V (t) can be measured and demodulated such
that the averages 〈X̂φ〉 and 〈Ŷφ〉 of the field quadratures are retrieved. (b) Balanced
homodyne detection at optical frequencies. The optical signal âS is combined on a
50:50 beam-splitter with the local oscillator âLO, were both are initially derived from
the same source and thus have the same central frequency. After the beam-splitter, the
intensity 〈ĉ†ĉ〉 〈d̂†d̂〉 are measured and subtracted in order to retrieve 〈X̂φ〉.

involve two detectors. Indeed, in heterodyne detection the purpose is to shift the signal
of interest to a frequency region that is low enough for the time oscillation of the electric
field to be detected. Eventually, the measured electric field or voltage is recorded and
demodulated such that both measured quadratures are retrieved.14

I.2.7 The Wigner representation and homodyne detection

The Wigner function can be linked to off-diagonal elements of ρ, taken in the position
basis {|X〉}, through the integral

W (X,Y ) =
1

2π

∫
〈X + λ/2|ρ|X − λ/2〉e−iλY dλ, (I.72)

where the factor 2 may change position depending on the convention used to define
X̂ and Ŷ [Mandel95, Haroche06, Lvovsky09]. The Wigner function is normalized as∫
W (α)d2α = 1. As P (α), and conversely to Q(α), W (α) can take negative values

and thus is not a probability distribution. Experimentally, the Wigner representation
is widely adopted by the quantum optics community, as the components needed for

14If the signal of interest is initially in the optical region, then only intensities are detected. However,
there are still ways for measuring both quadratures simultaneously. One of them for instance
involve two simultaneous homodyne detections right after combining the signal with vacuum at a
beam-splitter (see section I.2.7 for a description of homodyne detection).
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its reconstruction are naturally obtained with homodyne detection. As heterodyne
detection, its homodyne counterpart aims at detecting an electromagnetic signal by
mixing with an LO. However, here the LO have to be derived from the same source as
the one used to generate the signal of interest. Thus, the signal is measured at its true
frequency. Essentially, a signal characterized by the operator âS is mixed on a beam
splitter (BS) with the LO characterized by the operator âLO. If the beam splitter is
50/50, i.e., if its reflexion and transmission coefficients are the same, then the fields
outgoing from the BS are expressed as

ĉ =
âS + âLO√

2
, (I.73)

d̂ =
âS − âLO√

2
. (I.74)

After the mixing, one measures the intensities nc = 〈ĉ†ĉ〉 and nd = 〈d̂†d̂〉, and then
computes their difference. It yields nc − nd = 〈â†S âLO + âS â

†
LO〉, noting that âS and

âLO are not correlated although they come initially from the same source. Since we are
interested in measuring a difference between two output signals, this scheme is called
balanced homodyne detection [Collett87]. If the stiff pump approximation can be made
so that the LO is considered to be a classical field, then âLO ≈ αLOeiφ, where αLO is a
complex number. If αLO is real however, then we have nc−nd ≈ αLO〈â†Seiφ+ âSe

−iφ〉 =√
2αLO〈X̂φ〉. Thus, measuring the difference in the intensities after the BS gives us the

expectation value of a signal’s quadrature X̂φ with angle φ (see Fig. I.4(b)). Performing
such measurements, one can statistically reconstruct the probability distribution for
this quadrature, and by changing experimentally φ, one can access such distributions
for all possible angles and thus span all the quadratures in phase-space. The link
with the Wigner function is revealed in what follows: for each angle φ, the probability
distribution is actually a marginal of the Wigner function [Vogel89], namely

p(Xφ) = 〈Xφ|ρ|Xφ〉 =

∫
W (Xφ, Yφ)dYφ. (I.75)

Subsequently, once the probability distributions p(Xφ) are constructed for enough φs,
one can reconstruct the Wigner function of the state by using what is called an inverse
Radon transform [Smithey93]. Notice that here, conversely to heterodyne measurement,
one cannot obtain both the amplitude and phase information in once, but only the am-
plitude information by detecting the energy of the photons impinging on the detectors.
However, accessing the information of only one quadrature dispense us from the extra
noise added on the measurement. See Fig. I.5 for the representation of Wigner functions
for common quantum states.
Note that apart from Eqs. (I.54), (I.56) and (I.72), there are other ways in linking

ρ with P (α), Q(α) and W (α).15 Note also that these three representations are not
the only existing ones. For instance, another version of the P representation exists
that abolished any negativities, by doubling the number of degrees of freedom of the

15For instance, by using the so-called characteristic functions CN (α) = Tr{ρeαâ
†
e−α

?â}, CA(α) =

Tr{ρe−α
?âeαâ

†
}, and CN (α) = Tr{ρeαâ

†−α?â} [Carmichael99, Haroche06].
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system [Drummond80].

I.2.8 Thermal states

In section I.2.3 we only dealt with pure states, which can always be expressed as a ket
and thus do not require a density matrix formalism. However, in real experiments the
states that one creates and manipulates are never pure but mixed, and thus the density
matrix is needed to describe those states. The simplest example of mixed states are
thermal states, that correspond to the radiation emitted by a black body for instance.
It is a thermal distribution (or Boltzmann, or Gibbs distribution), and in the Fock basis,
these states are expressed as

ρ̂ =

∞∑
n=0

nnth
(nth + 1)n+1

|n〉〈n|, (I.76)

where nth = 1/(e~ω/kBT − 1) is the Bose-Einstein distribution corresponding to the
thermal photon number. Its representation in the coherent state basis is

ρ̂ =

∫
1

πnth
e−|α|

2/nth |α〉〈α|d2α, (I.77)

by using Eq. (I.54) and the expression of the Glauber-Sudarshan P distribution for
a thermal state [Mandel95]. It is also worthwhile to take a look at its Wigner func-
tion [Haroche06]

Wth(α) =
2

π

1

2nth + 1
e
−2|α|2
2nth+1 , (I.78)

represented in Fig. I.5(b) and in particular to compare it to the Wigner function for
vacuum Wvac(α) = (2/π)e−2|α|

2 (see Fig. I.5(a)). Essentially in the thermal state the
width of the Gaussian is larger, such that conversely to the vacuum state that saturates
the Heisenberg principle, the thermal state do not

〈∆X̂〉〈∆Ŷ 〉 =
(
nth + 1/2

)
. (I.79)

So the higher the temperature, the larger is nth, and the further is the state from a
minimal uncertainty state. In quantum optics, these states are not generated inten-
sionally in the laboratory, however, in particular in the microwave region, the quantum
states might be coherent, yet with some mixedness depending on the value of nth. For
a very low temperature, nth is just a perturbation that may not substantially affect the
outcome of the experiment.

I.2.9 Squeezed states

If one takes the coherent states as being the closest analog for classical states, then
squeezed states may be thought of the simplest example of a truly quantum state.
Indeed, their main property cannot be explained by any classical model, namely the
fact that in those states the noise of one field quadrature is lower than the noise in
vacuum. The absence of light is then more noisy than the light in a squeezed state,
a surprisingly non-intuitive feature. Thus, the noise of one quadrature is less that
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Figure I.5: Wigner functions for common quantum states. (a) Vacuum state. (b)
Thermal state with nth = 2. (c) Coherent state with 〈X̂〉 = 2 and 〈Y 〉 = 2. (d) Squeezed
vacuum state with 〈∆X̂〉 = e−ζ/

√
2, 〈∆Ŷ 〉 = eζ/

√
2 and ζ = 0.7, corresponding to

−6 dB of squeezing using Eq. (I.80).

1/
√

2 (see Eq. (I.49)). However, due to the Heisenberg principle for vacuum, as in
Eq. (I.48), this noise reduction comes at the price of an increase in the noise for the
conjugated quadrature. If the squeezed state is not pure but mixed, as introduced in
the section I.2.8, the Heisenberg principle has the general expression 〈∆X̂〉〈∆Ŷ 〉 ≥ 1/2,
yet the state may still be called squeezed as long as one can find an angle φ such that
〈∆X̂φ〉 < 1/

√
2. Squeezing may be quantified with the following logarithmic scale

Sφ = 10 log10

(
〈∆X̂2

φ〉
〈∆X̂2

vac〉

)
. (I.80)

For a vacuum or a coherent state we have Svac
φ = 0, which defines the SQL. A mixed

state, such as a thermal state, gives Smixed
φ > 0. There are two types of squeezed states,

single-mode and two-mode ones. They are described in the two following sections.

I.2.9.1 Single-mode squeezed states

A single-mode squeezed state, as its name suggest refer to the state of one mode of the
electromagnetic field. In short, this mode is a quantum mechanical object described by
the annihilation (creation) operator â (â†),16 or by its conjugate variables X̂a and Ŷa.
A one-mode or a single-mode squeezed state is defined as a state where one can find an
16For a more rigorous and more detailed definition of a mode, see [Grynberg10].
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angle φ such that
〈∆X̂a,φ〉 < 1/

√
2, (I.81)

while satisfying
〈∆X̂a,φ〉〈∆Ŷa,φ〉 ≤ 1/2. (I.82)

The operator X̂a,φ is defined as in Eq. (I.37), and we have Ŷa,φ = X̂a,φ+π/2. Thus, as
for the vacuum and for a coherent state, its Wigner function is Gaussian, yet with a
different asymmetric shape (see Fig. I.5(d)). Without yet detailing its nature, note that
there is an operator, called the squeezing operator, which gives a squeezed state,

S(z) = e
1
2

(
z?ââ−zâ†â†

)
, (I.83)

when applied on the vacuum state or on a coherent state.
Although their final designation came in the eighties [Milburn81], squeezed states,

and in particular single-mode squeezed states were first discovered in 1927 [Kennard27].
In his paper, Kennard studied the motion of a quantum harmonic oscillator and derived
expressions for 〈∆X̂a,φ〉 and 〈∆Ŷa,φ〉 that were oscillating and where one variance could
be reduced at the expanse of increasing the other, while still satisfying the Heisenberg
principle for a coherent state (see Eq. (I.48)).17 The study of these states restarted only
in the seventies [Lu71], where their link to the squeezing operator in Eq. (I.83) was estab-
lished [Stoler70, Stoler71]. It was not possible to experimentally generate those states
back then, yet experimental proposals emerged [Stoler74, Yuen75, Milburn81]. The
first experimental demonstrations did not clearly involve squeezing, but rather photon-
antibunching [Kimble77] and sub-Poissonian photon statistics [Short83, Teich85], that
are both related forms of correlations between photons. Later in the eighties experimen-
tal generation of squeezed states has been finally reached [Slusher85], with experimental
techniques that are widely used now our days, such as four wave mixing [Shelby86], or
parametric down conversion in optical parametric oscillators [Wu86]. Fig. I.6 show
the squeezing obtained in two of the very first squeezing experiments in the eighties.
Note that although this research field was mainly focused on squeezing light at optical
frequencies, even at the early days of the experimental realization of squeezing, a con-
tribution was brought at microwave frequencies [Yurke88], followed by others in recent
years [Castellanos-Beltran08, Mallet11].
Squeezed states have applications in various domains. In the early days before their

experimental demonstration, Caves proposed to use it as a tool to improve the de-
tection of gravitational waves [Caves81], which was later shown to be true [Grote13].
In general, they can be used to improve the precision in many quantum measure-
ment schemes [Giovannetti04]. Another important application of those states is in
continuous-variable quantum information, where they represent one of its most basic
resources [Cerf01, Braunstein05].
Before moving to two-mode squeezed states in the next section, let us give an example

of a scheme where single-mode squeezed are generated, and describe how one can treat
this scheme theoretically. Such an example is a degenerate parametric down conversion
achieved in a optical parametric oscillator (OPO). In short, the device (such as a nonlin-
ear crystal inside an optical cavity for instance [Wu86]), is driven by an electromagnetic

17For a more detailed story on their discovery, see [Nieto97].
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ficient filtered incandescent light onto the diode to
yield that current. '3 It proved important to remove all
of the long-wavelength radiation from the incandes-
cent beam. Readings were also taken bracketing the
current levels seen in the experiment. In a subsidiary
experiment, the noise level of the unmodulated laser
was also compared to the incandescent source over a
range of detector currents. The unmodulated laser
gave a noise level systematically (2.0+1.0)% higher
than the incandescent source. %e have taken the
incandescent-source noise level as our definition of
the standard quantum limit.
Typical ratios of the noise and current are displayed

as functions of local-oscillator phase in Fig. 2. The er-
ror bars reflect the standard deviations of the distribu-
tion of measurements. The radius of the dots reflect
three times the standard deviations of the means com-
puted according to the Student r distribution. ' This
latter quantity correctly estimates the statistical uncer-
tainty of the average of these measurements. The
sohd line is our experimental realization of the stan-
dard quantum limit. Its width reflects the 0.2% es-
timated uncertainty of the noise level for a coherent
state. At the minimum of the ratio, the noise level of
the light produced by our optical-fiber system is (12.5
+0.5)% below the measured coherent-state level.
This 25-standard-deviation shift verifies that quantum
fluctuations can indeed be deamplified by forward
parametric mixing in an optical fiber with & 99.9'/o
confidence.
The curved line is a plot of the function

2.0—)
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0
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FIG. 2. The ratio of the rf noise at 56.25 MHz to the dc
current as a function of phase shift H. The ratios have been
normalized to those for an incandescent source producing
the same current. The standard quantum limit determined
in this manner is unity on this graph. The width of the line
reflects the 0.2'/o experimental uncertainty in this measure-
ment. The solid circles reflect the noise levels obtained
from the experiment in Fig. 1 with 220 m% of pump radia-
tion. The radius of the circles is three times the 0.4% stan-
dard deviation of the means of the measurements while the
error bracket is the 3% standard deviation of the distribution
of all the measurements at phase H. The curve is a fit by Eq.
(4) with r =0.62, g = 1.16, q=0.5, L =0.2, and a =0.16.
The spectrum-analyzer resolution bandwidth was 300 kHz
and video bandwidth was 30 Hz.

4V= I+q (1—e —Le )(1—cos28)+ (1—e L) sin28+g(b)r(1 —cos28) +ar(1 +cos28),
4r2 L L 2r
I 2 L (4)

which is the predicted ratio of the noise power in our
experiment to that of a coherent state of equal flux. In
Eq. (4), L = 0.2 is the attenuation of the fiber, r is the
squeeze parameter as in Ref. 6, 8 is the phase shift,
and q=0.5 is the quantum efficiency. The last term
on the right parametrizes a small excess amplitude
noise. The quantity g (5) = 1.16 (at 56.25 MHz)
represents phase noise produced by low-frequency
light scattering in the fiber. ' While low tempera-
tures reduce g, the minimum value we observe is not
as much less than the room-temperature value (g = 8)
as one might expect if this noise were due to thermally
excited mechanical vibrations. In this fiber, we had
employed the classical noise-squeezing technique to
show that r —0.03IP where P is in watts and I in me-
ters. %ith the correct value of the excess noise
(a =0.16) and squeeze parameter (r = 0.6), Eq. (4)
fits the points of Fig. 2 excellently. Similar results
were obtained at different detection frequencies and
various pump powers.
Figure 3 shows the spectrum of photocurrent noise

produced by a broad-band detector when the phase 8 is

3.0

o 2.0- I
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0.9—
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Frequency Shift 27rh IMHzI--

FIG. 3. Normalized noise spectrum under the conditions
of the minimum of Fig. 2. The noise level produced by an
incoherent source yielding the same dc current at the experi-
ment has been normalized to unity. The broad-band detec-
tor sho~s a dark noise level of 0.19 on this scale. The fre-
quency dependence of 4 V is due to the noise term g (5).
The large peaks are due to forward Brillouin scattering by
the guided acoustic-wave Brillouin-scattering modes of the
fiber. Noise levels below the standard quantum limit appear
around 45 and 55 MHz.
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Generation of Squeezed States by Parametric Down Conversion
Ling-An %'u, H. 3. Kimble, J. L. Hall, ' and Huifa 'Wu

Department ofPhysics, University of Texas at Austin, Austin, Texas 78712
(Received 11 September 1986)

Squeezed states of the electromagnetic fieM are generated by degenerate parametric down conversion
in an optical cavity. Noise reductions greater than 50% relative to the vacuum noise level are observed
in a balanced homodyne detector. A quantitative comparison with theory suggests that the observed
squeezing results from a field that in the absence of linear attenuation would be squeezed by greater
then tenfold.

PACS numbers: 42.50.0v, 03.65-vr, 42.65.Ky

awhile discussions of minimal-uncertainty states date
to the earliest days of quantum mechanics, analyses
dealing specificially with the electromagnetic field have
been actively pursued for the past fifteen years. '2 Par-
ticular attention has been focused on squeezed states of
the field which are characterized by a phase-dependent
redistribution of quantum fluctuations such that the
dispersion in one of two quadrature components of the
field is reduced below the level set by the symmetric dis-
tribution of the vacuum state. 3 In terms of the familiar
photon annihilation and creation operators (a,at) for a
single-mode field of frequency tat, a pair of conjugate
quadrature operators is given by X+ (a+at) and
X- —i(a —at) with commutation relation [X++ )
2i and corresponding uncertainty product M'+hX
«1. The electric field operator E is then expressed as
E EQIX+cos(catt )+X sin(tat t )). Light in a coherent
state (approximated by a single-mode laser) or in a vac-
uum state is in a minimal-uncertainty state
(~+hX 1) with equal variance for each of the two
quadrature components. Squeezed states may or may
not be minimal-uncertainty states but are such that one
quadrature component has variance (bX~)2( I. The
fluctuations expressed by the uncertainty product can be
graphically represented [as shown in Fig. 1(a)] by a
symmetric error circle for a coherent state (dashed line)
while for a squeezed state this error circle is squeezed
into an error ellipse (solid line). An analysis based on
the Glauber-Sudarshan phase-space functional demon-
strates that squeezed states of light lie outside the realm
of any classical theory of the field. Since coherent laser
beams of macroscopic intensity can be squeezed, one can
argue that squeezed states represent a macroscopic
quantum effect. It is the quantum nature of these states
that gives rise to a host of intriguing possibilities associ-
ated with precision measurement at the quantum level
and with the interaction of simple atomic systems with
squeezed radiation.
In the past year squeezing has been observed in several

laboratories, beginning with the landmark experiment
of Slusher et aI. %hile firmly establishing the existence
of this phenomenon, these initial experiments demon-
strated only modest reductions of 4-17/o in noise power
relative to the vacuum-state limit. In this Letter, we re-
port experiments in which the recorded noise level in
homodyne detection has been reduced by greater than

50Vo relative to the level set by the vacuum state of the
field. Furthermore, a quantitative comparison of our
measurements with theoretical predictions leads to the
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FIG. l. (a) Phase plot of the uncertainties in the quadrature
amplitudes of the electric field. The solid line represents the
variance v (8) of the field X(8) X+cos8+X-sin8 as a func-
tion of 8 for a squeezed state; the dashed line is for the vacuum
state. (b) Measurement of the phase dependence of the quan-
tum fluctuations in a squeezed state produced by degenerate
parametric down conversion. The plot corresponds roughly to
the quantity v(8) as in (a). More precisely, the phase depen-
dence of the rms noise voltage V(8) from a balanced homo-
dyne detector is displayed as a function of local oscillator phase
8 at fixed analysis frequency (1.8 MHz) and bandwidth (100
kHz) in the spectral distribution of photocurrent fluctuations.
%'ith the OPO input blocked, the vacuum field entering the
signal port of the detector produces the noise voltage given by
the dashed line with no sensitivity on 8. %ith the OPO input
present, the dips below the vacuum level represent a 50%
reduction in noise power relative to the vacuum noise level.
Note that the ordinate is a linear scale in noise voltage. The
dotted line is the amplifier noise level.
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(a) (b)

Figure I.6: Squeezing obtained in two of the very first squeezing experiments. (a) Vari-
ance of one quadrature of the radiation coming out of a four-wave-mixing experiment,
as a function of the phase of the quadrature. The horizontal solid line stands for the
SQL, i.e., the minimal noise found in vacuum. Taken from [Shelby86]. (b) Variance of
one quadrature of the radiation coming out of a degenarate parametric down conversion
experiment, as a function of the phase of the quadrature. The horizontal dashed line
stands for the SQL. Taken from [Wu86].

field ĉ, called the pump, and oscillating at ωc. Inside the OPO, a nonlinear interaction
takes place between the pump mode, and two other modes, called signal and idler. In
principle, the signal and idler are distinct modes âs and âi. However, in a degenerate
OPO they have the same frequency ωa = ωs = ωi, and thus can be treated as being the
same mode â = âs = âs. In the interaction picture, the Hamiltonian of this process can
be written as

ĤdOPO = i
~g
2

(
ĉ(â†)2 − ĉ†â2

)
, (I.84)

where g is the coupling between the modes. The interaction picture was derived using
the same method as in Eq. (I.9), and here the free Hamiltonian is Ĥ0 = ~ωaâ†â+~ωcĉ†ĉ.
The meaning of Eq. (I.84) is that each time a photon from the pump is destroyed at
the frequency ωc, two photons are created at a frequency ωa = ωc/2. This way the
energy is conserved in this quantum process. If the stiff pump approximation can be
made, thus considering the pump as undepleted, the pump operator ĉ can be replaced
by a complex number being the complex amplitude of the pump field, αc = 〈ĉ〉. If αc
is real18, Eq. (I.84) becomes

ĤdOPO = i
~gαc

2

(
(â†)2 − â2

)
. (I.85)

Eq. (I.85) is the form most commonly used to introduce a squeezing Hamilto-
nian [Scully97].
Experimentally, this squeezing is measured on the light that escapes the system after

some time. An important question now is how to compute this escaping squeezing from
the Hamiltonian (I.85), a crucial point in this thesis. Computing the time evolution
18This assumption is only made for the sake of simplicity, and does not change the physics of the

problem but only the angle of the maximally squeezed quadrature.
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Figure I.7: Noise spectra in decibels for the degenerate parametric oscillator derived by
applying input-output theory to the Hamiltonian (I.85). For the derivation of the equa-
tion of motion for â using input-output theory, see the appendix A; for the derivation
of these noise spectra using input-output theory, see the appendix B. (a) Sφ(ω) (dashed
curve) and Sφ+π/2(ω) (solid curve), respectively for quadratures X̂φ and X̂φ+π/2, shown
as functions of φ. Here gαc = 0.15γa, ω = 0 (origin of the rotating frame, that ro-
tates at ωc/2). (b) Sφ=φ/2(ω), namely the noise spectrum for the quadrature Ŷ , as a
function of ω (the measurement frequency in the rotating frame). From top to bottom,
gαc = 0.05γa; 0.15γa, 0.3γa. For gαc = 0.5γa, Sφ=φ/2(ω) is infinitely squeezed (not
shown here). In both plots the solid horizontal line indicates the SQL.

of the density matrix for the system using a master equation is a solution difficult to
implement when one treats intense fields, as we do not want to put any restriction
on the field amplitude αc. Therefore, this method is not really appropriate. A more
convenient method is the one called input-output theory [Gardiner04]. Developed in
the eighties [Yurke84, Gardiner85], this theory aims at formulating interactions between
quantum systems as a set of coupled equations of motions, and to extract a transfor-
mation matrix between the initial states (the inputs) and the final states (the outputs)
once the equations have been linearized. To understand how to go from the Hamilto-
nian in Eq. (I.85) to an equation of motion for the operator â, see the appendix A.
For a derivation of the noise spectra of the output radiation âout from the equation
of motion, and using input-output theory, see the appendix B. The results from this
appendix were used to plot the noise spectra shown in Fig. I.7, where one can observe
the same oscillatory behavior for the squeezing than in Fig. I.6, by varying the phase φ.

I.2.9.2 Two-mode squeezed states

A priori, two-mode squeezed states do not satisfy the inequality in Eq. (I.81), meaning
that each mode taken independently is not squeezed.19 However, in these states squeez-
ing appears as a quantum correlation between the two modes. Indeed, one can define a

19We will see in chapter III that there are situations where this statement is not true, and where a
two-mode squeezed state can also be squeezed in the single-mode picture.



46 I Light-matter interactions and quantum states of light

collective quadrature [Duan00]

û±φa,φb =
X̂a,φa ± X̂b,φb√

2
, (I.86)

where X̂a,φa is a quadrature for a mode â with angle φa defined in Eq. (I.37), and where
with same definition X̂b,φb is a quadrature for a mode b̂ with angle φb. If this quadrature
satisfies

〈∆û±φa,φb〉
2 < 1/2, (I.87)

then the state is said to be two-mode squeezed. An intuitive picture for understanding
those states can be made with the following example. If φa and φb are chosen so that
X̂a,φa and X̂b,φb are the amplitudes of both fields, and if Eq. (I.87) is satisfied for û−φa,φb ,
then the number of photons can be measured with less noise than the vacuum if one
looks at the difference between the amplitudes of both modes, instead of looking at
the amplitudes separately. Two-mode squeezing has first been analyzed in [McNeil83],
where the authors studied the squeezing in a linear combination of the signal and idler
fields in a non-degenerate OPO.
A concept directly linked to two-mode squeezing is quantum entanglement. First

highlighted in 1935 by Einstein, Podolsky and Rosen [Einstein35b] with their "spooky
action at a distance", and by Schrödinger with his famous cat thought experi-
ment [Schrödinger35], quantum entanglement is the fact that two systems (or even
more) cannot be described separately, even if they are spatially distant. In mathemat-
ical terms, it means that if we call ρa,b the density matrix describing two entangled
electromagnetic field modes â and b̂, then we have

ρ̂a,b 6= ρ̂a ⊗ ρ̂b, (I.88)

where ρ̂a is a density matrix in the Hilbert space of mode â, and ρ̂b a density matrix
in the Hilbert space of mode b̂, with a tensorial product between them. Eq. (I.88) thus
defines the inseparability between modes â and b̂. For continuous variables quantum
systems20 there are criteria that allow to detect entanglement or even quantify it. How-
ever, those criteria were formally demonstrated at the very end of the previous millen-
nium, yet two-mode squeezing was theoretically studied [McNeil83, Reynaud87, Reid88]
and experimentally demonstrated [Reynaud87, Ou92] years before that. Therefore, back
then, instead of studying entanglement, the trend was to disprove the so-called Einstein-
Podolsky-Rosen (EPR) paradox [Einstein35b]. For continuous variables systems, it was
shown to be directly linked to two-mode squeezing, and the paradox is said to be realized
when the following inequality is satisfied [Reid89, Ou92]

〈∆û+φa,φb〉
2〈∆û−φa+π/2,φb+π/2〉

2 < 1/4, (I.89)

where it may be rewritten as 〈∆(X̂a + X̂b)〉2〈∆(Ŷa − Ŷb)〉2 < 1, in the instance φa =

20Namely quantum systems whose state is described in a Hilbert space of infinite dimension, such as
when the electromagnetic field is described in phase space. The opposite kind of systems is called
discrete variables quantum systems, where the Hilbert space has a finite size, such as for qubits for
instance.
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φb = 0.
Concerning the other criteria demonstrated later and mentioned above, the first one

is an entanglement witness, that can be written as [Duan00]

〈∆û+φa,φb〉
2 + 〈∆û−φa+π/2,φb+π/2〉

2 < 1, (I.90)

For instance, if φa = φb = 0, Eq. (I.90) may be written as 〈∆(X̂a + X̂b)〉2 + 〈∆(Ŷa −
Ŷb)〉2 < 2. This quantity is an entanglement witness, therefore the inequality (I.90),
when satisfied, tells us that we have an entangled state, but does not quantify the
amount of entanglement since it is only a sufficient condition for entanglement. Fur-
thermore, in general it is only a sufficient criterion, meaning that if the inequality is not
satisfied, we do not know if the state is separable or entangled. However, for Gaussian
states,21 it is a necessary and sufficient criterion, and thus, states that do not satisfy
Eq. (I.90) are necessarily separable. Another criterion widely used is the one based
on the covariance matrix V. If one defines the vector X̂ = {X̂a, Ŷa, X̂b, Ŷb}, then the
elements of V are defined as [Serafini04]

Vij =
1

2
〈X̂iX̂j + X̂jX̂i〉 − 〈X̂i〉〈X̂j〉. (I.91)

This matrix contains all the possible correlations between modes â and b̂, and can be
used to define a Peres-Horodecki separability criterion for continuous variables [Simon00].
As in the discrete variable case [Peres96, Horodecki96, Horodecki97], it is the non-
positivity of the partial transpose of the density matrix ρ̂a,b that is used to show that
a state is entangled, and a negativity can also be defined that will in a sens quantify
the entanglement. To define it, let us write the covariance matrix V in terms of 2 × 2
matrices α, β and γ

V =

(
α γ
γT β

)
, (I.92)

where γT is the transpose of γ. In order to obtain our criterion we first must compute
the symplectic eigenvalues ν̃± of the partially transposed covariance matrix Ṽ [Adesso05]

ν̃± =

√√√√∆(Ṽ)±
√

∆2(Ṽ)− 4 detV
2

, (I.93)

where ∆(Ṽ) = detα + detβ− 2 detγ. The smallest symplectic eigenvalue ν̃− can then
be used to compute the logarithmic negativity for the state ρ̂a,b22

EN (ρ̂a,b) = max
(

0,− log
(
2ν̃−

))
, (I.94)

which quantifies the amount of entanglement between modes â and b̂, and is an upper

21States whose Wigner function is Gaussian.
22Note that with our definition for the field quadratures in Eq. (I.37), we have ν̃± ≤ 1/2. Thus,

with a different definition we may have ν̃± ≤ 1 as in [Adesso05], the logarithmic negativity will be
EN (ρ̂a,b) = max

(
0,− log ν̃−

)
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entanglement of formation. Following Giedke et al. [10],
we introduce the covariance matrix (CM) ! for the !45"

polarized modes:

!i;j # h"Ri"Rj $ "Ri"Rji=2;

where fRi; i # 1; . . . ; 4g # fX$45; Y$45; X%45; Y%45g. Using
the fact that Ax and iAy are uncorrelated and symmetrical
[see Figs. 2(b) and 2(c)], it is straightforward to show that
the !45" modes have isotropic fluctuations. Choosing
# # #sq, the covariance matrix can be expressed in the
standard form given in Ref. [10]:

! #

0

B

B

@

n 0 k 0
0 n 0 %k
k 0 n 0
0 %k 0 n

1

C

C

A

; (6)

with n # !2X!45 # !2Y!45 and k # h"X$45"Y%45i #
h"X%45"Y$45i [15]. As calculated by Giedke et al., the
EOF E, representing the amount of pure state entangle-
ment needed to prepare our entangled state [16], is then
directly related to the inseparability criterion value by
[10]

E # f&n% k' # f(I$45;%45&#sq'=2); (7)

with f&x' # c$&x'log2(c$&x') % c%&x'log2(c%&x') and
c!&x' # &x%1=2 ! x1=2'2=4. For I$45;%45 # 1:86! 0:02,
the EOF is E # 0:014! 0:003.

