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Abstract

This thesis examines some quantitative questions in the framework of two dif-
ferent stochastic models. It is divided into two parts: the �rst part examines a new
class of stochastic games with priority payo�. This class of games contains as proper
subclasses the parity games extensively studied in computer science, and limsup and
liminf games studied in game theory. The second part of the thesis examines some
natural but involved questions about distributions, studied in the simple framework
of �nite state Markov chain.

In the �rst part, we examine two-player zero-sum games focusing on a particular
payo� function that we call the priority payo�. This payo� function generalizes the
payo� used in parity games. We consider both turn-based stochastic priority games
and concurrent priority games. Our approach to priority games is based on the
concept of the nearest �xed point of monotone nonexpansive mappings and extends
the µ-calculus approach to priority games.

The second part of the thesis deals with population questions. Roughly speak-
ing, we examine how a probability distribution over states evolves in time. More
speci�cally, we are interested in questions like the following one: from an initial
distribution, can the population reach at some moment a distribution with a prob-
ability mass exceeding a given threshold in state Goal? It turns out that this type
of questions is much more di�cult to handle than the questions concerning indi-
vidual trajectories: it is not known for the simple model of Markov chains whether
population questions are decidable. We study restrictions of Markov chains ensuring
decidability of population questions.
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Résumé

Cette thèse examine certaines questions quantitatives dans le cadre de deux
modèles stochastiques di�érents. Il est divisé en deux parties : la première partie
examine une nouvelle classe de jeux stochastiques avec une fonction de paiement
particulière que nous appelons � de priorité �. Cette classe de jeux contient comme
sous-classes propre les jeux de parité, largement étudiés en informatique, et les jeux
de limsup et liminf, étudiés dans la théorie des jeux. La deuxième partie de la thèse
examine certaines questions naturelles mais complexes sur les distributions, étudiées
dans le cadre plus simple des chaînes de Markov à espace d'états �ni.

Dans la première partie, nous examinons les jeux à somme nulle à deux joueurs en
se centrant sur la fonction de paiement de priorité. Cette fonction de paiement génère
le gain utilisé dans les jeux de parité. Nous considérons à la fois les jeux de priorité
stochastiques à tour de rôle et les jeux de priorité simultanés. Notre approche des
jeux de priorité est basée sur le concept du point �xe le plus proche (� nearest �xed
point �) des applications monotones non expansives et étend l'approche mu-calcul
aux jeux de priorité.

La deuxième partie de la thèse concerne les questions de population. De manière
simpli�ée, nous examinons comment une distribution de probabilité sur les états
évolue dans le temps. Plus précisément, nous sommes intéressés par des questions
comme la suivante : à partir d'une distribution initiale, la population peut-elle at-
teindre à un moment donné une distribution avec une probabilité dépassant un seuil
donné dans l'état visé ? Il s'avère que ce type de questions est beaucoup plus di�cile
à gérer que les questions concernant les trajectoires individuelles : on ne connaît
pas, pour le modèle des chaînes de Markov, si les questions de population soient dé-
cidables. Nous étudions les restrictions des chaînes de Markov assurant la décision
des questions de population.
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Chapter 1

Introduction

Discrete time stochastic �nite state systems can be modelled in many di�erent
ways. The simplest framework is provided by discrete homogeneous Markov chains
which model systems evolving in time according to a �xed probabilistic transition
function without any external control.

The systems with a single controller are modelled as Markov Decision Processes
(MDP). In MDPs, the controller chooses at each stage an action to execute. The
transition probability, that depends on the current state and on the executed action,
describes how the system evolves in time. Markov chains can be seen as degenerate
MDPs with only one action available in each state.

The next level of complexity is attained by two-player zero-sum games. Such
games correspond to systems that are controlled by two controllers or two agents
that have strictly opposite goals. The performance of each agent is measured through
the payo� that he obtains. Zero-sum refers to the fact that for each game outcome,
the gain of one player is equal to the loss of the other player. Two-player games can
have di�erent �avours:

‚ deterministic turn-based games where each state is controlled by one player
who chooses the action to execute at this state and the transitions are deter-
ministic,

‚ turn-based stochastic games where, again, each state is controlled by one
player, but the transitions are probabilistic,

‚ concurrent stochastic games where at each state both players choose simultane-
ously and independently the actions to execute, and the probabilistic transition
depends on both actions selected by the players.

Independently of whether the system evolves without any external control, or it
is controlled by one, two or more agents, we can examine its behaviour from two
di�erent perspectives.
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One point of view is that the system is at each stage in some state and this state
evolves in stages. We can represent this situation as a single particle that moves from
state to state according to a transition law, the movements in�uenced or controlled
by the actions executed by the players or by controlling agents. In this framework
(that we call pebble semantics), we are interested in the trajectory of the particle.
This point of view is adopted in the �rst part of the thesis which is devoted to
stochastic games.

Another point of view, namely population semantics, consists in seeing the sys-
tem as composed of a whole population of particles spread over the states. The
trajectory of a single particle is of no interest in this case, we are interested in how
the distribution of the population evolves in time. This is the framework adopted in
the second part of the thesis which examines population questions in Markov chains.

What is common to both parts of the thesis is that we deal uniquely with quan-
titative questions:

‚ in the �rst, part we examine the game value and the optimal and ε-optimal
strategies of the players, in some in�nite stochastic game,

‚ in the second part of the thesis, we examine if the population can reach a con-
�guration where the proportion of the population in some goal states exceeds
a given threshold.

This contrast with qualitative questions examined in computer science literature
like, for example, the question if the probability of winning is positive, without spec-
ifying any concrete probability threshold. Here, each play is either winning or losing
and the literature examines the existence of strategies which are surely winning,
almost surely winning or winning with probability arbitrarily close to 1. Qualitative
questions are outside the scope of the thesis.

1.1 Contributions

As mentioned above, the thesis consists of two parts.

1.1.1 Part I: Priority games

In Part I we examine stochastic zero-sum games with priority payo�.
The priority payo� is de�ned in the following way.
We assume that there is a total priority order over the states (we consider only

games with a �nite set of states) and that each state is labelled with a real valued
reward. The priority payo� obtained for an in�nite play is equal to the reward of
the highest priority state seen in�nitely often along this play. The priority payo�
extends the payo� used in the parity games, a class of games extensively studied
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in computer science. The parity games are priority games with rewards in the two
element set t0, 1u rather than R.

Part I consists of �ve chapters. We present an introduction of this part in Chap-
ter 2. Chapter 3 is a short technical introduction to monotone nonexpansive map-
pings and their properties. We rely heavily on properties of such mappings in Chap-
ters 4 and 5.

In Chapters 4 and 5 we study two classes of priority games.
In Chapter 4 we examine turn-based stochastic priority games where players play

in turns, one after another.
Chapter 5 is devoted to concurrent priority games where at each stage players

choose their actions simultaneously and independently.
Finally, in Chapter 6 we present the conclusions of Part I.
For turn-based stochastic priority games, we prove that both players have optimal

memoryless strategies.
For concurrent priority games, optimal strategies do not exist in general and

we construct ε-optimal strategies. Unfortunately, such ε-optimal strategies are not
simple, to implement them the players need unbounded memory.

However, the crux of Chapters 4 and 5 does not lie in the fact that �nite state
priority games have values or in the fact that we can construct optimal or ε-optimal
strategies. The main technical contribution is the powerful technique based on �xed
points developed to obtain these results. A more technical and detailed discussion is
postponed to the introduction of Part I. Preliminary version of the results obtained
in Chapter 5 appears in [KZ15].

1.1.2 Part II: Population questions

In Part II, we will consider population questions. Suppose that a continuous pop-
ulation of agents is spread over the states of the system. A con�guration is thus a
distribution over the states and actions transform one distribution into another one.
The general problem is thus to bring, by choosing the actions, the initial distribution
of the population into particular con�gurations. For example we could be interested
to bring at least half of the population in a set of Goal states. The questions con-
cerning global probability distributions of a population of, say, some particles are
considerably harder to tackle than the questions related to individual trajectory of
one particle.

For instance it can be relatively easy to select a sequence of actions such that
each particle will individually pass through some Goal state (or visit some Goal state
periodically). On the other hand, if we consider a whole population of particles, it
is undecidable in general whether there exists a strategy such that at least a half of
particles will visit the same Goal state at the same moment [CKV`11]. The reason
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of this di�culty is that this question is equivalent to a quantitative undecidable
question for �nite probabilistic automata, [Paz71, Ber74].

We are interested in the following question. Given some initial distribution, or
more generally some family of distributions, and some threshold γ, will the distribu-
tion reach a con�guration where the fraction of the population in the Goal states is
greater than γ? We study this problem from the symbolic dynamic perspective. We
consider symbolic trajectories over the two letter alphabet tA,Bu describing the evo-
lution of the distributions, where A represents con�gurations satisfying the threshold
condition while B represents all other con�gurations. In this way the evolution of
the distribution in time gives rise to an in�nite word over the alphabet tA,Bu. We
de�ne the language of the Markov chain to be the set of symbolic trajectories. We
prove that if the eigenvalues of the Markov chain are distinct and positive, its sym-
bolic language is regular and can be e�ectively computed. The �ndings presented in
Chapter 7 appears in [AGKV16].
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Part I

Priority games
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Chapter 2

Introduction

This part of the thesis is devoted to a special class of zero-sum two-player stochas-
tic games that we call stochastic priority games.

Stochastic two-player zero-sum games model the long-term interactions between
two players that have strictly opposite objectives.

The study of stochastic games starts with the seminal paper of Shapley [Sha53].
Since then, the subject was intensively studied in game theory where it is seen as
a special case of a more general model of repeated games. Repeated games are ex-
haustively treated in two monographs [Sor02, JFM15], both of them contain chapters
devoted to stochastic games. As the books speci�cally devoted to stochastic games
we can mention [FV97, NS04].

In computer science stochastic games were �rst examined from the algorithmic
point of view where the aim is to �nd an e�cient algorithm that computes optimal or
ε-optimal strategies for both players. In this line of research, initiated by the paper
of Ho�man and Karp [HK66], we are interested in �algorithmically implementable�
optimal strategies which means that the strategies should be either memoryless (i.e.
stationary) or their implementation should use a bounded memory. One of the most
challenging open questions in this domain concerns the existence of a polynomial
time algorithm solving so-called simple stochastic games. This is the simplest class
of turn-based stochastic games, examined already in [HK66]. The problem of �nding
optimal strategies for these games is known to be in NP X coNP , [Con92], but no
polynomial time algorithm is known.

Since this part of the thesis concerns games that are closely related to the so
called parity games we should mention here that most recent achievement in this
domain is a quasi-polynomial time algorithm solving deterministic parity games
[CJK`16].

Another track of research involving games is motivated by applications to au-
tomata theory, logic and veri�cation. This can be traced down to the groundbreak-
ing paper of Gurevich and Harrington [GH82], where games were used in order
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to simplify the solution to the important complementation problem for automata
on in�nite trees. Initially this research was limited to deterministic games 1, see
the collective volume [GTW02] for a presentation of the �eld. Problems related to
the veri�cation of probabilistic programs and systems motivated subsequent exten-
sions based on stochastic game models. First the veri�cation problem for one-player
stochastic systems (Markov Decision Processes) was considered, see [dA97], next
turn-based stochastic two-player games were examined [MM02, CJH04] and �nally
concurrent stochastic games were explored 2 [dAM04].

In stochastic games the players preferences are expressed by means of a payo�
mapping. The payo� mapping maps in�nite plays (in�nite sequences of states and
actions) to real numbers. The payo� mappings used in computer science tend to
be di�erent from the traditional payo� mappings used in game theory. The payo�s
prevalent in computer science are often expressed in some kind of logic and the
corresponding payo� mappings take only two values, 1 for the winning plays and 0
for the losing plays.

On the other hand, the payo� mappings used in game theory are rather real
valued: mean-payo�, discounted payo�, lim sup and lim inf payo�s are among the
most popular ones.

In this thesis we de�ne and examine the class of priority games. The priority
games constitute a natural extension of parity games, this latter class is the class
of games popular in computer science having applications in automata theory and
veri�cation.

To put the results of the thesis in the context let us recall the relevant results
concerning the parity games.

2.1 Context - the parity games and µ-calculus

A stochastic zero-sum two-player game is an in�nite game played by two players,
player Max and player Min, on an arena with a �nite set of states S and a �nite set
of actions A (the games where one or both of these sets are in�nite are beyond the
scope of the thesis). Turn-based stochastic games and concurrent stochastic games
di�er in the law of motion that speci�es how the game moves from one state to
another in function of the actions played by the players.

In turn-based stochastic games each state is controlled by one of the players. The
dynamical aspect of the system is captured by the family of probability distributions

1. perfect information games with deterministic transitions
2. The terms �turn-based stochastic games� and �concurrent stochastic games� are commonly

used in Computer Science. In game theory these classes of games are called respectively �perfect in-
formation stochastic games� and �stochastic games�. Thus, in particular �stochastic games� without
any other quali�er refers to concurrent stochastic games.
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pp¨|i, aq, where for state i P S and action a P A, ppj|i, aq is the probability to move to
state j when the player controlling the current state i executes a. It is assumed that
both players know all the history (sequences of visited states and played actions) of
the game up to the current moment.

In concurrent stochastic games it is rather the case that both players control
collectively the transitions. More speci�cally, in concurrent stochastic games, for
each state i, both Max and Min have nonempty sets of available actions, Apiq and
Bpiq respectively. At each stage, the players, knowing the current state and all the
previous history, choose independently and simultaneously actions a P Apiq and
b P Bpiq respectively and the game moves to state j with probability ppj|i, a, bq.
Immediately after each stage, and before the next one, both players are informed
about the action played by the adversary player.

Thus in the concurrent stochastic games the transition mapping assigns to each
state i and to actions a P Apiq, b P Bpiq, a probability distribution pp¨|i, a, bq over
states.

We assume that players play an in�nite game. At each stage either one of the
players, in the case of the turn-based stochastic games, or both players, for the
concurrent stochastic games, choose action and the game moves to another state
according to the transition probability.

An in�nite sequence of states and action occurring during the game is called a
play.

Since we are interested in �nite state games, without loss of generality we assume
in the sequel that the set of states is S “ rns “ t1, . . . , nu.

Parity games are endowed with the reward vector r “ pr1, . . . , rnq, where ri P
t0, 1u is the reward of state i. The parity payo� ϕphq of an in�nite play h is de�ned
to be equal 3 to the reward of the maximal state visited in�nitely often in h, i.e. the
payo� is equal to ri if i was visited in�nitely often in h and all states j, j ą i, were
visited only a �nite number of times. This de�nition of the parity payo� is the same
for all classes of parity games: deterministic parity games, turn-based stochastic
parity games and concurrent parity games, the only di�erence between these three
types of games lies in their transition mappings.

A strategy of a player is a mapping σ : H Ñ ∆pAq, where ∆pAq denotes the set
of probability distributions over A. We will de�ne more precisely the strategies for
turn-based stochastic games in Chapter 4 and for concurrent games in Chapter 5.

The set of all plays is endowed in the usual way with the Borel σ-algebra gen-
erated by the cylinders. Strategies σ, τ of players Max and Min and an initial state

3. The payo� of the parity game is usually formulated in a bit di�erent way: The states are a
�nite subset of natural numbers and reward of state i is equal to 0 if i is even and 1 otherwise.
However it is easy to see that our de�nition is equivalent to the usual one by just renaming the
states.



20 2.1. Context - the parity games and µ-calculus

i P S give rise to a probability measure Pσ,τ
i over the Borel σ-algebra. The aim of

player Max (respectively Min) is to maximize (respectively minimize) the expected
payo�

Eσ,τ
i pϕq “

ż

ϕphqPσ,τ
i pdhq

for each initial state i.
Since the parity payo� is Borel measurable, by the result of Martin [Mar98],

parity games have value vi for each initial state i, i.e.

sup
σ

inf
τ
Eσ,τ
i pϕq “ vi “ inf

τ
sup
σ

Eσ,τ
i pϕq, @i P S. (2.1)

Moreover, for deterministic and for turn-based stochastic parity games both play-
ers have optimal pure memoryless strategies, see for example [EJ91, Zie98, Wal02],
where the deterministic parity games are examined, and [CJH04] for turn-based
stochastic parity games.

One of the techniques used to solve parity games relies on the µ-calculus. In this
approach the point of departure is a simple one-step game 4 played at each state
i P S. The one-step game has a value for each state i P S and each reward vector
r “ pr1, . . . , rnq. Let

f “ pf1, . . . , fnq (2.2)

be the mapping that maps the reward vectors r P t0, 1un to the vector of values
of the one-step games, i.e. for r “ pr1, . . . , rnq and i P S, fiprq is the value of the
one-step game played at state i given the reward vector r. We endow r0, 1sn with
the product order, x “ px1, . . . , xnq ď py1, . . . , ynq “ y if xi ď yi for all i P rns, which
makes it a complete lattice. It is easy to see that

f : r0, 1sn Ñ r0, 1sn

is monotone under ď, thus by Tarski's theorem [Tar55], f has the least and the
greatest �xed points.

Then one de�nes the nested �xed point

Fixnpfqprq “ µrnxn.µrn´1xn´1. . . . µr2x2.µr1x1.fpx1, x2, . . . , xn´1, xnq, (2.3)

where µrixi denotes either the greatest �xed point if ri “ 1 or the least �xed point
if ri “ 0 and f is the one-step value function (2.2). The main result obtained in

4. The term �one-step game� is commonly used in game theory. In computer science one-step
games are not named explicitly, but their value function f is used in the µ-calculus approach to
parity games, where is often called the predecessor operator.
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the µ-calculus approach to concurrent stochastic parity games due to de Alfaro and
Majumdar [dAM04], is that

v “ pv1, . . . , vnq “ Fixnpfqprq,

where the left-hand side vector v is composed of the values vi for the parity game
starting at i, cf. (2.1). To summarize, the value vector of the parity game can be
obtained by calculating the nested �xed point of the one-step value mapping 5.

Let us note that for deterministic parity games (turn-based games with deter-
ministic transitions) the µ-calculus representation simpli�es since the one-step value
mappings fi map the binary vectors t0, 1un to t0, 1u and the parity games can be
treated in the framework of the boolean µ-calculus [Wal02, AN01]. Since in the the-
sis we do not consider the deterministic games we omit the more detailed discussion
of deterministic parity games.

2.2 From parity games to priority games

The parity games (as well as other related classes of games like the games with the
Muller or Rabin winning conditions) arose from the study of decidability questions
in logic. In this framework the winning criteria are expressed in some kind of logic,
where there is room for only two types of plays, the winning plays that satisfy a
logical formula and the losing plays that do not satisfy the formula. For this reason
the rewards in the parity games take only two values, 0 and 1, with the intuition
that the reward 1 is favourable and the reward 0 unfavourable for our player (and
the preferences are inverse for the adversary player).

However, the restriction to 0, 1 rewards does not allow to express �ner player's
preferences. This motivates the study of the games that allow any real valued re-
wards. We de�ne the priority game as the game where each state i P rns “ S is
equipped with a reward ri P R. Like in parity games the payo� ϕphq of a play h is
de�ned to be the reward ri of the greatest state i that is visited in�nitely often in
h.

At �rst glance, the priority games are just a mild extension of parity games. This
impression is reinforced by the fact that deterministic priority games, which we do
not consider in the thesis, can be reduced to deterministic parity games. However,

5. The traditional presentation of this result is a bit di�erent. Roughly speaking the variables
are regrouped in blocks, each block consists of consecutive variables to which the same �xed point
is applied. In this way the �xed points are applied to the groups of variables rather than to each
variable separately. This allows to decreases the number of �xed points and the resulting formula
alternates the least and the greatest �xed points. However, this is only a technical detail which has
no bearing on the result. For our purposes it is more convenient to apply �xed points to variables
rather than to groups of variables.



22 2.2. From parity games to priority games

we do not know if such reduction is possible for stochastic (turn-based or concurrent)
priority games.

The interest in priority games is twofold. First, the priority games allow to quan-
tify players' preferences in a more subtle way than it is possible in parity games.
While in parity games there are only two classes of plays, the plays with the parity
payo� 1 and the plays with the parity payo� 0, in priority games we can distinguish
many levels of preferences. As a motivating simple example consider the priority
game with three states S “ t1, 2, 3u and rewards r1 “ 0, r2 “ 1, r3 “

3
4
. This game

gives rise to three distinct classes of in�nite plays: player Max highest preference is
for the plays such that the maximal state visited in�nitely often is state 2 (plays give
him the payo� 1), his second preference is for the plays that visit state 3 in�nitely
often (these plays give him the payo� 3

4
), and his lowest preference is for the plays

that from some moment onward stay forever in state 1 (they give him payo� 0). It
is impossible to capture such a hierarchy of preferences when we limit ourselves to
the parity payo�.

The second reason to be interested in priority games stems from the fact that
not only they generalize parity games, but they contain as proper subclasses two
other well known families of stochastic games: the lim sup and lim inf payo� games
[MS04]. This point will be discussed in Section 5.1.

Our approach to priority games is inspired by the µ-calculus approach to parity
games. There are two major di�erences however.

It is impossible to solve the priority games using only the least and the greatest
�xed points, we need also other �xed points that we name �the nearest �xed points�.
To de�ne this notion we use the well known fact that the one-step game value
mapping (2.2) is not only monotone but it is also nonexpansive, which means that,
for x, y P Rn, ‖fpxq ´ fpyq‖8 ď ‖x ´ y‖8, where ‖x‖8 “ supi|xi| is the supremum
norm. Let us note that this property of the one-step games is used in the study of
stochastic mean-payo� games [BK76, Ney03].

In the study of parity games the fact that the one-step game value mapping f
is nonexpansive is irrelevant, the monotonicity of f is all that we need in order to
apply Tarski's �xed point theorem. When we study the priority games, when other
�xed points enter into consideration, the monotonicity of f is not su�cient and the
fact that f is nonexpansive becomes paramount.

