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Résumé

Dans cette thèse on s’intéresse à deux types de structures conformes non-dégénérées sur une
variété complexe compacte donnée. La première c’est une forme holomorphe symplectique
twistée (THS), i.e. une deux-forme holomorphe non-dégénérée à valeurs dans un fibré en droites.
Dans le deuxième contexte, il s’agit des métriques localement conformément kähleriennes
(LCK).

Dans la première partie, on se place sur un variété de type Kähler. Les formes THS généralisent
les formes holomorphes symplectiques, dont l’existence équivaut à ce que la variété admet une
structure hyperkählerienne, par un théorème de Beauville. On montre un résultat similaire
dans le cas twisté, plus précisément: une variété compacte de type kählerien qui admet une
structure THS est un quotient fini cyclique d’une variété hyperkählerienne. De plus, on étudie
sous quelles conditions une variété localement hyperkählerienne admet une structure THS.

Dans la deuxième partie, les variétés sont supposées de type non-kählerien. Nous présentons
quelques critères pour l’existence ou non-existence de métriques LCK spéciales, en terme du
groupe de biholomorphismes de la variété. En outre, on étudie le problème d’irréductibilité
analytique des variétés LCK, ainsi que l’irréductibilité de la connexion de Weyl associée. Dans
un troisième temps, nous étudions les variétés LCK toriques, qui peuvent être définies en
analogie avec les variétés de Kähler toriques. Nous montrons qu’une variété LCK torique
compacte admet une métrique de Vaisman torique, ce qui mène à une classification de ces
variétés par le travail de Lerman.

Dans la dernière partie, on s’intéresse aux propriétés cohomologiques des variétés d’Oeljeklaus-
Toma (OT). Plus précisément, nous calculons leur cohomologie de de Rham et celle twistée.
De plus, on démontre qu’il existe au plus une classe de de Rham qui représente la forme de
Lee d’une métrique LCK sur un variété OT. Finalement, on détermine toutes les classes de
cohomologie twistée des métriques LCK sur ces variétés.

Mots-clés

Forme holomorphe symplectique, variété hyperkählerienne, métrique localement conformément
kählerienne, métrique de Vaisman, géométrie torique, variété d’Oeljeklaus-Toma, cohomologie
twistée.



Abstract

In this thesis, we are concerned with two types of non-degenerate conformal structures on
a given compact complex manifold. The first structure we are interested in is a twisted
holomorphic symplectic (THS) form, i.e. a holomorphic non-degenerate two-form valued in a
line bundle. In the second context, we study locally conformally Kähler (LCK) metrics.

In the first part, we deal with manifolds of Kähler type. THS forms generalise the well-known
holomorphic symplectic forms, the existence of which is equivalent to the manifold admitting
a hyperkähler structure, by a theorem of Beauville. We show a similar result in the twisted
case, namely: a compact manifold of Kähler type admitting a THS structure is a finite cyclic
quotient of a hyperkähler manifold. Moreover, we study under which conditions a locally
hyperkähler manifold admits a THS structure.

In the second part, manifolds are supposed to be of non-Kähler type. We present a few
criteria for the existence or non-existence for special LCK metrics, in terms of the group of
biholomorphisms of the manifold. Moreover, we investigate the analytic irreducibility issue for
LCK manifolds, as well as the irreducibility of the associated Weyl connection. Thirdly, we
study toric LCK manifolds, which can be defined in analogy with toric Kähler manifolds. We
show that a compact toric LCK manifold always admits a toric Vaisman metric, which leads
to a classification of such manifolds by the work of Lerman.

In the last part, we study the cohomological properties of Oeljeklaus-Toma (OT) manifolds.
Namely, we compute their de Rham and twisted cohomology. Moreover, we prove that there
exists at most one de Rham class which represents the Lee form of an LCK metric on an OT
manifold. Finally, we determine all the twisted cohomology classes of LCK metrics on these
manifolds.

Keywords

Holomorphic symplectic form, hyperkähler manifold, locally conformally Kähler metric, Vais-
man metric, toric geometry, Oeljeklaus-Toma manifold, twisted cohomology.



Contents

Introduction vii

Notation and conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

1 Twisted Holomorphic Symplectic Forms 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Holomorphic symplectic manifolds . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Twisted holomorphic symplectic manifolds . . . . . . . . . . . . . . . . . . . . . 3

1.4 A characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Locally Conformally Kähler Geometry 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Basic definitions and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Special LCK metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Infinitesimal automorphisms of LCK manifolds . . . . . . . . . . . . . . . . . . 25

2.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6.1 Diagonal Hopf manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6.2 Non-diagonal Hopf surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6.3 LCK manifolds obtained from ample vector bundles . . . . . . . . . . . 32

2.6.4 LCK metrics on blow-ups . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6.5 Complex surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Existence Criteria for LCK Metrics 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 The Lee vector field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Existence of LCK metrics with potential . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Existence of Vaisman metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Torus principal bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Analytic irreducibility of complex manifolds of LCK type . . . . . . . . . . . . 48

3.7 Weyl reducible manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

v



4 Toric LCK Manifolds 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Twisted Hamiltonian Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Torus actions on LCS manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Proof of the Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 Final remarks and questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Cohomological properties of OT manifolds 67

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Oeljeklaus-Toma manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.1 The construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.2 Metric properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Technical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.1 Leray-Serre spectral sequence of a locally trivial fibration . . . . . . . . 71

5.3.2 Twisted cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 The de Rham cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5 The Leray-Serre spectral sequence of OT manifolds . . . . . . . . . . . . . . . . 79

5.6 Twisted cohomology of OT manifolds . . . . . . . . . . . . . . . . . . . . . . . . 81

5.7 Applications and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Bibliography 89



Introduction

In the present dissertation, we are interested in certain non-degenerate conformal structures
on a given compact complex manifold. The conformal nature can be encoded in a line bundle
over the manifold. As such, given a complex manifold (M, J) and a line bundle L over M , we
want to study non-degenerate two-forms:

ω ∈ Γ(
∧2 T ∗M ⊗ L).

There are two different settings which we investigate. In the first one, we suppose that L is a
holomorphic line bundle and ω is an L-valued holomorphic two-form. This kind of structure
will be called twisted holomorphic symplectic (THS). In the second context, we suppose that L
is an oriented real line bundle endowed with a flat connection ∇, and ω is a positive (1, 1)-form
with values in L which is d∇-closed. Such a structure will be called a locally conformally
Kähler form (LCK).

Both these structures are natural generalisations of the well-known non-twisted ones: the first
one coincides with a holomorphic symplectic form when L is holomorphically trivial, while the
second one is simply a Kähler metric when (L, ∇) = (M ×R, d). We wish to understand what
kind of restrictions the existence of such structures imposes on the manifold, and to what
extent the properties of the corresponding non-twisted structures generalise to our setting.

As it turns out, if one assumes that (M, J) is of Kähler type, then one reduces quite easily to
the non-twisted situation. The first chapter proves and explains this reduction in the context
of THS structures. On the other hand, we make no assumption of Kählerness in the second
situation, and although LCK structures are just conformal generalisations of Kähler structures,
they behave quite differently from the latter. LCK structures are studied throughout chapters
2 to 4. The last chapter presents a certain family of non-Kähler complex manifolds, called
Oeljeklaus-Toma manifolds, focusing on their topological properties. This part is related to
the rest of the discussion by the fact that some of these manifolds admit LCK forms.

Twisted holomorphic symplectic forms

Let (M, J) be a compact complex manifold of Kähler type, of complex dimension 2m. It is
well known, by a theorem of Beauville [Bea83b] based on Yau’s proof of the Calabi conjecture,
that the existence of a holomorphic symplectic form ω on M is equivalent to the manifold
admitting a hyperkähler structure, i.e. a metric compatible with the complex structure, whose
holonomy group of the Levi-Civita connection sits in Sp(m). One might hope to obtain less
rigid structures if one assumes that the symplectic form takes values in a holomorphic line
bundle instead.

vii



viii

This expectation is quite natural if we take a look at the analogous symmetric situation:
suppose that L is a holomorphic line bundle over (M, J) and that there exists a non-degenerate
holomorphic section g ∈ H0(M, S2T ∗M ⊗ L), called a holomorphic conformal structure. Still
under the Kählerness assumption, Inoue, Kobayashi and Ochiai [IKO80] proved that if L is
holomorphically trivial then (M, J) is a finite quotient of a complex torus. On the other hand,
if L is not trivial, then new examples appear, and in fact classifications are known only for
the compact surfaces ([KO82]), and for projective threefolds ([JR05]). Let us note that the
standard example of such a manifold is given by the hyperquadric:

Qn = {[z0 : · · · : zn+1]| − 2z0zn+1 +
n∑

k=1

z2
k = 0} ⊂ Pn

with the structure g = −2dz0dzn+1 + dz1dz1 + . . . dzndzn ∈ H0(Qn, S2T ∗Qn ⊗ O(2)).

It turns out that things are different in the symplectic setting, as we show that the conformal
case is quite similar to the standard one:

Theorem A (Theorem 1.3.5, Theorem 1.4.1). Let (M2m, J, L, ω), m > 1, be a compact THS
manifold of Kähler type, and let α ∈ H2(M,R) be a Kähler class. Then L is unitarily flat, and
there exists a unique Kähler metric g with respect to J representing α so that a finite cyclic
cover of (M, g, J) has holonomy in Sp(m). Moreover, the form ω is parallel with respect to
the natural connection induced by g on

∧2 T ∗M ⊗ L.

The main point of the proof is to show that the line bundle L has torsion first Chern class, as
everything else follows similarly to the non-twisted case, via Yau’s theorem and the Weitzenböck
formula. This is true, because we manage to construct a holomorphic connection in L, naturally
induced by ω via the Lefschetz operator

Lefω : Ω• → Ω•+2 ⊗ L, η 7→ η ∧ ω.

By the Kähler assumption, this will imply then that c1(L) = 0 ∈ H2(M,R).

Let us note that the hypothesis m > 1 is natural, as any complex surface admits a THS form:
simply take L =

∧2 TM , and note that Ω2
M ⊗ L is holomorphically trivial.

An equivalent definition for a hyperkähler structure on M is a Riemannian metric g together
with three integrable complex structures I, J , K compatible with g, parallel for the Levi-Civita
connection of g and verifying the quaternionic relations IJ = K = −JI. Moreover, we say
that (M, g) is locally hyperkähler if the universal Riemann cover (M̃, g̃) is hyperkähler, so
that the structures I, J and K are defined only locally on M . Note that the above theorem
gives the existence of a local hyperkähler structure on M which is particular: it is formed
of a global complex structure J which we have fixed, together with two more local complex
structures. We call such a structure Kähler locally hyperkähler (KLH).

In the last part of Chapter 1, we investigate under what conditions a KLH manifold admits a
twisted holomorphic symplectic form. The presence of a THS structure forces the fundamental
group of the manifold to have a certain structure, which we describe. This depends mainly on
the (local) de Rham reducibility of the manifold. We first note that, although a product of two
hyperkähler manifolds is again hyperkähler, THS manifolds are de Rham irreducible (Corollary
1.4.2). At the same time, we show that for locally irreducible manifolds, the existence of a
THS structure is equivalent to the manifold being KLH (Corollary 1.4.3). For the intermediate
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case of irreducible, locally reducible manifolds, we need to do a discussion depending on the
finiteness of the fundamental group. The results of this part are obtained by an analysis of
the structure of an isometry of certain Riemannian products, and the main tool we use is the
holomorphic Lefschetz fixed-point formula.

Locally conformally Kähler metrics

A Kähler metric g on a complex manifold (M, J) is a Hermitian metric whose fundamental
form Ω := g(J ·, ·) is closed. There are many well-known obstructions to the existence of such
metrics on a compact manifold, the basic one being that b1 needs to be even. One way to
generalize such metrics is to consider metrics that are conformal to them. It can be easily
seen that if Ω is Kähler and f ∈ C∞(M,R), then ef Ω will not be Kähler unless f is constant.
More generally, in order to get rid of some of the topological obstructions, one can consider
metrics that are only locally conformal to Kähler metrics: these are the LCK metrics. More
precisely, Ω is LCK if every point of M has a neighbourhood U on which there exists a Kähler
metric ΩU which is conformal to Ω, i.e.

Ω|U = efU ΩU , fU ∈ C∞(U,R). (0.0.1)

In the above equation, although the function fU is local, θ = dfU is a global real closed
one-form on M , called the Lee form of Ω, provided that dimC M > 1. This allows us to give
an equivalent definition: g is LCK if Ω verifies dΩ = θ ∧ Ω, with θ a closed one-form on M .
On the minimal cover M̂ of M on which θ becomes exact, the local Kähler metric in (0.0.1)
pulls back to a global Kähler metric ΩK , and (M̂, J, ΩK) is called the minimal Kähler cover.

The most basic manifold of non-Kähler type admits an LCK metric: this is the (standard)
Hopf surface

H = C2 − {0}/(z1,z2)∼(αz1,αz2), 0 < α < 1,

with the Boothby metric Ω = |z|−2ddc|z|2. This is also the first LCK example appearing in
the literature, but although the metric was constructed by Boothby in [Bo54], it was noticed
only after twenty years that it is LCK by Vaisman, who was the one to start a systematic
study of these structures.

Any LCK metric on a manifold of Kähler type is globally conformal to a Kähler metric
([Va80]). For this reason, we will always assume tacitly that our manifolds are not of Kähler
type, in order to study only strict LCK metrics. In this setting, a first obstruction appears
for manifolds of LCK type, namely: 0 < b1 < 2h0,1, where h0,1 = dimC H1(M, OM ). As a
matter of fact, this is the only cohomological obstruction known for a general LCK manifold.
Vaisman had conjectured that such a manifold should always have b2k+1 odd for some k ∈ N,
however this was disproved by the OT manifolds [OT05].

There are a few special LCK metrics which are better understood. The most important one is a
Vaisman metric (which used to be called generalized Hopf), defined by the condition ∇gθ = 0,
where ∇g is the Levi-Civita connection determined by g. Their study started with Vaisman
([Va82]) and is still ongoing. Vaisman manifolds admit a transversal Kähler foliation, which
allows one to study some of their properties by means of the better known ones from Kähler
geometry. For instance, this was done in order to determine their cohomological properties
by Vaisman [Va82] and Tsukada [Ts94], and it turns out that the Frölicher spectral sequence
degenerates at the first page for manifolds of Vaisman type (although they don’t admit a
Hodge decomposition, as already noticed).
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Moreover, a normalised Vaisman metric (Ω, θ) on (Mn, J) has the form

Ω = −dJθ + θ ∧ Jθ, (0.0.2)

(see Corollary 2.4.8 in Chapter 2), and the corresponding Kähler metric on M̂ can be written
as ΩK = ddce−ϕ where ϕ ∈ C∞(M̂,R) is a function satisfying θ = dϕ on M̂ . Thus ΩK

has a positive potential. This was first noted by Verbitsky [Ve04], and as a consequence
Ornea-Verbitsky [OV10] introduced and started the study of the more general notion of a
LCK metric with (positive) potential. These are LCK metrics whose Kähler metric writes

ΩK = ddc(fe−ϕ), f ∈ C∞(M,R). (0.0.3)

This class of metrics has the advantage of being closed under small deformations ([OV10],
[Go14]), while the Vaisman manifolds are not (see [Bel00]). Even more general than this is the
notion of an exact LCK metric, which is an LCK metric whose Kähler metric has the form:

ΩK = d(e−ϕη), η ∈ E1(M,R). (0.0.4)

A closed one-form θ on a manifold M induces a twisted differential operator

dθ : Ek → Ek+1, α 7→ dα − θ ∧ α

which verifies d2
θ = 0. This defines the twisted cohomology Hθ(M) = Ker dθ/ Im dθ, which

plays an important role in LCK geometry. Note that an LCK structure (Ω, θ) induces a
cohomology a class [Ω] ∈ H2

θ (M), which is zero precisely for exact LCK metrics. Moreover, by
[LLMP03], one has H•

θ (M) = 0 if θ is the Lee form of a Vaisman metric.

Finally, let us say a few words on an interesting problem in LCK geometry, which we also
tackle in the special case of OT manifolds. It concerns determining the set, or at least the
geometry of the set:

L(M, J) = {a ∈ H1(M,R)| there exists an LCK structure (Ω, θ) with θ ∈ a}

where (M, J) is a compact complex manifold. It was first studied by Tsukada in [Ts94]
in the case of a Vaisman manifold (M, J). He showed that any element of L(M, J) is
the Lee class of a Vaisman metric, and that for a given element a0 ∈ L(M, J), one has
L(M, J) = {ta0 + b|t > 0, b ∈ H ⊂ H1(M,R)}. Here, H ⊂ H1(M,R) is formed by all the de
Rham classes of forms whose (1, 0)-part are holomorphic d-closed one forms. Tsukada showed
that on a Vaisman manifold, H is a hyperplane in H1(M,R). More recently, the set L(M, J)
was studied by Apostolov and Dloussky [AD16a], [AD16b] and by Otiman [O16] in the case of
compact complex surfaces, and it has been completely determined for a number of cases. By
the above cited articles, together with our result for OT manifolds, it turns out that for all the
known examples of LCK manifolds, L(M, J) is either a point or an open subset of H1(M,R).

Existence of LCK metrics

The first question one probably asks is how often do LCK metrics arise? As noted, simply
connected compact complex manifolds of non-Kähler type, such as Calabi-Eckmann manifolds
for instance, cannot admit such metrics, so the class is strict. The existence of LCK metrics on
compact complex surfaces is fairly well undestood ([Tr82], [LeB91], [GO98], [Bel00], [FP10],
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[Bru11]), and the only ones known to not admit LCK metrics are a certain class of Inoue-
Bombieri surfaces. The surfaces of this class are in fact small deformations of some other
Inoue-Bombieri surfaces which admit LCK metrics, so in particular the category of LCK
manifolds is not closed under small deformations. Moreover, one encounters all the special
LCK metrics defined above, or the lack of such metrics, already in the surface case.

Moving to higher dimension, there are natural ways of constructing Vaisman manifolds:
starting from any ample holomorphic vector bundle over a Kähler manifold, one has a naturally
associated Vaisman manifold ([Va76], [Va80], [Ts97], [Ts99]). We extend this construction in
Section 2.6.3 to obtain manifolds with LCK metrics with positive potential. Moreover, any
complex submanifold of dimension bigger than 1 of a Vaisman manifold is again Vaisman
([Va82], [Ts97]). However, it is more difficult to construct examples of manifolds of LCK type,
not admitting LCK metrics with potential (or exact, for that matter). In fact, all known
manifolds of higher dimension of this kind are either Oeljeklaus-Toma manifolds, or blow-ups
of LCK manifolds. We should note at this point that indeed, the blow-up of an LCK manifold
along a submanifold of Kähler type admits an LCK metric ([Tr82], [Vu09], [OVV13]), but
never an exact one.

It should also be noted that the product metric of two LCK manifolds cannot be LCK [Va80],
however it is still unknown whether such a product manifold can admit some other LCK metric.
Some particular cases are known, such as: if M1 and M2 are of Vaisman type, then their
product admits no LCK metric [Ts99], and if M1 is not a curve and verifies the ∂∂̄-lemma,
then again M1 × M2 admits no LCK metric [OPV14]. We moreover prove:

Theorem B (Theorem 3.6.3, Proposition 3.6.4). Suppose that M1 and M2 are two compact
complex manifolds. Then M1 × M2 cannot admit a Vaisman metric. Moreover, if M1 is of
Vaisman type, then M1 × M2 admits no LCK metric at all.

Theorem C (Proposition 3.6.8). Let M1 be a compact complex curve, let M2 be a complex
manifold and suppose that M := M1 × M2 admits an LCK metric. Then M2 admits an LCK
metric with positive potential.

A related problem concerns the reducibility of the natural connections associated to an LCK
metric. Madani, Moroianu, and Pilca showed in [MMP16] that the holonomy group of the
Levi-Civita connection of an LCK metric is irreducible and generic, unless the metric is
Vaisman, in which case it equals SO(2n − 1), n being the complex dimension of the manifold.
Another natural connection associated to an LCK metric (Ω, θ) on (M, J) is the standard
Weyl connection D, defined as being the unique torsion free connection on M which satisfies:

DJ = 0, DΩ = θ ⊗ Ω.

As this connection coincides with the Levi-Civita (or also the Chern) connection of the local
Kähler metrics, it encodes in some sense more interesting properties. For instance, the Weyl
connection of an LCK metric can have reducible holonomy in a non-trivial way: this is the
case for the Oeljeklaus-Toma manifolds. Kourganoff [Kou15] gave a structure theorem for a
more general class of manifolds with Weyl-reducible connection, which we adapt to the LCK
context, in order to show:

Theorem D (Theorem 3.7.7). Any exact LCK metric on a compact complex manifold is
Weyl-irreducible, unless it is the standard LCK metric on the standard Hopf manifold.
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The fact that we know very few examples of non-exact LCK metrics parallels with the lack of
criteria for the existence or non-existence of a general LCK metric. Again, things look better if
we turn to the case of metrics with positive potential or of Vaisman metrics. Ornea-Verbitsky
([OV12], [OV17]) gave an existence criterion for LCK metrics with positive potential, whose
proof we revise:

Theorem E ([OV12], [OV17], Theorem 3.3.1). Let (M, J, Ω, θ) be a compact LCK manifold
admitting a holomorphic action of S1 which, on the minimal cover M̂ , lifts to an effective R-
action. Then there exists an LCK metric with positive potential whose Lee form is cohomologous
to θ.

Kamishima-Ornea [KO05] gave a criterion for a given LCK conformal class [g] on a compact
complex manifold (M, J) to admit a Vaisman metric, namely they show that this is equivalent
to the automorphism group Aut(M, J, [g]) containing a one-dimensional complex Lie group
which does not act isometrically on the corresponding Kähler metric. We generalise their
criterion in a way that does not involve a given fixed conformal class:

Theorem F (Theorem 3.4.3). A connected compact complex manifold (M, J) of LCK type
admits a Vaisman metric if and only if Aut(M, J) contains a torus T whose Lie algebra t

verifies dimC(t ∩ it) > 0.

As a consequence, we obtain a criterion of non-existence of LCK metrics:

Corollary G (Corollary 3.4.5). Let (M, J) be a compact complex manifold, and suppose that
the group of biholomorphisms Aut(M, J) contains a compact torus whose Lie algebra t verifies
dimC(t ∩ it) > 1. Then (M, J) admits no LCK metric.

An immediate application of this criterion is the classification of manifolds of LCK type among
all the torus principal bundles (Proposition 3.5.1), in analogy with a theorem of Blanchard
[Bl54].

Let us recall at this point that an LCK metric (Ω, θ) induces naturally two vector fields B
and A = JB, called the Lee and Reeb vector fields, via:

ιAΩ = −θ, ιBΩ = Jθ.

In the case of a Vaisman metric, these vector fields are part of the Lie algebra aut(M, J, Ω),
and are the ones to generate a non-real torus as in the above criterion. Moreover, the condition
of B being Killing easily implies that the metric is Vaisman. One could then ask what happens
if we impose B to be holomorphic. This problem is studied in the recent paper [MMO17],
where A. Moroianu, S. Moroianu and L. Ornea show that if, moreover, the LCK metric is
Gauduchon, or if B has constant norm, then the metric is Vaisman. At the same time, they
construct an example of a non-Vaisman LCK metric with holomorphic Lee field, showing
that one needs more hypothesis then just the holomorphicity of B. In Proposition 3.2.2 we
show that if Ω is an LCK metric with constant potential, i.e. of the form (0.0.2), and B is
holomorphic, then again Ω is Vaisman. Moreover, we make the remark that the example of
[MMO17] can be chosen with positive potential (Lemma 3.2.7), so our hypothesis cannot be
relaxed.
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Toric LCK manifolds

Recall that a symplectic manifold (M2n, ω) of real dimension 2n is called a toric manifold if
the compact torus Tn acts effectively in a Hamiltonian way on (M, ω). If t denotes the Lie
algebra of Tn, this means that there exists a Tn-invariant map µ : M → t∗, called the moment
map, verifying that for each vector field X ∈ t ⊂ aut(M), letting µX =< µ, X >∈ C∞(M),
one has dµX = ιXω. As is well-known, by the Delzant construction, toric manifolds (M, ω, µ)
are completely determined by the image of their moment map, which is a Delzant polytope.
Moreover, all their analytic and geometric properties can be read off their moment polytope,
and in particular they admit a compatible complex structure with respect to which ω is Kähler.

If one forgets the complex structure in the LCK context, then one deals with locally conformally
symplectic (LCS) forms, namely non-degenerate forms Ω verifying dΩ = θ ∧ Ω for some closed
real one-form θ. For these structures, there exist analogous notions of Hamiltonians and
moment maps, introduced by Vaisman in [Va85]. A vector field X on M is twisted Hamiltonian
with respect to (Ω, θ) if there exists a function fX ∈ C∞(M) so that

ιXΩ = dθfX . (0.0.5)

If we consider the associated minimal symplectic cover (M̂, ΩK) as in the LCK context, then
this definition is equivalent to asking for the lift of X to M̂ to be Hamiltonian for ΩK . If θ is
not exact and M is compact, then dθ is injective on C∞(M), which implies that if a function
as in (0.0.5) exists, then it is unique. Finally, let us note that this definition only depends on
the conformal class [Ω], and not on Ω itself: X is twisted Hamiltonian for Ω if and only if it is
so for ef Ω, f ∈ C∞(M,R).

A toric LCS manifold is an LCS manifold (M2n, [Ω]) together with the effective action of
a compact torus Tn so that every induced vector field X ∈ Lie(Tn) ⊂ aut(M) is twisted
Hamiltonian. If, moreover, there exists a complex structure on M so that Ω is LCK, and the
torus acts by biholomorphisms, then we have a toric LCK manifold. If µ is the moment map
of a toric LCS form (Ω, θ), then the minimal symplectic cover is a toric symplectic manifold
with corresponding moment map µ̂ = e−ϕµ, where θ = dϕ.

Although introduced early in the history of LCS/LCK geometry, general twisted Hamiltonian
group actions have not been extensively studied. The reduction procedure from symplectic
geometry has been adapted to this context by Haller and Rybicki in [HR01] for LCS manifolds,
and by Gini, Ornea and Parton in [GOP05] for LCK manifolds. Moreover, twisted Hamiltonian
actions were studied by Otiman in [O15] for the purpose of constructing LCS bundles.

On the other hand, recently there have been some new advances concerning toric LCK
manifolds. In order to explain them, let us first recall that Vaisman metrics are closely related
to Sasaki structures: their minimal Kähler covers are Kähler cones over Sasaki manifolds, cf.
[GOP06]. Pilca showed in [Pi16] that a compact Vaisman manifold is toric if and only if the
associated Sasaki manifold is toric, and one action naturally induces the other. Moreover,
Madani, Moroianu and Pilca showed in [MMP17] that the first Betti number of a toric Vaisman
manifold is b1 = 1, implying that the associated toric Sasaki manifold is compact.

In the same paper, the authors gave a classification of compact toric LCK surfaces, and it
turns out that they all admit toric Vaisman metrics. Hence the question was raised of whether
this is always the case, regardless of dimension. The main result of Chapter 4 is an affirmative
answer to it:

Theorem H (Theorem 4.4.1). Let (M, J, [Ω]) be a compact toric LCK manifold. Then there
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exists a Vaisman metric Ω′, possibly nonconformal to Ω, with respect to which the same action
is still twisted Hamiltonian.

Let us note that compact toric Sasaki manifolds can also be understood via the image of
the moment map, as a result of the paper [Ler03] of Lerman, in which he completes the
classification of toric compact contact manifolds. Indeed, the image of their moment map to
which one adds {0} is a cone over a convex polytope with certain combinatorial properties
which makes it a good cone. Moreover, to each good cone one can associate in a unique way a
compact contact toric manifold (N, α). On the symplectic manifold naturally associated to
this contact manifold, there always exists a compatible complex structure, inducing a toric
Sasaki structure on N . Moreover, just like in the compact symplectic case, all such complex
structures can be described only in terms of certain functions defined on the moment cone, as
shown by Martelli, Sparks and Yau [MSY06], see also Abreu [Ab10].

With this in mind, and as a corollary of our result, we can thus describe also toric LCK
manifolds in terms of combinatorial data coming from certain moment cones. However, all
information is not preserved: from the good cones we can recover only some of the toric LCS
structures, namely the ones giving Vaisman metrics.

We end this part by a remark on the differences between the symplectic case and the LCS
case. Recall that a compact toric symplectic manifold admits a compatible integrable complex
structure with respect to which the manifold is toric Kähler. On the contrary, Example 4.5.5
shows that on a general toric LCS manifold, there does not always exist a compatible complex
structure, making it into a toric LCK manifold.

Oeljeklaus-Toma manifolds

OT manifolds were introduced by Oeljeklaus and Toma in [OT05] as higher dimensional
analogues of a class of Inoue-Bombieri surfaces. They are compact complex manifolds of
non-Kähler type, obtained as quotients of Hs ×Ct by discrete groups of affine transformations
arising from a number field K and a particular choice of a subgroup of units U of K. Usually,
such a manifold is said to be of type (s, t), and is denoted by X(K, U).

More specifically, start with a number field K which admits exactly s real embeddings in C,
σ1, . . . , σs, and 2t complex conjugate ones σs+1 = σs+t+1, . . . , σs+t = σs+2t. Then there exists
a choice of a subgroup of units U of the ring of integers of K, OK , so that the semi-direct
product Γ := U ⋊ OK acts freely and properly discontinuously on Hs × Ct, and the quotient
X = X(K, U) := Hs × Ct/Γ is compact. Both groups OK and U act diagonally on Hs × Ct

via the first s + t embeddings: OK acts by translations, while U acts by dilatations.

OT manifolds of type (s, 1) are known to admit LCK metrics. But as they carry no holomorphic
vector fields, they admit no Vaisman metrics. In fact, along with the blown-ups of LCK
manifolds, these are the only known examples of LCK manifolds in higher dimension which
admit no exact LCK metric, by a result of Otiman [O16]. Thus they are a good testing
ground for conjectures concerning cohomological properties of LCK manifolds. Indeed, when
introduced, they disproved a long standing conjecture of Vaisman, according to which the odd
index Betti numbers of an LCK manifold should be odd.

So far, significant advances have been made in the study of OT manifolds. Many of their
properties are closely related to the arithmetical properties of (K, U), as can be seen particularly
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in the papers of M. Parton and V. Vuletescu [PV12] and of O. Braunling [Bra17]. OT manifolds
were shown to carry the structure of a solvmanifold by H. Kasuya [Kas13a], and those of type
(s, 1) to contain no non-trivial complex submanifolds by L. Ornea and M. Verbitsky [OV11].
A delicate issue seems to be the existence of LCK metrics on OT manifolds which are not
of type (s, 1). Some progress in this direction has been made by V. Vuletescu [Vu14] and A.
Dubickas [Du14], but the question remains open in general.

In the present text, we are interested in the cohomological properties of OT manifolds. Their
first Betti number and the second one for a certain subclass of manifolds, called of simple
type, were computed in [OT05]. More recently, H. Kasuya computed in [Kas13b] the de
Rham cohomology of OT manifolds of type (s, 1), using their solvmanifold structure. We
will compute the de Rham cohomology algebra (Theorem 5.4.1) and the twisted cohomology
(Theorem 5.6.1) of any OT manifold. This is done in terms of numerical invariants coming
from U ⊂ K.

We do this by two different approaches. In order to explain them, let us first note the
differentiable fiber bundle structures appearing in the construction of an OT manifold. X̂ :=
Hs ×Ct/OK has the structure of a trivial principal Tn-bundle over Rs, where n = s + 2t. This
structure descends to X to a flat Tn-fiber bundle structure over Ts. Note that Tn acts on
X̂, but not on X. Our first approach consists in reducing to the study of the cohomology of
Tn-invariant differential forms. In the second one, we study the Leray-Serre spectral sequence
associated to the fiber bundle structure of X, which turns out to degenerate at the second
page.

In the rest of the chapter, we present a few applications, focusing on the OT manifolds of
LCK type. First of all, we show:

Theorem I (Proposition 5.2.2). Let X be an OT manifold of LCK type. Then X admits only
one Lee class.

Next, we identify all the possible classes of LCK forms in the twisted cohomology group
H2

θ (X,R) on an OT manifold of LCK type (Corollary 5.7.8). As a consequence of this, we
obtain that an LCK form (Ω, θ) on an OT manifold induces a non-degenerate Lefschetz map
in cohomology, in the sense that LefΩ : Hk(X,C) → Hk+2(X,C) is injective for k ≤ dimC X
and surjective for k ≥ dimC X.
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Notation and conventions

• M , N will generally denote smooth manifolds.

• M̃ will always denote the universal cover of a manifold M .

• π1(M) will be the fundamental group of M , and Γ will usually denote some normal
subgroup of π1(M) (or even π1(M) itself). These groups will be automatically identified
with the deck groups of the associated coverings of M .

• We will denote by capital letters the compact Lie groups, such as G, H etc, and by
lowercase Gothic letters their corresponding Lie algebras, i.e. g, h etc.

• g will denote a Riemannian metric on a given manifold.

• Connections will be denoted by D, ∇, D, and the curvature corresponding to a Chern
connection, by Θ.

• I, J, K will denote complex structures on a given manifold. If we fix a complex structure
J on a smooth manifold M , then we will sometimes use the notation M also for the
complex manifold (M, J), when there is no ambiguity.

• KM will denote the canonical bundle of a given complex manifold (M, J). OM will
denote the sheaf of holomorphic functions of M .

• Ωk
M will denote the sheaf of holomorphic k-forms on a complex manifold (M, J), and

Ep,q
M the sheaf of smooth (p, q)-forms.

• Ek
M will denote the sheaf of real-valued smooth k-forms on M , and Ek

M ⊗ C the sheaf of
smooth C-valued k-forms.

• Given a holomorphic vector bundle E over a complex manifold (M, J), H0(M, E) will
denote the holomorphic sections of E. Its corresponding smooth sections will be denoted
by C∞(M, E) or by Γ(M, E). Also, by some abuse of notation, we will denote by Ep,q

M ⊗E
or by Ep,q

M (E) the sheaf of (p, q)-forms on M valued in E.

• Let (L, h) be a Hermitian line bundle over (M, J), and let Θh denote the curvature of
the induced Chern connection of L. We use the convention that c1(L), the first Chern
class of L, is the de Rham cohomology class of i

2π Θh. We will either view it in H2(M,R)
or in H2(M,Z).

• Tn denotes the n-dimensional compact torus, seen as a real Lie group. We will denote
by T a complex compact torus.

• For X ∈ Γ(TM) a smooth vector field on a manifold M , ιX denotes the contraction
with X, while LX denotes the Lie derivative with respect to X.

In the context of Locally Conformally Kähler geometry:

• Ω will denote the LCK form. θ ∈ E1(M) will denote the Lee form corresponding to Ω,
verifying dΩ = θ ∧ Ω.
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• [Ω] will denote the conformal class of Ω, that is the set {ef Ω|f ∈ C∞(M)}, where M is
the ambient manifold. Similarly, [g] will denote the conformal class of a Riemannian
metric g.

• B will denote the Lee vector field corresponding to Ω, defined by ιBΩ = Jθ, and
A the Reeb field A = JB, also defined by ιAΩ = −θ. Equivalently, if there exists a
compatible complex structure on the given manifold and g = Ω(·, J ·) is the corresponding
Riemannian metric, then B and A are the duals of θ and Jθ with respect to g.

• M̂ will denote the minimal cover of (M, θ) on which θ becomes exact. ϕ will be a
function on M̂ or on M̃ satisfying dϕ = θ, and ΩK will denote the symplectic form on
M̂ or on M̃ corresponding to Ω, defined by ΩK = e−ϕΩ.





Chapter 1

Twisted Holomorphic Symplectic
Forms

1.1 Introduction

This chapter is basically the content of [Is16], in which we are concerned with compact complex
manifolds which admit a particular kind of structure: holomorphic non-degenerate 2-forms
valued in a line bundle. Manifolds admitting such a structure will be called twisted holomorphic
symplectic (THS). The problem has different analogues that have been intensively studied. On
the one hand, there is the non-twisted problem concerning holomorphic symplectic forms. On
the other hand, its symmetric avatar consists in the study of holomorphic (conformal) metrics.

In the compact setting, the class of complex manifolds of Kähler type admitting holomorphic
symplectic forms coincides with the class of hyperkähler manifolds, as shown in [Bea83b].
There is a rich literature concerning this subject, and its study is ongoing. Turning to the
symmetric counterpart, the situation is somewhat different. Although the class of compact
Kähler manifolds admitting a holomorphic metric is rather small – they are all finitely covered
by complex tori, as shown in [IKO80], as soon as one allows the structure to be twisted – thus
studying holomorphic conformal structures – one enters a very rich class of manifolds. A
complete classification of these has been reached only in dimension 2 and 3, in [KO82] and
[JR05].

Even though one could expect that the class of THS manifolds is also wide, it turns out
that the situation is not much different from the non-twisted case. More precisely, we show
in Theorem 1.3.5 that compact THS manifolds of Kähler type are locally hyperkähler. In
particular, the presence of such a structure ensures the existence of a Ricci-flat Kähler metric,
and with respect to the connection induced by this metric the form is parallel.

Roughly speaking, the proof goes as follows: we first notice that the THS form induces local
Lefschetz-type operators acting on the sheaves of holomorphic forms Ω∗, which then determine
a local splitting of Ω3 into Ω1 and some other summand. This, in turn, allows us to find local
holomorphic 1-forms which behave like connection forms on the line bundle where the twisted
form takes its values. Finally, this means that the bundle admits a holomorphic connection,
thus also a flat one, and that the manifold is Ricci-flat locally holomorphic symplectic, thus
locally hyperkähler.