Last, we show that this quadrature entangled beam
allows to generate polarization entanglement. Polari-
zation entanglement for two beams $ and % [5] is
achieved when

IS
$;% # 1

2(!2&S$2 $ S%2 '$!2&S$3 $ S%3 ')< jhS$1 ij$ jhS%1 ij;

where the S$;%i are the standard quantum Stokes opera-
tors. For this, we produce new modes by mixing the A!45
modes studied previously with additional strong fields.
The A!45 modes are obtained from the x; y modes by
passing the beam through a half-wave plate with axes at
22:5". The fields along the x and y directions are now the
A$45 and A%45 fields, which we will denote by A0

x and A0
y

[see Fig. 3]. The A0
x and A0

y are then spatially separated
with a polarizing beam splitter. In the other input of the
beam splitter, we send a strong field B with a polarization
at 45" from the beam splitter axes, yielding the output
fields By and Bx. The strong field B is similar to the local
oscillator in the previous experiment, except that its phase
#B is locked to that of one of the A fields by a servo loop,
as shown in Fig. 3. At the two outputs of the beam splitter,
we have two beams $;% which are the superposition of,
respectively, A0

x and By, and A0
y and Bx. The Stokes

operators S$i for one of the outputs are then

FIG. 3. Setup for nonseparable beam generation. Inserting the
quarter-wave plates (or not) allows for measuring the fluctua-
tions of S$3 $ S%3 (or S$2 $ S%2 ). The servo loop is used to lock
the B field phase to the squeezed quadrature angle.

FIG. 2 (color online). (a) Quadrature noise spectra of Ax and
iAy, at a frequency of 5 MHz, when the relative phase #
between the LO and the mean field mode is varied in time.
(b) Direct measurement of I$45;%45&#'. (c) Corresponding
measurement of Ix;y&#'.
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entanglement of formation. Following Giedke et al. [10],
we introduce the covariance matrix (CM) ! for the !45"

polarized modes:

!i;j # h"Ri"Rj $ "Ri"Rji=2;

where fRi; i # 1; . . . ; 4g # fX$45; Y$45; X%45; Y%45g. Using
the fact that Ax and iAy are uncorrelated and symmetrical
[see Figs. 2(b) and 2(c)], it is straightforward to show that
the !45" modes have isotropic fluctuations. Choosing
# # #sq, the covariance matrix can be expressed in the
standard form given in Ref. [10]:

! #

0

B

B

@

n 0 k 0
0 n 0 %k
k 0 n 0
0 %k 0 n

1

C

C

A

; (6)

with n # !2X!45 # !2Y!45 and k # h"X$45"Y%45i #
h"X%45"Y$45i [15]. As calculated by Giedke et al., the
EOF E, representing the amount of pure state entangle-
ment needed to prepare our entangled state [16], is then
directly related to the inseparability criterion value by
[10]

E # f&n% k' # f(I$45;%45&#sq'=2); (7)

with f&x' # c$&x'log2(c$&x') % c%&x'log2(c%&x') and
c!&x' # &x%1=2 ! x1=2'2=4. For I$45;%45 # 1:86! 0:02,
the EOF is E # 0:014! 0:003.

Last, we show that this quadrature entangled beam
allows to generate polarization entanglement. Polari-
zation entanglement for two beams $ and % [5] is
achieved when

IS
$;% # 1

2(!2&S$2 $ S%2 '$!2&S$3 $ S%3 ')< jhS$1 ij$ jhS%1 ij;

where the S$;%i are the standard quantum Stokes opera-
tors. For this, we produce new modes by mixing the A!45
modes studied previously with additional strong fields.
The A!45 modes are obtained from the x; y modes by
passing the beam through a half-wave plate with axes at
22:5". The fields along the x and y directions are now the
A$45 and A%45 fields, which we will denote by A0

x and A0
y

[see Fig. 3]. The A0
x and A0

y are then spatially separated
with a polarizing beam splitter. In the other input of the
beam splitter, we send a strong field B with a polarization
at 45" from the beam splitter axes, yielding the output
fields By and Bx. The strong field B is similar to the local
oscillator in the previous experiment, except that its phase
#B is locked to that of one of the A fields by a servo loop,
as shown in Fig. 3. At the two outputs of the beam splitter,
we have two beams $;% which are the superposition of,
respectively, A0

x and By, and A0
y and Bx. The Stokes

operators S$i for one of the outputs are then

FIG. 3. Setup for nonseparable beam generation. Inserting the
quarter-wave plates (or not) allows for measuring the fluctua-
tions of S$3 $ S%3 (or S$2 $ S%2 ). The servo loop is used to lock
the B field phase to the squeezed quadrature angle.

FIG. 2 (color online). (a) Quadrature noise spectra of Ax and
iAy, at a frequency of 5 MHz, when the relative phase #
between the LO and the mean field mode is varied in time.
(b) Direct measurement of I$45;%45&#'. (c) Corresponding
measurement of Ix;y&#'.
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(a)

quantum uncertainty, is a sufficient evidence of entangle-
ment [14,19,20].

The normalized noise power !2 is obtained by measur-
ing the spectral density Sa (detailed in the Supplemental
Material [14]),

!2ð!’Þ ¼ 2

coshð2rAÞ

!
Sað!’Þ $ Soff

hfaGLNA
þ 1

2

"
; (7)

where the noise background due to the following amplifiers
Soff is small enough to be precisely subtracted. The spectral
densities SaðfaÞ and SbðfbÞ of both modes at the output of
the analyzer were measured using a microwave spectrum
analyzer behind a cryogenic low-noise preamplifier on a
0.5 MHz bandwidth. This bandwidth was chosen to be
smaller than that of the mixers for all combinations of
gains GE;A ¼ cosh2rE;A and phase differences !’.
Importantly, it was possible to calibrate the total gain of
the measurement setup GLNA, so that the normalized noise
power !2 is measured with at most &2:5% relative error
[14]. This calibration was performed by turning on a single
mixer at a time and varying the temperature of a thermally
decoupled input load on mode ain;E. As a side result, the
calibration provides the loss " ¼ 0:33& 0:05 between
mixers on mode a which, together with the ratio "#= "" ¼
0:945 from Fig. 3, leaves no unknown parameters in the
experiment.

As can be seen in Fig. 4(a), the noise does pass below the
threshold of amplified vacuum noise, hence proving the
existence of entanglement. Note that measurements on
mode b (not shown) gave similar results, as expected.
Note also that minimum noise !2

min occurs at jrEj< jrAj
and not at exactly opposite squeezing parameters. This
deviation may be due to the beginning of a saturation of
the analyzer mixer, corroborated by the slight deviations of
the fits in Fig. 3. For each squeezing parameter rE, it is
possible to extract the extrema of noise !2

min;max from the

curves of Fig. 4(a). These extremal noise measurements
[Fig. 4(b)] are well described by Eq. (6) generalized
to unbalanced losses between modes with " ¼ 0:37 and
# ¼ 0:40, consistently with the calibration. It is even
possible to account for the whole dependence of the mea-
sured noise on phase difference!’ by generalizing Eq. (5)
using the same parameters [Fig. 4(b)]. The overall mini-
mum for the measured noise is reached at cosh2rE ' 5 and
reads !2

min ¼ 0:45& 0:01 with a corresponding maximum
!2

max ¼ 11:9& 0:1.
It is remarkable that the amount of noise at the output

of a single port of the analyzer directly measures
the entanglement between the two input fields. In particu-
lar, the minimum of output noise is linked to the logarith-
mic negativity EN ¼ $log2ð!2

minÞ ¼ 1:15& 0:04 and to
the entropy of formation EF ¼ 0:69& 0:03 entangled
bits (ebits, see [14]) [14,21–25]: the deeper the noise
fringes, the larger the entanglement. The purity of the
entangled state is also related to both extrema trð$2Þ ¼

ð!2
min!

2
maxÞ$1 ¼ 0:186& 0:09. These quantities of entan-

glement are within a factor of 2 from the state of the art in
optics [21,26–28]. Given the bandwidth of the mixers, the
analyzer receives a usable rate of 6 Mebits ( s$1 (mega
entangled bits per second) from the entangler.
In conclusion, we have demonstrated the production of

EPR states of microwave radiation. Vacuum noise at the
input of a first mixer is converted into two entangled fields.
A second mixer is used to recombine and disentangle the
two fields. Using an absolute calibration, the minimal noise

b

Antisqueezing

Squeezing

c

a

FIG. 4 (color online). (a) Color traces: Variance of the output
mode ð!aoutAÞ2 referred to the case of vacuum input on the
analyzer [divided by cosh 2rA=2ð Þ] as a function of phase differ-
ence !’, determined by measuring the spectral density of the
noise at the analyzer a output when only quantum noise enters
the entangler a; b inputs. An absolute calibration allows exact
conversion between both quantities with an error of at most
&2:5% [14]. Each color corresponds to the same gain of the
entangler GE as in Fig. 3 with a fixed gain on the analyzer GA ¼
cosh2rA ¼ 10. The horizontal line at !2 ¼ 1 represents the
measured noise for amplified vacuum at the output of the
analyzer (rE ¼ 0). For !’ close to %, the measured noise
goes below this level, an evidence of entanglement. Dashed
lines: Predicted variance using Eq. (5) extended to the unbal-
anced loss case using " ¼ 0:37 and # ¼ 0:40. (b) Dots: Noise
level measured at !’ ¼ 0 (antisqueezing) and !’ ¼ %
(squeezing) as a function of gain GE for GA ¼ 10. The size of
the dots is larger than the error bar. Solid lines: Prediction using
Eq. (6), extended to unbalanced losses as in (a). Colored
area: Consistent values of the noise using the uncertainty
in the calibration of the losses " and # [14]. Dashed
lines: Same prediction but without losses, " ¼ # ¼ 0.
(c) Solid dots: Logarithmic negativity measure of entanglement,
with errors bars. Solid squares: Entanglement purity.
Lines: Theoretical predictions using the parameters of (b).
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Figure I.8: Experimental demonstrations of bipartite continuous variable entanglement
(a) Entanglement witness (I.90) as a function of time, generated by light interacting
with cold atoms. When I+45,−45(θ) < 2, the two light beams at optical frequencies
are entangled. Taken from [Josse04]. (b) Logarithmic negativity (I.94) as a function
of the gain in a three-wave mixing process at microwave frequencies. rE is a squeezing
parameter that may be defined here as 〈∆X̂sq〉 = e−rE/

√
2, where X̂sq is the squeezed

quadrature. Taken from [Flurin12].

bound to the distillable entanglement23 present in the state ρ̂a,b [Adesso05].
In recent years, these entanglement criteria have been applied in various experiments,

at optical [Silberhorn01, Bowen02, Josse04] as well at microwave [Eichler11, Flurin12]
frequencies. In Fig. I.8 one can see experimental demonstrations of two-mode squeezing
and the applications of both the entanglement witness (I.90) and the logarithmic neg-
ativity (I.8). Two-modes squeezed states are of great use for the study of fundamental
properties of quantum mechanics such as non-locality [Chen02], but are also an essential
resource in quantum information and communications protocols [Braunstein05], such as
in a quantum teleportation protocol for instance [Braunstein98, Furusawa98].
The last part of the present section is devoted to show how to compute the two-mode

squeezing for an experimental scheme. We are again interested in the interaction taking
place in an OPO, as it is the most common set-up to achieve two-mode squeezing. Yet,
here we are interested in the non-degenerate OPO, whose interaction Hamiltonian is

ĤOPO = i
~gαc

2

(
â†s â
†
i − âsâi

)
, (I.95)

where âs and âi stand for the signal and the idler modes, and where we already applied
the stiff pump approximation, as we did in Eq. (I.85). Here again we can use the input-
output theory in order to study the noise properties of the output radiation, we we did
in section I.2.9.1. For a derivation of the input-output relations for both modes and of
the covariance matrix, see appendix C. In Fig. I.9 we show some noise properties of the
output radiation coming from a non-degenerate OPO. Essentially, Figs. I.9(a) and I.9(b)
show that while two collective quadratures are squeezed below the SQL, the noises of

23The distillation of entanglement is a process where l copies of some entangled state are used to
produce k copies of maximally entangled states [Bennett96].
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Figure I.9: Noise spectra in decibels, entanglement witness ans logarithmic negativity
for the non-degenerate parametric oscillator derived by applying input-output theory
to the Hamiltonian (I.95). For the derivation of these noise spectra using input-output
theory, see the appendix C. (a) Noise spectra for the two-mode quadratures û−0,0 =

(X̂s − X̂i)/
√

2 (gray dashed curve) and û+π/2,π/2 = (Ŷs + Ŷi)/
√

2 (black solid curve), as
a function of ω (the measurement frequency in the rotating frame). (b) Noise spectra
for the single-mode quadratures X̂s (gray dashed curve) and Ŷs (black solid curve), as a
function of ω. (a),(b) The noise spectra follow the same definition as in Eq. (B.19), and
we have gαc = 0.3γa. (c) Entanglement witness as defined in Eq. (I.90), as a function
of the coupling gαc, at ω = 0.

the single-mode quadratures are amplified above the SQL.24 This can be understood
by noting that we have an entangled state, and thus looking at single-mode properties
amounts to make a partial trace over the bipartite state, which leaves us a mixed single
mode state, hence with more noise that the vacuum in every direction in phase-space.
Indeed, the full state’s entanglement is proven in Figs. I.9(c) and I.9(d), where one can
appreciate the violation of the entanglement witness (I.90) as well as the quantification
of the entanglement through the logarithmic negativity (I.94).

I.2.10 Some examples of other nonclassical states

Although the non-classical states encountered in rest of the thesis are squeezed states,
belonging to the more general category of Gaussian states, we wish at last in this chapter

24Note that here the single-mode properties of mode b̂ are exactly the same that those of mode â.
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Figure I.10: Wigner functions for two non-Gaussian quantum states displaying nege-
tive regions. (a) Single photon Fock state. (b) Schrödinger cat state |c−〉 = (|β〉 − | −
β〉)/
√

2, with β =
√

3.

to mention some non-classical states that are non-Gaussian. Non-Gaussian states are
states whose Wigner function is not a Gaussian function of α. For pure states, it
goes hand in hand with the presence of negative regions in phase-space for the Wigner
function. The simplest type of non-Gaussian states one could think of are Fock states,
whose expression was already given in Eq. (I.39). For instance, the Wigner function for
a single photon Fock state is [Haroche06]

WFock(α) =
2

π

(
4|α|2 − 1

)
e−2|α|

2
. (I.96)

showns in Fig. I.10(a). Another type of non-Gaussian states are the famous Schrödinger
cat states |c± = (|β〉 ± | − β〉)/

√
2, whose Wigner function, shown in Fig. I.10(b), is

Wcat(α) =
2

π
(
1± e−2|β|2

)(e−2|α−β|2 + e−2|α+β|
2 ± 2e−2|α|

2
cos
(
4Im{α}Re{β}

))
.

(I.97)
In order to generate both Fock states and Schrödinger cat states, one has to perform

non-Gaussian operations on the system. For such operations one needs a high nonlinear-
ity, such as when a two-level system interacts with a cavity mode, or cavity with a high
Kerr nonlinearity, which would give a non-linear equation of motion for the cavity, as
opposed to the linear equations exposed in Eqs. (B.3) and (C.3). It is a challenge to gen-
erate these states in a laboratory, however experimental demonstrations exist, both at
microwave [Brune96, Varcoe00] and at optical [Lvovsky01, Ourjoumtsev07] frequencies.

I.3 Conclusion

In this chapter we have seen some important concepts in quantum mechanics, that will
be of great help to tackle the topics studied in the next chapters. In particular, we
defined the notion of squeezing as the benchmark of the correlations that can arise for
photons in Gaussian states. Furthermore, we reviewed the different regimes of light-
matter interactions, and focused on the different features of the ultrastrong coupling
regime that we will encounter again later in this manuscript.
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The following chapters are devoted to present the research carried in this thesis, which
as a main goal was focused on the utilization of the USC regime as a resource for the
generation of squeezed states of radiation in various experimental set-ups.
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II Dispersive ultrastrong coupling
regime in intersubband devices

This chapter presents one of the results of this thesis, and is a first step in a broader
study of the relation between squeezed states of light and the ultrastrong coupling
(USC) regime. It is mainly based on the results reported in [Fedortchenko16]. Al-
though the model presented here could in principle be applied to superconducting cir-
cuits architectures (see chapter III), the prime focus of the work is on intersubband
devices [Todorov10]. Therefore, the chapter starts with a quick overview of these sys-
tems. Then, using the tools at our disposal, we build a model where two important
ingredients are added to the standard framework with intersubband transitions in the
electrical dipole gauge [Todorov12a], namely a time dependence of the ultrastrong light-
matter coupling [De Liberato07], as well as a large detuning between the light and the
matter degrees of freedom. We study the consequence of these hypotheses on the noise
spectrum of the radiation coming out of the system, as well as the influence of other
physical parameters. Furthermore, after reported results for the simplest architecture
possible which is a two-level quantum well, we extend our model to the situation where
the quantum well has three levels. The prerequisites for the present chapter are the
same as for chapter I, as well as the notions seen in the latter.

II.1 Many-body properties of intersubband devices

Building solid-state devices where electrons induce quantum effects is a long standing
goal [Capasso90], both for fundamental and practical applications. The most famous
such application is the so-called Quantum Cascade Laser, demonstrated for the first
time more than twenty years ago [Faist94]. On the fundamental side, great interest
has been devoted in studying the interactions between collective excitations of elec-
trons and confined cavity modes of unprecedented strength. Such strength can de-
fine new regimes of light-matter interactions (see chapter I), and as a matter of fact,
both the strong [Weisbuch92, Rapaport00] and the ultrastrong [Günter09, Todorov09,
Anappara09] coupling regimes that have been achieved in those systems. Our interest
in those systems specifically lies of the fact that such light-matter coupling regimes can
be reached in them with nowadays technology. Specifically, we are interested in semi-
conducting heterostructures, such as made of GaAs or GaInAs for instance1. One way
to reach quantum effects in those structures is to confine the electrons in discrete levels,
called subbands in a quantum well. To obtain a quantum well, the semiconductor in
question is imprisoned between two layers of another semiconductor with a wider gap

1In this chapter we are interested in III-V semiconductors with a direct gap [Pegolotti14a].
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Figure II.1: Various representations of a quantum well. (a) Sketch of a quantum
well showing a semiconductor (GaAs or GaInAs for instance), confined between two
layers of another semiconductor with a wider gap (accordingly, AlGaAs or AlInAs).
The length LQW of one quantum well can range from from few nm to tens of nm. The
bottom metal layer and the top metal patch (array of patches for the full sample) play
the role of cavity and can be engineered to confine light resonant with the intersubband
electronic transitions. (b) Schematic of the quantum well in terms of a square potential,
where we can see the two subbands labeled 1 and 2. EF is the Fermi level. (c) Fermionic
single-particle excitation ĉ†2kĉ1k, the jump of an electron from the first to the second
subband. (d) Fermionic collective excitation that can be described as a single bosonic

one b̂†q=0 =

√
〈N̂1〉 − 〈N̂2〉

∑
k ĉ
†
2k+qĉ1k [Todorov12a]. |GS〉 stands for the ground state

of the system.

(see Fig. II.1(a)). For instance, it this additional semiconductor can be made of AlGaAs
or AlInAs for quantum wells respectively made of GaAs or GaInAs. In the simplest
scenario, there is only two subbands available to the two-dimensional electron gas con-
tained in the confined semiconductor, and these subbands separated by the Fermi level
(see Fig. II.1(b)). More complex levels structures can be engineered with more than two
subbands, as wells as structures that superimpose many quantum wells [Todorov12b].
Note that in Fig. II.1(a) the interaction with light can only occur between the electrons
and free space radiation, which can be mended by putting the sample between metallic
patches that will confine light, thus forming a cavity.
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II.2 General light-matter Hamiltonian in the
Power-Zinau-Wooley representation

Here follows a brief review of the theoretical description of those systems. For a more
detailed introduction, see [Todorov12a, Pegolotti14a]. We start by recalling the Hamil-
tonian describing the interaction light and particles of mass mi and charge e in the
Coulomb gauge [Cohen-Tannoudji89, Pegolotti14a],

Ĥ = Ĥmat + Ĥph + Ĥint, (II.1)

standing, from left to right, for the Hamiltonian describing only the matter, then the
Hamiltonian for the photons, and finally the Hamiltonian for their interaction. Their
expressions are

Ĥmat =
∑
i

p̂2
i

2mi
, (II.2)

Ĥph =

∫ (ε0εsÊ2

2
+
µ0Ĥ

2

2

)
dr, (II.3)

Ĥint = −
∑
i

ep̂i · Â
mi

+
∑
i

e2Â2

2mi
+ V̂Coulomb, (II.4)

where as in chapter I, ε0 and µ0 are respectively the vacuum permittivity and the vacuum
permeability as in chapter I, and Ê is the electric field. εs is the material permittivity,
p̂i is the momentum operator for the i-th particle, Â is the vector potential, and Ĥ is
the magnetic field, proportional to the magnetic field B̂ defined in chapter I through
the relation B̂ = µ0Ĥ if the magnetic interactions are negligible in the material. The
Coulomb interactions between the electrons can be expressed as

V̂Coulomb =
∑
i 6=j

e2

4πε0|r̂i − r̂j
|, (II.5)

where r̂i is the position operator for the i-th particle. In what follows, we will use
a different representation than the one used in Eqs. (II.2) (II.3) and (II.4). It is
called the Power-Zinau-Wooley representation (or dipole representation) [Todorov12a,
Pegolotti14a], and after one applies the appropriate transformation to the Hamiltonian,
(II.3) and (II.4) become [Cohen-Tannoudji89, Pegolotti14a]

Ĥph =

∫ ( D̂2

2ε0εs
+
µ0Ĥ

2

2

)
dr, (II.6)

Ĥint = −
∫

D̂ · P̂
ε0εs

dr +

∫
P̂2

2ε0εs
dr, (II.7)

where D̂ is the displacement field operator, and P̂ is the polarization density opera-
tor. In Eq. (II.7), −

∫
D̂ · P̂dr/ε0εs is the light-matter interaction, while

∫
P̂

2
dr/2ε0εs

describes the self-interaction of the electronic polarization and contains the Coulomb
interactions.
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II.3 From a fermionic to a bosonic description of electronic
excitations

We will now rewrite the Hamiltonian (II.1) in second quantization. For the electronic
part in Eq. (II.2), the latter can be written

Ĥmat =
∑
i,k

~ωikĉ†ikĉik, (II.8)

where ĉik (ĉ†ik) is a fermionic annihilation (creation) operator, such that {ĉik, ĉ†jk′} =

δi,jδk,k′ . ~ωik = ~ωi + ~2k2/2m? is the total energy of the electron in the subband i
with in plane wavevector k (m? is the effective mass of the electron). Here the simplest
single particle excitation that can occur is one electron jumping from its subband to
the immediate upper subband. Such an excitation can be described with the operator
ĉ†i+1kĉ1k and is represented in Fig.II.1(c). However, in highly doped quantum wells
where the electron gas is very dense, collective effects can arise, and is that case the
electronic Hamiltonian can be rewritten in terms of bosonic excitations

Ĥmat =
∑
α,q

~ωαqb̂†αqb̂αq, (II.9)

where α stands for a transition i→ j, and where b̂αq is defined as a collective fermionic
excitation

b̂†αq =

√
〈N̂i〉 − 〈N̂j〉

∑
k

ĉ†jk+qĉik. (II.10)

Essentially, it is a coherent excitation that induces the transition of all the electrons
one one band to the next upper band, as can be seen in Fig. II.1(d).

II.4 Simplified Hamiltonian in the Power-Zinau-Wooley
representation

While it does not removes the generality of the present study, in the rest of the chapter
for the sake of simplicity we omit the sum over the in-plane wavevector q, which amounts
to consider the dipole approximation (q� k) [Pegolotti14a]. With this simplification,
in the case where the quantum well is confined in a cavity, as represented in Fig. II.1,
the total Hamiltonian (II.1) can be written in second quantization as

Ĥ =
∑
α

~ωαb̂†αb̂α + ~ωaâ†â+ i
∑
α

~Ωα

(
â†− â

)(
b̂†α + b̂α

)
+
∑
α,β

~Bαβ
(
b̂†α + b̂α

)(
b̂†β + b̂β

)
,

(II.11)
where ωa is the cavity frequency, which mode is described by the annihilation (creation)
operator â (â†). Ωα is the so-called Rabi frequency for the light-matter coupling, while
Bαβ is the coupling frequency between intersubband excitations of different transitions.
Note that in principle the cavity has also a wavevector dependence, that accordingly
the the approximation above does not appear here. As in chapter I, we used the stan-
dard quantization of the Eq. (II.6) in terms of quantum harmonic oscillators. For the
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explicit definition of the various frequencies shown in Eq. (II.11), we refer the reader
to [Todorov12a, Pegolotti14a].
It is worthwhile noting here that one of the advantages of the Power-Zinau-Wooley

representation of quantum electrodynamics is that the squared vector potential term,
proportional to (â† + â)2, does not explicatively appear here. However, it is taken into
account in Eq. (II.11) due to the Power-Zinau-Wooley transformation. In the standard
representation of quantum electrodynamics, the squared vector potential contribution is
explicit. One could switch Eq. (II.11) for the standard representation by simply changing
the definitions of ωα, ωa, Ωα and Bαβ , and adding the squared vector potential term
~D(â† + â)2 to the Hamiltonian [Ciuti05, Ciuti06].

II.5 Renormalization of the many-body excitation
frequencies: the intersubband plasmons

Let us now introduce the so-called intersubband plasmons. These excitations are for-
mally defined in the diagonalization of the matter part of the Hamiltonian (II.11),
namely the first and the last terms of the right-hand side, but only for the case α = β.
This means that we search the eigenmodes of the system for each transition i → j
separately. It also means that when the quantum well is only made of two levels, we
thus have only one transition, for which we can define an intersubband plasmon. The
motivation for defining such modes is that these have a physical origin and consequence.
Indeed, when the electron gas has a high density and is submitted to an external electro-
magnetic radiation, each electron feels a depolarization field, an effective field induced
by the excitation of the other electrons. This eventually induces a plasma-like oscilla-
tion for the electrons [Pegolotti14a] (and Refs. therein). This oscillation translates in a
frequency shift ωα,P with respect to the electronic excitation frequencies ωα, such that
the resonance observed experimentally is the following renormalized one

ω̃α =
√
ω2
α + ω2

α,P , (II.12)

where ωα,P is the so-called plasma frequency [Todorov12a]. The diagonalization2 thus
gives us ∑

α

~ω̃αp̂†αp̂α =
∑
α

~ωαb̂†αb̂α +
∑
α,β

~Bαα
(
b̂†α + b̂α

)(
b̂†α + b̂α

)
, (II.13)

where p̂α (p̂†α) is the annihilation (creation) operator of an intersubband plasmon asso-
ciated to the transition α. The interaction between intersubband excitations of different
subbands can be rewritten as∑

α 6=β
~Ξαβ

(
p̂†α + p̂α

)(
p̂†β + p̂β

)
=
∑
α,β

~Bαβ
(
b̂†α + b̂α

)(
b̂†β + b̂β

)
. (II.14)

The light-matter interaction term in Eq. (II.11) can also be rewritten in terms of the in-
tersubband plasmons operators p̂α and p̂†α, so that the full Hamiltonian can be expressed

2Not detailed here, but can be found in [Todorov12a, Pegolotti14a].
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as

Ĥ =
∑
α

~ω̃αp̂†αp̂α+~ωaâ†â+ i
∑
α

~Ω̃α

(
â†− â

)(
p̂†α+ p̂α

)
+
∑
α 6=β

~Ξαβ
(
p̂†α+ p̂α

)(
p̂†β + p̂β

)
.

(II.15)
For the exact expressions of Ω̃α and Ξαβ , we again refer the reader to [Todorov12a,
Pegolotti14a]. In the following we will focus on two particular situations: one where
the the quantum well has only one transition, which drops the index α, and another
situation where a quantum well with two transitions is considered (thus α = 1, 2).