Our study of priority games is organized as follows.
It turns out that the priority games with rewards in R can be reduced through

a linear transformation to the priority games with rewards in the interval r0, 1s.
Therefore in the sequel we assume that the reward vector r “ pr1, . . . , rnq belongs
to r0, 1sn. Under this condition value mapping f of the one-step game (2.2) is a
monotone nonexpansive mapping from r0, 1sn to r0, 1sn. Since our study of priority
games is based on the analysis of the �xed points of f , in Chapter 3 we prepare the
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background and present basic facts concerning �xed points of monotone nonexpan-
sive mappings from r0, 1sn to r0, 1sn. All the facts presented in Chapter 3 are either
well known or are rather straightforward observations. The purpose of Chapter 3 is
to regroup in one place all the facts that we need in the sequel and to introduce the
notion of the r-nearest �xed point

µrx.gpxq

of the monotone nonexpansive mapping g : r0, 1s Ñ r0, 1s. Intuitively, µrx.gpxq is
the �xed point of g which is nearest to r P r0, 1s. Note that the least and the greatest
�xed points of g are special cases of this notion, the greatest �xed point is the �xed
point nearest to 1 and the least �xed point is the �xed point nearest to 0. We show
that the notion of the nearest �xed point makes sense for monotone nonexpansive
mappings from r0, 1s to r0, 1s. In Chapter 3 we de�ne also, for each vector r “
pr1, . . . , rnq P r0, 1s

n and a monotone nonexpansive mapping f : r0, 1sn Ñ r0, 1sn,
the nested r-nearest �xed point

Fixnpfqprq “ µrnxn.µrn´1xn´1. . . . µr2x2.µr1x1.fpx1, x2, . . . , xn´1, xnq, (2.4)

which generalizes the nested least/greatest �xed point (2.3).
Chapter 4 is devoted to the study of turn-based stochastic priority games. The

main result of this chapter is that, given the reward vector r “ pr1, . . . , rnq, the value
vector v “ pv1, . . . , vnq of the turn-based stochastic priority game can be expressed
as the nested r-nearest �xed point

v “ pv1, . . . , vnq “ Fixnpfqprq (2.5)

of the value mapping f of the one-step game. Moreover, we prove that both players
have optimal pure memoryless strategies.

Chapter 5 examines concurrent stochastic priority games. We prove that the
r-nearest �xed point characterization (2.5) of the value vector holds also for con-
current priority games. However, in general the players have only ε-optimal history
dependent strategies.

Although the results of Chapters 4 and 5 can be seen as extensions of the µ-
calculus characterization known for parity games [MM02, dAM04] there is one more
point that distinguish our approach from the traditional µ-calculus approach to
parity games. In the case of parity games, to the best of our knowledge, the µ-
calculus proofs presented previously were not inductive. In previous proofs a formula
similar to (2.3) was announced and it was shown, in one big step, that this formula
yields the value of the parity game 6.

6. Such single big step proofs characterize also the µ-calculus approach to deterministic parity
games [Wal02]. In retrospect, what was lacking in previous proofs was a game interpretation of the
partial �xed point, where some variables remain free.



24 2.2. From parity games to priority games

The fact that the nested �xed point formula (2.3) is in some sense recursive, was
not exploited to the full extent in the proof.

The novelty of the proofs presented in Chapters 4 and 5 lies in the fact that
they are genuinely inductive. We provide a clear game theoretic interpretation of
the partial �xed point formula

Fixkpfqprq “ µrkxk. . . . µr1x1.fpx1, . . . , xk, rk`1, . . . , rnq, (2.6)

where the �xed points are applied only to the low priority variables x1, . . . , xk, while
the free variables xk`1, . . . , xn take values rk`1, . . . , rn respectively.

Let Gprq be the priority game endowed with the reward vector r. Let Gkprq
be the priority game obtained from Gprq by transforming all states i, i ą k, into
absorbing states 7. On the other hand, the states j, j ď k, have the same transitions
in Gprq as in Gkprq.

It turns out that the partial nested �xed point (2.6) is equal to the value vector
v “ pv1, . . . , vnq of the priority game Gkprq. We prove this fact by induction, starting
with the trivial priority game G0prq, where all states are absorbing. And the induc-
tive step consist in showing that, if (2.6) is the value of the game Gkprq, then adding
the new �xed point µrk`1

xk`1 we obtain the value vector of the game Gk`1prq. In
other words, adding one �xed point corresponds to the transformation of an absorb-
ing state into a nonabsorbing one. Note that in priority games the absorbing states
are trivial, if a state m is absorbing then vm “ rm, i.e. the value of m is equal to the
reward rm. Thus transforming an absorbing state into a nonabsorbing we convert a
trivial state into a nontrivial one. The crucial point is that in the inductive proof
given in the thesis we apply this transformation to just one state. And it is much
easier to understand what happens if one state changes its quality from absorbing
to nonabsorbing than when all states are nonabsorbing from the outset.

7. Recall that a state i is absorbing if it is impossible to leave i, i.e. for all possible actions
executed in i the game remains in i with the probability 1.
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Chapter 3

On �xed points of bounded

monotone nonexpansive mappings

In this technical chapter, we introduce monotone nonexpansive mappings, that
play a crucial role in the study of stochastic priority games. The solution to stochastic
turn-based and concurrent priority games given in Chapters 4 and 5 relies heavily
on �xed point properties of such mappings examined in Section 3.1. In Section 3.2
we de�ne and examine the nested nearest �xed points of monotone nonexpansive
mappings.

The duality of the nested nearest �xed points is studied in Section 3.3.
An element x “ px1, . . . , xnq of Rn will be identi�ed with the mapping x from

rns “ t1, . . . , nu to R and we can occasionally write xpiq to denote xi.
The set Rn is endowed with the natural componentwise order, for x, y P Rn,

x ď y if xi ď yi for all i P rns.
A mapping f : Rn Ñ Rk is monotone if for x, y P Rn, x ď y implies fpxq ď

fpyq (we do not assume that k “ n, thus x ď y and fpxq ď fpyq can relate to
componentwise orders in two di�erent spaces).

We assume that the Cartesian product Rn is endowed with the structure of a
normed real vector space with the norm ‖¨‖8, for x P Rn, ‖x‖8 “ maxiPrns|xi|. Thus,
for x, y P Rn, ‖x´ y‖8 de�nes a distance between x and y.

We say that a mapping f : Rn Ñ Rk is nonexpansive if, for all x, y P Rn,
‖fpxq ´ fpyq‖8 ď ‖x´ y‖8.

Such a mapping f can be written as vector of k mappings f “ pf1, . . . , fkq,
where fi : Rn Ñ R, i “ 1, . . . , k. Clearly, f is monotone nonexpansive i� all fi are
monotone nonexpansive.

We say that a mapping f : Rn Ñ Rk is additive homogeneous if for all λ P R and
x P Rn
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fpx` λenq “ fpxq ` λek,

where en and ek are the vectors p1, . . . , 1q in Rn and Rk respectively having all
components equal to 1.

Crandall and Tartar [CT80] proved the following result.

Example 3.1. Let f : Rn Ñ R the max function such that for all x P Rn, maxpxq “
maxpx1, . . . , xnq and let g : Rn Ñ R the zero function such that for all x P Rn,
gpxq “ 0.

Remark that both f and g are nonexpansive and f is also additive homogeneous,
but g is not additive homogeneous because for any x P Rn and λ ‰ 0,

0 “ gpx` λenq ‰ gpxq ` λ ą 0.

Lemma 3.2 (Crandall and Tartar [CT80]). For additive homogeneous mappings
f : Rn Ñ Rk the following conditions are equivalent:

(i) f is monotone,

(ii) f is nonexpansive.

We will need only the implication (i)Ñ(ii) that we prove below for the reader's
convenience. Moreover, if the result holds for mappings from Rn to R then it holds
for mappings from Rn to Rk. Thus we assume in the proof that that f : Rn Ñ R.

Proof. For x, y P Rn, en “ p1, 1, . . . , 1q P Rn and λ “ ‖x ´ y‖8 we have y ´ λen ď
x ď y ` λen. Thus for f : Rn Ñ R monotone and additive homogeneous we obtain

fpyq ´ λ ď fpxq ď fpyq ` λ.

Thus |fpxq ´ fpyq| ď λ “ ‖x´ y‖8.

3.1 Fixed points of monotone nonexpansive map-

pings

We say that a monotone mapping f : Rn Ñ Rk is bounded if fpr0, 1snq Ď r0, 1sk.
The set of bounded monotone nonexpansive mappings will be denoted byMn,kr0, 1s.

Moreover BMN will stand for the abbreviation for �bounded monotone nonexpan-
sive�.

In this section we introduce the notion of the nearest �xed point of BMN map-
pings generalizing the least and greatest �xed points.

In the following lemma states basic properties of �xed points of BMN mappings.
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Lemma 3.3. Let f P M1,1r0, 1s. De�ne by induction, f p0qpxq “ x, f p1qpxq “ fpxq,
f pi`1qpxq “ fpf piqpxqq, for x P r0, 1s.

Then

(i) for each x P r0, 1s the sequence pf piqpxqq, i “ 0, 1, . . . , is monotone and con-
verges to some x8 P r0, 1s. The limit x8 is a �xed point of f , fpx8q “ x8,

(ii) if x ď y are �xed points of f , fpxq “ x and fpyq “ y, then for each z such
that x ď z ď y, fpzq “ z,

(iii) the sequence pf piqp0qq, i “ 0, 1, 2, . . . , converges to the least �xed point Kf of f
while the sequence pf piqp1qq, i “ 0, 1, 2, . . . , converges to the greatest �xed point
Jf of f . The interval rKf ,Jf s is the set of all �xed points of f .

If 0 ď x ď Kf then the sequence pf piqpxqq converges to Kf .

If Jf ď x ď 1 then the sequence pf piqpxqq converges to Jf .

If 0 ď x ă Kf then x ă fpxq.

If Jf ă x ď 1 then fpxq ă x.

Proof. (i) Suppose that fpxq ď x. Then inductively, since f is non-increasing,
f pi`1qpxq ď f piqpxq for all i, i.e. the sequence f piqpxq is non-increasing. Since this
sequence is bounded from below by 0 it converges to some x8.

The case of fpxq ě x can be treated in a similar way.
Since f is nonexpansive |fpx8q ´ f pi`1qpxq| ď |x8 ´ f piqpxq|. As the right-hand

side tends to 0 we can see that f piqpxq converges to fpx8q. On the other hand, f piqpxq
converges to x8. Therefore fpx8q “ x8.

(ii) Let 0 ď x ď z ď y ď 1 and fpxq “ x, fpyq “ y. Since f is monotone,
x “ fpxq ď fpzq ď fpyq “ y. Thus, since f is nonexpansive, 0 ď fpyq´fpzq ď y´ z
and 0 ď fpzq ´ fpxq ď z ´ x. This implies that fpzq “ z.

(iii) is a direct consequence of (i) and (ii).

Let f PM1,1r0, 1s. For a P r0, 1s we de�ne the a-nearest �xed point of f to be

µax.fpxq :“ lim
i
f piqpaq.

Lemma 3.3 shows that this is really a �xed point of f which is closest to a, i.e.
|a´ µax.fpxq| “ minzPr0,1st|a´ z| | fpzq “ zu.

Moreover, the least and the greatest �xed points of f PM1,1r0, 1s are respectively
equal to µ0x.fpxq and µ1x.fpxq.

We can see also that

µax.fpxq “

$

’

&

’

%

µ0x.fpxq if a ď µ0x.fpxq,

a if µ0x.fpxq ď a ď µ1x.fpxq,

µ1x.fpxq if µ1x.fpxq ď a,

(3.1)
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i.e. the �xed point nearest to a is equal either to the least or to the greatest �xed
point or is equal to a itself.

Let f : px1, . . . , xnq ÞÑ fpx1, . . . , xnq be a BMN mapping from r0, 1sn to r0, 1s.
For each pr1, . . . , rk´1, rk`1, . . . , rnq P r0, 1s

n´1 we obtain a BMN mapping

xk ÞÑ fpr1, . . . , rk´1, xk, rk`1, . . . , rnq.

from r0, 1s to r0, 1s. This mapping belongs to M1,1r0, 1s thus, given rk P r0, 1s, we
can calculate the rk-nearest �xed point

µrkxk.fpr1, . . . , rk´1, xk, rk`1, . . . , rnq.

This �xed point depends on r “ pr1, . . . , rk´1, rk, rk`1, . . . , rnq, thus we can de�ne
the mapping

r0, 1sn Q pr1, . . . , rk´1, rk, rk`1, . . . , rnq ÞÑ µrkxk.fpr1, . . . , rk´1, xk, rk`1, . . . , rnq P r0, 1s
(3.2)

Lemma 3.4. If px1, . . . , xnq ÞÑ fpx1, . . . , xnq is BMN then the mapping (3.2) is
BMN.

Proof. Let r “ pr1, . . . , rnq, w “ pw1, . . . , wnq P r0, 1s
n. De�ne two sequences prikq, i “

1, 2, . . . and pwikq, i “ 1, 2, . . ., such that

r1
k “ rk and ri`1

k “ fpr1, . . . , rk´1, r
i
k, rk`1, . . . , rnq

and
w1
k “ wk and wi`1

k “ fpw1, . . . , wk´1, w
i
k, wk`1, . . . , wnq.

By Lemma 3.3 both sequences converge to some r8k and w8k respectively and

r8k “ µrkxk.fpr1, . . . , rk´1, xk, rk`1, . . . , rnq

and
w8k “ µwkxk.fpw1, . . . , wk´1, xk, wk`1, . . . , wnq.

We shall prove by induction that for all i, |rik ´ wik| ď ‖r ´ w‖8.
Clearly, |r1

k ´ w
1
k| “ |rk ´ wk| ď maxi|ri ´ wi| “ ‖r ´ w‖8. Suppose that

|rik ´ wik| ď ‖r ´ w‖8.
We have then

|ri`1
k ´wi`1

k | “ |fpr1, . . . , rk´1, r
i
k, rk`1, . . . , rnq´fpw1, . . . , wk´1, w

i
k, wk`1, . . . , wnq| ď

maxtmax
j‰k

|rj ´ wj|, |rik ´ wik|u ď

maxtmax
j‰k

|rj ´ wj|, ‖r ´ w‖8u “ ‖r ´ w‖8.

Taking the limit iÕ 8 we obtain |r8k ´ w8k | ď ‖r ´ w‖8.
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Lemma 3.5. If f P Mk,mr0, 1s and g P Mm,nr0, 1s then g ˝ f P Mk,nr0, 1s, i.e. the
composition of BMN mappings is BMN.

Proof. For x, y P r0, 1sk, we have ‖gpfpxqq´gpfpyqq‖8 ď ‖fpxq´fpyq‖8 ď ‖x´y‖8
i.e. composition of nonexpansive mappings is nonexpansive. Trivially, monotonicity
is also preserved by composition.

3.2 Nested �xed points of bounded monotone non-

expansive mappings

In this section we de�ne by induction, for each k, 0 ď k ď n, the nested �xed
point operator.

We de�ne by induction for each k, 0 ď k ď n, the nested nearest �xed point
operator

Fixk : Mn,nr0, 1s ÑMn,nr0, 1s.

Each Fixk can be decomposed into n operators Fixki ,

Fixki : Mn,nr0, 1s ÑMn,1r0, 1s, i P rns,

such that, for f PMn,n,

Fixkpfq “ pFixk1pfq, . . . ,Fix
k
npfqq.

Let f “ pf1, . . . , fnq PMn,nr0, 1s, where fi PMn,1r0, 1s, for i P rns.
For all r P r0, 1sn we set Fix0

pfq to be such that

Fix0
pfqprq “ r.

Thus Fix0
pfq is the identity mapping and does not depend of f . Note that Fix0

i pfqprq “
ri, i.e. Fix

0
i pfq is the projection on the ith coordinate.

Now, inductively, given Fixk´1
pfq we de�ne Fixkpfq.

For r P r0, 1sn and ζ P r0, 1s let us set

F k´1
i pζ; rq :“ Fixk´1

i pfqpr1, . . . , rk´1, ζ, rk`1, . . . , rnq, for i P rk ´ 1s. (3.3)

Note that F k´1
i pζ; rq depends on ζ and on pr1, . . . , rk´1, rk`1, . . . , rnq but does

not depend on rk. Thus F
k´1
i is in fact a mapping from r0, 1sn to r0, 1s.

Then we de�ne

Fixkkpfqprq :“ µrkζ.fkpF
k´1
1 pζ; rq, . . . , F k´1

k´1 pζ; rq, ζ, rk`1, . . . , rnq, (3.4)

Fixki pfqprq :“ Fixk´1
i pfqpr1, . . . , rk´1,Fix

k
kpfqprq, rk`1, . . . , rnq, for i P rk ´ 1s,

Fixki pfqprq :“ ri, for i P tk ` 1, . . . , nu.
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Since the de�nition of the nested �xed point mappings uses only the composition
and the nearest �xed point operators, Lemmas 3.5 and 3.4 imply that

Corollary 3.6. If f PMn,nr0, 1s then, for all k P t0u Y rns, Fix
k
pfq PMn,nr0, 1s.

Let us note �nally that Fixkpfq depends only on f1, . . . , fk but is independent
of fk`1, . . . , fn.

Example 3.7. Let n “ 2 and f “ pf1, f2q : M2,2r0, 1s such that for all x “ px1, x2q P

r0, 1s2, f1px1, x2q “ maxpx1, x2q, f2px1, x2q “ x1 and let r “ pr1, r2q “ p0, 1q.
Let us calculate the value of Fix2 inductively, for k “ 0 we have Fix0

pfqprq “
p0, 1q.

For k “ 1,

Fix1
1pfqprq “ µ0ζ.f1pζ, 1q “ µ0ζ.maxpζ, 1q “ 1, and

Fix1
2pfqprq “ r2 “ 1.

Finally, with k “ 2,

Fix2
2pfqprq “ µ1ζ.f2pF

1
1 pζ, 1q, ζq.

So we need to calculate the value of F 1
1 pζ, 1q:

F 1
1 pζ, 1q “ Fix1

1pfqpζ, 1q “ µ0ζ.f1pζ, 1q “ 1.

Then Fix2
2pfqprq “ 1 and Fix2

1pfqprq “ Fix1
1pfqp0, 1q “ µ0ζ.f1pζ, 1q “ 1.

Hence,

Fix2
pfqprq “ p1, 1q.

3.3 Duality for the bounded monotone nonexpan-

sive mappings

In this chapter we de�ne and examine the notion of duality for the BMN map-
pings.

For r “ pr1, . . . , rnq P r0, 1s
n we set 1´ r :“ p1´ r1, . . . , 1´ rnq.

Given a BMN mapping f : r0, 1sn Ñ r0, 1s the dual of f is the mapping f :
r0, 1sn Ñ r0, 1s such that

fpr1, . . . , rnq “ 1´ fp1´ r1, . . . , 1´ rnq.
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The dual of f “ pf1, . . . , fkq PMn,kr0, 1s is de�ned as f “ pf 1, . . . , fnq.
We can write this in a more explicit way if for f “ pf1, . . . , fkq P Mn,kr0, 1s we

de�ne 1´ f :“ p1´ f1, . . . , 1´ fkq.
Then using this notation, for f PMn,kr0, 1s, we can write succinctly

fprq “ 1´ fp1´ rq.

Lemma 3.8. If f is BMN then f is BMN.

Proof. Let pr1, . . . , rnq ď pw1, . . . , wnq.
Then p1 ´ r1, . . . , 1 ´ rnq ě p1 ´ w1, . . . , 1 ´ wnq and fp1 ´ r1, . . . , 1 ´ rnq ě

fp1´ w1, . . . , 1´ wnq.
Thus fpr1, . . . , rnq “ 1 ´ fp1 ´ r1, . . . , 1 ´ rnq ď 1 ´ fp1 ´ w1, . . . , 1 ´ wnq ď

fpw1, . . . , wnq, i.e. f is monotone.
Finally ‖fprq´fpwq‖8 “ ‖p1´fp1´rqq´p1´fp1´wqq‖8 ď ‖p1´rq´p1´wq‖8 “

‖r ´ w‖8, i.e. f is nonexpansive.

Lemma 3.9. If f PMn,1r0, 1s then, for all k P rns and r “ pr1, . . . , rnq P r0, 1s
n,

µrkxk.fpr1, . . . , rk´1, xk, rk`1, . . . , rnq “

1´ µ1´rkxk.fp1´ r1, . . . , 1´ rk´1, 1´ xk, 1´ rk`1, . . . , 1´ rnq.

Proof. Let Jf and Kf be respectively the greatest and the least �xed points of the
mapping

xk ÞÑ pfr1, . . . , rk´1, xk, rk`1, . . . , rnq.

Similarly let Jf ,Kf the greatest and the least �xed points of the mapping

xk ÞÑ fp1´ r1, . . . , 1´ rk´1, 1´ xk, 1´ rk`1, . . . , 1´ rnq.

Since fp1´r1, . . . , 1´rk´1, xk, 1´rk`1, . . . , rnq “ 1´fpr1, . . . , rk´1, 1´xx, rk`1, . . . , rnq
we have Kf “ 1´ Jf and Jf “ 1´ Kf .

There are three possibilities concerning the position of rk relative to Kf and Jf .
If Jf ď rk then

µrkpxk.fr1, . . . , rk´1, xk, rk`1, . . . , rnq “ Jf .

However, in this case we have also 1´ rk ď 1´ Jf “ Kf implying that

µ1´rkxk.fp1´ r1, . . . , 1´ rk´1, xk, 1´ rk`1, . . . , rnq “ Kf .
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In a similar way if rk ď Kf then

µrkxk.fpr1, . . . , rk´1, xk, rk`1, . . . , rnq “ Kf

and
µ1´rkxk.fp1´ r1, . . . , 1´ rk´1, xk, 1´ rk`1, . . . , rnq “ Jf .

The last case to examine is when Kf ď rk ď Jf . Then

µrkxk.fpr1, . . . , rk´1, xk, rk`1, . . . , rnq “ rk

and, on the other hand,
Kf ď 1´ rk ď Jf ,

implying

µ1´rkxk.fp1´ r1, . . . , 1´ rk´1, xk, 1´ rk`1, . . . , rnq “ 1´ rk.