In the next section, we give a more precise description of THS manifolds. In Theorem 1.4.1

1
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we show that they are finite cyclic quotients of hyperkähler manifolds. Then we investigate
under which conditions a locally hyperkähler manifold admits a THS form. The two classes
do not coincide, and this is essentially because locally hyperkähler manifolds behave well
on products, while THS manifolds never do, as shown in Corollary 1.4.2. Still, for locally
irreducible manifolds, the two classes coincide by Corollary 1.4.3. Finally, for the intermediate
case of irreducible, locally reducible manifolds, a discussion depending on the compactness of
the universal cover is done in the remaining part of Section 1.4. As a consequence, we also
obtain that strict THS manifolds with finite fundamental group are necessarily projective.

1.2 Holomorphic symplectic manifolds

We start by discussing the complex symplectic case. For this, let us first define the objects we
will be interested in:

Definition 1.2.1: A Riemannian manifold (M, g) is called hyperkähler if it admits three
complex structures I, J and K which:

1. are compatible with the metric, i.e.

g(·, ·) = g(I·, I·) = g(J ·, J ·) = g(K·, K·)

2. verify the quaternionic relations:

IJ = −JI = K

3. are parallel with respect to the Levi-Civita connection given by g.

In particular, a hyperkähler manifold is Kähler with respect to its fixed metric and any complex
structure aI + bJ + cK, with a, b and c real constants verifying a2 + b2 + c2 = 1.

Equivalently, we could say that a 4n-dimensional Riemannian manifold (M, g) is hyperkähler
iff its holonomy group is a subgroup of Sp(n).

Definition 1.2.2: A holomorphic 2-form on a complex manifold M , ω ∈ H0(M, Ω2
M ), is

called a holomorphic symplectic form if it is nondegenerate in the following sense:

ιvωx = 0 ⇒ v = 0, ∀x ∈ M, ∀v ∈ T 1,0
x M,

where ιv is the contraction with v.

We call a manifold admitting such a form a holomorphic symplectic manifold.

In particular, a holomorphic symplectic manifold (M, ω) has even complex dimension 2m and
ωm is a nowhere vanishing holomorphic section of the canonical bundle KM =det Ω1

M . Thus,
KM is holomorphically trivial and c1(M) = 0.

It can be easily seen that, once we fix a complex structure on a hyperkähler manifold M , say
I, there exists a holomorphic symplectic form ω on (M, I) defined by:

ω(·, ·) = g(J ·, ·) + ig(K·, ·)



Chapter 1. Twisted Holomorphic Symplectic Forms 3

Thus, a hyperkähler manifold is a holomorphic symplectic manifold (but not in a canonical
way). In the compact case, the converse is also true:

Theorem 1.2.3: (Beauville, [Bea83b]) Let (M, I) be a compact complex manifold of Kähler
type admitting a holomorphic symplectic form. Then, for any Kähler class α ∈ H2(M,R),
there exists a unique metric g on M which is Kähler with respect to I, representing α, so that
(M, g) is hyperkähler.

Moreover, the manifold (M, I) admits a metric with holonomy exactly Sp(m) if and only if it
is simply connected and admits a unique holomorphic symplectic form up to multiplication by
a scalar.

Remark 1.2.4: The existence and uniqueness of the Kähler metric representing the given
Kähler class comes from Yau’s theorem: it is exactly the unique representative in the class
that has vanishing Ricci curvature. Consequently, the holomorphic symplectic form in the
theorem is parallel with respect to the Levi-Civita connection given by this Ricci-flat metric.

1.3 Twisted holomorphic symplectic manifolds

We will now concentrate on the twisted case, and see that the situation is similar to the
non-twisted one. Specifically, we will show that a Kähler manifold admitting a non-degenerate
twisted holomorphic form admits a locally hyperkähler metric which is moreover Kähler for
the given complex structure. With respect to the connection induced by this metric, the form
will be parallel.

Definition 1.3.1: A Riemannian manifold (M4m, g) is called locally hyperkähler if its
universal cover with the pullback metric is hyperkähler or, equivalently, if the restricted
holonomy group Hol0(g) is a subgroup of Sp(m). If, moreover, the manifold admits a global
complex structure I which is parallel with respect to the Levi-Civita connection induced by g,
we will call it Kähler locally hyperkähler, or KLH for short.

Hence, a locally hyperkähler manifold is one which admits locally three orthogonal complex
structures parallel for the Levi-Civita connection and verifying the quaternionic relations. It
can be shown that in the case of a KLH manifold (M, g, I), one of these complex structures
can be taken to be I, so that an equivalent definition for KLH is a Kähler manifold which
admits two local parallel complex structures preserved by g which verify the quaternionic
relations together with I.

Definition 1.3.2: Let (M, I) be a compact complex manifold, let L be a holomorphic line
bundle over M . A non-degenerate L-valued holomorphic form

ω ∈ H0(M, Ω2
M ⊗ L)

is called a twisted holomorphic symplectic form, or THS, and also the manifold with the
endowed structure (M, I, L, ω) is called a THS manifold.

Remark 1.3.3: Like in the symplectic setting, the existence of a THS form implies that M
is of even complex dimension 2m. Moreover, ωm is a nowhere vanishing holomorphic section
of the line bundle KM ⊗ Lm. Thus, we have a holomorphic isomorphism Lm ∼= K∗

M . In
particular, any metric on M naturally induces one on L, and we also have

c1(M) = mc1(L).
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Remark 1.3.4: Any complex surface M , of Kähler type or not, is THS in a tautological
way. Simply take L to be K∗

M , so that Ω2
M ⊗ L = KM ⊗ K∗

M is holomorphically trivial. Thus,
any non-zero section of this bundle is a twisted-symplectic form, which in local holomorphic
coordinates (z, w) on M is of the form

ω = λdz ∧ dw ⊗ ∂

∂z
∧ ∂

∂w
, λ ∈ C.

Therefore, the class of THS manifolds is interesting only starting from complex dimension 4.

Our main result in this section is the following:

Theorem 1.3.5: Let (M2m, I, L, ω), m > 1, be a compact THS manifold of Kähler type, and
let α ∈ H2(M,R) be a Kähler class. Then there exists a unique Kähler metric g with respect
to I representing α so that (M, g, I) is KLH. Moreover, L is unitary flat and ω is parallel with
respect to the natural connection induced by g on L.

Proof. Let {Ui}i be a trivializing open cover for the line bundle L and for each i, let σi ∈
H0(Ui, L) be a holomorphic frame, so that the holomorphic transition functions {gij}ij are
given by σi = gijσj . Then, if we write over Ui

ω = ωi ⊗ σi

we get local holomorphic symplectic forms ωi that verify, on Ui ∩ Uj , ωi = gjiωj .

The ωi’s, being holomorphic, induce the morphisms of sheaves of OUi
-modules over Ui:

Lk : Ωk
Ui

→ Ωk+2
Ui

Lkα = ωi ∧ α.

Lemma 1.3.6: For m > 1 we have an isomorphism of sheaves of OUi
-modules:

Ω3
Ui

∼= Ω1
Ui

⊕ Ω3
0,Ui

where Ω3
0,Ui

is the sheaf Ker(Lm−2
3 : Ω3

Ui
→ Ωn−1

Ui
) and n = 2m.

Proof. We claim that Lm−1
1 : Ω1

Ui
→ Ωn−1

Ui
is an isomorphism of sheaves over Ui. We inspect

this at the germ level, so we fix z ∈ Ui. Since the corresponding free Oz-modules have the
same rank, it suffices to prove the injectivity of Lm−1

1,z . But this becomes a trivial linear algebra

problem, noting that we can always find a basis over C in T 1,0M∗
z {e1, . . . , em, f1, . . . , fm} so

that

ωi(z) =
m∑

s=1

es ∧ fs.

Next, since Lm−1
1 = Lm−2

3 ◦ L1 we get that L1 is injective and Lm−2
3 is surjective. Hence, we

have an exact sequence of sheaves:

0 // Ω3
0,Ui

// Ω3
Ui

T
// Ω1

Ui

// 0

where T := (Lm−1
1 )−1 ◦ Lm−2

3 . But T admits as a section L1 : Ω1
Ui

→ Ω3
Ui

, as TL1 = id. Thus,
the sequence splits and we get the desired isomorphism. This ends the proof of the lemma.
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Now, we have dωi ∈ Ω3
M (Ui), so we can write:

dωi = ωi ∧ θi + ξi (1.3.1)

with θi ∈ Ω1
M (Ui) and ξi ∈ Ω3

0,M (Ui) holomorphic sections uniquely determined by the previous
lemma. Since ωi = gjiωj , we get:

dgji ∧ ωj + gjidωj = gjiωj ∧ θi + ξi

whence

ωj ∧ θj + ξj = dωj = ωj ∧ θi +
1

gji
ξi − dgji

gji
∧ ωj

Thus, applying again the previous lemma, we obtain that the θi’s change by the rule:

θi = θj + d log gji. (1.3.2)

Hence, the differential operator D : C∞(M, L) → C∞(M, T ∗M ⊗ L) given over Ui by

D(f ⊗ σi) = (df − θi) ⊗ σi

is a well defined connection on L. On the other hand, given some Hermitian metric h on L,
its Chern connection Dh must differ from D by a linear operator:

Dh = D + A, A ∈ C∞(T ∗M ⊗ EndL).

Moreover, since D0,1 = (Dh)0,1 = ∂̄L, A must be a global (1, 0)-form on M .

Now Θ(Dh) = Θ(D) + dA, and since Θ(D)Ui
= −dθi is of type (2,0) and iΘ(Dh) is a real

(1,1)-form, we have that iΘ(Dh) = i∂̄A is exact in H1,1(M,R). But on a compact Kähler
manifold H1,1(M,R) ⊂ H2

dR(M,R), so 2πc1(L) = [iΘ(Dh)] = 0 ∈ H2
dR(M,R).

Thus we also get c1(M) = mc1(L) = 0. So, by Yau’s theorem, there exists a unique Ricci-flat
Kähler metric g whose fundamental form ωg represents the given class α.

Now, on the sections of E2,0
M ⊗ L we have the Weitzenböck formula (see for instance [M]):

2∂̄∗∂̄ = ∇∗∇ + R

where ∇ is the naturally induced connection by g on E2,0
M ⊗ L and R is a curvature operator

which on decomposable sections is given by:

R(β ⊗ s) = iρgβ ⊗ s + β ⊗ Trωg (iΘ(L))s

with ρg : E2,0
M → E2,0

M the induced action of the Ricci form on E2,0
M . Now, since g is Ricci-flat,

ρg ≡ 0. Also, if we consider the curvatures induced by g, we have:

0 = −iρ = Θ(K∗
M ) = Θ(Lm)

so the induced connection on L is flat and R vanishes.

Hence, applying the Weitzenböck formula to ω, we get 0 = ∇∗∇ω or also, after integrating
over M , ‖∇ω‖2

L2 = 0. Thus ∇ω = 0.
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Finally, if we let π : (M̃, g̃, Ĩ) → (M, g, I) be the universal cover with the pullback metric and
complex structure, we have that π∗L is holomorphically trivial and ω̃ = π∗ω ∈ H0(M̃, Ω2

M̃
)

is a holomorphic symplectic form. By the Cheeger-Gromoll theorem, M̃ ∼= Cl × M0, where
M0 is compact, simply connected, Kähler, Ricci-flat, and Cl has the standard Kähler metric.
Moreover, by the theorems of de Rham and Berger, the holonomy of M0 is a product of groups
of type Sp(k) and SU(k). We have that ω̃ is a parallel section of

∧2 T ∗M̃ =
∧2 pr∗

1T ∗Cl ⊕ (pr∗
1T ∗Cl ⊗ pr∗

2T ∗M0) ⊕∧2 pr∗
2T ∗M0

But pr∗
1T ∗Cl ⊗ pr∗

2T ∗M0
∼= (T ∗M0)⊕l has no parallel sections by the holonomy principle, so

ω̃ is of the form ωc + ω0, with ωc, ω0 holomorphic symplectic forms on Cl, M0 respectively.
Thus, l is even, so Cl is hyperkähler, and also, by Theorem 1.3, M0 is hyperkähler. It follows
that (M, g, I) is KLH.

This concludes the proof of the theorem.

Remark 1.3.7: Note that D1,0 is actually a holomorphic connection on L, so this gives
another reason of why L must be unitary flat.

Remark 1.3.8: The flat connection induced by g on L does not depend on the Kähler class
α. It is uniquely determined by ω and is equal to the connection D given in the above proof.
To see this, let Dg be the Chern connection on L induced by g and write Dgσi = τi ⊗ σi. Then
we have:

0 = ∇ω = ∇ωi ⊗ σi + ωi ⊗ τi ⊗ σi.

So, denoting by a : E2,0
M ⊗ (T ∗M ⊗ C) ⊗ L → (E3,0

M ⊕ E2,1
M ) ⊗ L the antisymmetrization map,

we get:

dωi = a(∇ωi) = −ωi ∧ τi.

Thus, by (1.3.1) we deduce that ξi = 0 and τi = −θi, i.e. Dg = D.

Remark 1.3.9: If we only suppose that ω is a non degenerate (2, 0) twisted form, not
necessarily holomorphic, then ω still induces a connection on L in the same manner. This
time, we have the morphisms of sheaves of EUi

-modules Lk : Ek,0
Ui

→ Ek+2,0
Ui

which induce

isomorphisms E3,0
M (Ui) ∼= E1,0

M (Ui) ⊕ E3,0
0,M (Ui). Writing

E3,0
M (Ui) ∋ ∂ωi = ωi ∧ θi + ξi,

we get the (1, 0)-forms θi which define a connection D just as before. It is only at this point
that the holomorphicity of ω becomes essential in order to have that D defines a holomorphic
connection on L.

Actually, the complex manifolds which admit a non degenerate (2,0)-form valued in a complex
line bundle are exactly those which have a topological Sp(m)U(1) structure. As expected,
these are not necessarily locally hyperkähler: a counterexample is given by the quadric
Q6 =SO(7)/U(3) ⊂ P7C, which is a Kähler manifold with topological Sp(3)U(1) structure, see
[MPS13], but is not KLH, since it has positive first Chern class.

Remark 1.3.10: Note that the Kähler hypothesis was heavily used during the proof. So one
could ask two questions in the non-Kähler setting:
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(1) Does it follow that a compact complex THS manifold has holomorphic torsion canonical
bundle, so that ω determines a holomorphic symplectic form on some finite unramified cover
of M?

(2) Which are the compact complex manifolds admitting a holomorphic symplectic form?

For the first question, the problem comes from cohomology. For a general compact complex
manifold one can define many cohomologies (de Rham, Dolbeault, Bott-Chern, Aeppli) which
are not necessarily comparable. In particular, one does not always have a map from H1,1

∂̄
(M,C)

to H2
dR(M,C). Since what we actually show is that c1(KM )∂̄ = 0, we cannot conclude that

this Chern class vanishes in all other cohomologies (except for Aeppli). Moreover, even if it
was the case, this would still not imply that KM is holomorphically torsion, see [To15] for a
detailed discussion and for examples showing the nonequivalence of the notions.

For Fujiki’s class C manifolds, the answer is yes though. Since these manifolds satisfy the ∂∂̄-
lemma, we can conclude that the first Chern class of the manifold vanishes in all cohomologies.
We then use the result of [To15] stating that a Fujiki’s class C manifold M with Bott-Chern
class c1(M)BC = 0 has holomorphic torsion canonical bundle.

Examples of THS manifolds which do not verify the ∂∂̄-lemma can be given as follows: let
S be a primary Kodaira surface. It admits a closed holomorphic symplectic form, thus also
Sm does. Moreover, if Γ =< γ >⊂Aut(S) is a finite cyclic group so that S/Γ is a secondary
Kodaira surface, then Sm/<γ,...,γ> is THS by Theorem 1.4.1 in the next section. Note that
this manifold still has holomorphic torsion canonical bundle.

Regarding the second question, what we can say for sure is that the holomorphic symplectic class
strictly contains the hyperkähler manifolds. Compact non-Kähler manifolds with holomorphic
symplectic forms were constructed by Guan and Bogomolov (see [Gu94] and [Bo96]). A
non-Kähler example with non-closed non-degenerate holomorphic form is given as follows:
start with a global complex contact manifold, the Iwasawa 3-fold for instance, that is a complex
manifold M2m+1 admitting a global holomorphic form η ∈ H0(M, Ω1

M ) such that η ∧ dηm is
nowhere zero. Let T be a 1-dimensional complex torus, and take on X = M × T the form
ω = dη + θ ∧ η, where θ is a generator of H0(T, Ω1

T). Then ω is holomorphic symplectic and
verifies 0 6= dω = θ ∧ ω. More examples can be constructed as complex mapping tori over M :
let f ∈Aut(M, η) be a contactomorphism, i.e. f∗η = η. Write T = C/Λ, Λ = Z ⊕ τZ, and let
Λ act on M by 1.x = x and τ.x = f(x). Then ω descends to Mf := M ×Λ C, which is again
holomorphic symplectic. These examples are the holomorphic version of what is usually called
locally conformally symplectic manifolds.

1.4 A characterization

In this section, we want to investigate the converse problem. It is not true that all KLH
manifolds are twisted holomorphic symplectic. Already we will see that a product of strictly
THS manifolds is never THS, but it turns out that being reducible is not the only obstruction.
In what follows, we will give some description of THS manifolds and their fundamental groups.

By a strictly twisted holomorphic symplectic manifold we always mean a THS manifold
(M, I, L, ω) such that the line bundle L is not holomorphically trivial.

Theorem 1.4.1: A compact Kähler manifold M of complex dimension > 2 is THS if and
only if there exists a holomorphic symplectic form ω0 on its universal cover M̃ so that the
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action of Γ = π1(M) on H0(M̃, Ω2
M̃

) preserves Cω0. In particular, any THS manifold is a
finite cyclic quotient of a hyperkähler manifold.

Proof. Suppose first that M admits a twisted-symplectic form

ω ∈ H0(M, Ω2
M ⊗ L).

Then, by Theorem 1.3.5, L is unitary flat, and thus given by a unitary representation
ρ : Γ →U(1), i.e. if we see π : M̃ → M as a Γ-principal bundle over M , we have L = M̃ ×ρ C.

Let si : Ui → M̃ be local sections of π : M̃ → M over a trivializing cover {Ui}. We then
have si = γijsj on Ui ∩ Uj , where γij : Ui ∩ Uj → Γ are the transition functions for M̃ . Then,
σi := [si, 1] are local frames for L, where [·, ·] denotes the orbit of an element of M̃ × C under
the left action of Γ. The locally constant functions gij := ρ(γ−1

ij ) are the transition functions
for L verifying

σi = [γijsj , 1] = [sj , ρ(γ−1
ij )] = gijσj .

Since π∗L is trivial, there exist fi ∈ O∗
M̃

(π−1Ui) such that π∗gij = fi

fj
on π−1Ui ∩ π−1Uj . Also,

the sections π∗σi

fi
∈ H0(π−1Ui, π∗L) all coincide on intersections and are non vanishing, thus

giving a global frame for π∗L which we can suppose equal to 1, so that π∗σi = fi. Thus, if we
write ω = ωi ⊗ σi and define ω0 := π∗ω, we get:

ω0|π−1Ui
= π∗ωifi

and, for any γ ∈ Γ:

γ∗ω0|π−1Ui
= π∗ωiγ

∗fi = ω0
γ∗fi

fi

Moreover, for any γ, we have on π−1Ui ∩ π−1Uj :

fj

fi
=

fj ◦ γ

fi ◦ γ
⇔ gij ◦ π = gij ◦ π ◦ γ

hence the constant function fi◦γ
fi

does not depend on i.

On the other hand, we have:

γ∗fi

fi
=

[si ◦ π ◦ γ, 1]

[si ◦ π, 1]
=

[si ◦ π, ρ(γ−1)]

[si ◦ π, 1]
=

1

ρ(γ)
(1.4.1)

Hence Γ preserves the subspace Cω0 ⊂ H0(M̃, Ω2
M̃

) and ρ is determined by the action of Γ on
the holomorphic symplectic form ω0 by:

1

ρ(γ)
· ω0 = γ∗ω0.

Conversely, suppose a holomorphic symplectic form ω0 is an eigenvector for Γ acting on
H0(M̃, Ω2

M̃
). Define

ρ : Γ → C∗

γ 7→ ω0

γ∗ω0
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Let L := M̃ ×ρ C and, with the same data for L as before, define ω ∈ H0(M, Ω2
M ⊗ L) by

ω|Ui
= ωi ⊗ σi, where ωi = s∗

i
ω0
fi

. Then ω is twisted holomorphic symplectic and, seeing siπ as

an element of Γ, we have, by (3.1), on π−1(Ui) :

π∗ω =
π∗s∗

i ω0

π∗s∗
i fi

fi =
1

ρ(siπ)
ω0

fi

(siπ)∗fi
= ω0.

To prove the last part, suppose M is THS and let, as in Theorem 1.3.5, M̃ = C2l×M1×. . .×Mk,
with Mi irreducible hyperkähler manifolds. The manifold M has a finite unramified cover
M ′ = T × M1 × . . . × Mk, where T is a 2l-dimensional compact complex torus, so that
M = M ′/Γ′ and Γ ∼= Z4l ⋉ Γ′. The symplectic form ω0 is preserved under the action of Z4l,
so it descends to a holomorphic symplectic form on M ′, which we will also denote by ω0. The
group Γ′ preserves Cω0.

Let ρ′ : Γ′ →U(1) be the representation induced by ρ. Denote by N ′ its kernel, and by
N := Z4l ⋉ N ′. Then N is normal inside Γ, so there exists a Galois covering MN → M with
π1(MN ) = N . Moreover, since π1(M ′) = Z4l is normal in N , also M ′ → MN is a covering
whose deck transformation group is N/Z4l ∼= N ′.

We thus have that MN
∼= M ′/N ′ and N ′ preserves ω0, so ω0 descends to MN . Since MN is

compact holomorphic symplectic, it is hyperkähler.

Finally, ρ(Γ) = ρ′(Γ′) is a finite subgroup of U(1), so cyclic, and Γ/N ∼= Γ′/N ′ ∼= ρ(Γ), so MN

is a finite cyclic covering of M .

This concludes the proof of the theorem.

Corollary 1.4.2: A compact strictly THS manifold of dimension > 2 is de Rham irreducible.

Proof. Suppose M ∼= M1 × M2 is strictly twisted holomorphic symplectic. Let M ′ ∼= M ′
1 × M ′

2

be a finite unramified cover of M with holomorphic symplectic form ω0 = ω1 + ω2 preserved
up to constants by Γ′ ∼= Γ′

1 × Γ′
2, where π1(Mi) = Z2li ⋉ Γ′

i, i = 1, 2.

Then we should have that ρ(Γ′) = ρ(Γ′
1) × ρ(Γ′

2) is a non-trivial cyclic group of the same order
as ρ(Γ′

1), ρ(Γ′
2), which is impossible.

Corollary 1.4.3: A compact locally irreducible Kähler manifold of dimension > 2 is KLH
if and only if it is THS. In this case, the twisted-symplectic form is valued in the canonical
bundle.

Proof. Let M be a locally irreducible KLH manifold and M̃ its universal cover endowed with a
holomorphic symplectic form ω0. Since M̃ is irreducible, it is compact and H0(M̃, Ω2

M̃
) = Cω0.

Hence Γ = π1(M) preserves Cω0 in a trivial way and M is twisted holomorphic symplectic by
the previous theorem.

In particular, this implies that Γ is cyclic. Let d be its order. Then d|m+1, where dimM = 2m.
To see this, let γ ∈ Γ be a generator, so that γ∗ω0 = ξ · ω0, with ξ a primitive d-root of unity.
Since γ has no fixed points, by the holomorphic Lefschetz fixed-point formula we must have
that its Lefschetz number, which by definition is:

L(γ) =
∑

q

(−1)qtrγ∗|Hq(M̃,O)

must vanish. On the other hand, we have



10 1.4. A characterization

H•(M̃, OM̃ ) ∼= H0(M̃, Ω•
M̃

) ∼= C[ω0]

(ωm+1
0 )

so L(γ) = 1 + ξ + . . . + ξm. Thus, L(γ) = 0 implies d|m + 1.

Let ρ : Γ →U(1) be given by the action of Γ on ω0 and L := M̃ ×ρ C, so that the twisted
holomorphic symplectic form is L-valued. Since the action of Γ on KM̃ is given by ρm, we
also have that KM = M̃ ×ρm C. Now, ρm+1 = 1 implies ρm · ρ = 1, or also K∗

M ⊗ L = CM , i.e.
we have a holomorphic isomorphism L ∼= KM .

Remark 1.4.4: For a THS manifold (M, I, L, ω), we always have, by Remark 1.3.3, that L
is a root of K∗

M . In the particular case when M is locally irreducible, we obtain, moreover,
that L is precisely (up to isomorphism) KM .

It is difficult to give a nice criterion for being THS in the case of de Rham irreducible,
locally reducible KLH manifolds. We can, though, give a somewhat more precise description
of fundamental groups of THS manifolds. For this, we first give some lemmas concerning
isometries of Riemannian products.

Lemma 1.4.5: Let k > 0 and for each 1 ≤ i ≤ k let (Mi, gi) be a complete locally irreducible
Riemannian manifold of dimension bigger than 1. Let M0 = M1 × . . . × Mk be endowed with
the product metric. Let γ be an isometry of M0 and let γi := piγ, where pi : M0 → Mi are
the canonical projections. Then γi is of the form γi = γ̃ipσ(i), where γ̃i : Mσ(i) → Mi is an
isometry and σ a permutation of {1, . . . , k}.

Proof. We have that g̃i := γ∗
i gi is a parallel section of S2(T ∗M0). On the other hand,

S2(T ∗M0) ∼=
∑

S2(T ∗Mi) ⊕
∑

i<j

(T ∗Mi ⊗ T ∗Mj).

Now, T ∗Mi ⊗ T ∗Mj admits no parallel section for i < j, while the space of parallel sections of
S2(T ∗Mi) is exactly Rgi. Indeed, by the holonomy principle, this is equivalent to saying that
Gi ×Gj has no fixed points when acting on T ∗

x Mi ⊗T ∗
y Mj , while the only Gi-invariant elements

of S2(T ∗
x Mi) are the multiples of (gi)x, where x ∈ Mi, y ∈ Mj are any points and Gs is the

restricted holonomy group of Ms, s = 1, ..., k. The first assertion follows from the dimension
hypothesis and the more general fact that if U is a G-irreducible space and V a H-irreducible
space, then U ⊗ V is a G × H-irreducible space. The second assertion is equivalent to Schur’s
lemma if we identify S2(T ∗

x Mi) with the symmetric endomorphisms of T ∗
x Mi via gi.

Next, we want to show that for every i, there is exactly one j = j(i) so that aij 6= 0. Thus,
if we let A(i) = {j|aij 6= 0}, we need to show that A(i) 6= ∅ for each i and A(i) ∩ A(j) = ∅
for all i 6= j. Now, since gi is definite and dγi is surjective, we have that ker g̃i := {X ∈
TM0|g̃i(X, ·) = 0} = ker dγi. Hence, since ker dγi 6= TM , the first assertion follows.

For the second assertion, first note that ker g̃i ∩ TMk 6= 0 if and only if aik = 0, in which
case TMk ⊂ ker g̃i. Therefore, (ker dγi)

⊥ =
∑

j∈A(i) TMj . Hence, for i 6= j, A(i) ∩ A(j) = ∅ is

equivalent to {0} = (ker dγi)
⊥ ∩ (ker dγj)⊥ = (ker dγi + ker dγj)⊥. But we have

ker dγi + ker dγj = dγ−1(ker dpi + ker dpj) = dγ−1(
∑

s 6=i

TMs +
∑

s 6=j

TMs) = TM.
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It follows that there exists a permutation σ of {1, . . . , k} so that A(i) = {σ(i)} for each i.
Hence, since for any j,

∑
i aij = 1, we have that aiσ(i) = 1 and γi = γ̃ipσ(i) with γ̃i : Mσ(i) → Mi

an isometry.

In what follows, we will omit writing the projections and identify γi with γ̃i.

Lemma 1.4.6: Let k > 0 and for 1 ≤ i ≤ k let Mi be an irreducible compact hyperkähler
manifold. Let M0 = M1 × . . . × Mk be endowed with the product metric and a holomorphic
symplectic form ω0. Then any isometry of M0 preserving ω0 has fixed points.

Proof. By Theorem 1.2.3, each manifold Mi is simply connected and admits an unique
holomorphic symplectic form ωi up to a scalar, so we have:

H0(M0, Ω2
M0

) = Cω1 ⊕ . . . ⊕ Cωk.

Hence we can suppose, after rescaling the ωi’s, that ω0 = ω1 + . . . + ωk. Let γ be an isometry
of M0 with γ∗ω0 = ω0.

Consider first the case where all the manifolds Mi are isometric, so that M0
∼= Mk

1 . Let σ be
the permutation determined by γ as in the previous lemma and let l be the order of σ. If we
define, for i = 1, ..., k:

γ′
i = γiγσ(i) . . . γσl−1(i)

then γl(x1, . . . , xk) = (γ′
1(x1), . . . , γ′

k(xk)) for any (x1, . . . , xk) ∈ M0. If γ acts freely, then
also γl acts freely. Otherwise, suppose γl(y1, . . . , yk) = (y1, . . . , yk) for some (y1, . . . , yk) ∈ M0.
Let i1, . . . , it ∈ {1, . . . , k} represent the orbits of the group spanned by σ, of corresponding
cardinals l1, . . . , lt, and define (x1, . . . , xk) ∈ M0 by

xiα := yiα and xσj(iα) := γσj(iα) . . . γσlα−1(iα)(yiα)

for α = 1, . . . , t and j = 1, . . . , lα − 1. The fact that

γiαγσ(iα) . . . γσlα−1(iα)(yiα) = yiα

implies that (x1, . . . , xk) is a fixed point for γ, which is a contradiction.

Now, γ∗ω0 = ω0 implies (γl)∗ω0 =
∑

i(γ
′
i)

∗ω1 = ω0, or also (γ′
i)

∗ω1 = ω1 for any i = 1, ..., k.
On the other hand, the fact that γl acts freely implies that some γ′

i0
acts freely on M1. By

the holomorphic Lefschetz fixed-point formula, its Lefschetz number must then vanish. But
L(γ′

i0
) = m + 1, where dimM1 = 2m, contradiction.

In the general situation, write M0 = (M1)k1 × . . . × (Ms)ks , with Mi irreducible and Mi ≇ Mj

for all i 6= j. By the previous lemma, γ = (γ1, . . . , γs), with γi an isometry of (Mi)
ki . Again,

γ∗ω0 = ω0 implies γ∗
i ω̃i = ω̃i, where the ω̃i’s are the induced symplectic forms on (Mi)

ki ,
i = 1, . . . , s. Also, if γ acts freely on M0, then some γi acts freely on (Mi)

ki and we already
showed that this is impossible.

Remark 1.4.7: We can now say slightly more about THS manifolds M with compact universal
cover M̃ . In this case, with the notations of Theorem 1.3.5, Γ = Γ′, the representation ρ is
faithful by the previous lemma, so Γ = ρ(Γ) is cyclic. Thus, if γ is a generator of Γ of order
d and γ∗ω0 = ξω0, then ξ is necessarily a primitive d-root of unity. Moreover, if we write
γ = (γ1, . . . , γk) just as in Lemma 1.4.5, then all γi’s must have the same order d. To see
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this, let di =ordγi. Then di|d =lcm(di)i. Since γ∗ω0 =
∑

i γ∗
i ωi = ξ

∑
i p∗

i ωi, we have, for all i,
γ∗

i ωi = ξωσ(i), hence ξdi = 1. But ξ was primitive, so di = d. We can conclude:

Corollary 1.4.8: If the fundamental group of a compact THS manifold is finite, then it
is cyclic and of the form Γ =< γ = (γ1, . . . , γk) >, with γi isometries of the irreducible
components of the universal cover, all of the same order.

Remark 1.4.9: When M is THS but M̃ is not compact, it is not necessarily the case that Γ′

is cyclic, i.e. ρ′ : Γ′ →U(1) need not be faithful. By the same type of arguments as in Lemma
1.4.5 and with the notations of Theorem 1.3.5, it can be seen that an element of Γ′ is of the
form γ = (γT , γ0), with γT ∈Aut(T) and γ0 ∈Aut(M0). There exist fixed point free complex
symplectomorphisms of T of finite order (for instance translation by a torsion element a ∈ T
). So, if γT is one such symplectomorphism and γ0 is a symplectomorphism of M0 of the same
order as γT , (γT , γ0) is an element in the kernel of ρ′.

Corollary 1.4.10: A compact strictly twisted holomorphic symplectic manifold M of dimen-
sion > 2 with finite fundamental group is projective.

Proof. Let π : M̃ → M be the compact universal covering, where, by Theorem 1.4.1, M̃ =
M1 × . . . × Mk with Mi irreducible hyperkähler manifolds. Then, by Lemma 1.4.6, each
Mi admits an automorphism which is not symplectic. By a result of A. Beauville [Bea83a,
Proposition 6], such manifolds are necessarily projective, hence so is M̃ . But it is a well known
fact that a compact Kähler manifold is projective if and only if some finite unramified covering
is, thus the conclusion follows.

1.5 Examples

Concerning examples of Kähler type, finding locally irreducible KLH manifolds is equivalent
to finding a fixed point free automorphism γ of an irreducible symplectic manifold, so that all
powers of γ also act freely.

In complex dimension 2, by Remark 1.3.4 all manifolds are twisted holomorphic symplectic.
On the other hand, the only finite cyclic quotients of hyperkähler surfaces are the Enriques
surfaces and some bielliptic surfaces. The first ones are quotients K/<ι>, with K a K3 surface
admitting a fixed point free involution ι, and they are locally irreducible. The bielliptic
surfaces are quotients of products of two elliptic curves by some groups of order 2, 3, 4 or 6.
This shows that Theorem 1.4.1 does not hold in complex dimension 2.

Next, one can easily construct locally reducible THS manifolds of any dimension by iterating
the KLH examples from above. For instance, if (K, ι) is a K3 surface as before, then Km/<ι,...,ι>

is THS. In the same way, let T = C/(Z⊕iZ) and let P be a 4-torsion point on T. Denote by
(x1, . . . , xm, y1, . . . , ym) the local holomorphic coordinates on T2m coming from the standard
coordinates on C2m and define f ∈Aut(T2m) by:

f([x1, . . . , ym]) := ([ix1, . . . , ixm], [y1, . . . , ym] + (P, . . . , P )).

Then f spans a group of order 4 acting freely on T2m and T2m/<f> is a THS manifold, with
twisted symplectic form given locally by

∑m
j=1 dxj ∧ dyj . More generally, if M1 and M2 are

hyperkähler and γi ∈Aut(Mi), i = 1, 2, have the same order, with < γ1 > acting freely but
< γ2 > possibly not, then (M1 × M2)/<γ1,γ2> is again a smooth THS manifold.
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Finding locally irreducible THS manifolds of higher dimension is more difficult. For the Hilbert
schemes of points on K3 surfaces, see [Bea83b] for the construction, all known automorphisms
of order bigger thatn 2 have fixed points, so we have no hope of constructing examples out of
them. On the other hand, there is hope with the generalized Kummer varieties Kr, see again
[Bea83b] for the definition. In [BNS11] and [OS11] the authors find fixed point free cyclic
groups of automorphisms Γ of order 3 for the manifolds K2 and K5, and of order 4 for K3.
The corresponding quotients give the desired examples of dimension 4, 10 and 6, respectively.





Chapter 2

Locally Conformally Kähler
Geometry

2.1 Introduction

This chapter puts together the definitions and the basic results in locally conformally Kähler
(LCK) geometry which are relevant for the thesis. Most of the chapter consists in already
known facts, although sometimes presented in a different way, except perhaps the last part of
example 2.6.3.

We start by giving all the equivalent definitions of an LCK structure in Section 2.2. Although
we do not discuss the locally conformally symplectic (LCS) structures, the obvious adaptation
of all the given definitions are valid in this context as well. Next, in Section 2.3 we present the
relevant linear connections appearing in the context of LCK geometry, as well as the relation
between all of them.

In Section 2.4 we move on to introducing particular classes of LCK metrics, namely Vaisman
metrics, LCK metrics with (positive) potential and exact LCK metrics. We discuss the relation
between these classes, as well as their important or elementary properties. This section is
important for the rest of the text, as some of our main results concern special LCK metrics.

Also essential for the discussion that will follow, namely in Chapter 4, is Section 2.5 concerning
the properties of the automorphism group of an LCK/LCS manifold. In particular, in this
section we give a criterion for lifting the action of a compact Lie group on a compact LCS
manifold to its minimal symplectic cover (Proposition 2.5.4).

In Section 2.6 we present the main examples and known methods of constructing LCK
manifolds. We start by giving the metric construction of diagonal Hopf manifolds and non-
diagonal Hopf surfaces. This is well known and follows the ideas of Gauduchon-Ornea [GO98]
and Belgun [Bel00]. However, we chose to give all the details, in a way that clearly generalizes
to the next example we present, namely LCK manifolds obtained form ample vector bundles
over Kähler manifolds. This last construction generalizes the one given by Tsukada [Ts97]:
given any linear Hopf manifold or non-diagonal Hopf surface H, one chooses suitable line
bundles over a projective manifold in order to form an LCK manifold fibering in H over the
projective manifold. Lastly, we discuss shortly the LCK metric structure of complex surfaces,
as well as of blown-up manifolds.

15
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2.2 Basic definitions and properties

We start by introducing the equivalent definitions of a locally conformally Kähler structure.
Let (M, J) be a complex n-dimensional manifold and let Ω ∈ E1,1

M (M) be a non-degenerate
(1, 1)-form on M which is positive, meaning that g(·, ·) := Ω(·, J ·) is a J-invariant Riemannian
metric.

Definition 2.2.1: The form Ω is called locally conformally Kähler, abbreviated LCK, if
there exists a covering of M with open sets {Uα}α∈I such that Ω restricted to each of them is
conformal to a Kähler form:

Ω|Uα = eϕαΩα with dΩα = 0 (2.2.1)

where ϕα ∈ C∞(Uα,R) and Ωα ∈ E1,1
M (Uα), for any α ∈ I.