II.6 Two-level quantum well

II.6.1 The need for a time-modulated coupling

In a case where the quantum well has only two subbands, as pictured in Figs. II.1(a),
II.1(b) and II.1(c), the Hamiltonian (II.15) is simplified to

Ĥ = ~ωpp̂†p̂+ ~ωaâ†â+ i~Ω
(
â† − â

)(
p̂† + p̂

)
, (II.16)

which is now simply a model of two coupled bosons, that we already encountered in
chapter I. Indeed, we retrieve Eq. (I.16), with Â = p̂. Here there is only one transition,
thus we dropped the index α, and replaced ω̃α by ωp, and Ω̃α by Ω for the sake of
compactness.
In chapter I, we have seen that when the ultrastrong coupling (USC) regime is reached

for the Hamiltonian (II.16), quantum correlations arise between the two-bosons even
when the system is in the ground state. Our goal here is to study how one could
extract these ground state correlations and observe them. In order to do so, the system
would need to somehow emit excitations towards its surrounding environment, and these
excitations would need to contain the information about these quantum correlations.
This precise point is precisely tackled in the next chapter, since here only one side of
the light-matter interaction can be observed. Indeed, the cavity mode described by
the operator â can emit electromagnetic radiation to its environment, that is a priori,
observable by a measurement apparatus capable of measuring light from the terahertz to
the mid-infrared part of the spectrum [Askenazi14]. However, the intersubband plasmon
described by the operator p̂ on the other hand, can omit excitations only in a non-
radiative way, since its environment, whose nature is more complex to define [Ciuti06],
rather comes from non-radiative processes inside the solid-state samples due to phonons
for instance [Ferreira89]. For this reason, in the remainder of this chapter we shall focus
on the emission of light coming from the cavity. We will study this emission using
input-output theory (see appendixes A and B), an seek for a way to obtain an output
radiation with nonclassical properties.
However, we can already take a moment to comment on the emission that can occur

in the model described by Eq. (II.16). Indeed, the first important element to note here
is that even when the USC regime is reached, no squeezed radiation can be emitted
from the system, unless the cavity was driven with a squeezed radiation in the first
place [Ciuti06]. This comes from the fact that in Eq. (II.16), the coupling frequency Ω
is time-independent, and the Hamiltonian itself is only quadratic, meaning that there is
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no physical nonlinearity nor any parametric process involved. These last two elements
are the key conditions to obtain a squeezed light emission. Note that a recent work
proved that squeezing can be found in the output field coming from an ultrastrong
light-matter interaction in a time independent case [Stassi16]. However, it was possible
because the light was interacting with a qubit, which makes it a nonlinear interaction.
In our case here, for a time independent coupling, no matter how large the coupling Ω,

and accordingly, no matter how many virtual photons are contained in the ground state,
these photons cannot escape the cavity unless some sort of parametric process occurs
in the system. This phenomenon is very much reminiscent of the Dynamical Casimir
effect [Moore70, Kardar99], where originally the model concerned a cavity whith one
of the mirrors shaken in a relativistic fashion, such that the cavity could emit photons
from the vacuum. The relativistic motion of the mirror could be a periodic vibration,
and the frequency of this vibration would need to be of the same order of magnitude
as the resonant frequency of the cavity, namely the frequency at which the photons
escape. Translated to our quantum well problem, it means that in Eq. (II.16), we need
at least one of the parameters to be modulated in time at some frequency ωmod, of
the same of magnitude as ωa. Such a direct identification can be made because what
matters in the Dynamical Casimir effect is not to specifically relativistically move one
of the cavity mirrors, but rather to perturb one or several parameters of the system in
a non-adiabatic way [De Liberato09, Johansson09, Wilson11] .
Modulating parameters in intersubband devices is an idea suggested [Ciuti05, Ciuti06]

and theoretically explored a decade ago [De Liberato07]. In this paper, the authors
studied the USC regime between intersubband excitations and cavity photons, with
a periodic time dependence for the coupling, such that Ω(t) = Ω0 + Ωmod(t). For a
non-zero modulation amplitude Ωmod, yet not large enough to be in the USC regime,
it was found that photons can be emitted from the vacuum, for modulation frequencies
close to twice the bare system frequencies ωa and ωp. However, the noise properties
of the light escaping the cavity were left unstudied. This is exactly the direction we
will take later on, since finding noise reduction beyond the standard quantum limit in
this system means that we are generating squeezed radiation in the terahertz band, a
important step towards the development of quantum optics at this frequency range.

II.6.2 Model of a dispersive ultrastrong coupling regime

Here we shall explore this yet untouched direction by studying the noise properties of
the output radiation in a model that contains a time modulated coupling, where one of
the differences with the model studied in [De Liberato07], is that we shall examine the
case where the modulated amplitude Ωmod also reaches the USC regime, and therefore
is comparable with the time independent coupling Ω0. Another difference in our model
is that we introduce a new regime, called the dispersive ultrastrong coupling regime,
which relies of the fact that here the frequency ωp of the intersubband plasmon is smaller
than both the cavity frequency ωa and the modulation frequency ωmod. Essentially, our
model, based on the Hamiltonian (II.16) is given by the following Hamiltonian

Ĥ = ~ωpp̂†p̂+ ~ωaâ†â+ i~Ω(t)
(
â† − â

)(
p̂† + p̂

)
, (II.17)
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Figure II.2: Vertical representation of the different frequencies in the system for two
resonance conditions. (a) δa = ωa − ωmod = ωp. (b) δa = ωa − ωmod = −ωp.

with
Ω(t) = Ω0 + Ωmod cos

(
ωmodt

)
. (II.18)

The goal in having ωp < ωa, ωmod is that we can study different kinds resonance con-
ditions. The two main resonance conditions we are interested in are represented in
Fig. II.2. Note that such a sinusoidal time-dependent coupling between two bosons was
also considered in [Felicetti14] as a means to entangle artificial atoms.
Given the form of Eq. (II.17), an analogy can be made between our model and the

nondegenerate optical parametric oscillator reviewed in chapter I. Indeed, the time
modulated coupling in Eq .(II.17) plays the role of the pump field in Eq. (I.95).
Using the unitary transformation Û(t) = eiωmodâ

†ât, we can move to a frame rotating
at ωmod, with time dependent terms oscillating at ωmod or at 2ωmod

Ĥ ′ = ~δaâ†â+ ~ωpp̂†p̂
+ i~Ω0

(
â†eiωmodt − âe−iωmodt

)(
p̂† + p̂

)
+ i

~Ωmod

2

(
â†e2iωmodt − âe−2iωmodt

)(
p̂† + p̂

)
+ i

~Ωmod

2

(
â† − â

)(
p̂† + p̂

)
, (II.19)

where δa = ωa − ωmod. We work in the regime where ωp ∼ |δa|, ωp < ωmod and
Ω0,Ωmod � ωmod, meaning that the terms oscillating at ωmod and 2ωmod can be safely
neglected using the rotating wave approximation. Consequently, we end up with the
effective Hamiltonian

Ĥeff = ~δaâ†â+ ~ωpp̂†p̂+ i
~Ωmod

2
(â† − â)(p̂† + p̂). (II.20)

Now we have a Hamiltonian in a rotating frame, similar to the Hamiltonian (I.95) of a
nondegenerate OPO, also in the rotating frame. As mentioned above, here ωmod is anal-
ogous to the pump frequency for the OPO. One difference with the OPO however, is that
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the interaction contains not only the two-mode squeezing term i~Ωmod(â†p̂† − âp̂)/2,
but also the exchange interaction term i~Ωmod(â†p̂ − âp̂†)/2. Note that the Hamilto-
nian (II.20) shows great resemblance with a linearized optomechanical Hamitonian in a
rotating frame (see chapter IV).
Since here the intersubband plasmon is not at resonance with the cavity, and that

we have ωp < ωa, the dispersive USC regime is achieved when Ω(t) ≥ 0.1ωp. However,
given that in the rotating frame, only the modulation amplitude Ωmod is relevant for
our study, we shall consider the USC regime to be reached when Ωmod ≥ 0.1ωp. It is
now worthwhile to comment on the values that Ωmod can take. In intersubband devices,
the value of the total light-matter coupling Ω(t) is limited by the frequency ωp, such
that Ω(t) ≤ ωp. Additionally, the modulation amplitude Ωmod cannot exceed the value
of the time independent coupling Ω0, otherwise for cos (ωmodt) = −1 we would get
Ω(t) = Ω0−Ωmod < 0, and it is not possible to inverse the sign of the total light-matter
coupling in intersubband devices. We are thus limited by Ω0 + Ωmod < ωp and by
Ω0 ≤ Ωmod, therefore

Ωmod ≤
ωp
2
. (II.21)

II.6.3 Noise spectra

With the model being defined, we can now study the output radiation using input-
output theory [Gardiner04], as we already used for the degenerate and the nondegener-
ate OPOs (see appendixes B and C). With this approach, the cavity mode is considered
to have only vacuum input or thermal input, with an environment made of harmonic
oscillators corresponding to all the modes of the electromagnetic field. For the intersub-
band plasmon however, defining its environment is less trivial [Ciuti06]. We consider
here a model commonly used of an ensemble of harmonic oscillators modeling the non-
radiative dissipation of the plasmon. The technical treatment in input-output theory is
thus strictly equivalent to the one used for the cavity. This way, one can easily define
equations of motions for the operators â(t) and p̂(t) and solve them in frequency space
to obtain the output radiation âout(ω), and then the noise spectra for this output field.
The equations of motion and the obtainment of the output field noise spectra are given
in appendix D.
In Fig. II.3 we show the noise spectra for the output field âout(ω), as a function

of various parameters. For the moment we consider only vacuum inputs, which is
equivalent to state that the environment for both the cavity and the plasmon is at zero
temperature. In Fig. II.3(a) the spectra for two conjugate quadratures X̂a,φ=π/6 and
X̂a,φ=2π/3

3 are shown as functions of the measurement frequency ω. It is the frequency
at which the signal would be recorded in an experiment. A high degree of squeezing
is shown, particularly for the quadrature X̂a,φ=π/6 (solid line in Fig. II.3(a)). Note
that in this figure the frequency ω/ωa = 0.1 correspond to the resonance with the
plasmon since here ωp/ωa = 0.1. Note that the value ω/ωa = −0.1 simply correspond
for the spectra to the symmetric counterpart of the resonance ω = ωp. However, no
squeezing dips are observed at ω = ±ωp in Fig. II.3(a). The squeezing dips are in fact
observed for frequencies close to ω = ±ωp, which is reminiscent of the vacuum Rabi

3For the definition of a field quadrature with an arbitrary phase φ, see Eq. (I.37).
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Figure II.3: Noise spectra Sa,φ(ω) of the radiation emitted by a cavity containing
an quantum well with one intersubband plasmon. The parameters are ωp = 0.1ωa,
ωmod = 0.9ωa, γa = ωa/10, γp = ωp/15 (a) Sa,φ=π/6(ω) (solid line) and Sa,φ=2π/3(ω)

(dotted line), for the conjugate quadratures X̂a,π/6 and X̂a,2π/3 (see Eq. (I.37)), as
functions of the measurement frequency ω. Here Ωmod = 0.5ωp. (b) Sa,φ(ω) as a
function of the phase φ, for a fixed frequency ω that minimizes the value of Sa,φ(ω).
Here Ωmod = 0.5ωp. (c) Sa,φ=π/6(ω) as a function of the modulation amplitude Ωmod,
for a fixed frequency ω that minimizes the value of Sa,φ=π/6(ω). (d) Sa,φ=π/6(ω) as a
function of the temperature T for thermal inputs in both the cavity and the intersubband
plasmon (see appendix D), again for a fixed frequency ω that minimizes the value of
Sa,φ=π/6(ω). Here Ωmod = 0.5ωp; ωa = 30 THz. Insets: thermal occupation numbers n̄p
(dotted line) and n̄a (solid line) for both the plasmon and the cavity inputs, as functions
of the temperature T .

splitting discussed in chapter I, where due to the ultrastrong coupling, the system was
not resonant any more at the bare resonance frequency, but since the resonant splits.
Yet, here the situation is slightly different that the one encountered in chapter I.

Indeed, in the standard USC regime, we would have

ωa = ωp. (II.22)

It means that the cavity is resonant with the intersubband plasmon, which is the regime
explored so far in experiments [Günter09, Todorov09, Anappara09, Askenazi14]. In that
case the Rabi splitting occurs around the frequency ωa = ωp. In our work however,
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we explore a new and original regime where the cavity and the plasmon are far from
resonance, and in Fig. II.3(a) we have ωp = 0.1ωa. Therefore, the resonance condition
used for our dispersive USC regime is

δa = ωp, (II.23)

where δa = ωa − ωmod. This resonance condition is the key point for obtaining output
squeezing from the dispersive USC regime. Indeed, δa = ωp means that in the rotating
frame we mimic the resonance (II.22) of standard USC regime, and, squeezed photons
can escape the cavity from vacuum because we are non-adiabatically perturbing the
light-matter coupling in time, thus giving enough energy for the system to release the
photons. In other words, we achieve a parametric process very reminiscent to what is
achieved in an OPO. Yet the difference with an OPO is that here we see some signatures
of the USC regime in the squeezing spectrum, i.e., the splitting observed in Fig. II.3(a)
around ω = ±ωp.
In Fig. II.3(b) we study how the squeezing changes with the quadrature phase φ,

where for each value of φ we used a value of ω that was optimized to minimize Sa,φ(ω).
We have used the same optimization to plot Sa,φ=π/6(ω) as a function of the modula-
tion amplitude Ωmod in Fig. II.3(c). There we can notice that the squeezing definitely
become more significant after reaching the dispersive USC regime. Indeed, we can see
in Fig. II.3(c) that when Ωmod/ωp = 0.1, the squeezing is around −0.5dB.

II.6.4 Influence of the temperature

We also studied the influence of the temperature on the squeezing, that we report in
Fig. II.3(d). To include a dependence on the temperature, we consider thermal inputs
for both the cavity and the plasmon (see appendix D). This is characterized by the
thermal populations n̄a = 1/(exp (~ωa/kBT ) − 1) and n̄p = 1/(exp (~ωp/kBT ) − 1).
These are shown as functions of the temperature in Fig. II.3(d) as insets. We can see
that even at T = 300 K the cavity thermal population is negligible, with n̄a = 8×10−3,
and although the plasmon one is rather small, with n̄p = 1.5, it is enough to decrease
the squeezing from ∼ −3.2 dB to ∼ −0.6 dB. Note that we have n̄p � n̄a because of
the large detuning between ωp and ωa, enough so that the plasmon is more prone to
the effects of temperature than the cavity.

II.6.5 Influence of the modulation frequency

Previously we have seen that the resonance condition in Eq. (II.23) allows us to define
a dispersive USC regime, and extract squeezed photons from the cavity. Here we study
how a change in the value of ωmod could influence the squeezing spectrum Sa,φ(ω).
Note that a change in ωmod thus changes the value of δa, and consequently, the condi-
tion (II.23) for the dispersive USC would not be verified anymore. In Fig. II.4(a) we show
how the squeezing changes with the quadrature phase φ, similarly to what we have done
in Fig. II.3(b), yet here we have ωmod = 1.1ωa. Thus the resonance condition (II.23)
becomes δa = −ωp (see Fig. II.2(b)). By comparing Fig. II.3(b) and Fig. II.4(a), we
can see that the phase φ minimizing Sa,φ(ω) has been shifted, and more importantly,
that the maximal amount of reachable squeezing has been drastically reduced, coming
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Figure II.4: Noise spectra Sa,φ(ω) of the radiation emitted by a cavity containing
an quantum well with one intersubband plasmon. The parameters are ωp = 0.1ωa,
γa = ωa/10, γp = ωp/15, Ωmod = 0.5ωp, T = 0. (a) Sa,φ(ω) as a function of the phase
φ, for a fixed frequency ω that minimizes the value of Sa,φ(ω). Here ωmod = 1.1ωa.
(b)-(d) Sa,φ(ω) as a function of the modulation frequency Ωmod, for a fixed frequency
ω that minimizes the value of Sa,φ(ω). (b) φ = 0. (c) φ = π/6. (d) φ = 0.6π.

from ∼ −3.3 dB in Fig. II.3(b) to ∼ −1.2 dB in Fig. II.4(a).
To study this question further, we show in Figs. II.4(b), II.4(c), and II.4(c) the noise

spectrum Sa,φ(ω) as a function of the modulation frequency ωmod, for three values of
φ. We notice that in general the amount of squeezing is drastically reduced in the
region ωmod > ωa, and that the amount of squeezing is maximized (thus Sa,φ(ω) is
minimized) in the region ωmod < ωa. In Figs. II.4(b), II.4(c), and II.4(d) we do not go
below ωmod = 0.9ωa since it may jeopardize the validity of the input-output theory (see
appendixes A and D.
Note that both resonance conditions δa = ωp (see Fig. II.2(a)) and δa = −ωp (see

Fig. II.2(b)) are reminiscent of the so-called red-detuned and blue-detuned regimes in
optomechanics [Aspelmeyer14]. It is well known that the blue-detuned regime lead to
two-mode squeezing [Palomaki13b, Aspelmeyer14], but not to single-mode squeezing.
Thus here we have shown that in the red-detuned regime, when the coupling is high
enough not to neglect the counter rotating terms, and when this coupling is varied in
time in a nonadiabatic way, optimal single-mode squeezing is extracted from the system.
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Figure II.5: Quantum well with three subbands. (a) Schematic of the quantum well
in terms of a square potential, with the three subbands labeled 1,2 and 3. (b) Band
diagram of the quantum well. EF stands for the Fermi level.

II.7 Three-level quantum well

II.7.1 An additional diagonalization

Quantum wells can be engineered to have more than two subbands. In what remains
of this chapter we are interested in a case where the quantum well has three subbands;
although there can be more. Such a system is pictured in Fig. II.5, and using Eq. (II.15),
the Hamiltonian can be written as

Ĥ = ~ω̃1p̂
†
1p̂1 + ~ω̃2p̂

†
2p̂2 + ~ωaâ†â

+ i~Ω̃1

(
â† − â

)(
p̂†1 + p̂1

)
+ i~Ω̃2

(
â† − â

)(
p̂†2 + p̂2

)
+ ~Ξ12

(
p̂†1 + p̂2

)(
p̂†2 + p̂2

)
. (II.24)

In this Hamiltonian we can see that the electron gas has two collective excitations at two
different frequencies. Thus, in principle one should be able to detect these resonances
in an experiment. However, lately, surprising results were reported where one single
resonance was observed instead, at a frequency different from the intersubband plasmon
ones [Delteil12]. No matter how many intersubband resonances are predicted for the
system, the single sharp resonance that is observed has a frequency distinguishable from
them by a significant shift [Delteil12]. It turns out that this new excitation is a collective
mode of the intersubband plasmons, called multisubband plasmon, and is essentially a
cooperative oscillation of the excitations populations in the different subbands. In
fact, it was proven that the multisubband plasmons are described by operators that
diagonalize the electronic part of the Hamiltonian [Pegolotti14b, Pegolotti14a]. For our
situation with two transitions, this gives

~W1P̂
†
1 P̂1 + ~W2P̂

†
2 P̂2 = ~ω̃1p̂

†
1p̂1 + ~ω̃2p̂

†
2p̂2 + ~Ξ12

(
p̂†1 + p̂2

)(
p̂†2 + p̂2

)
, (II.25)

where P̂1,2 are the annihilation operators describing the multisubband plasmons. Here
the diagonalization procedure is rather common. However, when a large number of
plasmons is considered, the diagonalization is less straightforward, and for details on the



66 II Dispersive ultrastrong coupling regime in intersubband devices

(a) (b)

(c) (d)
!/!a

S
a
,�

(!
)

(d
B

)

S
a
,�

(!
)

(d
B

)
S

a
,�

(!
)

(d
B

)

S
a
,�

(!
)

(d
B

)

-0.3 -0.15 0 0.15 0.3
-5

-2.5

0

2.5

5

G2,mod/W2Gi,mod/Wi

0 0.1 0.2 0.3 0.4 0.5

-4

-3

-2

-1

0

0 p
2 p 3 p

2
2 p

-4

-3

-2

-1

0

� (rad)

⇡/2 3⇡/2⇡ 2⇡

0 0.1 0.2 0.3 0.4 0.5

-4

-3

-2

-1

0

Figure II.6: Noise spectra Sa,φ(ω) of the radiation emitted by a cavity containing an
quantum well with two subbands. The parameters are W1 = 0.1ωa, W2 = 0.15ωa,
ωmod = 0.9ωa, γa = ωa/10, γ1 = Wp/15 γ2 = W2/15 (a) Sa,φ=π/6(ω) (solid line)
and Sa,φ=2π/3(ω) (dotted line), for the conjugate quadratures X̂a,π/6 and X̂a,2π/3

(see Eq. (I.37)), as functions of the measurement frequency ω. Here G1,mod/W1 =
G2,mod/W2 = 0.5. (b) Sa,φ(ω) (black solid line) as a function of the phase φ, for a fixed
frequency ω that minimizes the value of Sa,φ(ω). Here G1,mod/W1 = G2,mod/W2 = 0.5.
(c) Sa,φ=π/6(ω) (black solid line) as a function of the ratio G1,mod/W1 = G2,mod/W2,
for a fixed frequency ω that minimizes the value of Sa,φ=π/6(ω). (b),(c) The gray dotted
line stands for the results for a quantum well with only two subbands shown already
in Fig. II.3(b) and II.3(c). (d) Sa,φ=π/6(ω) as a function of the ratio G2,mod/W2, for
G1,mod/W1 = 0.5 and a fixed frequency ω that minimizes the value of Sa,φ=π/6(ω).

procedure in the general case, see [Pegolotti14b, Pegolotti14a]. The Hamiltonian (II.24)
can be entirely rewritten in terms of the multisubband plasmons and of the cavity mode

Ĥ = ~W1P̂
†
1 P̂1 + ~W2P̂

†
2 P̂2 + ~ωaâ†â

+ i~G1

(
â† − â

)(
P̂ †1 + P̂1

)
+ i~G2

(
â† − â

)(
P̂ †2 + P̂2

)
, (II.26)

Where the only interaction explicitly appearing here is the one between between the
cavity and each of the plasmons.
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II.7.2 Dispersive USC with multisubband plasmons

Now that we have the diagonalized Hamiltonian (II.26), we can use it to study the
dispersive USC regime, by introducing time-dependent light-matter couplings G1(t)
(G2(t)) with the modulation amplitudes G1,mod (G2,mod) and modulation frequency
ωmod

Ĥ = ~W1P̂
†
1 P̂1 + ~W2P̂

†
2 P̂2 + ~ωaâ†â

+ i~G1(t)
(
â† − â

)(
P̂ †1 + P̂1

)
+ i~G2(t)

(
â† − â

)(
P̂ †2 + P̂2

)
, (II.27)

with {
G1(t) = G1,0 +G1,mod cos

(
ωmodt

)
,

G2(t) = G2,0 +G2,mod cos
(
ωmodt

)
.

(II.28)

We work in the same regime as in section II.6, namely whereW1,2 ∼ δa,W1,2 < ωmod and
G0,1, G0,2, G1,mod, G2,mod � ωmod. We can thus use the same unitary transformation
Û(t) = eiωmodâ

†ât, and here again discard the fast oscillating terms at ωmod and 2ωmod
in order to obtain an effective Hamiltonian in a rotating frame

Ĥeff = ~δaâ†â+ ~W1P̂
†
1 P̂1 + ~W2P̂

†
2 P̂2

+ i
~G1,mod

2
(â† − â)(P̂ †1 + P̂1) + i

~G2,mod

2
(â† − â)(P̂ †2 + P̂2). (II.29)

For the study of the dispersive USC regime, we have the same limitation for G1,mod and
G2,mod as we had for Ωmod in section II.6

Gi,mod ≤
Wi

2
. (II.30)

II.7.3 Noise spectra

As we did for the intersubband plasmon case in section II.6, we can also study the
output noise spectra of the system by applying the same method as in appendix D,
using input-output theory [Gardiner04]. We can thus obtain the output field âout(ω) in
frequency, and compute the noise spectra using vacuum or thermal inputs for âin(ω),
P̂1,in(ω) and P̂2,in(ω). Here the dissipation rates for P̂1 and P̂2 are respectively γ1 and
γ2.
In Fig. II.6 we show the noise spectra for the output field âout(ω), as a function

of various parameters. For the moment we consider only vacuum inputs, which is
equivalent to state that the environment for both the cavity and the plasmon is at
zero temperature. In Fig. II.6(a) the spectra for two conjugate quadratures X̂a,φ=π/6

and X̂a,φ=2π/3 are shown as functions of the measurement frequency ω. The degree of
squeezing that is shown is higher than in Fig. II.3(a). Note that in this figure the first
multisubband plasmon is at W1/ωa = 0.1 (which is equivalent to having ωp/ωa = 0.1
in Fig. II.3(a)). However, now there is a second matter excitation, P̂2, and we consider
the case W2/ωa = 0.15. Thus, instead of having two resonances on each side of the
spectrum as in Fig. II.3(a), now we have three resonances on each side of the spectrum.
In Fig. II.6(b) we study again how the squeezing, optimal with respect to ω, changes
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Figure II.7: Noise spectra Sa,φ(ω) of the radiation emitted by a cavity containing
an quantum well with one intersubband plasmon. The parameters are W1 = 0.1ωa,
W2 = 0.15ωa, γa = ωa/10, γ1 = W1/15, γ2 = W2/15, G1,mod/W1 = G2,mod/W2 = 0.5.
(a) Sa,φ=π/6(ω) as a function of the temperature T for thermal inputs in both the
cavity and the intersubband plasmon (see appendix D), again for a fixed frequency ω
that minimizes the value of Sa,φ=π/6(ω). Here ωa = 30 THz. (b)-(d) Sa,φ(ω) as a
function of the modulation frequency Ωmod, for a fixed frequency ω that minimizes the
value of Sa,φ(ω), with T = 0. (b) φ = 0. (c) φ = π/6. (d) φ = 0.6π.

with the quadrature phase φ (black solid curve), and we compare it with the case
studied in Fig. II.3(b) with only one plasmon (gray dotted curve). We notice again
that the amount of squeezing has increased with respect to the situation considered
in section II.6. We also show the squeezing for both the three level quantum well
(black solid curve) and, for comparison, the two level quantum well (gray dotted curve)
in Fig. II.3(c) as functions of the ratios G1,mod/W1 = G2,mod/W2. For the sake on
completeness we show in Fig. II.3(d) the noise spectrum Sa,φ=π/6(ω) for a situation
where we start from G1,mod/W1 = 0.5 and increase G2,mod/W2 from 0 to 0.5, which
clearly shows how including a second plasmon has increased the squeezing.

II.7.4 Influence of the temperature

We included the influence of the temperature in the same manner as we did in sec-
tion II.6.4, by considering thermal inputs for âin(ω), P̂1,in(ω) and P̂2,in(ω). The optimal
noise spectra Sa,φ=π/6(ω) with respect to ω is shown on Fig. II.7(a) (black solid curve),



II.8 Experimental implementation 69

as a function of the temperature. For comparison we also added in Fig. II.7(a) the noise
spectrum for the two level quantum well case already studied in section II.6.4 (gray
dotted curve). We can see that going from the two level quantum well to the three
level quantum well the noise spectrum has been shifted by an approximate amount of
−1.5 dB. Therefore, even at 300 K we have a large degree of squeezing between −2.5
and −3 dB.

II.7.5 Influence of the modulation frequency

Here we study how a change in the value of ωmod influences the squeezing. We show
in Figs. II.7(b), II.7(c) and II.7(d) the noise spectrum Sa,φ(ω) as a function of the
modulation frequency ωmod (black solid curve), for three values of φ. For comparison
we also added in Figs. II.7(b), II.7(c) and II.7(d) the noise spectrum for the two level
quantum well case already studied in section II.6.5 (gray dotted curve). In general, as
for the two level quantum well here the squeezing is reduced as we go from ωmod = 0.9ωa
to ωmod = 1.1ωa, except in Fig. II.7(d). In Fig. II.7(b) and II.7(c) the squeezing for the
three level quantum well is more significant than for the two level one, in particular in
Fig. II.7(c) where it exceeds −9 dB.

II.8 Experimental implementation

Before concluding this chapter, write few words on an experimental implementation
of our model. At first sight, without the time dependent coupling, the experimen-
tal implementation of both the two level quantum well and the three level quantum
well confined in a cavity are straightforward, since it corresponds to the standard USC
regime that has already been achieved in cavity embedded semi-conductor quantum
wells [Delteil12, Askenazi14]. However, in order to fully implement the model studied
in this thesis we need to include a modulation in time of the coupling (or the couplings
for the three level quantum well case), which is crucial in order to extract squeezing from
the system. For this one needs to change the light-matter interaction on a time scale
comparable with the oscillation time of the light. Although such a specific scheme has
not been demonstrated yet, first demonstrations of time-dependent light-matter inter-
action turned on in an ultrafast time scale were observed in [Günter09, Porer12]. Even if
this is not the exact time dependency discussed in this manuscript, these realizations in-
dicates the possibility of implementing different time dependent light-matter couplings,
which is the essential ingredient to the emergence of the ultrastrong limit as described
in our model. In addition, the theoretical study of the generation of squeezed states
within the framework of already experimentally observed time dependent couplings is an
interesting perspective for a future work, but not in the scope of this thesis. Regarding
squeezing detection, although the state of the art of homodyne detection in the THz and
mid-IR ranges is not as advanced as the one involving optical frequencies, experimen-
tal demonstrations with the retrieving of both amplitude and phase information exist
[Riek15]. One can thus be optimistic about the application of that experimental result
to the detection of squeezing. We stress that although it is possible to produce THz
electromagnetic waves for such frequencies by using regular non–degenerate OPOs, the
generation of single mode squeezed states in this frequency range remains unexploited
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and unachievable in such experiments [Kawase01, Edwards06, Molter09]. At last, al-
though the chapter is plainly focused on cavity embedded semi-conductor quantum
wells, it is worth to mention that the model presented here can be fully implemented
in superconducting circuits. We do not detail this implementation here since the next
chapter is plainly focused on superconducting circuits.

II.9 Conclusion

In this chapter we have presented how the many-body properties of semi-conductor
quantum wells can give rise to bosonic excitations that can be ultrastrongly coupled to
the radiation confined in a cavity mode. Using the fact that these devices can reach
the USC regime, we have introduced the dispersive USC regime, a new regime of light-
matter interactions. In this regime, the free oscillation frequencies of light and matter
have a large detuning, instead of being resonant as in the standard USC regime. The
second ingredient of this regime is a time-dependent light-matter coupling, modulated
at a particular frequency close to the cavity frequency. These two ingredients, the de-
tuning and the time modulated coupling, are crucial in our model as they allow us
to find a judicious resonance condition between the matter, light and modulation fre-
quencies, responsible for a parametric process reminiscent of the Dynamical Casimir
effect, at the origin of the emission of squeezed light from the system. We analyse
in detail this output squeezing, by studying the influence of the modulated coupling
strength, the temperature, as well as the modulation frequency. We also considered
two distinct cases, where the quantum well has one transition in the first case and two
transitions in the second one, which showed that the latter increases the amount of
squeezing which respect to the first case. With the perspective of improvement of the
detection and of the capability in modulating the light-matter coupling on a very short
timescale, squeezed light in these frequencies may be used for spectroscopy [Yasui06],
interferometry [Rakić13], or precision measurements [Hoshina08]. One perspective of
this work can be a generalization to quantum wells with an arbitrary number of transi-
tions, but was not the scope of our study. Another natural perspective of our results is
investigating the possibility of two mode squeezed states generation in the ultrastrong
coupling regime, namely extracting not only the one-photon correlations in the ground
but also the light-matter correlations. This perspective is thoroughly developped in the
next chapter. Finally, we mention that the model developed in this chapter could in
principle be realized in a different physical platform, namely superconducting circuits.
We did not need to develop this additional implementation here as the next chapter
tackles this problem.