Lemma 3.10. Let g P Mm,kr0, 1s and f P Mk,nr0, 1s. Then f ˝ g “ f ˝ g, i.e. the
dual of the composition of BMN mappings is equal to the composition of duals.

Proof. For r P r0, 1sn we have pf ˝ gqprq “ 1 ´ pf ˝ gqp1 ´ rq “ 1 ´ fpgp1 ´ rqq “
1´ fp1´ p1´ gp1´ rqqq “ 1´ fp1´ gprqq “ pfpgprqq.

The following lemma examines the duality for the nested nearest �xed points.

Lemma 3.11. Let f “ pf1, . . . , fnq P Mn,nr0, 1s. Then for all k, 0 ď k ď n, and
r P r0, 1sn

Fixkpfqprq “ 1´ Fixkpfqp1´ rq. (3.5)

Proof. Induction on k.
r ÞÑ Fix0

pfqprq “ r is the identity mapping independently of f . Thus the left-
hand side of (3.5) is equal to r and the right-hand side is 1´ p1´ rq “ r as well.

For each 0 ď k ď n, let us set

Fixkpfqprq “ Hk
prq “ pHk

1 prq, . . . , H
k
nprqq

and
Fixkpfqprq “ H

k
prq “ pH

k

1prq, . . . , H
k

nprqq.

Using this notation (3.5) can be written as

H
k
prq “ 1´Hk

p1´ rq. (3.6)
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Our aim is to prove the last equality for k under the assumption that it holds
for k ´ 1.

By de�nition

H
k

kp1´ rq “ µ1´rkxk.fkpH
k´1

1 p1´ r1, . . . , 1´ rk´1, xk, 1´ rk`1, . . . , rnq,

. . . ,

H
k´1

k´1p1´ r1, . . . , 1´ rk´1, xk, 1´ rk`1, . . . , rnq,

xk, 1´ rk`1, . . . , 1´ rnq.

Let us de�ne a mapping Gk PMn,nr0, 1s:

Gk :“ pHk´1
1 , . . . Hk´1

k´1 , πk, πk`1, . . . , πnq,

where πipx1, . . . , xnq “ xi, i “ k, k`1, . . . , n, is the projection on the i-th coordinate.
Since πi “ πi, i.e. the dual of the projection is equal the same projection mapping
we can see that the dual to Gk is

G
k
“ pH

k´1

1 , . . . H
k´1

k´1, πk, πk`1, . . . , πnq.

Therefore, by Lemmas 3.10 and 3.9,

H
k

kp1´ rq “ µ1´rkxk.fk ˝G
k
p1´ r1, . . . , 1´ rk´1, xk, 1´ rk`1 . . . , 1´ rnq

“ µ1´rkxk.fk ˝G
kp1´ r1, . . . , 1´ rk´1, xk, 1´ rk`1 . . . , 1´ rnq

“ 1´ µrkxk.fk ˝G
k
pr1, . . . , rk´1, xk, rk`1, . . . , rnq “ 1´Hk

k prq

For m P rk ´ 1s,

H
k

mp1´ rq “ H
k´1

m p1´ r1, . . . , 1´ rk´1, H
k

kp1´ rq, 1´ rk`1, . . . , 1´ rnq

“ H
k´1

m p1´ r1, . . . , 1´ rk´1, 1´H
k
k prq, 1´ rk`1, . . . , 1´ rnq

“ 1´Hk´1
m pr1, . . . , rk´1, H

k
k prq, rk`1, . . . , rnq

“ 1´Hk
mprq.

Finally, for m ą k,

1´H
k

mp1´ rq “ 1´ p1´ rmq “ rm “ Hk
mprq.

This terminates the proof of (3.6).
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Chapter 4

Turn-based stochastic priority games

A turn-based stochastic priority game is played by two players on an arena with
a �nite set of states S “ rns “ t1, . . . , nu partitioned into two sets SMax and SMin,
where SMax and SMin are the sets states controlled by player Max and player Min,
respectively. For each state i P S, Apiq is a �nite nonempty set of actions that are
available in i. For i, j P S and a P Apiq, ppj|i, aq is the transition probability to move
to state j if action a is played at state i.

The players play an in�nite game, at each stage the player controlling the current
state selects an action to execute and the game moves to a new state according to
the transition probability.

The arena is endowed with a reward vector r “ pr1, . . . , rnq, where ri P R is the
reward of state i. The priority payo� of an in�nite play is de�ned to be the reward
of the maximal (in the usual integer order) state visited in�nitely often during the
play. The goal of player Max (respectively player Min) is to maximize (respectively
minimize) the payo�.

There are two main results in this chapter:

‚ the value vector of the turn-based stochastic priority game can be obtained as
a nested nearest �xed point of a monotone nonexpansive mapping f , where f
is the value mapping of the one-step game, and

‚ both players have pure memoryless optimal strategies.

Note that the last point implies that, since the number of possible pure mem-
oryless strategies is �nite, we can �nd, although in a very ine�cient way, optimal
strategies for both players through the exhaustive search among all pure memoryless
strategies.

The turn-based stochastic priority game with the rewards in the two element set
t0, 1u is known as the turn-based stochastic parity game. These games have been
examined in several papers [MM02, CJH04]. In particular Chatterejee, Jurdzi«ski
and Henzinger [CJH04] proved that in turn-based stochastic parity games both
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players have pure memoryless optimal strategies, but their proof is quite di�erent
from the one presented in this chapter and relies on the non-trivial general result of
Martin [Mar98] concerning the existence of the value for Blackwell games.

In our approach we proceed di�erently. First of all we show that, without loss of
generality, we can limit ourselves to priority games having rewards in the interval
r0, 1s.

Next for each state i we de�ne a trivial one-step game. The value of the one-step
game depends on the reward vector r. Thus the one-step game played at state i
gives rise to a mapping fi that maps the reward vector r to the value fiprq of state
i in the one-step game. The mappings fi, called one-step value mappings, can be
expressed as either the maximum (for the states controlled by player Max) or the
minimum (for the states controlled by the player Min) of a �nite number of linear
functions.

It is immediate to see that fi are monotone and nonexpansive.
Let f “ pf1, . . . , fnq be the mapping from r0, 1sn to r0, 1sn such that, for each m,

the coordinate mapping fm is the value mapping for the one-step game played in m.
Let

Fixnpfqprq

be the nth nested r-nearest �xed point of f as de�ned in Chapter 3.
The �rst main result of this chapter is that, for each i P rns, the ith coordinate

Fixni pfqprq of this �xed point is the value of state i in the priority game for the
given reward vector r.

The proof has a nice recursive structure. Instead of proving this result in one big
step, we prove it by induction on nesting level of the �xed point 1.

In our approach we provide for all k “ 0, 1, . . . , n a game interpretation of the
partial �xed point formula

Fixkpfqprq. (4.1)

We prove that (4.1) is equal to the value vector of the priority game with all states
greater than k transformed into absorbing states 2.

The chapter is organized as follows. Section 4.1 provides some basic de�nitions.
In Section 4.3 we de�ne the one-step game. This is a very simple one-player game
played at each state of the arena. We show, in Section 4.2, that without loss of
generality we can limit ourselves to priority games with rewards in the interval
r0, 1s. In Section 4.4 we give an inductive proof that priority games have optimal
pure memoryless strategies and that the value of the priority game can be expressed
as a nested �xed point of the value function of the one-step game.

1. This is the main departure from the traditional µ-calculus approach to parity games as for
example in [Wal02] and [dAM04], where the proofs were not inductive in spite of the recursive
structure of the µ-calculus formula.

2. Recall that a state i is absorbing if for all possible actions the probability to quit i is 0.
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The chapter ends with Section 4.5 where we show that the results of Section 4.4
do not carry over to priority games with an in�nite number of states or actions.

4.1 Preliminaries

An arena A of a two-player turn-based stochastic game is composed of the fol-
lowing ingredients:

‚ a nonempty countable set S of states partitioned onto the sets SMax of states
controlled by player Max and the set SMin of states controlled by player Min,

‚ for each state i, a nonempty countable set Apiq of actions available at i,

‚ for all i, j P S and a P Apiq, the probability ppj|i, aq to move to state j when
action a is executed in state i.

We assume that the sets Apiq, i P S, are pairwise disjoint.
An in�nite game played by players Max and Min starts at some state s1 P S.

At each stage t, t “ 1, 2, . . ., the player controlling the current state st chooses an
available action at P Apstq and the game moves to a state st`1 with probability
ppst`1|st, atq.

Example 4.1. Figure 4.2 depicts a two-player arena with SMin “ t2, 3u, SMax “ t1u,
action sets Ap1q “ ta, b, cu,Ap2q “ tdu and Ap3q “ teu. The transition probabil-
ities are given by pp2|1, aq “ 0.7, pp3|1, aq “ 0.3, pp2|1, cq “ pp3|1, bq “ pp3|2, dq “
pp2|3, eq “ 1. We represent the states controlled by player Max and Min as squares
and circles respectively.

a, 0.3

b

a, 0.7 c

d

e

1

2

3

Figure 4.2 � A two-player stochastic arena

A history is a �nite sequence h “ s1, a1, s2, . . . , sm´1, am´1, sm, alternating states
and actions which starts and ends in a state. The set of all histories is denoted H.
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The length of a history h is the number of actions in h. Note that the histories of
length 0 are of the form s1 for s1 P S, i.e. they consist of one state and no actions.

Let HMax be the subset of H consisting of histories ending in a state controlled
by player Max.

For a �nite set A, by ∆pAq we will denote the set of probability distributions
over A. The support of δ P ∆pAq is de�ned as supppδq “ ta P A | δpaq ą 0u.

A strategy of player Max is a mapping σ : HMax Ñ ∆pAq, such that supppσphqq Ď
Apsq, where s is the last state of h.

A selector for player Max is a mapping σ : SMax Ñ A such that, for each
s P SMax, σpsq P Apsq.

A strategy σ1 of player Max is said to be pure memoryless if there exists a selector
σ such that σ1phq “ σpsq for each history h ending in a state s controlled by Max.
In the sequel we identify pure memoryless strategies with corresponding selectors.

The de�nitions of strategies, selectors and pure memoryless strategies carry over
to player Min in the obvious way.

We write Σ and T to denote the sets of all strategies for player Max and Min
respectively.

In the sequel σ, eventually with subscripts or superscripts, is used to denote
strategies of player Max. Similarly, τ , with or without subscripts and superscripts
is used to denote strategies of player Min.

An in�nite history or a play is an in�nite sequence h “ s1, a1, s2, a2, . . . alternat-
ing states and actions. The set of plays is denoted H8.

Assuming that the sets S and A are equipped with the discrete topology we
endow the set of plays H8 with the product topology. By BpH8q we denote the
σ-algebra of Borel subsets of S8.

Let h “ s1, a1, . . . , am´1, sm be a history. By h` we denote the cylinder generated
by h, i.e. the set of plays (in�nite histories) having pre�x h.

Cylinders form the basis of the product topology on H8, and BpH8q is the
smallest σ-algebra generated by cylinders.

A strategy σ of player Max, a strategy τ of player Min and an initial state i
determine a probability measure Pσ,τ

i on pH8,BpH8qq.
We de�ne inductively Pσ,τ

i for cylinders in the following way. Let σ Y τ be the
mapping from H to ∆pAq de�ned in the following way, for h P H,

pσ Y τqphq “

#

σphq if the last state of h is controlled by Max,

τphq if the last state of h is controlled by Min.

If h0 “ s1 is a �nite history of length 0 then

Pσ,τ
i ph

`
0 q “

#

0 if i ‰ s1,

1 if i “ s1.
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Let ht´1 “ s1, a1, . . . , st´1, at´1st and ht “ ht´1, at, st`1. Then

Pσ,τ
i ph

`
t q “ Pσ,τ

i ph
`
t´1q ¨ pσ Y τqpht´1qpatq ¨ ppst`1|st, atq.

Note that the family of cylinders is closed under intersection, this family is a
π-system of sets, which implies that a probability de�ned on cylinders extends in a
unique way to all sets of BpH8q.

A payo� mapping is any bounded Borel measurable mapping

ϕ : H8
Ñ R.

For each play h P H8, ϕphq is the payo� that player Min pays to player Max if
h is the play obtained during the game.

For each initial state i, the aim of the player Max (player Min) is to maximize
(respectively minimize) the expected payo� :

Eσ,τ
i rϕs “

ż

H8
ϕphqPσ,τ

i pdhq.

The game with payo� ϕ has value if, for each state i, there exist vi P R, the value
of state i, such that

inf
τPT

sup
σPΣ

Eσ,τ
i rϕs “ vi “ sup

σPΣ
inf
τPT

Eσ,τ
i rϕs.

Strategies σ‹ and τ ‹ are optimal for players Max and Min respectively if, for
each state i,

sup
σPΣ

Eσ,τ‹

i rϕs ď vi ď inf
τPT

Eσ‹,τ
i rϕs,

for all strategies σ and τ of Max and Min.
In other words, given an initial state i, player Max using his optimal strategy can

secure the expected payo� of at least vi, while player Min using his optimal strategy
ensures that he will pay no more than vi.

Clearly if σ‹ and τ ‹ are optimal then vi “ Eσ‹,τ‹

i rϕs.
An arena is �nite if the set of states S and all sets of actions Apsq, s P S, are

�nite.
Except in Section 4.5, all games considered in this chapter are played on �nite

arenas.
Thus, except in the last section, we will assume that the set of states is a �nite

initial segment of integers, i.e.

S “ rns :“ t1, . . . , nu.

To de�ne the turn-based stochastic priority games we assume that S “ rns is
endowed with the usual order relation ď over integers.
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For two states i, j P rns we shall say that j has a priority greater than i if i ă j,
in other words the natural order over integers will serve as a priority order over
states.

A reward mapping is any mapping

r : SÑ R,

where, for i P S, the real number rpiq is called the reward of i. Since S “ rns we will
identify the reward mappings with the elements of the Cartesian product Rn and
for r P Rn, we write r “ pr1, . . . , rnq, where ri is the reward of state i. In particular,
we will often call r the reward vector rather than the reward mapping and ri and
rpiq will be used interchangeably.

The stochastic priority game is the game played on arena A with the payo�
mapping ϕr de�ned in the following way, for each play h “ s1, a1, s2, . . .,

ϕrphq “ rplim sup
t

stq.

Note that since we assumed that the set of states is t1, . . . , nu, the sequence s1, s2, s3, . . .
of visited states is a sequence of integers and lim sup is taken w.r.t. the natural or-
der relation over integers. Thus lim supt st is simply the maximal state appearing
in�nitely often in h and the payo� of the turn-based stochastic priority game is equal
to the reward of the maximal state visited in�nitely often.

Example 4.3. Let us take the arena A de�ned in Example 4.1. Let σ and τ be pure
memoryless strategies for player Max and Min respectively such that σp1qpbq “ 1{3,
σp1qpcq “ 2{3, τp2qpdq “ 1 and τp3qpeq “ 1. Once the memoryless strategies are
�xed, we get a Markov chain, depicted in Figure 4.4. Let r “ p0, 1, 1{5q be the
reward mapping.

Then if the initial state is 1, the game moves to state 2 with probability 2{3.
In other words Pσ,τ

1 p1, b, 2q “ 2{3. Moreover, once the game is in state 2, it al-
ternates between state 2 and 3, i.e., let h2 “ 1, b, 2, d, 3, e, 2, d, 3, e, 2, . . . and h3 “

1, b, 3, e, 2, d, 3, e, 2, . . ., hence we get Pσ,τ
1 ph2q “ 2{3, Pσ,τ

1 ph3q “ 1{3 and ϕrph2q “

ϕrph3q “ 1{5. The last equality is because im both histories the bigger state in�nitely
often visited is state 3 which has a reward r3 “ 1{5. Finally,

Eσ,τ
1 rϕrs “ 1{5.

The aim of the rest of this chapter is to show that �nite state turn-based stochas-
tic priority games have value that can be expressed as a nested nearest �xed point
of piecewise linear mappings (the value mappings of the one-day games) and that
both players have optimal pure memoryless strategies.

The proof will carried out by induction on the number of absorbing states.
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1/3

2/3

1

1

2

3

1

Figure 4.4 � Transition probabilities in A with strategies σ and τ .

De�nition 4.5. A state i P S is called absorbing if, for each action a P Apiq,
ppi|i, aq “ 1.

If the game enters an absorbing state i (in particular if it starts in an absorbing
state i) then the game remains in i forever and the payo� is equal to the reward ri.
In particular, if all states are absorbing then the priority game is trivial, the value
of each state i is equal to the reward ri and all strategies are optimal.

In general, intuitively, a game with many absorbing states is simpler than a game
with a few absorbing states. This observation leads to the inductive proof presented
in this chapter. We start with the trivial priority game where all states are absorbing
and next we transform the states, one by one, starting with state 1, next state 2 and
so on, from absorbing to nonabsorbing.

4.2 Bounding the rewards

In the sequel it will be convenient to assume that all rewards belong to the
interval r0, 1s rather than to R. This can be achieved for each game without loss of
generality by a simple linear transformation. Let a “ miniPS ri, b “ maxiPS ri and
gpxq “ 1

b´a
x´ a

b´a
. Then 0 “ gpaq ď gpxq ď gpbq “ 1 for x P tr1, . . . , rnu. Changing

the reward vector from r “ pr1, . . . , rnq to gprq “ pgpr1q, . . . , gprnqq transforms
linearly the priority payo�s of all plays h since ϕgprqphq “ gpϕrphqq.

By the linearity of expectation, this implies that for all starting states i and
all strategies σ and τ we have gpEσ,τ

i pϕrqq “ Eσ,τ
i pgpϕrqq, in particular the priority

games with the reward vectors r and gprq have the same optimal strategies.
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4.3 The one-step game

For turn-based stochastic games the auxiliary one-step game is a simple one-
player game played in each state. The one step games are an essential ingredient of
our solution to the turn-based stochastic priority games.

Recall that we assume that the set of states is S “ rns “ t1, . . . , nu.
Let x P Rn be a reward vector. For each state k, we consider the following

one-step game played:

‚ the player controlling k plays an action a P Apkq and the game moves to state
j with probability ppj|k, aq,

‚ this single move ends the one-step game and player Max obtains from player
Min the payo� xj.

If the player controlling k plays action a P Apkq then the expected payo� obtained
by player Max in the one-step game is equal to

ř

i ppi|k, aq ¨ xi. As always, the aim
of player Max (Min) is to maximize (minimize) this expected payo�.

As the game is �nite, it is clear that the player controlling k has an optimal pure
strategy in the one-step game, this strategy consists in playing an action a that
either maximizes (if k is controlled by Max) or minimizes (if k is controlled by Min)
the sum

ř

i ppi|k, aq ¨ xi. Therefore, we can see that the value of the one-step game
played at state k P rns is equal to

fkpxq :“

#

maxaPApkq
ř

i ppi|k, aq ¨ xi if k P SMax,

minaPApkq
ř

i ppi|k, aq ¨ xi if k P SMin.
(4.2)

In the sequel we consider the value of the one-step game as a function of the
reward vector x “ px1, . . . , xnq, i.e. fk is considered as a function

fk : r0, 1sn Ñ R

de�ned by (4.2).
We set

f “ pf1, . . . , fnq,

i.e. f : r0, 1sn Ñ Rn maps reward vectors x P r0, 1sn to the vector of values of
one-step games played in the states of S.

Lemma 4.6. The value mapping f of the one-step game is bounded monotone and
nonexpansive.

Proof. That f is monotone is obvious. It is bounded since the convex combination
of elements belonging to r0, 1s belongs to r0, 1s as well. It is also evident that f is
additively homogeneous, i.e. for each x P Rn and each λ P R,

fpx` λ ¨ enq “ fpxq ` λ ¨ en,
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where en “ p1, . . . , 1q P Rn is the vector with 1 on all components. By Lemma 3.2
this implies that f is nonexpansive.

4.4 Nested nearest �xed point solution to priority

games

The priority game having all states absorbing is trivial, the value of state i,
i P rns, is ri, where r P r0, 1sn is the reward vector. Moreover, all strategies are
optimal, in particular each pure memoryless strategy is optimal.

In this section we provide an inductive proof that all priority games have optimal
pure memoryless strategies.

Moreover, we show that the value vector for the priority game with reward r is
equal to Fixnpfqprq� the nested �xed point of the value mapping f of the one-step
game de�ned Section 3.2.

The induction will be carried out on the number of nonabsorbing states. We show
that if we can solve the priority game with states k, k ` 1, . . . , n absorbing then we
can use this solution to solve the priority game with states k ` 1, . . . , n absorbing,
i.e. we can decrease the number of absorbing states. Note that the order in which we
transform the states from absorbing to nonabsorbing is essential, at each inductive
step we transform the smallest absorbing state to a nonabsorbing one.

Although the idea of making some states absorbing in order to simplify the game
is the one that is behind the proof, the direct application of this idea would lead to a
cumbersome notation. For this reason we shall adopt another, equivalent, approach,
where instead of modifying the transition probabilities of the arena we rather modify
the payo� mapping.

By St and At, t “ 1, 2, . . ., we will denote two stochastic processes such that St
is the state visited at time t and At is the action executed at stage t, i.e. for a play
h “ s1, a1, s2, a2, s3, . . ., Stphq “ st and Atphq “ at.

For each state k P rns we de�ne the random variable

Tąk : H8
Ñ NY t8u

such that
Tąk “ mintt | St ą ku.

Thus Tąk is the time of the �rst visit to a state greater than k. Since the minimum
of the empty set is `8 we have Tąk “ 8 for the plays belonging to the event
t@t, St P rksu, i.e. Tąk “ 8 if all visited states are in rks.

Note that Tąk is a stopping time with respect to tSiuiě1. Indeed, for each time
t P N,

tTąk “ tu “ tS1 ď k, . . . , St´1 ď k, St ą ku,
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i.e. the event tTąk “ tu belongs to the sigma algebra σpS1, . . . , Stq generated by
S1, . . . , St.