Let Ω be an LCK form. By differentiating the relation (2.2.1), we obtain:

dΩ = dϕα ∧ Ω on Uα ∀α ∈ I.

Suppose for the moment that n > 1. In this case, the morphism E1
M (M) → E3

M (M), η 7→ η ∧ Ω
is injective as Ω is non-degenerate, hence the above implies that on the intersections Uα ∩ Uβ

we have dϕα = dϕβ. Thus the collection {dϕα}α∈I glues up to give a real closed 1-form θ
globally defined on M which verifies dΩ = θ ∧ Ω.

For n = 1, the above argument does not work, and in fact any two (1, 1)-forms, locally or
globally defined on M , are conformal. Nonetheless, for any real 1-form θ on M (and there
always exist some), the relation dΩ = θ ∧ Ω is trivially satisfied, since both terms are 0 because
of their degree.

Conversely, suppose that θ is a closed 1-form on M satisfying dΩ = θ ∧ Ω. By the Poincaré
lemma, M is covered by open sets {Uα}α∈I on which θ becomes exact: θ = dϕα, ϕα ∈
C∞(Uα,R). Setting then Ωα := e−ϕαΩ on Uα, one verifies easily that this is a closed form on
Uα conformal to Ω, and so Ω is LCK. Thus we also have:

Definition 2.2.2: The form Ω is called LCK if there exists a real closed 1-form θ on M ,
called the Lee form, satisfying:

dΩ = θ ∧ Ω. (2.2.2)

Remark 2.2.3: It’s worth mentioning that, for n > 2, the morphism E2(M) → E4(M)
given by wedging with Ω is injective, hence differentiating the relation (2.2.2) gives us dθ = 0
automatically.

In order to get to other equivalent definitions, we need to relate the Lee form to a connection
in a real line bundle over M. To do this, let us first note that, by the Universal Coefficient
Theorem and the fact that H1(M,Z) is the abelianisation of π1(M), we have the following
group isomorphisms:

H1(M,R) ∼= Hom(H1(M,R),R) ∼= Hom(H1(M,Z),R) ∼= Hom(π1(M),R).

The isomorphism between the first and the last group is given by taking the de Rham class
of a closed 1-form η to the homomorphism γ ∈ π1(M) 7→ ∫

γ η, which of course does not
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depend on the chosen representative η. Moreover, if we identify π1(M) with the deck group of
π : M̃ → M acting on the universal cover M̃ , this homomorphism is the same as:

τ : π1(M) → (R, +)

γ 7→ γ∗ϕ − ϕ.
(2.2.3)

where π∗η = dϕ. Again, this homomorphism depends neither on η, nor on the chosen primitive
ϕ.

At the same time, the group Hom(π1(M),R) is in one to one correspondence to the set of the
isomorphism classes of oriented real line bundles with flat connection over M , given in the
following way. Let τ : π1(M) → (R, +) be a homomorphism and let ρ = exp τ : π1(M) → R>0.
Then we define the real line bundle over M :

Lτ := M̃ ×ρ R = M̃ × R/π1(M)

where γ ∈ π1(M) acts on (x̃, v) ∈ M̃ × R by (γ(x̃), ρ(γ)v). As before, let us represent τ by a
closed form η, and on M̃ we choose a primitive ϕ ∈ C∞(M̃,R) for π∗η. Then σ̃(x̃) := (x̃, eϕ(x̃))
descends to a trivialising section of Lτ → M , denoted by σ, and we define a flat connection ∇
in Lτ by setting ∇σ = η ⊗ σ. Adding an exact form to η or a locally constant function to ϕ
does not change the isomorphism class of (Lτ , ∇).

Suppose now (Ω, θ) is an LCK structure on M , and let us pull back all structures from M to
M̃ and denote them respectively with ·̃. Clearly Ω̃ is still an LCK form on (M̃, J̃) verifying
dΩ̃ = θ̃ ∧ Ω̃. If we take ϕ ∈ C∞(M̃,R) such that θ̃ = dϕ, then ΩK := e−ϕΩ̃ is Kähler on M̃ .
Let us denote, as before, by τ the morphism (2.2.3), by ρ = eτ and by (Lτ , ∇) the associated
flat line bundle. The group π1(M) acts on ΩK by homotheties:

γ∗ΩK = ρ(γ)−1ΩK .

This equivariance tells us that ΩK can be identified with a smooth positive section ω = Ω⊗σ−1

of E1,1
M ⊗L∗

τ which is d∇-closed. Here, d∇ is the differential operator acting on E•
M ⊗L∗

τ induced
by the flat connection ∇L∗

τ , and the positivity of ω means that in any positively oriented
trivialisation of L∗

τ , ω gives a positive (1, 1)-form.

Definition 2.2.4: An LCK structure on (M, J) is given by a Kähler form ΩK on (M̃, J̃) on
which π1(M) acts by homotheties.

Definition 2.2.5: An LCK structure on (M, J) is given by an oriented flat real line bundle
(L, ∇) over M and a positive section ω ∈ E1,1

M (M, L) which is d∇-closed.

Remark 2.2.6: If we forget about the complex structure of M , and so also about the
condition of positivity of Ω, then the above definitions introduce the notion of a locally
conformally symplectic (LCS) structure. We will not be interested in these structures in the
present text, and for the sake of continuity we will not make any remarks or adaptations
concerning them, but indeed some of the facts that we state for LCK structures apply, more
generally, to LCS structures.

Given an LCK structure (Ω, θ), there are two distinguished smooth vector fields on M , B and
A = JB defined by:

ιBΩ = Jθ, ιAΩ = −θ. (2.2.4)
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Usually, B is called the Lee vector field, as it is the metric dual of the Lee form, and A is called
the Reeb vector field, and is the metric dual of Jθ. Moreover, because dθ = 0, A is always an
infinitesimal symplectomorphism:

LAΩ = −dθ + ιA(θ ∧ Ω) = θ ∧ θ ∧ Ω = 0. (2.2.5)

Remark 2.2.7: Let us note that, because dθ = 0, the form dJθ is a real (1, 1)-form. Indeed,
let θ = θ1,0+θ0,1 be the decomposition of θ in its (1, 0) and (0, 1) parts, where θ1,0 = 1

2(θ+iJθ).

As dθ = 0, it follows that 0 = (dθ)2,0 = ∂θ1,0, hence dθ1,0 = ∂̄θ1,0 ∈ E1,1
M (M). Thus dθ = 0

implies that dJθ = 2
i dθ1,0 ∈ E1,1

M (M). In fact, as we will see soon, this form plays a special
role in LCK geometry.

If (Ω, θ) is an LCK structure on M such that the form θ is exact on M : θ = dϕ, ϕ ∈ C∞(M,R),
then Ωϕ := e−ϕΩ is closed. Hence Ω is globally conformal to a Kähler metric (also abbreviated
GCK). Conversely, suppose that Ω is GCK. If n > 1, then one easily sees that the form θ is
exact by the same argument as before, but for n = 1, this is clearly false. From the above
discussion, we see that the GCK condition for Ω is equivalent also to the corresponding flat
line bundle (L, ∇) being isomorphic to (M × R, d) for n > 1.

We will sometimes call an LCK structure which is not GCK strict, but later we will only
consider this type of structure, and so omit the word strict. In fact, an early result in LCK
geometry, due to I. Vaisman [Va80], states that for an LCK structure on a compact complex
manifold which is not a Riemann surface, being strict is equivalent to the manifold being
non-Kählerian.

Theorem 2.2.8: (Vaisman, [Va80]) Let (M, J, Ω) be a compact complex manifold of complex
dimension n > 1 endowed with an LCK structure. If M verifies the ∂∂̄-lemma for real
(1, 1)-forms, then Ω is GCK.

Proof. The proof consists in two assertions:

Fact 1: If M verifies the ∂∂̄-lemma for real (1, 1)-forms, then there exists an LCK form Ω′

conformal to Ω whose corresponding Lee form θ′ verifies dJθ′ = 0.

We have ddc = 2i∂∂̄, and the ∂∂̄-lemma applied to dJθ, which is a real (1, 1)-form, gives us
the existence a smooth real function ϕ on M verifying dJθ = ddcϕ. Define the LCK form
Ω′ := e−ϕΩ, with corresponding Lee form θ′ = θ − dϕ. We then have:

dJθ′ = dJθ − ddcϕ = 0.

Fact 2: If an LCK metric (Ω, θ) on a compact manifold verifies dJθ = 0, then θ = 0.

Suppose that θ 6= 0. Since the form θ ∧ Jθ is always semi-positive, so is θ ∧ Jθ ∧ Ωn−1, so the
integral

∫
M θ ∧ Jθ ∧ Ωn−1 is a strictly positive number. On the other hand, we have:

0 <

∫

M
θ ∧ Jθ ∧ Ωn−1 = −

∫

M
Jθ ∧ (

1

n − 1
d(Ωn−1)) = − 1

n − 1

∫

M
dJθ ∧ Ωn−1 = 0 (2.2.6)

where we used Stokes’ formula and the last equality follows by hypothesis, and so we arrive at
a contradiction.

Let (M, J, Ω, θ) be a compact LCK manifold, and consider the associated morphism τ :
π1(M) → R. Let Γ0 be its kernel, which is a normal subgroup of π1(M), hence there exists a
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Galois covering M̂ → M with deck group Γ = π1(M)/Γ0. Note that Γ ∼= Im τ ⊂ R, hence it
is a free abelian group, isomorphic to Zk for some k ∈ N. The rank k is sometimes called the
LCK rank of (Ω, θ). By construction, M̂ is the minimal covering space on which θ becomes
exact, and hence on which Ω becomes GCK. Alternatively, Γ0 is the maximal subgroup of
π1(M) acting trivially on the corresponding Kähler form ΩK , which then descends to M̂ and
that we also denote by ΩK . We will call (M̂, ΩK) the minimal Kähler cover of (M, Ω). Note
that, if Ω is strict LCK, neither the minimal, nor the universal covering spaces are compact.
Moreover, it is shown in [BM16] that the corresponding Kähler metric is never complete, and
the metric completion of (M̂, ΩK) adds exactly one point to M̂ .

Any closed 1-form θ on M induces an integrable differential operator:

dθ : Ek(M) → Ek+1(M)

dθη = dη − θ ∧ η.
(2.2.7)

Indeed, dθ = 0 implies d2
θ = 0. However one should note that dθ does not satisfy Leibniz’

rule, in the sense that dθ(α ∧ β) 6= dθα ∧ β + (−1)deg αα ∧ dθβ for α, β ∈ E•(M). If Ω is an
LCK form with Lee form θ, then one has dθΩ = 0. A simple, but very useful fact in LCK
geometry, is the following lemma. We give here the proof of [MMP17], but one can also look
for a slightly different one in [Va85].

Lemma 2.2.9: Let M be a connected differential manifold and θ a real-valued closed 1-form
on M . Then ker dθ ⊂ C∞(M) is trivial if and only if θ is not exact.

Proof. Clearly, if θ = dϕ, with ϕ ∈ C∞(M), then eϕ is in the kernel of dθ. Conversely, suppose
that there exists f ∈ C∞(M) so that

df = fθ (2.2.8)

on M . If f has some zero at x ∈ M , then as (2.2.8) is a linear first order differential system,
the initial condition f(x) = 0 determines its unique solution f = 0. Otherwise, f never
vanishes, but in this case (2.2.8) implies θ = d ln |f |, so we are done.

Let us note at this point that the notion of LCK structure is a conformal one. More precisely,
if Ω is an LCK form, then clearly also Ωf := ef Ω is. Moreover, if θ is the Lee form of Ω,
then θf := θ + df is the Lee form of Ωf . In particular, the de Rham class of the Lee form
is invariant under conformal changes of the metric, and so are the minimal and universal
coverings with the Kähler metrics, as well as the isomorphism class of (L, ∇) corresponding to
Ω. For this reason, we will sometimes call an LCK structure the conformal class of an LCK
form Ω, denoted by [Ω], instead of the form itself.

2.3 Connections

On an LCK manifold (M, J, g, Ω) there are three distinguished affine connections which, unlike
in the Kähler case, do not coincide: the Levi-Civita connection, the standard Weyl connection
and the Chern connection. Recall that the first one is the unique torsion free affine connection
preserving the metric g, denoted by ∇g. The second one is the unique torsion free affine
connection preserving the conformal class [g] as well as J , denoted by ∇[g]. Finally, the Chern
connection is the unique C-linear connection on the holomorphic vector bundle TM whose
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(0, 1)-part coincides with ∂̄ and which preserve the Hermitian structure h := g − iΩ, and we
will denote it by D.

On the other hand, M is covered by open sets {Uα}α∈I so that g = eϕαgα and gα is Kähler on
each (Uα, J). This time, the Levi-Civita connection of (Uα, J, gα), denoted by ∇α, coincides
with the Chern connection, as well as with the standard Weyl connection preserving J , both
corresponding to (Uα, J, gα). Thus, the relation between the three connections of the LCK
structure will be given by comparing them to the connection ∇α corresponding to gα.

Recall first that the Levi-Civita connections of two conformal metrics h and h̃ = ef h relate
via the formula:

∇h̃
XY = ∇h

XY +
1

2
(df(X)Y + df(Y )X − h(X, Y )gradhf).

If we apply this to our context and remark that dϕα = θ is globally defined on M , as well as
gradgϕα = B, we obtain that the connections {∇α}α∈I glue up to a globally defined torsion
free connection D on M which preserves J , given by the relation:

DXY = ∇g
XY − 1

2
(θ(X)Y + θ(Y )X − g(X, Y )B). (2.3.1)

Moreover, on any Uα we have:

Dg = D(eϕαgα) = dϕα ⊗ g + eϕαDgα = θ ⊗ g (2.3.2)

meaning that D preserves also the conformal class [g]. Therefore, D is in fact the standard
Weyl connection ∇[g]. Finally, as D preserves J , we obtain the following formula for ∇gJ :

∇g
XJ =

1

2
(θ(X)J − Jθ ⊗ X − g(X, J ·)B − θ(X)J − θ ⊗ JX + g(X, ·)A)

=
1

2
(−Jθ ⊗ X − θ ⊗ JX + g(X, ·)A + Ω(X, ·)B)

(2.3.3)

from which it follows that ∇g
AJ = 0 and ∇g

BJ = 0. Equivalently, this formula writes for Ω:

∇g
XΩ = g(X, ·) ∧ Jθ + ιXΩ ∧ θ.

Let us now compare the standard Weyl and the Chern connections of g. In this case, we think
of TM as a holomorphic vector bundle over M , and up to shrinking them, we can suppose that
the open sets Uα trivialise holomorphically TM . Let h := g − iΩ be the induced hermitian
structure on TM , fix α ∈ I and let also hα = e−ϕαh be the hermitian structure induced by
gα on TUα. Let σ = {σ1, . . . , σn} be a holomorphic frame of TM over Uα. Recall that if we
denote by H the n × n matrix of functions (h(σj , σk))j,k=1,n, then the Chern connection of

h with respect to σ is given by Dσ = H
−1

∂H. Thus, if we also denote by Hα the matrix
(hα(σj , σk))j,k=1,n, we have:

Dσ = (e−ϕα)H
−1
α ∂(eϕαHα)

= θ1,0 ⊗ id +∇α
σ .

In particular, the difference Dσ − ∇α
σ does not depend on the trivialisation, and so we have:

D = θ1,0 ⊗ idT M +D. (2.3.4)
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Finally, let us recall that for an LCK manifold (M, J, Ω, θ) we have a naturally associated
line bundle with flat connection (L, ∇L) corresponding to θ ∈ E1

M (M), so that Ω is L∗-valued.
Now take the complex line bundle Lc = L ⊗C with the connection ∇L extended by C-linearity,
and define the differential operator ∂̄L : C∞(M, Lc) → E0,1

M (M, Lc) acting on smooth sections
of Lc by:

∂̄L := ∇0,1
L = ∂̄ + θ0,1 ∧ ·.

Note that, as dθ = 0, also ∂̄θ0,1 = 0, hence ∂̄L ◦ ∂̄L = 0, which implies that ∂̄L induces a
holomorphic structure on Lc. We will denote by L the associated holomorphic line bundle.
Next, we also have a natural hermitian product h on L. Indeed, recall that σ, defined on M̃
by σ(x) = (x, eϕ(x)), where dϕ = θ, is a smooth trivializing section of L. Thus, we can define
h so that σ is orthonormal, i.e. for a smooth section s = fσ of L, with f ∈ C∞(M,C), we put
h(s, s) := |f |2. The Chern curvature of the associated Chern connection of (L, h) can easily
be computed. Before giving its formula, let us recall the definition of the (1, 1)-Bott-Chern
cohomology groups of (M, J):

H1,1
BC(M,C) :=

{α ∈ E1,1
M (M,C)|dα = 0}

i∂∂̄(C∞(M,C))
H1,1

BC(M,R) :=
{α ∈ E1,1

M (M,R)|dα = 0}
i∂∂̄(C∞(M,R))

and we have H1,1
BC(M,C) ∼= H1,1

BC(M,R) ⊗ C.

Lemma 2.3.1: The Chern connection DL corresponding to (L, h) is given by DL = ∇Lc −2θ1,0,
and its Chern curvature is Θ(DL) = −idJθ. In particular, if (M, J, Ω) is strict LCK, then the
Bott-Chern class c1(L)BC = [ 1

2π dJθ]i∂∂̄ of L does not vanish.

Proof. Recall that, with respect to a local holomorphic frame s of L, DL is given by DLs =
α ⊗ s, with α = ∂ ln h(s, s), and the Chern curvature by Θ(DL) = ∂̄α = dα, which is well-
defined globally on M . Now the local section s = e−ϕσ verifies ∂̄Ls = 0, and we have thus
α = −2∂ϕ = −2θ1,0. On the other hand, s is parallel with respect to ∇Lc :

∇Lcs = −e−ϕdϕ ⊗ σ + e−ϕθ ⊗ σ = 0

so DL = ∇Lc − 2θ1,0. Also, we have:

Θ(DL) = −2dθ1,0 = −d(θ + iJθ) = −idJθ. (2.3.5)

Finally, we obtain

c1(L)BC = [
i

2π
Θ]i∂∂̄ ∈ H1,1

BC(M,R)

and the proof of Theorem 2.2.8 implies that the vanishing of this class is equivalent to Ω being
GCK.

Remark 2.3.2: Note that there exists a natural map F : H1,1
BC(M,R) → H1,1(M,R), where

H1,1(M,R) :=
{α ∈ E1,1

M (M,R)|dα = 0}
d(C∞(M,R))

.

Theorem 2.2.8 implies that 0 6= c1(L)BC ∈ ker F . On the other hand, we have a natural

injection H1(M,R) → H1(M, O) and ker F ∼= H1(M,O)
H1(M,R)

, cf. [Ga76]. Thus, for a compact

complex manifold of (strict) LCK type, we have a strict inequality

b1 < 2h0,1
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where h0,1 := dimC H1(M, O), which is also equivalent to the fact that the Picard variety

Pic0(M) := ker(c1 : H1(M, O∗) → H2(M,Z)) ∼= H1(M, O)

H1(M,Z)

is non-compact. For more details on this discussion, see [Ga76] and [Ga84].

Remark 2.3.3: The above lemma shows that we have a natural morphism

G : H1(M,R) → H1,1
BC(M,R), [θ]d 7→ [dJθ]i∂∂̄

which is the composition of [θ] 7→ L[θ] 7→ 2πc1(L[θ])BC . If [θ] is the Lee form of an LCK metric,
G([θ]) 6= 0.

2.4 Special LCK metrics

Not much is known about general LCK manifolds, or about constraints on the existence of
such metrics. Moreover, this class is not necessarily well behaved under natural operations,
such us deforming the complex structure. However, there are some special classes of LCK
metrics which are quite well understood, which we present in this section.

First of all, in any conformal class, there exists a special representative which is sometimes
very useful to work with. Let us fix a Hermitian manifold (M, J, g, Ω) of complex dimension
n > 1, where g = Ω(·, J ·). The metric g induces a L2 inner product on E•(M). We denote by
d∗ the adjoint of d with respect to this inner product, and by ∆ := dd∗ +d∗d the corresponding
Laplacian. We recall that on a complex manifold we have the formula: d∗ = − ⋆ d⋆, where ⋆
is the Hodge star operator with respect to g.

On the other hand, Ω induces a Lefschetz map LefΩ := Ω ∧ · acting on E•(M), so that
LefΩ : E1(M) → E3(M) is injective, as n > 1, and we have an isomorphism Ln−1

Ω : E1
M (M) →

E2n−1
M (M). Define

θ :=
1

n − 1
(Lefn−1

Ω )−1d(Ωn−1).

This means that we have a decomposition:

dΩ = θ ∧ Ω + ξ

with ξ ∧ Ωn−2 = 0.

Remark 2.4.1: If we extend the action of J to 1-forms by (Jα)(X) := −α(JX), and then to
k-forms as a 0-degree derivation via the rule: Jα ∧ β := Jα ∧ β + α ∧ Jβ, then θ can also be
defined directly by the formula:

θ =
1

n − 1
Jd∗Ω. (2.4.1)

Indeed, we have:

d∗Ω = − ⋆ d ⋆ Ω = − ⋆ d
1

(n − 1)!
Ωn−1

= − 1

(n − 2)!
⋆ (θ ∧ Ωn−1).
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Now, by working in a local orthogonal frame of T ∗M ⊗C diagonalising Ω, one can easily prove
the identity:

⋆θ ∧ Ωn−1 = (n − 1)!Jθ

from which (2.4.1) follows.

Definition 2.4.2: The Hermitian metric g is called a Gauduchon metric if θ is d∗-closed.
For an LCK metric (g, Ω, θ), this is equivalent to saying that θ is ∆-harmonic.

The Gauduchon condition for the metric also translates into an equation for the corresponding
fundamental form, namely d∗θ = 0 is equivalent to

ddcΩn−1 = 0. (2.4.2)

Indeed, this follows by (2.4.1). As J commutes with ⋆ and ⋆2 is a constant multiple of the
identity, we have the following equivalences:

d∗θ = 0 ⇔ d ⋆ (Jd∗Ω) = 0

⇔ dJd ⋆ Ω = 0

⇔ dJdΩn−1 = 0.

Finally, on any complex manifold, one has the commutation relation [J, d] = dc, which implies
that dJd = ddc and the conclusion follows.

By a result of P. Gauduchon [Ga77], on a compact complex connected manifold, in any
conformal class of a Hermitian metric there exists a Gauduchon metric, and it is unique up to
multiplication by a positive constant provided that the complex dimension of the manifold
is greater than 1. Hence, this class of metrics is to be viewed as a useful tool in non-Kähler
geometry.

In the LCK context, there are some other special metrics, whose existence imposes restrictions
on the manifold:

Definition 2.4.3: Let (M, J, g, Ω) be an LCK manifold and let ∇ := ∇g denote the Levi-
Civita connection of (M, g). If we have ∇θ = 0, then g (or sometimes Ω) is called a Vaisman
structure or metric. Equivalently, denoting by B the Lee vector field, then g is Vaisman if
∇B = 0.

Vaisman manifolds are closely related to Sasaki manifolds: the universal cover of a Vaisman
manifold with its Kähler metric is isometric to the Kähler cone over a Sasaki manifold. We
recall that a Sasaki manifold (S, gS , J̃) is a Riemannian manifold (S, gS) together with a
complex structure J̃ on the Riemann cone (C(S) = S ×R, gK := e−2t(gS + dt2)) so that gK is
Kähler.

Remark 2.4.4: A Vaisman metric is Gauduchon. Indeed, writing d∗ as d∗ = −∑2n
j=1 ιej

∇ej

for a local orthonormal real basis of TM , we see that ∇θ = 0 implies d∗θ = 0. In particular,
two conformal Vaisman metrics must also differ by a multiplicative constant.

For Vaisman metrics, the Lee vector field is particularily important. First of all, let us note
that ∇B = 0 implies that B is of constant norm, and that B has no zeroes. In particular,
the Euler characteristic of M is 0. Moreover, we have the following well known properties, cf.
[Va82]:

Proposition 2.4.5: Let (M, J, g, Ω, θ) be an LCK manifold with corresponding Lee and Reeb
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vector fields B and A. If g is Vaisman, then A and B are real-holomorphic vector fields
preserving both g and Ω. Conversely, if B is Killing, then g is Vaisman.

Proof. Let us first see that B is holomorphic, which will then imply that also A = JB is.
Using the fact that ∇BJ = 0 and ∇B = 0, we obtain, for any X ∈ Γ(TM) :

(LBJ)X = [B, JX] − J [B, X] = ∇BJX − J∇BX = (∇BJ)X = 0.

In particular, as A always preserves the form Ω by 2.2.5, it follows that A is Killing. Now let
us see that B is Killing. For this, take any two vector fields X, Y ∈ Γ(TM) and write:

(LBg)(X, Y ) = B(g(X, Y )) − g([B, X], Y ) − g(X, [B, Y ])

= g(∇BX, Y ) + g(X, ∇BY ) − g(∇BX, Y ) − g(X, ∇BY ) = 0.

Thus, as B preserves J and g, it also preserves Ω.

Conversely, if B is Killing then ∇θ is antisymmetric. But dθ is the antisymmetrisation of ∇θ,
hence 0 = dθ = 2∇θ, i.e. g is Vaisman.

In particular, on a Vaisman manifold one has that [A, B] = 0, hence A and B span an
integrable distribution giving rise to a complex analytic foliation F , called the canonical
foliation. This foliation has many interesting properties, such as being Riemannian (and in
fact transversally Kählerian). Its leaves are parallelizable one-dimensional complex analytic
manifolds, embedded as totally geodesic submanifolds of (M, J, Ω). For the details of this, see
[Va82]. Moreover, we have the following important result:

Theorem 2.4.6: ([Va82, Thm 5.1], [Ts97, Thm 3.2], [Ve04, Prop 6.5]) Let (M, J, g) be a
compact Vaisman manifold and j : (N, J ′) → (M, J) be an immersed complex submanifold.
Then N is foliated, in the sense that for any x ∈ N , the leaf of F passing through j(x) is
contained in j(N). In particular, if N is compact and verifies dimC N ≥ 2, then j∗g is a
Vaisman metric on (N, J ′).

Remark 2.4.7: The above result implies that any complex curve C of a compact complex
manifold of Vaisman type (M, J) is foliated with respect to F , thus complex paralellizable.
In particular, if C is compact, then C is an elliptic curve. As a consequence, (M, J) cannot
contain rational curves, and so cannot be the blow-up of some other manifold.

As another consequence of Proposition 2.4.5, we obtain that for a Vaisman metric, Ω has a
very special form, completely determined by the Lee form:

Corollary 2.4.8: If (Ω, θ) is a Vaisman structure on the complex manifold (M, J) normalised
so that ‖θ‖2 = 1, then one has:

Ω = −dJθ + θ ∧ Jθ. (2.4.3)

Equivalently, on the minimal Kähler cover (M̂, ΩK), if θ = dϕ, then:

ΩK = ddce−ϕ. (2.4.4)

Proof. Clearly the two formulas are equivalent, and (2.4.3) is equivalent to LBΩ = 0. Indeed,
by the Cartan formula:

LBΩ = dJθ + ιB(θ ∧ Ω) = dJθ + ‖θ‖2Ω − θ ∧ Jθ. (2.4.5)
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However, formula (2.4.3) does not characterize Vaisman structures. In fact, we have a name
for structures having this form, which were introduced by L. Ornea and M. Verbitsky [OV10]:

Definition 2.4.9: An LCK structure (Ω, θ) on (M, J) is called an LCK metric with potential
if there exists f ∈ C∞(M,R) so that

Ω = dθdc
θf.

This is equivalent to saying that there exists a Γ-equivariant smooth function f̂ on the minimal
cover π : M̂ → M so that ΩK = ddcf̂ .

Moreover, the LCK structure is called with positive potential if f can be chosen strictly
positive.

Remark 2.4.10: The Γ-equivariant potential in the above definition is given by the formula:

f̂ = e−ϕf

where π∗θ = dϕ.

Remark 2.4.11: The above definitions are conformally invariant. Indeed, if Ω = dθdc
θf and

h ∈ C∞(M), then:
Ωh = ehΩ = dθh

dc
θh

(ehf), θh = θ + dh.

In particular, if Ω = dθdc
θf is an LCK form with positive potential, then there exists Ω′ ∈ [Ω]

verifying (2.4.3):
Ω′ = f−1Ω = dθdc

θ1.

Finally, even this notion of an LCK metric can be generalized:

Definition 2.4.12: An LCK structure (Ω, θ) is called exact if Ω is dθ exact, i.e. Ω = dθη,
for some form η ∈ E1

M (M). In this case, for any other LCK form in the same conformal class
Ωf = ef Ω with Lee form θf = θ + df we have Ωf = dθf

(ef η). Hence we call an LCK manifold
(M, J, [Ω]) LCK exact if some, and hence any representative Ω is exact.

Remark 2.4.13: We should note that no two notions of LCK structures defined above
coincide. As we will see in the examples that will follow, the class of manifolds admitting
LCK structures with positive potential is strictly larger than the one admitting Vaisman
structures, and moreover, not all LCK manifolds admit exact LCK structures. Also, given an
LCK metric with positive potential, in some cases one can add to the potential a convenient
pluriharmonic function to obtain an LCK metric with non-positive potential, as pointed out
in the introduction of [OV17]. Finally, Goto showed in [Go14] that there exist exact LCK
metrics on the standard Hopf manifolds (see 2.6.1) which do not admit any potential.

2.5 Infinitesimal automorphisms of LCK manifolds

In this section we will take a closer look at the Lie algebra of infinitesimal automorphisms
of LCK manifolds, and will distinguish a special subalgebra that will play a particular role.
From now on, even if not specified, we only work with LCK structures on complex manifolds
of complex dimension greater that 1.
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For an LCK manifold (M, J, [Ω]), the automorphism group Aut(M, J, [Ω]) is formed by all
the conformal biholomorphisms Φ : M → M , Φ∗Ω ∈ [Ω]. Denote by aut(M, J, [Ω]) the
corresponding Lie algebra of infinitesimal automorphisms. We have the first well-known
property of this Lie group:

Proposition 2.5.1: Let (M, J, [Ω]) be a compact LCK manifold, and let Ω0 ∈ [Ω] be a
Gauduchon metric. Then Aut(M, J, [Ω]) = Aut(M, J, Ω0). In particular, the automorphism
group of a compact LCK manifold is compact.

Proof. Let Φ ∈ Aut(M, J, [Ω]). As Ω0 is Gauduchon, we have ddcΩn−1
0 = 0, an as Φ is a

biholomorphism, Φ∗ commutes with d and with dc. Hence we also have ddcΦ∗Ωn−1
0 = 0, i.e.

Φ∗Ω0 is also a Gauduchon metric. But we have Φ∗Ω0 ∈ [Ω0], so by the uniqueness up to
scalars of such metrics in a given conformal class, we must have Φ∗Ω0 = λΩ0 with λ ∈ R>0.
Finally, as M is compact and Φ is bijective, we have

∫
M Ωn =

∫
M Φ∗Ωn = λn

∫
M Ωn > 0,

implying that λ = 1.

Thus, the group Aut(M, J, [Ω0]) is a closed subgroup of the compact Lie group of isometries
Aut(M, Ω0(·, J ·)), hence also compact Lie group.

Similarly, given an LCS manifold (M, [Ω]), the group of automorphisms Aut(M, [Ω]) is formed
by all the conformal diffeomorphisms Φ : M → M , Φ∗Ω ∈ [Ω]. Next, we want to investigate
the algebraic structure of the corresponding Lie algebra aut(M, [Ω]). First of all, note that
X ∈ aut(M, [Ω]) means LXΩ = fXΩ. This implies (fX − θ(X))Ω = dθ(ιXΩ). Hence dθ((fX −
θ(X))Ω) = 0, or also (dfX − d(θ(X))) ∧ Ω = 0 and since we are working under the supposition
that dimC M > 1, it follows that θ(X) − fX = cX ∈ R. By straightforward computations it
can be seen that the constants cX are conformally invariant. Hence we have a linear map:

l : aut(M, [Ω]) → R

X 7→ cX = θ(X) − fX .
(2.5.1)

One can check that l is in fact a Lie algebra morphism, or can consult [Va85] for the details.
I. Vaisman studied the restriction of l to aut(M, Ω) and the LCS manifolds for which this
restriction is not identically zero, which he named LCS manifolds of the first kind. As noted
in [Va85], being of the first kind is not a conformally invariant notion. However, we have the
following result in the conformal setting:

Lemma 2.5.2: The map l is surjective if and only if (M, [Ω]) is LCS exact.

Proof. First of all fix Ω ∈ [Ω] an LCS form. Suppose l is not identically zero and choose
C ∈ aut(M, [Ω]) such that l(C) = 1. Then we have:

θ(C)Ω − Ω = LCΩ = dιCΩ + θ(C)Ω − θ ∧ ιCΩ

hence:
Ω = dθ(−ιCΩ).

Conversely, suppose Ω = dη − θ ∧ η. Define C ∈ Γ(TM) by: ιCΩ = −η. We compute:

LCΩ =dιCΩ + ιC(θ ∧ Ω)

= − dη + θ(C)Ω + θ ∧ η

=(θ(C) − 1)Ω.
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Hence C ∈ aut(M, [Ω]) and l(C) = 1.

Consider the kernel of l, which is also conformally invariant:

aut′(M, [Ω]) := {X ∈ Γ(TM)|LXΩ = θ(X)Ω}. (2.5.2)

We will call elements of this subalgebra horizontal or special conformal vector fields.

Let now π : M̂ → M be the minimal cover corresponding to [Ω], with deck group Γ and
corresponding symplectic form denoted by ΩK . For a Lie algebra a of vector fields on M̂ fixed
by the action of Γ, we denote by aΓ the corresponding subalgebra of Γ-invariant elements of a.

Lemma 2.5.3: We have a natural isomorphism between aut(M, [Ω]) and aut(M̂, [ΩK ])Γ given
by π∗. In particular, under this isomorphism, aut′(M, [Ω]) is in bijection with aut(M̂, ΩK)Γ,
the Lie algebra of Γ-invariant infinitesimal symplectomorphisms of ΩK .

Proof. In general, for X ∈ Γ(TM) and X̂ := π∗X ∈ Γ(TM̂) its lift to M̂ , we have the following
formula:

LX̂ΩK = e−ϕπ∗(LXΩ − θ(X)Ω) (2.5.3)

where π∗θ = dϕ. In particular, if X ∈ aut(M, [Ω]) then LX̂ΩK = −l(X)ΩK . Conversely, if

X̂ = π∗X ∈ aut(M̂, [ΩK ])Γ, then X is in fact a homothety:

LXΩK = fΩK ⇒ 0 = d(LXΩK) = df ∧ ΩK ⇒ df = 0.

Moreover, by (2.5.3), LXΩK = fΩK implies then

LXΩ = (f + θ(X))Ω

so X ∈ aut(M, [Ω]).

Finally, for X ∈ aut(M, [Ω]) and X̂ = π∗X we have:

X ∈ aut′(M, [Ω]) ⇔ l(X) = 0 ⇔ LX̂ΩK = 0 ⇔ X̂ ∈ aut(M̂, ΩK)Γ.

In LCS and LCK geometry, often one needs to switch between the compact LCS manifold M
and the non-compact symplectic covering M̂ . We would like to know what happens to Lie
group actions in the process. In general, an action of a group G on M̂ descends to an action of
G on M if and only if G commutes with Γ, where Γ is the deck group of M̂ → M . Conversely,
if one has an action of a Lie group G on M , then one can always lift it to an action of G̃ on
M̂ , G̃ being the universal cover of G. The question is then when does the lifted action of G̃
factors through an action of G itself on M̂ . Next we give an answer to this in the case G is a
compact torus, which is an analogue of [MMP17, Proposition 4.4] for abelian groups in the
LCS setting. The above result can be shown to hold for any compact Lie group, following the
arguments of [MMP17] and using the structure theorem of compact Lie groups.

Proposition 2.5.4: Let (M, [Ω], [θ]dR) be an LCS manifold and T be a compact torus acting
on M by conformal automorphisms. Then the action of T lifts to the minimal cover M̂ if and
only if Lie(T) = t ⊂ aut′(M, [Ω]).
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Proof. We can suppose that T = S1, for otherwise we make use of the same argument for each
generator of the T-action. Fix an LCS form Ω. Denote by X the generator of the infinitesimal
action of S1 on M , by X̂ its lift to M̂ and by Φt and Φ̂t their corresponding flows, so that
Φ0 = Φ1 = idM . Then the action of T lifts to an action of T on M̂ if and only if Φ̂t is periodic
in t.

Suppose first that t ⊂ aut′(M, [Ω]). Equation (2.5.3) implies then that X̂ ∈ aut(M̂, ΩK), hence
{Φ̂t}t are symplectomorphisms. On the other hand, Φ̂1 is an element of Γ since it covers
the identity of M . Thus Φ̂1 ∈ Ker τ = {id} by the definition of the minimal cover, where
τ : Γ 7→ R is the homomorphism corresponding to [θ]dR.

Conversely, suppose Φ̂t is periodic in t. As we have already seen, X̂ acts by homotheties on
ΩK , hence the exists a periodic C∞ function c : R → R such that Φ̂∗

t ΩK = c(t)ΩK . Moreover,
we have, for any t1, t2 ∈ R:

c(t1 + t2)ΩK = Φ̂∗
t1

(Φ̂∗
t2

ΩK) = Φ̂∗
t1

(c(t2))Φ̂∗
t1

ΩK = c(t2)c(t1)ΩK .

Hence, for any t ∈ R:

ċ(t) = lim
h→0

c(t + h) − c(t)

h
= lim

h→0

c(t)c(h) − c(t)c(0)

h
= c(t)ċ(0).

On the other hand, since c is periodic, it must have some critical point, implying that ċ(0) = 0.
Therefore LX̂ΩK = ċ(0)ΩK = 0, or also, by (2.5.3), X ∈ aut′(M, [Ω]).