III Quantum simulated ultrastrong
coupling regime in superconducting
circuits

In this chapter we shall continue the subject started in the previous chapter, focused
on studying how the ultrastrong coupling (USC) regime can lead to squeezed states. In
the previous study, due to the constraints of intersubband devices, we were only able to
study one party, among the two, involved in the light-matter interaction (see chapter II).
Therefore, the potential entanglement that could occur between the two parties could
not be extracted as output to be measured. Here, we will get rid of the previous
constraints by considered a different physical platform for the implementation of our
model. This platform is a superconducting circuits architecture [Flurin12, Flurin14],
where both parties of the light-matter interactions will be played by two microwave
resonators. Indeed, instead of having a genuine light-matter USC regime, we will derive
a model for a light-light USC regime, that will simulate the Hamiltonian of a true USC
regime. Given the characteristics of this device, this quantum simulation will allow us
to reach the USC regime in a particular rotating frame, where in the laboratory frame
the actual physical interaction is not in the USC regime. Additionally, the coupling
between the two modes appears as time independent in the rotating frame while being
actually modulated in time in the laboratory frame, which as we saw in the previous
chapter will allow us to extract radiation from the system. The work reported here has
been published in [Fedortchenko17].
We start by briefly presenting the superconducting circuit architecture using as a

platform for our model, that we thoroughly detail afterwards. We then show and
describe the results we obtained, and study them under the influence of several physical
parameters. The prerequisites for the present chapter are the same as for chapter I, as
well as the notions seen in the latter.

III.1 Superconducting circuits as tools for quantum
information and quantum optics

After the fruitful development of cavity quantum electrodynamics since the seventies
(see chapter I), alternative physical platforms have emerged, capable of contributing
to both the fundamental and practical studies of various quantum physics phenomena.
One of them is based on superconducting architectures. Hereafter we briefly review the
description of those systems in general, and then focus on the specific architecture we
studied in this thesis.

71
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superconductor

(a) (b)
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Figure III.1: Schematic of a SQUID (superconducting quantum interference device)
containing two Josephson junctions. The weak link refers to a non-superconducting
material, and may be an insulator, or a semiconductor for instance. (b) Schematic of
an LC circuit made of a capacitor with capacitance C and of an inductive coil with
inductance L.

III.1.1 The Josephson junction

In order to understand how superconducting circuits operate, one has to turn to its most
basic element, the Josephson junction. It is based on the Josephson effect, predicted in
1962 [Josephson62] and experimentally demonstrated shortly after [Anderson63]. The
effect itself consists in a supercurrent flowing through a device made of a superconductor
separated by a weak link, a layer of a non-superconducting material (see Fig. III.1(a)).
The supercurrent is essentially a tunneling of electrons, Cooper pairs, through the weak
link. Since its discovery, this phenomenon has been used in a variety of applications,
such as for the development of SQUIDs (superconducting quantum interference devices)
for instance [Jaklevic64], useful to measure very small magnetic fields. However, here
we are interested in its applications in quantum information and quantum optics, which
started when the quantization of a variable describing the electric current in a Joseph-
son junction was demonstrated [Martinis85]. It was an unprecedented result, since it
showed that a macroscopic variable, in the sense that it is a variable describing a cur-
rent made of many electrons, can be quantized and described as a quantum harmonic
oscillator [Flurin14].

III.1.2 The quantum LC circuit

The Hamiltonian of a quantum LC circuit, represented in Fig. III.1(b) is

Ĥ =
Q̂2

2C
+

Φ̂2

2L
, (III.1)

where C is the capacitance in the circuit, that in a simple model corresponds to a
capacitor made of two plates, while L is the inductance in the circuit, that would
correspond to an inductive coil. Q̂ is the charge of the circuit accumulated of the plates,
while Φ̂ is the magnetic flux in the coil. The Hamiltonian (III.1) has the same form as
the Hamiltonian for a classical LC circuit, but where the two variables Q̂ and Φ̂ have
been quantized, such that Φ̂ =

√
~Z/2(â + â†) and Q̂ = −i

√
~/2Z(â − â†), with Z =√

L/C being the characteristic impedance of the circuit. This allows us to retrieve the
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(a) (b)

Figure III.2: Circuit representation of two types of Josephson ring modulators. (a)
Original Josephson ring modulator made of a loop with four Josephson junctions,
first introduced in [Bergeal10b]. (b) The so-called shunted Josephson ring modula-
tor [Flurin14], where four inductances are introduced in the loop to divide it into four
sub-loops, first introduced in [Roch12].

Hamiltonian of a quantum harmonic oscillator (see Eq. (I.30)). The Hamiltonian (III.1)
is a very useful model in superconducting circuits, as it can describe not only Josephson
junctions, but a variety of quantum resonators, such as λ/2 microwave resonators for
instance, that play the roles of cavities.

III.1.3 The Josephson ring modulator

The advantage of superconducting circuits is to be able to engineer systems that are
described by quantum mechanics, yet having a size several orders of magnitude larger
than the typical platforms reaching the quantum regime. One goal for such systems is
to tackle problems typically studied in other physical platforms. For instance, pushing
the limits in light-matter interactions, such as reaching the ultrastrong [Niemczyk10,
Forn-Díaz10], or even deep strong [Yoshihara17b, Yoshihara17a] coupling regimes. An-
other example is the capability of reproducing the quantum phenomena studied in
quantum optics, such as a three-wave mixing for instance. As a matter of fact, such
a non-linear interaction has recently been demonstrated in a device called Josephson
ring modulator [Bergeal10a, Bergeal10b]. It is a device made of four Josephson junc-
tions that couples three spatially separated microwave modes [Abdo13a], such that the
interaction Hamiltonian is written

Ĥint = χ(ĉ+ ĉ†)(â+ â†)(b̂+ b̂†), (III.2)

where â, b̂, ĉ are annihilation operators for the three modes, with frequencies ωa, ωb,
and ωc.1 Typically one works in a regime where one of the modes, say ĉ can be treated
as a classical signal, and is referred to as the pump. In this way, one can study the
interaction between modes â and b̂. The simplest representation of such a device is
represented in Fig. III.2(a), where four Josephson junctions are embedded in a loop.

1For a detailed derivation of the Hamiltonian (III.2), see [Flurin14].
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The design is very reminiscent of a standard classical component in electronics called
the double-balanced mixer, which is a diode ring modulator that is also made of a
loop but with diodes instead of Josephson junctions. This device is also nonlinear but
cannot reach the quantum regime as the Josephson ring modulator. The Josephson ring
modulator has been used as a quantum amplifier near the quantum limit [Bergeal10b], to
realize coherent frequency conversion [Abdo13b], and to act as a circulator or directional
amplifier [Sliwa15].
The circuit shown in Fig. III.2(a) suffers from an instability issue which limits its fre-

quency tunability. This can overcome by shunting four inductances in the circuit, such
as shown in Fig. III.2(b).2 This new design has also been used as a quantum amplifier
near the quantum limit [Roch12], as well as to generate a two-mode squeezed vac-
cum shared between two traveling or stationary microwave modes [Flurin12, Flurin15].
Therefore, it is a platform where the generation of squeezing and its measurement are
not only possible but well mastered.

III.2 Basics of a quantum simulation

The idea of quantum simulation dates back the eighties with Feynman, who proposed
in 1982 [Feynman82] that if a quantum system A is too hard to be studied experi-
mentally, then one shall find a quantum system B that can be used to reproduce or
mimic some quantum process from system A in order to access some wanted degrees
of freedom a priori inaccessible in system A. In order for this to work, the system B
used as a platform for the quantum simulation needs to be well controlled, in terms
of the implementation of the desired dynamics, as wells as in terms of the available
means to verify the implementation and measure with great accuracy some desired ob-
servables. Although the idea is more than thirty years old, this criteria took its time
to be actually achievable, while in the mean time much theoretical efforts were de-
voted to understand quantum simulation, and that for instance a universal quantum
computer [Deutsch85] can be used as a universal quantum simulator [Lloyd96]. Re-
cently, the available technology matured enough so that proof of principle experiments
were reported [Greiner02, Leibfried02]. Nowadays, various topics benefit from quan-
tum simulation such as physics, chemistry and even biology. Indeed, several physical
platforms are advanced enough to attract much attention on their quantum simulation
possibilities. One should not be disregarded with respect to another as they all have
their advantages and drawbacks depending on the task one wants to simulate. Among
the most promising candidates we have cold atoms [Bloch12], trapped ions [Blatt12],
photonic devices [Aspuru-Guzik12], as well as superconducting circuits [Houck12]. In
this thesis, our attention was devoted to the last one, and before presenting our model
let us briefly comment on the different types of quantum simulations. There are two
categories, digital and analog quantum simulations [Georgescu14].
In the digital case, the quantum simulation of a system A is implemented by applying

to a system B an time evolution corresponding to the one that would be naturally
experienced by system A, yet in a stepwise way. Indeed, here system B would not

2For details on the instability issue, as well as on how the new architecture In Fig. III.2(b) solves the
problem, see [Flurin14].



III.3 Modeling a quantum simulation in a Josephson mixer 75

experience the wanted dynamics at one, but rather step by step, in the form of the so-
called quantum gates [Nielsen00]. Each quantum gate is a piece of unitary evolution, but
is not necessarily applied on the whole system B. In fact, a digital quantum simulation
can consist of a series of quantum gates, where each one is judiciously implemented
on some subsystem inside the system B, such that in the big picture the dynamics of
system A are effectively reproduced.
In the analog case, a different approach is adopted where the purpose for the system A

is to have its Hamiltonian reproduced by the system B used as the simulating platform.
In this case, system B directly mimics the dynamics of system A. Sometimes, the two
systems A and B have a priori very different Hamiltonians, which can be overcome by
cleverly choosing a regime where an effective Hamiltonian can be derived for the system
B, such that it mimic the target Hamiltonian. In this thesis, the analog quantum
simulation approached has been carried, as presented in the next section.

III.3 Modeling a quantum simulation in a Josephson mixer

III.3.1 Motivation for a quantum simulation of the USC regime

Quantum simulation of ultrastrong coupling, or even deep strong coupling [Casanova10],
has recently received a great deal of interest. However, previous theoretical works
have focused on simulating in several physical systems the interaction between a qubit
and a cavity mode, namely, the quantum Rabi model [Rabi36, Jaynes63]. For in-
stance, proposals were formulated in photonic superlattices [Longhi11], in superconduct-
ing circuits [Ballester12, Mezzacapo14, Lamata16], in cavity quantum electrodynamics
[Grimsmo13], in trapped ions [Pedernales15], and in ultracold atoms where the first and
second Bloch bands in the first Brillouin zone encode the qubit [Felicetti17b]. On the
experimental side, quantum simulations of such a regime also solely focused on the Rabi
model. Examples of experimental quantum simulations of the ultrastrong and the deep
strong coupling regimes have been reported in photonic superlattices [Crespi12], and in
superconducting circuits [Langford16, Braumüller16].
Surprisingly, the important case of a quantum simulation of ultrastrongly coupled

bosonic modes is still missing. Remarkably, the ultrastrong interaction between two
bosonic modes has the particularity of producing a two-mode squeezed vacuum in
the ground state [Ciuti05, Ciuti06], as already mentioned in chapter I. However, this
squeezed state cannot lead to actual excitations coming out of the system and, thus,
cannot be directly observed. In the case of spin-boson ultrastrong coupling, methods
to probe the ground-state properties of the system were proposed in Refs. [Lolli15,
Peropadre13a, Cirio16]. Nonetheless, in the case of two ultrastrongly coupled bosonic
modes, the only studied solution to the problem is to modulate the coupling between
the two modes in time [De Liberato07, Fedortchenko16]. However, as stated in chap-
ter II, measuring the corresponding correlations between the two output channels of
both bosonic modes seems currently out of reach for physical implementations of light-
matter USC regime [Günter09, Anappara09, Todorov09], since matter excitations (for
instance the electron gas in a quantum well) decay through a nonradiative channel.
It was shown in chapter II that with an appropriate time-modulation of the light-

matter coupling, in the dispersive USC regime, squeezed radiation can be emitted from
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Figure III.3: Representation of the different frequencies scales involved in the model.

the system. A legitimate extension of this previous work is to study what happens if
one could discard the main constraint present before: the fact that only the output of
the cavity mode could be accessible. Indeed, if one could establish a realistic model
where the outputs of both modes could be measurable, one could study the output
light-matter correlations and how these are linked with the single mode squeezed al-
ready demonstrated, or with the ground state correlations present in a standard USC
Hamiltonian.

III.3.2 The model

The constraints mentioned above can be lifted in our model, where we use the Josephson
mixer3 to simulate a USC regime between two bosons â and b̂. Indeed, in this device,
these two bosons correspond to microwave fields inside microwave resonators, and are
coupled to transmission lines which allow one to measure both fields and study the
possible correlations between them [Flurin12]. In the point of view of the quantum
simulation, the first mode, â, plays the role of light while the second one, b̂, plays
the role of matter. The purpose is thus to have a quantum simulation of light-matter
interaction by a light-light interaction platform.
In our model, we want our simulation platform, the Josephson mixer, to be described

by the Hamiltonian of the same form as in Eq. (I.22), in order to simulate a USC
regime. However, we start from a Hamiltonian where the interaction is rather given by
the Eq. (III.2). Therefore, in order to generate an effective Hamiltonian that is formally
equivalent to Eq. (I.22), we drive the system with a two-tone radiation. A blue pump
drives mode c with an amplitude cB at frequency ωB = ωa+ωb+2δB, while a red pump

3The Josephson mixer studied here is a device comprising the Josephson ring modulation shown in
Fig. III.2(a), as well as the microwave resonators it is coupled to.
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drives the same mode c with an amplitude cR at ωR = ωa − ωb. Here ωa and ωb are
the frequencies of modes a and b, and 2δB is a small detuning compared to them. A
representation of these frequencies scales is shown in Fig. III.3. Mode c being driven off
resonance, we use the stiff pump approximation and describe its amplitude as a complex
number instead of an operator. The interaction Hamiltonian now has two three-wave
mixing terms, which result in the following effective Hamiltonian in the rotating frame
where mode a rotates at ωa + δB and mode b at ωb + δB (see Appendix E),

Ĥeff = δB â
†â+ δB b̂

†b̂+GB(â†b̂† + â b̂) +GR(â†b̂+ â b̂†), (III.3)

where GB,R = χcB,R is time-independent (in the rotating frame) and results from
the physical time-dependent coupling rate G̃B,R(t) = GB,Re

−iωB,Rt (in the laboratory
frame). The derivation above is valid only for low three-wave mixing rates |GB,R| �
ωa, ωb, |ωa − ωb|. In the case when GR = 0, the Hamiltonian describes parametric
amplification, which results in two-mode squeezing, while when GB = 0, it describes a
beam splitter between modes a and b. Now if GB = GR = G, Eq. (III.3) has exactly
the same form as Eq. (I.22) if ωα = ωβ . Here, δB plays the role of the bosonic mode free
oscillation frequency. It is now clear that when the coupling G becomes comparable to
δB, the doubly pumped Josephson mixer simulates ultrastrongly coupled modes, even
if the genuine coupling is much smaller than the genuine free oscillation frequencies
of the physical system. It is worthwhile to note that although the simulated coupling
rates GB,R are time-independent, as in the case of genuine ultrastrong coupling in
semiconductors [Günter09, Todorov09, Anappara09], the actual coupling rate oscillates
in the laboratory frame of the output ports of modes a and b. Note that a method to
obtain a genuine ultrastrong coupling between two bosonic modes in superconducting
circuits was proposed in [Peropadre13b]. There the coupling is mediated not by a third
oscillator but by a SQUID. While the physical coupling studied in this article could
in principle reach the ultrastrong regime, its predicted coupling-to-frequency ratio does
not reach the highest values of the coupling-to-effective frequency ratio that can be
reached here, and that lead to the interesting squeezing properties shown hereafter and
realistically achievable in our quantum simulation.

III.4 Results

In this section we show the expected results of the quantum simulation, by determining
the radiation emitted by the device in the regime where the latter can be described by
the effective Hamiltonian (III.3). Each mode â or b̂ is connected to a transmission line
at a rate γa,b and is subjected to internal losses at a rate γL. As in chapters I and II, we
can use the input-output formalism [Gardiner04]. We are interested in the state of the
output modes whose operators are âout and b̂out. They are related to the input mode
operators by the input-output relations âout = âin +

√
γaâ and b̂out = b̂in +

√
γbb̂. From

the known input state, one gets the output state from the above expressions and from
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the quantum Langevin equations for the intracavity operators in the case GB = GR = G

˙̂a(t) =− iδâ(t)− γa + γL
2

â(t)− iG
(
b̂(t) + b̂†(t)

)
−√γaâin(t)−√γLf̂a(t) (III.4)

˙̂
b(t) =− iδb̂(t)− γb + γL

2
b̂(t)− iG

(
â(t) + â†(t)

)
−√γbb̂in(t)−√γLf̂b(t). (III.5)

where f̂a and f̂b are noise operators modeling the internal losses of the system. It is
straightforward to solve these equations in the frequency domain (see appendixes B and
C) to obtain the expressions of âout(ω) and b̂out(ω).

III.4.1 Noise spectra

Once we obtained the output fields âout(ω) and b̂out(ω), we can compute the noise
spectra Sφ(ω) (as defined in appendix B) for these fields. In particular we can obtain
the noise spectra for the single modes quadratures X̂a,φa and X̂b,φb

4, as well as for
any two-mode quadrature û±φa,φb .

5 Note that temperature has a dramatic effect on the
squeezing, we assumed vacuum inputs for both modes since an actual experiment takes
place in a dilution fridge where the temperature is low enough to discard its effect in
the theory.
In Figs. III.4(a)-(f) we show the output noise spectra of single-mode quadratures

X̂a and Ŷa, of two-mode quadratures X̂a − X̂b and Ŷa + Ŷb, and the EPR variance
[Duan00, Simon00], as a function of frequency. We work in the case GB = GR = G,
and therefore the Hamiltonian III.3 becomes

Ĥeff = δB â
†â+ δB b̂

†b̂+G(â† + â)(b̂† + b̂), (III.6)

thus simulating the bosonic USC Hamiltonian (I.22). In the rotating frame, a signal at
frequency ω corresponds to ωa + δ −B + ω for mode â, and to ωb + δB + ω for mode b̂
in the laboratory frame. We do not show the noise spectra of X̂b and Ŷb since they are
the same as for X̂a and Ŷa, both modes having the same effective frequency δ, and the
dissipation rates γa and γb being assumed identical. As expected, and as already shown
in chapter II, the output radiation is more squeezed for stronger couplingG = GB = GR.
Furthermore, the squeezing becomes visible in the figures when ultrastrong coupling is
reached for G & 0.1δB. The behavior of the system in the physical implementation
picture is illustrated in Fig. III.5. When modes â and b̂ are in the vacuum state at the
input, the output of the system is in an unusual two-mode state, where each mode is
squeezed, while the two modes are quantum correlated. Interestingly, the squeezing we
predict here occurs between two propagating modes that are separated both in space
and frequency.
Let us now comment on the shape of the spectra. In the rotating frame, we show the

positive and negative parts of the frequency spectrum, which correspond to measurable
noise powers at positive frequencies in the laboratory frame. In Figs. III.4(a)-(c), we can
see that for the smallest shown coupling G = 0.01δB, the spectra develop a resonance at
ω = ±δB, symmetrically for positive and negative frequencies. This resonance occurs at

4For a definition of a general quadrature X̂φ, see Eq. (I.37).
5For a definition of a general two-mode quadrature, see Eq. (I.86).
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Figure III.4: Noise spectra of the system output for GB = GR = G, as functions
of the measurement frequency ω in units of the blue pump detuning δB. (a), (d)
Noise spectra of X̂a (dotted curve) and of Ŷa (solid curve). (b), (e) Noise spectra
of X̂a − X̂b (dashed curve) and of of Ŷa + Ŷb (solid curve). (c), (f) EPR variance
∆EPR = ∆(Xa − Xb)

2 + ∆(Ya + Yb)
2. The parameters are: ωa = 2π × 9 GHz ;

ωb = 2π × 6 GHz ; δB = 2π × 50 MHz ; γa = γb = 2π × 25 MHz ; γL = 2π × 0.5
MHz. (a-c) Color code: each color or shade is associated with a value of G/δB: lighter
curves represent G/δB = 0.01; darker ones, G/δB = 0.3. From lightest to darkest curve,
G/δB takes the values {0.01, 0.1, 0.2, 0.3}. Arrows follow the splitting of the resonance
frequency as G/δB increases, simulating Rabi splitting. (d-f) Here we fix G/δB = 0.47,
for which the two central dips (peaks) predicted in (a-c) merge. The black horizontal
lines indicate the plot range in (a-c).

the transition frequency δB of the effectively degenerate modes â and b̂ in the rotating
frame (see Eq. (III.3)). As G increases, the resonance splits into two, leading to
four dips in the EPR variance Figs. III.4(c). This can be understood as the vacuum
Rabi splitting of both effective modes, as already observed in a physically ultrastrongly
coupled light-matter system [Günter09].
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SYSTEM

â

b̂

âin

b̂in

âout

b̂out

Figure III.5: Summary of the generation of the squeezed output state represented as
contours of the marginals of the Wigner function in single- and two-mode quadrature
phase spaces.

As the splitting increases with G, one of the two resonance frequencies resulting from
the Rabi splitting shifts towards ω = 0. In Figs III.4(a)-(c), this can be seen as two dips
getting closer to the origin, corresponding to the resonance frequency and its image on
the negative part of the spectrum. When G ≈ 0.5δB, the dips merge at the origin and
the resonance occurs at ω = 0. This is shown in Figs. III.4(d)-(f), where there are no
longer four dips but only three, and the one at the origin shows the largest amount of
two-mode squeezing. Thereby, the EPR variance almost reaches the lower bound of 0.5,
which corresponds to an optimal case where Ŷa+ Ŷb is infinitely squeezed, while X̂a−X̂b

is shot noise limited only. Besides, the single mode squeezing in the quadratures Ŷa and
Ŷb reaches almost −3 dB. This is in fact the maximal expected single-mode squeezing
one can hope for. We note that if the two outputs were combined in a 50:50 beam
splitter (with frequency conversion on one arm), one of the output modes would be in
an infinitely squeezed state while the other would be in the vacuum state [Laurat05]; the
reverse has been demonstrated in [Ku15]. This can be done using an extra Josephson
mixer as in [Flurin12] but in frequency conversion mode.
The squeezing amplitudes in Fig. III.4(d)-(e) are limited by the realistic internal losses

and coupling rates to the transmission lines we use in the model. Their minimal value
is set by the need to stay in the regime where the three wave mixing Hamiltonian (III.2)
is valid [Flurin14]. The figures stop at G ≈ 0.5δB since beyond that point, the Hamil-
tonian (III.3) has no stable solution and extra terms should be included to make the
Hamiltonian physically sound again. For instance, in case of the Dicke model modeling
a spin ensemble coupled to a bosonic mode, this value for the coupling is a critical
point of a quantum phase transition [Emary03b, Emary03a, Nataf10]. In the proposed
simulation using a Josephson mixer, these extra terms arise from a Taylor expansion of
the Josephson Hamiltonian beyond second order.
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Figure III.6: Noise spectra of the system’s output for GB = 0.47δB, as functions of
various parameters. (a) Noise spectra of X̂a (dotted curve) and of Ŷa (solid curve) as
functions the measurement frequency ω in units of the blue pump detuning δB. (b)
Noise spectra of X̂a− X̂b (dashed curve) and of of Ŷa + Ŷb (solid curve) as functions the
measurement frequency ω in units of the blue pump detuning δB. (a),(b) Gray curves:
GR = 0; black curves: GR = 0.15δB. (c) Optimal single-mode squeezing Sa,φ(ω) for the
quadrature Ŷa and as a function of GR. The curve shows the minimal value of Sa,φ(ω)
with respect to ω. (d) Optimal EPR variance ∆EPR = ∆(Xa − Xb)

2 + ∆(Ya + Yb)
2

and as a function of GR. The curve shows the minimal value of Sa,φ(ω) with respect to
ω. The parameters are: ωa = 2π × 9 GHz ; ωb = 2π × 6 GHz ; δB = 2π × 50 MHz ;
γa = γb = 2π × 25 MHz ; γL = 2π × 0.5 MHz.

III.4.2 Influence of the red pump intensity

So far we have shown that when GB = GR = G and G & 0.1δB, the system eventually
emits a two-mode state that shows both single-mode squeezing and entanglement. Fur-
thermore, in line with the work started in chapter II, the single-mode spectra shown in
Fig. III.4(a) is resemblant to the one shown in Fig. II.3(a). Here, we study another situ-
ation, a rather interesting case where GB 6= GR. The simplest scenario is when GR = 0,
meaning that we apply the blue pump only. Therefore, the effective Hamiltonian (III.3)
becomes

Ĥeff = δB â
†â+ δB b̂

†b̂+GB(â†b̂† + â b̂), (III.7)

which is the same two-mode squeezing interaction as in Eq. (I.95) achieved in a non-
degenerate optical parametric oscillator (OPO), presented in chapter I. The only dif-
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ference between Eqs. (III.7) and (I.95) is that here we have a blue pump detuning δB,
whereas the pump was resonant in chapter I.
It is thus interesting to study the transition between the non-degenerate OPO regime

when GR = 0 to the simulated USC regime when GB = GR = G. Such a study
is reported in Fig. III.6. In Fig. III.6(a) are shown the noise spectra Sa,φ(ω) for the
quadratures X̂a (dotted curves) and Ŷa (solid curves). In Fig. III.6(b) are shown the
noise spectra Sa,b,φ(ω) for the quadratures X̂a − X̂b (dashed curves) and Ŷa + Ŷb (solid
curves). The curves in gray indicate the case GR = 0 while the black ones indicate
the case GR = 0.15δB. We can notice two important features on these plots. The first
one is that when GR increases the single mode noise spectra go from a regime where
there are only amplified to a regime with squeezing. The second feature is that we start
from only one resonance (and its symmetric counter part) which makes two peaks in the
single-mode spectra and two dips in the two-mode spectra, and, and up in a situation
where this resonance splits, with each spectra choosing one side for the splitting. It
is thus the red pump intensity that triggers the simulation of the Rabi splitting. In
Fig. III.6(c), which shows the minimal single-mode noise spectra for Ŷa with respect to
ω, we can notice that the single-mode squeezing really appears after GR & 0.1δB.
While the splitting increases along with the single mode squeezing, we can notice that

the optimal two-mode squeezing does not occur at the same frequency anymore for the
quadratures X̂a − X̂b and Ŷa + Ŷb. Therefore, it should come with less violation of the
entanglement criterion ∆EPR, which is shown in Fig. III.6(d). In this figure is shown
the minimal value of ∆EPR = ∆(Xa − Xb)

2 + ∆(Ya + Yb)
2 with respect to ω, as a

function of GR. Indeed, as GR increases, as expected the violation of the entanglement
criterion, which initially lower than 0.5, then increases, and eventually decreases up the
0.5 because at GR = GB = G ∼ 0.5δB for Ŷa + Ŷb merge at the origin of the rotating
frame thus increasing the two-mode squeezing.

III.4.3 Influence of the red pump frequency

Another situation worth studying is the influence of the red pump frequency ωR. Indeed,
so far we have studied only the case where ωR = ωa − ωb, but in an experiment one
could end up with an imperfect difference between ωa and ωb, and for instance include
a detuning δR such that

ωR = ωa − ωb + 2δR. (III.8)

Therefore, the effective Hamiltonian is modified, and by using the same procedure as
the one detailed in appendix E, one can derive the following effective Hamiltonian

Ĥeff =
(
δB + δR

)
â†â+

(
δB − δR

)
b̂†b̂+GB(â†b̂† + â b̂) +GR(â†b̂+ â b̂†). (III.9)

In Eq. (III.9), we have two coupled bosons whose effective frequencies are not resonant,
but detuned. In the following we study the case GB = GR = G. The effective fre-
quencies for both modes are different, and the frequency for mode b̂ is lower than δB.
Therefore, the simulated USC regime will occur below the value G & 0.1δB.
In Fig. III.7 we show the influence of δR on the single-mode squeezing of both modes,

as well as on the violation of the entanglement criterion. We can notice that the quadra-
tures Ŷa and Ŷb can be more squeezed for non-vanishing δR. In Fig. III.7(a), when
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Figure III.7: Noise spectra of the system’s output for GB = 0.47δB, as functions of the
red pump detuning δR. (a) Optimal single-mode squeezing Sa,φ(ω) for the quadrature
Ŷa and as a function of δR. The curve shows the minimal value of Sa,φ(ω) with respect
to ω. (b) Optimal EPR variance ∆EPR = ∆(Xa−Xb)
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2 and as a function

of δR. The curve shows the minimal value of Sa,φ(ω) with respect to ω. The parameters
are: ωa = 2π× 9 GHz ; ωb = 2π× 6 GHz ; δB = 2π× 50 MHz ; γa = γb = 2π× 25 MHz
; γL = 2π × 0.5 MHz.

δR < 0, Ŷa (black curve) can be slightly more squeezed than for δR = 0, while Ŷb
(gray curve) can be slightly more squeezed when δR > 0. The fact that each curve
is symmetric with respect to the other is not surprising and simply comes from ex-
pressions of the effectives frequencies for both modes in Eq. (III.9). This symmetry is
can also be seen in Fig. III.7(b), where the entanglement criterion ∆EPR is symmetric
with respect to δR = 0. Moreover, as the single-mode squeezing of one mode or the
other can be increased by tuning the value of δR from 0, the opposite happens with
∆EPR where a non-vanishing red pump detuning can only decrease the entanglement.
This of course makes sense, and for an intuitive explanation let us consider a situation
without the internal losses. In such case, γL = 0 and the single-mode squeezing for
both modes would be −3 dB, which is the limit for having the optimal entanglement
with an optimal single-mode squeezing. This means that having the single-mode above
−3 dB authorizes a better entanglement, while having a single-mode noise less that
−3 dB inevitably decreases the entanglement. Here, tuning δR from 0 would makes the
single-mode squeezing for one mode or the other reach values below −3 dB, and which
results in less violation of the entanglement criterion as can be seen in Fig. III.7(b).