For each k P t0u Y rns we de�ne the stopped state process S
rks
t , t P N,

S
rks
t “ St^Tąk “

#

St if Tąk ą t,

STąk if Tąk ď t,

where a^ b denotes the minimum of a and b.
Thus if all states visited up to the moment t belong to t1, . . . , ku then S

rks
t is

equal to the state St visited at the current epoch t. However, if at some previous
epoch a state ą k was visited then Srkst is the �rst such state. In other words the
process Srkst behaves as if the states ą k were absorbing.

For a given reward vector r, we de�ne a new payo� mapping ϕrksr :

ϕrksr “ rplim sup
t

S
rks
t q.

The game with payo� ϕ
rks
r will be called stopped priority game or simply ϕrksr -

game.
Note that once a state m greater than k is visited, the game with payo� ϕrksr is

for all practical reasons over, independently of what can happen in the future the
payo� is equal to the reward rm of this state and the states visited after the moment
Tąk have no bearing on the payo�.

In the stopped priority ϕrksr -game the states ą k will be called stopping states
while the states ď k will be called non-stopping.

Note that since we have assumed that S “ rns, i.e. n is the greatest state, we
have ϕrnsr “ ϕr.

Note also that solving games starting in stopping states is trivial. If i ą k then
for all plays h starting in i, ϕrksr phq “ ri, thus E

σ,τ
i pϕ

rks
r q “ ri for all strategies σ, τ

the value of a stopping state i, i ą k, is ri. In particular, the game with payo� ϕr0sr
is trivial since all states of this game are stopping. Moreover, for the ϕr0sr -game all
strategies are optimal since the payo� does not depend on the strategy.

The main result of this chapter is

Theorem 4.7. Let f : r0, 1sn Ñ r0, 1sn be the value mapping of the one-step game
de�ned in (4.2).

Then, for each r P r0, 1sn, the ϕ
rks
r -game satis�es the following properties:

‚ for each state i P rns, the value of i is equal to Fixki pfqprq, where Fixki pfq is
the ith coordinate of the kth r-nearest �xed point Fixkpfq of f ,

‚ both players have optimal pure memoryless strategies.
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Theorem 4.7 holds trivially for i such that i ą k. Indeed, in the ϕrksr -game all
states i ą k are stopping thus ϕrksr phq “ ri for all plays h starting in a state i ą k.
On the other hand, we have also Fixki pfqprq “ ri.

The recursive formula of the nested �xed points that, according to Theorem 4.7,
represents the value of the stopping game has a natural game theoretic interpreta-
tion.

Let us consider the ϕk´1
pr1,...,rk´1,ζ,rk`1,...,rnq

-game. This is the priority game where
the states i ‰ k have rewards ri while the state k, the smallest stopping state, has
reward ζ.

Suppose that Theorem 4.7 holds for k ´ 1. Thus the value of state i P rk ´ 1s in
the ϕk´1

pr1,...,rk´1,ζ,rk`1,...,rnq
-game, seen as the function of the reward ζ of the state k, is

F k´1
i pζ; rq “ Fixk´1

i pfqpr1, . . . , rk´1, ζ, rk`1, . . . , rnq (4.3)

in the notation of (3.3).

Now let us consider the ϕrksr -game where the state k becomes the greatest non-
stopping state. Let us note

valipϕ
rks
r q

the value of state i in the ϕrksr -game. Clearly for the stopping states we have

valipϕ
rks
r q “ ri, for i ą k. (4.4)

Suppose that
valkpϕ

rks
r q “ ζ, (4.5)

i.e. the value of the state k in the ϕrksr -game is some unknown ζ P r0, 1s.

What are the values of the states i ă k in the ϕrksr -game? Let us start to play
the ϕrksr -game starting at state i ă k and suppose that both players play optimally.
When such a game hits the state k then in the auxiliary game starting at k, the
payo� obtained will be equal to the value ζ of k. Thus it seems plausible that the
value of state i ă k in the ϕrksr -game is equal to the value of this state in the
ϕ
rk´1s
pr1,...,rk´1,ζ,rk`1,...,rnq

-game which stops at k with the payo� ζ, i.e.

valipϕ
rks
r q “ F k´1

i pζ; rq, for i ă k. (4.6)

But what is the value of the state k in the ϕrksr -game? Suppose for example that
k is controlled by player Max. When player Max executes action a at k, the game
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moves to state i with probability ppi|k, aq and starting from i player Max can win
at least the value valipϕ

rks
r q. Thus in the ϕrksr -game starting at k player Max can win

max
aPApkq

ÿ

i

valipϕ
rks
r q ¨ ppi|k, aq.

We obtain a similar expression when k is controlled by Min with minaPApkq replacing
maxaPApkq. Using the de�nition of the value function of the one-step game played at
k, see (4.2), and (4.4),(4.5),(4.6), we obtain

ζ “ valkpϕ
rks
r q “ fkpval1pϕ

rks
r q, . . . , valnpϕ

rks
r qq

“ fkpF
k´1
1 pζ; rq, . . . , F k´1

k´1 pζ; rq, ζ, rk`1, . . . , rnq.

Thus we can see that a natural candidate for the value of the state k in the ϕrksr -game
is a �xed point of the mapping

ζ ÞÑ fkpF
k´1
1 pζ; rq, . . . , F k´1

k´1 pζ; rq, ζ, rk`1, . . . , rnq.

This mapping can have many �xed points, however one of them seems more plausible
than the others, this is the �xed point which is the nearest to the reward rk of k,
i.e. the natural conjecture is that

valkpϕ
rks
r q “ µrkζ.fkpF

k´1
1 pζ; rq, . . . , F k´1

k´1 pζ; rq, ζ, rk`1, . . . , rnq. (4.7)

But (4.4),(4.5) and (4.7) and the de�nition of the nested nearest �xed point coincides
with the inductive de�nition of the kth nested r-nearest �xed point,

valpϕrksr q “ Fixkpfqprq

i.e. the kth nested r-nearest �xed point of the value mapping of the one-step game
is the natural candidate for the value of the ϕrksr -game.

Theorem 4.7 con�rms these intuitions and the proof formalizes the reasoning
given above.

Example 4.8. Let A be the arena de�ned as follows: let S “ t1, 2, 3u, A such
that Ap1q “ ta, bu,Ap2q “ tc, du and Ap3q “ teu, such that pp2|1, aq “ pp3|1, bq “
pp3, 3, dq “ 1, pp1|2, cq “ 0.8 and pp3|2, cq “ 0.2 as shows Figure 4.9 and let r “
p0, 1, 1{2q.

The stochastic priority game is the game played ion arena A with the priority
payo� mapping ϕr de�ned above. We want to calculate the value of the ϕr-game,
notice that, as state 3 is absorbing, ϕr2sr -game and ϕr-game are equal. We start by
calculating the value of state 2 in ϕr2sr -game.

Recall the de�nitions in Section 3.2 and as state 1 is controlled by player Max
and state 2 by player Min we have f “ pf1, f2, f3q : r0, 1s3 Ñ r0, 1s the value
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1 2 3

c, 0.8 c, 0.2

a

b

d

Figure 4.9 � Game with states S “ t1, 2, 3u and actions Aas de�ned above.

mapping of the one-step game as de�ned in (4.2), i.e., f1 : px1, x2, x3q ÞÑ maxpx2, x3q,
f2 : px1, x2, x3q ÞÑ 0.8x1 ` 0.2x3 and f3 : px1, x2, x3q ÞÑ x3.

Hence,

Fix2
2pfqprq “ µ1ζ.f2pF

1
1 pζ; rq, ζ, 1{2q (4.8)

and F 1
1 pζ; rq “ Fix1

1pfqp0, ζ, 1{2q that, by induction, it should be the value of
state 1 in the ϕr1s

p0,ζ,1{2q-game that is the max between ζ and 1{2. In fact,

Fix1
1pfqp0, ζ, 1{2q “ µ0ξ.f1pξ, ζ, 1{2q

“ µ0ξ.maxpζ, 1{2q

“ maxpζ, 1{2q.

(4.9)

Then, retaking (4.8),

Fix2
2pfqprq “ µ1ζ.f2pmaxpζ, 1{2q, ζ, 1{2q

“ µ1ζ.p0.8ˆmaxpζ, 1{2q ` 0.2ˆ 1{2q

“ 1{2.

And for state 1,

Fix2
1pfqprq “ Fix1

1pfqp0,Fix
2
2pfqprq, 1{2q “ F 1

1 p0, 1{2, 1{2q

“ Fix1
1pfqp0, 1{2, 1{2q

“ maxp1{2, 1{2q “ 1{2.

Last equality is due to (4.9). Finally, Fix2
3pfqprq “ 1{2 and hence the values of

the game according to Theorem 4.7 are given by p1{2, 1{2, 0q that match with the
values of the game as the reader can easily verify.
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4.4.1 Optimal strategy for player Max

The aim of this section is to construct an optimal pure memoryless strategy for
Max in the ϕrksr -game.

Through the section we assume that Theorem 4.7 holds for k ´ 1, i.e. for each
reward vector r P r0, 1sn, the ϕrk´1s

r -game satis�es the following properties:

(H.1) for each i P rns, the value of state i is equal to Fixk´1
i pfqprq and

(H.2) both players have optimal pure memoryless strategies.

We assume that
F k´1
i pζ; rq

is de�ned as in (4.3) and we de�ne

F 7kpζ; rq :“ fkpF
k´1
1 pζ; rq, . . . , F k´1

k´1 pζ; rq, ζ, rk`1, . . . , rnq.

Using this notation we have

Fixkkpfqprq “ µrkζ.F
7

kpζ; rq.

Notation:

For a set of plays C Ă H8, we will write 1C to denote the indicator mapping of
the set C,

1Cphq “

#

1 if h P C,

0 otherwise.

Thus for a mapping ϕ, Epϕ1Cq “
ş

C
ϕphqdh.

De�nition 4.10. By T
rks
m we will denote the time of the mth visit to k of the stopped

state process S
rks
i , i.e.

T
rks
1 “ mintt | S

rks
t “ ku

and
T rksm “ mintt | t ą T

rks
m´1 and S

rks
t “ ku.

Note that since the minimum of the empty set is `8 we have T rksm “ 8 if and
only if the stopped state process Srkst visits state k less than m times.

Note also that if T rksm ă 8 then the following conditions are satis�ed:

� S
T
rks
m
“ k (the state k is visited at the time T rksm ),

� for all 1 ď t ď T
rks
m , St ď k (all states visited up to the time T rksm are non-

stopping),

� 7tt ď T
rks
m | St “ ku “ m (the number of visits of the state process St to k up

to the moment T rksm included is m).
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Lemma 4.11. Suppose that for each reward vector r P r0, 1sn, the ϕ
rk´1s
r -game

satis�es (H.1) and (H.2).

Then for each ζ P r0, 1s such that

ζ ď F 7kpζ; rq (4.10)

there exists a pure memoryless strategy σkζ for player Max such that σkζ is optimal

for Max in the ϕ
rk´1s
pr1,...,rk´1,ζ,rk`1,...,rnq

-game and for each strategy τ of Min we have

(C1) For all m,

F 7kpζ; rq ď ζ ¨P
σkζ ,τ

k pT
rks
m`1 ă 8 | T

rks
m ă 8q

` E
σkζ ,τ

k pϕ
rks
pr1,...,rk´1,ζ,rk`1,...,rnq

1
tT
rks
m`1“8u

| T rksm ă 8q,

(C2)

F 7kpζ; rq ď E
σkζ ,τ

k pϕ
rks
pr1,...,rk´1,ζ,rk`1,...,rnq

q,

(C3) if the inequality (4.10) is strict then

P
σkζ ,τ

k pS
rks
i “ k for in�nitely many iq “ 0.

Proof. We begin with the de�nition of the strategy σkζ . To simplify notation, we
write

r´kζ :“ pr1, . . . , rk´1, ζ, rk`1, . . . , rnq.

By (H.1) and (H.2), player Max has an optimal pure memoryless strategy σk´1
ζ

in the ϕrk´1s

r´kζ
-game such that for each strategy τ of player Min and each starting

state i ă k,

F k´1
i pζ; rq ď E

σk´1
ζ ,τ

i pϕ
rk´1s

r´kζ
q.

To de�ne the strategy σkζ we should examine two cases.
Case 1: k P SMax.
Then

F 7kpζ; rq “ fkpF
k´1
1 pζ; rq, . . . , F k´1

k´1 pζ; rq, ζ, rk´1, . . . , rnq “

max
aPApkq

ÿ

iăk

F k´1
i pζ; rq ¨ ppi|k, aq ` ζ ¨ ppk|k, aq `

ÿ

iąk

ri ¨ ppi|k, aq

and selecting the action aζ P Apkq such that

aζ :“ arg max
aPApkq

ÿ

iăk

F k´1
i pζ; rq ¨ ppi|k, aq ` ζ ¨ ppk|k, aq `

ÿ

iąk

ri ¨ ppi|k, aq
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we obtain

F 7kpζ; rq “
ÿ

iăk

F k´1
i pζ; rq ¨ ppi|k, aζq ` ζ ¨ ppk|k, aζq `

ÿ

iąk

ri ¨ ppi|k, aζq. (4.11)

We de�ne the strategy σkζ in the following way, for each state i P rks X SMax,

σkζ piq :“

#

σk´1
ζ piq if i ă k,

aζ if i “ k.
(4.12)

Case 2: k P SMin.
Then

F 7kpζ; rq “ fkpF
k´1
1 pζq, . . . , F k´1

k´1 pζ; rq, ζ, rk´1, . . . , rnq “

min
aPApkq

ÿ

iăk

F k´1
i pζ; rq ¨ ppi|k, aq ` η ¨ ppk|k, aq `

ÿ

iąk

ri ¨ ppi|k, aζq,

which implies that for each action a P Apkq we have

F 7kpζ; rq ď
ÿ

iăk

F k´1
i pζ; rq ¨ ppi|k, aq ` ζ ¨ ppk|k, aq `

ÿ

iąk

ri ¨ ppi|k, aq (4.13)

and we de�ne σkζ in the following way

σkζ :“ σk´1
ζ .

We will examine what happens in the ϕrks
r´kζ

-game starting in the state k when

player Max plays using σkζ against any strategy τ of player Min.

Proof of (C1):
Before we start the proof of (C1) it is worthwhile to examine the intuitive mean-

ing of this inequality. Suppose that T rksm ă 8 and consider the moment T rksm when
k is visited for the mth time. Let pr1, . . . , rk´1, ζ, rk`1, . . . , rnq be the reward vector.
Consider the auxiliary game starting at time T rksm in k with the payo� de�ned in the
following way:

� player Max receives from player Min the payo� ζ for the plays that return to
k, i.e. for h P H8 such that T rksm`1 ă 8,

� for plays h that do not return to k, i.e. for plays h such that T rksm`1phq “ 8,

the payo� is equal to ϕrks
r´kζ
phq.
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Then the right-hand side of (C1) is the expected payo� of such auxiliary game when
player Max plays according to σkζ and inequality (C1) provides a lower bound for
the payo� obtained in the auxiliary game.

To prove (C1), suppose that at the moment T rksm ă 8, when the stopped state
process Srksi visits the state k for the mth time, an action is played and this action
is either the action σkζ pkq if k is controlled by Max or any action from Apkq if k is
controlled by Min. From (4.11) and (4.13) it follows that

F 7kpζ; rq ď
ÿ

iăk

F k´1
i pζ; rqP

σkζ ,τ

k pS
T
rks
m `1

“ i | T rksm ă 8q

` ζ P
σkζ ,τ

k pS
T
rks
m `1

“ k | T rksm ă 8q (4.14)

`
ÿ

iąk

riP
σkζ ,τ

k pS
T
rks
m `1

“ i | T rksm ă 8q.

For a play h, h P tS
T
rks
m `1

“ iu for i ą k, if and only if

� T
rks
m phq ă 8, i.e. h visits k at least m times,

� all states visited prior to T rksm are ď k,

� T
rks
m ` 1 is the �rst moment when a stopping state ą k is visited and this state

is i.

However, for the plays h satisfying these conditions the payo� ϕ
rks

r´kζ
is equal to ri.

Thus

ri “ E
σkζ ,τ

k pϕ
rks

r´kζ
| S

T
rks
m `1

“ iq, for i ą k. (4.15)

As the second crucial observation let us note the following inequality:

F k´1
i pζ; rq ď ζ P

σkζ ,τ

k pT
rks
m`1 ă 8 | ST rksm `1

“ iq

` E
σkζ ,τ

k pϕ
rks

r´kζ
1
tT
rks
m`1“8u

| S
T
rks
m `1

“ iq, for i ă k. (4.16)

The proof of (4.16), notationally somehow cumbersome, is postponed for a mo-
ment.
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Using (4.15) and (4.16), we substitute ri and F
k´1
i pζ; rq in (4.14) and we obtain

F 7kpζ; rq ď ζ
ÿ

iăk

P
σkζ ,τ

k pT
rks
m`1 ă 8 | ST rksm `1

“ iqP
σkζ ,τ

k pS
T
rks
m `1

“ i | T rksm ă 8q (S1)

`
ÿ

iăk

E
σkζ ,τ

k pϕ
rks

r´kζ
1
tT
rks
m`1“8u

| S
T
rks
m `1

“ iqP
σkζ ,τ

k pS
T
rks
m `1

“ i | T rksm ă 8q

(S2)

` ζ P
σkζ ,τ

k pS
T
rks
m `1

“ k | T rksm ă 8q (S3)

`
ÿ

iąk

E
σkζ ,τ

k pϕ
rks

r´kζ
| S

T
rks
m `1

“ iqP
σkζ ,τ

k pS
T
rks
m `1

“ i | T rksm ă 8q. (S4)

We shall show that

S2` S4 “ E
σkζ ,τ

k pϕ
rks

r´kζ
1
tT
rks
m`1“8u

| T rksm ă 8q (4.17)

and

S1` S3 “ ζ ¨P
σkζ ,τ

k pT
rks
m`1 ă 8 | T

rks
m ă 8q. (4.18)

To prove (4.17) note that by Bayes' rule

E
σkζ ,τ

k pϕ
rks

r´kζ
1
tT
rks
m`1“8u

| T rksm ă 8q “

n
ÿ

i“1

E
σkζ ,τ

k pϕ
rks

r´kζ
1
tT
rks
m`1“8u

| S
T
rks
m `1

“ i, T rksm ă 8qP
σkζ ,τ

k pS
T
rks
m `1

“ i | T rksm ă 8q.

Note that the kth summand can be eliminated from the sum above because

E
σkζ ,τ

k pϕ
rks

r´kζ
1
tT
rks
m`1“8u

| S
T
rks
m `1

“ k, T rksm ă 8q “ 0. (4.19)

Indeed S
T
rks
m `1

“ k means that the pm ` 1qth visit of the stopped state process to

k takes place immediately after the mth visit, i.e. T rksm`1 “ T
rks
m ` 1 ă 8, implying

E
σkζ ,τ

k p1
tT
rks
m`1“8u

| S
T
rks
m `1

“ k, T
rks
m ă 8q “ 0 and (4.19) follows.

And �nally, for i ą k, S
T
rks
m `1

“ i means that at time T rksm ` 1 the stopped

state process hits a stopping state thus Srkst will never return to k and therefore

P
σkζ ,τ

k pT
rks
m`1 “ 8 | ST rksm `1

“ iq “ 1 implying

E
σkζ ,τ

k pϕ
rks

r´kζ
1
tT
rks
m`1“8u

| S
T
rks
m `1

“ i, T rksm ă 8q “

E
σkζ ,τ

k pϕ
rks

r´kζ
| S

T
rks
m `1

“ i, T rksm ă 8q, for i ą k.
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This ends the proof of (4.17).

To prove (4.18), by Bayes' rule we obtain

P
σkζ ,τ

k pT
rks
m`1 ă 8 | T

rks
m ă 8q “

n
ÿ

i“1

P
σkζ ,τ

k pT
rks
m`1 ă 8 | ST rksm `1

“ i, T rksm ă 8qP
σkζ ,τ

k pS
T
rks
m `1

“ i | T rksm ă 8q

As we have already noted S
T
rks
m `1

“ k implies that T rksm`1 “ T
rks
m ` 1 ă 8, i.e.

P
σkζ ,τ

k pT
rks
m`1 ă 8 | ST rksm `1

“ k, T rksm ă 8q “ 1.

On the other hand, S
T
rks
m `1

“ i ą k implies that T rksm`1 “ 8, i.e. P
σkζ ,τ

k pT
rks
m`1 ă 8 |

S
T
rks
m `1

“ i, T
rks
m ă 8q “ 0, which terminates the proof of (4.18).

Now it su�ces to notice that (4.17) and (4.18) imply (C1).

It remains to provide the missing proof of (4.16).
For all t ě 1 we de�ne the shift mapping,

θt : H8
Ñ H8.

which �forgets� all history prior to the moment t. Formally,

for a h “ s1, a1, s2, a2, . . . P H
8, θtphq “ st, at, st`1, at`1, . . . .

Consider the event
tS

T
rks
m `1

“ i ă ku (4.20)

which consists of the plays that visit k for the mth time at the time T rksm and visit
i ă k at the next time moment T rksm ` 1. Since S

T
rks
m `1

“ i ă k implies T rksm ă 8, for

the plays belonging to (4.20) all states visited up to the moment T rksm ` 1 are ď k.
Let us examine the following auxiliary game that is played under condition (4.20)

and that starts at time T rksm ` 1 when the game visits i, i ă k. We assume that the
payo� applied in the auxiliary game to a play h P tS

T
rks
m `1

“ i ă ku is equal to

ϕ
rk´1s

r´kζ
pθ
T
rks
m `1

phqq,

i.e. after removing all history prior to the moment T rksm `1 we apply to the remaining
play the payo� ϕrk´1s

r´kζ
. Suppose that in the residual game player Max plays according

to σkζ while player Min continues to use the strategy τ .
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We claim that

F k´1
i pζ; rq ď E

σkζ ,τ

k pϕ
rk´1s

r´kζ
˝ θ

T
rks
m `1

| S
T
rks
m `1

“ iq, for i ă k, (4.21)

i.e. the expected payo� obtained in the residual game (the right-hand side of (4.21))
is greater or equal to the value of the state i in the ϕrk´1s

r´kζ
-game (which is F k´1

i pζ; rq

by the induction hypothesis).
The strategy σkζ selects the same actions as σk´1

ζ for all states except k. But
in the residual game it is irrelevant how player Max plays in k since for the plays
that return to k the residual game is essentially over and player Max obtains the
payo� ζ. Thus we can assume as well that in the residual game player Max select
actions according to σk´1

ζ . But since σk´1
ζ is optimal for Max in the ϕrk´1s

r´kζ
-game, this

guarantees that in the residual game player Max obtains at least the value F k´1
i pζ; rq

of the state i in the ϕrk´1s

r´kζ
-game, i.e. (4.21) holds.