Remark 2.5.5: In the LCK setting, we can reformulate the above criterion. Suppose that S1

acts holomorphically on a complex manifold (M, J) of LCK type. Take any LCK structure on
M and average it over S1 in order to get an S1-invariant structure (Ω, θ). In particular, if X is
a generator of the S1-action, θ(X) is constant. By the above, the action lifts to an S1-action
on the minimal cover M̂ corresponding to [θ]dR if and only if θ(X) 6= 0.

2.6 Examples

2.6.1 Diagonal Hopf manifolds

The standard Hopf manifold is the most basic example of a compact complex manifold not
admittig a Kähler metric, and it is also the first example of an LCK manifold appearing in
the literature (I. Vaisman, [Va76]).

By definition, a Hopf manifold is an n-dimensional compact complex manifold whose universal
cover is biholomorphic to W := Cn − {0}, and whose fundamental group is infinite cyclic,
generated by a contraction c ∈ Aut(Cn) fixing 0 ∈ Cn. We recall that c is called a contraction
if the eigenvalues of d0c are all of module smaller than 1. If c is diagonal, meaning that it is of
the form c(z1, . . . , zn) = (λ1z1, . . . , λnzn) for some λ1, . . . , λn ∈ C∗, then Hλ := W/ < c > is
called a diagonal or linear Hopf manifold. Moreover, when λ1 = . . . = λn, Hλ is usually called
the standard Hopf manifold.

All diagonal Hopf manifolds are known to admit LCK metrics. On the standard ones, these
are easy to construct and were given by I. Vaisman. More generally, consider a diagonal Hopf
manifold Hλ given by λ = (λ1, . . . , λn) with |λ1| = . . . = |λn|. In this case, one defines on
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W = Cn − {0}:

f(z) = |z|2 =
n∑

k=1

|zk|2, ϕ = − ln f, ΩK = ddcf, θ = dϕ, (2.6.1)

where we denote by z = (z1, . . . , zn) the holomorphic coordinates on W . Then ΩK is the
standard Kähler metric on W induced from Cn, and so Ω := f−1ΩK descends to an LCK
metric on Hλ, with corresponding Lee form θ.

P. Gauduchon and L. Ornea constructed in [GO98] LCK metrics on any diagonal Hopf
surface, and then the same metrics were constructed by a different approach by F. Belgun in
[Bel00]. These metrics are Vaisman, but the potential is given only implicitly, by a geometrical
construction, which we shall next describe, following [GO98]. Their construction has a
straightforward generalization to any n-dimensional diagonal Hopf manifold, and we will
directly describe this case.

Let λ = (λ1, . . . , λn) ∈ (C∗)n with 0 < |λ1| ≤ . . . ≤ |λn| < 1, and let c(z) = (λ1z1, . . . , λnzn).
After choosing arguments for all λk so that λk = akeiuk , k ∈ {1, . . . , n}, we can always extend
the action of Γ :=< c > on W to a holomorphic action of R on W by:

Φt
λ(z) = (λt

1z1, . . . , λt
nzn) = (at

1eiu1tz1, . . . , at
neiuntzn), t ∈ R (2.6.2)

so that Φ1
λ = c. Denote the real holomorphic vector field generating this action by Cλ, i.e.

Cλ =
n∑

k=1

2 Re((ln ak + iuk)zk
∂

∂zk
).

Consider the sphere S = S2n−1 embedded in W as S = ϕ−1(0), where ϕ was defined in (2.6.1).
Each orbit of Φt

λ intersects S exactly once since, for any z ∈ W , the function h : R → R,
t 7→ ϕ(Φt

λ(z)) verifies limt→−∞ h(t) = −∞, limt→∞ h(t) = ∞ and h is strictly increasing.
Indeed, we have:

h′(t) = dϕ(Cλ)Φt
λ

(z) = − 2

|Φt
λ(z)|2

n∑

k=1

ln ak|akzk|2 > 0. (2.6.3)

Hence, the map

Φλ : S × R → W

(y, t) 7→ Φt
λ(y)

is a diffeomorphism. Let Ψλ : W → S × R be its inverse, and let ϕλ := pR ◦ Ψλ, where
pR : S × R → R is the canonical projection, so that

Ψλ(z) = (Φ
−ϕλ(z)
λ (z), ϕλ(z)).

Since Φλ is equivariant with respect to the R-action, where R acts trivially on S and by
translations on R, it follows that c∗ϕλ = ϕλ + 1. In particular, dϕλ is R-invariant, and as for
any y ∈ S and t ∈ R we have ϕλ(Φt

λ(y)) = t, it follows that dϕλ(Cλ) = 1. Moreover, if we let:

fλ := e−ϕλ , Ωλ = f−1
λ ddcfλ, θλ = dϕλ
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we have c∗fλ = e−1fλ and so the form Ωλ descends to an (1, 1)-form on Hλ verifying dΩλ =
θλ ∧ Ωλ. In order to see that Ωλ is an LCK form, we are left with showing that it is strictly
positive. This was done in [GO98] by direct computations, but we will deduce it by more
geometrical arguments.

Note that the tangent bundle of S, as a subbundle of TW , identifies with ker dϕ|S = ker θ|S . At
the same time, we have ϕλ(z) = 0 ⇔ z ∈ S, hence S is also given by ϕ−1

λ (0) and TS = ker θλ|S .
Thus, there exists a function l ∈ C∞(S,R) so that θλ|S = lθ|S . Since:

1 = θλ(Cλ) = lθ(Cλ)

and θ(Cλ) is everywhere positive by (2.6.3), it follows that l > 0 on S.

Let us now consider the sub-bundle of TS:

H = ker θ|S ∩ ker Jθ|S = ker θλ|S ∩ ker Jθλ|S = TS ∩ JTS

which is stable under J , the complex structure of W . On H we have:

Ωλ|H = (−dJθλ + θλ ∧ Jθλ)|H = Jθλ([·, ·])|H
= lJθ([·, ·])|H = l(−dJθ + θ ∧ Jθ)|H = lΩ|H .

In particular, as Ω is positive, it follows that Ωλ is also positive when restricted to H.

Consider next the sub-bundle of TW given by H := ker θλ ∩ ker Jθλ, which is again stable
under J by definition. As both θλ and Jθλ are Φt

λ-invariant, we have Hz = dyΦt
λHy for any

y ∈ S, t ∈ R and z = Φt
λ(y). Therefore, it follows that Ωλ is also positive when restricted to

Hz:
Ωλ|Hz = Ωλ|dyΦt

λ
Hy

= (Φt
λ)∗Ωλ|Hy > 0.

Let us define the J-invariant sub-bundle of TW : E := H⊥Ωλ = H⊥−dJθλ . Note that, as Ωλ|H
is non-degenerate, we have a C∞ splitting TW = H ⊕ E . Moreover, in the diagonal case, E is
holomorphic, spanned by the Lee and Reeb vector fields, which we now exhibit.

To do this, let us note that Φt
λ given by (2.6.2) is the composite of a real dilatation Dt and a

rotation Rt given by:

Dt(z) = (at
1z1, . . . , at

nzn), Rt(z) = (eiu1tz1, . . . , eiuntzb), z ∈ W, t ∈ R.

For any t ∈ R, S is invariant under Rt while Φ·
λ commutes with Rt, hence ϕλ and Ωλ are also

Rt-invariant. Thus, if we denote by B the real holomorphic vector field generating {Dt}t∈R,
given by:

B =
n∑

k=1

2 Re(ln akzk
∂

∂zk
)

it follows that θλ(B) = 1. Also, we have:

θ(JB) =
n∑

k=1

(zkdzk + zkdzk)(−2 Im(ln akzk
∂

∂zk
)) = 0.

Thus, as ker θ|S = ker θλ|S , θλ(JB) = 0 on S, and so on the whole of W . Additionally, since
θλ is Dt-invariant, we have:

ιBdJθλ = LBJθλ − dιBJθλ = 0

ιJBdJθλ = LJBJθλ − dιJBJθλ

= JdιJBθλ = 0.
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In particular, B, JB ∈ C∞(E) and so E ⊂ ker(−dJθλ). Thus, for any X = XH + XE ∈
C∞(H) ⊕ C∞(E), we have:

Ωλ(X, JX) = −dJθλ(XH, JXH) + θλ ∧ Jθλ(XE , JXE)

= −dJθλ(XH, JXH) + (θλ(XE))2 + (θλ(JXE))2 ≥ 0.

This quantity vanishes if and only if XH = 0 and XE ∈ ker Jθλ ∩ ker Jθλ = H, i.e. if X = 0,
so Ωλ is strictly positive.

Finally, we have ιBΩλ = Jθλ, i.e. B is the Lee vector field of Ωλ. As it is holomorphic and Ωλ

is an LCK metric with potential equal to 1, by Proposition 3.2.2, Ωλ is Vaisman.

2.6.2 Non-diagonal Hopf surfaces

In general, two n-dimensional Hopf manifolds Hc = W/<c> and Hc′ = W/<c′> are biholomor-
phic if and only if there exists an automorphism A ∈ Aut(W ) with AcA−1 = c′. Unfortunately,
there does not exist a classification of all the conjugacy classes of contractions fixing 0, and so
a general classification of Hopf manifolds is lacking. However, Hopf surfaces were classified by
K. Kodaira [Kod66] and Ma. Kato [Ka89], and their fundamental group is generated by:

c(z1, z2) := (βz1, αz2 + µzm
1 )

with α, β, µ ∈ C, 0 < |α|, |β| < 1, m ∈ N∗ and µ(α−βm) = 0. In the realm of complex surfaces,
these are usually called primary Hopf surfaces, while their smooth finite quotients are called
secondary Hopf surfaces. In fact these are all the compact complex surfaces which are covered
by C2 − {0}. All of them admit LCK metrics, and we only need to see this on the primary
ones, as they will then descend to the secondary ones.

Note that if µ = 0, then c is diagonal, a case we already presented. In the other case we
have α = βm, and we will denote the corresponding non-diagonal Hopf surface by Hβ,m,µ.
Moreover, for any µ1, µ2 ∈ C∗, Hβ,m,µ1 is biholomorphic to Hβ,m,µ2 via the morphism induced
by A : W → W , (z1, z2) 7→ (z1, µ2

µ1
z2).

LCK metrics on non-diagonal Hopf surfaces have been constructed less explicitely. This has
been done by two different approaches in the literature, one by deformation, cf. [GO98], and
the other one similar to the above construction, by F. Belgun in [Bel00]. We present the
second one.

Let us fix in the sequel β ∈ C with |β| < 1 and m ∈ N∗. After writing β in polar coordinates
β = beiu, for any µ ∈ C, we can extend the action of Γ :=< c > to a holomorphic action of R
on W by:

Φt
µ(z) = (βtz1, βmtz2 + tµβm(t−1)zm

1 ).

Let Cµ denote the real vector field generating this action. As before, consider ϕ and θ as
defined in (2.6.1), let S = S3 = ϕ−1(0) ⊂ W and consider the continuous function:

L : C × S → R

(µ, y) 7→ d

dt
|0(ϕ(Φt

µ)(y)) = θ(Cµ)y.

By (2.6.3), the function L0 = L(0, ·) is strictly positive, so by continuity and by the compactness
of S, for µ 6= 0 of module small enough, Lµ = θ(Cµ) also is positive. Let us fix a µ ∈ C∗
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verifying this. Hence, the orbits of Φt
µ are transverse to S and intersect S exactly once, inducing

thus an R-equivariant diffeomorphism S × R → W . Defining, as before, the corresponding
function ϕµ and the form θµ = dϕµ, we obtain the Γ-invariant (1, 1) form on W :

Ωµ = eϕµddce−ϕµ = −dJθµ + θµ ∧ Jθµ.

We still have a splitting TX = H ⊕ E , except that this time E is not contained in ker −dJθµ.
As H ⊂ ker Jθµ, E ∩ker Jθµ is a real one dimensional oriented vector bundle over W , so we can
choose Z a positively oriented frame for it which is Φµ-invariant - for instance, the projection
of Cµ.

Consider the Φµ-invariant function
dJθµ(Z,JZ)

θµ(Z)2 . It is bounded on S, and so on the whole of W ,

therefore there exists some positive constant K > 0 so that Kθµ(Z)2 > dJθµ(Z, JZ). Then
the metric

Ωµ,K := eKϕµddce−Kϕµ = −KdJθµ + K2θµ ∧ Jθµ

defines an LCK metric with potential on Hβ,m,µ with Lee form θµ,K = Kθµ. Indeed, for any
X = XH + XE ∈ C∞(H) ⊕ C∞(E), where XE = fZ + gJZ with f, g ∈ C∞(W,R), we have:

Ωµ,K(X, JX) = −KdJθα,β(XH, JXH) − KdJθµ(XE , JXE) + K2θα,β ∧ Jθα,β(XE , JXE)

= −KdJθα,β(XH, JXH) + K(f2 + g2)(−dJθµ(Z, JZ) + Kθµ(Z)2) ≥ 0

with equality if and only if XH = 0 and f = g = 0, i.e. if X = 0, so Ωµ,K is strictly positive.

This time, the metric is not Vaisman, and in fact for µ 6= 0, Hβ,m,µ does not admit any
Vaisman metric, cf. [Bel00]. We will show this later on (Example 3.4.6) as an application of a
criterion for the existence of Vaisman metrics.

2.6.3 LCK manifolds obtained from ample vector bundles

The following construction is well-known, see for instance [Va76], [Va80] or [Ts99], and can
be seen as a generalisation of the Hopf manifolds. Let N be a compact complex manifold
admitting a negative holomorphic line bundle L → N , in the sense that c1(L) < 0. This
means that there exists a Kähler metric ωN on N so that −ωN represents c1(L). At the same
time, if we take a Hermitian structure h on L, consider the corresponding Chern connection
Dh on L and denote by Θh its curvature, then i

2π Θh also represents c1(L). After an eventual
conformal change of h, we can suppose that ωN = − i

2π Θh > 0.

Consider j : P = L − 0N → N , which is a C∗-principal bundle over N . The line bundle
j∗L → P becomes holomorphically trivial over P , as it admits a global holomorphic frame
σP : P → j∗L induced by the inclusion i : P → L. Consequently, if we denote by f : P → R the
positive function defined by f(s) = ‖s‖2

hx
, 0 6= s ∈ Lx, then the corresponding connection form

associated to the frame σP is defined globally on P by α = ∂ ln f and the curvature form of the
induced Chern connection becomes exact on P : j∗Θh = Θj∗h = ∂̄α = dα. If we let θ = −d ln f ,
which is a closed real one-form on P , we have: α = 1

2(d ln f + idc ln f) = −1
2(θ + iJθ) and

4πj∗ωN = −2idα = −dJθ. Define the (1, 1)-form on P :

Ω = −dJθ + θ ∧ Jθ = eϕddce−ϕ, ϕ(s) := − ln ‖s‖2
h.

Letting H := ker α = ker θ ∩ ker Jθ ⊂ TP and TF ⊂ TP be the tangent bundle of the fiber
of P → N defined by ker j∗, we have a C∞ splitting TP = H ⊕ TF which is Ω-orthogonal.
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Moreover, we have Ω|H = 4πj∗ωN > 0 and Ω|T F = θ ∧ Jθ > 0. Thus Ω is a strictly positive
(1, 1) form on P , and so an LCK metric with potential, with Lee form θ.

Now consider λ ∈ C∗ with |λ| < 1 and let Γλ ⊂ C∗ be the cyclic group generated by λ.
The group Γλ acts on P fiber-wise, freely and properly discontinuously, so that the quotient
M := P/Γλ is a compact complex manifold and we have a commutative diagram:

P
Γλ

//

C∗

��

M

C∗/Γλ
∼=T2

~~

N

As Ω is C∗-invariant, it is also Γλ-invariant, so descends to an LCK form with potential Ω on
M . Also, note that if ξ denotes the holomorphic vector field on P induced by the action of
C∗, then as any µ ∈ C∗ acts on ϕ by −2 ln |µ| + ϕ, we have θ(ξ) = −1. Therefore it follows
that, for B = − Re ξ, we have θ(B) = 1, Jθ(B) = 0 and ιBj∗ωN = 0, so B is the Lee vector
field of Ω. Since it is real-holomorphic, Ω is then Vaisman by Proposition 3.2.2.

Let us note that P is the minimal Kähler cover of (X, Ω), with corresponding Kähler form
ΩK = ddcf−ϕ, and M → N is a T2 = C∗/Γλ-principal bundle. By a result of [Va80], all
Vaisman manifolds whose canonical foliation F is strongly regular are obtained in this way.
Finally, remark that if one takes N = Pn and L = O(−1), one obtains the standard Hopf
manifold.

A generalisation of this construction starting from an anti-ample rank r holomorphic vector
bundle E → N was given in [Ts97], as follows. Consider p : PE → N , where PE is the bundle
of lines in E, i.e. for x ∈ N , (PE)x = PEx = {d ⊂ Ex complex line}. Let LE ⊂ p∗E be the
tautological sub-bundle of rank one of p∗E, so that for d ∈ PE, (LE)d = d. Then E is called
anti-ample, or equivalently E∗ is called ample, if L∗

E is an ample line bundle over PE. One
can now repeat the above construction for P = LE − 0PE and M = P/Γλ, where λ ∈ C∗

is of module smaller than 1. Let us note that we have a C∗-equivariant biholomorphism
L∗

E −0PE
∼= LE −0PE

∼= E −0N , hence we can also view M as M = E −0N /Γλ. Thus, M → N
is a fiber bundle over N with fiber the r-dimensional standard Hopf manifold Hλ := H(λ,...,λ),
fitting in the diagram:

M

T2

��

Hλ

!!

PE
Pr−1

// N

We can push this generalisation even further and construct fiber-bundles of fiber any diagonal
Hopf manifold. As a general Hopf manifold H(λ1,...,λr) does not fiber in tori, neither will our
fiber bundle factor through PE. So let N be a compact Kähler manifold admitting r (possibly
isomorphic) holomorphic line bundles L1, . . . , Lr, so that E := L1 ⊕ . . . ⊕ Lr is an anti-ample
vector bundle of rank r over N . Let λ1, . . . λr ∈ C∗ be of module smaller than one, and
consider the action of Γ = Z on E − 0N by: 1.(s1, . . . , sr) = (λ1s1, . . . , λrsr), where x ∈ N
and si ∈ (Li)x for i = 1, r. Again, Γ acts freely and properly and the quotient X = E − 0N /Γ
is a compact complex manifold. By the method used above, we can construct a Vaisman
metric Ω = eϕddce−ϕ on E − 0N , but it will not be Γ-invariant. However, we can repeat the
method of Subsection 2.6.1 in order to construct a new Γ-invariant Vaisman metric on E − 0N .
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Indeed, after choosing log-determinations of λ1, . . . , λr, we can again extend the action of
Γ to a holomorphic action of R on E − 0N by Φt(x, s1, . . . , sr) = (x, λt

1s1, . . . , λt
rsr). Then,

defining SN := ϕ−1(0) ⊂ E − 0N , which is compact as diffeomorphic to an S2r−1-bundle over
N , we obtain a diffeomorphism Φ : SN × R → E − 0, (z, t) 7→ Φt(z). Thus we can define
ϕλ := pR ◦ Φ−1, where pR : SN × R → R is the natural projection. Then, in the same way as
before, it can be shown that Ωλ := eϕλddce−ϕλ defines a Vaisman metric on X with Lee form
θ = dϕλ. Note that the manifold X is a fiber bundle over N , with fiber Hλ1,...,λr

.

Finally, in the same way we can also construct LCK manifolds with positive potential
which are not Vaisman. Let N be a compact Kähler manifold, let L = L1 be a negative
holomorphic line bundle over N , let L2 := Lm

1 and let E := L1 ⊕ L2, where m ∈ N∗. Consider
P = E − 0N , let β ∈ C∗ be of module smaller than 1, and µ ∈ C∗. Let Z act on P fiberwise
by 1.(s1, s2) = (βs1, βms2 + µsm

1 ), where (s1, s2) ∈ Ex − 0N , x ∈ N . Again we can extend this
action to a holomorphic action of R on P given by Φt

µ. If h denotes the Hermitian structure on
L whose Chern curvature is negative, it induces naturally a Hermitian structure on E which
we also denote by h, and we take S := {s ∈ E − 0N |h(s, s) = 1} and choose µ close enough
to 0 so that the map Φ : S × R → E − 0N , (s, t) 7→ Φt

µ(s) defines a diffeomorphism. Finally,
we define ϕµ = pR ◦ Φ−1, and as in Subsection 2.6.2, there exists a positive constant K > 0
so that Ωµ,K = eKϕµddce−Kϕµ is a positive (1, 1)-form. Consequently, it descends to an LCK
metric with positive potential on the compact manifold M := P/Z. Note that this time M
fibers over N with fiber the non-diagonal Hopf manifold Hβ,m,µ. We will see in Example 3.4.7
that these manifolds cannot admit Vaisman metrics.

2.6.4 LCK metrics on blow-ups

The category of manifolds of LCK type is closed under certain blow-ups. Indeed, it was
first shown by Tricerri [Tr82] and Vuletescu [Vu09] that a compact complex manifold admits
an LCK metric if and only if its blow-up at a point admits one. Regarding blow-ups along
manifolds of positive dimension, the following facts have been settled by Ornea, Verbitsky and
Vuletescu. In what follows, (M, J) is a compact complex manifold, Z is a complex submanifold
of M , µ : BlZM → M denotes the blow-up of M along Z and E = µ−1(Z) ⊂ BlZM denotes
the exceptional divisor.

Theorem 2.6.1: ([OVV13]) If M admits some LCK metric and Z is of Kähler type, then
BlZM admits an LCK metric as well.

Theorem 2.6.2: ([OVV13]) Suppose BlZM admits some LCK metric. Then both E and Z
are of Kähler type.

However, in general it is unknown whether the existence of an LCK metric on BlZM implies
the existence of an LCK metric on M . Note that this is not true for Kähler manifolds.
Moreover, it was also shown in [OVV13] that if BlZM admits an LCK metric and dimC Z > 0,
then M cannot admit Vaisman metrics. Also we have the following simple remark, showing
that in the end there are not so many cases left where one can perform blow-up on an LCK
manifold:

Lemma 2.6.3: Let (M, J) be a compact complex manifold and Z be a smooth compact
complex submanifold of Kähler type. If dimC Z > 1 or Z ∼= P1, then M admits no exact LCK
metrics.
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Proof. Suppose Ω = dθη is LCK on M . Then it induces an LCK metric j∗Ω = dj∗θj∗η on
j : Z → M . By hypotheses and by Theorem 2.2.8, we have j∗θ = df , with f ∈ C∞(Z,R). The
form Ω′ := e−f j∗Ω is still LCK on Z, and at the same time is exact: Ω′ = d(e−f j∗η). As Z is
compact, this is impossible.

Note that this remark also shows that there do not exist exact LCK metrics (in particular
Vaisman or with potential) on BlZM for any Z, as BlZM contains at least one smooth rational
curve.

2.6.5 Complex surfaces

It is well known that a compact complex surface is not of Kähler type if and only if its first
Betti number is odd. At the same time, most of these surfaces admit an LCK metric. As we
have seen in 2.6.4, a surface admits an LCK metric if and only if some blow-up of it in a point
admits one. Also, a blow-up never admits Vaisman, nor exact LCK metrics. Thus, we only
need to look at minimal surfaces.

F. Belgun in [Bel00] classified all LCK surfaces of zero Euler characteristic. In particular, he
obtained the list of all the surfaces of Vaisman type:

1. Diagonal Hopf surfaces and their finite quotients;

2. Kodaira surfaces, which are principal elliptic fiber bundles over an elliptic curve, and
their finite quotients, the secondary Kodaira surfaces;

3. Minimal properly elliptic surfaces, which are surfaces M of Kodaira dimension kod(M) =
1 admitting a proper holomorphic map to a smooth complex curve p : M → S, such
that a generic fiber of p is a (smooth) elliptic curve, and no fiber of p contains a smooth
rational curve with auto-intersection number −1.

Note that the above list contains all the minimal surfaces of class V I, i.e. with odd b1 and
pg := dimC H0(M, KM ) > 0. The remaining non-Kähler minimal surfaces form the class V II0,
defined by the conditions b1 = 1 and kod(M) = −∞, and this class is much more complicated.
We invite the reader to check the expository paper [Po14] and the references therein concerning
the LCK metric structure of class V II0-surfaces.

A class V II0-surface with b2 = 0 is either Hopf or Inoue-Bombieri. The latter were introduced
in [In74] and [Bm73], and are obtained as quotients of H × C by discrete groups of affine
biholomorphisms. They all have the strucure of a solvmanifold, and are separated in three
classes: S0, S+

t (t ∈ C) and S−. LCK metrics were constructed on all of them by F. Tricerri
[Tr82], except for the surfaces S+

t with t ∈ C − R. Later, F. Belgun showed that in fact the
ones that were left out do not admit LCK metrics. Moreover, he used this class of surfaces
to show that the category of LCK manifolds is not closed under small deformations. The
class S0 has a higher-dimensional analogue given by the OT manifolds, which we present in a
separated chapter. Concerning the special LCK metrics on these surfaces, as we have seen,
Hopf manifolds admit metrics with positive potential, while Inoue-Bombieri surfaces do not
admit exact LCK metrics, as shown in [O16].

As for the class V II0 surfaces with b2 > 0, all known examples are Kato surfaces, i.e. surfaces
which admit a global spherical shell (GSS). A GSS in M is a neighbourhood of the sphere S3

in C2 which is embedded holomorphically in M in such a way that M − V is connected. It is
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conjectured that all class V II0 surfaces with b2 > 0 are Kato surfaces. LCK metrics on certain
classes of these were constructed by LeBrun [LeB91] - on certain parabolic Inoue surfaces, and
later by Fujiki-Pontecorvo [FP10] - on hyperbolic and half Inoue surfaces - using a twistor
construction. Shortly after, Brunella in [Bru10] and [Bru11] showed that all Kato surfaces
admit LCK metrics. As was noted in [FP16, Remark 3.2], Kato surfaces cannot admit LCK
metrics with potential, because their universal covers contain compact complex curves. In
fact, by this argument it follows that they do not admit exact LCK metrics.



Chapter 3

Existence Criteria for LCK Metrics

3.1 Introduction

In the present chapter, we investigate the relation between the group of biholomorphisms of a
compact complex manifold of LCK type and the existence of certain special LCK metrics. We
find conditions on this group that imply or are equivalent to the existence of a particular type
of metric. In particular, we also find obstructions to the existence of any kind of LCK metric.

A particular role in this discussion is played by the Lee vector field, which we study in
Section 3.2. Recently, in [MMO17] there were given sufficient conditions for an LCK metric
with holomorphic Lee vector field to be Vaisman. We add one more such condition in
Proposition 3.2.2, which should be particularly useful when constructing examples, as it is
easy to check. Moreover, in [MMO17] the authors constructed an example of a non-Vaisman
LCK metric with holomorphic Lee vector field. We remark that in this construction, one can
even find a positive potential for the metric, showing that the condition in Proposition 3.2.2
cannot be sharpened.

In Section 3.3, we review the proof of Ornea-Verbitsky [OV12] concerning the existence of an
LCK metic with potential, given the presence of a holomorphic action of S1 which lifts to an
effective R-action on the minimal cover. We show that in their proof, one can find an explicit
positive potential, by means of an ODE, without the need of invoking the more recent paper
[OV17].

The next section 3.4 generalizes a criterion of Kamishima-Ornea [KO05] for the existence of a
Vaisman metric. We show that a compact manifold of LCK type admits a Vaisman metric
if and only if its group of biholomorphisms contains a torus which is not purely real. As
a corollary, we obtain that a compact complex manifold whose group of biholomorphisms
contains a compact torus whose Lie algebra t verifies dimC t ∩ it > 1 does not admit any LCK
metric. An application of this is the characterisation of all manifolds of LCK type among the
torus principal bundles, given in Section 3.5, analogous to a theorem of Blanchard [Bl54] in
the Kähler context.

On the other hand, we discuss the issue of irreducibility in LCK geometry. From early time
[Va80], it was known that if one takes two compact LCK manifolds (Mi, Ωi), i = 1, 2, the
product metric is not LCK on M1 × M2. However, whether there might exist some other LCK
metric on M1 × M2 has remained an open question, and in Section 3.6, we extend the known
cases ([Ts99], [OPV14]) in which this fails.

37
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A related question concerns the irreducibility of the natural connections determined by an
LCK metric. It turns out that the Levi-Civita connection is as irreducible as it can be: it was
shown in [MMP16] that any strict LCK metric on a compact manifold of complex dimension
n has irreducible holonomy SO(n) of the Levi-Civita connection, unless the metric is Vaisman,
in which case the holonomy is SO(2n − 1). Thus we turn to the Weyl connection, which is also
the Levi-Civita connection of the local Kähler metrics, and appears to have more interesting
properties. We first adapt a result of Kourganoff [Kou15] to the LCK context regarding the
structure of Weyl-reducible compact manifolds (Theorem 3.7.2), from which we then derive
Theorem 3.7.7, implying in particular that an exact LCK metric is Weyl-irreducible. Note
that Weyl-reducible LCK metrics do exist on the OT manifolds of type (s, 1).

3.2 The Lee vector field

Recall that a Vaisman metric (Ω, θ) of volume 1 verifies the formula

Ω = −dJθ + θ ∧ Jθ (3.2.1)

and its Lee vector field, defined by ιBΩ = Jθ, is holomorphic, Killing, symplectic and of
constant norm 1, cf. Proposition 2.4.5. Also, any metric which is conformal to one verifying
(3.2.1) is called LCK with positive potential.

A natural question one could ask is what kind of conditions should one impose on an LCK
metric with positive potential to ensure that it is a Vaisman one. Bellow we give a list of the
equivalent conditions, many of them already classical. The less direct implications are based
on a result of A. Moroianu and S. Moroianu:

Theorem 3.2.1: ([MM17]) Let (M, J, Ω) be a compact LCK manifold so that the symmetric
endomorphism ∇B ∈ End(TM) anticommutes with J . Then Ω is Vaisman.

Proposition 3.2.2: Let (Ω, θ) be an LCK structure on a compact complex manifold (M, J)
with potential equal to 1, i.e. Ω = −dJθ + θ ∧ Jθ. Let B denote the corresponding Lee vector
field. Then the following are equivalent:

(i) Ω is Vaisman;

(ii) B is real-holomorphic;

(iii) B is of constant norm a ∈ R+;

(iv) B is of constant norm 1;

(v) B is an infinitesimal symplectomorphism;

(vi) B is Killing

(vii) Ω is Gauduchon.

Proof. Let us start by noting that (iv) is equivalent to (v) via formula (2.4.5). We have seen
that if Ω is Vaisman, then the facts from (ii) to (vii) hold. Moreover, we have seen that (vi)
always implies (i). It will be enough then to show that (iii) ⇒ (iv), (ii) ⇒ (i), (vii) ⇒ (iv)
and (v) implies that ∇B anticommutes with J , and so implies (i) by Theorem 3.2.1.



Chapter 3. Existence Criteria for LCK Metrics 39

The implication (iii) ⇒ (iv): note more generally that a metric of the form Ω = −dJθ +θ ∧Jθ
verifies

∫
M ‖B‖2 Ωn

n! =
∫

M
Ωn

n! , from which then (iv) follows. Indeed:

∫

M
‖B‖2 Ωn

n!
=

∫

M
θ ∧ Jθ ∧ Ωn−1

(n − 1)!
=

∫

M
θ ∧ Jθ ∧ (−dJθ)n−1

(n − 1)!
=

∫

M

Ωn

n!
.

The implication (ii) ⇒ (i): if B is real-holomorphic, then also A = JB is. The Cartan formula
and LAθ = 0 imply:

0 =LAJθ = dιAJθ + ιAdJθ =

= − d(θ(JA)) + ιA(θ ∧ Jθ − Ω) =

=d(‖B‖2) − θ‖B‖2 + θ =

=dθ(‖B‖2 − 1).

Now Lemma 2.2.9 implies that ‖B‖2 = 1, thus (2.4.5) gives LBΩ = 0. Finally, since B is
holomorphic and preserves the symplectic form, it is also Killing, hence Ω is Vaisman.

The implication (vii) ⇒ (iv): the metric Ω is Gauduchon if and only if ddcΩn−1 = 0. As
[J, d] = dc, we have ddc = dJd, so:

ddcΩn−1 = dJ((n − 1)θ ∧ Ωn−1)

= (n − 1)(dJθ ∧ Ωn−1 − Jθ ∧ θ ∧ Ωn−1(n − 1)).

Hence ddcΩn−1 = 0 is equivalent to −dJθ ∧ Ωn−1 = θ ∧ Jθ ∧ Ωn−1, or also, using the formula
(3.2.1) of Ω, to Ωn = nθ ∧ Jθ ∧ Ωn = ‖B‖2Ωn, so ddcΩn = 0 is equivalent to ‖B‖2 = 1.

The implication (v) ⇒ (i): let us denote by K := LBJ . We have 0 = LB(J2) = JK + KJ .
The hypothesis LBΩ = 0 writes:

0 = LBg(J ·, ·) = (LBg)(J ·, ·) + g(K·, ·)
⇔ LBg = g(KJ ·, ·).

At the same time we also have, for any X, Y ∈ Γ(TM): LBg(X, Y ) = g(∇XB, Y )+g(X, ∇Y B).
But dθ = 0 implies that ∇θ is symmetric, hence also ∇B is, which thus gives LBg = 2g(∇·B, ·).
With the above, we obtain:

2∇B = KJ.

In particular, J∇B = 1
2JKJ = 1

2K = −∇J ·B, and so we can apply Theorem 3.2.1.

Note that for the last implication we did not use the hypothesis that Ω is a metric with
potential, so in fact we have, via Theorem 3.2.1:

Proposition 3.2.3: Let (M, J, Ω) be a compact LCK manifold with Lee vector field B. Then
Ω is Vaisman if and only if LBΩ = 0.

As will be seen in the last chapter, Lemma 5.2.1, OT manifolds provide examples of LCK
metrics which are Gauduchon and whose Lee vector field is of constant norm, showing that
in Proposition 3.2.2, condition (vi) together with (vii) alone do not imply that the metric is
Vaisman. On the other hand, one could ask whether the holomorphicity of the Lee vector field
implies that the metric is Vaisman. In the recent paper [MMO17], it is shown:

Theorem 3.2.4: ([MMO17]) Let (M, Ω, J) be a compact LCK manifold with holomorphic
Lee vector field B. If B is of constant norm, or if Ω is Gauduchon, then Ω is Vaisman.
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In the same paper, the authors also construct an example of an LCK metric which is not
Vaisman, but which has holomorphic Lee vector field, thus showing that also condition (ii)
in Proposition 3.2.2 alone is not enough to imply the Vaisman condition. We now present
this example, with the remark that in the construction of [MMO17], the metric can in fact be
chosen with positive potential, i.e. conformal (but not homothetic) to a metric of the form
3.2.1. This shows that, regarding condition (ii), the hypotheses in Proposition 3.2.2 cannot be
relaxed.

Example 3.2.5: ([MMO17]) Let (M, J, Ω, θ) be a compact Vaisman manifold with ‖θ‖2 = 1,
and let B be its Lee vector field. Suppose there exists a non-constant smooth function
f ∈ C∞(M,R) verifying f > −1 everywhere on M and such that df is colinear with θ. After
taking the interior product with B, this last condition is more precisely df = B(f)θ. Such
functions exist any time B generates an S1-action on M , for instance on the standard Hopf
manifold.

Consider next the form:

Ω′ := Ω + fθ ∧ Jθ = d(1+f)θ(−dJθ).

As f > −1, Ω′ is a strictly positive real (1, 1)-form on M , and verifies dΩ′ = (1 + f)θ ∧ Ω′.
Thus Ω′ is the fundamental form of an LCK metric with Lee form θ′ = (1 + f)θ.

Lemma 3.2.6: The Lee vector field of Ω′ is B, and so also holomorphic. The metric Ω′ is
not conformal to any Vaisman metric.

Proof. As ιBΩ′ = (1 + f)Jθ = Jθ′, B is also the Lee vector field of Ω′. Now suppose that
there exists a Vaisman metric Ω′′ on M so that Ω′′ = ehΩ′. By a theorem of K. Tsukada [Ts97],
the Lee vector field of a Vaisman metric is unique on the manifold M up to multiplication by
a constant. Thus, we can suppose right from the beginning that the Lee vector field of Ω′′ is
also B. Now this reads:

ehJθ′ = ehιBΩ′ = ιBΩ′′ = Jθ′ + dch

that is: dh + θ′(1 − eh) = 0, or also, after multiplying by −e−h: dθ′(e−h − 1) = 0. As θ′ has no
zero, it is non-exact, so Lemma 2.2.9 implies that e−h = 1, i.e. h = 0 and Ω′ is Vaisman. But
this last fact is impossible, as the norm of B is non-constant: Ω′(B, JB) = θ′(B) = 1 + f .

Suppose now that the flow of B on M is periodic: Φ2π
B = idM , and that we have a diffeomor-

phism M ∼= N × S1, where N is a compact Sasaki manifold. Any non-constant function on S1,
bounded bellow by −1, induces a function f on M verifying the desired properties.

Lemma 3.2.7: Under the above hypothesis, the metric Ω′ admits a positive potential.

Proof. We think of f as a function on R which is 2π-periodic, and we are looking for another
positive function g : R → R, also 2π-periodic, verifying, when seen as a function on M :

Ω′ = dθ′dc
θ′g. (3.2.2)

The function g we are looking for verifies that both dg and dLBg are colinear with θ, which
implies the following relations:

dg = LBg · θ, dcg = LBg · Jθ, ddcg = L2
Bg · θ ∧ Jθ + LBg · dJθ.
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With this in mind, (3.2.2) writes:

−dJθ + (1 + f) · θ ∧ Jθ =(LBg − g(1 + f))dJθ+

+(L2
Bg − LBf · g − 2(1 + f)LBg + g(1 + f)2)θ ∧ Jθ.