III.5 Link with the USC ground state correlations

In this section we wish to push further the understanding of the connection between
output squeezed state we can obtain in our quantum simulation presented in the pre-
vious section, with the correlations present in the ground state of genuine ultrastrong
coupling. Therefore, let us first evaluate such correlations in this ground state.
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III.5.1 Ground state squeezing

Let us start by studying the squeezing of a pair of ultrastrongly coupled bosonic modes
in their ground state. For this we introduce the light-matter Hamiltonian we want to
simulate,

Ĥ = ωαâ
†â+ ωβ b̂

†b̂+G(â+ â†)(b̂+ b̂†), (III.10)

where â (b̂) and ωα (ωβ) are the annihilation operator and the frequency of the light
(matter) mode, and ~ = 1. The two modes are coupled at a rate G. We consider
here the Hamiltonian (III.10) in its most elementary form. For instance, we do not
include extra terms such as a squared electromagnetic vector potential, as is the case in
semiconductors described in the Coulomb gauge [Ciuti05, Ciuti06]. Indeed, while the
versatility of superconducting circuits would allow us to simulate extra terms, we choose
to restrict the simulation to the simplest form of ultrastrong coupling in the present
paper.
In order to identify the ground state of the Hamiltonian (III.10), as in chapter I

we first apply the Hopfield method [Hopfield58] to identify the two eigenmodes of the
system, which are called polaritons in case of a genuine light-matter interaction (see
chapter I for more details). The annihilation operators p̂1 and p̂2 of the two eigenmodes
are expressed [Ciuti05, Ciuti06] as linear combinations of â, b̂, â† and b̂† (see Eq. (I.24)).
Their expressions as well as their eigenvalues determine the validity of this model (see
appendix F). We then express â and b̂ as a function of the eigenmode operators p̂1
and p̂2. The ground state |GS〉 being defined as p̂1|GS〉 = p̂2|GS〉 = 0, we can fully
characterize the squeezing of the original modes â and b̂ in the ground state |GS〉
by computing the covariance matrix V = {〈xixj + xjxi〉|GS〉 − 2〈xi〉|GS〉〈xj〉|GS〉}ij in
the basis {x1, x2, x3, x4} = {(â† + â)/

√
2, (iâ† − iâ)/

√
2, (b̂† + b̂)/

√
2, (ib̂† − ib̂)/

√
2}

[Serafini04, Adesso05].
In Fig. III.8, we show the single-mode squeezing, the two-mode squeezing, and the

EPR variance ∆EPR in the ground state of a pair of ultrastrongly coupled bosonic
modes, as a function of the coupling constant G. As usual, we show the squeezing
in dB using the following logarithmic scale SXθ = 10 log10 (〈∆X̂2

θ 〉/〈∆X̂2
vac〉), where

〈∆X̂2
vac〉 = 1/2 corresponds to the noise of a vacuum state. One can note that the
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Figure III.9: Comparison between a standard USC and the quantum simulation. (a)
Non-adiabatic instantaneous switching-off of the light-matter coupling strength G as
proposed in [Ciuti05]. (b) Time modulation of the coupling strength G̃B,R(t) as occur-
ring in our model in the laboratory frame. (c)-(e) Schemes of three models describing
two interacting bosonic modes that are coupled to an environment, in which a squeezed
field is emitted. (c) Genuine ultrastrongly interacting bosonic modes whose interaction
is abruptly switched-off at time 0 [Ciuti05], and which are coupled to a standard en-
vironment. Θ(t) is the unit step function, introduced to model the switch-off of the
interaction. (d) Physical picture with a time-dependent interaction and a standard
environment, which is coupled at a rate that vanishes for negative frequencies. (e)
Quantum simulated model mapped from (d), where the ultrastrong interaction is time
independent and the baths are unusual with a support for γa,b spanning positive and
negative frequencies.

ground state shows a significant amount of squeezing in the single-mode picture, as well
as in the two-mode picture, enough to be detected by a Gaussian entanglement witness:
the EPR variance goes below 1 [Duan00, Simon00]. Note that since here the two modes
are at resonance, only ∆X̂2

a is shown, because ∆X̂2
b has exactly the same amount of

squeezing. We thus verified that there is two-mode squeezing in the ground state, and
additionally found single-mode squeezing as well.

III.5.2 Discussion

So far, we have focused on the observable squeezing contained in the output modes of
the physical system that simulates the ultrastrong coupling Hamiltonian (III.3). In this
section, we interpret the nature of the output modes in the simulated picture and how
their noise can be related to the ground state squeezing seen in Fig. III.8.
The squeezing in the ground state of a genuinely USC regimes between two bosonic

modes comes from the single-mode and the two-mode correlations of the virtual photons
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present in the ground state. Indeed, in principle they do not correspond to accessible
excitations. However, if one could somehow instantaneously switch-off the coupling
strength G appearing in Eq. (III.10), then the photons should be released to the en-
vironment as an output [Ciuti05, De Liberato09]. This is represented in Fig. III.9(a),
where the coupling is switched-off with the step function Θ(t).
Similarly, in Fig. III.9(b), we show the time-modulation of the coupling strength

G̃B,R(t) in the laboratory frame. We can see that G̃B,R(t) is rigorously different from
the switching-off in Fig. III.9(a). However, each period of the time-oscillation is essen-
tially a cycle composed of a switching-off following directly by a switching-on, yet not
instantaneous, but still non-adiabatic. Hence, in the quantum simulation set-up cor-
related photons are released because of non-adiabatic switch-off/switch-on cycles while
purely ground state photons are released because of a non-adiabatic and instantaneous
switch-off. The process is thus not the same in both cases but is still similar, which is
why the output state of the quantum simulation shares the same noise properties with
the ground state in a genuine USC regime.
Additionally to the analysis we just developed, we may also compare the two cases

by focusing on their interaction to the environment. For a genuine USC regime, the
system is coupled to a standard environment, where the dissipation rates are vanishing
at negative frequencies, such that γa,b(ω < 0) = 0. This model is shown in Fig. III.9(c).
If we look at our model in the laboratory frame, as shown in Fig. III.9(d), we have the
coupling between modes â and b̂ that is modulated in time and each mode is coupled
to a zero temperature bath at a rate γa,b(ω) with vanishing contribution at negative
frequencies [Ciuti06]. In contrast, in the simulated picture shown in Fig. III.9(e), the
modes are coupled at a fixed rates GB,R but interact with an unusual environment,
whose coupling rates γ̃a,b(ω) are nonzero at negative frequencies. This results from a
shift of the zero frequency in the rotating frame of the simulation. The vacuum squeez-
ing of the ultrastrongly coupled modes reminiscent of the ground state in Fig. III.8 can
be understood as resulting from the excitations corresponding to the nonzero γ̃a,b(ω)
for ω < 0. It can be seen as a continuous extraction of ground states photons from a
ultrastrongly coupled system whose ground state is immediately repopulated along with
our extraction, such that the ground state is unchanged at all times. Of course this re-
population can be easily understood in the laboratory frame as the energy continuously
provided to the system by the two pump photons.

III.6 Comments on the experimental implementation

At last, let us comment on the experimental realization of our model. As previously
mentioned, our model can be straightforwardly implemented in the Josephson mixer,
since the tools we require are similar to what has been done already, for the generation
of entangled microwave fields for instance [Flurin12]. For this, the Josephson ring
modulator shown in Fig. III.2(b) is embedded in a larger device including the microwave
resonators for modes â, b̂, the pumps, as wells as their coupling to transmission lines
used for the inputs and for measuring the output state. Precisely, the schematic of the
whole electronic circuit for the Josephson mixer is shown in Fig. III.10.
Additionally, it is worthwhile to wonder how realistic are the parameters we chose

in Figs. III.4, III.6 and III.7. The phenomena we propose to observe require that
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Figure III.10: Scheme of a possible implementation based on a Josephson
mixer [Abdo13a]. A ring of four Josephson junctions is shorted by inductors and couples
two λ/2 microwave resonators of frequency ωa and ωb. Capacitors couple the resonators
to transmission lines leading to decay rates γa + γL and γb + γL, where γL corresponds
to internal losses of the resonators. This circuit implements three-wave mixing between
the nondegenerate modes â and b̂ and a mode ĉ that can be addressed using a signal
driven with the same phase on each port of the resonator â. One may use a 180◦

hybrid coupler (box on the left) to selectively couple â and ĉ modes to two separate
transmission lines. Circulators ensure that the input modes ain and bin are prepared
in the vacuum state by thermalizing a 50 Ω load at T � ~ωa,b/kB. When mode ĉ is
driven off resonance by two tones at frequency ωB = ωa + ωb + 2δ and ωR = ωa − ωb,
it reproduces the physics of two ultrastrongly coupled bosonic modes of frequency δ.
Signatures of the ultrastrong coupling can be observed in the squeezing properties of
the noise in ports aout and bout.

γL � γa,b < δB and that 2GB,R . δB. It is shown in [Flurin14] that

2GB,R√
γaγb

≤ 1

4

√
ξaξbQaQb, (III.11)

where ξ < 1 is the participation ratio of the Josephson junction in the resonator
[Flurin14] and Q is the quality factor of the resonator. Therefore, in order to reach
2GB,R ≈ δB, one needs

1 <
δ

γa,b
≤ 1

4

√
ξaξbQaQb. (III.12)

The condition that
√
ξaξbQaQb > 4 sets constraints on the device similar to the ones

needed to realize a quantum limited amplifier using the Josephson mixer [Abdo13a,
Pillet15] and is perfectly realistic. The parameters we chose in Figs. III.4, III.6 and
III.7 are thus within reach in standard devices.
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III.7 Conclusion

In this chapter we have presented the Josephson mixer, a well controlled physical plat-
form that enables the study of the interaction between three bosonic fields. We have
shown how to use this system to study the interaction between two bosonic fields that
is in line with the work started in chapter II. In particular, as a central result we have
shown how to use this platform to perform a quantum simulation of the USC regime
between two bosonic modes. We have seen that the consequence of the simulation is
the emission of particular two-mode state that shows both single-mode squeezing and
entanglement, similarly as in the ground state of a genuine USC regime. Using the high
level of control of superconducting circuits enables the access of both modes directly, a
feat that is not possible with current light-matter systems. Therefore, the model devel-
oped in this chapter that is achievable with current technology can be used as a tool
to probe the peculiar correlations that also arise between the virtual excitations in the
ground state of a genuine USC regime. Thus, we have fully characterized the relation
between the USC regime and squeezed states.
Additionally, our proposal will determine the smooth transition from strong to ul-

trastrong coupling regimes by measuring the squeezing properties of the output modes.
Beyond the fundamental interest in observing this transition, the unusual squeezing
properties of the proposed device can be used as a resource for bath engineering [Aron14,
Aron16] and nonclassical state generation [Felicetti14, Stassi15, Rossatto16] in complex
resonator networks.
In the remaining chapter we will show that similar results can be achieved between

the coupling of two optical cavities with the mediation of a mechanical resonator, sug-
gesting that a sort of quantum simulation of the USC regime may also take place.
Additionally, we will go beyond the initial scope of this thesis by showing that the same
optomechanical set-up can be used as a mean for quantum communications.



IV Light-matter interactions and
quantum communications in
optomechanics

In this last chapter we will conclude our study on the link between the ultrastrong
coupling (USC) regime and squeezed states. We focus on a different physical platform,
an unusual optomechanical [Aspelmeyer14] set-up where two optical cavities embedded
in an interferometer can show a behavior very similar to the one observed in chapter III
in the quantum simulation of the USC regime. The two optical cavity modes interaction
is indirect and is mediated by a mechanical resonator, which results in the emission of
two-mode state from the cavities whose noise spectra are very similar to the ones emitted
from the Josephson mixer in the case of a quantum simulation of the USC regime.
Second, we wonder how the interferometric optomechanical system introduced above

could not only be used to study light-matter interaction from a fundamental point of
view, but could also be of use as a building block in quantum communications. Specif-
ically, switching from the continuous pumping regime used above to a pulsed regime,
we will show how one of these building blocks can be used to quantum communi-
cate with two protocols. The first one uses only a classical communication channel
between the two building blocks at the expense of requiring an initial entanglement
between them. This first protocol is called quantum teleportation with continuous vari-
ables [Braunstein05]. The second protocol however does not require entanglement for
the transfer of information at the expense of using a quantum channel for the commu-
nication. This work has been published in [Felicetti17a].
We start by briefly reviewing few basics of quantum optomechanics, followed by a

presentation of the interferometric optomechanical set-up considered here. Next, we
study this set-up in the continuous driving regime and show the link with the quantum
simulation of the USC regime studied in chapter III. Finally, we study the system in
the pulsed driving regime and show how to implement the two quantum communication
protocols mentioned above. The prerequisites for the present chapter are the same as
for chapter I, as well as the notions seen in the latter.

IV.1 Introduction to quantum optomechanics

IV.1.1 Old and recent achievements

The fact that light could in some way act as a force that pushes matter was demonstrated
early in the twentieth century [Lebedew01, Nichols01]. Since then, much progress has
been made to study and understand this force coming from the radiation pressure of
light on the matter, due to the fact that the impinging photons carry momentum. One
of the most famous phenomena of this pressure is its use for cooling the motion of
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âin

âout

â

m̂

Figure IV.1: Scheme of the most common device involving optomechanical interaction.
A pump field is sent to one of the mirrors of an optical cavity (the left mirror). A field
establishes inside the cavity, and its photons exert a radiation pressure on the right
mirror of the cavity. This right mirror is not fixed in its position but attached to a
string, which cause the mirror to oscillate around its equilibrium position, causing a
shift in the cavity resonance frequency.

atoms, namely laser cooling, first pointed out in the seventies [Hänsch75, Wineland75]
and demonstrated shortly after [Wineland78, Neuhauser78]. One spectacular applica-
tion of this technique is in the trapping of Bose-Einstein condensates [Anderson95] for
instance. Although the interaction of light and matter through the radiation pressure
is a vast topic, such as in the laser cooling physics, here we are interested on the specific
case where the light is confined in a cavity mode which is coupled to a mechanical degree
of freedom, such as represented in Fig. IV.1. This configuration was first considered by
Braginsky and co-workers, who predicted [Braginsky67] and showed preliminary exper-
imental proof [Braginsky70] of two important phenomena in such a model. Although
these first studies were performed in the realm of classical physics, the phenomena they
tackled later became the basics ingredients in modern quantum optomechanics as well.
These phenomena correspond to situations where this model is operated in a regime
where the mechanical damping is enhanced, or in another regime where the opposite
effect occurs allowing self-sustained mechanical oscillations to arise, called also a me-
chanical instability [Aspelmeyer14]. This first experimental demonstration was carried
in a microwave cavity, but later on these processes were demonstrated in a variety of
platforms. For instance, in the early eighties, bistability in an optomechanical interac-
tion was first reported in the optical domain [Dorsel83].
In the quantum domain, the influence of quantum noise in optomechanical sys-

tems has been theoretically explored over the years, as in the measurement of grav-
itational waves [Caves80], the reduction of noise beyond the standard quantum limit
(SQL) [Fabre94, Mancini94], and quantum nondemolition measurements [Jacobs94,
Pinard95], the preparation of nonclassical [Bose97] and entangled [Mancini97] states,
or feedback cooling of the mechanical motion [Mancini98] for instance. More re-
cently, theoretical interest has been fruitful for proposing light-to-mechanical telepor-
tation [Mancini03, Hofer11], qubit-to-light transduction [Stannigel10], non-Gaussian
state swapping [Filip15], thermodynamics [Kolář16], and further investigation of
entanglement generation [Pirandola06, Genes08, He13, Hofer15, Vivoli16, Asjad16,
Chakraborty16].
Experimentally, great advances were made over the years in quantum optomechan-
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ics, such as the first the demonstration of optical feedback cooling [Cohadon99], and
cooling at sub-Kelvin temperatures [Kleckner06, Poggio07]. Optomechanical cou-
pling has been recently demonstrated in a variety of new physical platforms, such
as membranes [Thompson08b] and nanorods [Favero09] inside Fabry-Pérot cavities,
whispering gallery microdisks [Jiang09, Wiederhecker09] and microspheres [Ma07,
Park09, Tomes09], photonic crystals [Eichenfield09a, Eichenfield09b], evanescently cou-
pled nanobeams [Anetsberger09], the motion of a cloud of cold atoms [Brennecke08,
Murch08], and superconducting microwave resonators capacitively coupled to mechan-
ical elements [Regal08, Teufel11] also labeled electromechanics. Additionally, purely
quantum features have been recently reported, such as squeezed light due to the optome-
chanical interaction [Brooks12, Safavi-Naeini13, Purdy13], squeezing of the mechanical
degree of freedom [Pirkkalainen15], as well as entanglement between the photons and
the mechanical motion [Palomaki13b, Riedinger16].

IV.1.2 Modeling the quantum optomechanical interaction

Let us now briefly introduce a simple model for a quantum optomechanical interaction.
The typical set-up for this interaction is shown in Fig. IV.1. An input laser is shined on
one of the cavity’s mirrors, the mirror on the left, and some of the light enters the cavity,
due to the imperfect reflectivity of the mirror, which is modeled by the input-output
dissipation rate κ. The photons travel in round-trips inside the cavity, and thereby
bounce on the right mirror of the cavity, which is not fixed to the ground, but can
move to some extent. This is modeled by the mirror being attached to a spring. The
photons create a radiation force when impinging on the right mirror, and therefore this
mirror can be physically displaced, which consequently starts a mechanical oscillation
of the mirror due to the spring. During this mechanical oscillation, the cavity length is
periodically changed, which changes the resonance frequency of the cavity, and thereby
modifies the input of the laser photons at the left mirror. Eventually, the mechanical
motion stops due to its dissipation rate γ, that is typically several orders of magnitude
larger that the photons input-output dissipation rate κ.
In mathematical terms, it means that the cavity frequency is a function depending

of the position of the mechanical oscillator, here the right mirror, and vice versa. The
Hamiltonian of the system can then simply be expressed as

Ĥ = ωa(Xm)â†â+ ωmm̂
†m̂, (IV.1)

where â(â†) is the annihilation (creation) operator for the cavity mode, with the position-
dependent frequency ωa(Xm), while m̂(m̂†) is the annihilation (creation) operator for
the mechanical resonator, with the frequency ωm. The position-dependent cavity fre-
quency can be written with a Taylor expansion

ωa(Xm) = ωa + Xm
∂ωa(Xm)

∂Xm
+ · · · . (IV.2)

For a sufficiently small optomechanical coupling, we can keep solely the zeroth and the
first order terms in Eq. (IV.2), and rewrite the Hamiltonian as

Ĥ ≈ ωaâ†â+ ωmm̂
†m̂− g0â†â

(
m̂† + m̂

)
, (IV.3)
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where g0
g0 = −xZPF√

2

∂ωa(Xm)

∂Xm
(IV.4)

is the single photon optomechanical coupling, noting that Xm = xZPF(m̂†+m̂)/
√

2 with
xZPF being the zero point fluctuations of the mechanical position.
Note that is most cases g0 is very weak with respect to the dissipations rates κ, γ

and to the frequencies ωa, ωm. Therefore, a further approximation can be applied to
the Hamiltonian, one that states that the cavity field can be written as the sum of a
coherent amplitude 〈â〉 = α which is the average of the field, and the field fluctuations
δâ such that

â = α+ δâ. (IV.5)

With this approximation, the Hamiltonian (IV.3) can be rewritten

Ĥ ≈ ωaâ†â+ ωmm̂
†m̂− g0α

(
δâ† + δâ

)(
m̂† + m̂

)
, (IV.6)

by assuming α real without loss of generality. In Eq. (IV.6) two terms are missing in
principle. The first one is −g0|α|2

(
m̂† + m̂

)
that is just a constant displacement in

the phase-space of the mechanical resonator, which we omit since it does not impact
the physics involving the quantum noise that we are interested in. The second term
is −g0δâ†δâ

(
m̂† + m̂

)
that we neglect by assuming that |α|2 � 〈δâ†δâ〉, namely that

the number of photons due to the quantum fluctuations is very small compared to
the photons of the average field. The Hamiltonian in Eq. (IV.6) describes the so-
called linearized quantum optomechanics [Aspelmeyer14]. In Eq. (IV.6), we can see
that now we have two bosons coupled with their respective position operator, with
an effective coupling strength g0α. Indeed, the optomechanical coupling strength is
in principle g0. However, when enough photons are injected in the cavity and the
linearized regime is still valid, the optomechanical coupling is enhanced by the cavity
field amplitude [Aspelmeyer14].

IV.2 Interferometric model with a double-sided moving
mirror

In this section we present the model that we use in this study, consisting of an inter-
ferometer embedding a double cavity separated in the middle by a double-sided mirror,
whose motion characterizes a mechanical degree of freedom. This scheme has several
advantages over the standard scheme see in Fig. IV.1, that we detail hereafter.
Our model is depicted in Fig. IV.2. A monochromatic laser is sent in the bottom

port of a 50:50 beams-splitter, represented by the mode b̂in, while in left port, âin,
is a field in an arbitrary quantum state. After the beam-splitter, both arms of the
common-path Sagnac interferometer reach both ends of a double cavity, with modes ĉ
and d̂ separated in the middle by a moving double-sided mirror, represented by mode
m̂. We describe each cavity as being a single-mode one, the mirror in the middle,
made of a non-transmissive vibrating membrane, is assumed to effectively support a
single phononic mode, since intermode couplings are typically negligible. The radiation
pressure induces an optomechanical coupling between the optical modes ĉ, d̂ and the
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Figure IV.2: Sketch of the interferometric optomechanical scheme. An optomechan-
ical device, composed of two identical optical cavities sharing a vibrating mirror, is
embedded in a common-path Sagnac interferometer. A classical drive, sent through
the control port β̂B(ω) modulates the optomechanical interactions with input/output
quantum signals α̂B(ω).

vibrational mode m̂, such that the system Hamiltonian can be written as

Ĥ = ωc

(
d̂†d̂+ ĉ†ĉ

)
+ ωmm̂

†m̂− g0
(
d̂†d̂− ĉ†ĉ

)(
m̂† + m̂

)
, (IV.7)

where Ĥ0 = ωc

(
d̂†d̂+ ĉ†ĉ

)
+ ωmm̂

†m̂. We denote with ωc and ωm the frequencies of
the optical cavities and mechanical modes, respectively, and with g0 the optomechanical
coupling strength, assumed to be equal for the two modes. To derive input/output
relations for our system, we consider a standard Markovian coupling of the intra-cavity
fields ĉ and d̂ with the modes describing the electromagnetic environment, γ̂B(ω) and
δ̂B(ω), respectively. It is straightforward to see that the input modes of the 50:50 beam
splitter, α̂B(ω) and β̂B(ω) in Fig. IV.2, interact selectively with the bosonic modes â
and b̂, defined by the relations â =

(
ĉ− d̂

)
/
√

2 and b =
(
ĉ+ d̂

)
/
√

2. These modes
correspond to collective excitations of the two optical intra-cavity modes.
The system Hamiltonian can thus be rewritten as

Ĥ = ωc

(
â†â+ b̂†b̂

)
+ ωmm̂

†m̂+ g0

(
â†b̂+ âb̂†

)(
m̂† + m̂

)
, (IV.8)

where Ĥ0 = ωc

(
â†â+ b̂†b̂

)
+ωmm̂

†m̂. Let us now assume that an undepleted coherent

state at frequency ωb is sent through the port β̂B(ω). The spatial mode β̂B(ω) can be de-
composed in two modes propagating in opposite directions, proportional to the Fourier
transforms of the b̂ mode’s input and output respectively [Gardiner85, Gardiner04,
Walls08]. We can describe the driven mode b as a classical field, and replace b̂→ β e−iωbt
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in Eq. (IV.8). In a frame where a is rotating at the drive frequency, the Hamiltonian
becomes (see appendix G)

Ĥeff = (ωc − ωb) â†â+ ωmm̂
†m̂+ g0β

(
â† + â

)(
m̂† + m̂

)
, (IV.9)

where Ĥ ′0 = (ωc − ωb) â†â+ωmm̂
†m̂, where we assumed β real. Notice that this deriva-

tion leads to a linear optomechanical interaction of tunable strength g0β. In the context
of linearized optomechanics [Aspelmeyer14], such coupling is usually obtained consid-
ering small quantum fluctuations on top of a classical signal, which enhances the other-
wise negligible interaction [Liao15]. In our scheme, the quantum input and the classical
pump are given by independent modes, a fundamental difference that presents various
advantages. 1) The Hamiltonian in Eq. (IV.9) is valid for large quantum fluctuations
of the intra-cavity field, where the standard linear approximation of optomechanics
breaks down. 2) The proposed optomechanical device is able to interact with arbitrary
quantum inputs, without requiring displacing operations beforehand or additional non-
linear elements. 3) The effective coupling strength g0β and the coupling frequency ωb
depend on a classical drive, which is independent on the state and frequency of the
quantum input. This point is essential when a large degree of control of the coupling
strength is needed [Moore16]. 4) The quantum and the classical output exit the device
via independent optical paths.

IV.3 Results in the continuous regime

In this section we explore the model we introduced (in particular the effective Hamilto-
nian (IV.9)), and focus on a regime where a continuous monochromatic coherent pump
is sent through the port β̂B(ω).

IV.3.1 Validity of the effective Hamiltonian

The purpose of this section is to verify the validity of the effective Hamiltonian (IV.9).
To do so we study the system in the framework of input-output theory [Gardiner04].
This way, as in chapters I, II and III we can access the fields leaving the interferometer
by the ports α̂B(ω) and β̂B(ω). These fields are âout and b̂out. The approximation
b̂ ≈ β in Eq. (IV.9) means that b̂out is only made of reflected classical pump. How-
ever, in principle we have b̂ = β + δb̂ and b̂out = βout + δb̂out, and one might wonder
whether the intracavity fluctuations δb̂ is negligible or not, and therefore whether it
can affect the output fluctuations δβout or not. We can check that this is not the case,
by solving the input-output problem associated to the Hamiltonian (IV.8), considering
â and b̂ as quantum modes. If we write the Heisenberg equations associated to the
Hamiltonian (IV.8), we obtain (see appendix A)

d
dt â = −

(
(ωc − ωb) + κtot

2

)
â− ig0b̂

(
m̂† + m̂

)
−√κâin,

d
dt b̂ = −

(
(ωc − ωb) + κtot

2

)
b̂− ig0â

(
m̂† + m̂

)
−√κb̂in,

d
dtm̂ = −

(
ωm + γ

2

)
m̂− ig0

(
â†b̂+ âb̂†

)
−√γm̂in,

(IV.10)
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where the equations for modes â and b̂ are written in a rotating frame. Here κtot = κ+κL
is the total cavity dissipation rate, taking into account both the input-output dissipation
rate κ, as well as the internal losses rate κL. One can notice that Eqs. (IV.10) are
nonlinear, and therefore not practical for the solving method using the frequency space
(see appendixes B and C). This is where the linearization â = α + δâ, b̂ = β + δb̂ and
m̂ = µ + δm̂ is greatly useful as it allow us to reemploy the method we used before.
Now, we have two sets of coupled equations, one set for the steady state intracavity
complex field amplitudes

0 = −
(
(ωc − ωb) + κtot

2

)
α− ig0β

(
µ∗ + µ

)
−√καin,

0 = −
(
(ωc − ωb) + κtot

2

)
β − ig0α

(
µ∗ + µ

)
−√καin,

0 = −
(
ωm + γ

2

)
µ− ig0

(
α∗β + αβ∗

)
−√γµin,

(IV.11)

and one for the fluctuations, that also depend on the intracavity steady state
d
dtδâ = −

(
(ωc − ωb) + κtot

2

)
δâ− ig0β

(
δm̂† + δm̂

)
− ig0δb̂

(
µ∗ + µ

)
−√κδâin,

d
dtδb̂ = −

(
(ωc − ωb) + κtot

2

)
δb̂− ig0α

(
δm̂† + δm̂

)
− ig0δâ

(
µ∗ + µ

)
−√κδb̂in,

d
dtδm̂ = −

(
ωm + γ

2

)
δm̂− ig0

(
α∗b̂+ αb̂†

)
− ig0

(
βâ† + β∗â

)
−√γδm̂in,

(IV.12)
where we neglected second order terms. Before solving the equations for the fluctuations
we first need to solve the ones for the steady state fields. In the case where a pump is
only sent through the port β̂B(ω) (see Fig. IV.2), there is no classical field going inside
through α̂B(ω), and hence αin = 0. Moreover, in a realistic scheme, the mechanical
oscillator is at best in its ground state, and at worst in a thermal state, which are
both states that give 0 for any first order field moment, hence µin. With these two
simplifications the Eqs. (IV.11) are easily solved analytically, and their solution can be
plugged in the Eqs. (IV.12). From there, we apply the method shown in appendixes B
and C in order to obtain the output spectra for the radiation fields δâout and δb̂out.
In Fig. IV.3(a) we show the number of photons escaping through the port β̂B(ω) and

belonging only to the fluctuations δb̂out of the field b̂out. It is a spectrum defined as
nb,out(ω) =

∫
dω′〈δb̂†out(−ω)δb̂out(ω

′)〉. We can notice that as expected in our approx-
imation, no photons are generated in the quantum fluctuations of the mode b̂, which
shows that our approximation leading to the effective Hamiltonian (IV.9) is justified.

IV.3.2 Squeezing generation

So far we have only studied the output δb̂out, for the purpose of verifying the stiff pump
approximation made for the mode b̂. Here, we study the output leaving at the other
port of the interferometer, namely δâout. In particular, what kind of properties can be
found in this quantum noise ? We show the answer to this question in Fig. IV.3(b) with
the noise spectrum Sa,φ(ω) for the standard quadratures X̂a (gray dotted curve) and Ŷa
(black solid curve) respectively defined for the angles φ = 0 and φ = π/2. We used pa-
rameters typical of optical systems interacting with mechanical resonators. The spectra
show squeezing below the standard quantum limit at certain frequencies, reaching the
−3 dB limit at ω = 0, which is the origin of the rotating frame. Additionally, we can
comment that the resonances at which squeezing occurs remind us of a particular case
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Figure IV.3: Output spectra of various expectation values of the system, as functions
of various parameters. The parameters are: (ωc − ωb) = ωm; κ = 0.2ωm; γ = 10−5ωm;
ωm = 2π × 3 GHz; mechanical temperature Tm = 2 K. (a) Spectrum of the number
of photons nb,out(ω) =

∫
dω′〈δb̂†out(−ω)δb̂out(ω

′)〉 leaving the system and coming only
from the quantum fluctuations of mode b̂. Here g0β = 0.49ωm; κL = κ. (b) Noise
spectra Sa,φ(ω) of X̂a (gray dotted curve) and of Ŷa (black solid curve) as functions the
measurement frequency ω in units of the mechanical frequency ωm, for g0β = 0.49ωm.
Here κL = κ. (c) Optimal single-mode squeezing Sa,φ(ω) for the quadrature Ŷa and as a
function of g0β. The curve shows the minimal value of Sa,φ(ω) with respect to ω. Here
κL = κ. (d) Optimal single-mode squeezing Sa,φ(ω) for the quadrature Ŷa as a function
of κL, for g0β = 0.49ωm.

studied in chapter III. In the previous chapter, one consequence of the simulation of the
USC regime was squeezing at two resonance frequencies, which symmetrically appear
on the both sides of the noise spectra, expect in the case where one resonance could
meet its negative counter part, which resulted in spectra whose shape was very similar
to the one seen in Fig. IV.3(b).