Now observe that for the plays h P tT rksm`1 ă 8, ST rksm `1
“ iu we have

ϕ
rk´1s

r´kζ
˝ θ

T
rks
m `1

phq “ ζ

because k is stopping for the payo� ϕrk´1s

r´kζ
and ζ is the reward of k assigned by this

payo�. Thus

E
σkζ ,τ

k pϕ
rk´1s

r´kζ
˝ θ

T
rks
m `1

| T
rks
m`1 ă 8, ST rksm `1

“ iq “ ζ. (4.22)

And �nally, by Bayes' formula and using (4.21) and (4.22), we obtain

E
σkζ ,τ

k pϕ
rk´1s

r´kζ
˝ θ

T
rks
m `1

| S
T
rks
m `1

“ iq “

E
σkζ ,τ

k pϕ
rk´1s

r´kζ
˝ θ

T
rks
m `1

| T
rks
m`1 ă 8, ST rksm `1

“ iq ¨P
σkζ ,τ

k pT
rks
m`1 ă 8 | ST rksm `1

“ iq

` E
σkζ ,τ

i pϕ
rk´1s

r´kζ
˝ θ

T
rks
m `1

| T
rks
m`1 “ 8, ST rksm `1

“ iq ¨P
σkζ ,τ

k pT
rks
m`1 “ 8 | ST rksm `1

“ iq

“ ζ P
σkζ ,τ

k pT
rks
m`1 ă 8 | ST rksm `1

“ iq ` E
σkζ ,τ

k pϕ
rks

r´kζ
1
tT
rks
m`1“8u

| S
T
rks
m `1

“ iq,

which terminates the proof of (4.16).

Proof of (C3):
Suppose that ζ ă F 7kpζ; rq.
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Since ϕrks
r´kζ
ď 1, from (C1) we obtain

ζ ¨P
σkζ ,τ

k pT
rks
m`1 ă 8 | T

rks
m ă 8q `P

σkζ ,τ

k pT
rks
m`1 “ 8 | T

rks
m ă 8q ě F 7kpζ; rq.

But P
σkζ ,τ

k pT
rks
m`1 “ 8 | T

rks
m ă 8q `P

σkζ ,τ

k pT
rks
m`1 ă 8 | T

rks
m ă 8q “ 1, thus

P
σkζ ,τ

k pT
rks
m`1 ă 8 | T

rks
m ă 8q ď

1´ F 7kpζ; rq

1´ ζ
ă 1.

Therefore

P
σkζ ,τ

k p@m,T rksm ă 8q “ lim
mÑ8

P
σkζ ,τ

k p@i ď m,T
rks
i ă 8q

“ lim
mÑ8

P
σkζ ,τ

k pT
rks
0 ă 8q ¨

m´1
ź

q“0

P
σkζ ,τ

k pT
rks
q`1 ă 8 | T

rks
q ă 8q

ď lim
mÑ8

˜

1´ F 7kpζ; rq

1´ ζ

¸m´1

“ 0,

(4.23)

i.e. if player Max uses σkζ then almost surely k is visited only �nitely many times.

Proof of (C2):
From (4.10) and (C1) it follows that

F 7kpζ; rq ď F 7kpζ; rq ¨P
σkζ ,τ

k pT
rks
m`1 ă 8 | T

rks
m ă 8q`

E
σkζ ,τ

k pϕ
rks

r´kζ
1
tT
rks
m`1“8u

| T rksm ă 8q

which implies

F 7kpζ; rq ¨P
σkζ ,τ

k pT
rks
m`1 “ 8 | T

rks
m ă 8q ď E

σkζ ,τ

k pϕ
rks

r´kζ
1
tT
rks
m`1“8u

| T rksm ă 8q.

Multiplying both sides by P
σkζ ,τ

k pT
rks
m ă 8q we obtain

F 7kpζ; rq ¨P
σkζ ,τ

k pT
rks
m`1 “ 8, T

rks
m ă 8q ď E

σkζ ,τ

k pϕ
rks

r´kζ
1
tT
rks
m`1“8u

1
tT
rks
m ă8u

q. (4.24)
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Let us note that

tDm,T rksm “ 8u “ tT
rks
1 “ 8u Y

8
ď

i“1

tT
rks
m`1 “ 8, T

rks
m ă 8u,

where the events on the right-hand side are pairwise disjoint. Moreover,

tS1 “ ku X tT
rks
1 “ 8u “ H

since if the game starts at k then T rks1 “ 1 ă 8.
This implies that summing over m both sides of (4.24) we get

F 7kpζ; rq ¨P
σkζ ,τ

k pDm,T rksm “ 8q ď E
σkζ ,τ

k pϕ
rks

r´kζ
1
tDm,T

rks
m “8u

q. (4.25)

Thus

E
σkζ ,τ

k pϕ
rks

r´kζ
q “ E

σkζ ,τ

k pϕ
rks

r´kζ
1
tDm,T

rks
m “8u

q ` E
σkζ ,τ

k pϕ
rks

r´kζ
1
t@m,T

rks
m ă8u

q

ě F 7kpζ; rq ¨P
σkζ ,τ

k pDm,T rksm “ 8q ` ζ ¨P
σkζ ,τ

k p@m,T rksm ă 8q,

(4.26)

where the last inequality follows from (4.25) and from the fact that ϕrks
r´kζ
phq “ ζ for

the plays such that h P t@m,T rksm ă 8u (i.e. for the plays for which the stopping
state process Srksi visits k in�nitely often).

If F 7kpζ; rq ą ζ then, by (C3), P
σkζ ,τ

k p@m,T
rks
m ă 8q “ 0 and thus P

σkζ ,τ

k pDm,T
rks
m “

8q “ 1 and (4.26) implies (C2).
Similarly, if F 7kpζ; rq “ ζ then (4.26) implies also

E
σkζ ,τ

k pϕ
rks

r´kζ
q ě ζ “ F 7kpζ; rq.

This ends the proof of (C2).

Lemma 4.12. Assume that (H.1) and (H.2) are satis�ed. Let H ‰ D Ă r0, 1s

and let σ‹ be a pure memoryless strategy of Max optimal in the ϕ
rk´1s
pr1,...,rk´1,ξ,rk`1,...,rnq

-
game for all ξ P D. Let w “ supD be the supremum of D. Then σ‹ is optimal in
the ϕ

rk´1s
pr1,...,rk´1,w,rk`1,...,rnq

-game.

Proof. By the assumptions of the lemma, for each state i P rk ´ 1s, each strategy τ
of Min and each ξ P D we have

Eσ‹,τ
i pϕ

rk´1s
pr1,...,rk´1,ξ,rk`1,...,rnq

q ě Fixk´1
i pfqpr1, . . . , rk´1, ξ, rk`1, . . . , rnq. (4.27)
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Since ξ ď w implies ϕrk´1s
pr1,...,rk´1,ξ,rk`1,...,rnq

ď ϕ
rk´1s
pr1,...,rk´1,w,rk`1,...,rnq

we have

Eσ‹,τ
i pϕ

rk´1s
pr1,...,rk´1,ξ,rk`1,...,rnq

q ď Eσ‹,τ
i pϕ

rk´1s
pr1,...,rk´1,w,rk`1,...,rnq

q. (4.28)

From (4.27) and (4.28)

Eσ‹,τ
i pϕ

rk´1s
pr1,...,rk´1,w,rk`1,...,rnq

q ě Fixk´1
i pfqpr1, . . . , rk´1, ξ, rk`1, . . . , rnq.

But Fixk´1
i pfqpr1, . . . , rk´1, ξ, rk`1, . . . , rnq is a nonexpansive function of

pr1, . . . , rk´1, ξ, rk`1, . . . , rnq

and nonexpansive functions are also continuous which implies that if for some a P R,

a ě Fixk´1
i pfqpr1, . . . , rk´1, ξ, rk`1, . . . , rnq

for all ξ P D then also

a ě Fixk´1
i pfqpr1, . . . , rk´1, w, rk`1, . . . , rnq

for w “ supD. In particular

Eσ‹,τ
i pϕ

rk´1s
pr1,...,rk´1,w,rk`1,...,rnq

q ě Fixk´1
i pfqpr1, . . . , rk´1, w, rk`1, . . . , rnq.

In the following lemma we construct an optimal pure memoryless strategy for
player Max in the ϕrksr -game.

Lemma 4.13. Suppose that (H.1) and (H.2) are satis�ed.

Then for each reward vector r P r0, 1sn there exists a pure memoryless strategy
σk‹ for player Max such that for each strategy τ of player Min and each state i P rks
we have

Fixki pfqprq ď E
σk‹ ,τ
i pϕrksr q. (4.29)

Proof. Let us note
w :“ Fixkkpfqprq.

As we did in the proof of Lemma 4.11, r´ky will be used to denote the reward
vector pr1, . . . , rk´1, y, rk`1, . . . , rnq, for y P r0, 1s.

We �rst prove that there exists a pure memoryless strategy σk‹ for player Max
such that

(K.1) σk‹ is optimal for Max in the ϕrk´1s

r´kw
-game and
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(K.2) Fixkkpfqprq ď E
σk‹ ,τ
k pϕ

rks
r q.

As in the previous lemma we set

F 7kpζ; rq :“ fkpF
k´1
1 pζ; rq, . . . , F k´1

k´1 pζ; rq, ζ, rk`1, . . . , rnq

so that
Fixkkprq “ µrkζ.F

7

kpζ; rq.

We examine three di�erent cases.

Case 1: rk ą Fixkkpfqprq.
Since w is a �xed point of F 7k we have

w “ F 7kpw; rq.

By Lemma 4.11 the last equality implies that player Max has a pure memoryless
strategy σk‹ which is optimal in the ϕrk´1s

r´kw
-game and such that, for each strategy τ

of player Min,
F 7kpw; rq ď E

σk‹ ,τ
k pϕ

rks

r´kw
q.

Now it su�ces to note that w ă rk implies that for all plays h,

ϕ
rks

r´kw
phq ď ϕrksr phq

and therefore E
σk‹ ,τ
k pϕ

rks

r´kw
q ď E

σk‹ ,τ
k pϕ

rks
r q and we conclude that

Fixkkpfqprq ď E
σk‹ ,τ
k pϕrksr q.

Case 2: rk “ Fixkkpfqprq.
Immediately from Lemma 4.11 with ζ “ rk.

Case 3: rk ă Fixkkpfqprq.
Since

Fixkkpfqprq “ µrkζ.F
7

kpζ; rq ą rk

by (3.1) applied to the mapping

ζ ÞÑ F 7kpζ; rq

Fixkkpfqprq is in fact the least �xed point of this mapping. This implies that

F 7kpξ; rq ą ξ

for all ξ such that
rk ă ξ ă Fixkkpfqprq. (4.30)

(ξ ÞÑ F 7kpξ; rq is strictly increasing for the arguments smaller than the least �xed
point).

By Lemma 4.11 player Max has a pure memoryless strategy σkξ such that
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(W.1) σkξ is optimal in the ϕrk´1s
pr1,...,rk´1,ξ,rk`1,...,rnq

-game,

(W.2) E
σkξ ,τ

k pϕ
rks
pr1,...,rk´1,ξ,rk`1,...,rnq

q ě F 7kpξ; rq ą ξ, and

(W.3) P
σkξ ,τ

k pS
rks
i “ k for in�nitely many iq “ 0 for all strategies τ of player Min.

Now it su�ces to observe that the payo� mappings ϕrksr and ϕrks
pr1,...,rk´1,ξ,rk`1,...,rnq

di�er only for the plays belonging to the set tSrksi “ k for in�nitely may iu and this
set has measure zero by (W.3). Thus

E
σkξ ,τ

k pϕrksr q “ E
σkξ ,τ

k pϕ
rks
pr1,...,rk´1,ξ,rk`1,...,rnq

q.

Therefore, by (W.2),

E
σkξ ,τ

k pϕrksr q ě F 7kpξ; rq ą ξ. (4.31)

For each pure memoryless strategy σk of player Max let

Dpσkq “ tξ | rk ă ξ ă Fixkkpfqprq and σ
k
“ σkξ u,

where, for each ξ, σkξ is a pure memoryless strategy for player Max satisfying (4.31)
and (W.1).

Since there is a �nite number of pure memoryless strategies and each ξ such that
rk ă ξ ă Fixkkpfqprq belongs to some Dpσkq there exists a pure memoryless strategy
σk‹ such that Fixkkpfqprq is an accumulation point of Dpσk‹q. The elements of Dpσk‹q
are smaller than Fixkkpfqprq thus, in fact, this accumulation point is the supremum
of Dpσk‹q, i.e.

Fixkkpfqprq “ supDpσk‹q.

Since, by (4.31), Eσk‹ ,τ
k pϕ

rks
r q ą ξ for all ξ P Dpσk‹q, we have also

E
σk‹ ,τ
k pϕrksr q ě supDpσk‹q “ Fixkkpfqprq.

Note also that, by Lemma 4.12, σk‹ is optimal for player Max in the ϕrk´1s

r´kw
-game.

This ends the proof of (K.1) and (K.2).

To prove (4.29) for i ă k we proceed as follows.
By the induction hypothesis (H.1), Fixk´1

i pfqpr1, . . . , rk´1, w, rk`1, . . . , rnq is the
value of state i in the ϕrk´1s

r´kw
-game and, by (K.1), σk‹ is optimal in the same game,

thus
Fixk´1

i pfqpr1, . . . , rk´1, w, rk`1, . . . , rnq ď E
σk‹ ,τ
i pϕ

rk´1s

r´kw
q. (4.32)
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By Bayes' rule

E
σk‹ ,τ
i pϕ

rk´1s

r´kw
q “ E

σk‹ ,τ
i pϕ

rk´1s

r´kw
| T

rks
1 ă 8qP

σk‹ ,τ
i pT

rks
1 ă 8q` (4.33)

E
σk‹ ,τ
i pϕ

rk´1s

r´kw
| T

rks
1 “ 8qP

σk‹ ,τ
i pT

rks
1 “ 8q

where T rks1 is as in De�nition 4.10.

The plays satisfying T rks1 “ 8 never visit k thus for such plays it is irrelevant
what is the reward of k and it is irrelevant if k is stopping or not, in particular we
have

E
σk‹ ,τ
i pϕ

rk´1s

r´kw
| T

rks
1 “ 8q “ E

σk‹ ,τ
i pϕrksr | T

rks
1 “ 8q. (4.34)

The plays satisfying T rks1 ă 8 visit k and the states visited prior to the moment
of the �rst visit to k are all ă k. For such plays ϕrk´1s

r´kw
is equal to w implying

E
σk‹ ,τ
i pϕ

rk´1s

r´kw
| T

rks
1 ă 8q “ w. (4.35)

On the other hand,

E
σk‹ ,τ
i pϕrksr | T

rks
1 ă 8q ě w. (4.36)

Indeed, we have T rks1 ă 8 for the plays that visit k and such that before the �rst
visit to k all visited states were ă k. For such plays the value of ϕrksr does not depend
on the history prior to the �rst visit to k. But by (K.2), starting from k the strategy
σk‹ guarantees the expected payo� of at least Fixkkpfqprq “ w against any strategy
of Min.

From (4.32),(4.33),(4.34),(4.35) and (4.36) we obtain

Fixk´1
i pfqpr1, . . . , rk´1, w, rk`1, . . . , rnq ď

E
σk‹ ,τ
i pϕrksr | T

rks
1 ă 8qP

σk‹ ,τ
i pT

rks
1 ă 8q ` E

σk‹ ,τ
i pϕrksr | T

rks
1 “ 8qP

σk‹ ,τ
i pT

rks
1 “ 8q “

E
σk‹ ,τ
i pϕrksr q.

And now it remains to note that the de�nition of the nested nearest �xed point gives

Fixk´1
i pfqpr1, . . . , rk´1, w, rk`1, . . . , rnq “

Fixk´1
i pfqpr1, . . . , rk´1,Fix

k
kpfqprq, rk`1, . . . , rnq “

Fixki pfqprq.
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4.4.2 Dual games

In Section 3.3 we have de�ned the dual of the BMN mappings. In this section
we de�ne and examine the corresponding notion for the priority games.

Given an arena A the dual arena A is de�ned in the following way:

‚ A has the same states, actions and transition probabilities as A,

‚ all states controlled by Max in A are controlled by Min in A,

‚ all states controlled by Min in A are controlled by Max in A.

From this de�nition it follows immediately that each strategy σ of player Max
(respectively a strategy τ of Min) inA becomes a strategy of player Min (respectively
Max) in A and vice versa. Moreover, we have the equality of the corresponding
induced probabilities,

Pσ,τ
i p ¨ ;Aq “ Pτ,σ

i p ¨ ;Aq,
where the left-hand side denotes the probability induced on plays in A while the
right-hand side denotes the probability on plays in A.

For each reward vector r, by 1´r we denote the reward vector p1´r1, . . . , 1´rnq.
Since for each play h P H8, ϕrksr phq “ 1 ´ ϕ

rks
1´rphq, we have the following equality

concerning the expected payo�s for the (stopped) priority games played on A and
A:

Eσ,τ
i pϕ

rks
r ;Aq “ 1´ Eτ,σ

i pϕ
rks
1´r;Aq. (4.37)

This motivates the following de�nition.

Given a stopped priority game pA, ϕrksr q the dual game is the stopped priority
game pA, ϕrks1´rq.

Note that a strategy σ is optimal for player Max in the game pA, ϕrksr q if and
only if σ is optimal for player Min in the dual game pA, ϕrks1´rq.

A similar statement holds for strategies τ of Min. Therefore we have also the
following equality for the game values:

valipA, ϕrksr q “ 1´ valipA, ϕrks1´rq,

where valipA, ϕrksr q is the value of state i in the original stopped priority game while
valipA, ϕrks1´rq is the value of i in the dual game.

4.4.3 The duality of value mappings meets the duality of

games

Recall the de�nition of a dual mapping given in Section 3.3, fprq “ 1´ fp1´ rq,
where for r “ pr1, . . . , rnq, 1´ r “ p1´ r1, . . . , 1´ rnq.
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Lemma 4.14. Let f : r0, 1sn Ñ r0, 1sn be the value function of the one-step game,
cf. (4.2).

Then the dual mapping f is the value function of the one-step game played on
the dual arena.

Proof. Let k be a state controlled by player Max in the dual arena A. Thus k is
controlled by player Min in the original arena.

The value of state k for the one-step game played at k on the dual arena with
reward vector r is

max
aPApkq

ÿ

i

ppi|k, aq ¨ ri “ max
aPApkq

p1´
ÿ

i

ppi|k, aq ¨ p1´ riqq “

1´ min
aPApkq

ÿ

i

ppi|k, aq ¨ p1´ riq “ 1´ fkp1´ rq “ fkprq.

Interchanging max and min we get the result when k is controlled by player Min in
the dual arena.

The duality leads directly to the following counterpart of Lemma 4.13.

Lemma 4.15. Suppose that (H.1) and (H.2) are satis�ed. For each reward vector
r P r0, 1sn there exists a pure memoryless strategy τ k‹ for player Min such that for
each strategy σ of player Max and each i P rks we have

E
σ,τk‹
i pϕrksr q ď Fixki pfqprq. (4.38)

Proof. In the proof we will go back and forth between the priority game pA, ϕrksr q
and its dual pA, ϕrks1´rq. To avoid ambiguity when we speak about the players then
Max and Min are the maximizer and the minimizer in the original priority game
while the maximizer and the minimizer in the dual game are named Max and Min
respectively.

From Lemma 4.13 applied to the dual game we deduce that there exists a pure
memoryless strategy τ k‹ for player Max such that for each strategy σ of player Min
and each state i,

E
τk‹ ,σ
i pϕ

rks
1´r;Aq ě Fixki pfqp1´ rq. (4.39)

By Lemma 3.11,
Fixki pfqp1´ rq “ 1´ Fixki pfqprq. (4.40)

Using (4.37), (4.39) and (4.40) we obtain

E
σ,τk‹
i pϕrksr ;Aq “ 1´ E

τk‹ ,σ
i pϕ

rks
1´r;Aq ď 1´ Fixki pfqp1´ rq “ Fixki pfqprq.
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Therefore we obtain �nally:

Proof of Theorem 4.7. By Lemma 4.13 and Lemma 4.15.

4.5 Remarks on priority games with in�nite action

or state sets

A turn-based stochastic priority game with an in�nite number of actions may
not have memoryless optimal strategies.

Let us consider the priority game player on the arena depicted on Figure 4.16.
All states are controlled by player Max, S “ SMax “ t1, 2, 3u. State 2 is absorbing,
state 3 has just one available action that leads to state 1 with probability 1.

State 1 has an in�nite number of available actions Ap1q “ ta1, a2, . . .u such that
for all i ě 1, pp2|1, aiq “ 1

2i
and pp3|1, aiq “ 1 ´ 1

2i
. The reward vector is such that

r1 “ 0, r2 “ 0 and r3 “ 1.
The value of state 1 is 1. But there does not exist a memoryless optimal strategy

for player Max. In fact, for each memoryless strategy of Max the probability to
reach state 2 is 1 which results in payo� 0. Moreover, player Max has no strategy
(even with memory) securing the expected payo� 1. However, for each ε ą 0, he
has a strategy, which is not memoryless, securing for him the expected payo� of at
least 1 ´ ε. In fact, let N P N be such that 1{2N´1 ă ε, and let be a strategy of
player Max such that he plays action aN`i if the game visited state 1 i times, then
the probability to visit state 2 is 1{2N ` 1{2N`1 ` 1{2N`2 ` . . . that converges to
1{2N´1 ă ε. Hence, the probability to visit state 3 in�nitely often is ą 1´ ε.