Now, the two forms −dJθ and θ ∧ Jθ are linearly independent, which implies that in the above
equation, the corresponding coefficients preceding them must be equal. We denote by t the
variable on R, and identify B with the vector field d

dt on R. Seeing f and g as functions on R,
(3.2.2) now becomes equivalent to:

d

dt
g − g(1 + f) + 1 = 0 (3.2.3)

d2

dt2
g − 2(1 + f)

d

dt
g − g

d

dt
f + g(1 + f)2 − (1 + f) = 0. (3.2.4)

By differentiating the first equation, one obtains the second one, while the first ODE has a
solution of the form:

g(t) = (c −
∫ t

0
e−F (s)ds)eF (t), with F (t) = a +

∫ t

0
(f(s) + 1)ds, a, c ∈ R.

Thus a solution g of the above system exists, and now it is left for us to show that we can
choose the constants a and c such that g is moreover strictly positive and 2π-periodic.

Let us note that, because f is 2π-periodic, we have, for any t ∈ R:

F (t + 2π) = F (t) + b, where b =

∫ 2π

0
(f(s) + 1)ds > 0.

Thus we obtain:

g(t + 2π) = (c −
∫ 2π

0
e−F (s)ds −

∫ 2π+t

2π
e−F (s)ds)eF (t)eb

= (c − K −
∫ t

0
e−F (u)e−bdu)eF (t)eb

= g(t) + eF (t)((c − K)eb − c)

where K =
∫ 2π

0 e−F (s) > 0 and, for the second equality, we made the change of variable

s = u + 2π. Thus, in order for g to be 2π-periodic, we take c := Keb

eb−1
> 0. Finally, we need to

see that g is in fact positive, which is also equivalent to saying that v(t) := c − ∫ t
0 e−F (s)ds is

positive. Note that d
dtv(t) = −e−F (t) < 0, so v can change sign at most once, and the same is

then true for the function g. On the other hand, g is periodic and g(0) = cea > 0, thus g is
indeed everywhere positive.

Note that, although the above example shows that there can exist non-Vaisman metrics with
holomorphic Lee vector field, it is however constructed out of a Vaisman metric. So a question
remains open:

Question 3.2.8: Let (M, J, Ω) be a compact LCK manifold with holomorphic Lee vector field.
Does there exist an LCK metric on M , not necessarily conformal to Ω, which is Vaisman?

This question is reminiscent to the criterion for the existence of LCK metrics with positive
potential presented in the next section. However, this time we do not ask for B, the Lee vector
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field, to have closed orbits. Moreover, if the answer to the above question is yes, it would be
interesting to know if one can recover the Vaisman metric (for example like in the proofs of
Theorem 3.3.1 or of Theorem 4.4.1). Finally, recall that the Lee vector field of any Vaisman
metric is uniquely determined up to multiplication by a positive constant, by [Ts97]. A related
question is then:

Question 3.2.9: Suppose that the Lee vector field of an LCK metric on a manifold of
Vaisman type is holomorphic. Is it then the Lee vector field of a Vaisman metric?

3.3 Existence of LCK metrics with potential

We present in this section a different proof of a result of L.Ornea and M.Verbitsky, [OV12].
It is a criterion for the existence of an LCK metric with positive potential in terms of the
existence of a holomorphic vector field with a particular property. We note though that in the
original proof, the positivity of the constructed potential is not clear, and only by invoking
a recent, more difficult result from [OV17] does the proof become complete. However, the
original proof can be made complete and self contained by a more careful analysis, which we
will do next.

Theorem 3.3.1: ([OV12] and [OV17]) Let (M, J, Ω, θ) be a compact LCK manifold admitting
a holomorhic action of S1 which, on the minimal cover M̂ , lifts to a faithful R-action. Then
there exists an LCK metric with positive potential whose Lee form is cohomologous to θ.

Proof. Let us denote by D the real holomorphic vector field on M (and on M̂) generating the
S1 action. By a standard averaging argument which does not change the de Rham class of θ,
we can suppose that both Ω and θ are preserved by D. In particular, LDθ = 0 implies that
θ(D) is constant, and as D generates an R-action on M̂ , θ(D) = a 6= 0 by Remark 2.5.5. Let
C be the vector field on M̂ defined by C := 1

aD.

Let θ = dϕ on M̂ , and let us denote by ω := exp(−ϕ)Ω the corresponding Kähler form. Then
we have:

LCω = −θ(C)ω = −ω. (3.3.1)

Let us denote by η the real one-form on M̂ defined by ιCω = η. Then (3.3.1) together with
Cartan’s formula imply:

ω = −(dιC + ιCd)ω = −dη. (3.3.2)

At the same time, using the fact that η(JC) = ω(C, JC) = ‖C‖2
ω := f , we have:

LJCη = dιJCη + ιJCdη = df − Jη,

from which it follows:

LJCω = −d(df − Jη) = dJη

L2
JCω = dJLJCη = ddcf + dη = ddcf − ω.

If we let Φt denote the one-parameter group generated by JC and denote by ωt := Φ∗
t ω and

by ft = Φ∗
t f , the last equation reads:

d2

dt2
ωt = −ωt + ddcft. (3.3.3)
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Let now gt be the real-valued functions on M̂ defined by the second order linear differential
equation:

d2

dt2
gt + gt = ft, g0 = 0,

d

dt
|t=0gt = 0. (3.3.4)

We want to show that ωt = cos tω + sin tdJη + ddcgt. For this, consider the forms βt :=
ωt − (cos tω + sin tdJη + ddcgt), t ∈ R. Using (3.3.3) and the definition (3.3.4) of the functions
gt, we have:

d2

dt2
βt =

d2

dt2
ωt + cos tω + sin tdJη − ddc(

d2

dt2
gt)

= −ωt + ddcft + cos tω + sin tdJη − ddcft + ddcgt

= −βt.

Thus, the forms βt verify the following homogeneous second order linear differential equation
with initial conditions:

d2

dt2
βt + βt = 0, β0 = 0,

d

dt
|t=0βt = 0.

By the uniqueness of the solution, we have then that for all t ∈ R, βt vanishes identically, and
so:

ωt = cos tω + sin tdJη + ddcgt, t ∈ R. (3.3.5)

Define now, using (3.3.5), a new form ω̂ by:

ω̂ :=
1

2π

∫ 2π

0
Φ∗

t ωdt = ddc 1

2π

∫ 2π

0
gtdt

and let us denote by g the function 1/2π
∫ 2π

0 gtdt. As {Φt}t∈R is a subgroup of biholomorphism

of M̂ , ω̂ is a Kähler form on M̂ . We wish to show that g is a strictly positive function on M̂ .

Note first that, as θ(C) = 1, C has no zeroes so the function f is everywhere positive. Moreover,
as JC is real holomorphic, we have [C, JC] = 0, so Φt preserves both C and JC. This gives,
for any x ∈ M̂ :

ft(x) = ωΦt(x)(C, JC) = ωΦt(x)((dxΦt)C, (dxΦt)JC) = (Φ∗
t ω)x(C, JC)

thus also the function ft is strictly positive for any t ∈ R.

Fix x ∈ M̂ and define the functions fx, gx : R → R by fx(t) = ft(x) and gx(t) = gt(x). By
(3.3.4), they satisfy:

g′′
x + gx = fx, gx(0) = 0, g′

x(0) = 0. (3.3.6)

Then we have:

∫ 2π

0
gx(t)dt =

∫ 2π

0
fx(t)dt −

∫ 2π

0
g′′

x(t)dt =

∫ 2π

0
fx(t)dt − g′

x(2π). (3.3.7)
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On the other hand, integrating by parts and using (3.3.6) we compute:

g′
x(2π) = g′

x(t) cos t
∣∣∣
2π

0

=

∫ 2π

0
g′′

x(t) cos tdt +

∫ 2π

0
g′

x(t)(− sin t)dt

=

∫ 2π

0
g′′

x(t) cos tdt −
(

gx(t) sin t
∣∣∣
2π

0
−
∫ 2π

0
gx(t) cos tdt

)

=

∫ 2π

0
fx(t) cos tdt.

Thus, it follows from (3.3.7):

∫ 2π

0
gx(t)dt =

∫ 2π

0
fx(t)(1 − cos t)dt > 0

implying that the function g is indeed everywhere positive.

Hence we can define θ̂ := d ln g. Note that by the uniqueness of the solution of (3.3.4), the
functions gt have the same Γ-equivariance as the functions ft, or also as the function f . Here,
Γ denotes the deck group of the cover M̂ → M . Also we should note that, as C and JC are
Γ-invariant, being lifts of vector fields from M , then the Γ-equivariance of f = ω(C, JC) is
exactly the equivariance of ω. Thus it follows that θ̂ has the same Γ-equivariance as θ, and so
the two one-forms are cohomologous. Hence the form

Ω̂ := g−1ddcg (3.3.8)

descends to M to an LCK metric with positive potential with Lee form θ̂, and the proof is
finished.

Remark 3.3.2: Let us note that the above construction of an LCK metric with potential is
natural and only depends on Ω and on C. In particular, if Ω is already JC-invariant, which
will imply that the metric is Vaisman, then we have ft = f and the solution of (3.3.4) is then
gt = (1 − cos t)f , so in particular the potential g = f remains unchanged.

Remark 3.3.3: On the other hand, for a metric Ω which is not JC-invariant, the above
construction gives us a countable set of metrics with potential associated to the de Rham
class of θ. Indeed, we considered the potential g[1] := g, but for any n ∈ N∗, the potential

g[n] := 1/2nπ
∫ 2nπ

0 gtdt works as well.

3.4 Existence of Vaisman metrics

In this section we are interested in giving a criterion for the existence of Vaisman metrics on a
complex manifold of LCK type only in terms of its group of holomorphic automorphisms. In
particular, we will find that the existence of an LCK metric imposes restrictions on this group,
and so our result can also be used as a criterion of non-existence of LCK metrics. This has
interest in itself, as no obstructions coming from the existence of LCK metrics are known so
far other than the inequality b1 < 2h0,1 (Theorem 2.2.8, Remark 2.3.2).

A criterion for deciding whether a given LCK conformal class is Vaisman or not was obtained
by Y. Kamishima and L. Ornea in [KO05], but of course it involves already knowing the
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Vaisman class. Its proof is quite involved, but it can also be obtained as a corollary of Theorem
3.4.3.

Theorem 3.4.1: ([KO05]) Let (M, J, g) be a compact connected strict LCK manifold. Then
g is conformal to a Vaisman metric if and only if Aut(M, J, [g]) contains a one-dimensional
complex Lie group which does not act isometrically on the corresponding Kähler metric.

We start by giving the main proposition, which will directly imply the general criterion. We
will call a torus T ⊂ Aut0(M, J) with Lie algebra t purely real if t ∩ it = t ∩ Jt = {0}.

Let (M, J, Ω, θ) be a Vaisman manifold with corresponding fundamental vector fields B and
A = JB. Then A, B ∈ aut(M, J, Ω) generate a holomorphic R × R action on M , and we
will denote by G the image of R × R in Aut0(M, J, Ω). Since the Lie group Aut0(M, J, Ω) is
compact, we can take the closure of G in it, obtaining thus a compact torus T ⊂ Aut0(M, J, Ω).
The torus T is not purely real, since both A and B are in it ∩ t. In fact, we have:

Proposition 3.4.2: Let (M, J, [Ω], [θ]dR) be a strict LCK manifold and T ⊂ Aut0(M, J, [Ω])
be a compact torus. If T is not purely real, then [Ω] is Vaisman and t ∩ it = R{A, B}, where
B = −JA is the Lee vector field of some Vaisman metric in [Ω].

Proof. Choose a T-invariant LCK structure (Ω, θ) in the conformal class [Ω], so that for any
X ∈ t, d(θ(X)) = LXθ = 0. Let 0 6= C ∈ t with D := JC ∈ t. Then both θ(C) and θ(D) are
constant. However, we cannot have θ(C) = θ(D) = 0. Indeed, if it was the case, then:

0 =ι[C,D]Ω = LCιDΩ − ιDLCΩ =

=dιCιDΩ + ιCdιDΩ =

=d(−‖C‖2) + θιCιDΩ = dθ(−‖C‖2)

implying, by Lemma 2.2.9, that ‖C‖2 = 0, contradiction. Hence, if θ(C) = a and θ(D) = b,
then X := aD−bC 6= 0 still verifies X ∈ t and JX ∈ t and, moreover, θ(X) = 0, so θ(JX) 6= 0.
Therefore, we can suppose from the beginning that θ(C) = 1 and θ(D) = 0.

Let f := ‖C‖2
Ω, which is an everywhere positive function since C cannot have any zeros. Take

Ω′ := 1
f Ω, with corresponding Lee form θ′ = θ − d ln f . Then, since f is preserved by both C

and D, we still have θ′(C) = 1 and θ′(D) = 0, and C, D ∈ aut(M, J, Ω′).

Let η := ιCΩ′. Then we have:

dη = LCΩ′ − ιCdΩ′ = −θ′(C)Ω′ + θ′ ∧ η

or also Ω′ = dθ′(−η). Since D preserves both C and Ω′, it also preserves η. Moreover, we have
1 = ‖C‖2

Ω′ = η(D). Hence we get:

0 =LDη = dιDη + ιDdη = ιD(−Ω′ + θ′ ∧ η) =

= − Jη + θ′(D)η − θ′η(D) = −Jη − θ′.

Finally, this implies that η = Jθ′, so that C is actually the Lee vector field B of Ω′. Since C
is holomorphic and preserves Ω′, it is also Killing, so ∇θ′ = dθ′ = 0, that is, Ω′ is Vaisman.

Finally, since a Vaisman metric is unique in its conformal class up to multiplication by
constants, it follows that t ∩ it = R{C, D} = R{A, B}.

Theorem 3.4.3: A connected compact complex manifold (M, J) of LCK type admits a Vaisman
metric if and only if Aut0(M, J) contains a torus which is not purely real.
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Proof. As we already noted at the beginning of the section, if M admits a Vaisman metric
then the corresponding holomorphic vector fields B and A = JB sit in the Lie algebra of a
torus in Aut0(M, J).

Conversely, suppose T ⊂ Aut0(M, J) is not purely real. Take any LCK metric (Ω, θ) and
average it over T, in order to get a T-invariant LCK metric. Hence we have T ⊂ Aut0(M, J, Ω),
and we can apply Proposition 3.4.2 in order to get the conclusion.

A direct consequence of Proposition 3.4.2 is:

Corollary 3.4.4: Let (M, J, [Ω]) be an LCK manifold and T ⊂ Aut0(M, J, [Ω]) be a maximal
torus. Then dimC t ∩ it ≤ 1, with equality if and only if [Ω] is Vaisman.

As a consequence of this, we also obtain:

Corollary 3.4.5: Let (M, J) be a complex manifold so that Aut(M, J) contains a compact
torus T whose Lie algebra t verifies dimC t ∩ it > 1. Then (M, J) admits no LCK metric.

Let us illustrate this criterion in some examples. Of course, the examples that follow have
already been settled ([Bel00]), but the arguments based on Theorem 3.4.3 are simpler.

Example 3.4.6: Consider the non-diagonal Hopf surface Hβ,m,λ defined in Section 2.6.1.
We want to show that it admits no Vaisman metric, so we need to prove that there is no
real-holomorphic vector field X so that both X and JX have closed orbits. Indeed, cf. [Bel00]
and [MMP17], the complex Lie algebra of holomorphic vector fields on Hβ,m,λ identifies with
the Lie algebra of Γ-invariant vector fields on W : g = C{Z1 = z1

∂
∂z1

+ mz2
∂

∂z2
, Z2 = zm

1
∂

∂z2
},

which is commutative. The complex flow of W = aZ1 + bZ2 is

Φu
W (z1, z2) = (eauz1, eamu(z2 + buzm

1 )), u ∈ C.

So in order for Re W to have closed orbits, we must have either Φ1
W = γ or Φ1

W = id. The
first condition gives a = log β and b = λ

βm and the second one gives a = 2πi and b = 0.
We obtain thus that a maximal torus acting holomorphically on Hβ,m,λ is generated by
t = C{ξ1 = Re(log βZ1 + λ

βm Z2), ξ2 = Re(2πiZ1)}. But clearly t ∩ Jt = 0, so applying
Theorem 3.4.3 it follows that Hβ,m,λ admits no Vaisman metric.

Example 3.4.7: Consider the example we constructed at the end of Subsection2.6.3: the
holomorphic fiber bundle p : M → N , where N is a compact Kähler manifold, M has an LCK
metric with positive potential which restricts to the fibers of p, F ∼= Hβ,m,ν , to the LCK metric
constructed in 2.6.2. Then M cannot admit any Vaisman metric. Indeed, if it did, then this
metric would induce, by Theorem 2.4.6, a Vaisman metric on the submanifold Fx = p−1(x),
x ∈ N . But we saw just now that the non-diagonal Hopf surfaces do not admit Vaisman
metrics.

Example 3.4.8: The Inoue surfaces S0 and S− have no holomorphic vector field, so clearly they
cannot admit Vaisman metrics. As for S+, by [In74] we have aut(S+, J) = aut(H×C)Γ+

= CZ,
where Z = ∂

∂z with corresponding complex flow Φλ
Z(w, z) = (w, z + λ). Hence the only solution

λ ∈ C to Φ1
λZ ∈ Γ+ is λ0 = c3

r , in which case Φ1
λ0Z = σ3. Hence there exists only one torus

S1 ⊂ Aut0(S+, J) which is one-dimensional, generated by ξ = λ0Z. So, again, S+ cannot
admit any Vaisman metrics. As already stated, by [O16], Inoue surfaces admit no exact LCK
metrics, but the proof uses the solvmanifold structure of the surfaces.
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3.5 Torus principal bundles

Let T = t/Λ be a compact complex torus of dimension n, let N be a compact complex
manifold and let π : M → N be a holomorphic T-principal bundle over N . Its Chern class is
an element:

cZ(π) ∈ H2(N, Λ) ∼= H2(N,Z) ⊗ Λ.

The inclusion Λ ⊂ t induces a natural map H2(N, Λ) → H2(N, t) ∼= H2(N,C) ⊗ t, and we will
denote by c(π) the image of cZ(π) under this map. The class c(π) has a well defined rank. If
we choose C-bases for both t and H2(N,C), then c(π) can be represented by a 2n × b2(N)
matrix over C, and then the rank of c(π) is the rank of this matrix.

Note that if the rank of c(π) is 1, then there exists a minimal element a ∈ Λ, unique modulo
sign, such that the non-torsion part of cZ(π) writes cZ(π)0 = cZ1 (π) ⊗ a with cZ1 (π) ∈ H2(N,Z).
If c1(π) is the image of cZ1 (π) under H2(N,Z) → H2(N,C), then we will have c(π) = c1(π)⊗a,
and again c1(π) is uniquely defined modulo sign. So it makes sense to ask weather c1(π) is a
positive or negative class, i.e. weather c1(π) or −c1(π) can be represented by a Kähler form
on N . In the affirmative case, we will call the class c(π) definite.

By a theorem of Blanchard [Bl54], when N is of Kähler type, M carries a Kähler metric if
and only if the rank of c(π) is 0. On the other hand, a theorem of Vuletescu [Vu10] states
that if n = 1 and the rank of c(π) is 2, then M cannot admit LCK metrics.

As a direct application of our existence criterion for Vaisman metrics and of Corollary 3.4.5,
we obtain a characterisation of manifolds of LCK-type among all the compact torus principal
bundles over compact complex manifolds.

Proposition 3.5.1: Let T be a complex compact n-dimensional torus and π : M → N be
a T-principal bundle over a compact complex manifold N . Then M admits a (strict) LCK
metric if and only if n = 1 and the Chern class of π is of rank 1 and definite. In this case, M
is of Vaisman type.

Proof. Suppose that M admits a strict LCK metric. The complex torus T acts holomorphically
and effectively on M , so, by Theorem 3.4.3, M admits a Vaisman metric (Ω, θ). Let B be the
Lee vector field with θ(B) = 1 and A := JB. By Proposition 3.4.2, n = 1 and t = Lie(T) is
spanned by A and B. Here, we identify t with its isomorphic image as a subalgebra of Γ(TM).

Since the T-invariant 1-forms θ1 = Jθ and θ2 = θ verify θi(Xj) = δij , for i, j = 1, 2, where
X1 = A and X2 = B, there will exist some linear combination of them giving a connection
form α ∈ C∞(T ∗M ⊗ t) in π. More precisely, if we denote by ξ1, ξ2 the fundamental vector
fields of the action, and let G = (gij) be the matrix of {X1, X2} in the basis {ξ1, ξ2} of t, then
the connection form will be given by:

α := (g11θ1 + g21θ2) ⊗ ξ1 + (g12θ1 + g22θ2) ⊗ ξ2.

Indeed, it is T-invariant and we have α(ξi) = ξi for i = 1, 2. Moreover, since dθ = 0, its
curvature is:

Θ := dα = dθ1 ⊗ g11ξ1 + dθ1 ⊗ g12ξ2 = dJθ ⊗ A.

It is a basic form, so given by Θ = π∗η ⊗ A, with η ∈ Ω2(N), and η ⊗ A represents the
Chern class c(π) ∈ H2(N, t). Then clearly c(π) is of rank 1, and moreover, it is definite
since the form −η is a Kähler form on N . The last assertion comes from the fact that, as
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Ω is Vaisman, we have −dJθ = Ω − θ ∧ Jθ, so the (1, 1)-form −dJθ is strictly positive on
Q := ker θ∩ker Jθ ⊂ TM . But Q is exactly the horizontal distribution given by the connection
α, and so identifies with TN via π∗.

The converse statement is a well known result, see 2.6.3.

3.6 Analytic irreducibility of complex manifolds of LCK type

It is not very difficult to see that a product metric cannot be LCK ([Va80]), but whether an
LCK manifold must be analytically irreducible is still an open question. Under additional
hypotheses, the answer is known to be positive ([Ts99], [OPV14]). In this section we wish to
enlarge the list of hypotheses implying the analytic irreducibility of the manifold.

One of the results in this direction is due to Tsukada [Ts99], which we can also obtain as a
direct consequence of Theorem 3.4.3:

Proposition 3.6.1: ([Ts99]) Let M1 and M2 be two compact complex manifolds of Vaisman
type. Then M := M1 × M2 admits no LCK metric.

Proof. By Theorem 3.4.3, the groups of biholomorphisms Aut(Mi) contain tori Ti which are
not purely real, for i = 1, 2. Then the Lie algebra t of the torus T := T1 × T2 ⊂ Aut(M)
verifies dimC t ∩ it = 2. Hence, by Corollary 3.4.5, M cannot admit an LCK metric.

Tsukada obtained Proposition 3.6.1 as a corollary to the following result:

Theorem 3.6.2: ([Ts99]) Let (M, Ω) be a compact Vaisman manifold and let F be the
canonical foliation on M generated by the Lee and the Reeb vector fields. Then F has a
compact leaf.

We can further exploit this and obtain the following, more general, result:

Theorem 3.6.3: Let M1, M2 be two compact complex manifolds and suppose that M1 is of
Vaisman type. Then M := M1 × M2 admits no LCK metric.

Proof. Suppose M admits some LCK metric. Then, for any x ∈ M1, this metric restricted to
{x} × M2

∼= M2 gives an LCK metric on M2.

Since M1 is of Vaisman type, there exists T1 ⊂ Aut(M1) whose Lie algebra t1 verifies
dimC t1 ∩ it1 = 1. The induced torus T = T1 × {idM2} ⊂ Aut(M) is still not purely real, so by
Theorem 3.4.3, M is of Vaisman type and t := Lie(T) contains the corresponding Lee vector
field B.

Let Ω be a Vaisman metric on M which, possibly after averaging, is T-invariant. Then for
any y ∈ M2, Ω restricted to M1 × {y} ∼= M1 must be Vaisman. Indeed, by construction,
the Lee vector field B is tangent to M1, and [Va82, Theorem 5.1] states that any complex
submanifold of a Vaisman manifold that is tangent to the Lee vector field is again Vaisman
with the induced metric. Let now E ⊂ M1 be a closed leaf of the canonical foliation on the
Vaisman manifold M1, as in the above theorem. Clearly, after choosing O ∈ E, E has the
structure of an elliptic curve whose tangent bundle is generated by B and JB restricted to
E. Hence, the submanifold i : Y = E × M2 → M together with i∗Ω is Vaisman. At the same
time, Y → M2 is a trivial E-principal bundle, so we arrive at a contradiction via Proposition
3.5.1.
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Also, using the result which states that a compact complex submanifold of a Vaisman manifold
must contain the leaves of the canonical foliation, one has:

Proposition 3.6.4: A compact complex manifold of Vaisman type is holomorphically irre-
ducible.

Proof. Let M = M1 × M2 be the compact complex manifold with the product complex
structure, and suppose it admits a Vaisman metric Ω with corresponding canonical foliation
F generated by B, JB. Then, by Theorem 2.4.6, for any (x1, x2) ∈ M , both the submanifolds
M1 × {x2} and {x1} × M2 of M contain the leaves of F , which is impossible.

On the other extreme, we have the following result, also obtained in [OPV14] in a different
manner:

Theorem 3.6.5: Let M1, M2 be two connected complex manifolds, and suppose that M1 is
compact and verifies the ∂∂̄-lemma. Moreover, if dimC M1 = 1, then suppose its genus g is 1
and M2 is compact, or that g = 0. Then M := M1 × M2 admits no (strict) LCK metric.

Proof. Suppose M admits an LCK form Ω with corresponding Lee form θ. Denote by
pi : M → Mi, i = 1, 2 the canonical projections. We have, by the Künneth formula, an
isomorphism p∗

1 ⊕ p∗
2 : H1(M1,R) ⊕ H1(M2,R) → H1(M,R), meaning that there exist two

closed forms θi ∈ C∞(T ∗Mi), i = 1, 2, such that θ is cohomologous to p∗
1θ1 + p∗

2θ2. After a
conformal change of Ω, we can suppose that θ = p∗

1θ1 + p∗
2θ2.

Since an LCK metric on M induces one on M1, by Theorem 2.2.8, the induced metric is
globally conformal to a Kähler metric. Suppose moreover that n := dimC M1 > 1. Then this
implies that θ1 is exact on M1. Again, by a global conformal change of Ω, we can suppose
that θ1 = 0. Then the conclusion follows from Lemma 3.6.6 bellow.

If dimC M1 = 1, then the induced LCK form on M1 is automatically Kähler, so we know
nothing about θ1. However, if g = 1, then M → M2 is a trivial principal elliptic bundle, so
by Proposition 3.5.1, M cannot admit any strict LCK metric. If g = 0 then M1 is simply
connected, so we can again apply Lemma 3.6.6.

Lemma 3.6.6: Let M1 and M2 be two connected complex manifolds, with M1 compact.
Suppose that (Ω, θ) is an LCK form on the manifold M = M1 × M2 such that i∗[θ] = 0 in
H1(M1,R), where i : M1 → M is the inclusion x 7→ (x, y) for some y ∈ M2. Then M (and
thus also both M1 and M2) are of Kähler type.

Proof. As before, after an eventual conformal change of Ω, we have θ = p∗
1θ1 + p∗

2θ2 with
θi ∈ C∞(T ∗Mi), i = 1, 2. By hypotheses, θ1 = df , with f ∈ C∞(M1), so again, by replacing Ω
with e−p∗

1f Ω, we can suppose that θ = p∗
2θ2.

The algebra of differential forms on M , C∞(
∧

T ∗M), has two compatible gradings: one
given by the degree of the forms, and the second one induced by the splitting T ∗M =
p∗

1T ∗M1 ⊕ p∗
2T ∗M2. With respect to this second splitting, write the differential d = d1 + d2,

and write Ω = Ω1 + Ω12 + Ω2 ∈ C∞(
∧2 T ∗M), where:

∧2 T ∗M =
∧2 p∗

1T ∗M1 ⊕ p∗
1T ∗M1 ⊗ p∗

2T ∗M2 ⊕∧2 p∗
2T ∗M2.
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Then the equation dΩ = p∗
2θ2 ∧ Ω gives, in the homogeneous parts

∧2 p∗
1T ∗M1 ⊗∧1 p∗

2T ∗M2

and
∧3 p∗

1T ∗M1:

d2Ω1 + d1Ω12 = p∗
2θ2 ∧ Ω1

d1Ω1 = 0.
(3.6.1)

Let n be the complex dimension of M1. If we take the wedge of the first equation in (3.6.1)
with Ωn−1

1 , we obtain:

1

n
d2(Ωn

1 ) + d1(Ω12 ∧ Ωn−1
1 ) = p∗

2θ2 ∧ Ωn
1 . (3.6.2)

On the other hand, the compactness of M1 implies that p2 is a proper submersion, so it induces
a push forward map on forms given by fiberwise integration:

(p2)∗ : C∞(
∧2n p∗

1T ∗M1 ⊗∧k p∗
2T ∗M2) → C∞(

∧k T ∗M2)

((p2)∗α)y :=

∫

M1×{y}
α, y ∈ M2.

Applying this map to (3.6.2) and using Stokes’ theorem, we obtain the following relation on
M2:

dg = nθ2g, where g := (p2)∗Ωn
1 ∈ C∞(M2).

This relation also reads dnθ2g = 0, with g 6= 0 since it is in fact everywhere positive. By
Lemma 2.2.9 we obtain that nθ2 is exact, so also θ is and Ω is globally conformal to a Kähler
metric.

Remark 3.6.7: In [OPV14], the authors claim a proof of Theorem 3.6.5 also for the case
when M1 is a Riemann surface of genus ≥ 2, but we believe that their argument does not hold.
However, we are only able to find restrictions on the manifold M2 under the hypothesis that
M1 × M2 admits an LCK metric:

Proposition 3.6.8: Let M1 be a compact complex curve, let M2 be a complex manifold and
suppose that M := M1 × M2 admits an LCK metric. Then M2 admits an LCK metric with
positive potential.

Proof. We keep the same notations as before. If (Ω, θ) is the LCK form on M , we can suppose
that θ = θ1 + θ2 with each θi being the pullback of a closed one form from Mi, i = 1, 2.
Moreover, up to a conformal change of Ω, as M1 is Kählerian, we can choose θ1 to be the real
part of a holomorphic one form, so that dJθ1 = 0, where J is the product complex structure
on M .

As before, on the
∧2 T ∗M1 ⊗∧1 T ∗M2-part, dΩ = θ ∧ Ω gives:

d1Ω12 + d2Ω1 = θ2 ∧ Ω1 + θ1 ∧ Ω12. (3.6.3)

Extend J as a derivation acting on forms, and let dc = i(∂̄ − ∂). Then, on M we have the
commutation relation:

[J, d] = dc. (3.6.4)
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The formula JdΩ = J(θ ∧ Ω), together with JΩ = 0 and (3.6.4) gives, on the
∧1 T ∗M1 ⊗∧2 T ∗M2-part:

dc
2Ω12 + dc

1Ω2 = Jθ1 ∧ Ω2 + Jθ2 ∧ Ω12. (3.6.5)

Now we apply the push forward map (p2)∗ to equation (3.6.3) and Stoke’s theorem in order to
obtain:

(p2)∗d2Ω1 = (p2)∗(θ2 ∧ Ω1 + θ1 ∧ Ω12).

If we denote by g the strictly positive function on M2 given by (p2)∗Ω1, this also reads:

dθ2g = (p2)∗(θ1 ∧ Ω12). (3.6.6)

We apply dc to this identity and use equation (3.6.5) together with (3.6.6) to get:

dcdθ2g = −(p2)∗(θ1 ∧ dc
2Ω12)

= −(p2)∗(θ1 ∧ Jθ1 ∧ Ω2) + Jθ2 ∧ dθ2g + (p2)∗(θ1 ∧ dc
1Ω2).

Since we chose θ1 so that dJθ1 = 0, equation (3.6.4) implies that dc
1θ1 = 0, hence the above

simply gives:
dcdθ2g − Jθ2 ∧ dθ2g = −(p2)∗(Ω2 ∧ θ1 ∧ Jθ1).

Note that α := Ω2 ∧ θ1 ∧ Jθ1 is a semipositive (2, 2)-form on M which is strictly positive on a
non-empty open subset of M of the form U × M2, where U ⊂ M1 is the open set where θ1

does not vanish. Then η := (p2)∗α is a strictly positive (1, 1)-form on M2 verifying:

η = dθ2dc
θ2

g. (3.6.7)

Finally, this implies that η = −dJω + ω ∧ Jω, where ω := θ2 − d ln g, so (η, ω) is an LCK
metric with positive potential on M2.

3.7 Weyl reducible manifolds

In this section, we are interested in LCK metrics whose corresponding Weyl connection is
reducible, or equivalently, the Levi-Civita connection of the Kähler metric on the minimal cover
is reducible. The starting point of our discussion is a topological and metric description of the
more general class of compact conformal manifolds with a reducible closed Weyl connection,
given by M. Kourganoff in [Kou15]. From it, we will easily infer also the complex-analytic
description of Weyl-reducible LCK manifolds.

Let us first recall that on a conformal manifold (M, c), a Weyl connection is a torsion free
linear connection preserving the conformal structure. If the Weyl connection is locally the
Levi-Civita connection of a local metric in the conformal class c, then the connection is
called closed. This is equivalent to the existence of a global Riemannian metric g̃ on the
universal cover M̃ in the conformal class given by the pull-back of c, on which π1(M) acts by
homotheties. Although defined on M̃ , g̃ is called a similarity structure on M .

Theorem 3.7.1: (M. Kourganoff [Kou15]) Let (M, c, D) be a compact conformal manifold
endowed with a closed Weyl connection, and let g̃ be the corresponding similarity structure.
Then we are in one of the three cases:
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1. (M̃, g̃) is flat;

2. D has irreducible holonomy and dim M > 1;

3. (M̃, g̃) is isometric to (Rq, g0) × (N, gN ), where g0 is the flat metric on Rq, and the
holonomy of the Levi-Civita connection corresponding to gN is irreducible.

Let us now suppose that (M, J, g) is a compact LCK manifold. There exists a unique Weyl
connection preserving the conformal class of g and the complex structure J . Moreover, as g is
LCK, the connection is closed. We are thus in the setting of the above theorem. If we are
in the first case, a theorem of Vaisman [Va82] states that (M, J, g) is a Hopf manifold with
the standard metric. Let us suppose that we are in the third case. We wish to show that the
Riemannian manifolds appearing in the decomposition are in fact naturally Kähler, and the
isometry is biholomorphic. The arguments for this are standard.

We will denote also by D the pull back connection to M̃ , and note that D is the Levi-Civita
connection of g̃. Let us denote by T 0 and T 1 respectively the pullback of TRq and TN to M̃
by the natural projections. Fix a point x ∈ M̃ , and recall that the holonomy group of D in x,
G := Hol(x), is identified with a subgroup of Aut(TxM̃), given by the parallel transport of
vectors in TxM̃ along loops in x. We have the G-invariant decomposition TxM̃ = T 0

x ⊕ T 1
x ,

and G acts trivially on T 0
x . At the same time, as the pull-back complex structure J on M̃

is D-parallel, the elements of G commute with Jx ∈ Aut(TxM̃). Thus, for any v ∈ T 0
x and

any g ∈ G we have: gJxv = Jxgv = Jxv. But the elements of T 0
x are characterized by the

fact that G acts trivially on them, so Jxv ∈ T 0
x , implying thus that JT 0

x = T 0
x . At the same

time, T 1
x is the orthogonal of T 0

x in TxM̃ with respect to g̃x, which is Jx-invariant, so also
JT 1

x = T 1
x . Finally, as T 0 and T 1 are obtained by the parallel transport of T 0

x and T 1
x , and as

J is D-parallel, it follows that JT 0 = T 0 and JT 1 = T 1. In particular, J splits as J = J0 + J1,
where for i = 0, 1, Ji ∈ Aut(T i) is defined by Ji := J |T i and is an almost complex structure.
Moreover, since J is integrable, its Nijenhuis tensor NJ :

∧2 TM̃ → TM̃ vanishes. But for
i = 0, 1, the Nijenhuis tensor corresponding to Ji is just the restriction of NJ to

∧2 T i, and
so also vanishes, thus J0 and J1 are integrable and the isometry in (3) is holomorphic. Now
clearly ω0 := g0(J0·, ·) and ω1 := gN (J1·, ·) are Kähler forms on the corresponding factors.

Theorem 3.7.2: (LCK version) Let (M, J, g) be a compact LCK manifold, and let (M̃, J̃ , g̃)
be its universal cover with the corresponding Kähler metric. Then we are in one of the three
cases:

1. (M̃, g̃) is biholomorphic and isometric to a flat Hopf manifold with the standard metric;

2. The Levi-Civita connection of g̃ has irreducible holonomy;

3. (M̃, J̃ , g̃) is biholomorphic and isometric to (Ct, g0) × (N, JN , gN ), where g0 is the flat
metric on Ct, and (N, JN , gN ) is a Kähler manifold with irreducible holonomy.

Let us note that the OT manifolds of type (s, 1) with the LCK metric defined in (5.2.5) verify
the third case of the above theorem, but we do not know if these are all the Weyl-reducible
LCK manifolds. However, we can generalize a metric property showed by A. Otiman in
[O16] for OT manifolds to the (supposedly larger) class of Weyl-reducible LCK manifolds. It
concerns the non-existence of exact LCK metrics on such manifolds. For this, in addition to
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the above theorem, we will also need a few preliminary results from [Kou15] concerning the
structure of some groups of automorphisms appearing in the description of the manifold.

We introduce first the notations. From now on, we fix a Weyl-reducible compact LCK
manifold (M, J, g) so that its universal cover with the Kähler metric (M̃, J̃ , g̃) is (R2t, J0, g0) ×
(N, JN , gN ). For a Hermitian structure (g, J), denote by

Isom(g, J) ⊂ Sim(g, J) ⊂ Conf(g, J)

respectively the groups of biholomorphic isometries, homotheties, and conformal automor-
phisms of the given structure. They are all closed subgroups of the respective groups

Isom(g) ⊂ Sim(g) ⊂ Conf(g).