As in previous chapters, we study the optimal squeezing (optimized with respect to
ω) as a function of the coupling strength, which is shown in Fig. IV.3(c). We can
see that as expected the squeezing significantly increases with the coupling strength.
Note that here, what we call the coupling strength is actually the effective coupling
g0β defined in section IV.2, where its is controlled by another mode (b̂) than the one
we are interested in (â). This means that while we increase the coupling strength by
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injecting more photons in the port β̂B(ω) (see Fig. IV.2), a squeezed vacuum escapes
the interferometer through the port α̂B(ω).
At last we which to compare the squeezing we just presented in Figs.IV.3(b) and

IV.3(c) with a more favorable situation. So far we considered the case κL = κ, which
means that on average for each squeezed photon that escape the cavity through the
measurable channel, one photon is lost by other means inside the cavity sch as absorption
for instance. In Fig. IV.3(d) we show the optimal noise spectrum for the quadrature Ŷa
(as in Fig. IV.3(c)), as a function of the loss rate κL/κ. We can see that for a sufficiently
low internal losses rate the squeezing tends to values lower than −15 dB.

IV.3.3 Comparison with the quantum simulation of the USC regime

In the last part of this section devoted to the study of our model in the continuous
regime we report results of a comparison between the properties of the two-mode state of
radiation leaving the cavity and the state produced in a Josephson mixer in a quantum
simulation of the USC regime (see chapter III). Before doing so, let us specify that
contrary to above, we are not interested in the squeezed vacuum leaving the port α̂B(ω),
but rather the two-mode state leaving the double cavity through the channels γ̂B(ω)
and δ̂B(ω). One important point is that by doing so we abandon the practicability of
separating the quantum state âout from the classical field b̂out ≈ βout, and thus, need to
find a way to collect the output states ĉout and d̂out. This can be done by replacing two
mirrors by polarizing beam splitter (PBS) and by putting a quarter-wave plate (QWP)
right before the each entrance of the double cavity. This allows the input fields in
both arms to be reflected through both PBSs and since the inputs and outputs both go
twice through the QWPs, the outputs can be transmitted through the PBSs and safely
measured. Note however that we still pump this system in the same way as before, with
the help of the beam-splitter, since from an experimental point of view it would be the
most natural way the drive both cavities at the same time, by using the same laser.
Additionally, this driving scheme is particularly practical from the point of the view of
the input-output resolution, as it allows us to find the mean fields analytically. Indeed,
we have seen above that, surprisingly, by using intuitive simplifications (αin = µin = 0),
the mean fields α and β and µ can be found analytically in Eq. (IV.11). From there,
one just has to apply the beam-splitter relations in order to find the mean fields for ĉ
and d̂. The same applies for finding the output field fluctuations δĉout and δd̂out.
We show the noise spectra, the single mode ones, as well as the two-mode ones,

for the modes δĉout and δd̂out, as functions of the measurement frequency ω in the
rotating frame. As one can notice, these spectra show single-mode squeezing, two-
mode squeezing and entanglement, in the same fashion as the output state studied
in chapter III. Moreover, as in the previous chapter, here we can also witness what
resembles a Rabi splitting of the resonance frequency (highlighted with gray arrows).
As a matter of fact, to compare the Fig. IV.4 more accurately with Fig. III.4 shown
in chapter III, we used the same parameters or the same ratios between parameters
in both figures. For instance, the effective frequency δB in the previous chapter here
becomes the difference ωc − ωb = ωm. Similarly, the coupling strength G = GB = GR
here becomes g0β. Concerning the dissipations rates, the ratios γa,b/δB ad γL/γa,b
from the previous chapter are here κ/ωm and κL/ωm. Therefore, it can be noticed
in Fig. IV.4 that when the ratio g0β/ωm goes beyond 0.1, we have the same spectral
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Figure IV.4: Noise spectra of the system’s output fields δĉout and δd̂out as functions
of the measurement frequency ω in units of the mechanical δB. (a), (d) Single mode
noise spectra of X̂c (dotted curve) and of Ŷc (solid curve). (b), (e) Two-mode noise
spectra of X̂c−X̂d (dashed curve) and of of Ŷc+ Ŷd (solid curve). (c), (f) EPR variances
∆EPR = ∆(Xc−Xd)

2+∆(Yc+Yd)
2 (solid curve) and ∆EPR′ = ∆(Xc+Xd)

2+∆(Yc−
Yd)

2. The parameters are: (ωc − ωb) = ωm; κ = 0.2ωm; κL = 0.02ωm; γ = 10−5ωm;
ωm = 2π × 3 GHz; mechanical temperature Tm = 2 K. (a-c) Color code: each color or
shade is associated with a value of g0β/ωm: lighter curves represent g0β/ωm = 0.01;
darker ones, g0β/ωm = 0.3. From lightest to darkest curve, g0β/ωm takes the values
{0.01, 0.1, 0.2, 0.3}. Arrows follow the splitting of the resonance frequency as g0β/ωm
increases, simulating Rabi splitting. (d-f) Here we fix g0β/ωm = 0.47, for which the two
central dips (peaks) merge at the origin. The black horizontal lines indicate the plot
range in (a-c). (c), (f) The thin dotted line indicate the value below which the state is
detected as entangled.

features for the output fields fluctuations here, as we had in chapter III. In short, even
if the Hamiltonian (IV.7) does not show a direct coupling between modes ĉ and d̂,
the results are very close to a situation were these modes have an effective frequency



IV.3 Results in the continuous regime 99

ωc−ωb = ωm, and are ultrastrongly coupled in a rotating frame with a coupling strength
g0β. There however small differences between Figs. IV.4 and III.4. The most noticeable
one is the shape of the entanglement witness ∆EPR. Indeed, in Fig. III.4(c) and III.4(f)
the entanglement witness ∆EPR = ∆(Xa −Xb)

2 + ∆(Ya + Yb)
2 shows four dips with

violation, whereas in Fig. IV.4(c) and IV.4(f) ∆EPR = ∆(Xa − Xb)
2 + ∆(Ya + Yb)

2

shows only two dips of violation, because the two other dips are violated by the other
witness ∆EPR′ = ∆(Xa +Xb)

2 + ∆(Ya−Yb)2. This comes from the fact that although
the results are surprisingly similar, the Hamiltonians for both models are not the same,
which results in these differences.
In chapter III the squeezed vacuum containing the USC regime properties was de-

signed to be generated in the microwave range only, whereas here they could be gen-
erated with optical cavities, which opens the way to study the USC regime between
optical photons. We note however that here were reported only preliminary results,
and a deeper study would be required to fully understand the link between the Hamil-
tonian (IV.7) and the one of a simulated USC given in Eq. (III.6).

IV.3.4 Stability in the continuous regime

When optomechanics are studied in a regime where the system is driven by a continuous
pumping field, a great attention must be devoted to the matter of stability. Indeed,
depending on the strength of the drive, on the values of the dissipation rates, an most
importantly on the detuning between the pumping field frequency and the cavity fre-
quency. In our case this detuning is ωc − ωb = ω, which is the so-called red-detuned
regime [Aspelmeyer14]. We were solely interested in this regime since it is the one that
brings results similar to the quantum simulation of the USC regime. In general this
red-detuned regime is of use in schemes when one tries to cool down the mechanical
resonator as close as possible to its ground state. This can be understood by simply
noting that the resonance condition ωc − ωb = ω states that the energy of the pump
photons is lower than the energy of the cavity photons by just the energy of a phonon
from the mechanical resonator. Therefore, the phonons’ energy tends to be transmitted
to the cavity in order to generate cavity photons.
Another regime exists, called the blue-detuned regime, where the resonance condition

is rather ωc − ωb = −ω, which basically states that the energy of the photons brought
to the system by the pump is higher than the energy of the cavity photons by an
amount equal to the energy of a phonon. Therefore, inside the cavity, photons can
be generated at the cavity frequency only if that extra energy is transmitted to the
mechanical resonator in order the create phonons. This is a rather simple way to
summarize the situation, but it gives the idea that in this regime, amplification in
involved. When the amplification gain surpasses the effective mechanical damping, self-
sustained mechanical oscillations can arise [Aspelmeyer14], such as in a lasing effect.
Another name for this effect is parametric instability, a matter that was the subject of
many studies in optomechanics (see for instance [Marquardt06, Ludwig08]).
In order to avoid the instability in a theoretical model, one can check a stability

criterion very reminiscent of the Routh-Hurwitz criterion [DeJesus87]. In quantum op-
tomechanics, it consists in writing the equations of the motions (IV.12) for the quantum
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fluctuations as a matrix, such as

M(ω)Â− iÂin = 0 (IV.13)

where

Â = {δâ(ω), δb̂(ω), δm̂(ω), δâ†(−ω), δb̂†(−ω), δm̂†(−ω)}, (IV.14)

Âin = {√κδâin(ω),
√
κδb̂in(ω),

√
γδm̂in(ω),

√
κδâ†in(−ω),

√
κδb̂†in(−ω),

√
γδm̂†in(−ω)},

(IV.15)

since this criterion does not take into account internal losses. Then, the eigenvalues of
the matrix M(ω) are computed and whose imaginary parts have to be negative in order
for the mean fields to be stable [Restrepo14b]. In our model, this criterion has been
checked and is valid for the parameters of both Fig. IV.3 and IV.4.

IV.4 Results in the pulsed regime

We now move to our results in the pulsed regime. This means that here, the drive sent
through the port β̂B(ω) in our model presented in Fig. IV.2 is not continuous but made
of pulses. Using such a drive in quantum optomechanics can present several advantages
over the continuous regime [Hofer11, Vanner11]. For instance, now we are not working in
the steady state regime as before, so that the pulsed regime is not subjected to stability
requirements, which can limit the amount of achievable optomechanical entanglement
in the continuous regime. Additionally, the optomechanical interaction can be activated
and verified with two subsequent pulses of light.
In this section we will show that in the pulsed regime, the scheme shown in Fig. IV.2

can be used as a black-box for quantum communication with an internal quantum
variable (the mechanical resonator), a quantum input/output port αB(ω) and a classical
control port βB(ω) that modulates the interaction between them. Specifically, we will
show that two such black boxes can quantum communicate with two quantum protocols,
first with the so-called quantum teleportation with continuous variables [Braunstein05],
and second with a direct quantum state transfer. Since we showed in the previous
section that mode b̂ can be safely approximated by a classical amplitude β, we use here
the effective Hamiltonian (IV.9). We consider the resolved-sideband regime κ < ωm,
where κ is the cavity dissipation rate. Under the requirement that the effective coupling
strength is smaller than the mode frequencies g0β � ωm, ωc, tuning ωb enables the
selective activation of the red or the blue sideband of the optomechanical interaction.
We consider a long-pulsed regime [Hofer11], such that the total interaction time τ
is short compared with the timescale γ of mechanical dissipative processes, but long
enough to adiabatically eliminate the cavity mode κ−1 � τ � γ−1. Photon losses with
decay rate κL are included in the full model (see appendix H).
In this parameter regime, two fundamental processes can be selectively implemented,

by tuning the frequency of pump in resonance with the red or the blue sidebands of the
optomechanical interaction. In the first case, a state-swap process can be implemented
between input/output optical pulses and the state of the mechanical resonator. In
the second one, an Einstein-Podolsky-Rosen (EPR)-like state [Einstein35a] is generated
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between the output optical pulse and the mechanical resonator.

IV.4.1 State swap

Let us consider first the case in which the red sideband is selected in Eq. (IV.9), i.e.,
the interaction terms â†m̂ + â m̂†. The classical drive is a coherent pulse of frequency
ωb = ωa − ωm, of duration τ . In the interaction picture, the Langevin equations are
given by [Gardiner85, Gardiner04, Walls08],

˙̂a(t) = −κâ(t)− igm̂(t)−
√

2κ âin(t), (IV.16)
˙̂m(t) = −γm̂(t)− igâ(t)−

√
2γ m̂in(t),

where g = g0β. Performing an adiabatic elimination of the cavity mode (see ap-
pendix H), one is able to find analytically the input/output relations after a fixed
interaction time τ ,

Ârout = −e−Gτ Ârin − i
√

1− e−2Gτ M̂in, (IV.17)

M̂out = e−GτM̂in + i
√

1− e−2Gτ Ârin − CrM̂ r
B,

where G = (g0β)2

κ . M̂in = m(0) and M̂out = m̂(τ) are the states of the mechanical
resonator before and after the interaction. The relations of Eq. (IV.17) then describe
a state-swap process between the mechanical resonator and the normalized temporal
modes Ârin = Q(τ, âin) and Ârout = P(τ, âout), which are defined by the functions,

P(τ, Ô) =

√
2G

1− e−2Gτ
∫ τ

0
dte−GtÔ(t), (IV.18)

Q(τ, Ô) =

√
2G

e2Gτ − 1

∫ τ

0
dteGtÔ(t).

For the state-swap interaction to take place, the input/output pulses must be modu-
lated by a specific exponential envelope given by Eq. (IV.18). The interaction of the
mechanical resonator with the thermal environment is included in the model via the
term CrM̂ r

B, and it will set the upper bound to the optimal interaction time for the

state-swap process. We defined Cr =
√

γ
G (1− e−2Gτ ), and M̂ r

B = Q(τ, m̂in), being m̂in

the standard input operator for bosonic bath modes. The impact of the mechanical
bath on the optical output is a second-order effect in γ/G, and it is negligible for the
interaction times τ considered in this section.

IV.4.2 EPR state generation

On the other hand, when one has ωb = ωa + ωm, the blue sideband in Eq. (IV.9) is
selected, i.e., the interaction terms â†m̂†+ â m̂. The corresponding Langevin equations
are given by

˙̂a(t) = −κâ(t)− igm̂(t)† −
√

2κ âin(t), (IV.19)
˙̂m(t) = −γm̂(t)− igâ(t)† −

√
2γ m̂in(t).
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Figure IV.5: Teleportation protocol. Where not specified, here Tm = 25 mK, g =
32.5 MHz, ωc/2π = 194 THz, ωm/2π = 5.3 GHz, γ/2π = 6.5 kHz, r = 0.3, and
κL/2π = 455 MHz. (a) EPR variance as a function of the squeezing parameter r = Gτ .
Black full line: no mechanical dissipation γ nor photon losses κL; red dotted line:
no photon losses; green dashed line: κL/κ = 0.3 and κ/2π = 1.52 GHz. The state
is entangled if ∆EPR < 2. (b) EPR variance as a function of the mechanical bath
temperature. (c) Teleportation fidelity F of a coherent state, as a function of its size
Xin (here Pin = 0) for a displacement efficiency η = 0.99. The vertical gray line shows
the value of Xin = 10 used in (d). (d) Teleportation fidelity as a function of the
mechanical bath temperature, for η = 0.99. Color code: from lighter to darker shades
of blue: κL/κ = {0.7, 0.45, 0.3, 0.18, 0.1} and r = {0.2, 0.3, 0.4, 0.58, 0.7}. As the κL/κ
ratio is decreased, the total dissipation rate κ+ κL is increased.

Under the same assumptions, analytical solutions for the input/output relations can be
found

Âbout = −eGτ Âbin − i
√
e2Gτ − 1

(
M̂in

)†
, (IV.20)

M̂out = eGτM̂in + i
√
e2Gτ − 1

(
Âbin

)†
− CbM̂ b

B.

This relation corresponds to an EPR state generation between the mechanical resonator
and a traveling light mode defined by an exponentially shaped envelope, with central
frequency ωc. In this case, the solutions are found in terms of the normalized tem-
poral modes Abin = P(τ, âin) and About = Q(τ, âout), defined in Eq. (IV.18). Notice
that the time-envelope of the input/output pulses of the blue sideband process (en-
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Figure IV.6: Schemes of the teleportation and state transfer protocols. Circled num-
bers represent different temporal steps. (Top panel) Teleportation protocol. (1) Bob
generates an optomechanical EPR state. (2) Alice implements a Beam-Splitter inter-
action and the required measurements. (3) The results of the measurements are sent
over a classical communication channel to Bob. (Bottom panel) State transfer process
between remote mechanical oscillators. The classical drive must be time-modulated in
order to optimize the time-envelope of the quantum signal.

tanglement generation) are the opposite ones with respect to the red sideband (state-
swap). Here, the effect of the thermal environment is given by the term CbM̂ b

B, where

Cb =
√

γ
G (e2Gτ − 1), and M̂ b

B = P(τ, m̂in). To assess the degree of entanglement of the
generated state we use the EPR variance [Duan00], shown in Figs. IV.5(a) and IV.5(b),
a figure of merit that can be smaller than 2 only for entangled states. The optimal
pulse duration is given by a trade-off between entanglement generation and dissipative
processes.

IV.4.3 Protocols

In the following, we show how the state-swap and EPR generation processes can be
applied to implement quantum communication between remote mechanical resonators.
In particular we will consider two protocols shown in Fig IV.6, that is teleportation and
remote quantum state transfer. In both cases, the goal is to transmit a quantum state
originally encoded on Alice’s mechanical resonator onto Bob’s, using a quantum-optical
channel. In the case of teleportation, an entangled state is initially shared between the
two parties, after which only local operations and classical communication are needed.
On the other hand, remote quantum state transfer does not require entanglement shar-
ing nor feed-forward operations, at the cost of modulating in time the intensity of the
classical driving pulses.
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IV.4.3.1 Teleportation

Let us first detail how a standard continuous-variable teleportation proto-
col [Braunstein98, Pirandola15] can be feasibly applied with the proposed scheme. When
the state to be teleported is encoded in Alice’s device, the protocol is composed of the
following steps, sketched in Fig IV.6. 1) Through the blue sideband process, Bob gen-
erates an EPR state between its mechanical device and a light pulse, which is sent
to Alice. 2) Alice implements a beam-splitter (BS) interaction between the received
pulse and her mechanical oscillator. Such a BS interaction can be obtained with the
red sideband process of Eq. (IV.17), setting the effective coupling parameter G so that
e−Gτ = 1/

√
2. Notice that the time envelope of the EPR pulse generated in step 1

matches the optimal shape given by the input/output relations of Eq. (IV.17). Then,
the output optical pulse is measured via homodyne detection, while the mechanical
resonator is measured through red-sideband interaction with a probe field. 3) The re-
sults of the two measurements are sent through a classical channel to Bob, who uses
this information to choose the phase of a displacement operation to be applied to his
mechanical resonator. At the end of the protocol, the state is destroyed in Alice’s device
and deterministically teleported onto Bob’s.
Let us denote the quadratures of Bob’s mechanical resonator with X̂2(t) =[
m̂2(t)

† + m̂2(t)
]
/
√

2 and P̂2(t) = i
[
m̂2(t)

† − m̂2(t)
]
/
√

2 , and Alice’s ones with X̂1(t)

and P̂1(t). At the end of the teleportation protocol, the state of Bob’s mechanical
resonator is given by (see appendix H)

X̂tel
2 = ηX̂1(0) +RX̂2(0) +R′P̂in, (IV.21)
P̂ tel2 = ηP̂1(0) +RP̂2(0) +R′X̂in,

where X̂in =
[
(Âbin)† + Âbin

]
/
√

2 and P̂in = i
[
(Âbin)† − Âbin

]
/
√

2 are the quadratures of
the optical input of Bob’s device, as defined in Eq. (IV.20). Here η is the efficiency of
the coherent displacement applied by Bob at the end of the protocol, and we defined the
parameters R = er − η

√
e2r − 1 and R′ =

√
e2r − 1 − ηer. This teleportation protocol

is deterministic, the teleportation fidelity tends to 1 for very large squeezing r � 1 and
η = 1.
In Figs. IV.5(c) and IV.5(d), we show the fidelity of the final state for different

sets of feasible parameters [Krause15, Riedinger16, Massel11, Palomaki13b, Wollman15,
Guha16], in the special case in which a coherent state is teleported. Notice that in
Eq. (IV.21) we neglected for the sake of simplicity the mechanical decoherence and pho-
ton losses, yet a full treatment was used in Fig. IV.5 and can be found in appendix H.
For uniformly distributed coherent states, it can be shown [Hammerer05] that the opti-
mal classical strategy gives an average fidelity F = 1/2, providing a lower bound for the
validation of the implementation of quantum teleportation. Another interesting bound
is given by the no-cloning limit [Cerf00, Grosshans01] F > 2/3, which certifies that Bob
has the best existing copy of the original state.

IV.4.3.2 Implementation in physical systems

We now verify the possibility to implement the teleportation protocol by applying it to
existing experiments [Massel11, Palomaki13b, Wollman15, Krause15, Riedinger16]. If
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Figure IV.7: State transfer protocol. Fraction of the initial state m̂(0) that have
been transferred to the second mechanical oscillator m̂2(τ) (W 2

TM ), and that have been
destroyed on the first mechanical oscillator m̂1(τ) (W 2

D), as functions of the pulses
duration τ (a), and of the ratio κL/κ (b). The parameters are τmax/2π = 0.04/γ,
g = 32.5 MHz, ωc/2π = 194 THz, ωm/2π = 5.3 GHz, γ/2π = 6.5 kHz. (a) κL/κ = 0.3,
κ/2π = 1.52 GHz. (b) τ = τmax, and as κL/κ goes from 0 to 1, κ/2π goes from 4.55 GHz
to 650 MHz. INSET : optimal temporal shapes of the control pulses for the sender (solid
curve) and the receiver (dotted curve). Note that in (b), even when κL/κ goes to 0, we
still have W 2

TM < 1 due to the mechanical dissipation.

our scheme shown in Fig. IV.2 is adapted to the architecture of each of these experi-
ments, it becomes relevant to study whether the state of the art parameters achieved
in these references allow or not to perform a quantum teleportation. Therefore, we
will use the parameters from these articles to show what are the typical teleportation
fidelities for one can obtain. Note however that if the values of the parameters are
different from the needed values, it may not only due to the current technological and
technical limits, but also to the fact that these experiments have not been optimized
for quantum teleportation. In order to verify this, in the following we show the com-
puted fidelity for each of these references, by starting with experiments performed with
telecom wavelength photons [Krause15, Riedinger16].

Implementation with telecom wavelength photons In Fig. IV.8 we show the fidelity
for the parameters from [Krause15, Riedinger16], as a function of the temperature Tm
of the mechanical oscillator, as well as a function of the output coupling rate κ of
the cavity and the ratio between the photon losses rate κL and the output coupling
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Figure IV.8: Teleportation fidelity from Eq. (H.41) for a coherent state using the
parameters from [Krause15] (darker blue dashed line in (a) and (b)) and [Riedinger16]
(lighter blue dashed line in (a) and (b)). The red dots correspond to the temperature
from each experiment. From lighter to darker shades of blue: r = 0.25; r = 0.1. (c)
Experiment from [Krause15], with the temperature as in line five, i.e., Tm = 25 mK.
(d) Experiment from [Riedinger16]. κ0 correspond to the original value from [Krause15,
Riedinger16]. Note that in (c) and (d) the maximum values for κ/κ0 that are considered
are limited by the resolved sideband regime where κ < ωm.

rate. The study as a function of Tm in Figs. IV.8(a) and IV.8(b) shows how much the
system needs to be cooled down to beat the classical limit of F = 0.5, or the limit
F = 2/3. Note that the actual temperature in each experiment is indicated by a dot.
We can notice in Fig. IV.8(b) that even with a very low temperature of 25 mK, it is
only enough to achieve a 0.4 fidelity with the parameters from [Riedinger16] because
the photon losses rate κL is equal to the output coupling rate κ. It is thus intuitive that
in order to achieve a teleportation fidelity of at least 0.5, one needs the photon losses
rate to be smaller than the output coupling rate.
Let us remark that the high ratios κL/κ in these experiments are not the best achiev-

able values. Indeed, this ratio can be decreased at the expense of an increase of the
total cavity linewidth κ+κL. For this reason, we show in Figs. IV.8(c) and IV.8(d) the
fidelity as a function of κL/κ and of κ, which allows us to study the effect of a decrease
of the photon losses ratio, while taking into account the overall increase in the cavity
linewidth. Here we remark that we can reach values of F above 2/3 when κL/κ . 0.15,
even when κ is increased by more than one order of magnitude. Furthermore, the clas-
sical limit can be beaten with larger ratio κL/κ. Note however that for Fig. IV.8(c), we
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Figure IV.9: Teleportation fidelity from Eq. (H.41) for a coherent state using the pa-
rameters from [Massel11, Palomaki13b, Wollman15] (respectively from darker to lighter
shades of blue in (a) and (b)). The red dots correspond to the temperature from each
experiment. Note that for the experiment from [Wollman15] we used the same ratio
κL/κ = 0.2 as in line 2. From lighter to darker shades of blue: r = 0.35; r = 0.5;
r = 0.5.

consider the same temperature as in IV.8(d), Tm = 25 mK.

Implementation with microwave photons Let us now verify the feasibility of our
protocol in electromechanical systems, working at microwave frequency. In Fig. IV.9
we show the fidelity for the parameters from [Massel11, Palomaki13b, Wollman15], as a
function of the temperature Tm of the mechanical oscillator. We can see again how much
the three systems must be cooled down in order to achieve a fidelity of 0.5 or 2/3. One
can notice here that when the temperature tends to 0 K, the three fidelities overcome the
2/3 limit. However, in Figs. IV.8(a) and IV.8(b), only one of the fidelities overcomes the
0.5 classical limit when the temperature tends to 0 K. It can be understood by noticing
that the κL/κ ratio is lower for the microwave systems in Fig. IV.9 than for the optical
systems in IV.8.

IV.4.3.3 Remote state transfer

Let us now consider the case in which a quantum state is directly exchanged between
two remote mechanical resonators, as in the lower panel of Fig IV.6. The protocol is
organised as follows: a red detuned driving pulse βS(t) = βS(t) of duration τ is sent
through Alice’s control port, mapping the state of her mechanical resonator onto a
propagating light pulse âout(t). The quantum signal is sent to Bob, who modulates the
optomechanical interaction in his device via a red-detuned control pulse βR(t) = βR(t).
The interaction within Bob’s toolbox completes the transfer between Alice’s m̂1(0) and
Bob’s m̂2(τ) mechanical resonators. Time-modulated classical drivings are needed to
overcome a fundamental issue, absent in the teleportation protocol presented above. The
photon emission and absorption processes are the time-reversal of each other, when flat
drivings are considered. Hence, the emitted pulse sent by Alice would not have the right
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Figure IV.10: Direct state transfer efficiency W 2
TM defined in Eq.(IV.22) (and

the detailed expression is specified in the appendix I), as a function of the pulses
duration τ , using parameters from [Massel11, Palomaki13b, Wollman15, Krause15,
Riedinger16](respectively from darker to lighter shades of green). From darker to
lighter shades of green: τmax/2π = 0.417/γ; τmax/2π = 0.467/γ; τmax/2π = 0.0533/γ;
τmax/2π = 0.0857/γ; τmax/2π = 0.0295/γ. The two darkest dashed lines using param-
eters form [Massel11, Palomaki13b] are superimposed, due to the fact that for these
references, the ratio γ/κ in similar.

time-envelope to be efficiently absorbed by Bob. Designing the time-envelopes is crucial
if one wants to avoid any undesirable signal reflections between two nodes of a quantum
network [Cirac97]. The temporal shapes have been optimized for the pumps used by
the sender S(t) and by the receiver R(t), for arbitrary states, in order to maximize the
transfer efficiency. The inset in Fig. IV.7(b) shows the optimal functions S(t) and R(t)
for the state-of-the-art parameters considered in our work (see appendix I).
At the end of the protocol, the states of Alice’s mechanical resonator and Bob’s

mechanical resonator are

m̂1(τ) =
√

1−W 2
D m̂1(0) +N1

(
âin, m̂in, τ

)
, (IV.22)

m̂2(τ) = WTM m̂1(0) +N2

(
âin, m̂

′
in, m̂in, τ

)
,

where for the sake of clarity we gathered all the contributions due to the optical and
thermal environment in N1 and N2. The parameter WTM establishes how significant is
the transfer of m̂1(0) to m̂2(τ), optimal state transfer corresponds to WTM = 1. The
parameterWD shows how the state m̂1(τ) of the sender (Alice) is destroyed throughout
the protocol.
In Fig. IV.7 we show the results for state-of-the-art experimental parameters, and

details of the calculations leading to these results can be found in appendix I. We
consider the square of these quantities since it establishes the efficiency of the transfer for
the second order moments. We stress out that the pulse sequence is optimal, i.e., there
are no losses of information due to the time-envelope mismatch between the emission
and absorption processes. Notice that, depending on the duration of the pump pulses,
the state m̂1(0) can be partially transferred to Bob, and only partially destroyed in
Alice’s device. Hence, arbitrary quantum states can be transferred in a tunable and
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non-destructive way.

IV.4.4 Implementation in physical systems

Just as we did in for the teleportation protocol above, here we wish to verify the feasibil-
ity of the direct state transfer protocol considering the physical parameters of five pre-
vious experiments [Massel11, Palomaki13b, Wollman15, Krause15, Riedinger16]. These
parameters are used to compute the quantity defined in Eq.(IV.22) (and whose detailed
expression is specified in the appendix I), which is the figure of merit of the protocol.
We report the results in Fig. IV.10, where we can see that even for experiments which
have not been optimized for our protocol, their parameters give a good efficiency W 2

TM .
Note that here again, the success of the protocol is limited by the ratio κL/κ. To in-
crease the efficiency, one would need to decrease this ratio, at the expense of increasing
the total dissipation rate κ+ κL.