32 1
ai,

1
2i ai,

2i−1
2i

Figure 4.16 � Game with in�nite set of actions where player Max does not have
memoryless optimal strategy.

We can also consider priority games with an in�nite number of states. To this
end we �rst need to adapt the de�nition of the priority games to such a framework 3.

3. If the set of states is the set N of all natural numbers then lim sup st, where s1, s2, . . . is
the in�nite sequence of visited states can be equal to 8, and the priority payo� of such a play is
unde�ned if we try to apply the de�nition of Section 4.1.
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A natural way to de�ne a priority game with an in�nite number of states is the
one used for parity games.

Let S be an in�nite set of states such that for each s P S the set Apsq of actions
available at s is �nite. The game is played by two players, Max and Min, and each
state is controlled by one of the players.

We assume that the arena is endowed with a priority mapping

π : SÑ t1, . . . , `u

from states to a �nite set of natural numbers.
The reward mapping

r : t1, . . . , `u Ñ r0, 1s

maps priorities to the unit interval r0, 1s.
For each play h “ s1, a1, s2, a2 . . ., the priority payo� mapping is de�ned as

ϕphq “ rk, where k “ lim sup
t

pπpstqq.

Thus the payo� is the reward associated with the highest priority visited in�nitely
often.

Let us consider the priority stochastic game depicted on Figure 4.17. All states
are controlled by player Max, S “ SMax “ tsd, sw, s1, s2, . . .u. The priorities are
πpsdq “ 0, πpswq “ 1 and, for all i ě 1, πpsiq “ 0. The following rewards are
assigned to the priorities: r0 “ 0 and r1 “ 1.

The game has the following actions: for all i ě 1, Apsiq “ ta, bu and ppsd|si, aq “
1
2i
, ppsw|si, aq “ 1´ 1

2i
and ppsi`1|si, bq “ 1. State sw has just a deterministic action

a that moves to s1 and state sd is absorbing.
The value of the game for the initial state s1 is 1. But

� for each memoryless strategy of player Max the expected payo� is 0 and

� player Max has no strategy securing the expected payo� 1 (but, as in the last
game, for each ε ą 0 player Max has a non-memoryless strategy σ securing for
him the expected payo� of at least 1´ ε). Strategy σ is built as follows: Let i
be the times that state sw was visited and let N P N be such that 1{2N´1 ă ε.
Then σphqpaq “ 1 when h “ h1sN`i and σphqpbq “ 1 otherwise.
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a, 12

a, 14

a, 1
2i

a, 12

a, 34

a, 2
i−1
2i

...

s1

s2

si

sd sw

...

b

b

b

Figure 4.17 � Game with in�nite set of states where player Max does not have
optimal strategy.
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Chapter 5

Concurrent stochastic priority games

In this chapter we study concurrent stochastic priority games.
Contrary to the turn-based stochastic games, in concurrent stochastic games, a

given state is not controlled by any particular player. What happens instead is that
the states are controlled jointly by both players. At each state both players choose
actions independently and simultaneously and the probability to move to the next
state depends on the actions chosen by both players.

The fact that the players choose actions simultaneously and independently at
each stage has a signi�cant impact on how the game is played. It turns out that in
concurrent stochastic priority games, the players do not have optimal strategies, in
general. However, they have ε-optimal strategies. But these strategies are neither
pure nor memoryless 1.

The main result of this chapter is that the values of the concurrent stochas-
tic priority games can be obtained as a nested nearest �xed point of appropriate
monotone nonexpansive mapping. This result is analogous to the main result of the
previous chapter. However, the proof is technically more involved, since we need to
cope with the uncertainty due to the fact that the adversary player chooses actions
independently and simultaneously at each state.

If the only possible rewards are 0 and 1, then the concurrent stochastic prior-
ity game is the same as the concurrent parity game examined by de Alfaro and
Majumdar [dAM04]. These authors proved that the value of such game is given by
a µ-calculus formula alternating the least and the greatest �xed points. Thus the
result of this chapter is an extension of the result obtained in [dAM04], the only
di�erence is that we replace greatest and least �xed points used in [dAM04] by the
nearest �xed points.

1. See, for example, a game adapted by de Alfaro and Henzinger [dAH00] from [KS81] where
both players do not have optimal strategies and for one of the players a ε-optimal strategy cannot
be memoryless.
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Our proof is however quite di�erent. The proof of [dAM04] is not inductive.
De Alfaro and Majumdar give a complete µ-calculus formula with all �xed points
applied from the outset and show that this formula gives the values of all states in
the concurrent parity game.

On the other hand, in our approach we provide a game interpretation of the
nested �xed point formula where only some variables are bound by the �xed point
while other variables are free. It turns out that such formula represents the values
of the priority game where free variable correspond to absorbing states.

This approach makes our proof more structured than that of [dAM04].
Roughly speaking, we start with a trivial game where all states are absorbing.

And next we transform the states, one by one, starting from the lowest priority state
1, next state 2, etc., from absorbing to nonabsorbing. We show by induction that,
if f is the value mapping of the one-step game, then

µrkxk. . . . µr1x1.fpx1, . . . , xk, rk`1, . . . , rnq, (5.1)

where the free variables xk`1, . . . , xn are evaluated to rk`1, . . . , rn, is the value vector
of the priority game where the states 1, . . . , k are nonabsorbing while states k `
1, . . . , n are transformed into absorbing states.

With this approach it su�ces to show that solving the priority game where the
states 1, . . . , k, k ` 1 are nonabsorbing while the states k ` 2, . . . , n are absorbing,
corresponds to add the next rk`1-nearest �xed point µrk`1

xk`1 to (5.1).
In this way we do not need to examine a �xed point formula where all n �xed

points are applied at once. Instead, we just examine what happens if just one �xed
point is added to (5.1).

The chapter is structured as follows. In Section 5.1 we de�ne the concurrent
stochastic priority games.

Section 5.2 de�nes and examines one-step games. These games are auxiliary
matrix games played at each state. The crucial observation concerning the one-step
game is that its value mapping f is monotone nonexpansive.

In Section 5.3, we de�ne and examine the class of stopping concurrent priority
games. In such games, all states greater 2 than a �xed state k are absorbing (or
equivalently stopping). We prove by induction that (5.1) is the value vector of this
game.

As a corollary we obtain that the values of concurrent priority games can be
expressed as the nested nearest �xed points (without free variables).

2. greater in the priority order
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5.1 Concurrent stochastic priority games

An arena for a two-player concurrent stochastic priority game is composed of a
�nite set of states S “ rns “ t1, 2, . . . , nu Ă N (we assume without loss of generality
that S is a subset of positive integers) and �nite sets A and B of actions of players
Max and Min. For each state i, Apiq Ď A and Bpiq Ď B are the sets of actions
that players Max and Min can play at s. We assume that A and B are disjoint and
pApiqqiPS, pBpiqqiPS are partitions of A and B.

For i, j P S, a P Apiq, b P Bpiq, ppj|i, a, bq is the probability to move to j if players
Max and Min execute respectively actions a and b at i.

An in�nite game is played by players Max and Min. At each stage, given the
current state i, the players choose simultaneously and independently actions a P Apiq
and b P Bpiq and the game moves to a new state j with probability ppj|i, a, bq. The
couple pa, bq is called the joint action.

A �nite history is a sequence h “ s1, pa1, b1q, s2, pa2, b2q, s3 . . . , st alternating
states and joint actions and beginning and ending with a state. The length of h is
the number of joint actions in h, in particular a history of length 0 consists of just
one state and no actions. The set of �nite histories is denoted H.

A strategy of player Max is a mapping σ : H Ñ ∆pAq, where ∆pAq denotes the
set of probability distributions over A. We require that supppσphqq Ď Apiq, where i
is the last state of h and supppσphqq :“ ta P A | σphqpaq ą 0u is the support of the
measure σphq.

A strategy σ is memoryless if σphq depends only on the last state of h. Thus
memoryless strategies of player Max can be identi�ed with mappings from S to
∆pAq such that supppσpiqq Ď Apiq for each i P S.

A strategy σ is pure if supppσphqq is a singleton for each h. Pure memoryless
strategies of player Max are identi�ed with mappings σ : S Ñ A such that σpiq P
Apiq.

Strategies for player Min are de�ned in a similar way.
We write Σ and T to denote the sets of all strategies for player Max and Max

respectively.
We use σ and τ (with subscripts or superscripts) to denote strategies of players

Max and Min respectively.
An in�nite history or a play is an in�nite sequence

h “ s1, pa1, b1q, s2, pa2, b2q, s3, pa3, b3q, . . . alternating states and joint actions. The
set of in�nite histories is denoted H8. For a �nite history h, by h` we denote the
cylinder generated by h consisting of all in�nite histories with pre�x h. We assume
that H8 is endowed with the σ-algebra BpH8q generated by the set of cylinders.

Strategies σ, τ of players Max and Min and the initial state i determine a prob-
ability measure Pσ,τ

i on pH8,BpH8qq.
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We de�ne inductively Pσ,τ
i for cylinders in the following way.

Let h0 “ s1 be a �nite history of length 0. Then

Pσ,τ
i ph

`
0 q “

#

0 if i ‰ s1,

1 if i “ s1.

Let ht´1 “ s1, pa1, b1q, . . . , st´1, pat´1, bt´1q, st and ht “ ht´1, pat, btq, st`1. Then

Pσ,τ
i ph

`
t q “ Pσ,τ

i ph
`
t´1q ¨ σpht´1qpatq ¨ τpht´1qpbtq ¨ ppst`1|st, at, btq.

Note that the set of cylinders is π-system (i.e. a family of sets closed under
intersection) thus a probability de�ned on cylinders extends in a unique way to all
sets of BpH8q.

The payo� mapping is a bounded Borel measurable mapping

ϕ : H8
Ñ R.

The aim of player Max (player Min) is to maximize (resp. minimize) the expected
payo�

Eσ,τ
i rϕs “

ż

H8
ϕphqPσ,τ

i pdhq.

The game has value if for each state i there exists a real number vi, the value of the
game for the starting state i, such that

inf
τPT

sup
σPΣ

Eσ,τ
i rϕs “ vi “ sup

σPΣ
inf
τPT

Eσ,τ
i rϕs.

A strategy τ of player Min is ε-optimal, ε ě 0, if for each state i and each strategy
σ of player Max,

sup
σPΣ

Eσ,τ
i rϕs ď vi ` ε.

Symmetrically, a strategy σ of player Max is ε-optimal if for each state i and
each strategy τ of player Min,

inf
τPT

Eσ,τ
i rϕs ě vi ´ ε.

An ε-optimal strategy with ε “ 0 is called optimal.
To de�ne the concurrent stochastic priority game we endow the arena with the

reward vector
r “ pr1, . . . , rnq

associating with each state i a reward ri P R.
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The priority payo� ϕrphq of an in�nite history h “ s1, pa1, b1q, s2, pa2, b2q, s3, . . .
is de�ned as

ϕrphq “ r`, where ` “ lim sup
t

st. (5.2)

Thus the payo� is equal to the reward of the greatest (in the usual integer order)
state visited in�nitely often.

The aim of player Max (player Min) is to maximize (resp. minimize) the expected
priority payo�

Eσ,τ
i rϕrs “

ż

H8
ϕrphqP

σ,τ
i pdhq.

Concurrent priority games contain as special cases some other well known classes
of games:

(i) If the reward mapping takes only values in t0, 1u then we obtain the usual
concurrent parity games [dAM04].

(ii) The second subclass of concurrent priority games is the class of Everett's
recursive games [Eve57]. Everett's games are concurrent priority games having
reward 0 for all nonabsorbing states 3.

Thus in Everett's games players receive the payo� 0 if the play remains forever
in nonabsorbing states, otherwise, for plays ending in an absorbing state i, the
payo� is equal to the reward ri.

(iii) Everett's games contain as a subclass the class of reachability games. Reach-
ability games are Everett's games such that all absorbing states have non-
negative rewards [CdAH13, dAHK07].

(iv) The limsup games studied by Maitra and Sudderth [MS96] are the games with
the payo� lim supk rik , where ri1 , ri2 , ri3 , . . . is the in�nite sequence of rewards
associated with the states visited at the stages 1, 2, 3, . . . during the game. To
see that limsup games are priority games it su�ces to rename the states in
such a way that i ă j implies ri ď rj for all states i, j P rns. If this condition
is satis�ed then the limsup payo� and the priority payo� are equal.

(v) The liminf games are the games with the payo� lim infk rik , where ri1 , ri2 , ri3 , . . .
is the in�nite sequence of rewards associated with the states visited at the
stages 1, 2, 3, . . . during the game.

Let us rename the states in such a way that, for all states i, j P rns, i ă j
implies ri ě rj. Then the liminf payo� is equal to the priority payo�, thus the
liminf games constitute a subclass of priority games.

From the determinacy of Blackwell's games proved by Martin [Mar98] it follows
that concurrent priority games have values, i.e. for each state i, supσ infτ E

σ,τ
i rϕrs “

3. A state i is absorbing if ppi|i, a, bq “ 1 for all joint actions pa, bq.
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infτ supσ E
σ,τ
i rϕrs. (The Blackwell games do not have states but the result of Martin

extends immediately to games with states as shown by Maitra and Sudderth [MS04].)
A proof of determinacy of concurrent stochastic parity games using �xed points

was given by de Alfaro and Majumdar [dAM04]. For Everett's recursive games,
Everett proved non only that such games have values but also that both players
have ε-optimal memoryless strategies [Eve57]. For concurrent reachability games,
player Min has an optimal memoryless strategy while player Max has, for each
ε ą 0, an ε-optimal memoryless strategy, [CdAH13].

Terminology: As in this chapter we deal only with concurrent stochastic priority
games, always when we say a priority game it would mean concurrent stochastic
priority games.

5.2 Concurrent one-step game

In this section we de�ne an auxiliary one-step game. This simple game constitutes
an essential ingredient in our solution to the general priority games.

Let x “ px1, . . . , xnq P Rn be a reward vector assigning to each state i the reward
xi.

A concurrent one-step game Mpxq is the game played in the following way. If
the game starts at a state k then players Max and Min choose independently and
simultaneously actions a P Apkq and b P Bpkq. Suppose that upon execution of pa, bq
the game moves to the next state m. This ends the game and player Max receives
from player Min the payo� xm.

A concurrent one-step game played at state k given the reward mapping x will
be denoted M kpxq.

Note that M kpxq can be seen as a matrix game where

M kpxqra, bs :“
ÿ

mPS

xm ¨ ppm|k, a, bq

is the (expected) payo� obtained by player Max from player Min when the players
play actions a and b respectively.

The value mapping of the one-step game is the mapping f “ pf1, . . . , fnq from
Rn to Rn such that, for each state k P rns,

fkpx1, . . . , xnq :“ valpM kpxqq, (5.3)

where valpM kpxqq is the value of the matrix gameM kpxq, In other words, fkpx1, . . . , xnq
is the value of the concurrent one-step game played at state k seen as a function of
the reward vector x “ px1, . . . , xnq.

We will be interested in fkpxq seen as a function of the reward vector x “
px1, . . . , xnq.
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Since all entries in the matrix game M kpxq belong to R, fkpxq P R, i.e. fk is a
mapping from Rn into R.

Lemma 5.1. The value mapping f of the one-step game de�ned in (5.3) is monotone
and nonexpansive.

Proof. It is easy to see that f is monotone and it is also straightforward that f is
additively homogeneous, i.e, for all x P Rn,

fpx` λ ¨ enq “ fpxq ` λ ¨ en,

where en “ p1, . . . , 1q P Rn is the vector with 1 on all components. By Lemma 3.2
this implies that f is nonexpansive.

In the sequel it will be convenient to assume that all rewards belong to the
interval r0, 1s rather than to R. This can be achieved without loss of generality by
a simple linear transformation, as we did in Section 4.2.

5.3 General concurrent stopping priority games

Concurrent stopping priority games generalize the priority games de�ned in Sec-
tion 5.1 by allowing some states to be stopping. In particular if the number of
stopping states is zero then we obtain concurrent priority games.

We solve concurrent priority stopping games by induction on the number of non-
stopping states and we show that the value function can be expressed as the nearest
�xed point of the value function (5.3) of the concurrent one-step game.

By St, A1
t and A2

t , t “ 1, 2, . . ., we will denote stochastic processes such that
St is the state visited at time t, A1

t is the action executed by player Max at
stage t and A2

t is the action executed at stage t by player Min. i.e. for a play
h “ s1, pa1, b1q, s2, pa2, b2q, s3, . . ., Stphq “ st, A1

t phq “ at and A2
t phq “ bt.

For each state k P rns we de�ne the random variable

Tąk : H8
Ñ NY t8u

such that
Tąk “ mintt | St ą ku.

Thus Tąk is the time of the �rst visit to a state greater than k.
We de�ne a new stochastic process Srkst , t P N, that we shall call the stopped state

process :

S
rks
t “

#

St if Tąk ě t,

Sq if q “ Tąk ă t.



74 5.4. Constructing ε-optimal strategies

Thus if all previously visited states belong to t1, . . . , ku then Srkst is equal to the
state visited at the current epoch t. However, if at some previous epoch a state ą k
was visited then S

rks
t is the �rst such state. In other words, Srkst behaves as if the

states ą k were absorbing, if Srkst ą k then Srksq “ S
rks
t for all q ě t.

For a given reward vector r and k P rns we de�ne the stopping priority payo�

ϕ
rks
r :

ϕrksr “ r` where ` “ lim sup
t

S
rks
t .

The games with payo� ϕrksr will be called stopping priority games. We will also
speak about the ϕrksr -game to refer to the game with payo� ϕrksr . Similarly ϕr-game
will stand for the usual priority game.

Note that once a state j greater than k is visited the game with payo� ϕ
rks
r is

for all practical purposes over, independently of what can happen in the future the
payo� is equal to the reward rj of this state and the states visited after the moment
Tąk have no bearing on the payo�.

In the ϕrksr -game the states rks will be called non-stopping while the states ą k,
will be called stopping.

Note that since we have assumed that S “ rns, i.e. n is the greatest state, we
have ϕrnsr “ ϕr.

Note also that solving games starting in stopping states is trivial. If i ą k then
for all plays h starting at i, ϕrksr phq “ ri, thus E

σ,τ
i pϕ

rks
r q “ ri for all strategies σ, τ ,

in particular the value of stopping state i, i ą k, is ri.

5.4 Constructing ε-optimal strategies

The rest of this section is devoted to the proof of the following main result
characterizing the values of the stopping concurrent priority games by means of
�xed points.

Theorem 5.2. Let f : r0, 1sn Ñ r0, 1sn be the value mapping of the concurrent
one-step game de�ned in Section 5.2. For 0 ď k ď n, let

Fixkpfq

be the k-th nested �xed point of f , see Section 3.2. Then, for each reward vector r,
for each initial state i P rns, the concurrent stopping priority ϕ

rks
r -game starting at i

has value Fixki pfqprq.

Proof. For each ε ą 0 we construct ε-optimal strategies for both players.
The proof is carried out by induction on k.
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The case k “ 0 is trivial since when all states are stopping then the value of each
state is equal to its reward, i.e. the value of state i is Fix0

i pfqprq “ ri.
Under the assumption that the theorem holds for k ´ 1, i.e. Fixk´1

i pfqprq is the
value of the non-stopping state i P rk ´ 1s in the ϕrk´1s

r -game, we shall prove that
Fixki pfqprq is the value of the non-stopping state i P rks in the ϕrksr -game.

We will use the following notation:

wk :“ Fixkkpfqprq “ µrkxk.fkpF
k´1
1 pxk; rq, . . . , F

k´1
k´1 pxk; rq, xk, rk`1, . . . , rnq (5.4)

and
wi :“ Fixki pfqprq “ F k´1

i pwk; rq, i P rk ´ 1s, (5.5)

where F k´1
i are de�ned as in (3.3). Thus our aim is to prove that pw1, . . . , wk´1, wkq

are the values of the states t1, . . . , k ´ 1, ku in the ϕrksr -game.
Since wk is a �xed point of (5.4) we have

wk “ fkpw1, . . . , wk´1, wk, rk`1, . . . , rnq. (5.6)

Let Tm be the random time of the m´th visit to state k of the stopping state
process pSrkst qtě1, i.e.

T1 “ mintt | S
rks
t “ ku,

Tm “ mintt | t ą Tm´1 and Srkst “ ku for m ą 1. (5.7)

Notice that Tm can be in�nite if the number of visits of the stopping state process
S
rks
t to the state k is smaller than m and T1 “ 1 if the game starts at k. Note that

since Tm is de�ned w.r.t. the stopping state process Srkst , Tm ă 8 implies that all
states visited prior to the moment Tm are ď k.

Let T be any random time, i.e. a mapping from plays to t1, 2, . . .u Y t8u such
that for each m P t1, 2, . . .u the event tT “ mu belongs to the σ-algebra

Fm “ σpS1, pA
1
1, A

2
1q, S2, . . . , Smq.

In other words, Fm is the σ algebra generated by the cylinders h`m, where hm are
histories of length m.

Intuitively that means that knowing the states and actions up to time m we can
decide if T “ m or not.

De�nition 5.3. For a random time T , θT : H8 Ñ H8 will denote the shift mapping
that maps plays to plays and is de�ned in the following way

θT pS1, pA
1
1, A

2
1q, S2, . . .q “ ST , pA

1
T , A

2
T q, ST`1, pA

1
T`1, A

2
T`1q, ST`2, pA

1
T`2, A

2
T`2q, . . . .

Thus the shift θT �forgets� all history prior to time T . Of course, θT is well de�ned
only on plays such that T ă 8.

Below we use the shift θTm`1, where Tm is the time of the mth visit to state k.
This shift will be applied only to the plays with Tm ă 8.
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5.4.1 ε{2-optimal strategy σ‹ for player Max when rk ă wk and
k is the starting state.