The group π1(M) acts diagonally by holomorphic homotheties on M̃ , so it is a subgroup
of Sim(g0, J0) × Sim(gN , JN ). Denote by Γ0 the image of π1(M) in Sim(g0, J0), and by ΓN

the image of the same group in Sim(gN , JN ). Let G be the closure of ΓN in Sim(gN , JN ),
and G0 its connected component. Finally, let Γ0 := π1(M) ∩ (Sim(g0) × G0). Recall that
Sim(g0, J0) = R>0 · U(t) ⋉Ct. Note that the definition of the groups Γ0, ΓN , G, G0 and Γ0 is
in fact independent of the complex structures. We have the following facts concerning them,
proven in [Kou15]:

Fact 3.7.3: [Kou15, Lemma 4.8] The group G is a Lie group acting properly on N .

Fact 3.7.4: [Kou15, Lemma 4.1] The group G0 is abelian.

Fact 3.7.5: [Kou15, Lemma 4.12] The group G0 sits in Isom(gN ).

Fact 3.7.6: [Kou15, Lemma 4.16] The group Γ0 is a lattice in Ct × G0.

These facts give a somewhat more particular description of the structure of a Weyl-reducible
compact LCK manifold. Note first that the group L := Ct × G0 is normal in Sim(g0) × G,
since Ct is normal in Sim(g0) and G0 is normal in G, being its connected component. This
implies that Γ0 is a normal subgroup of π1(M). Indeed, let γ ∈ π1(M) ⊂ Sim(g0) × G and
τ ∈ Γ0 ⊂ L. Then u := γτγ−1 ∈ L. But Γ0 is a lattice in L, by Fact 3.7.6, so if u /∈ Γ0

then span< Γ0, u >⊂ π1(M) is not discrete in L. In particular, π1(M) cannot act properly
discontinuously on M̃ , which is a contradiction. So u ∈ Γ0, meaning that Γ0 is a normal
subgroup of π1(M). Denote by M̂ := M̃/Γ0. It is a Galois cover of M , of deck group
U := π1(M)/Γ0. By Fact 3.7.5, Γ0 ⊂ Isom(g̃), so g̃ descends to M̂ to a Kähler metric. Note
also that, by Fact 3.7.4 and Fact 3.7.6, T := L/Γ0 is a compact abelian Lie group, acting by
biholomorphisms on M̂ .

Theorem 3.7.7: A non-flat Weyl-reducible compact LCK manifold M does not admit any
exact LCK metric.

Proof. As we are in the third case of Theorem 3.7.2, we will keep the same notation as before.
So we can identify M̃ with Ct × N , where t > 1 and N is some Kähler manifold.

Suppose we have an exact LCK metric Ω = dη − θ ∧ η on M , and let ϕ : Ct × N → R be a
C∞-function so that θ = dϕ on M̃ . Denote by ρ : π1(M) → R the morphism γ 7→ γ∗ϕ − ϕ. By
Fact 3.7.5, Γ0 ⊂ Isom(g̃), but at the same time Γ0 ⊂ Isom(g), as Γ0 is a subgroup of π1(M).
Hence the function ϕ is Γ0-invariant and descends to M̂ to a function denoted also by ϕ.
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Now let µ be a constant volume form on T with
∫

T µ = 1, and define the T -invariant function

on M̂ :

ϕ′ :=

∫

T
h∗ϕµ(h).

The function ϕ′ has the same U -equivariance as ϕ, which can be seen as follows. As L was
normal in Sim(g0)×G, U acts on T by conjugation. For γ ∈ U and h ∈ T , let hγ := γ−1hγ ∈ T .
Then, for any γ ∈ U , we have:

γ∗ϕ′ =

∫

T
(hγ)∗ϕµ(h) =

∫

T
(γhγ)∗ϕµ(h) =

∫

T
h∗

γ(ϕ + ρ(γ))µ(hγ) = ϕ′ + ρ(γ).

In particular, θ′ := dϕ′ has the same de Rham cohomology class as θ, and is also T -invariant.
Let f be a C∞-function on M verifying θ′ = θ + df , and consider the LCK form Ωf := ef Ω.
Note that, if we let ηf := ef η, then Ωf = dηf − θ′ ∧ ηf , so Ωf is also an exact LCK metric.

Define now the T -invariant form on M̂ :

η′ :=

∫

T
h∗ηf µ(h).

Just as before, as ηf was U -invariant, also η′ is, and so descends to a well defined one-form on

M . Moreover, using the T -invariance of θ′, we have on M̂ :

dθ′η′ = d

∫

T
h∗ηf µ(h) − θ′ ∧

∫

T
h∗η′µ(h)

=

∫

T
h∗(dηf − θ′ ∧ ηf )µ(h)

=

∫

T
h∗Ωf µ(h) := Ω′.

Thus, Ω′ = dθ′η′ is an exact LCK metric on M , which is additionally T -invariant.

Now let us go back to M̃ . If we denote, as before, by T 0 and T 1 the pull-back of TCt and
TN to M̃ by the natural projections, we have:

T ∗M̃ = (T 0)∗ ⊕ (T 1)∗ ∧2 T ∗M̃ =
∧2(T 0)∗ ⊕ (T 0)∗ ⊗ (T 1)∗ ⊕∧2(T 1)∗.

With respect to these splittings, let us write d = d0 + d1 and η′ = η0 + η1. Note that,
as ϕ′ is T -invariant, it is in particular constant in the Ct-variables. This implies that
θ′ = dϕ′ ∈ C∞(M̃, (T 1)∗). Moreover, as η′ is T -invariant, we also have d0η0 = 0 = d0η1.
Therefore, we obtain that

Ω′ = d1η0 + d1η1 − θ′ ∧ η0 − θ′ ∧ η1

has no
∧2(T 0)∗-component, so it cannot be non-degenerate. This contradicts the fact that Ω′

was an LCK form and concludes the proof.

As a corollary, we obtain a claim made in [MO09]:

Corollary 3.7.8: Let (M, J, Ω) be a compact Vaisman manifold, or more generally, an
LCK manifold with potential, which is not a flat Hopf manifold. Then its Weyl connection is
irreducible.



Chapter 4

Toric LCK Manifolds

4.1 Introduction

In the present chapter, which is part of [Is17], we are interested in the incarnation of toric
geometry for locally conformally Kähler (LCK), or more generally, for locally conformally
symplectic (LCS) manifolds. The beginnings of this study can be traced down to the article
of I. Vaisman [Va85], where he argues that LCS manifolds are the natural phase spaces for
Hamiltonian mechanics and is the first to give a good notion of Hamiltonians in this context.

General Hamiltonian group actions and the corresponding reduction procedure in the LCS and
LCK context have been considered by S. Haller and T. Rybicki in [HR01], or by R. Gini, L.
Ornea and M. Parton in [GOP05]. But only recently were Hamiltonian actions of maximal tori
on LCK manifolds studied towards a classification, by M. Pilca in [Pi16] and by F. Madani,
A. Moroianu and M. Pilca in [MMP17]. The program is as follows: there exists a class of
LCK manifolds, called Vaisman manifolds, which is better understood via its many geometric
properties. In particular, the universal cover of a Vaisman manifold is a Kähler cone over a
Sasaki manifold. In [Pi16], toric Vaisman manifolds are studied and it is shown that for every
known existing equivalence of categories between them and some other class of manifolds, the
Hamiltonian toric action also is equivalent to a natural Hamiltonian toric action in the given
category. Then, in [MMP17], it is shown that the toric Sasaki manifold corresponding to a
toric Vaisman manifold is actually compact. But Sasaki manifolds are in particular contact,
and compact toric contact manifolds have been classified by E. Lerman in [Ler03].

On the other hand, in [MMP17] toric LCK manifolds of complex dimension 2 have been given
a classification, and it turns out that they all admit toric Vaisman metrics. Hence the question
was raised of whether this is always the case, regardless of dimension. The main result of the
chapter, Theorem 4.4.1, is an affirmative answer to it, and so, together with the above cited
papers, amounts to a classification of toric LCK manifolds as complex manifolds with a torus
action.

Remark that the universal cover of a LCK manifold is a non-compact Kähler manifold, so
one might want to use the theory of toric symplectic manifolds in order to prove the result.
However, in the non-compact world the theorems of convexity and connectedness for moment
maps of Atiyah and Guillemin-Sternberg fail, and one no longer has a characterisation of the
symplectic manifold in terms of the image of the moment map. As proven by E. Lerman and
S. Tolman in [KL15], classification results still are possible, but in terms of more complicated
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objects. Hence we chose to give a direct proof, not relying on the known facts from toric
symplectic geometry.

The proof occupies Section 4.4 and roughly goes as follows. First we remark that the
holomorphic action of the compact torus T on the manifold M naturally extends to a
holomorphic action of the complexified torus Tc. In particular, on the minimal Kähler cover
M̂ of M , Tc has a dense connected open orbit, since the T-action is Hamiltonian. This allows
us to view the deck group Γ of M̂ as a subgroup of Tc, and to extend it to a one-parameter
subgroup of Tc. However, there is no reason for this group to act conformally on the LCK
form, so at this point we have to construct, by averaging, a new LCK form, still compatible
with the T-action. Finally, we are able to explicitly write down a toric Vaisman metric in the
conformal class of the averaged metric.

The rest of the chapter is organised as follows: in Section 4.2 we introduce Hamiltonian group
actions in the LCS context, and we base our discussion on Section 2.5. Section 4.3 puts
together the results we use for our proof. In particular, we show that for a compact toric LCS
manifold, the action of the torus lifts to a Hamiltonian action on the minimal symplectic cover.
In Section 4.5 we discuss a few examples of toric LCK manifolds. In particular, we exhibit an
example showing that the class of compact toric LCS manifolds strictly contains the compact
toric LCK manifolds, unlike in the symplectic context.

4.2 Twisted Hamiltonian Vector Fields

In this section we study the corresponding notions of Hamiltonian vector field and Hamiltonian
group action to the LCS context. The definitions, as presented, were introduced by I.Vaisman
in [Va85], where one can also see a number of reasons for why these are the natural analogues
to the ones from the symplectic world. Let us fix in this section an LCS manifold (M, Ω, θ).

Definition 4.2.1: A vector field X ∈ Γ(TM) is called twisted Hamiltonian if there exits a
function f ∈ C∞(M) such that ιXΩ = dθf .

Remark 4.2.2: Although it is not apparent from the definition, the above notion is
actually conformally invariant. Indeed, if X = Xf is a twisted Hamiltonian vector field for
Ω with corresponding function f ∈ C∞(M) and Ω′ := euΩ is another conformal form with
corresponding Lee form θ′ = θ + du, then we have:

ιXΩ′ = eu(df − θf) = dθ′

(feu). (4.2.1)

As in the symplectic setting, an LCS form Ω defines on C∞(M) a Poisson bracket:

{f, g} := Ω(Xg, Xf ) ∀f, g ∈ C∞(M)

and by straightforward calculations it can be seen that X{f,g} = [Xf , Xg]. Hence the set of
twisted Hamiltonian vector fields

ham(M, [Ω]) := {X ∈ Γ(TM)|∃f ∈ C∞(M) ιXΩ = dθf}

forms a Lie subalgebra of Γ(TM). Actually, ham(M, [Ω]) ⊂ aut′(M, [Ω]), where we recall that
the latter algebra, defined in (2.5.2), is formed by the vector fields X verifying LXΩ = θ(X)Ω.
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Indeed, for X = Xf ∈ ham(M, [Ω]) we have:

LXf
Ω = ιXf

dΩ + dιXf
Ω = ιXf

(θ ∧ Ω) + d(df − θf) = θ(Xf )Ω. (4.2.2)

Remark 4.2.3: If π : M̂ → M is the minimal cover of deck group Γ and symplectic form
ΩK , the pull-back morphism π∗ establishes an isomorphism between ham(M, [Ω]) and the Lie
algebra of Γ-invariant Hamiltonian vector fields of the symplectic form on the minimal cover
ham(M̂, ΩK)Γ. Indeed, if X ∈ aut′(M, [Ω]) and X̂ = π∗X is the pull-back vector field to M̂ ,
by writing ΩK = e−ϕΩ we have, on M̂ :

ιX̂Ω = dθf ⇔ ιX̂ΩK = e−ϕ(df − fdϕ) = d(e−ϕf).

Definition 4.2.4: Let (M, [Ω]) be an LCS manifold. We say that an action of a Lie group
G on M is twisted Hamiltonian if g := Lie(G) ⊂ ham(M, [Ω]).

Remark 4.2.5: If the Lie group G is compact and acts conformally on [Ω], then we can find
an LCS form in the given conformal class that is G-invariant. Indeed, take any LCS form
Ω ∈ [Ω]. Then, for any g in G, we have g∗Ω = efg Ω, with fg ∈ C∞(M). Let dv be a normalised
Haar measure on G, and take h :=

∫
G fgdv(g), so that ΩG :=

∫
G g∗Ωdv(g) = ehΩ. Then

ΩG ∈ [Ω] is, by definition, a G-invariant LCS form with corresponding Lee form θG = dh + θ.

For Ω ∈ [Ω], define the map AΩ : C∞(M) → ham(M, [Ω]) by sending a function f to its
corresponding Hamiltonian vector field Xf with respect to Ω. If we consider on C∞(M) the
Lie algebra structure given by Ω, AΩ is a Lie algebra morphism. On the other hand, if Ω is
strict LCS, then dθ : C∞(M) → Ω1

M is injective by Lemma 2.2.9. Thus also AΩ is injective,
hence AΩ is actually an isomorphism of Lie algebras. Note that under a conformal change of
Ω, by (4.2.1) this map changes by the rule AeuΩ(f) = AΩ(euf).

Suppose that a compact Lie group G has a twisted Hamiltonian action on the LCS manifold
(M, [Ω]). As soon as we choose an LCS form Ω ∈ [Ω], there automatically exists a Lie algebra
morphism ρΩ : g → C∞(M) which is a section of AΩ. Indeed, as AΩ is an isomorphism of Lie
algebras, we simply have ρΩ = (AΩ)−1|g. In particular, we have a moment map µΩ : M → g∗

given by

< µΩ(x), X >= ρΩ(X)(x), x ∈ M, X ∈ g.

Remark 4.2.6: If (M, [Ω]) is an exact LCS manifold, and G is a compact Lie group that
acts conformally on it such that g = Lie(G) ⊂ aut′(M, [Ω]), then this action is automatically
twisted Hamiltonian. Indeed, as before, we can choose from the beginning, in the given
conformal class, Ω = dθη and θ G-invariant. Now define ηG :=

∫
G g∗ηdv(g). Then, since θ is

G-invariant, we have:

dθηG :=

∫

G
g∗(dη)dv(g) − θ ∧

∫

G
g∗ηdv(g) =

∫

G
g∗(dη − θ ∧ η)dv(g) =

∫

G
Ωdv(g) = Ω.

Hence, there exists a momentum map given by the G-invariant form −ηG. More precisely, we
have, for any X ∈ g:

ιXΩ = ιXdηG + θηG(X) = LXηG − d(ηG(X)) + θηG(X) = dθ(−ηG(X)).
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Remark 4.2.7: Let us note that, like in the symplectic case, the moment map µΩ is G-
equivariant if and only if Ω is G-invariant, which can be seen directly by computations,
following the same proof as in the symplectic case.

4.3 Torus actions on LCS manifolds

In this section we assemble mostly already known results concerning tori actions that we will
need in the sequel. In particular we will make use of the following well-known general result
about the orbits of smooth actions of compact Lie groups, which is a consequence of the slice
theorem. We refer the reader to [Bre] or to [DK] for a proof of the result and for a detailed
presentation of the subject.

Theorem 4.3.1: Let N be a connected smooth manifold and G be a compact Lie group which
acts effectively by diffeomorphisms on N . For any x ∈ N , denote by Gx := {g ∈ G|g.x = x}
the stabiliser of x in G, and let r = infx∈N dim Gx. Then Nr := {x ∈ N | dim Gx = r}, called
the set of principal G-orbits, is a dense connected open submanifold of N , and N − Nr is a
union of submanifolds of codimension ≥ 2. Moreover, if G is abelian and acts effectively on
N , then r = 0.

Remark 4.3.2: In general, if G = T is the compact torus and acts effectively on N as in the
above theorem, the stabilisers Gx need not be connected. However, if in addition we have
a symplectic form on N which is preserved by G and such that the orbits of the action are
isotropic, then indeed all the stabilisers are connected tori. As we will see soon, cf. Proposition
4.3.4, this hypothesis will be verified in our context. For a proof of the connectedness of
the stabilizers, see for instance [Ben02, Lemma 6.7], but we will also give a self-contained
argument of this in our context when the time comes. In particular, in this case, the set N0 is
acted upon freely.

Recall that, by Proposition 2.5.4, if (M, [Ω]) is an LCS manifold and a compact torus T acts
conformally it so that Lie(T) = t ⊂ aut′(M, [Ω]), then the action of T lifts to the minimal
cover M̂ . Thus we have:

Corollary 4.3.3: Any twisted Hamiltonian action of a compact torus T on an LCS manifold
(M, [Ω]) lifts to a Hamiltonian action of T to the minimal symplectic cover (M̂, ΩK).

Proof. Indeed, by (4.2.2), t sits in aut′(M, [Ω]), so the T-action lifts to M̂ . Moreover, the lifted
action is still Hamiltonian, since it admits the moment map µ̂ : M̂ → t∗, µ̂(x̂) = e−ϕ(x̂)µΩ(π(x̂)).
Remark that we chose a form Ω ∈ [Ω] in order to define µ̂, but actually µ̂ is conformally
invariant.

For a symplectic manifold, the maximal dimension of a torus acting symplectically and
effectively on it is bounded from above only by the dimension of the manifold and, moreover,
in many cases the orbits are not isotropic. The next proposition shows that things are different
in the LCS setting. A variant of this result can again be found as Proposition 3.9 in [MMP17].

Proposition 4.3.4: Suppose that a real torus Tm acts conformally end effectively on an LCS
manifold (M2n, [Ω]). Then m ≤ n + 1 and, moreover, if t = Lie(Tm) ⊂ aut′(M, [Ω]), then
m ≤ n and the orbits are isotropic with respect to any representative in [Ω].
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Proof. Denote by T ⊂ TM the distribution generated by Tm on M , and by T̂ the one on
M̂ . Suppose first that t ⊂ aut′(M, [Ω]). By (2.5.3) it follows that Γ(T̂ ) ⊂ aut(M̂, ΩK). Hence,
using the formula:

ι[X,Y ] = LXιY − ιY LX (4.3.1)

we have, for any X̂ and Ŷ in Γ(T̂ ):

0 = ι[X̂,Ŷ ]ΩK = LX̂ιŶ ΩK = dιX̂ιŶ ΩK + ιX̂dιŶ ΩK .

But we also have:
dιŶ ΩK = LŶ ΩK = 0

implying that d(ΩK(X̂, Ŷ )) = 0, or also that ΩK(X̂, Ŷ ) = c ∈ R. It follows that eϕc =
π∗(Ω(X, Y )), and since eϕ is not Γ-invariant, c = 0. Therefore, for any x̂ ∈ M̂ , T̂x̂ is isotropic
with respect to (ΩK)x̂, so T̂ and also T have maximal rank at most n.

On the other hand, let M0 ⊂ M be the dense open set composed by all the m-dimensional
orbits, as in Theorem 4.3.1. Then M0 × t injects into T |M0 as a vector subbundle in a natural
way, hence m ≤ n.

In the general case, if t 6⊂ aut′(M, [Ω]), then by (2.5.1) there exists C ∈ t − aut′(M, [Ω]) such
that l(C) = 1. Then we have a splitting t = RC ⊕ t′ with t′ ⊂ aut′(M, [Ω]) and by the above,
t′ has dimension at most n, hence the conclusion follows.

Definition 4.3.5: An LCS manifold (M2n, [Ω]) is called toric LCS if the maximal compact
torus Tn acts effectively in a twisted Hamiltonian way on it. An LCK manifold (M2n, J, [Ω]) is
called toric LCK if (M2n, [Ω]) is toric LCS with respect to an action of Tn which is moreover
holomorphic.

4.4 Proof of the Main Theorem

We are now ready to give the proof of the main result of the chapter:

Theorem 4.4.1: Let (M, J, [Ω]) be a compact toric LCK manifold. Then there exists an LCK
form Ω′ (possibly nonconformal to Ω) with respect to which the same action is still twisted
Hamiltonian, and such that the corresponding metric g′ is Vaisman.

Proof. Denote by T the n-dimensional compact torus that acts on the LCK manifold as
in the hypotheses of the theorem. Then the holomorphic action of T naturally extends to
a holomorphic action of the complexified torus Tc = (C∗)n on M . Indeed, on one hand
the induced inclusion homomorphism τ : t → aut(M, J) extends to a Lie algebra morphism
τ c : Lie(Tc) = t ⊗ C → aut(M, J) by:

τ c(ξ1 + iξ2) = τξ1 + Jτξ2 = Xξ1 + JXξ2 .

On the other hand, we have the Cartan decomposition Tc = T × (R>0)n and it ⊂ tc is
isomorphic to (R>0)n under the exponential map. Hence, if ξ1, . . . , ξn form a basis of the
Lie algebra t, then JXξ1 , . . . , JXξn

∈ aut(M, J), being complete vector fields, generate the
holomorphic action of (R>0)n on M .

Let us note that although the action of Tc might not be effective on M , the morphism τ c

is injective. Indeed, this is equivalent to saying that τ(t) ∩ Jτ(t) = {0} ⊂ aut(M, J). But
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this last assertion follows from the fact that the action of T is Hamiltonian with respect to
[Ω], and by choosing Ω ∈ [Ω] T-invariant, also the corresponding moment map µ : M → t∗ is
T-invariant. Therefore, for X ∈ τ(t) so that JX ∈ τ(t), we have:

0 ≤ Ω(X, JX) = ιJX(dµX − θµX) = LJXµX = 0

which implies that X = 0.

Let (M̂, Ĵ , ΩK) be the minimal Kähler cover of (M, J, [Ω]) of deck group Γ. The action of Tc

evidently lifts to M̂ , and T also acts in a Hamiltonian way with respect to ΩK . Denote by
µ̂ : M̂ → Rn the moment map of this action, and let M̂0 ⊂ M̂ be the corresponding connected
dense open set of principal T-orbits, as in Theorem 4.3.1. The group T acts freely on M̂0.
Indeed, let g ∈ T and x ∈ M̂0 with g.x = x. Then dxg is a C-linear automorphism of TxM̂ .
On the other hand, if we denote by tx ⊂ TxM̂ the image of the evaluation map evx : t → TxM̂ ,
ξ 7→ (τξ)x, then, because evx is injective, we have the decomposition TxM̂ ∼= tx ⊕ Jtx. As g is
a biholomorphism of M̂ , dxg preserves this decomposition. Moreover, since g ∈ T, it follows
that dxg|tx = id, and so dxg = id on the whole of TxM̂ . Finally, as g is an isometry of the
Kähler metric, it follows that g is the trivial element in T.

Fact 1: Tc preserves M̂0 and acts freely on it.

By the above, Tc = T × (R>0)n preserves M̂0 iff ∀u ∈ (R>0)n, ∀x̂ ∈ M̂0, ∀t ∈ T − {1},
tu.x̂ 6= u.x̂. But this is obvious since t and u commute.

To show that the action of Tc is free on M̂0, let g ∈ Tc and x̂ ∈ M̂0 with g.x̂ = x̂. With the
above remarks on Tc, we have g = tu with t ∈ T and u = exp(iξ), ξ ∈ t. By letting ŷ := t.x̂,
it follows that u.ŷ = x̂ ∈ Tx̂ = Tŷ. Let c : R → M̂ be the curve c(s) = exp(isξ).ŷ. Since µ̂ξ is
constant on the orbits of T, it follows that:

µ̂ξ(c(0)) = µ̂ξ(ŷ) = µ̂ξ(x̂) = µ̂ξ(c(1)). (4.4.1)

On the other hand, the vector field τ(iξ) = JXξ is, by definition, the gradient of the
Hamiltonian µ̂ξ. So, if ξ 6= 0, then µ̂ξ would be strictly increasing along c, but this contradicts
(4.4.1). Thus ξ = 0 and we have t.x̂ = x̂, implying again that t is the trivial element in T,
hence g is the trivial element in Tc.

Fact 2: Tc acts transitively on M̂0.

For any x̂ ∈ M̂0, the map Tc → M̂0, g 7→ g.x̂ is a holomorphic open embedding. Therefore,
the connected open set M̂0 is a union of disjoint open orbits of Tc, hence it must contain (and
be equal to) a sole orbit.

In conclusion, for any choice of a point x̂0 ∈ M̂0 we have a Tc-equivariant biholomorphism
Fx̂0 : (C∗)n → M̂0, g 7→ g.x̂0, where (C∗)n acts on itself by (left) multiplication. On the other
hand, Γ preserves M̂0, hence we can view Γ as a subgroup of biholomorphisms of (C∗)n acting
freely.

Fact 3: Γ ⊂ Tc.

Let ŷ = Fx̂0(g), with g ∈ Tc, be any element of M̂0 and let γ ∈ Γ. Denote by gγ ∈ Tc the
element verifying γ(x̂0) = Fx̂0(gγ). Since the action of Tc on M̂ is the lift of the action of Tc

on M , Γ commutes with Tc. We thus have:

γ(ŷ) = γ(g.x̂0) = g.γ(x̂0) = g.gγ .x̂0 = gγ .ŷ

implying that γ = gγ ∈ Tc.
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Remark that, if gj
γ ∈ C∗ are the components of gγ , then for at least one 1 ≤ j ≤ n, |gj

γ | 6= 1.
Otherwise we would have Γ ⊂ T and so T would not act effectively on M .

Let now γ ∈ Γ ∼= Zk be a nontrivial primitive element and denote by Γ′ the subgroup generated
by γ. With the same notations as before, we can extend the action of Γ′ on M̂0

∼= (C∗)n to a
holomorphic action of R on M̂0. Indeed, if γ expresses, as an automorphism of (C∗)n, as:

γ(z1, . . . , zn) = (α1z1, . . . , αnzn),

with αj = ρjeiθj in polar coordinates, then define the one-parameter group:

R ∋ t 7→ Φt ∈ Aut((C∗)n)

Φt(z1, . . . , zn) = (ρt
1eitθ1z1, . . . , ρt

neitθnzn).

Remark that R ∼= {Φt}t∈R is a subgroup of Tc ⊂ Aut((C∗)n), hence its action on M̂0 actually
extends to the whole of M̂ . Moreover, this also implies that Γ commutes with R, so the
action of R descends on M to an effective action of R/Γ′ ∼= S1. Let C ∈ Γ(TM) be the real
holomorphic vector field generating this action.

Lemma 4.4.2: There exists on M an LCK form ΩC compatible with the complex structure J ,
with corresponding Lee form θC , so that C preserves both ΩC and θC . Moreover, the given
action of T is still Hamiltonian with respect to this new form.

Proof. For any t ∈ R let ft := Φ∗
t ϕ − ϕ ∈ C∞(M̂) and define h :=

∫ 1
0 ftdt ∈ C∞(M̂). Note

that the functions {ft}t∈R are Γ-invariant:

δ∗ft = Φ∗
t δ∗ϕ − δ∗ϕ = Φ∗

t (ϕ + ρ(δ)) − (ϕ + ρ(δ)) = ft, ∀δ ∈ Γ (4.4.2)

hence so is h and they all descend to M . Moreover, since t ⊂ ker θ, ϕ is T-invariant. As T

commutes with {Φt}t∈R, it follows that also the function h is T-invariant.

Let the new Lee form be:

θC :=

∫

R/Γ′

Φ∗
t θdt = d

∫ 1

0
Φ∗

t ϕdt = d(ϕ + h) = θ + dh. (4.4.3)

By definition, it is C-invariant, but also T-invariant since t commutes with C.

Let now Ωh := ehΩ ∈ Ω2(M) and define the new LCK form as:

ΩC :=

∫

R/Γ′

Φ∗
t Ωhdt.

Since dΩh = θC ∧ Ωh by (4.4.3), we see that the Lee form of ΩC is indeed θC :

dΩC =

∫

R/Γ′

Φ∗
t (dΩh)dt =

∫

R/Γ′

Φ∗
t θC ∧ Φ∗

t Ωhdt =

=θC ∧
∫

R/Γ′

Φ∗
t Ωhdt = θC ∧ ΩC .

Again, the C-invariance of ΩC follows from its definition. Moreover, since h is T-invariant and
T commutes with R/Γ′, also ΩC is T-invariant.
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Finally, LCθC = 0 implies that θC(C) is constant. On the other hand θC(C) = LCϕ, and
since ϕ is not even Γ-invariant, it follows that θC(C) = λ 6= 0. Hence, by Lemma 2.5.2, the

form η = − 1
λ ιCΩC ∈ Ω1

M verifies ΩC = dθC
η. Moreover, η is automatically T-invariant, since

both C and ΩC are. Therefore, cf. Remark 4.2.6, we have a moment map for the action of T
on (M, J, ΩC) given by µC(X) = −η(X), implying that the action is still Hamiltonian.

Lemma 4.4.3: The minimal cover corresponding to the form ΩC is M̂ .

Proof. Let pC : M̂C → M be the minimal Kähler cover corresponding to ΩC with deck group
ΓC , and denote by p : M̂ → M the projection corresponding to Ω. We have pΦt = Φtp for
any t ∈ R, by making no distinction of notation between objects on M and on M̂ . We see, by
(4.4.3) in Lemma 4.4.2, that p∗θC = dϕC is exact, where ϕC = ϕ + p∗h. So M̂ is a covering
of M̂C and ΓC is a subgroup of Γ′. On the other hand, by the same lemma, h is Γ-invariant,
so for any δ ∈ Γ′ we have δ∗ϕC = ρ(δ) + ϕC . Thus no element of Γ′ preserves ϕC , therefore
M̂C = M̂ .

We also give here a lemma since it follows directly from the above considerations, but we will
not make use of it in the sequel.

Lemma 4.4.4: The rank of Γ is 1.

Proof. With the same notations as before, suppose there existed some γ′ ∈ Γ independent
(over Z) of γ. Then, in the same way, γ′ would generate another real holomorphic vector
field C ′ ∈ Γ(TM), independent of C. Indeed, if this was not the case, then suppose we have
C = aC ′ with a ∈ R. Then the corresponding flows would verify Φt

C = Φt
aC′ = Φat

C′ . In
particular, for any m ∈ Z we would have that Φm

C = Φam
C′ ∈ Γ. From the independence of γ

and γ′ it follows that a 6∈ Q, so the additive subgroup Λ generated by 1 and a in (R, +) is not
discrete. Now, if we fix some x̂ ∈ M̂ , the map F : R → M̂ , t 7→ Φt

C′(x̂) is continuous, so also
F (Λ) ⊂ M̂ is not discrete. But F (Λ) is contained in the fiber of the covering map through x̂
which must be discrete, hence we have a contradiction.

Now let Ω′ be the LCK form obtained by averaging ΩC with respect to C ′, as in Lemma 4.4.2.
We would thus have an effective holomorphic action of Tn+2 on M generated by t⊕RC ⊕RC ′,
which is moreover conformal with respect to Ω′. But by Proposition 4.3.4 this is impossible.

From now on, to simplify notation, denote by Ω and by θ the forms ΩC and θC obtained in
Lemma 4.4.2. Let πit : tc → it and πt : tc → t be the natural projections, and consider the
vector field B′ := πit(C) ∈ it. Since t ⊂ ker θ, we have θ(B′) = θ(C) = λ, so let B = − 1

λB′ ∈ it.
Moreover, since Jπit = πtJ , we also have JB = − 1

λπt(JC) ∈ t. Since B is a difference of
vector fields preserving Ω, it also preserves Ω and so does JB, being in t.

Consider, on the minimal cover M̂ , the Kähler form ΩK = e−ϕΩ with corresponding metric
g0, where dϕ = θ. We have:

LBΩK = −θ(B)ΩK = ΩK and LJBΩK = 0.

Let η0 := ιBΩK and f0 := ‖B‖2
g0

= η0(JB). It follows, by the above:

dη0 = LBΩK = ΩK .

Since JB commutes with B and preserves ΩK , it also preserves η0. Hence we have:

0 = LJBη0 = dιJBη0 + ιJBdη0 = df0 + Jη0
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implying:

η0 = Jdf0 and ΩK = dη0 = ddcf0. (4.4.4)

Now, since both B and JB are Γ-invariant, we have, for any γ ∈ Γ:

γ∗f0 = (γ∗ΩK)(B, JB) = e−ρ(γ)f0

hence f0 is a Γ-equivariant function, which is moreover strictly positive. Therefore,

Ω′ :=
1

f0
ddcf0 (4.4.5)

is an LCK form on M , in the same conformal class as Ω, with corresponding Lee form
θ′ = −d ln f0.

Finally, we have, by (4.4.4):

ιJBΩ′ =
1

f0
Jη0 = − 1

f0
df0 = θ′

which implies that −B is the fundamental vector field (θ′)#. In particular, since B is both
holomorphic and an infinitesimal automorphism of Ω′, it is also Killing, so:

∇θ′ = dθ′ = 0 (4.4.6)

implying that (Ω′, θ′) is the Vaisman structure that we have been looking for. This ends the
proof of the theorem.

Now, as a consequence of the main result, of [MMP17, Proposition 5.4] and of [Da78, Theo-
rem 9.1] we have:

Corollary 4.4.5: Let (M, J, [Ω]) be a toric LCK manifold, strict or not. If (M, J) is Kählerian,
then M is simply connected, and in particular b1(M), the first Betti number of M , is 0. If it
is not strict, then b1(M) = 1.

Remark 4.4.6: Lemma 4.4.4 can also be seen, a posteriori, as a consequence of a result of
[MMP17, Proposition 5.4], where it is shown that a compact toric Vaisman manifold has first
Betti number 1.

4.5 Examples

As we have seen, all examples of toric LCK manifolds are of Vaisman type. In complex
dimension 2, by [MMP17, Theorem 7.2], any toric LCK manifold is a diagonal Hopf surface.
More generally, any diagonal Hopf manifold is a toric manifold:

Example 4.5.1: Let n ≥ 2 and let λ1, . . . , λn ∈ C be of module smaller than 1. Recall from
Section 2.6.1 that a diagonal Hopf manifold is Hλ := Cn − {0}/(z1, . . . , zn) ∼ (λ1z1, . . . , λnzn).
We have an R-action on Cn − {0} given by Φt(z) = (λt

1z1, . . . , λt
nzn), well-defined after

writing each λi in polar coordinates, which allows us to define a real-valued function ϕ
on Cn − {0}. For each z ∈ Cn − {0}, ϕ(z) is the unique solution s ∈ R to the equation
Φ−s(z) ∈ S := {z ∈ Cn − {0}||z|2 = 1}. With this, one constructs a Vaisman metric on the
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Hopf manifold given by Ω = eϕddce−ϕ of Lee form θ = dϕ. On the other hand, Tn acts in a
Hamiltonian way on the Kähler manifold (Cn − {0}, ΩK = ddce−ϕ) by:

t.z = (eit1z1, . . . , eitnzn), t = (t1, . . . , tn) ∈ Tn.

The fundamental vector fields of this action are given by Xj = izj
∂

∂zj
− izj

∂
∂zj

, and the moment

map is µ̂Xj
:= e−ϕdcϕ(Xj), 1 ≤ j ≤ n. Note that, as Φt commutes with the Tn-action, the

function ϕ is constant on the orbits of the torus, and the torus action descends to an effective
action of Tn on Hλ. Moreover, the action is Hamiltonian, with moment map µXj

:= Jθ(Xj).

Example 4.5.2: The following is an example from [MMO17], see also Example 3.2.5, and
gives a toric LCK manifold (M, Ω,T) which is not conformal to a Vaisman metric, showing that
the formulation of Theorem 4.4.1 is sharp. Let λ ∈ C with |λ| 6= 0, 1 and let (Hλ, Ω,T) be the
toric diagonal Hopf manifold with the Vaisman metric Ω = −dJθ + θ ∧ Jθ constructed in the
above example. Consider the Γλ-invariant function on Cn − {0} given by f(z) = 1

2 sin(2π ln |z|
ln |λ|).

As θ = −2d ln |z|, f verifies df ∧ θ = 0. Moreover, as f > −1 everywhere, one can easily check
that Ω′ = Ω + fθ ∧ Jθ is a strictly positive form, and so defines an LCK metric on Hλ with
Lee form θ′ = (1 + f)θ. Moreover, as f is T-invariant, the new LCK form Ω′ is also T-invariant
and we have t ⊂ ker θ′. Thus, by Remark 4.2.6, (Hλ, Ω′,T) is a toric LCK manifold. On the
other hand, by Lemma 3.2.6, Ω′ is not conformal to any Vaisman metric.

Let us note that in this example, the two LCK metrics have the same moment map: µ = µ′ =
Jθ|t, because we have Ω = dθ(−Jθ) and Ω′ = dθ′(−Jθ). On the minimal cover, with respect
to the basis X1 . . . Xn of t defined in the first example, we will then have that the moment
map of the Kähler metric corresponding to the Vaisman case is given by:

µ̂ : Cn − {0} → Rn, µ̂(z) = −2(|z1|2, . . . , |zn|2).

On the other hand, as θ′ = dϕ′, with

ϕ′(z) = − ln |z|2 +
1

c
cos(c ln |z|) ∈ C∞(Cn − {0},R), c =

2π

ln |λ|

we have the second Kähler moment map corresponding to Ω′
K :

µ̂′ : Cn − {0} → Rn, µ̂′(z) = −2 exp

(
cos(c ln |z|)

c

)
(|z1|2, . . . , |zn|2).

In particular, although µ̂ 6= µ̂′, we have

Im µ̂ = Im µ̂′ = {(x1, . . . , xn) ∈ Rn − {(0, . . . , 0)}|x1 ≤ 0, . . . , xn ≤ 0}.

This shows two things: the moment image (and even the moment map itself) of the LCK
metric does not determine the LCS form. Moreover, neither does the moment image of the
corresponding Kähler metric determine the LCS form.