IV.5 Conclusion

In this last chapter we presented another fruitful platform for the study of fundamental
as well as practical applications of quantum mechanics and light-matter interactions.
We have shown that in quantum systems where optomechanical interactions can be
found, it is possible to design a particular interferometric scheme that can be used as
a black-box for different tasks, with the advantage of naturally emitting the quantum
output of interest already separated from the pumping field. We have shown that
for sufficiently larger effective optomechanical coupling with respect to the mechanical
frequency, one can reach a regime where the system emits a highly squeezed state,
with spectral features reminiscent of the ones found in the quantum simulation of the
USC regime studied in chapter III. Additionally, on a more opening note, we slightly
shifted from the main focus of the thesis, namely the link between the USC regimes and
squeezed states, to explore broader perspectives regarding the optomechanical scheme
we designed. Indeed, we have shown how this interferometric scheme could be used as
a node in a quantum communication network, by proposing two protocol, feasible with
current technology.
As a first perspective, we wish to point out that the link between this optomechanical

device studied in this chapter and the quantum simulation of the USC regime between
two bosonic fields should be the topic of a deeper study, as the preliminary results pre-
sented here seem to only scrape the surface of richer physics. As a second perspective,
the versatility of the optomechanical devices could be explored further by working to-
wards a model where mechanical resonators are not only coupled to telecom wavelength
photons, but also the microwave systems for instance such as qubits in order to perform
to totality of quantum information tasks.
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General conclusion

Light-matter interactions at the quantum level is a prominent field of research encom-
passing both fundamental and applied questions. In this thesis we have explored a
new facet of the ultrastrong coupling (USC) regime in light-matter interactions, mainly
related to its link with nonclassical states of light.
Namely, we have shown the conditions needed in a USC regime such that the sys-

tem can generate nonclassical states of light, motivated by the idea that similar con-
ditions have already been proven to trigger the emission of quantum vacuum radia-
tion [De Liberato07]. Thus, we showed that when a system is ultrastrongly coupled,
and this coupling is ruled by a non-adiabatic time modulation such as in a dynami-
cal Casimir effect [Moore70, Kardar99], the photons that are generated from vacuum
are actually less noisy than the vacuum itself. This result is not only of fundamental
interest, but is also pertinent for applications. For instance, if this model is realized
in solid-state resonators made of semiconducting quantum wells inside microcavities,
these systems would emit squeezed radiation at terahertz or at mid-infrared frequency
ranges. As a matter of fact, up to now quantum optics phenomena have only been fully
explored at the optical and the microwave frequencies ranges, leaving the frequency
range in between mainly untouched. Therefore, demonstrating squeezed radiation for
this new frequency band would be a major step towards helping to close the so-called
terahertz gap [Sirtori02, Kleiner07].
Additionally, we proposed a scheme to explore the ground state properties of the

USC regime. By devising a model based on a physical platform with a high degree of
experimental control, we have shown how this system could emit a two-tone microwave
radiation with quantum noise properties very similar to the ones in a ground state of the
USC between two bosonic fields. Using in our model only tools available with current
technology, we demonstrated the efficiency a of quantum simulation, namely, when a
problem cannot be tackled directly in its genuine physical platform. Indeed, in the USC
regime between two bosonic fields experimentally achieved so far, it is no possible yet for
the system to emit a radiation with such quantum properties. Therefore, studying these
ground states properties and in particular demonstrating them experimentally is very
difficult, and for the coupling between two bosonic fields no solution was ever proposed.
We bypassed this difficulty by designing a quantum simulation of the USC regime using
current technology, which allow one to experimentally access quantum noise properties
similar to the ones in the ground state.
Furthermore, we designed a model featuring optomechanical interaction and found

that such a system can generate a two-mode radiation at optical frequencies showing
noise properties similar to the ones achievable in a quantum simulation of the USC
regime. However, in this new optomechanical model, the USC regime is not explicitly
achieved nor simulated, which indicate that a non-trivial link may exist between the
USC regime and this optomechanical model. Therefore, these preliminary results call
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for a deeper study in order to fundamentally understand this link.
Finally, having this optomechanical model at our disposal, we further explored its

physics and slightly deviated from our initial scope concerned with the USC regime.
Consequently, we presented, as an outlook, means to use this model as a base ground
for quantum communication tasks, such as a quantum teleportation with continuous
variables and a direct quantum state transfer. Although several physical platforms are
good candidates for acting as nodes of a quantum networks, our contribution is in line
with a logic of diversification and thus the development of alternate candidates to host
a potential quantum Internet [Pirandola16].
In short, this thesis has been an excellent opportunity to explore the consequences

of various kinds of light-matter interactions and to study how, on the one hand, these
impact our understanding of some fundamental questions, and how, on the other hand,
these can be used as a resource for useful applications in quantum technologies, a field
of research more useful than ever nowadays.



A Deriving the equations of motion
with input-output theory

Here we show how to derive the equation of motion, or Langevin equation, for a quantum
harmonic oscillator described by annihilation and creation operators â and â†. We will
follow the steps of the input-output theory proposed in [Gardiner85]. We want an
equation of motion that takes into account dissipation in the time evolution, and for
that reason we need to model the environment of the oscillator in the Hamiltonian. We
will model it by a continuum of quantum harmonic oscillators described by Â(ω) and
Â†(ω). In the framework, the full Hamiltonian for our system is

Ĥfull = Ĥsys + Ĥbath + Ĥsb, (A.1)

where Ĥbath = ~
∫ +∞

−∞
dωωÂ†(ω)Â(ω), (A.2)

and Ĥsb = i~
∫ +∞

−∞
dωκa(ω)

(
Â†(ω)â− Â(ω)â†

)
. (A.3)

Ĥsys is the system Hamiltonian that solely involves â and â†. Ĥbath is the bath free
evolution Hamiltonian, while Ĥsb is the system-bath coupling. The fact that both
integrals are between −∞ and +∞ may appear unphysical at first sight. Indeed, if â
correspond to a mode of the electromagnetic field, then modes Â(ω) do so as well, and
thus all must be defined only for positive frequencies. However, input-output theory
was originally defined to treat quantum optics problems, that are usually considered in
a rotating frame at some frequency Ω. Indeed, in a frame rotating at Ω, the frequency
origin has been shifted from 0 to Ω. Thus, in Eqs. (A.2) and (A.3) the terms with
negative ωs inside the integrals would still correspond to physical positive frequencies
as long as Ω + ω > 0. Furthermore, if the physics of the studied problem occur on a
frequency band ∆ω around Ω, with ∆ω � Ω, for Ĥbath the integration can be performed
between −∞ and +∞. Regarding Ĥsb however, an additional approximation must be
made in order to extend the integration range, as the system-bath coupling must be
written in the rotating wave approximation, which is the case here. Indeed, in Ĥsb we
already dropped the terms Â†(ω)â† and Â(ω)â [Gardiner04].

For any operator Ŝ, the Heisenberg equation of motion is expressed
as [Cohen-Tannoudji77]

i~
d

dt
Ŝ = [Ŝ, Ĥfull]. (A.4)
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In order to obtain such an equation for â, we first need to obtain it for Â

d

dt
Â(ω) = − i

~
[Â(ω), Ĥfull]

= −i
∫ +∞

−∞
dω′ω′[Â(ω), Â†(ω′)]Â(ω′) +

∫ +∞

−∞
dω′κa(ω

′)[Â(ω), Â†(ω′)]â

= −iωÂ(ω) + κa(ω)â, (A.5)

simplified by using [Â(ω), Â†(ω′)] = δ(ω − ω′) and
∫ +∞
−∞ dω′f(ω′)δ(ω − ω′) = f(ω).

Eq. (A.5) can easily be sloved and its solution is

Â(ω) = e−iω(t−ti)Âi(ω) + κa(ω)

∫ t

ti

dt′e−iω(t−t
′)â(t′) (A.6)

where Âi(ω) stands for the bath operator prior to its interaction with the system, at a
time ti. For â, such an equation writes

d

dt
â = − i

~
[â, Ĥfull]

= − i
~

[â, Ĥsys]−
∫ +∞

−∞
dωκa(ω)Â(ω), (A.7)

where we can inject Eq. (A.5) in order to obtain

d

dt
â(t) = − i

~
[â(t), Ĥsys]−

∫ +∞

−∞
dωκa(ω)e−iω(t−ti)Âi(ω)

−
∫ +∞

−∞
dωκ2a(ω)

∫ t

ti

dt′e−iω(t−t
′)â(t′). (A.8)

At this stage, additional approximations must be made in order to obtain an equa-
tion of motion that is convenient to handle. We use the first Markov approxima-
tion [Gardiner85, Gardiner04],

κa(ω) =

√
γa
2π
, (A.9)

which amounts to say that the system-bath coupling is the same regardless of the
frequency ω. By defining an input annihilation operator as

âin(t) =
1√
2π

∫ +∞

−∞
dωe−iω(t−ti)Âi(ω), (A.10)

and injecting both Eqs. (A.9) and (A.10) in Eq. (A.8), we obtain

d

dt
â(t) = − i

~
[â(t), Ĥsys]−

√
γaâin(t)− γa

∫ t

ti

dt′δ(t− t′)â(t′). (A.11)
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One last approximation consists in writing∫ t

ti

dt′δ(t− t′)â(t′) =
1

2
â(t), (A.12)

where the factor of 1/2 arises because the delta function is peaked at the end of the
integration range [Gardiner04]. Finally, one obtains the following equation of motion

d

dt
â(t) = − i

~
[â(t), Ĥsys]−

√
γaâin(t)− γa

2
â(t). (A.13)

Note that as we defined the input operator âin, we can define an output operator

âout(t) =
1√
2π

∫ +∞

−∞
dωe−iω(t−ti)Âf(ω), (A.14)

where analogously to Âi, here Âf stands for the bath operator after its interaction with
the system, at a time tf. An equation for the solution of Â(ω), analogous to the Eq. (A.6)
can be found and is written as

Â(ω) = e−iω(t−tf)Âf(ω)− κa(ω)

∫ t

tf

dt′e−iω(t−t
′)â(t′). (A.15)

Then, by integrating both Eqs. (A.6) and (A.15), we obtain

1√
2π

∫ +∞

−∞
dωÂ(ω) = âin(t) +

√
γa

2
â(t) = âout(t)−

√
γa

2
â(t), (A.16)

thus giving
âout = âin +

√
γaâ. (A.17)

The procedure to obtain the output of the system is then to solve the Eq. (A.13) and
then inject it in the Eq. (A.17).
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B Evaluating the output squeezing from
a degenerate optical parametric
oscillator with input-output theory

Here we are interested in the calculation of the squeezed radiation that can escape an op-
tical parametric oscillator (OPO). In the laboratory frame, the Hamiltonian describing
this parametric process is

Ĥlab = ωaâ
†â+ i

~gαc
2

(
(â†)2e−iωct − â2eiωct

)
, (B.1)

where ωa = ωc/2 is the frequency of the mode â and ωc is the frequency of the pump.
We already assumed the pump to be a classical field described by its complex amplitude,
assumed real here, as addressed in section I.2.9.1.1 In a frame rotating at ωc/2, Eq. (B.1)
becomes

ĤdOPO = i
~gαc

2

(
(â†)2 − â2

)
. (B.2)

By using eq. (A.13) with Ĥsys = ĤdOPO, we obtain

d

dt
â(t) = gαcâ

†(t)−√γaâin(t)− γa
2
â(t). (B.3)

As usual in input-output theory, we will solve this equation in frequency space

− iωâ(ω) = gαcâ
†(−ω)−√γaâin(ω)− γa

2
â(ω), (B.4)

where the Fourier transform is defined as

â(ω) =
1√
2π

∫
dteiωtâ(t), (B.5)

and where we used the definition (â(ω))† = â†(−ω). Eq. (B.4) can be rewritten as the
following system(

âin(ω)

â†in(ω)

)
=

(
iω − γa/2 gαc

gαc iω − γa/2

)(
â(ω)
â†(ω)

)
, (B.6)

1Note that in Eq. (B.1), we retrieve the fact that in the laboratory frame, we have 〈ĉ〉 = αce
−iωct (ĉ

being the quantum mode describing the pump), whereas in section I.2.9.1, the equality 〈ĉ〉 = αc is
valid in the rotating frame.
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which can be inverted to give(
â(ω)
â†(ω)

)
=

(
A1,cav(ω) A2,cav(ω)
A∗2,cav(−ω) A∗1,cav(−ω)

)(
âin(ω)

â†in(ω)

)
, (B.7)

where

A1,cav(ω) =

√
γa(γa/2− iω)

g2α2
c − (γa/2− iω)2

, (B.8)

A2,cav(ω) =

√
γagαc

g2α2
c − (γa/2− iω)2

. (B.9)

Then, using the Eq. (A.17), one finally obtains the input-output relation

âout(ω) = A1(ω)âin(ω) +A1(ω)â†in(ω), (B.10)

with

A1(ω) = 1 +
√
γaA1,cav(ω) =

g2α2 + (γa/2)2 + ω2

g2α2
c − (γa/2− iω)2

, (B.11)

A2(ω) =
√
γaA2,cav(ω) =

γagαc
g2α2

c − (γa/2− iω)2
. (B.12)

As we will see hereafter, with the Eqs. (B.10), (B.11) and (B.12) we have everything we
need to evaluate the output squeezing from the degenerate OPO. For the quadrature
X̂, the noise spectrum is defined as [Clerk10]

SXX(ω) =

∫
dteiωt〈X̂(t)X̂(0)〉. (B.13)

Note that the Eq. (B.13) is the quantum analog of a spectral density used in classical
physics. Here it is a quantum noise spectral density, related to the autocorrelation
function 〈X̂(t)X̂(0)〉. Eq. (B.13) in its current form is a measurable quantity, but not
very useful in our theoretical calculation. In fact, by using Eq. (B.5) and Eq. (B.13),
we can write

SXX(ω) =

∫
dteiωt

1√
2π

∫
dω′′e−iω

′′t 1√
2π

∫
dω′〈X̂(ω′′)X̂(ω′)〉

=
1

2π

∫
dω′′

∫
dtei(ω−ω

′′)t

∫
dω′〈X̂(ω′′)X̂(ω′)〉

=

∫
dω′

∫
dω′′δ(ω − ω′′)〈X̂(ω′′)X̂(ω′)〉

=

∫
dω′〈X̂(ω)X̂(ω′)〉, (B.14)

where we have used
∫
dtei(ω−ω

′′)t = 2πδ(ω − ω′′). According to Eq. (I.37), we have
X̂φX̂φ = (âoutâ

†
out + â†outâout + âoutâoute

−2iφ + â†outâ
†
oute

2iφ)/2.2 Thus, for a quadrature

2Note that having X̂2
φ is enough for getting the variance 〈∆X̂φ〉, since here 〈∆X̂φ〉2 = 〈X̂2

φ〉. Indeed,
〈X̂φ〉 = 0 because we will always consider an input vacuum.
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with an arbitrary angle φ, the noise spectrum is

SXφXφ(ω) =

∫
dω′
(
〈âout(ω)â†out(−ω′)〉+ 〈â†out(−ω)âout(ω

′)〉

+ 〈âout(ω)âout(ω
′)〉e−2iφ + 〈â†out(−ω)â†out(−ω′)〉e2iφ

)
. (B.15)

Note how the sign in front of ω and ω′ changes depending on whether it is the Fourier
transform of the annihilation or the creation operator that is considered [Gardiner84].

We consider that only the mode at ωc is pumped, and that no energy is directly
brought to the mode â from the environment. Thus, the input âin is the vacuum.
Therefore, we have [Gardiner85]

〈âin(ω)â†in(−ω′)〉 = δ(ω + ω′),

〈â†in(−ω)âin(ω′)〉 = 0,

〈âin(ω)âin(ω′)〉 = 0,

〈â†in(−ω)â†in(−ω′)〉 = 0,

(B.16)

which comes from the commutation relations in time [âin(t), â†in(t′)] = δ(t − t′), which
gives in frequency space [âin(ω), â†in(−ω′)] = δ(ω + ω′). With these equations, one can
obtain 

∫
dω′〈âout(ω)â†out(−ω′)〉 = A1(ω)A∗1(ω),∫
dω′〈â†out(−ω)âout(ω

′)〉 = A∗2(−ω)A2(−ω),∫
dω′〈âout(ω)âout(ω

′)〉 = A1(ω)A2(−ω),∫
dω′〈â†out(−ω)â†out(−ω′)〉 = A∗2(−ω)A∗1(ω),

(B.17)

which can be directly used to retrieve the full spectrum in Eq. (B.15). Instead of giv-
ing the full cumbersome expression of SXφXφ(ω) for arbitrary φ, let us give it for the
standard quadratures defined by φ = 0 and φ = π/2 that have the compact expres-
sions [Walls08]

SXX(ω) =
1

2
+

gαcγa
(γ/2− gαc)2 + ω2

, (B.18)

SY Y (ω) =
1

2
− gαcγa

(γ/2 + gαc)2 + ω2
, (B.19)

also called squeezing spectra. Note that these last two equations are not only theoretical
tools but are measurable quantities. In particular, these quantities are shown in the
experimental plots in Fig. B.19, yet in different scales. If one wants to study these
spectra in a logarithmic scale, one can use the Eq. (I.80), which in the present case will
be

Sφ=0(ω) = 10 log10

(
SXX(ω)

SvacXX(ω)

)
= 10 log10

(
2SXX(ω)

)
, (B.20)

Sφ=π/2(ω) = 10 log10

(
SY Y (ω)

SvacY Y (ω)

)
= 10 log10

(
2SY Y (ω)

)
, (B.21)
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since the spectra for vacuum are SvacXX(ω) = SvacY Y (ω) = 1/2.



C Evaluating the output two-squeezing
and logarothmic negativity from a
non-degenerate optical parametric
oscillator with input-output theory

Here we are interested in the calculation of the two-squeezing and logarithmic negativity
of the radiation that can escape an non-degenerate optical parametric oscillator (OPO).
In the laboratory frame, the Hamiltonian describing this parametric process is

Ĥlab = ωsâ
†
s âs + ωiâ

†
i âi + i

~gαc
2

(
â†s â
†
i e
−iωct − âsâieiωct

)
, (C.1)

ωs being the frequency of the signal âs, ωi being the frequency of the idler âi. ωc is the
frequency of the pump such that ωc = ωs + ωi. We already assumed the pump to be
a classical field described by its complex amplitude, assumed real here, as addressed in
section I.2.9.1.1 In a frame where the signal rotates at ωs and the idler rotates at ωi,
Eq. (C.1) becomes

ĤOPO = i
~gαc

2

(
â†s â
†
i − âsâi

)
. (C.2)

By using eq. (A.13) with Ĥsys = ĤOPO, we obtain the following coupled equations{
d
dt âs(t) = gαcâ

†
i (t)−

√
γaâs,in(t)− γa

2 âs(t),
d
dt âi(t) = gαcâ

†
s(t)−√γaâi,in(t)− γa

2 âi(t),
(C.3)

which in frequency space gives{
−iωâs(ω) = gαcâ

†
i (−ω)−√γaâs,in(ω)− γa

2 âs(ω),

−iωâi(ω) = gαcâ
†
s(−ω)−√γaâi,in(ω)− γa

2 âi(ω),
(C.4)

where both modes are considered to have the same dissipation rate γa since the photons
from both modes escape from the same cavity. We can solve the system of Eqs. C.4,

1Note that as in appendix B, in Eq. (C.1) we retrieve the fact that in the laboratory frame, we have
〈ĉ〉 = αce

−iωct (ĉ being the quantum mode describing the pump), whereas in section I.2.9.2, the
equality 〈ĉ〉 = αc is valid in the rotating frame.
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and by using Eq. A.17 we obtain
âs,out(ω)
âi,out(ω)

â†s,out(−ω)

â†i,out(−ω)

 =


A1(ω) A2(ω) A3(ω) A4(ω)
B1(ω) B2(ω) B3(ω) B4(ω)
A∗3(−ω) A∗4(−ω) A∗1(−ω) A∗2(−ω)
B∗3(−ω) B∗4(−ω) B∗1(−ω) B∗2(−ω)




âs,in(ω)
âi,in(ω)

â†s,in(−ω)

â†i,in(−ω)

 .

(C.5)
The input-output relations given in Eq. (C.5) are all we need in order to construct the
covariance matrix that will allow us to obtain the two-mode squeezing spectrum, to
test the entanglement witness given in Eq. (I.90), and to compute of the logarithmic
negativity. To do all this we need the spectra of sixteen expectation values, that we can
compute in the same manner as in appendix B, by again assuming vacuum inputs for
the signal and the idler. The first ones are for the signal mode

∫
dω′〈âs,out(ω)â†s,out(−ω′)〉 = A1(ω)A∗1(ω) +A2(ω)A∗2(ω),∫
dω′〈â†s,out(−ω)âs,out(ω

′)〉 = A∗3(−ω)A3(−ω) +A∗4(−ω)A4(−ω),∫
dω′〈âs,out(ω)âs,out(ω

′)〉 = A1(ω)A3(−ω) +A2(ω)A4(−ω),∫
dω′〈â†s,out(−ω)â†s,out(−ω′)〉 = A∗3(−ω)A∗1(ω) +A∗4(−ω)A∗2(ω).

(C.6)

Accordingly, we have the ones for the idler mode

∫
dω′〈âi,out(ω)â†i,out(−ω′)〉 = B1(ω)B∗1(ω) +B2(ω)B∗2(ω),∫
dω′〈â†i,out(−ω)âi,out(ω

′)〉 = B∗3(−ω)B3(−ω) +B∗4(−ω)B4(−ω),∫
dω′〈âi,out(ω)âi,out(ω

′)〉 = B1(ω)B3(−ω) +B2(ω)B4(−ω),∫
dω′〈â†i,out(−ω)â†i,out(−ω′)〉 = B∗3(−ω)B∗1(ω) +B∗4(−ω)B∗2(ω).

(C.7)

Finally we have the cross terms, attesting for the correlations between signal and idler

∫
dω′〈âs,out(ω)â†i,out(−ω′)〉 = A1(ω)B∗1(ω) +A2(ω)B∗2(ω),∫
dω′〈âi,out(ω)â†s,out(−ω′)〉 = B1(ω)A∗1(ω) +B2(ω)A∗2(ω),∫
dω′〈â†s,out(−ω)âi,out(ω

′)〉 = A∗3(−ω)B3(−ω) +A∗4(−ω)B4(−ω),∫
dω′〈â†i,out(−ω)âs,out(ω

′)〉 = B∗3(−ω)A3(−ω) +B∗4(−ω)A4(−ω),∫
dω′〈âs,out(ω)âi,out(ω

′)〉 = A1(ω)B3(−ω) +A2(ω)B4(−ω),∫
dω′〈âi,out(ω)âs,out(ω

′)〉 = B1(ω)A3(−ω) +B2(ω)A4(−ω),∫
dω′〈â†s,out(−ω)â†i,out(−ω′)〉 = A∗3(−ω)B∗1(ω) +A∗4(−ω)B∗2(ω),∫
dω′〈â†i,out(−ω)â†s,out(−ω′)〉 = B∗3(−ω)A∗1(ω) +B∗4(−ω)A∗2(ω),

(C.8)
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where

A1(ω) =
g2α2 + (γa/2)2 + ω2

g2α2
c − (γa/2− iω)2

, (C.9)

A2(ω) = 0, (C.10)
A3(ω) = 0, (C.11)

A4(ω) =
γagαc

g2α2
c − (γa/2− iω)2

, (C.12)

and

B1(ω) = 0, (C.13)

B2(ω) =
g2α2 + (γa/2)2 + ω2

g2α2
c − (γa/2− iω)2

, (C.14)

B3(ω) =
γagαc

g2α2
c − (γa/2− iω)2

, (C.15)

B4(ω) = 0, (C.16)

Following the definition (I.91), one can construct the covariance matrix by replacing
the theoretical variances 〈X̂φX̂φ′〉 by the corresponding and measurable noise spectra
SXφXφ′ (ω) =

∫
dω′〈X̂φ(ω)X̂φ′(ω

′)〉

V(ω) =


SXaXa(ω) 0

SXaXb (ω)+SXbXa (ω)
2

SXaYb (ω)+SYbXa (ω)
2

0 SYaYa(ω)
SYaXb (ω)+SXbYa (ω)

2

SYaYb (ω)+SYbYa (ω)
2

SXbXa (ω)+SXaXb (ω)
2

SXbYa (ω)+SYaXb (ω)
2 SXbXb(ω) 0

SYbXa (ω)+SXaYb (ω)
2

SYbYa (ω)+SYaYb (ω)
2 0 SYbYb(ω)

 ,

(C.17)
Using this covariance matrix, now one can easily apply the entanglement witness defined
in Eq. (I.90) and the logarithmic negativity defined in Eqs. (I.93) and (I.94).
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D Evaluating the output squeezing in
the dispersive ultrastrong coupling
regime

In this appendix we investigate the squeezing of the radiation coming out of the inter-
subband devices in the dispersive USC regime, studied in chapter II, section II.6. We
recall the Hamiltonian of the system

Ĥ = ~ωpp̂†p̂+ ~ωaâ†â+ i~Ωmod
(
â† − â

)(
p̂† + p̂

)
. (D.1)

Since this Hamiltonian is in a rotating frame, we can apply the tools of input-output
theory already used in appendix A, in order to derive the following equations of motion

d
dt â(t) = −iδaâ(t) + Ωmod

(
p̂†(t) + p̂(t)

)
/2−√γaâin(t)− γa

2 â(t),

d
dt p̂(t) = −iωpp̂(t) + Ωmod

(
â†(t)− â(t)

)
/2−√γpp̂in(t)− γp

2 p̂(t),
(D.2)

where δa = ωa − ωmod. In frequency space, the equations become
(
i(δ − ω) + γa

2

)
â(ω) = Ωmod

(
p̂†(−ω) + p̂(ω)

)
/2−√γaâin(ω),(

i(ωp − ω) +
γp
2

)
p̂(ω) = Ωmod

(
â†(−ω)− â(ω)

)
/2−√γpp̂in(ω).

(D.3)

These equations are easily solved and as in appendixes B and C, and since we only inter-
ested in the output radiation, we compute the cavity input-output relation in frequency
space,1

âout(ω) = A1(ω)âin(ω) +A2(ω)p̂in(ω) +A3(ω)â†in(−ω) +A4(−ω)p̂†in(−ω). (D.4)

This time, we consider thermal inputs for both the cavity and the plasmon, since it is
not certain that the squeezing will be independent of the temperature for a radiation
in the terahertz range. Therefore, the inputs are [Gardiner85]

〈âin(ω)â†in(−ω′)〉 = (n̄a(T ) + 1)δ(ω + ω′),

〈â†in(−ω)âin(ω′)〉 = n̄a(T )δ(ω + ω′),

〈âin(ω)âin(ω′)〉 = 0,

〈â†in(−ω)â†in(−ω′)〉 = 0,

(D.5)

1Here we do not give the explicit expressions for the coefficients Ai(ω), since they are quite lengthy
compared to the ones in appendixes B and C.
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126 D Evaluating the output squeezing in the dispersive ultrastrong coupling regime

and 
〈p̂in(ω)p̂†in(−ω′)〉 = (n̄p(T ) + 1)δ(ω + ω′),

〈p̂†in(−ω)p̂in(ω′)〉 = n̄p(T )δ(ω + ω′),

〈p̂in(ω)p̂in(ω′)〉 = 0,

〈p̂†in(−ω)p̂†in(−ω′)〉 = 0,

(D.6)

where n̄a(T ) = 1/(exp (~ωa/kBT ) − 1) and n̄p(T ) = 1/(exp (~ωp/kBT ) − 1) are the
thermal occupation numbers fort the cavity and the plasmon. We can then compute
the noise spectra for the quadratures of âout(ω) in a similar fashion as in appendixes B
and C.
In Eqs. (D.3) we can note that for â(ω), we have δ−ω = ωa− (ωmod +ω) whereas for

p̂(ω) we have ωp−ω. The sum ωmod +ω shows us that the cavity mode is in a frame ro-
tating at ωmod. As mentioned in appendix A, as long as ωmod +ω > 0 even for negative
ω, then in the laboratory frame we are still studying positive frequencies. Accordingly,
the cavity bath Hamiltonian and the bath-system coupling shown in Eqs. (A.2) and
(A.3) are integrals over ω between −∞ and +∞, which is then a valid approximation.
However, the situation is not that simple for the intersubband plasmon p̂(ω). Indeed,
the plasmon is not in a rotating frame, therefore, strictly speaking the plasmon bath
Hamiltonian, and the coupling between the plasmon and its bath should only be inte-
grated between 0 and +∞. However, it is not in the scope of this thesis to provide a new
input-output theory that would somehow be more consistent on this point, but rather
investigate the output from the cavity for which the standard input-output theory is
well applicable. Therefore we do not attempt to compute and interpret the output of
the plasmon. Note that the standard input-output theory is often used in a situation
where as here one boson is in a rotating frame, while a second boson, coupled to the first
one, is still in the laboratory frame. It is the case in linearized optomechanics, where
the Hamiltonian has exactly the same form as in Eq. (D.1). Additionally, the equations
of motion in linearized optomechanics are usually in same form as Eqs. (D.2), since they
are derived using the same procedure as the one used here [Hofer11, Aspelmeyer14].



E Derivation of the effective
Hamiltonian

Here we show the derivation of the effective Hamiltonian (REF). As mentioned in sec-
tion III.3, the interaction in the physical system is a three-wave mixing process between
a pump mode c and two microwave modes a and b, described by Eq. (III.2). However,
since we drive the pump mode by a two-tone radiation, the interaction Hamiltonian
now includes two three-wave mixing terms, and the full system Hamiltonian reads

Ĥ = ωa â
†â+ ωb b̂

†b̂+ ωB ĉ
†
B ĉB + ωR ĉ

†
RĉR

+ χ(ĉB + ĉ†B)(â+ â†)(b̂+ b̂†)

+ χ(ĉR + ĉ†R)(â+ â†)(b̂+ b̂†), (E.1)

In the interaction picture, this Hamiltonian reads

ĤIP = χ(ĉBe
−iωBt + ĉRe

−iωRt)(â b̂ e−i(ωa+ωb)t

+ â b̂†e−i(ωa−ωb)t + â†b̂ ei(ωa−ωb)t

+ â†b̂†ei(ωa+ωb)t) + h.c., (E.2)

where the frequencies of the two-tone driving are

ωB = ωa + ωb + 2δB, (E.3)
ωR = ωa − ωb, (E.4)

where |δB| � ωa, ωb, |ωa − ωb|. Mode c being driven off resonance, we use the stiff
pump approximation and describe its amplitude as a complex number instead of an
operator. Let us call GB,R = χcB,R as the time independent parts of the coupling rates
G̃B,R(t) = GB,Re

−iωB,Rt. Using Eqs. (E.2),(E.3) and (E.4), we obtain

ĤIP = GB(â b̂ e−2i(ωa+ωb+δB)t + â b̂†e−2i(ωa+δB)t

+ â†b̂ e−2i(ωb+δB)t + â†b̂†e−2iδBt)+

+GR(â b̂ e−2iωat + â b̂†e−2i(ωa−ωb)t

+ â†b̂+ â†b̂†e2iωbt) + h.c., (E.5)

We work in a regime where |GB,R| � ωa, ωb, |ωa − ωb| and |GB,R| . |δB|, which allows
us to perform a rotating wave approximation. Thus, in the interaction picture, the
important terms that contribute to the evolution of the system are resonant in this
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rotating frame, or oscillate at 2δB, and all the other terms can be fairly neglected,

ĤIP ≈ GB(â†b̂†e−2iδBt + â b̂ e2iδBt) +GR(â†b̂+ â b̂†). (E.6)

With a rather simple, yet judiciously chosen unitary transformation we obtain the ef-
fective Hamiltonian

Ĥeff = δB â
†â+ δB b̂

†b̂+GB(â†b̂† + â b̂) +GR(â†b̂+ â b̂†). (E.7)

We are now in a rotating frame where mode a oscillates at ωa+δB and mode b oscillates
at ωb + δB. Any single mode squeezing or correlations observed in this frame at a
frequency ω would correspond in the laboratory frame to ωa + δB + ω and ωb + δB + ω
for modes â and b̂ respectively.