We assume that
rk ă wk (5.8)

and the aim is to construct a strategy σ‹ for player Max satisfying

Eσ‹,τ
k pϕrksr q ě wk ´ ε{2 (5.9)

for each strategy τ of Min.
Let

η P pwk ´ ε{2, wkq

and de�ne
ξi “ F k´1

i pη; rq, @i P rk ´ 1s. (5.10)

By the induction hypothesis, ξi is the value of the ϕrk´1s
pr1,...,rk´1,η,rk`1,...,rnq

-game
starting at the state i.

Let us consider the concurrent one-step game M kpξ1, . . . , ξk´1, η, rk`1, . . . , rnq
played at state k. Then

η‹ :“ fkpξ1, . . . , ξk´1, η, rk`1, . . . , rnq (5.11)

is the value of this game.
By the properties of monotone nonexpansive mappings, (5.8) implies that wk is

in fact the least �xed point of the mapping

xk ÞÑ fkpF
k´1
1 pxk; rq, . . . , F

k´1
k´1 pxk; rq, xk, rk`1, . . . , rnq.

Thus η ă wk implies that

η ă fkpξ1, . . . , ξk´1, η, rk`1, . . . , rnq “ η‹ ď wk. (5.12)

Fix δ such that
0 ă δ ă η‹ ´ η. (5.13)

We de�ne the strategy σ‹ of player Max in the following way:

‚ during the m-th visit to the state k, which takes place at time Tm, c.f. (5.7),
player Max selects actions according to his optimal strategy in the concurrent
one-step game M kpξ1, . . . , ξk´1, η, rk`1, . . . , rnq.

‚ during all stages j such that Tm ă j ă Tm`1, i.e. between the mth and
pm` 1qth visit to k, player Max plays according to his δ-optimal strategy for
the ϕrk´1s

pr1,...,rk´1,η,rk`1,...,rnq
-game.

When he applies this strategy then we tacitly assume that after each visit to k
player Max �forgets� all preceding history and he plays as if the game started
afresh at the �rst state visited after the last visit to k.
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From the optimality of σ‹ in the concurrent one-step gameM kpξ1, . . . , ξk´1, η, rk`1, . . . , rnq,
we have

ÿ

iăk

ξi ¨P
σ‹,τ
k pSTm`1 “ i | Tm ă 8q

` η ¨Pσ‹,τ
k pSTm`1 “ k | Tm ă 8q

`
ÿ

iąk

ri ¨P
σ‹,τ
k pSTm`1 “ i | Tm ă 8q

ě η‹. (5.14)

Indeed, when player Max plays according to the strategy σ‹ at the moment Tm
then the current state is k and he plays using his optimal strategy in the concurrent
one-step game M kpξ1, . . . , ξk´1, η, rk`1, . . . , rnq. Now it su�ces to notice that the
left-hand side of (5.14) is nothing else but the payo� that player Max obtains in
the concurrent one-step game M kpξ1, . . . , ξk´1, η, rk`1, . . . , rnq (because STm`1 is the
state visited at the next time moment Tm`1). Since η‹ is the value of this concurrent
one-step game the inequality follows.

In the sequel we will note 1A the indicator of the event A, i.e. the mapping that
is equal to 1 on A and to 0 on the complement of A.

Let us note the following equality:
ÿ

iąk

ri ¨P
σ‹,τ
k pSTm`1 “ i | Tm ă 8q “ Eσ‹,τ

k pϕrksr ¨ 1tSTm`1ąku | Tm ă 8q. (5.15)

Indeed, if a play belongs to the event tSTm`1 “ i, Tm ă 8u for i ą k then Tm ă 8
means that at the moment Tm this play visits k and prior to Tm it never visited
states ą k cf. (5.7), and at the next time moment Tm ` 1 such a play visits the
stopping state i ą k. But for such plays the payo� ϕrksr is equal to ri.

Consider now the event tSTm`1 “ i, Tm ă 8u, for i ă k, see Figure 5.4.
This event consists of the plays such that

� the stopping state process Srksi visits k for the mth time at time Tm (this is
guaranteed by Tm ă 8, cf.(5.7)) and

� at the next time moment Tm ` 1 the play visits the state i ă k.

From the de�nition of σ‹ it follows that starting from the time Tm ` 1 player Max
plays using his δ-optimal strategy in the ϕrk´1s

pr1,...,rk´1,η,rk`1,...,rnq
-game. Since, by the

inductive hypothesis (5.10), the value of such a game for state i is ξi, we have

Eσ‹,τ
k pϕ

rk´1s
pr1,...,rk´1,η,rk`1,...,rnq

˝ θTm`1 | STm`1 “ i, Tm ă 8q ě ξi ´ δ, for all i ă k,
(5.16)
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k

Tm + 1

i ∈ [k − 1]

{Tm+1 <∞, STm+1
= i, Tm+1 =∞}

{Tm+1 <∞, STm+1
= i, Tm+1 <∞}

Tm+1

Tmt = 0

k

k

θTm+1⇓

t = 0

i ∈ [k − 1]

{Tm+1 <∞, STm+1
= i, Tm+1 =∞}

{Tm+1 <∞, STm+1
= i, Tm+1 <∞}

Tm+1

k

Figure 5.4 � The upper �gure: The event tSTm`1 “ i, Tm ă 8u consists of the plays
that at time Tm visit state k for the mth time without ever visiting the states ą k
before, and at time Tm`1 they visit state i, where i ă k. These plays are partitioned
into two sets. The set tTm`1 ă 8, STm`1 “ i, Tm ă 8u of plays that will visit k
for the pm ` 1qth time and the set tTm`1 “ 8, STm`1 “ i, Tm ă 8u of the plays
for which the mth visit in k was the last one. The lower �gure : The shift mapping
θTm`1 �forgets� all the history prior to the time Tm ` 1.

where θTm`1 is the shift mapping that deletes all history prior to the time Tm ` 1.
Using the fact that for all events A and B and each integrable mapping f we

have Epf | A,Bq ¨P pAq “ Epf ¨1tAu | Bq we can rewrite (5.16) in the following form

Eσ‹,τ
k pϕ

rk´1s
pr1,...,rk´1,η,rk`1,...,rnq

˝ θTm`1 ¨ 1tSTm`1“iu | Tm ă 8q ě

pξi ´ δq ¨P
σ‹,τ
k pSTm`1 “ i | Tm ă 8q, for i ă k. (5.17)

We shall prove that for i ă k,

Eσ‹,τ
k pϕ

rk´1s
pr1,...,rk´1,η,rk`1,...,rnq

˝ θTm`1 ¨ 1tSTm`1“iu | Tm ă 8q “

η¨Pσ‹,τ
k pTm`1 ă 8, STm`1 “ i | Tm ă 8q`E

σ‹,τ
k pϕrksr ¨1tTm`1“8u¨1tSTm`1“iu | Tm ă 8q.

(5.18)

Indeed the left-hand side of (5.18) is the sum of

Eσ‹,τ
k pϕ

rk´1s
pr1,...,rk´1,η,rk`1,...,rnq

˝ θTm`1 ¨ 1tSTm`1“iu ¨ 1tTm`1“8u | Tm ă 8q (5.19)
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and

Eσ‹,τ
k pϕ

rk´1s
pr1,...,rk´1,η,rk`1,...,rnq

˝ θTm`1 ¨ 1tSTm`1“iu ¨ 1tTm`1ă8u | Tm ă 8q. (5.20)

Consider �rst (5.20). For plays h belonging to the event tTm`1 ă 8, STm`1 “ iu, i ă
k, the shift θTm`1 removes all pre�x history up to the time Tm ` 1, see Figure 5.4.
Since Tm`1 ă 8 in the remaining su�x play θTm`1phq all visited states up to the
next visit to k are ă k. But for the plays that visit k at some moment and for
which all states prior to this �rst visit to k are ă k the payo� ϕrk´1s

pr1,...,rk´1,η,rk`1,...,rnq

is constant and equal to the reward η associated with k. Thus (5.20) is equal to

η ¨Pσ‹,τ
k pTm`1 ă 8, STm`1 “ i | Tm ă 8q.

Let us examine now (5.19). The plays h belonging to the event tSTm`1 “

i, Tm`1 “ 8, Tm ă 8u have the following properties:

� at time Tm they visit k and all states visited prior to Tm are ď k,

� at time Tm ` 1, just after the mth visit to k, they visit the state i,

� since Tm`1 “ 8 the su�x play θTm`1phq does not contain any occurrence of k
(k is never visited for the pm` 1qth time).

These properties assure that for such plays ϕrksr phq “ ϕ
rks
r pθTm`1phqq. However,

θTm`1phq has no occurrence of k, which implies for the resulting payo� it is ir-
relevant if k is stopping or not and what is the reward of k. Thus ϕrksr pθTm`1phqq “

ϕ
rk´1s
pr1,...,rk´1,η,rk`1,...,rnq

pθTm`1phqq. This terminates the proof that (5.19) is equal to

Eσ‹,τ
k pϕrksr ¨ 1tTm`1“8u ¨ 1tSTm`1“iu | Tm ă 8q.

This concludes also the proof of (5.18).
From (5.17) and (5.18) we obtain

η¨Pσ‹,τ
k pTm`1 ă 8, STm`1 “ i | Tm ă 8q`E

σ‹,τ
k pϕrksr ¨1tTm`1“8u¨1tSTm`1“iu | Tm ă 8q

ě pξi ´ δq ¨P
σ‹,τ
k pSTm`1 “ i | Tm ă 8q.

Summing both sides of this inequality for i ă k and rearranging the terms we obtain
ÿ

iăk

ξi ¨P
σ‹,τ
k pSTm`1 “ i | Tm ă 8q ď η ¨Pσ‹,τ

k pTm`1 ă 8, STm`1 ă k | Tm ă 8q

` Eσ‹,τ
k pϕrksr ¨ 1tTm`1“8u ¨ 1tSTm`1ăku | Tm ă 8q

` δ ¨Pσ‹,τ
k pSTm`1 ă k | Tm ă 8q

ď η ¨Pσ‹,τ
k pTm`1 ă 8, STm`1 ă k | Tm ă 8q

` Eσ‹,τ
k pϕrksr ¨ 1tTm`1“8u ¨ 1tSTm`1ăku | Tm ă 8q

` δ.
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The last inequality, (5.14) and (5.15) yield

η‹ ď η ¨Pσ‹,τ
k pTm`1 ă 8, STm`1 ă k | Tm ă 8q

`Eσ‹,τ
k pϕrksr ¨ 1tTm`1“8u ¨ 1tSTm`1ăku | Tm ă 8q

`δ

`η ¨Pσ‹,τ
k pSTm`1 “ k | Tm ă 8q

`Eσ‹,τ
k pϕrksr ¨ 1tSTm`1ąku | Tm ă 8q.

(5.21)

Notice that

Pσ‹,τ
k pTm`1 ă 8, STm`1 ă k | Tm ă 8q `Pσ‹,τ

k pSTm`1 “ k | Tm ă 8q

“ Pσ‹,τ
k pTm`1 ă 8 | Tm ă 8q (5.22)

which allows to regroup the �rst and the fourth summand of right-hand side of
(5.21). Indeed, tTm`1 ă 8, Tm ă 8u is the union of three disjoint events, depending
on whether the state visited at the next time moment Tm ` 1 is ă k, “ k, or ą k.
But for the second of these events we have tTm`1 ă 8, Tm ă 8, S

rks
Tm`1 “ ku “

tTm ă 8, S
rks
Tm`1 “ ku since SrksTm`1 “ k implies that Tm`1 “ Tm ` 1 ă 8.

And �nally the third event tTm`1 ă 8, Tm ă 8, S
rks
Tm`1 ą ku is empty since

S
rks
Tm`1 ą k means that at time Tm ` 1 the game hits a stopping state thus the

stopping state process will never return to k, therefore Tm`1 “ 8. This terminates
the proof of (5.22).

We can regroup also the second and the last summands of (5.21) since

Pσ‹,τ
k pTm`1 “ 8, STm`1 ă k | Tm ă 8q `Pσ‹,τ

k pSTm`1 ą k | Tm ă 8q

“ Pσ‹,τ
k pTm`1 “ 8 | Tm ă 8q

We obtain this again by presenting the event tTm`1 “ 8, Tm ă 8u as the union
of three disjoint events depending on the value of STm`1. However, STm`1 “ k
contradicts Tm`1 “ 8 and STm`1 ą k implies Tm`1 “ 8.

Using these observations we deduce from (5.21) that

η‹ ď η ¨Pσ‹,τ
k pTm`1 ă 8 | Tm ă 8q

` Eσ‹,τ
k pϕrksr ¨ 1tTm`1“8u | Tm ă 8q

` δ.

(5.23)

Since ϕrksr ď 1, from (5.23) we obtain that

η ¨Pσ‹,τ
k pTm`1 ă 8 | Tm ă 8q `Pσ‹,τ

k pTm`1 “ 8 | Tm ă 8q ě η‹ ´ δ.
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But Pσ‹,τ
k pTm`1 “ 8 | Tm ă 8q ` Pσ‹,τ

k pTm`1 ă 8 | Tm ă 8q “ 1 thus the last
inequality yields

Pσ‹,τ
k pTm`1 ă 8 | Tm ă 8q ď

1` δ ´ η‹
1´ η

ă
1` pη‹ ´ ηq ´ η‹

1´ η
“ 1.

Therefore

Pσ‹,τ
k p@m,Tm ă 8q “ lim

mÑ8
Pσ‹,τ
k p@i ď m,Ti ă 8q

“ lim
mÑ8

Pσ‹,τ
k pT0 ă 8q ¨

m´1
ź

q“0

Pσ‹,τ
k pTq`1 ă 8 | Tq ă 8q

ď lim
mÑ8

ˆ

1´ η‹ ` δ

1´ η

˙m´1

“ 0,

(5.24)

i.e. if player Max uses the strategy σ‹ then with probability 1 the state k is
visited only �nitely many times.

Multiplying both sides of (5.23) by Pσ‹,τ
k pTm ă 8q, taking into account that

0 ă δ ă η‹ ´ η and rearranging we get

Eσ‹,τ
k pϕrksr ¨ 1tTm`1“8u ¨ 1tTmă8uq ą η ¨Pσ‹,τ

k pTm ă 8q

´ η ¨Pσ‹,τ
k pTm`1 ă 8, Tm ă 8q

“ η ¨Pσ‹,τ
k pTm`1 “ 8, Tm ă 8q.

(5.25)

Since the events tTm`1 “ 8, Tm ă 8umě0 and t@m,Tm ă 8u form a partition
of the sets of plays but the last event has probability 0, summing up both sides of
(5.25) for all m ě 1 we obtain

Eσ‹,τ
k pϕrksr q ą η ą wk ´

ε

2

which terminates the proof of (5.9).

5.4.2 ε{2-optimal strategy τ‹ for player Min when rk ď wk and
k is the starting state.

We assume that rk ď wk and ε ą 0. The aim of this section is to construct a
strategy τ‹ for player Min such that

Eσ,τ‹
k pϕrksr q ď wk ` ε{2 (5.26)

for each strategy σ of Max.
The strategy τ‹ of player Min is constructed in the following way.
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(i) If the current state is k then player Min selects actions with probability given
by his optimal strategy in the concurrent one-step game

M kpw1, . . . , wk´1, wk, rk`1, . . . , rnq.

Thus the strategy of player Min at k is �locally memoryless�, the probability
used to select actions to execute at k does not depend on the previous history.

(ii) During all stages j such that Tm ă j ă Tm`1 (between the mth and pm` 1qth
visit to state k) player Min plays using his εm :“ ε{2m`1-optimal strategy in the
ϕ
rk´1s
pr1,...,rk´1,wk,rk`1,...,rnq

-game 4. In general the strategy played by Min between
two visits to state k is not memoryless because εm changes at each visit to k.
When player Min applies this strategy during all stages j, Tm ă j ă Tm`1, in
the ϕrksr -game then we assume tacitly that starting from stage Tm ` 1 player
Min �forgets� all history preceding this stage and he plays this strategy as if
the game started afresh at stage Tm ` 1.

From the optimality of τ‹ in the concurrent one-step game
M kpw1, . . . , wk´1, wk, rk`1, . . . , rnq we obtain

ÿ

jăk

wj ¨P
σ,τ‹
k pS

rks
Tm`1 “ j|Tm ă 8q

` wk ¨P
σ,τ‹
k pS

rks
Tm`1 “ k|Tm ă 8q (5.27)

`
ÿ

jąk

rj ¨P
σ,τ‹
k pS

rks
Tm`1 “ j|Tm ă 8q

ď wk.

Indeed, at the time Tm the current visited state is k and player Min se-
lects actions according to his optimal strategy in the concurrent one-step game
M kpw1, . . . , wk´1, wk, rk`1, . . . , rnq and, by (5.6), the left-hand side of (5.27) gives
the payo� in this concurrent one-step game while the right-hand side is the value of
this game. Since he plays optimally the payo� cannot be greater than the value.

Let us consider the event

tTm ă 8, STm`1 “ iu, where i ă k. (5.28)

This event, presented on the upper side of Figure 5.4, consists of plays h satisfying
the following conditions:

(i) h visits k at least m times and prior to the m-th visit to k (which takes place
at time Tm) the stopping states tk` 1, . . . , nu were not visited, i.e. St P rks for
all t ă Tm,

4. This strategy exists by the induction hypothesis.
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(ii) at time Tm the game moves from k to i, i.e. STm`1 “ i.

The de�nition of τ‹ says that starting from time Tm ` 1, if the current state
STm`1 is ă k and until the next visit to state k, player Min plays according to
ε{2m`1-optimal strategy in the ϕrk´1s

pr1,...,rk´1,wk,rk`1,...,rnq
-game. By (5.5), the value of

the ϕrk´1s
pr1,...,rk´1,wk,rk`1,...,rnq

-game starting at state i P rk ´ 1s is wi.
Thus if we consider the game that, in some sense, restarts afresh at state i at

time Tm ` 1 and we apply to such residual game the payo� ϕ
rk´1s
pr1,...,rk´1,wk,rk`1,...,rnq

and we assume that player Min plays τ‹ then the expected payo� will not be greater
than wi ` ε{2m`1, i.e.

Eσ,τ‹
k pϕ

rk´1s
pr1,...,rk´1,wk,rk`1,...,rnq

˝ θTm`1 | STm`1 “ i, Tm ă 8q ď wi ` ε{2
m`1. (5.29)

where f ˝ g denotes the composition of mapping f and g.
Now let us note that (5.27) closely resembles (5.14) while (5.29) resembles (5.16).

What is di�erent but symmetric is that the �rst two formulas concern strategies
pσ‹, τq and the last two pσ, τ‹q. Moreover, the inequalities are reversed. The following
table resumes the correspondence between constants appearing in the formulas:

Eq. (5.14), (5.16) Eq. (5.27), (5.29)
η wk
η‹ wk
ξi wi
δ ´εm

Thus exactly in the same way as we deduced (5.23) from (5.16) and (5.14) we
can deduce from (5.27) and (5.29) the following formula analogous to (5.23) (just
reverse the inequality and replace the constants as indicated above):

wk ¨P
σ,τ‹
k pTm`1 ă 8 | Tm ă 8q

`Eσ,τ‹
k pϕrksr ¨ 1tTm`1“8u | Tm ă 8q

´εm ď wk.

Rearranging the terms and multiplying by Pσ,τ‹
k pTm ă 8q we obtain from this

inequality that

Eσ,τ‹
k pϕrksr ¨ 1tTm`1“8u ¨ 1tTmă8uq ď wk ¨P

σ,τ‹
k pTm`1 “ 8, Tm ă 8q `

ε

2m`1
¨Pσ,τ‹

k pTm ă 8q

ď wk ¨P
σ,τ‹
k pTm`1 “ 8, Tm ă 8q `

ε

2m`1
.

The events tTm`1 “ 8, Tm ă 8u are pairwise disjoint and their union is equal to
tDm,Tm “ 8u thus summing over m ě 1 both sides of the inequality we obtain

Eσ,τ‹
k pϕrksr ¨ 1tDm,Tm“8uq ď wk ¨P

σ,τ‹
k pDm,Tm “ 8q ` ε{2.
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On the other hand, for all plays in t@m,Tm ă 8u the state k is visited in�nitely
often thus ϕrksr is equal to rk.

Thus

Eσ,τ‹
k pϕrksr q “ Eσ,τ‹

k pϕrksr ¨ 1tDm,Tm“8uq ` Eσ,τ‹
k pϕrksr ¨ 1t@m,Tm“8uq

“ Eσ,τ‹
k pϕrksr ¨ 1tDm,Tm“8uq ` rk ¨P

σ,τ‹
k p@m,Tm ă 8q

ď wk ¨P
σ,τ‹
k pDm,Tm “ 8q ` rk ¨P

σ,τ‹
k p@m,Tm ă 8q ` ε{2

ď wk ` ε{2.

5.4.3 ε{2-optimal strategies for the other cases when the start-

ing state is k

In Sections 5.4.1 and 5.4.2 we have constructed ε{2-optimal strategies for player
Max when wk ą rk and for player Min when wk ě rk under the condition that
Fixk´1

pfqprq is the value vector of the ϕrk´1s
r -game.

But passing to the dual game, the last condition implies that Fixk´1
pfqprq is the

value vector in the dual stopping game with payo� ϕrk´1s
r .

Therefore, proceeding exactly as in Section 5.4.1, we can construct a strategy τ ‹

for player Max in the dual game with payo� ϕrksr such that

Eτ‹,σ
k pϕ

rks
r q ě wk ´ ε{2 (5.30)

for all strategies σ of player Min if

wk ą rk. (5.31)

By duality of games and �xed points, Eτ‹,σ
k pϕ

rks
r q “ 1´Eσ,τ‹

k pϕ
rks
r q, wk “ 1´ wk

and rk “ 1 ´ rk. Thus (5.30) is equivalent to Eσ,τ‹

k pϕ
rks
r q ď wk ` ε{2 and (5.31)

is equivalent to wk ă rk, i.e. we get a ε{2-optimal strategy of player Min in the
ϕ
rks
r -game if wk ă rk.
In the similar way, applying the construction of Section 5.4.2 to the dual game

and coming back to the original game we get a strategy σ‹ for player Max such that
Eσ‹,τ
k pϕ

rks
r q ě wk ´ ε{2 if wk ď rk.