Example 4.5.3: Following [Pi16, Theorem 5.1], given a compact toric Hodge manifold
with moment map (N, ωN ,Tn−1, µN ) of complex dimension n − 1 and a complex number λ
with |λ| 6= 0, 1, one can uniquely associate to it an n-dimensional toric Vaisman manifold
(M, Ω,Tn, µ). The manifold M is given as in Example 2.6.3, namely if (L, h) is the positive
Hermitian line bundle over N associated with ωN , then M = L∗ − 0N /Γλ where Γλ

∼= Z is
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the group generated by the dilatation by λ along the fiber of L∗ − 0N → N . The Reeb vector
field A of this metric is a twisted Hamiltonian vector field with closed orbits, so generates
an S1-action on M . Consider the Chern connection on (L∗, hL∗), and endow the C∗-principal
bundle π : P := L∗ − 0N → N with the induced connection. For any infinitesimal generator
X of the Tn−1-action on N , we can consider its horizontal lift X̂ to P . The vector field
X ′ := X̂ − π∗µN (X)A is Γλ-invariant, twisted Hamiltonian and has closed orbits. Moreover,
A commutes with all vector fields X ′ constructed in this way. Hence, all these vector fields
together with A generate a Hamiltonian action of Tn on M . The corresponding moment map
µ : M → Lie(Tn) is given as follows: µ(X ′) = p∗µN (X) for X ∈ Lie(Tn) and µ(A) = 1, where
p : M → N is the natural map. In particular, the image of the moment map µ(Lie(Tn))
sits in the affine hyperplane H := {α ∈ Lie(Tn)∗|α(A) = 1} and is a Delzant polytope in
H ∼= Lie(Tn−1)∗.

Remark 4.5.4: In the symplectic setting it follows, by using the Delzant classification, that
every compact toric symplectic manifold is in fact a toric Kähler manifold, i.e. there exists
an integrable complex structure, preserved by the torus action, compatible with the given
symplectic form. It turns out that this does not happen in the LCS setting, i.e. a toric LCS
manifold is not necessarily toric LCK. We illustrate this by the following simple example.

Example 4.5.5: Consider on the compact manifold M = (S1)4 the action of T = T2 given
by:

(eit1 , eit2).(eiθ1 , eiθ2 , eiθ3 , eiθ4) = (ei(t1+θ1), ei(t2+θ2), eiθ3 , eiθ4)

where θ1, . . . , θ4 and t1, t2 are the polar coordinates on M , respectively T , given by the
exponential map exp : R → S1, θ 7→ eiθ. Let ν be the volume form on S1 such that
exp∗ ν = dθ, let pj : M → S1 be the canonical projection on the j-th factor of M and let
νj := p∗

jν, where j ∈ {1, 2, 3, 4}. Define the T -invariant 1-forms on M :

θ := ν4 and η := sin θ3ν1 + cos θ3ν2.

Then we have:

dη = cos θ3ν3 ∧ ν1 − sin θ3ν3 ∧ ν2 and dη ∧ η = ν3 ∧ ν1 ∧ ν2

implying that η induces a contact form on p∗
1S1 × p∗

2S1 × p∗
3S1, hence Ω = dθη ∈ Ω2(M) is

a T -invariant LCS form on M . Moreover, clearly Lie(T ) ⊂ ker θ, so Lie(T ) ⊂ aut′(M, [Ω]).
Thus, by Remark 4.2.6, the T -invariant form −η gives a moment map for the T -action, hence
(M, [Ω]) is a toric LCS manifold. On the other hand, b1(M) = 4 /∈ {0, 1}, so by Corollary
4.4.5 M cannot admit a toric LCK structure (strict or not).

4.6 Final remarks and questions

During the proof of Theorem 4.4.1, we have constructed explicitly a projection corresponding
to a complex manifold (Mn, J,Tn) which is toric LCK for some LCK structure:

P : {toric LCK structure ([Ω], [θ]dR)} → {Tn − invariant toric Vaisman structure (Ω′, θ′)}.

Recall that the extension of H1(M,Z) ⊂ R ⊂ Aut(M̂, J) on M̂ induces an effective holomorphic
action of S1 on M which commutes with Tn but is not part of the torus. As the Lee vector
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field of any Vaisman metric belongs to Lie(Tn × S1), but not to Lie(Tn), any Tn-invariant
Vaisman metric is also S1-invariant, so P is indeed a projection.

Question 4.6.1: How big is the pre-image of a point of P? Can one express all toric LCK
metrics in terms of toric Vaisman metrics?

Concerning the image of the moment map of a toric LCK metric, we can say the following.
Fix a toric Vaisman metric (M, J, Ω, θ,Tn) which is Tn-invariant, with moment map µ. Let
µ̂ = e−ϕµ be the moment map of the Kähler metric on M̂ , where θ = dϕ. Then S := ϕ−1(0)
is a compact toric Sasaki manifold, and letting Φt denote the R-action on M̂ which extends
the deck group action, we have an R-equivariant diffeomorphism S × R → M̂ , (y, t) → Φt(y),
descending to a diffeomorphism S × S1 ∼= M .

Now µ is Φt-invariant by the above discussion, while ρ(t) := Φ∗
t ϕ−ϕ ∈ R gives a diffeomorphism

of R. Thus we have, for any (y, t) ∈ S × R:

µ̂(y, t) = e−ϕ(y)−ρ(t)µ(Φt(y)) = e−ρ(t)µ(y)

so P := µ̂(S) = µ(S) = µ(M). But, by [Ler03], P is a convex polytope and C := µ̂(M̂) ∪ {0}
is a good cone over P . Thus, if A denotes the Reeb vector field of Ω, µ(P ) is a convex polytope
with non-empty interior in the hyperplane HA := {l ∈ t∗|l(A) = 1} ⊂ t∗. It is a Delzant
polytope in HA if the foliation generated by A and B is strongly regular, i.e. if M fibers
holomorphically over a smooth Kähler manifold in elliptic curves.

As explained in the introduction, by the results of [Ler03] and [MSY06], any compact toric
Vaisman manifold can be recovered from the image of the moment map of the corresponding
Kähler metric. It follows then that it can also be recovered from the image of the LCK moment
map. However, as we have seen in Example 4.5.2, the same cannot be said about an arbitrary
LCK metric.

Question 4.6.2: Given a toric LCK metric on M , what happens to the image of the moment
map of the LCK/ Kähler metric when we apply P? Are these necessarily moment images
corresponding to Vaisman metrics?

Finally, let us note that Example 4.5.5 of a toric LCS manifold admitting no compatible toric
LCK structure is pathological: the torus action we consider is free, which cannot be the case
for a toric LCK manifold, and the manifold we consider admits symplectic and even Kähler
structures, although not toric. We could then ask:

Question 4.6.3: Is there a simple characterisation of toric LCS manifolds which admit
compatible toric LCK structures?

At least for the LCS manifolds of the first kind (cf. [Va85]), this question should not be too
difficult, via Lerman’s classification of toric contact manifolds.



Chapter 5

Cohomological properties of OT
manifolds

5.1 Introduction

This chapter presents the results of the paper [IO17], which is in collaboration with Alexandra
Otiman. It is concerned with the cohomological properties of Oeljeklaus-Toma manifolds.
These manifolds were introduced by K. Oeljeklaus and M. Toma in [OT05], and are quotients
of Hs × Ct by discrete groups of affine transformations arising from a number field K and
a particular choice of a subgroup of units U of K. They are commonly referred to as OT
manifolds of type (s, t), and denoted by M(K, U). They have been of particular interest for
LCK geometry. When they were introduced, OT manifolds of type (s, 1) were shown to carry
LCK metrics and they constituted the first examples of manifolds to disprove a conjecture of
Vaisman, according to which the odd index Betti numbers of an LCK manifold should be odd.

We start by presenting the construction of OT manifolds and some of their metric properties,
in Section 5.2. Moreover, in this section we determine the set of all the possible Lee classes of
LCK metrics on OT manifolds (Proposition 5.2.2).

Next, after some technical preliminaries, we turn to the computation of the de Rham co-
homology algebra (Theorem 5.4.1) and of the twisted cohomology (Theorem 5.6.1) of any
OT manifold. This is done by two different approaches, one by reducing to the invariant
cohomology with respect to a certain compact Lie group, in Section 5.4, and the other one
using the Leray-Serre spectral sequence, in Section 5.5. This last approach is also used to
prove Theorem 5.6.1 in Section 5.6.

The result we obtain is given in terms of numerical invariants coming from U ⊂ K. We
specialise it, in the last section, to OT manifolds of LCK type (Proposition 5.7.4, Proposition
5.7.5), and for some OT manifolds associated to a certain family of polynomials (Example
5.7.3). Additionally, we determine all the possible twisted classes of LCK forms on OT
manifolds (Corollary 5.7.8), generalizing a result of [O16] showing that this class cannot vanish.
They all turn out to induce a non-degenerate Lefschetz map in cohomology. A final application
(Proposition 5.7.10) concerns the vanishing of certain real Chern classes of vector bundles on
OT manifolds.

67
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5.2 Oeljeklaus-Toma manifolds

5.2.1 The construction

We start by recalling the construction of Oeljeklaus-Toma manifolds, following [OT05], and
some of their properties that we will need.

Given two positive numbers s, t > 0, an OT manifold X of type (s, t) is a compact quotient
of X̃ := Hs × Ct by a discrete group Γ of rank 2(s + t) arising from a number field. More
specifically, let m = s + t and n = 2t + s and let K be a number field with n embeddings in
C, s of them real and 2t complex conjugate. We shall denote these embeddings by σ1, . . . , σn,
with the convention that the first s are real and σs+t+i = σs+i, for any 1 ≤ i ≤ t. The ring
of integers of K, OK , which as a Z-module is free of rank n, acts on Hs × Ct via the first
m embeddings. If (w, z) = (w1, . . . , ws, z1, . . . , zt) denote the holomorphic coordinates on
Hs × Ct, the action is given by translations:

Ta(w, z) = (w1 + σ1(a), . . . , ws + σs(a), z1 + σs+1(a), . . . zt + σs+t(a)), a ∈ OK .

It is a free and proper action, and as a smooth manifold, the quotient is given by:

X̂ := Hs × Ct/OK
∼= (R>0)s × Tn.

Next, one defines inside the group of units O∗
K the subgroup of positive units O∗,+

K as:

O∗,+
K = {u ∈ O∗

K | σi(u) > 0, 1 ≤ i ≤ s}.

This group acts on Hs × Ct by dilatations as:

Ru(w, z) = (σ1(u)w1, . . . , σs(u)ws, σs+1(u)z1, . . . , σs+t(u)zt), u ∈ O∗,+
K .

This action is free, but not properly discontinuous. However, as shown in [OT05], one can
choose a rank s subgroup U in O∗,+

K which embeds as a lattice in (R>0)s via:

j : U → (R>0)s

u 7→ (σ1(u), . . . , σs(u)).

We will denote by UH
∼= U the lattice j(U). In particular, U acts properly discontinuously on

Hs × Ct. Clearly, U also acts on OK , so that one gets a free, properly discontinuous action of
the semi-direct product Γ := U ⋊OK on Hs ×Ct. The quotient of this action X := Hs ×Ct/Γ,
denoted by X(K, U), is the Oeljeklaus-Toma manifold of type (s, t) associated to K and U .

Since the action of Γ on X̃ is holomorphic, X is a complex manifold. Moreover, it is compact,
because it has in fact the structure of a torus fiber bundle over another torus:

Tn → X(K, U)
π−→ Ts. (5.2.1)

Indeed, this last assertion can be seen as follows: the natural projection

π̂ : X̂ = (R>0)s × Tn → (R>0)s

is a trivial Tn-fiber bundle over (R>0)s. The group U acts on X̂, but also on (R>0)s by
translations via j, and π̂ is equivariant for this action. As X = X̂/U and Ts = (R>0)s/U , π̂
descends to the Tn-fiber bundle (5.2.1).
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For later use, it is important to note that π is a flat fiber bundle, meaning that it has locally
constant transition functions. This is equivalent to saying that it is given by a representation
R : π1(Ts) = UH → Diff(Tn), u 7→ Φu. We can make R explicit, after identifying UH with U .
Recalling that Tn = Rs × Ct/OK and denoting by r = (r1, . . . , rs) the real coordinates on Rs,
for any u ∈ U , Φu is given by:

Φu((r, z) mod OK) = (σ1(u)r1, . . . , σs(u)rs, σs+1(u)z1, . . . , σm(u)zt)) mod OK (5.2.2)

which is clearly well defined, since UOK ⊂ OK .

The tangent bundle of X̂ splits smoothly as TX̂ = E ⊕ V , where E is the pullback of T (R>0)s

and V is the pullback of TTn on X̂ by the natural projections. These bundles are trivial,
and for later use we will need to fix a global frame of V ∗ ⊗ C over X̂. If z1, . . . , zt denote
the holomorphic coordinates on Ct and w1 = r1 + iv1, . . . , ws = rs + ivs are holomorphic
coordinates on Hs, also viewed as local coordinates on X̂, we choose as a basis of C∞(X̂, V ∗⊗C)
over C∞(X̂,C):

ej = drj for 1 ≤ j ≤ s, es+j = dzj and es+t+j = dzj for 1 ≤ j ≤ t.

In particular, for any 0 ≤ l ≤ n, a frame for
∧l V ∗ ⊗ C is given by:

{eI = ei1 ∧ . . . ∧ eil
|I = (0 < i1 < . . . < il ≤ n)}. (5.2.3)

For any multi-index I = (0 < i1 < . . . < il ≤ n), let us denote by σI : U → C∗ the
representation:

σI(u) = σi1(u) · · · σil
(u). (5.2.4)

Then an element u ∈ U acts on eI by u∗eI = σI(u)eI .

5.2.2 Metric properties

It was shown in [OT05] that OT manifolds of type (s, 1) admit an LCK metric:

Ω = v1 · · · vs(
i

2
dz ∧ dz + ddc(v1 · · · vs)−1) (5.2.5)

with Lee form θ =
∑s

k=1 d ln vk. Note that this metric can also be written as

Ω = ω0 + dθ(−Jθ)

with ω0 = 2v1 · · · vsidz ∧ dz. In this way, it can be easily seen that the corresponding Lee
vector field, defined by ιBΩ = Jθ, is given by B = 1

s+1

∑s
k=1 vk

∂
∂vk

. In particular, it is of

constant norm s
s+1 . At the same time, Ω is Gauduchon, which is equivalent to ddc(Ωm−1) = 0.

Indeed, on the one hand we always have

ddc(Ωm−1) = (m − 1)(dJθ + (m − 1)θ ∧ Jθ) ∧ Ωm−1.

Let us denote by ωH := dθ(−Jθ). Then we have

Ωm−1 = Ωs = ωs
H + sωs−1

H ∧ ω0 ωs−1
H = (−dJθ)s−1 + (s − 1)(−dJθ)s−2 ∧ θ ∧ Jθ.
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Moreover, we compute:

(−dJθ)s = s!(v1 · · · vs)−2dr1 ∧ dv1 ∧ . . . ∧ drs ∧ dvs = (−dJθ)s−1θ ∧ Jθ.

Thus we find:

1

s2
ddc(Ωm−1) = (dJθ ∧ ωs−1

H + sθ ∧ Jθ ∧ ωs−1
H ) ∧ ω0

= (−(−dJθ)s − (s − 1)(−dJθ)s−1 ∧ θ ∧ Jθ + s(−dJθ)s−1 ∧ θ ∧ Jθ) ∧ ω0

= (−(−dJθ)s + (−dJθ)s−1 ∧ θ ∧ Jθ) ∧ ω0 = 0.

Thus we have found:

Lemma 5.2.1: The LCK metric given in (5.2.5) on an OT manifold of type (s, 1) is Gaudu-
chon, and its Lee vector field has constant norm.

On the other hand, by [OT05, Proposition 2.5], OT manifolds admit no holomorphic vector
fields. In particular, they cannnot admit Vaisman metrics. In fact, in [O16] it was shown that
they do not even admit exact LCK metrics.

In general, the existence of an LCK metric on an OT manifold X(K, U) of type (s, t) is
equivalent to a condition on (K, U), namely:

r(u)2 := |σs+1(u)|2 = . . . = |σs+t(u)|2 = (σ1(u) · · · σs(u))−1/t, u ∈ U (5.2.6)

as shown in [OT05] and in [Du14]. It is still unknown whether examples exist with t > 1, but
many of the pairs (s, t) have been eliminated from the discussion in [Vu14] and [Du14].

Next we address the problem of determining the set of Lee classes on any OT manifold. This
generalizes the result in [O16], where it is proven that the set of possible Lee classes of LCK
metrics on Inoue surfaces of type S0, i.e. OT manifolds of type (1, 1), has only one element.

Proposition 5.2.2: Let X = X(K, U) be an OT manifold of type (s, t). There exists at most
one Lee class of an LCK metric on X, namely the one represented by the U ⋉ OK-invariant
form on Hs × Ct, θ = 1

t d ln(
∏s

k=1 vk).

Proof. First note that, as H1(X,R) ∼= Hom(π1(X),R), we can identify a de Rham class
[η]dR with a group morphism τ : π1(X) → R. The corresponding morphism τ is precisely
the automorphy representation: if η = dϕ on the universal cover X̃, then τ is given by
τ(γ) = γ∗ϕ − ϕ, for any γ ∈ π1(X).

Moreover, if X admits some LCK metric (Ω, η) with η = dϕ on X̃, and if ΩK := e−ϕΩ is the
corresponding Kähler form on X̃, then τ = τ[η] is also determined by: γ∗ΩK = e−τ(γ)ΩK for

any γ ∈ π1(X). Hence, it suffices to show that for any Kähler metric ΩK on X̃ inducing an
LCK metric on X, the automorphy representation determined by ΩK is precisely the one
corresponding to θ, namely:

τθ(a) = 0 for a ∈ OK

τθ(u) =
1

t

s∑

k=1

ln σk(u) for u ∈ U.

Let now ΩK be a Kähler metric on X̃ on which π1(X) acts by homotheties, and denote by τ
the corresponding representation described before. We recall that under the abelianisation
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morphism U ⋉ OK → H1(X,Z), OK maps to a finite group. This implies that OK will act by
isometries on ΩK . Hence, the form ΩK descends to the manifold X̂ := Hs × Ct/OK . But the
torus T := R2t+s/OK acts holomorphically by translations on X̂, so we can average ΩK over
T to get a new T-invariant Kähler form on X̂:

Ω′
K :=

∫

T
a∗ΩKµ(a)

where µ is the constant volume form on T with
∫
T µ = 1. The automorphy of Ω′

K is also τ , as
for any u ∈ U we have:

u∗Ω′
K =

∫

T
(au)∗ΩKµ(a) =

∫

T
(ucu(a))∗ΩKµ(a) =

∫

T
c∗

u(a)(e−τ(u)ΩK)µ(cu(a)) = e−τ(u)Ω′
K .

Now write Ω′
K = Ω0 + Ω01 + Ω1 with respect to the splitting

∧2
X̃

=
∧2

Ct ⊕(
∧1

Ct ⊗∧1
Hs) ⊕∧2

Hs (5.2.7)

and also split d = d0 + d1, with d0 being the differentiation with respect to the Ct-variables
and d1, the Hs-variables. The Ct-invariance of Ω′

K implies that d0Ω′
K = 0. The condition

dΩ′
K = 0 then gives, on the

∧2
Ct ⊗∧1

Hs-component, d1Ω0 = 0. So Ω0 =
∑

ij fijdzi ∧ dzj , with
fij ∈ C for any 1 ≤ i, j ≤ t.

Now, if u ∈ U , u∗Ω′
K = e−τ(u)Ω′

K implies that:

fijσs+i(u)σs+j(u) = fije−τ(u) for any 1 ≤ i, j ≤ t.

In particular, since fii 6= 0 for any 1 ≤ i ≤ t, we have: τ(u) = − ln |σs+1(u)|2 = . . . =
− ln |σs+t(u)|2. But we also have

∏s
k=1 σk

∏s+t
j=s+1 |σj |2 = 1. This implies that τ = τθ, and the

conclusion follows.

This result has an immediate corollary concerning the stability of LCK metrics on OT manifolds,
as studied by R. Goto in [Go14].

Corollary 5.2.3: On an OT manifold of LCK type, the LCK structure is not stable under
small deformations of flat line bundles. More specifically, if (Ω, L, ∇) is an LCK structure on
an OT manifold X, ǫ > 0 and {Lv} is a non-trivial analytic deformation of flat line bundles
for |v| < |ǫ| with L0 = L, then for any 0 < |v| < ǫ, there are no Lv-valued LCK structures.

5.3 Technical Preliminaries

5.3.1 Leray-Serre spectral sequence of a locally trivial fibration

In this section, we review the general properties of the Leray-Serre spectral sequence associated
to a fiber bundle. For a thorough presentation of spectral sequences and the Leray-Serre
sequence we refer to [GH] and [BT]. Let F → X

π−→ B be a locally trivial fibration. For a
trivializing open set U ⊂ B for π, we denote by ϕU the isomorphism ϕU : π−1(U) → U × F ,
and for two trivialising open sets U, V , we denote by gUV = ϕU ◦ ϕ−1

V the corresponding
transition function. Let us also denote by X v the sheaf of vertical vector fields on X, i.e. the
vector fields tangent to the fiber F .

If Ek is the sheaf of C-valued smooth k-forms on X, we have the de Rham complex of X:
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K• : . . .
d−→ Ek(X)

d−→ Ek+1(X)
d−→ . . .

which is endowed with the following descending filtration:

F pKp+q := {ω ∈ Ep+q(X) | ιXq+1 . . . ιX1ω = 0, ∀X1, . . . , Xq+1 ∈ X v(X)}. (5.3.1)

By the theory of spectral sequences, this filtration determines a sequence of double complexes
(E•,•

r , dr)r≥0 with dr : Ep,q
r → Ep+1,q−r+1

r of bidegree (r, −r + 1), which computes the co-
homology of the complex (K•, d). More precisely, if we denote by Ep,q

∞ := limr→∞ Ep,q
r , we

have:

Hk(X,C) := Hk(K•) = ⊕p+q=kEp,q
∞ 0 ≤ k ≤ dimR X.

The complex Er+1, called the (r + 1)-th page of E, is defined recurrently as the cohomology
of (Er, dr). We now make explicit the definition of each page of the spectral sequence. The
pages E0 and E1 are simply given by:

Ep,q
0 =

F pKp+q

F p+1Kp+q
, d0 : Ep,q

0 → Ep,q+1
0

d0(η̂p,q) = d̂ηp,q+1

Ep,q
1 =

Ker dp,q
0

Im dp,q−1
0

, d1 : Ep,q
1 → Ep+1,q

1

d1([η̂]p,q
d0

) = [d̂η]p+1,q
d0

.

The second page is again:

Ep,q
2 =

Ker dp,q
1

Im dp−1,q
1

, d2 : Ep,q
2 → Ep+2,q−1

2 .

In order to write down d2, one needs now to make sense of the objects of E2. If [η̂]p,q
d0

∈ Ker dp,q
1 ,

then there exists ξ̂ ∈ Ep+1,q−1
0 such that d̂η = d0ξ̂ = d̂ξ, hence ̂dη − dξ = 0, meaning that

dη − dξ ∈ F p+2Kp+q+1. Then:

d2([[η̂]d0 ]d1) = [[ ̂dη − dξ]d0 ]d1 . (5.3.2)

In general, by induction, one can show that dr : Ep,q
r → Ep+r,q−r+1

r is given by:

dr([. . . [[η̂]d0 ]d1 . . .]dr−1) = [. . . [[ ̂dη − dδ]d0 ]d1 . . .]dr−1 , (5.3.3)

where δ = ξ1 + . . . + ξr−1, and the elements ξ1 ∈ F p+1Kp+q, . . . , ξr−1 ∈ F p+r−1Kp+q are
chosen via diagram chasing such that dη − dδ ∈ F p+rKp+q+1.

When the fiber bundle π is flat, one has a C∞ splitting of TX = TB ⊕ TF , where, locally, TB

is the tangent space of B and TF , of the fiber. The differential d also splits as dB + dF with
d2

B = 0 and d2
F = 0, where dB is the derivation in the direction of the basis and dF is the

derivation along the fiber. In this case, the spectral sequence becomes more explicit. We have
an induced splitting of the vector bundle of k-forms:

∧k T ∗X = ⊕p+q=k
∧p T ∗

B ⊗∧q T ∗
F
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and then Ep,q
0 = C∞(X,

∧p T ∗
B ⊗∧q T ∗

F ) for any 0 ≤ p, q ≤ k. Moreover, one has:

d0 = dF , d1([α]dF
) = [dBα]dF

.

For a ∈ Ker dp,q
1 represented by η ∈ Ker dF ⊂ Ep,q

0 , there exists ξ ∈ Ep+1,q−1
0 so that

dBη = dF ξ. One then has:

dη − dξ = dF η + dBη − dF ξ − dBξ = −dBξ ∈ ker dF ⊂ Ep+2,q−1
0

so that, by (5.3.2), d2 is given by:

d2([[η]dF
]dB

) = −[[dBξ]dF
]dB

.

In general, for a given element [. . . [[η]dF
]dB

. . .]dr−1 ∈ Ep,q
r , (5.3.3) tells us that:

dr([. . . [[η]dF
]dB

. . .]dr−1) = −[. . . [[dBξr−1]dF
] . . .]dr−1

for some ξr−1 ∈ Ep+r−1,q−r+1
0 such that there exist ξ1 ∈ Ep+1,q−1

0 , . . . , ξr−2 ∈ Ep+r−2,q−r+2
0

that satisfy dη − dξ1 − . . . dξr−1 ∈ Ep+r,q−r+1
0 , obtained by chasing diagrams.

5.3.2 Twisted cohomology

Let M be a compact differentiable manifold, let θ be a complex valued closed one-form on M
and let dθ be the differential operator dθ = d − θ ∧ ·. Since d2

θ = 0, we have a complex:

0 // E0
M (M)

dθ
// E1

M (M)
dθ

// . . .

whose cohomology H•
θ (M) := Ker dθ

Im dθ
is called the twisted cohomology associated to [θ]dR.

Indeed, it depends only on the de Rham cohomology class of θ. If M is orientable, there is a
version of Poincaré duality that holds for H•

θ (M), see for instance [Di, Corollary 3.3.12], and
that is: H•

θ (M)∗ ∼= HN−•
−θ (M), where N = dimRM . Moreover, we have the following result:

Lemma 5.3.1: Let τ ∈ H1(M,C) be a de Rham class. Then the following are equivalent:

1. H0
τ (M) 6= 0;

2. τ ∈ H1(M, 2πiZ) ⊂ H1(M,C);

3. For any k ∈ Z, Hk
τ (M,C) ∼= Hk

dR(M,C).

Proof. Clearly, if (3) holds then H0
τ (M,C) = H0(M,C) 6= 0, so we have (1).

Now suppose (1) holds, meaning that if we choose a representative θ ∈ τ , there exists a
smooth function h = M → C so that hθ = dh, with h not identically zero. Then we also have
hθ = dh, which implies d|h|2 = |h|22 Re θ. This is a linear first order differential system, so if
|h|2 has some zero, then h would vanish everywhere on M . Thus, we have 2 Re θ = d ln |h|2,
and without any loss of generality, we can now suppose that Re θ = 0.

On the universal cover M̃ , there exists f ∈ C∞(M̃,C) so that θ = df . Then we find:

d(e−f h) = e−f (−dfh + dh) = 0
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thus h = cef , with c ∈ C a constant. On the other hand, by the universal coefficient
theorem and Hurewicz theorem we have H1(M,C) ∼= Hom(π1(M),C), and the homomorphism
τ : π1(M) → C corresponding to θ is precisely given by τ(γ) = γ∗f − f , γ ∈ π1(M). Thus, as
ef = c−1h is defined on M , it is π1(M)-invariant as a function on M̃ , so that we have

γ∗ef = ef eτ(γ) = ef , ∀γ ∈ π1(M).

Therefore τ takes values in 2πiZ, from which assertion (2) follows.

Similarly, if (2) holds and we choose θ a representative of τ and write θ = df on M̃ , then
as τ(γ) = γ∗f − f ∈ 2πiZ for any γ ∈ π1(M), the function h = ef is π1(M)-invariant and
descends to a well-defined function h : M → C∗ satisfying dh = hθ. Finally, let us note that in
this case dθ(·) = hd(h−1·), which establishes an isomorphism between the twisted cohomology
H•

τ (M) and H•(M,C).

Remark 5.3.2: A result of [LLMP03] states that if θ ∈ E1
M (M,R) is a non-zero closed

form, and there exists a Riemannian metric on M so that θ is parallel for the corresponding
Levi-Civita connection, then we have H•

θ (M) = 0. Note that this is not true if θ is complex
valued.

The twisted cohomology can also be seen as the cohomology of certain flat line bundles. In
general, these are parametrised by elements ρ ∈ Hom(π1(M),C∗) as follows: we let Lρ be the
induced complex line bundle over M , that is the quotient of M̃ × C by the action of π1(M)
given by:

γ(x, λ) = (γ(x), ρ(γ)λ), γ ∈ π1(M), (x, λ) ∈ M̃ × C.

Moreover, we endow Lρ with the unique flat connection ∇ whose corresponding parallel
sections are exactly the locally constant sections of Lρ. Denote by d∇ the differential operator
acting on E•

M ⊗ Lτ which is induced by ∇ by the Leibniz rule. Then the cohomology of (Lρ, ∇)
is the cohomology denoted by H•(M, Lρ) of the complex:

0 // E0
M (M, Lρ)

d∇

// E1
M (M, Lρ)

d∇

// . . . .

Equivalently, if we let Lρ be the sheaf of parallel sections of (Lρ, ∇), then we also have a
natural isomorphism H•(M, Lρ) ∼= H•(M, Lρ), where the latter is the sheaf cohomology. Lρ

is called a local system, and determines and is completely determined by (Lρ, ∇).

On the other hand, the exponential induces an exact sequence:

0 // H1(M, 2πiZ) // H1(M,C)
exp

// H1(M,C∗)
c1

// H2(M,Z) (5.3.4)

and all elements ρ ∈ ker c1 ⊂ H1(M,C∗) ∼= Hom(π1(M),C∗) are of the form exp τ , with
τ ∈ Hom(π1(M),C). For the corresponding flat line bundle (Lρ, ∇), the connection has an
explicit form. We choose θ ∈ τ a representative, write θ = dϕ on M̃ , so that s = eϕ determines
a global trivialising section of Lρ. Then ∇ is given by ∇s = θ ⊗ s, and it can be easily seen
that this construction does not depend on the chosen τ ∈ exp−1(ρ), nor on θ ∈ τ . Moreover,
we have a natural isomorphism:

H•
θ (M) ∼= H•(M, L∗

ρ).

Also note that if H2(M,Z), or also H1(M,Z), has no torsion, then the map c1 in (5.3.4) is
zero, and then all flat line bundles on M are of this form.
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In particular, by Lemma 5.3.1 we have the following result:

Lemma 5.3.3: H•
τ (S1,C) = 0 if and only if τ /∈ H1(S1, 2πiZ).

Proof. The only if part is assured by Lemma 5.3.1. On the other hand, if τ /∈ H1(S1, 2πiZ),
then also −τ /∈ H1(S1, 2πiZ), thus Lemma 5.3.1 implies H0

τ (S1) = H0
−τ (S1) = 0. Finally, by

Poincaré duality we find H1
τ (S1) ∼= H0

−τ (S1)∗ = 0, which concludes the proof.

This allows us to prove the following, which we will use a number of times in the sequel:

Lemma 5.3.4: Let Ts be the compact s-dimensional torus, let ρ : π1(Ts) → C∗ be any
representation of π1(Ts) on C and let (Lρ, ∇) → Ts be the associated flat complex line bundle.
Then H•(Ts, Lρ) = 0 if and only if ρ is not trivial.

Proof. Let ρ ∈ Hom(π1(M),C∗) be a non-trivial element. As H2(Ts,Z) is a free abelian group,
there exists 0 6= τ ∈ H1(Ts,C) so that ρ = exp τ . We write then Lρ = Lτ .

Let us identify Ts with (S1)s, and let pk : Ts → S1 the the projection on the k-th component,
for k ∈ {1, . . . , s}. If we denote by ν a generator of H1(S1,Z), then τ writes τ =

∑s
k=1 akp∗

kν,
with a1, . . . , as ∈ C, not all 2πiZ-valued. In particular, it follows that

Lτ
∼= p∗

1La1ν ⊗ . . . ⊗ p∗
sLasν .

Now, by the Künneth formula for local systems (see [Di, Corollary 2.3.31]) it follows that:

H•(Ts, Lτ ) ∼= H•(S1, La1ν) ⊗ · · · ⊗ H•(S1, Lasν).

Since there exists at least one k ∈ {1, . . . , s} with ak /∈ 2πiZ, Lemma 5.3.3 implies that
H•(S1, Lakν) vanishes, and the conclusion follows.

Notation

In all that follows, we will denote by X a complex manifold (which will usually be an OT
manifold). Only in this chapter, the sheaf of complex valued smooth l-forms on X will be
denoted by E l

X or simply by E l, if there is no ambiguity about the manifold X, and its global
sections will be denoted by E l

X(X) or by E l(X). Also, for a given OT manifold X of type (s, t)
corresponding to (K, U), we will sometimes denote by Γ := U ⋉ OK its fundamental group
and by X̂ := Hs × Ct/OK . Concerning the compact tori that will appear in our discussion,
we will use the notation Tk for the k-dimensional torus viewed as a smooth manifold (without
any additional structure), and T for the n-dimensional abelian compact Lie group which, in
our case, acts on X̂, where n = 2t + s. As already mentioned, U acts on T by conjugation,
and for any u ∈ U , we will denote by cu ∈ Aut(T) the automorphism cu(a) = u−1au. For
any q ∈ N∗ we will denote by Iq the set of multi-indexes I = (0 < i1 < . . . < iq ≤ n) and for
I ∈ Iq we will denote by |I| the length of I which is q. Finally, for a given representation
ρ : π1(Ts) = UH → C∗, we denote by Lρ the induced flat complex line bundle over Ts, and for
a closed one-form θ on X, we denote by ρθ ∈ Hom(U,C∗) = Hom(Γ,C∗) the representation it
induces.
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5.4 The de Rham cohomology

In the next two sections, we will prove in two different ways the following result:

Theorem 5.4.1: Let X = X(K, U) be an OT manifold of type (s, t) of complex dimension
m. For any l ∈ {0, . . . , 2m} we have:

H l(X,C) ∼=
⊕

p+q=l
|I|=q
σI=1

∧p C{d ln Im w1, . . . , d ln Im ws}eI .

In particular, the Betti numbers of X are given by:

bl =
∑

p+q=l

(
s

p

)
· ρq,

where ρq is the cardinal of the set {I | |I| = q, σI = 1}.

In this section, we compute the de Rham cohomology of an OT manifold X by identifying
it with the cohomology of invariant forms on X with respect to a certain compact torus
action. In order to be precise, let us fix an OT manifold X = X(K, U) of type (s, t) and of
complex dimension m = s + t. Recall that T = Tn acts holomorphically by translations on
X̂ = Hs × Ct/OK , but not on X. However, by identifying smooth forms on X with smooth
U -invariant forms on X̂, it makes then sense to speak of T-invariant forms on X: these will
be exactly the U ⋉ T-invariant forms on X̂. Let us denote by A• the graded sheaf of such
invariant forms, which is a subsheaf of E•

X . The differential d acting on E•
X fixes A•, so (A•, d)

is a subcomplex of the de Rham complex of X. As in the usual setting of a manifold endowed
with a compact group action, we have the following:

Lemma 5.4.2: There exists a projection graded morphism π : E•
X → A• commuting with the

differential d.

Proof. The projection morphism will be given by averaging over the torus action. Let us fix
0 ≤ l ≤ 2m, and consider a (local) smooth l-form η on X, identified with a U -invariant form
on X̂. Let µ be the T-invariant n-form on T with

∫
T µ = 1, and let:

πη :=

∫

T
a∗ηµ(a).

Clearly, πη is a T-invariant form on X̂. In order to see that it descends to a form on X, we
have to show that πη is U -invariant. Indeed, for any u ∈ U , if cu ∈ Aut(T) is the conjugation
a 7→ u−1au as before, then we have:

u∗(πη) =

∫

T
(au)∗ηµ(a) =

∫

T
(ucu(a))∗ηµ(a) =

=

∫

T
cu(a)∗ηµ(a) =

∫

T
a∗ηµ(c−1

u (a)) =

=

∫

T
a∗ηµ(a) = πη.
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Above, we made the change of variable a 7→ c−1
u (a), and then used the fact that µ is a constant

cu-invariant form on T, so that µ(c−1
u (a)) = ((c−1

u )∗µ)(a) = µ(a).

Finally, it is clear from the definition of π that it commutes with d, and that π restricted to
A• is the identity.

In the context of a manifold endowed with a compact group action, a standard result states
that the de Rham cohomology of the manifold is the cohomology of invariant forms. This is
still true in our context, and the proof follows the same lines:

Lemma 5.4.3: For any 0 ≤ l ≤ 2m, any open set O ⊂ X and any d-closed form η ∈ E l
X(O)

there exists some β ∈ E l−1
X (O) so that πη − η = dβ. In particular, we have an isomorphism

H l[π] : H l(X,C) → H l(X, A•(X)).

Proof. Let η ∈ E l
X(O) be a closed form, let Ô be the preimage of O in X̂ and, as before, identify

η with a form on Ô. Let a ∈ T and let {Φv
a}v∈R be a one-parameter subgroup of T with Φ1

a = a.
Let ξa be the vector field on X̂ generated by Φa, and consider the map Fa : R × Ô → Ô,
(v, x) 7→ Φv

a(x) = x + va. We then have F ∗
a η = η1 + dv ∧ η2, with η1(v, ·) = (Φv

a)∗η and
η2(v, ·) = ιξa

(Φv
a)∗η. If we denote by dX the differential with respect to the X-variables on

R × Ô, then dη = 0 implies:

0 = dF ∗
a η = dXη1 + dv ∧ ∂v

∂η 1

− dv ∧ dXη2.