F Validity of the diagonalization

In this Appendix we briefly discuss the validity region of our model used to compute
the ground state squeezing shown in Fig. III.8. To understand it we need the expres-
sions of p̂1,2, the eigenmodes of the Hamiltonian (III.10). These operators are linear
combinations of â and b̂,

p̂1,2 = t1,2â+ u1,2b̂+ v1,2â
† + w1,2b̂

†, (F.1)

where the coefficients ~p1,2 = {t1,2, u1,2, v1,2, w1,2} are obtained by diagonalizing the
Hopfield matrix [Hopfield58] for the Hamiltonian (III.10). These coefficients are

~p1 =
1√
N1


√

(δ−2G)δ+δ

G − 1

−
√

(δ−2G)δ+δ

G + 1
−1
1

 (F.2)

~p2 =
1√
N2


√

(δ+2G)δ+δ

G + 1√
(δ+2G)δ+δ

G + 1
1
1

 (F.3)

with eigenvalues
ω1,2 =

√
(δ ∓ 2G)δ. (F.4)

N1,2 are the normalization coefficients, such that the condition |t1,2|2 + |u1,2|2−|v1,2|2−
|w1,2|2 = 1 is satisfied, imposed by the Bose commutation rule. With Eqs. (F.2) and
(F.4) one can see that when G > δ/2, the model is not valid anymore.
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G Derivation of the system’s
Hamiltonian and coupling to the
baths

In this appendix, we detail the steps to obtain the Hamiltonian of Eq. (IV.9), by showing
how the intracavity modes are coupled to the environment modes. The full model is
obtained extending Eq. (IV.7) to include the coupling between the system and the
environment,

ĤSE = i

∫ ∞
−∞

dω κc(ω)
(
γ̂†B(ω)ĉ(t)− γ̂B(ω)ĉ†(t)

)
+

i

∫ ∞
−∞

dω κc(ω)
(
δ̂†B(ω)d̂(t)− δ̂B(ω)d̂†(t)

)
+

+i

∫ ∞
−∞

dω κm(ω)
(
µ̂†B(ω)m̂(t)− µ̂B(ω)m̂†(t)

)
, (G.1)

and the free Hamiltonian of the baths

ĤE =

∫ ∞
−∞

dω ω
(
γ̂†B(ω)γ̂B(ω)

+ δ̂†B(ω)δ̂B(ω) + µ̂†B(ω)µ̂B(ω)
)
. (G.2)

The global Hamiltonian of the system and the baths is thus ĤTOT = Ĥ + ĤSE + ĤE .
Note that we used the Markov approximation, neglecting the frequency dependence of
the system-baths coupling and using the notations κc(ω) =

√
κ/π and κm(ω) =

√
γ/π.

The physical inputs of the interferometer of Fig. IV.2 correspond to the modes
α̂B(ω) and β̂B(ω). They can be related to the modes inside the interferometer
γ̂B(ω) and δ̂B(ω) through the relations α̂B(ω) =

(
γ̂B(ω)− δ̂B(ω)

)
/
√

2 and β̂B(ω) =(
γ̂B(ω) + δ̂B(ω)

)
/
√

2. It is then meaningful to rewrite Eq. (G.1) in terms of the oper-

ators α̂B(ω) and β̂B(ω),

ĤSE = i

∫ ∞
−∞

dω κc(ω)
(
α̂†B(ω)

(
ĉ(t)− d̂(t)

)
√

2
− α̂B(ω)

(
ĉ†(t)− d̂†(t)

)
√

2

)
+

+ i

∫ ∞
−∞

dω κc(ω)
(
β̂†B(ω)

(
ĉ(t) + d̂(t)

)
√

2
− β̂B(ω)

(
ĉ†(t) + d̂†(t)

)
√

2

)
+

+ i

∫ ∞
−∞

dω κm(ω)
(
µ̂†B(ω)m̂(t)− µ̂B(ω)m̂†(t)

)
, (G.3)
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where we can naturally define two collective intracavity modes â =
(
ĉ− d̂

)
/
√

2 and

b =
(
ĉ+ d̂

)
/
√

2, coupled to α̂B(ω) and β̂B(ω) respectively. By rewriting Eq. (IV.7) in
terms of the new defined collective optical modes, we obtain

Ĥ = ωc

(
â†â+ b̂†b̂

)
+ ωmm̂

†m̂+ g0

(
â†b̂+ â b̂†

)(
m̂† + m̂

)
. (G.4)

We now consider that an undepleted coherent state at frequency ωb is sent through
the port β̂B(ω), which is essentially the input of the intracavity mode b̂. Assuming
that such classical driving dominates the dynamics, the state of the driven mode b̂ can
be approximated by a coherent state. We can then make the following replacement
b̂→ β e−iωbt, where β is the size of the coherent state inside the cavity. Finally, in order
to obtain a time-independent Hamiltonian we define the unitary transformation Û(t) =

eiωbâ
†ât and we move in a picture where the Hamiltonian is Ĥeff = ÛĤÛ † + id Ûdt Û

†,
which gives us the final expression of the effective Hamiltonian of Eq. (IV.9).



H Teleportation between two distant
mechanical resonators

The teleportation protocol described here consists of three steps. First, an optomechani-
cal entangled state is generated by Bob, who keeps one party of the state (a mechanical
resonator), and sends the other party (an optical pulse) to Alice. The generation of
this entangled EPR state is detailed in section H.0.1. Subsequently, Alice implements a
state-swap process, i.e., a beam splitter-type interaction between the light pulse coming
from Bob and her own mechanical resonator, which is initially in the state to teleport.
This part of the protocol is detailed in section H.0.2. Finally, Alice performs a Bell mea-
surement of an optical quadrature and a mechanical quadrature, sends the outcomes
through a classical channel to Bob, who implements a phase-space displacement on the
state of his mechanical resonator, which concludes the teleportation protocol. This last
step is described in section H.0.3.

H.0.1 EPR state generation

The first step of the teleportation protocol is the generation of an EPR state by Bob,
between his own mechanical resonator, a double sided moving mirror, and a light pulse,
which is sent to Alice after the entangling interaction. This requires to send a blue
detuned pump pulse β with a frequency ωb = ωc + ωm to the bottom input port of
Bob’s interferometer, that enhances a two-mode squeezing interaction, thus reducing
the system Hamiltonian, in a frame rotating with ωm, to

Ĥb
I = g0β

(
â†m̂†2 + â m̂2

)
, (H.1)

where m̂2 represents Bob’s mechanical resonator, the one towards which the initial state
of a distant mechanical resonator m̂1 will be teleported.
With the standard Input-Output theory [Gardiner85, Gardiner04, Walls08], we first

take into account the mechanical dissipation and the output coupling of the cavity, and
derive the following Langevin equations

˙̂a(t) = −κâ(t)− ig0β m̂†2(t)−
√

2κ âin(t), (H.2)
˙̂m2(t) = −γm̂2(t)− ig0β â†(t)−

√
2γ m̂in(t). (H.3)

The condition g0β � κ allows us to adiabatically eliminate the optical mode â, by
setting ˙̂a(t) = 0, thus imposing

â(t) ≈ −ig0β
κ
m̂†2(t)−

√
2

κ
âin(t). (H.4)

To obtain the expression for the quantum optical output âout(t) of the interferometer,
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we use the input-output relation âlosslessout (t) = âin(t) +
√

2κâ(t). However, this relation
gives the output field in the lossless case, i.e., where no losses have occurred inside
the cavities. In the following, we take into account the photon losses of the cavities by
adding a virtual beam-splitter at the output of the lossless interferometric scheme. This
additional beam-splitter is of high transmission, and its reflectivity models the losses.
The beam-splitter relation giving the output field in the presence of photon losses is

âout(t) =
√
µ âlosslessout (t) +

√
1− µ f̂in(t), (H.5)

where f̂in(t) is a mode introduced to take into account photon losses, and where µ is
the transmission coefficient of the beam-splitter. It is defined as µ = κ/(κ+κL), where
κL is the dissipation rate for the photon losses. In the lossless case, the output field is

âlosslessout (t) = −âin(t)− i
√

2Ge(G−γ)tm̂†2(0)

−
√

2Ge(G−γ)t
∫ t

0
dt′e−(G−γ)t

′
(√

2G âin(t′)− i
√

2 γ m̂†in(t′)
)
. (H.6)

By using Eq.(H.5) we can write the equations of âout(t), the field propagating between
the two nodes, and m̂2(t), the time evolved annihilation operator of Bob’s mechanical
resonator

âout(t) =

√
κ

κtot

(
− âin(t)− i

√
2Ge(G−γ)tm̂†2(0)

−
√

2Ge(G−γ)t
∫ t

0
dt′e−(G−γ)t

′
(√

2G âin(t′)

− i
√

2 γ m̂†in(t′)
))

+

√
κL
κtot

f̂in(t), (H.7)

m̂2(t) = e(G−γ)tm̂2(0) + e(G−γ)t
∫ t

0
dt′e−(G−γ)t

′
(
i
√

2G â†in(t′)

−
√

2 γ m̂in(t′)
)
, (H.8)

with G = (g0β)2/κ and κtot = κ+κL. We will now make two important approximations
in Eqs. (H.7) and (H.8). We use the fact that in our model γ � G, and first, take
G− γ ≈ G, and second, neglect the effect of the mechanical bath on the optical mode,
which gives us

âout(t) ≈
√

κ

κtot

(
− âin(t)− i

√
2GeGtm̂†2(0)

− 2GeGt
∫ t

0
dt′e−Gt

′
âin(t′)

)
+

√
κL
κtot

f̂in(t), (H.9)

m̂2(t) ≈ eGtm̂2(0) + i
√

2GeGt
∫ t

0
dt′e−Gt

′
â†in(t′)

−
√

2 γ eGt
∫ t

0
dt′e−Gt

′
m̂in(t′). (H.10)
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We now use the definitions for normalized temporal field modes of Eq. (IV.18), in order
to rewrite Eqs. (H.9) and (H.10) into the convenient forms,

Âbout = −
√

κ

κtot
eGτ Âbin

− i
√

κ

κtot
(e2Gτ − 1)

(
M̂in

)†
+

√
κL
κtot

F̂ bin, (H.11)

M̂out = eGτM̂in + i
√
e2Gτ − 1

(
Âbin

)†
− CbM̂ b

B, (H.12)

where Âbout = Q(τ, âout), Âbin = P(τ, âin), F̂ bin = Q(τ, f̂in), M̂in = m̂2(0), M̂out = m̂2(τ),
M̂ b
B = P(τ, m̂in) and Cb =

√
(e2Gτ − 1)γ/G. Using the Eqs. (H.11) and (H.12), the

quadratures of these modes are

X̂out = −
√

κ

κtot
erX̂in −

√
κ

κtot
(e2r − 1) P̂2(0) +

√
κL
κtot

X̂f , (H.13)

P̂out = −
√

κ

κtot
erP̂in −

√
κ

κtot
(e2r − 1) X̂2(0) +

√
κL
κtot

P̂f , (H.14)

X̂2 = erX̂2(0) +
√
e2r − 1 P̂in − CbXb

B, (H.15)

P̂2 = erP̂2(0) +
√
e2r − 1 X̂in − CbP bB, (H.16)

where r = Gτ , Xin =
[
(Âbin)† + Âbin

]
/
√

2 and Pin = i
[
(Âbin)† − Âbin

]
/
√

2

are the quadrature of the optical input of Bob’s device, and where X2(0) =[
m̂†2(0) + m̂2(0)

]
/
√

2, X2 =
[
m̂†2(τ) + m̂2(τ)

]
/
√

2, P2(0) = i
[
m̂†2(0)− m̂2(0)

]
/
√

2,

P2 = i
[
m̂†2(τ)− m̂2(τ)

]
/
√

2, Xf =
[
(F̂ bin)† + F̂ bin

]
/
√

2 and Pf = i
[
(F̂ bin)† − F̂ bin

]
/
√

2.

Eqs. (H.13)-(H.16) are similar to those of a standard optical two-mode squeezed state
with a squeezing parameter r [Braunstein05], except for the fact that here photon losses
are taken into account, and we have terms containing Xb

B, P
b
B, i.e., the thermal noise

of Bob’s mechanical resonator. In the limit r → ∞, the term Cb eventually kills the
entanglement, as shown in Fig. IV.5(a). It is thus important to find the optimal point
ropt, for which the amount of entanglement is sufficient to carry out the teleportation
protocol, without a significant thermal disturbance.

Assuming Bob’s mechanical oscillator is initially in a thermal state 〈X̂2(0)〉 = 〈P̂2(0)〉 =
(nT +1/2), with nT being the thermal occupation number, and taking the vacuum state
for Bob’s optical quantum input 〈X̂in〉 = 〈P̂in〉 = 1/2, the EPR entanglement criterion
is written as

∆EPR =
[
∆
(
X̂in + P̂2

)]2
+
[
∆
(
P̂in + X̂2

)]2
= 2(nT + 1)

(
er −

√
κ

κtot
(e2r − 1)

)2
+
γ

G

(
e2r − 1

)
(2nT + 1). (H.17)
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H.0.2 State-swap, or beam splitter-type interaction

After Bob sent the pulse entangled with his mechanical resonator, Alice must implement
a beam splitter-type interaction between this pulse and her mechanical resonator. This
operation is carried out by pumping Alice’s optomechanical toolbox with a red detuned
drive pulse with amplitude β and frequency ωb = ωc − ωm, which activates a beam
splitter type interaction. In this case, the system Hamiltonian is given by, in a frame
rotating with ωm,

Ĥr
I = g0β

(
â′†m̂1 + â′ m̂†1

)
, (H.18)

where m̂1 describes Alice’s mechanical resonator, the state of which is to be teleported
to Bob.

Using the same method as before, we derive the Langevin equations for Alice’s toolbox

˙̂a′(t) = −κâ′(t)− ig0β m̂1(t)−
√

2κ â′in(t), (H.19)
˙̂m1(t) = −γm̂1(t)− ig0β â′(t)−

√
2γ m̂′in(t). (H.20)

We again adiabatically eliminate the optical mode and include photon losses to obtain
the evolution for â′out(t) and m̂1(t)

â′out(t) =

√
κ

κtot

(
− â′in(t)− i

√
2Ge−(G+γ)tm̂1(0)

+
√

2Ge−(G+γ)t

∫ t

0
dt′e(G+γ)t′

(√
2G â′in(t′) + i

√
2 γ m̂′in(t′)

))

+

√
κL
κtot

f̂ ′in(t), (H.21)

m̂1(t) = e−(G+γ)tm̂1(0) + e−(G+γ)t

∫ t

0
dt′e(G+γ)t′

(
i
√

2G â′in(t′)

−
√

2 γ m̂′in(t′)
)
, (H.22)

where f̂ ′in(t) is the mode introduced to take into account photon losses. We use again
the fact that γ � G, take G− γ ≈ G, and neglect the effect of the mechanical bath on
the optical mode,

â′out(t) ≈
√

κ

κtot

(
− â′in(t)− i

√
2Ge−Gtm̂1(0)

+ 2Ge−Gt
∫ t

0
dt′eGt

′
â′in(t′)

)
+

√
κL
κtot

f̂ ′in(t), (H.23)

m̂1(t) ≈ e−Gtm̂1(0) + i
√

2Ge−Gt
∫ t

0
dt′eGt

′
â′in(t′)

−
√

2 γ e−Gt
∫ t

0
dt′eGt

′
m̂′in(t′). (H.24)
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We write Eqs. (H.23) and (H.24) into the convenient forms

Ârout = −
√

κ

κtot
e−GtÂrin − i

√
κ

κtot
(1− e−2Gt) M̂ ′in +

√
κL
κtot

F̂ rin, (H.25)

M̂ ′out = e−GtM̂ ′in + i
√

1− e−2Gt Ârin − CrM̂ r
B, (H.26)

where Ârout = P(τ, â′out), Ârin = Q(τ, â′in), F̂ rin = Q(τ, f̂ ′in), M̂ ′in = m̂1(0), M̂ ′out = m̂1(τ),
M̂ r
B = Q(τ, m̂in) and Cr =

√
(1− e−2Gτ )γ/G. Note that here â′in = âout hence, in

this case, the quantum optical output of Bob’s toolbox is the quantum optical input of
Alice’s toolbox. Hence, we have Ârin = Âbout, meaning that Bob’s output pulse shape
perfectly matches Alice’s optical input shape. Using the Eqs. (H.25) and (H.26), the
quadratures of these modes are

X̂u = −
√

κ

κtot
e−r

′
X̂out +

√
κ

κtot
(1− e−2r′) P̂1(0) +

√
κL
κtot

X̂f ′ , (H.27)

P̂u = −
√

κ

κtot
e−r

′
P̂out −

√
κ

κtot
(1− e−2r′) X̂1(0) +

√
κL
κtot

P̂f ′ , (H.28)

X̂v = e−r
′
X̂1(0)−

√
1− e−2r′ P̂out − CrXr

B, (H.29)

P̂v = e−r
′
P̂2(0) +

√
e−2r − 1 X̂out − CrP rB, (H.30)

where r′ = Gτ ′, Xout =
[
(Âbout)

† + Âbout

]
/
√

2 and Pout = i
[
(Âbout)

† − Âbout
]
/
√

2,

where Xu =
[
(Ârout)

† + Ârout

]
/
√

2 and Pu = i
[
(Ârout)

† − Ârout
]
/
√

2, and where X1(0) =[
m̂†1(0) + m̂1(0)

]
/
√

2, Xv =
[
m̂†1(τ

′) + m̂1(τ
′)
]
/
√

2, P1(0) = i
[
m̂†1(0)− m̂1(0)

]
/
√

2,

and Pv = i
[
m̂†1(τ

′)− m̂1(τ
′)
]
/
√

2. One can see that in Eqs. (H.27)-(H.30), a judicious
choice of τ ′ can lead to a 50-50 beam splitter-type interaction. Indeed, by choosing τ ′

such that e−r′ = 1/
√

2, Eqs. (H.27)-(H.30) become

X̂u =

√
κ

κtot

P̂1(0)− X̂out√
2

+

√
κL
κtot

X̂f ′ , (H.31)

P̂u =

√
κ

κtot

−X̂1(0)− P̂out√
2

+

√
κL
κtot

P̂f ′ , (H.32)

X̂v =
X̂1(0)− P̂out√

2
−
√

γ

2G
Xr
B, (H.33)

P̂v =
P̂1(0) + X̂out√

2
−
√

γ

2G
P rB. (H.34)

We now use Eqs. (H.15) and (H.32) to write Bob’s mechanical resonator X̂2 quadrature
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as

X̂2 =
(
X̂2 + P̂out

)
+

√
2κtot
κ

P̂u + X̂1(0)−
√

2κL
κ
P̂f ′ ,

= X̂1(0) +
(
er −

√
κ

κtot
(e2r − 1)

)
X̂2(0) +

(√
e2r − 1−

√
κ

κtot
er
)
P̂in

+

√
2κtot
κ

P̂u − CbXb
B −

√
2κL
κ
P̂f ′ +

√
κL
κtot

P̂f . (H.35)

By using Eqs. (H.16) and (H.34) we can finally write Bob’s mechanical resonator P̂2

quadrature as

P̂2 =
(
P̂2 + X̂out

)
−
√

2P̂v + P̂1(0)−
√
γ

G
P rB,

= P̂1(0) +
(
er −

√
κ

κtot
(e2r − 1)

)
P̂2(0) +

(√
e2r − 1−

√
κ

κtot
er
)
X̂in

−
√

2P̂v − CbP bB −
√
γ

G
P rB +

√
κL
κtot

X̂f . (H.36)

H.0.3 Measurement and classical channel

The next step of the protocol is Alice’s measurement of both P̂u and P̂v, which become
classical random variables Pu and Pv after the measurement. Notice that, in the sim-
plified case where one neglect both the mechanical bath effects and the photon losses,
and takes r →∞, Bob’s mechanical resonator state collapses into a state which differs
from the intial Alice’s mechanical resonator state by a phase-space displacement.
Through a classical communication channel, Bob receives Alice’s outcomes Pu and

Pv and performs the needed phase-space displacement,

X̂2 −→ X̂tel
2 = X̂2 − η

√
2κtot
κ

P̂u, (H.37)

P̂2 −→ P̂ tel2 = P̂2 + η
√

2P̂v, (H.38)

where the parameter η describes both the efficiency of the measurement and of the
displacement. We can rewrite the teleported state quadratures from Eqs. (H.37) and
(H.38) as

X̂tel
2 = ηX̂1(0) +

(
er − η

√
κ

κtot
(e2r − 1)

)
X̂2(0) +

(√
e2r − 1

− η

√
κ

κtot
er
)
P̂in − CbXb

B − η
√

2κL
κ
P̂f ′ +

√
κL
κtot

P̂f , (H.39)

P̂ tel2 = ηP̂1(0) +
(
er − η

√
κ

κtot
(e2r − 1)

)
P̂2(0) +

(√
e2r − 1

− η

√
κ

κtot
er
)
X̂in − CbP bB − η

√
γ

G
P rB +

√
κL
κtot

X̂f . (H.40)
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One can see that without mechanical dissipation and photon losses, i.e., γ = κL = 0, and
with the limits r →∞ and η → 1, perfect teleportation Xtel

2 = X1(0) and P tel2 = P1(0)
is deterministically obtained.
In order to check how successful the protocol is, we use the teleportation fidelity
F = 〈ψ1|ρ̂tel2 |ψ1〉, where |ψ1〉 is the state to teleport, i.e., the initial state of Alice’s
double sided moving mirror, and where ρtel2 is the density matrix of the teleported
state, i.e., the final state of Bob’s double sided moving mirror. We consider the initial
state of Alice’s mechanical resonator to be a coherent state with a displacement α1 =
(X1(0) + i P1(0)) /

√
2. In that case, F = πQtel(α1), where Qtel is the Q function of the

teleported state [Braunstein05],

F =
1

2
√
σXσP

exp

[
− (1− η)2

(
X2

1 (0)

2σX
+
P 2
1 (0)

2σP

)]
. (H.41)

σX and σP are the variances of the Q function,

σP = σX + η2
γ

2G

(
nT +

1

2

)
− η2κL

2κ
,

=
1

4

(
1 + η2

)
+

[
1

2

(
er − η

√
κ

κtot
(e2r − 1)

)2
+

(Cb)2

2
+ η2

γ

2G

](
nT +

1

2

)
+

1

4

(√
e2r − 1−

√
κ

κtot
ηer
)2

+
κL

2κtot
, (H.42)

where we used the fact that initially, Bob’s double sided moving mirror, and the me-
chanical baths of both mechanical resonators are all at thermal equilibrium.
Let us us briefly comment the measurements needed to perform the operation shown

in Eqs. (H.37) and (H.38). For these two measurements, Alice proceeds as follows: the
optical quadrature P̂u is measured with a homodyne scheme applied to Alice’s output
pulse, which concludes this first measurement. Subsequently, an additional red detuned
pulse β with a duration τ ′′ is sent through the pumping port of Alice’s toolbox, in
order to transfer the mechanical quadrature P̂v to a second output light pulse, whose
quadratures will be measured again with a homodyne measurement. To clarify this
point, let us write the expressions of Alice’s optical output quadratures, after the second
pulse of duration τ ′′

X̂meas = −
√

κ

κtot
e−r

′′
X̂OV N

+

√
κ

κtot
(1− e−2r′′) P̂v +

√
κL
κtot

X̂f ′′ , (H.43)

P̂meas = −
√

κ

κtot
e−r

′′
P̂OV N

−
√

κ

κtot
(1− e−2r′′) X̂v +

√
κL
κtot

P̂f ′′ , (H.44)
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where X̂meas and P̂meas are the quadratures of the second quantum optical output,
and where X̂OV N and P̂OV N are the quadratures of the quantum optical vacuum noise
(OVN) involved as an input in the interaction process cause by the second red detuned
pulse. X̂f ′′ and P̂f ′′ are the quadratures of the mode for the photon loss channel.
By choosing τ ′′ such that e−r′′ → 0, and using Eqs. (H.43) and (H.44), the result of

the measurement is
〈X̂meas〉 =

√
κ

κtot
〈P̂v〉. (H.45)



I Remote quantum state transfer
between two distant mechanical
resonators

The protocol to implement remote quantum state transfer is the following: the first
interferometer, containing the state to transfer, is pumped by a classical driving pulse
at the classical port. This results in the generation of a quantum output pulse, which is
sent to the receiver. While this flying pulse enters the second interferometer, the latter
is pumped by a classical driving pulse that completes the transfer.

There are two major differences in these two steps, with respect to the teleportation
protocol. The first difference is that both devices are pumped with red detuned clas-
sical driving pulses. The second major difference is that the use of the same temporal
pulse shapes as before does not lead to a significant transfer efficiency. Indeed, in the
teleportation protocol the fact that Bob’s toolbox was pumped by a blue detuned drive
made its quantum output pulse shape perfect to be absorbed by Alice’s toolbox, which
was pumped at the same time by a red detuned drive. When both devices are in the
red-sideband regime, the temporal-shape mismatch of input-output pulses prevent the
receiver from absorbing the communication signal.

To overcome this issue, the temporal shapes of both red detuned pumps must be
optimized. The driving-pulse shapes will have duration τ and they will have the follow-
ing amplitudes βS(t) = βS(t) and βR(t) = βR(t) for the sender and receiver devices,
respectively. We defined the functions

S(t) =
√

1− e−µSGt, (I.1)
R(t) = e−µRGt, (I.2)

which specify the pulse shapes (see inset in Fig. IV.7). We also defined G = (g0β)2/κ,
while µS and µR are parameters that must be optimized to maximize the transfer
efficiency. For g0β = 0.05κ, we have µS = 0.05 and µR = 0.22.

Both pumps enhance a state-swap process, described by the Hamiltonian (H.18),
which gives the following Langevin equations for the sender, similar to Eqs. (H.19) and
(H.20),

˙̂a(t) = −κâ(t)− ig0βS(t) m̂1(t)−
√

2κ âin(t), (I.3)
˙̂m1(t) = −γm̂1(t)− ig0βS(t) â(t)−

√
2γ m̂in(t). (I.4)

As in the previous section, we adiabatically eliminate the optical mode and obtain the
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evolution for âout(t) and m̂1(t)

âout(t) =

√
κ

κtot

(
− âin(t)− i

√
2GS(t)e−γt−G

∫ t
0 dt
′S2(t′)m̂1(0)

+
√

2GS(t)e−γt−G
∫ t
0 dt
′S2(t′)

∫ t

0
dt′eγt

′+G
∫ t′
0 dt′′S2(t′′)

(√
2GS(t′) âin(t′)

+ i
√

2 γ m̂in(t′)
))

+

√
κL
κtot

f̂in(t), (I.5)

m̂1(t) = e−γt−G
∫ t
0 dt
′S2(t′)m̂1(0)

+ e−γt−G
∫ t
0 dt
′S2(t′)

∫ t

0
dt′eγt

′+G
∫ t′
0 dt′′S2(t′′)

(
i
√

2GS(t′) âin(t′)

−
√

2 γ m̂in(t′)
)
, (I.6)

where f̂in(t) is the mode introduced to take into account photon losses. We now need
the Langevin equations for the process occurring for the receiver, not very different from
Eqs. (I.3) and (I.4),

˙̂a′(t) = −κâ′(t)− ig0βR(t) m̂2(t)−
√

2κ â′in(t), (I.7)
˙̂m2(t) = −γm̂2(t)− ig0βR(t) â′(t)−

√
2γ m̂′in(t). (I.8)

Accordingly, the expressions for â′out(t) and m̂2(t) are similar to the Eqs. (I.5) and (I.6),

â′out(t) =

√
κ

κtot

(
− â′in(t)− i

√
2GR(t)e−γt−G

∫ t
0 dt
′R2(t′)m̂2(0) +

+
√

2GR(t)e−γt−G
∫ t
0 dt
′R2(t′)

∫ t

0
dt′eγt

′+G
∫ t′
0 dt′′R2(t′′)

(√
2GR(t′) â′in(t′)

+ i
√

2 γ m̂′in(t′)
))

+

√
κL
κtot

f̂ ′in(t), (I.9)

m̂2(t) = e−γt−G
∫ t
0 dt
′R2(t′)m̂2(0) +

+ e−γt−G
∫ t
0 dt
′R2(t′)

∫ t

0
dt′eγt

′+G
∫ t′
0 dt′′R2(t′′)

(
i
√

2GR(t′) â′in(t′)

−
√

2 γ m̂′in(t′)
)
, (I.10)

where the quantum input pulse of the sender is the quantum output pulse of the receiver,
i.e., â′in(t) = âout(t). Using Eqs. (I.10) and (I.5) we obtain

m̂2(t) = e−γt−G
∫ t
0 dt
′R2(t′)m̂2(0) +

√
κ

κtot
2Ge−γt−G

∫ t
0 dt
′R2(t′)

×
∫ t

0
dt′R(t′)S(t′)eG

∫ t′
0 dt′′(R2(t′′)−S2(t′′))m̂1(0)

+ N
(
âin, m̂in, m̂

′
in, f̂in, f̂

′
in, t
)
, (I.11)
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where N
(
âin, m̂in, m̂

′
in, f̂in, f̂

′
in, t
)
encodes the dependence on the vacuum noise of the

quantum optical input of the sender, the thermal noises and the photon loss modes
noises of both the sender and the receiver.
We can rewrite the final states of Eqs. (I.5), (I.6), and (I.11), i.e., after the end of

the interaction time τ , into the useful forms

m̂1(τ) =
√

1−W 2
D m̂1(0) + . . . , (I.12)

m̂2(τ) = WTM m̂1(0) + . . . , (I.13)

where we omitted for clarity all the other contributions different than those of the initial
state intended for the transfer, m̂1(0). The two quantities defined in Eqs. (I.12) and
(I.13) give us the following information: WD shows how the state m̂1(τ) of the sender is
destroyed by the transfer of its initial state m̂1(0) to the receiver’s state m̂2(τ) ; WTM

shows how significant is the transfer of m̂1(0) to m̂2(τ), thus defining a benchmark for
the protocol. We show the square of these quantities in Fig. IV.7 since it demonstrates
the efficiency of the transfer for the second order moments of the initial state.
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