In particular, we have ∂v
∂η 1

= dXη2, or also:

a∗η − η =

∫ 1

0

∂v

∂η 1

dv =

∫ 1

0
dXη2dv = d

∫ 1

0
η2dv.

Denoting by βa the form
∫ 1

0 η2dv and by β :=
∫

T βaµ(a), we have πη − η = dβ, and we are
then left with showing that the form β is U -invariant. Let u ∈ U and a ∈ T. Upon noting that

u−1
∗ ξa =

d

dv
|v=0(u−1Φv

a) =
d

dv
|v=0(Φv

cu(a)u
−1) = ξcu(a)

we have:

u∗βa =

∫ 1

0
u∗ιξa

(Φv
a)∗ηdv =

∫ 1

0
ιu−1

∗ ξa
u∗(Φv

a)∗ηdv

=

∫ 1

0
ιξcu(a)

(uΦv
cu(a))

∗ηdv =

∫ 1

0
ιξcu(a)

(Φv
cu(a))

∗ηdv = βcu(a).

So, as in the previous lemma, the T-invariance of µ implies then that
∫
T βcu(a)µ(a) = β.

For the last assertion, it is enough to see that the inclusion ι : A• → E• induces an isomorphism
H(ι) in cohomology. If η ∈ Al(X) verifies η = dα, α ∈ E l−1(X), then η = πη = dπα, so H(ι)
is injective. If η ∈ E l is a closed form, then by the above we have H(ι)[πη] = [πη]dR = [η]dR,
so H(ι) is surjective.

For the sequel, we will fix some l ∈ {0, . . . , 2m}. Recalling that the tangent bundle of
X̂ ∼= (R>0)s ×Tn splits smoothly as TX̂ = E ⊕ V , where E is the pullback of T (R>0)s and V
is the pullback of TTn on X̂, we have:

∧l T ∗X̂ = ⊕l
p=0

∧p E∗ ⊗∧l−p V ∗.
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If we denote by Al
p the sheaf which associates to any open set O ⊂ X

Al
p(O) := Al(O) ∩ C∞(Ô,

∧p E∗ ⊗∧l−p V ∗ ⊗ C),

where Ô is the pre-image of O in X̂, then we also have:

Al = ⊕l
p=0Al

p. (5.4.1)

At the same time, Al can be seen as:

Al(O) = {η ∈ E l
X̂

(Ô)|η is U invariant and LZη = 0 ∀Z ∈ C∞(Ô, V )}

which implies that the differential d is compatible with the grading of A• given by (5.4.1), in
the sense that d(Al

p) ⊂ Al+1
p+1 for any 0 ≤ p ≤ l.

Hence, a form η =
∑l

p=0 ηp ∈ Al(X) decomposed with respect to the grading (5.4.1) is closed
if and only if each ηp is closed. As a consequence, the complex 0 → A•(X) splits in the
subcomplexes:

C•
p : 0

d
// Ap

0(X)
d

// Ap+1
1 (X)

d
// Ap+2

2 (X)
d

// . . . (5.4.2)

for 0 ≤ p ≤ s. Moreover, if a form η =
∑l

p=0 ηp ∈ Al(X) is exact: η = dβ, then writing again

β =
∑l−1

q=0 βq, we must have ηp+1 = dβp for any 0 ≤ p ≤ l − 1 and η0 = 0. So we see that η is
exact if and only if each ηp is. Hence, if we let:

H l
p(X, A) :=

ker d : Al
p(X) → Al+1

p+1(X)

Im d : Al−1
p−1(X) → Al

p(X)
= Hp(C•

l−p)

then we have:
H l(X, A•(X)) = ⊕l

p=0H l
p(X, A). (5.4.3)

Now let us take a closer look at the complex C•
l . Denoting by dE the differentiation in the E

direction, (C•
l , d) is a subcomplex of:

(C∞(X̂,
∧l V ∗ ⊗∧• E∗ ⊗ C), dE)

which, in turn, is just C∞(X̂,
∧l V ∗ ⊗ C) tensorized by:

0 // C∞(X̂,C)
dE

// C∞(X̂, E∗ ⊗ C)
dE

// C∞(X̂,
∧2 E∗ ⊗ C) // . . .

But recall that, for any 0 ≤ q ≤ l,
∧q V ∗ ⊗ C is globally trivialised over X̂ by {eI}I∈Iq , where

Iq denotes the set of all multi-indexes I = (0 < i1 < . . . < iq ≤ n) and the forms eI were
defined in (5.2.3). Thus, for any 0 ≤ p ≤ l, we have:

C∞(X̂,
∧q V ∗ ⊗∧p E∗ ⊗ C) = ⊕I∈Iq C∞(X̂,

∧p E∗) ⊗ CeI .

Moreover, a section η = f ⊗ eI of
∧p E∗ ⊗CeI belongs to A

p+|I|
p if and only if it is T-invariant

and
u∗f = σI(u)−1f for any u ∈ U. (5.4.4)
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If we denote by Ep
σI

the sheaf of T-invariant sections f of
∧p E∗ ⊗C which are σ−1

I equivariant,
i.e. verify (5.4.4), it follows that we have:

Aq+p
p = ⊕I∈Iq Ep

σI
eI .

Moreover, as the eI ’s are closed forms, we have:

d : Ep
σI

eI → Ep+1
σI

eI ∀I ∈ Iq.

So finally we get that the complex C•
l−p splits into the complexes on X:

C•
l−p(I) : 0 // E0

σI
(X̂)eI

d
// E1

σI
(X̂)eI

d
// E2

σI
(X̂)eI

d
// . . . (5.4.5)

indexed after all I ∈ Il−p. So also the cohomology splits:

H l
p(X, A) = ⊕I∈Il−p

Hp
σI

(X, A) (5.4.6)

where Hp
σI

(X, A) := Hp(C•
l−p(I)).

At the same time, the T-invariant sections of
∧p E∗ ⊗ C over X̂ naturally identify with the

sections of Ep
(R>0)s over (R>0)s. Hence, the sections of Ep

σI
coincide then with the sections of

Ep
Ts ⊗ L∗

σI
, and we have:

Hp
σI

(X, A) ∼= Hp(Ts, L∗
σI

) ⊗ eI . (5.4.7)

So, putting together (5.4.7), (5.4.6), (5.4.3), Lemma 5.4.3 and Lemma 5.3.4, we get:

H l(X,C) ∼= ⊕p+q=l ⊕I∈Iq Hp(Ts, L∗
σI

) ⊗ eI

leading, together with Lemma 5.3.4, to Theorem 5.4.1.

5.5 The Leray-Serre spectral sequence of OT manifolds

Let X = X(K, U) be an OT manifold of type (s, t). In this section, we are interested in
computing its de Rham cohomology using the Leray-Serre spectral sequence associated to the
fibration depicted in (5.2.1):

Tn → X
π−→ Ts.

We endow the de Rham complex of X with the filtration described in (5.3.1). It turns out
that the Leray-Serre sequence associated to this filtration degenerates at the page E2 and we
prove this by outlining the special properties of the OT fiber bundle.

Let us start by noting that we have two fiber bundles over Ts associated to this fibration:

E•(Tn) → E•(Tn) → Ts (5.5.1)

H•(Tn,C) → H•(Tn) → Ts. (5.5.2)

Indeed, recall that we have an action of UH on Tn defined in (5.2.2), with respect to which π is
defined as (R>0)s ×Tn/UH → Ts. But then we also have an induced action of UH on E•(Tn) by
push-forward, which defines E•(Tn) := (R>0)s × E•(Tn)/UH → Ts as an infinite-dimensional
vector bundle over Ts. Also we have an induced action of UH on H•(Tn,C), which then defines
the vector bundle H•(Tn) := (R>0)s × H•(Tn,C)/UH → Ts.
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Fact 1: The fibration is locally constant, meaning that if Uα ∩ Uβ is a connected open subset
of Ts, then gαβ : Uα ∩ Uβ ×Tn → Uα ∩ Uβ ×Tn only depends on the Tn-variables. This allows
us to make the following identification:

Ep,q
0 ≃ Ep(Ts, Eq(Tn)). (5.5.3)

Indeed, recall that we have TX = E ⊕ V , where, locally, E is the tangent bundle of the
base Ts and V is the tangent bundle of the fiber Tn, and we have identified Ep,q

0 with
C∞(X,

∧p E∗ ⊗ ∧q V ∗ ⊗ C). Consider η ∈ Ep,q
0 and suppose that Uα is an open set of Ts

trivializing π via ϕα : π−1(Uα) → Uα × Tn. Write (ϕα)∗η =
∑

i aα
i ∧ bα

i , where, for each i, aα
i

is a p-form on Uα and bα
i is an element of C∞(Uα × Tn,

∧q T ∗Tn ⊗ C) which may depend on
both the coordinates of Uα and of Tn. Of course, the forms aα

i and bα
i are not unique. If

(Uβ, ϕβ) is another trivializing open set for π intersecting Uα, then we have:

(ϕβ)∗η = (ϕβ ◦ ϕ−1
α )∗ ◦ (ϕα)∗η = (gβα)∗

∑

i

aα
i ∧ bα

i .

As gβα is locally constant on Uα ∩ Uβ, (gβα)∗aα
i = aα

i , therefore (ϕβ)∗η =
∑

i aα
i ∧ (gβα)∗bα

i .
In particular, for each i, the forms {aα

i }α glue up to a well-defined global p-form ai on Ts and
η is then an element of Ep(Ts, Eq(Tn)).

Fact 2: Hq(Tn) is a completely reducible local system. Indeed, as already mentioned, Hq(Tn) is
a flat vector bundle defined by the induced representation [R] : UH → Aut(Hq(Tn,C)). In order
to determine [R], recall that we have fixed a frame for V ∗ over (R>0)s×Tn given by {e1, . . . , en}
in (5.2.3). As this frame does not depend on (R>0)s, it induces a frame for T ∗Tn over Tn

which we will denote the same, and we have Hq(Tn,C) =
∧q C{e1, . . . , en} = ⊕I∈IqCeI . Then,

for any I and any u ∈ UH, we have [R](u)eI = [R(u)∗eI ] = σ−1
I (u)eI , or also [R] =

∑
I∈Iq

σ−1
I

under the above direct sum decomposition.

For any multi-index I, let us denote, as before, by LσI
→ Ts the flat line bundle defined by

the representation σI , so that Hq(Tn) = ⊕I∈Iq L∗
σI

. If ∇I denotes the induced connection on
L∗

σI
and ∇q denotes the induced flat connection on Hq(Tn), then also ∇q splits with respect

to the direct sum decomposition as ∇q =
∑

I∈Iq
∇I . In particular, we also obtain:

Hp(Ts, Hq(Tn)) ∼= ⊕I∈Iq Hp(Ts, L∗
σI

). (5.5.4)

Fact 3: The base is a torus. This allows us to compute, via Lemma 5.3.4:

Hp(Ts, Hq(Tn)) ∼= ⊕I∈Iq

σI≡1

Hp(Ts,C)eI . (5.5.5)

Let us now describe the pages of the Leray-Serre sequence of the OT fibration.

Page 0: By Fact 1, we have Ep,q
0 ≃ Ep(Ts, Eq(Tn)). In order to determine d0 : Ep,q

0 →
Ep,q+1

0 , which on X corresponds to differentiation in the V -direction, let us first identify the
corresponding operator on E•(Tn). Consider the differential of Tn which acts on E•(Tn), and
then define by dv the operator acting on (R>0)s × E•(Tn) trivially on the first factor, and as
the differential of Tn on the second one. Clearly, this operator commutes with the action of
UH, and so descends to an operator dv on E•(Tn). Under the isomorphism (5.5.3), we have
then d0 = dv, i.e. for η̂ =

∑
ai ⊗ bα

i ∈ Ep(Uα, Eq(Tn)) we have:

d0(
∑

ai ⊗ bα
i ) =

∑
(−1)pai ⊗ dvbα

i . (5.5.6)
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Page 1: By (5.5.6) we have Ep,q
1 ≃ Ep(Ts, Hq(Tn)). The differential d1 : Ep(Ts, Hq(Tn)) →

Ep+1(Ts, Hq(Tn)) is identified then with d1 = d∇, where d∇ is the differential operator on Ts

induced by the flat connection ∇ on Hq(Tn).

Page 2: From above, we deduce that Ep,q
2 ≃ Hp(Ts, Hq(Tn)). Let [[η]d0 ]d1 ∈ Ep,q

2 be a
non-zero element and let η =

∑
ai ⊗ bi locally. Then [η]d0 =

∑
ai ⊗ [bi]dv . The fact that

[η]d0 ∈ ker d1 implies that there exists γ ∈ Ep+1,q−1
0 so that d∇∑(ai ⊗bi) = dvγ. As in Section

2.2, we have (d∇ + dv)(
∑

ai ⊗ bi − γ) = −d∇γ ∈ ker dv ⊂ Ep+2,q−1
0 , hence, according to (5.3.2),

d2 is given by:
d2([

∑
ai ⊗ [bi]dv ]d1) = [[−d∇γ]dv ]d1 . (5.5.7)

At the same time, by (5.5.5) in Fact 3, we have that any element [[η]dv ]d1 of Ep,q
2 can be

represented by a sum:
η =

∑

I∈Iq

σI≡1

αI ⊗ eI ∈ Ep,q
0 (5.5.8)

where for each I appearing in the sum, αI ∈ Ep(Ts) is a closed form on Ts, and eI , given
in (5.2.3), is U invariant on X̂, and so descends to a global element of Eq(Tn) on Ts,
verifying d∇eI = 0. In particular, we have d∇η = 0 = dv(0), so, by (5.5.7) it follows that
d2[[η]dv ]d1 = [[−d∇0]dv ]d1 = 0, so d2 ≡ 0.

Finally, for any r ≥ 2, any class in Ep,q
r can be represented by [. . . [[η]d0 ]d1 . . .]dr−1 , where η is

of the form (5.5.8). Since dη = (d∇ + dv)η = 0, by (5.3.3) all ξ1, . . . , ξr−1 can be chosen to be
zero, so dr ≡ 0. Thus we have shown:

Theorem 5.5.1: The Leray-Serre spectral sequence of OT manifolds degenerates at E2.

As a corollary of this, one immediately obtains Theorem 5.4.1.

5.6 Twisted cohomology of OT manifolds

Now we want to compute the twisted cohomology groups of OT manifolds with respect to any
closed one-form. The exact statement that we will obtain is the following:

Theorem 5.6.1: Let X = X(K, U) be an OT manifold of type (s, t) and of complex dimension
m, and let θ =

∑s
k=1 akd ln vk be a closed one-form on X(K, U), where a1, . . . , as ∈ C. Then

for any l ∈ {0, . . . , 2m} we have:

H l
θ(X,C) ∼=

⊕

p+q=l
|I|=q

ρθ⊗σI=1

∧p C{d ln v1, . . . , d ln vs}(va1
1 · . . . · vas

s )eI .

In particular, the corresponding twisted Betti numbers are given by:

bθ
l =

∑

p+q=l

(
s

p

)
· ρθ

q,

where ρθ
q is the cardinal of the set {I | |I| = q, ρθ ⊗ σI = 1}.

It is already known from [OT05] that b1(X) = s, hence any closed one form is cohomologous
to one of the form π∗η, where η is closed one-form on Ts. As the twisted cohomology H•

θ
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depends only on the de Rham cohomology class of θ, and not on θ itself, we can assume that
θ is the pullback of a form from Ts.

We are going to use the same approach as in the previous section. Consider the complex:

K•
θ : . . .

dθ−→ Ep(X)
dθ−→ Ep+1(X)

dθ−→ . . .

which we endow with the same descending filtration as before:

F pKp+q
θ := {ω ∈ Ep+q(X) | ιXq+1 . . . ιX1ω = 0, ∀X1, X2, . . . Xq+1 ∈ X v(X)}.

It is easy to see that it is indeed a filtration, i.e. dθF pKp+q
θ ⊂ F pKp+q+1

θ , as a consequence of
θ being the pullback of a form from Ts. We study the spectral sequence associated to Kθ with
this filtration, which we denote also by E•.

Again, we denote by Eq(Tn) and by Hq(Tn) the vector bundles described in (5.5.1) and (5.5.2),
and as before we have the 0-th page:

Ep,q
0 =

F pKp+q
θ

F p+1Kp+q
θ

≃ Ep(Ts, Eq(Tn))

and via this isomorphism, d0 : Ep,q
0 → Ep,q+1

0 is given over a trivializing open set Uα by:

d0(
∑

i

ai ⊗ bα
i ) =

∑
(−1)pai ⊗ dvbα

i .

Thus, we again have:
Ep,q

1 ≃ Ep(Ts, Hq(Tn))

but this time, d1 : Ep,q
1 → Ep+1,q

1 is given over a trivializing open set Uα by:

d1(
∑

ai ⊗ [bα
i ]dv ) =

∑
dai ⊗ [bα

i ]dv + (−1)p
∑

ai ∧ ([∇′bα
i ]dv − θ ⊗ [bα

i ]dv )

where ∇′ is the flat connection on Hq(Tn). Equivalently, if we see θ as a form on Ts and
define Lθ to be the complex flat line bundle over Ts corresponding to exp[θ]dR ∈ H1(Ts,C∗) ≃
Hom(π1(Ts),C∗), we have the following identification:

Ep,q
1 ≃ Ep(Ts, L∗

θ ⊗ Hq(Tn))

d1 = d∇

where d∇ the differential operator induced by the corresponding flat connection on L∗
θ ⊗Hq(Tn).

Thus we obtain the second page:

Ep,q
2 ≃ Ker(d∇)p,q

Im(d∇)p−1,q
= Hp(Ts, L∗

θ ⊗ Hq(Tn)).

Let θ =
∑s

k=1 akd ln vk with ak ∈ C, which induces the representation ρθ = σa1
1 ⊗ · · · ⊗

σas
s ∈ Hom(π1(Ts),C∗). The flat vector bundle L∗

θ ⊗ Hq(Tn) over Ts is then given by the
representation [R]θ : UH → Aut(Hq(Tn)), [R]θ := (ρθ)−1 ⊗ [R].

We again have:

Theorem 5.6.2: The spectral sequence associated to K•
θ degenerates at the second page.
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Proof. As before, we want to show that dr ≡ 0 for r ≥ 2. We notice that, as Hq(Tn) is a
completely reducible local system, then so is L∗

θ ⊗ Hq(Tn). The same arguments as in Fact 2
and Fact 3 in Section 3 show that we have an isomorphism:

Hp(Ts, L∗
θ ⊗ Hq(Tn)) ∼= ⊕I∈Iq Hp(Ts, L∗

θ ⊗ L∗
σI

) ∼= ⊕ I∈Iq

ρθ⊗σI≡1

Hp(Ts,C)eI

where eI is now identified with a global parallel frame of L∗
θ ⊗ L∗

σI
. This means that any

element [[η]dv ]d∇ ∈ Ep,q
2 can be represented, globally on Ts, by:

η =
∑

I∈Iq

ρθ⊗σI≡1

αI ⊗ eI ∈ Ep(Ts, L∗
θ ⊗ Eq(Ts)),

with αI closed one forms on Ts. Since we have d∇eI = 0 for any I, we obtain d∇η = 0 = dv0,
so d2[[η]dv ]d∇ = [[−d∇0]dv ]d∇ = 0. Moreover, by (5.3.3) and by the same arguments used to
prove Theorem 5.5.1, each ξ1, . . . , ξr−1 can step by step be chosen to be 0 and thus dr ≡ 0, for
r ≥ 2. We proved thus that E2 = E∞.

We proceed now with the proof of Theorem 5.6.1:

Proof. Since E•,•
r converges to H•

θ (X,C) and E2 = E∞, then

H l
θ(X,C) ∼= ⊕p+q=lE

p,q
2

∼= ⊕ p+q=l
I∈Iq

ρθ⊗σI≡1

Hp(Ts,C) ⊗ eI .

Finally, in order to represent H l
θ(X,C) by U invariant forms on X̂, we need to tensorize with

a global frame s of Lθ. If θ =
∑s

k=1 akd ln vk, then s is given by s =
∏s

k=1 vak

k on X̂, and so
the conclusion follows.

Remark 5.6.3: We want to draw attention to the fact that for both spectral sequences
involved in our proofs, the isomorphism E•,•

2
∼= H•(B) ⊗ H•(F ) alone was not enough to

imply the degeneracy of E•,•
r at page E2. An example of fiber bundle F → X → B for which

this isomorphism at the second page holds, but whose corresponding Leray-Serre spectral
sequence does not degenerate at E2 is given by the Hopf fibration S1 → S2n+1 → CPn.

5.7 Applications and Examples

Let us start this section by giving the immediate consequence of Theorem 5.4.1, which is the
explicit cohomology of OT manifolds when there are no trivial representations other than the
obvious ones:

Corollary 5.7.1: Let (K, U) be a number field together with an admissible group of units
U ⊂ K so that U admits no trivial representations σI other than the ones corresponding to
I = ∅ and I = (1, 2, . . . , n), and let X be the OT manifold associated to (K, U). The Betti
numbers of X are:

bl = b2m−l =

(
s

l

)
for 0 ≤ l ≤ s

bl = 0 for s < l < n.
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Corollary 5.7.2: For an OT manifold of type (s, t), all Betti numbers bl for 0 ≤ l ≤ s and
for 2m − s ≤ l ≤ 2m are positive.

Proof. For 0 ≤ l ≤ s, H l(Ts,C) is a summand of H l(X,C), corresponding to p = l and I = ∅,
so σI ≡ 1. Hence:

bl(X) ≥ bl(T
s) =

(
s

l

)
> 0.

The assertion follows for 2m − s ≤ l ≤ 2m by Poincaré duality.

We have computed the cohomology algebras of an OT manifold X(K, U) in terms of numerical
invariants associated to (K, U), namely in terms of the trivial representations σI of U . Clearly, if
(K, U) is not simple, in the sense that there exists an intermediate field extension Q ⊂ K ′ ⊂ K
so that U ⊂ K ′, then there exist trivial representations σI : U → C∗ with 0 < |I| = [K ′ : Q] <
[K : Q]. It would be interesting to know whether the converse is true, i.e. if (K, U) is of simple
type, is the set {I|σI : U → C∗, σI ≡ 1} only formed by ∅ and I = (1, . . . , n)? Let us note that
in [OT05, Proposition 2.3], the second Betti number of an OT manifold of simple type was
computed, and coincides with ours when there are no other trivial representations, implying
an affirmative answer for the above question when |I| = 2. We do not address this problem in
the present chapter, but we give an example where the answer is affirmative, allowing us to
give the explicit Betti numbers of the corresponding manifold:

Example 5.7.3: Let p be any odd prime number and take the polynomial f = Xp −2 ∈ Q[X].
This polynomial has one real root p

√
2 and the complex roots p

√
2ǫ, . . . , p

√
2ǫp−1, where ǫ is a

p-th root of unity. Let K = Q( p
√

2), which is of type (1, p−1
2 ). We notice first that u = p

√
2 − 1

is a unit of OK since its norm, which is the product of all the embeddings of u in C, is equal
to 1:

(
p
√

2 − 1) . . . (
p
√

2ǫp−1 − 1) = (−1)pf(1) = 1.

Since u is also clearly positive, we can then take U to be generated by u. Let then X = X(K, U)
be the corresponding OT manifold. We claim that there is no index I with p > |I| ≥ 2
and σI ≡ 1. By Corollary 5.7.1, this will imply that the Betti numbers of X will verify
b0 = bp+1 = b1 = bp = 1 and bi = 0 for any i 6= 0, 1, p, p + 1.

Let us assume by contradiction the existence of such I = (1 ≤ i1 < . . . < ik ≤ p). For any
1 ≤ j ≤ p, we denote by σj the embedding of K into C mapping p

√
2 to p

√
2ǫj−1. Then σI ≡ 1

rewrites as:
(

p
√

2ǫi1−1 − 1)(
p
√

2ǫi2−1 − 1) . . . (
p
√

2ǫik−1 − 1) = 1,

equivalent to:

a0
p
√

2k − a1
p
√

2k−1 + . . . + (−1)k−1ak−1
p
√

2 + (−1)k − 1 = 0 (5.7.1)

where al =
∑

j1<...<jl
ǫi1+...+îj1

+...+îjl
+...ik−k+l, and the symbol ·̂ over an element marks the

fact that the element is missing. Let g be the polynomial:

g = a0Xk − a1Xk−1 + . . . + (−1)k−1ak−1X + (−1)k − 1 ∈ Q(ǫ)[X].

Then (5.7.1) implies g( p
√

2) = 0, hence g is a multiple of the minimal polynomial of p
√

2 over
the field Q(ǫ). We prove next that this polynomial is actually Xp − 2. Indeed, we have the
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following two intermediate extensions:

Q ⊂ Q(ǫ) ⊂ Q(ǫ,
p
√

2)

Q ⊂ Q(
p
√

2) ⊂ Q(ǫ,
p
√

2).

We thus get

[Q(ǫ,
p
√

2) : Q] = [Q(ǫ,
p
√

2) : Q(ǫ)] · [Q(ǫ) : Q] = [Q(ǫ,
p
√

2) : Q(
p
√

2)] · [Q(
p
√

2) : Q]. (5.7.2)

Since Xp − 2 ∈ Q(ǫ)[X], we have [Q(ǫ, p
√

2) : Q(ǫ)] ≤ p. In general, if ǫ is an n-th root of unity,
[Q(ǫ) : Q] = ϕ(n), where ϕ(n) is Euler’s function. In our case ϕ(p) = p − 1, whence (5.7.2)
implies:

[Q(ǫ,
p
√

2) : Q] = (p − 1)[Q(ǫ,
p
√

2) : Q(ǫ)] = p · [Q(ǫ,
p
√

2) : Q(
p
√

2)].

As p and p − 1 are relatively prime, we get moreover that p divides [Q(ǫ, p
√

2) : Q(ǫ)], therefore
p = [Q(ǫ, p

√
2) : Q(ǫ)]. Thus the minimal polynomial of p

√
2 over the field Q(ǫ) is Xp − 2,

contradicting the fact that k = deg g < p.

We can also obtain, via Corollary 5.7.1, the explicit de Rham cohomology algebra of OT
manifolds of LCK type. Recall that an OT manifold X(K, U) admits an LCK metric if and
only if, for any u ∈ U , we have:

r(u)2 := |σs+1(u)|2 = . . . = |σs+t(u)|2 = (σ1(u) · · · σs(u))−1/t. (5.7.3)

In particular, all OT manifolds of type (s, 1) admit such metrics.

Proposition 5.7.4: Let X be an OT manifold of type (s, t) admitting some LCK metric. Its
de Rham cohomology algebra H•(X,C) is isomorphic to the graded algebra over C generated
by:

d ln v1, . . . , d ln vs, dz1 ∧ dz1 ∧ . . . dzt ∧ dzt ∧ dr1 ∧ . . . ∧ drs.

In particular, its Betti numbers are:

bl = b2m−l =

(
s

l

)
for 0 ≤ l ≤ s

bl = 0 for s < l < n.

Proof. By Corollary 5.7.1, it suffices to show that U admits no trivial representations σI other
than the two obvious ones. So let I = (0 < i1 < . . . < ik ≤ n) with k > 0 and σI ≡ 1. After
eventually renumbering the coordinates, we can suppose without loss of generality that I is of
the form

I = (1, . . . q, j1, . . . jp, s + t + 1, . . . s + t + l),

with 0 ≤ q ≤ s < j1 < . . . < jp ≤ s + t and 0 ≤ p, l ≤ t.

Since σI = 1 we have |σI | = 1 which, together with (5.7.3), gives the relation:

(σ1 · · · σq)−1 = rl+p = (σ1 · · · σs)− l+p

2t .
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As σ1, . . . , σs are R-linearly independent, this relation must be the trivial one, implying that
l + p = 2t and q = s, so I = (1, . . . , n), which finishes the proof.

In LCK geometry, it is interesting to know also the twisted cohomology with respect to the Lee
form of the LCK metric. Recall that in Proposition 5.2.2, we have determined the uniqueness
of the de Rham class of a Lee form on OT manifolds of LCK type.

Proposition 5.7.5: Let X be an OT manifold of type (s, t) admitting an LCK metric and let
θ = 1

t

∑s
k=1 d ln vk. Then for any 0 ≤ l ≤ 2m, we have:

H l
θ(X) ∼= (v1 · · · vs)

1
t ⊕t

j=1 Cdzj ∧ dzj ⊗∧l−2 C{d ln v1, . . . , d ln vs}.

In particular, the corresponding twisted Betti numbers are given by dimC H l
θ(X) = t

( s
l−2

)
for

any 0 ≤ l ≤ 2m.

Proof. In order to apply Theorem 5.6.1, we need to identify, for any 0 ≤ k ≤ n, the set
corresponding to [θ]dR:

Jk = {I = (1 ≤ i1 < i2 . . . < ik ≤ n) | σ
1
t
1 . . . σ

1
t
s σi1 . . . σik

= 1}.

We shall prove that Jk = ∅ for k 6= 2 and J2 = {(s + j, s + t + j)|1 ≤ j ≤ t}.

Let us fix k and I ∈ Jk. As before, we can assume that I is of the form:

I = (1, . . . , q, j1, . . . , jp, s + t + 1, . . . , s + t + l)

such that 0 ≤ q ≤ s < j1 < . . . < jp ≤ s + t, 0 ≤ p, l ≤ t and q + p + l = k. Then
|(σ1 · · · σs)1/tσI | = 1 together with (5.7.3) implies:

σ
1
t
+1

1 . . . σ
1
t
+1

q σ
1
t
q+1 . . . σ

1
t
s = r−(p+l) = (σ1 · · · σs)

p+l

2t .

By the R linear independence of σ1, . . . , σs, this must be the trivial relation. If 0 < q < s, we
would get that 1

t + 1 = p+l
2t = 1

t , which is a contradiction. If q = s, then we would get that
1
t + 1 = p+l

2t , or also p + l = 2t + 2, contradicting the fact that p + l ≤ 2t. Hence q = 0 and we

get the relation 1
t = p+l

2t , or also p + l = 2 = k. In particular, Jk = ∅ for k 6= 2.

Let us note now that the set {(s + j, s + t + j)|j = 1, t} is included in J2. In order to show that
these are all the possible multi-indexes, let I = (i1 < i2) ∈ J2. We already showed that i1 > s.
Since σi1σi2 = (σ1 · · · σs)−1/t is real, we get that σi1σi2 = σi1σi2 . Combining with |σi1 | = |σi2 |,
we obtain σ2

i1
= σ2

i2
, therefore σi1 = ±σi2 . The case σi1 = −σi2 is excluded, because this

would give the following contradiction:

0 > −σi2σi2 = (σ1 . . . σs)− 1
t > 0.

So σi1 = σi2 . But there exists s + t ≤ j ≤ s + 2t with |i1 − j| = t and σi1 = σj , so σi2 = σj .
We want to show that i2 = j, i.e. I = (j − t, j).

Consider M the Z-submodule of OK generated by U , which is a subring of OK , and let K ′ be
its fraction field. We have U ⊂ M ⊂ K ′ ⊂ K, and we showed in the above proposition that U
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has no trivial representations, so in particular (K, U) is simple, thus K ′ = K. But the relation
σi2 = σj extends to M , and so also to K ′ = K. This last fact is possible only if i2 = j.

Remark 5.7.6: Notice that since H l
θ(X) does not vanish and θ is real-valued, by the result

of [LLMP03] θ is not parallel with respect to any metric g on X.

Remark 5.7.7: In [Kas13a], OT manifolds are given a solvmanifold structure, namely they
are shown to be of the form Γ \ G, where G is a solvable Lie group and Γ is a co-compact
lattice in G. Consequently, one can consider the cohomologies H•(g) and H•

θ (g), where g is
the Lie algebra of G and θ is a closed G-invariant form. A natural question is then: does
one have isomorphisms H•

dR(X(K, U)) ∼= H•(g) and H•
θ (X(K, U)) ∼= H•

θ (g)? For a general
solvmanifold, this does not always hold. However, H. Kasuya proved in [Kas13b, Example 4]
that on OT manifolds of type (s, 1), this isomorphism is valid for the de Rham cohomology.
In [AOT17, Theorem 4.3], it is proved that in the twisted cohomology, the isomorphism holds
for a subclass of X(K, U) of type (s, 1), satisfying the so-called Mostow condition. Finally,
since in Theorem 5.6.1 we represented the corresponding cohomologies by invariant forms with
respect to the action of G described in [Kas13a], we obtain as a consequence that for all OT
manifolds X of type (s, t), we have the isomorphism Hk

θ (X) ∼= Hk
θ (g), although they might

not all satisfy the Mostow condition.

In [O16] it was proven that there are no dθ-exact metrics on OT manifolds of type (s, 1). We
give next a generalization of this result, in which we determine all the possible LCK classes in
H2

θ . As a consequence of this, we also obtain a hard Lefschetz-type theorem associated to an
LCK metric on an OT manifold.

Corollary 5.7.8: Let X be an OT manifold of type (s, t) with an LCK structure (Ω, θ), where
θ = 1

t

∑s
k=1 d ln vk. Then the twisted class of Ω in H2

θ (X) is necessarily of the form:

(v1 · · · vs)
1
t

t∑

j=1

ajidzj ∧ dzj , aj ∈ R>0 ∀j ∈ {1, . . . , t}.

In particular, if we let LefΩ denote the Lefschetz operator LefΩ = Ω ∧ ·, then for any 0 ≤ l ≤
2m − 2, LefΩ induces a morphism in cohomology:

[LefΩ] : H l(X,C) → H l+2
θ (X)

which is injective for 0 ≤ l ≤ m and surjective for m ≤ l ≤ 2m − 2.

Proof. Let us start by noting that, as in the case of the de Rham cohomology, the twisted
cohomology with respect to θ is the twisted cohomology of T-invariant forms. This is a direct
consequence of Theorem 5.6.1, but can also be seen by an argument completely analogous
to Lemma 5.4.3 and using the fact that θ vanishes on vector fields tangent to Tn. Hence, by
averaging the form Ω to a T-invariant LCK form Ω′ as in Proposition 5.2.2, the twisted class
does not change: [Ω]θ = [Ω′]θ ∈ H2

θ (X).

At the same time, we saw that the corresponding Kähler form Ω′
K writes with respect to

the splitting (5.2.7) as Ω′
K = Ω0 + Ω01 + Ω1, with Ω0 a constant positive form on Ct. Also,

given the expression of θ, we have Ω′ = (v1 · · · vs)1/tΩ′
K := ω0 + ω01 + ω1, where again Ω′ was

decomposed with respect to the splitting (5.2.7). Clearly, dθω0 = 0, so also dθ(ω01 + ω1) = 0,
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thus we can write [Ω′]θ = [ω0]θ + [ω01 + ω1]θ ∈ H2
θ (X). Now, since by Proposition 5.7.5, we

have:
H2

θ (X) ∼= (v1 · · · vs)
1
t ⊕t

j=1 Cdzj ∧ dzj , (5.7.4)

it follows that [ω01 + ω1] = 0 ∈ H2
θ (X). Indeed, otherwise we would have that on X̃,

ω01 + ω1 + dθη is valued in
∧2

Ct for some one-form η ∈ Ω1
X(X), which is impossible. Hence

[Ω]θ = [ω0]θ = ω0 under the isomorphism (5.7.4), so the first assertion follows. The second
assertion follows from the description of the cohomology groups given in Proposition 5.7.4 and
Proposition 5.7.5 and from the non-degeneracy of [Ω].

Remark 5.7.9: The fact that for any LCK form Ω on X, the operator LefΩ : H1(X,C) →
H3

θ (X) is injective also implies Corollary 5.2.3 via [Go14, Theorem 2.4].

We end this section with one more application concerning the possible real Chern classes of
vector bundles on OT manifolds:

Proposition 5.7.10: Let X(K, U) be an OT manifold of type (s, t) verifying that U admits
no trivial representations σI unless |I| ∈ {0, n}. Then, for any 1 ≤ k < n/2, every d-closed
real (k, k) form on X is exact. In particular, if E is some complex vector bundle on X, its
first [(n − 1)/2] real Chern classes ck(E)R ∈ H2k(X,R) vanish.

Proof. By Corollary 5.7.1, we deduce that:

H2k(X,R) ∼= ∧2k R{f1, . . . , fs} for 2k < n

where fl := v−1
l dvl for 1 ≤ l ≤ s. Let us also denote by ϕl = − i

2v−1
l dwl = f1,0

l for 1 ≤ l ≤ s,
so that fl = ϕl + ϕl.

Let α be a real closed (k, k) form on X. By the above, we can write: α =
∑

I∈I2k
aIfI + dβ,

where for every multi-index I = (i1 < . . . < i2k), fI = fi1 ∧ . . .∧fi2k
, aI ∈ R and β ∈ E2k−1

X (X)
is a real form. In particular, in bidegree (2k, 0), this reads:

α2k,0 = 0 =
∑

I∈I2k

aIϕI + ∂β2k−1,0.

But, for any I, ϕI is not ∂-exact, and neither is the sum
∑

I aIϕI , unless it is zero. In order
to see this, one could for instance choose a hermitian metric on X defining an L2 adjoint
operator ∂∗ with respect to which one would have ∂∗ϕI = 0 for any I. It would follow then
that each αI is L2-orthogonal to Im ∂, and so

∑
I aIϕI = ∂β2k−1,0 = 0. In particular, this

implies that aI = 0 for each I ∈ I2k, and so α = dβ.

Remark 5.7.11: In the literature specialized on topology, there is a complex called Morse-
Novikov, associated to a closed one-form θ of Morse type, i.e. locally given by the differential
of a Morse function. It was first considered by Novikov in [N81] and [N82], and for a thorough
description we refer to [F]. The construction of this complex is based on the number of zeros of
θ, just as the Morse-Smale complex of a Morse function f is based on the number of zeros of f
and actually these two complexes coincide when θ = df . If θ is a nowhere vanishing one-form,
as the Lee form in Proposition 5.7.5 is, the Morse-Novikov complex is trivial, therefore its
cohomology vanishes. However, the twisted cohomology does not vanish, as our computation
indicates; consequently, OT manifolds provide examples in all dimensions of spaces for which
these two cohomologies differ.
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