5.4.4 ε-optimal strategies for the ϕ
rks
r -game starting at states

ă k.

It remains to prove that

Fixki pfqprq :“ F k´1
i pwk; rq
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is the value of the ϕrksr -game starting in the state i ă k. To this end we must
construct strategies σ7 and τ7 for player Max and Min, respectively, such that

E
σ,τ7
i pϕrksr q ď Fixki pfqprq ` ε and E

σ7,τ
i pϕrksr q ě Fixki pfqprq ´ ε (5.32)

for all strategies σ, τ . We de�ne only the strategy τ7 for player Min and prove the
�rst equation of (5.32). The de�nition of σ7 and the proof of the right-hand side of
(5.32) are symmetrical and are left to the reader.

Recall that T1 was de�ned as the (random) time of the �rst visit of the stopped
state process Srkst to the state k, cf. (5.7). Let τ‹ be the strategy of player Min
de�ned at page 81 that satis�es (5.26), i.e τ‹ is an ε{2-optimal for player Min in the
ϕ
rks
r -game starting at the state k.
By the induction hypothesis, there exists an ε{2-optimal strategy α for player

Min in the ϕrk´1s
pr1,...,rk´1,wk,rk`1,...,rnq

-game.
We de�ne the strategy τ7 for player Min by composing strategies α and τ‹ as

follows:

τ7pS1, pA
1
1, A

2
1q, ¨ ¨ ¨ , Smq “

#

αpS1, pA
1
1, A

2
1q, ¨ ¨ ¨ , Smq if T1 ą m,

τ‹pST1 , pA
1
T1
, A2

T1
q, ¨ ¨ ¨ , Smq if T1 ď m.

Intuitively, τ7 is the strategy such that player Min plays according to α until the
�rst visit to k and starting from the moment of the �rst visit to k he switches to τ‹.
Moreover, when he switches to τ‹ then he �forgets� all history prior to the moment
T1 and behaves as if the game have started afresh at k.

First we want to show that, for each strategy σ of player Max and for each state
i ă k,

E
σ,τ7
i pϕrksr | T1 ă 8q “ E

σ,τ7
i pϕrksr ˝ θT1 | T1 ă 8q ď wk ` ε{2

where θT1 is the shift operation, cf. De�nition 5.3, and wk “ Fixkkpfqprq is the value
of k.

To justify the �rst equality let us notice that the plays with T1 ă 8 do not visit
the stopping states, i.e. the states ą k, prior to T1. Therefore the payo� ϕ

rks
r for such

plays is not modi�ed if we shift them by T1.
The second inequality follows from the de�nition of τ7. When the game hits state

k at time T1 player Min switches to strategy τ‹ and forgets the history prior to T1.
Since τ‹ is ε{2-optimal for player Min in the ϕrksr -game for plays starting at k, using
this strategy limits the payo� to at most wk ` ε{2.

Now we examine the expected payo� for plays with T1 “ 8. Such plays never
visit k, therefore it is irrelevant for them if k is stopping or not like it is irrelevant
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what is the reward associated with k. Moreover, for such plays player Min plays
according to strategy τ‹. For these reasons we have

E
σ,τ7
i pϕrksr | T1 “ 8q “ Eσ,τ‹

i pϕ
rk´1s
pr1,...,rk´1,wk,rk`1,...,rnq

| T1 “ 8q. (5.33)

From (5.33) we obtain

E
σ,τ7
i pϕrksr q “ E

σ,τ7
i pϕrksr | T1 ă 8q ¨P

σ,τ7
i pT1 ă 8q

` E
σ,τ7
i pϕrksr | T1 “ 8q ¨P

σ,τ7
i pT1 “ 8q

ď pwk ` ε{2q ¨P
σ,τ7
i pT1 ă 8q

` Eσ,τ‹
i pϕ

rk´1s
pr1,...,rk´1,wk,rk`1,...,rnq

| T1 “ 8q ¨P
σ,τ7
i pT1 “ 8q.

(5.34)

Since τ‹ is ε{2-optimal for player Min in the ϕrk´1s
pr1,...,rk´1,wk,rk`1,...,rnq

-game we have

F k´1
i pwk; rq ` ε{2 ě Eσ,τ‹

i pϕ
rk´1s
pr1,...,rk´1,wk,rk`1,...,rnq

q

“ Eσ,τ‹
i pϕ

rk´1s
pr1,...,rk´1,wk,rk`1,...,rnq

| T1 ă 8q ¨P
σ,τ‹
i pT1 ă 8q

` Eσ,τ‹
i pϕ

rk´1s
pr1,...,rk´1,wk,rk`1,...,rnq

| T1 “ 8q ¨P
σ,τ‹
i pT1 “ 8q.

Notice that plays with T1 ă 8 have payo� wk in the ϕrk´1s
pr1,...,rk´1,wk,rk`1,...,rnq

-game
because k is stopping in this game and the reward of k is equal to wk. Hence we can
rewrite (5.35) as

F k´1
i pwk; rq ` ε{2 ě wk ¨P

σ,τ‹
i pT1 ă 8q

` Eσ,τ‹
i pϕk´1

pr1,...,rk´1,wk,rk`1,...,rnq
| T1 “ 8q ¨P

σ,τ‹
i pT1 “ 8q.

Thus

Eσ,τ‹
i pϕ

rk´1s
pr1,...,rk´1,wk,rk`1,...,rnq

| T1 “ 8q ¨P
σ,τ‹
i pT1 “ 8q

ď F k´1
i pwk; rq ` ε{2´ wk ¨P

σ,τ‹
i pT1 ă 8q. (5.35)

From (5.34) and (5.35) and since P
σ,τ7
i pT1 ă 8q “ Pσ,τ‹

i pT1 ă 8q we get

E
σ,τ7
i pϕrksr q ď pwk ` ε{2q ¨P

σ,τ7
i pT1 ă 8q ` F

k´1
i pwk; rq ` ε{2´ wk ¨P

σ,τ‹
i pT1 ă 8q

“ F k´1
i pwk; rq ` ε{2` pε{2q ¨P

σ,τ7
i pT1 ă 8q

ď F k´1
i pwk; rq ` ε

“ Fixki pfqprq ` ε

which terminates the proof of the ε-optimality of τ7.
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5.4.5 Dual game

We have constructed a ε-optimal strategy for Max and Min for the game starting
at k but the strategy for Max was constructed under the condition rk ă wk while
the strategy for Min was constructed under the condition rk ď wk.

How to obtain ε-optimal strategies for both players for two remaining cases
(rk ě wk for Max and rk ą wk for Min) we use the natural duality of the nested
�xed points and the games.

Let G be a priority game. The dual game G is obtained in the following way:

(Di) G has the same states, actions and transition probabilities as G,

(Dii) if r “ pr1, . . . , rnq is the reward vector in G then r “ pr1, . . . , rnq is the reward
vector in G, where for z P r0, 1s, z :“ 1´ z,

(Diii) players Max and Min exchange the roles, in the dual game for each state i P S,
Apiq are the actions of player Max while Bpiq are the actions of player Min,
moreover in the dual game player Max wants to minimize the priority payo�
ϕr while Min wants to maximize the priority payo� ϕr.

To avoid confusion, we write Max and Min to denote the players, respectively, max-
imizing and minimizing the priority payo� in the dual game.

A strategy σ is a strategy of player Max in G if and only if it is a strategy of
player Min in the dual game G. A symmetric property holds for strategies of player
Min.

For each play h we have ϕrphq “ 1´ ϕrphq, thus E
σ,τ
i pϕrq “ 1´Eτ,σ

i pϕrq, where
the left hand side is the expected payo� in G, while Eτ,σ

i pϕrq is the expected payo�
in G when Max plays according to τ and Min plays according to σ.

This implies that vi “ 1´ vi, where vi is the value of state i in G while vi is the
value of i in the G. Moreover, a strategy is ε-optimal for player Max in G if and only
if it is ε-optimal for player Min in G. A symmetric property holds for strategies of
player Min.
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Chapter 6

Discussion and conclusions

In Chapter 4 we proved that in turn-based stochastic priority games both players
have pure memoryless optimal strategies. Since the number of states and actions are
�nite, the number of possible pure memoryless strategies is also �nite. Therefore,
comparing game values obtained for all pairs of pure memoryless strategies (σ,τ),
we can �nd pure memoryless optimal strategies. This method is highly ine�cient.

The question whether there exists a more e�cient way to �nd these pure mem-
oryless optimal strategies for both players is open.

Concerning concurrrent priority games, in the future we hope to use the approach
developed in Chapter 5 to �nd non-trivial classes of concurrent priority games where
one or both players have ε-optimal memoryless strategies. In this direction let us
mention the result of Secchi [Sec98] who proved that in concurrent limsup games 1

player Min has an ε-optimal memoryless strategy.
Another interesting problem is to �nd a method allowing to approximate the

values of the concurrent priority games with a given accuracy.

1. A limsup game is a game with payo� equal to lim supk rsk , where pskq
8
k“1 are the visited

states during the play.
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Part II

Population questions
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Chapter 7

Analysing population dynamics of

Markov chains

In this chapter we analyse the simplest framework among discrete time stochastic
�nite state system: Markov chains. Contrary to what we did in the �rst part of
the thesis, here we use another interpretation. Namely, the population semantics :
it explains how a distribution over the states is transformed at each step. Let us
consider the following example: let M be the transition stochastic matrix de�ned
in (7.1). We can draw the Markov chain as showed in Figure 7.1: each arrow shows
the probability to move from each state to another one. Assume that initially 1{2
of the population are in state 2 and the other half is in state 3. Then if we want to
know the proportion of the population in each state in the next step it su�ces to
multiply the matrix M by vector p0, 1{2, 1{2q and we obtain p0.45, 0.3, 0.25q.

¨

˝

0.1 0.7 0.2
0.4 0 0.6
0.5 0.3 0.2

˛

‚ (7.1)

With such semantics, properties considered are di�erent than reachability, parity,
etc. Instead, we want to know whether there exists a step at which the proportion of
the distribution in a set Goal of states is higher than some threshold γ (population
question). This is orthogonal to the question of bringing with high probability a
pebble in a set of state, where the number of steps to bring the pebble is non
uniform over all the runs (PCTL question) [BRS02] . The population question is
much harder to verify than the PCTL question: it is actually not known whether this
kind of question can be decided on Markov Chains ([AAOW15], as will be discussed
in Section 7.1.2). In this chapter we approach this problem by studying the languages
generated by Markov chains, whose regularity would entail the decidability of this
question.

More precisely, in this chapter we study classes for which the language of tra-
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Figure 7.1 � Markov chain with three states.

jectories is (ω-)regular, allowing for the exact resolution of any regular question
(e. g. checking any linear temporal logic with intervals (LTLI) formula as de�ned
in [AAGT15], it means, a linear temporal logic in which an atomic proposition will
assert that �the current probability of the node i lies in the interval d�). More pre-
cisely, we de�ne the trajectory from a given initial distribution as an (in�nite) word
over the alphabet tA,Bu. The n´th letter of a trajectory being A (for Above, re-
spectively, B for Below) represents that after n steps the probability to be in Goal
is greater than or equal to (respectively lesser than) the threshold γ. Further, we
consider the language of MC as the set of trajectories (words) ranging over a (pos-
sibly in�nite) set of initial distributions. Thus, we can answer questions such as:
does there exist a trajectory from the set of initial distributions satisfying a regular
property or do all trajectories satisfy it. We prove that the language of a MC with
distinct real positive eigenvalues is regular.

7.1 Preliminaries and de�nitions

A distribution δ overQ is a function δ : QÑ r0, 1s such that
ř

qPQ δpqq “ 1. Given
M P |Q| ˆ |Q|, the matrix associated with a MC, we denote by Mδ the distribution
given by Mδpqq “

ř

q1PQ δpq
1qMpq1, qq for all q P Q. Notice that, considering δ

and Mδ as row-vectors, this corresponds to performing the matrix multiplication.
That is, we considerM as a transformer of probabilities, as in [KVAK10, AAGT15]:
pMδqpqq represents exactly the probability to be in q after applyingM once, knowing
that the initial distribution is δ. Inductively, pMnδqpqq represents the probability to
be in q after applying n times M , knowing that the initial distribution is δ.

For example, let pS,Mq be the transition matrix of the Markov chain presented
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in Figure 7.1 and (7.1) with initial distribution given by

δ0 “

¨

˝

0
0.5
0.5

˛

‚.

Hence the initial probability to be in state 2 is 1
2
and 1

2
for state 3. The distri-

bution at the next step is given by

Mδ “

¨

˝

0.45
0.3
0.25

˛

‚.

7.1.1 Motivation

As motivation, consider a population of yeast under osmotic stress [MTC`14].
The stress level of the population can be studied through a protein which can be
marked (by a chemical reagent). For the sake of illustration, consider the following
simplistic model of a Markov Chain Myeast with the protein being in 3 di�erent
discrete states (namely the concentration of the protein being high (state 1), medium
(state 2) and low (state 3)). The transition matrix, also denoted Myeast, gives the
proportion of yeast moving from one protein concentration level to another one, in
one time step (say, 15 seconds).

Myeast “

¨

˝

0.8 0.1 0.2
0.1 0.8 0.1
0.1 0.1 0.7

˛

‚

For instance, 20% of the yeast with high protein concentration will have low
protein concentration at the next time step. The marker can be observed optically
when the concentration of the protein is high. We know that the original proportion
of yeast in state 1 is 1{3 (by counting the marked yeast population), but we are
unsure of the mix between low and medium. The initial set of distributions is thus
Inityeast “ tp1{3, x, 2{3 ´ xq | 0 ď x ď 2{3u. The language of Myeast will tell us
how the population evolves wrt the number of marked yeast being above or below
the threshold γyeast “ 5{12, depending on the initial distribution in Inityeast. Now,
suppose an experiment with yeasts reveals that there are at �rst less than 5{12
of marked yeast (i.e. with high concentration of proteins), then more than 5{12 of
marked yeast, and eventually less than 5{12 of marked yeasts. That is, the trajectory
is B for a while, then A for a while, then it stabilises at B, in other words, the
trajectory is BnAmBω for some n,m ě 0. Let us call this property as pPyeastq (note
that this is a regular property). We are interested in checking whether our simplistic
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model exhibits at least one trajectory with the property pPyeastq, and if yes, the
range of initial values generating trajectories with this property.

Our method computes e�ectively the language of Myeast, as Myeast has positive
real eigenvalues, answering the question whether there exists an initial trajectory
s.t. property pPyeastq holds.

7.1.2 Relation with the Skolem problem

Skolem problem can be formulated as follows: for an integer matrix M , does
there exist n such that Mnrs, ts “ 0? where Mnrs, ts “ esM

net and ei is a vector
whose components consist of a one in the i-th position and 0 otherwise. On the
other hand, the Markov reachability problem can be formulate as: given a stochastic
matrixM with rational entries and a rational number r, does there exist n such that
Mnrs, ts “ r? Hence, the Markov reachability problem is a sub-case of Skolem, for
the particular case where matrices are Markov chains. In [AAOW15] it is proved that
Markov reachability problem is at least as hard as the Skolem problem, in particular,
they show that the Skolem problem can be reduced to the Markov reachability
problem in polynomial time.

We de�ne three basic problems which have been studied extensively in di�erent
contexts. Given an initial distribution δ0 and a MC A with Matrix M , target states
Goal and threshold γ:

Existence problem: does there exist n P N such that the probability to be in Goal
after n iterations of M from δ0 is γ (i.e.,

ř

qPGoalpM
nδ0qpqq “ γ)?

Positivity problem: does there exist n P N such that the probability to be in Goal
after n iterations of M from δ0 is at least γ (i.e.,

ř

qPGoalpM
nδ0qpqq ě γ)?

Ultimate Positivity problem: does there exist n P N s.t., for allm ě n, the proba-
bility to be inGoal afterm iterations ofM from δ0 is at least γ (i.e.,

ř

qPGoalpM
mδ0qpqq ě

γ)?

Note that all these problems are de�ned from a �x initial distribution δ0. These
problems for MCs are speci�c instances of problems over general recurrence se-
quences, that have been extensively studied [OW12, HHH06]. It turns out that the
existence for the special MC case is as hard as the existence (Skolem) problem over
general recurrence sequences as shown in [AAOW15].

Theorem 7.2. [AAOW15, HHH06] For general MCs, the existence and positivity
are as hard as the Skolem's problem.

The positivity result comes from the interreducibility of Skolem's problem and
the positivity problem for general recurrence sequences [HHH06]. The decidability
of Skolem has been open for 40 years, and it has been shown that solving positivity,
ultimate positivity or existence for general MCs even for a small number of states
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(<50, depending on the problem considered) would entail major breakthroughs in
diophantine approximations [OW14b].

7.1.3 Simple MCs

In order to obtain decidability, we will consider restrictions over the matrix M
associated with the MC. The �rst restriction, fairly standard, is thatM has distinct
eigenvalues (they can be complex numbers too), which makes M diagonalizable.

De�nition 7.3. A stochastic matrix is simple if all its eigenvalues are distinct. A
MC is simple if its associated transition matrix is.

Some decidability results [OW14c, OW14a] have been proved in the case of dis-
tinct eigenvalues for variants of the Skolem, which implies the following for simple
MCs:

Theorem 7.4. For simple MCs, ultimate positivity is decidable [OW14c].

For simple MCs with at most 9 states, positivity is decidable [OW14a].

We will consider the simple MC restriction. Notice that the decidability restric-
tions in Theorem 7.4 for these two closely related problems have led to two di�erent
papers [OW14a],[OW14c] in the same conference, using di�erent techniques. As we
want to answer in a uniform way any regular question (subsuming among others the
above three problems and regular properties such as pPyeastq) for MCs of all sizes, we
will later impose more restrictions. We start with the simple well-known observation
that a simple MC has a unique stationary distribution.

Lemma 7.5. Let M be a simple stochastic matrix. Then there exists a unique dis-
tribution δstat such that Mδstat “ δstat.

Proof. We give a sketch of proof here. We will later get an analytical explanation
of this result. We have Mδ “ δ i� pM ´ Idqδ “ 0. As M is diagonalizable and 1 is
a eigenvalue of M of multiplicity 1, we have KerpM ´ Idq is of dimension 1. The
intersection of distributions and of KerpM ´ Idq is of dimension 0, that is, it is a
single point.

As usual with MCs, we consider the probability to be in the set of states Goal
after n steps, that is

ř

qPGoalpM
nδqpqq. We consider only one threshold γ, for simplic-

ity. In fact, the case of multiple thresholds reduces to this case, since the behaviour
is non-trivial for only one threshold, namely γstat “

ř

qPGoal δstatpqq, as Lemma 7.14
shows. Before to prove this Lemma we need some de�nitions.
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7.1.4 Trajectories and ultimate periodicity

We want to know whether the nth distribution Mnδ of the trajectory starting in
distribution δ P Init is above the hyperplane de�ned by

ř

qPGoal xq “ γ, i.e., whether
ř

qPGoalrM
nδspqq ě γ. We will write ρδpnq “ A (Above) for

ř

qPGoalrM
nδspqq ě γ,

and ρδpnq “ B (Below) else.

De�nition 7.6. The trajectory ρδ “ ρ0ρ1 ¨ ¨ ¨ P tA,Bu
ω from a distribution δ is the

in�nite word with ρn “ ρδpnq for all n P N.

We write the eigenvalues of M as p0, . . . , pk with ||pi|| ě ||pj|| for all i ă j.
Notice that k` 1 “ |Q| the number of states (as the MC is simple). It is a standard
result that all eigenvalues of Markov chains have modulus at most 1, and at least
one eigenvalue is 1. We �x p0 “ 1. As shown in the next Lemma 7.7, we have, for
some aipδq P C:

ρδpnq “ A i�
k
ÿ

i“0

aipδqp
n
i ě γ. (7.2)

Lemma 7.7. Given a matrix M with distinct eigenvalues pp0, p1, . . . , pkq, we have

ρδpnq “ A i�
k
ř

i“0

aipδqp
n
i ě γ for some constants aipδqiďk independent of n.

Proof. As the eigenvalues are distinct the eigenvectors pviqiďk form a basis. Let
δ “ αivi. By de�nition ρδpnq “ A i�

ř

qPGoal

rMnδspqq ě γ, then

γ ď
ÿ

qPGoal

rMnδspqq

“
ÿ

qPGoal

˜

k
ÿ

i“0

αiM
nvi

¸

eq

“
ÿ

qPGoal

˜

k
ÿ

i“0

αivip
n
i

¸

eq

“

k
ÿ

i“0

pni
ÿ

qPGoal

αivieq,

with eq “ p0, . . . , 0, 1, 0, . . . , 0qt where 1 is it the q-th position. Now �xing

aipδq “
ÿ

qPGoal

αivieq, (7.3)
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we have ρδpnq “ A i�
k
ř

i“0

aipδqp
n
i ě γ.

In the following, we denote uδpnq “
řk
i“0 aipδqp

n
i for all n P N, where aipδq is

de�ned in (7.3). If ρδ is (e�ectively) ultimately periodic (i.e, of the form uvω), every
(omega) regular property, such as existence, positivity and ultimate positivity is
decidable (and are in fact easy to check). Unfortunately, this is not always the case,
even for small simple MCs.

Theorem 7.8. [AAGT15] There exists an initial distribution δ0 and simple MC A
with 3 states, and coe�cients and threshold in Q, such that ρδ0 is not ultimately
periodic.

Proof Sketch. The MC is given by: Goal “ t1u is the �rst state, γ “ 1
3
and the

associated matrix M0 and initial distribution δ0 are:

M0 “

¨

˝

0.6 0.1 0.3
0.3 0.6 0.1
0.1 0.3 0.6

˛

‚ and δ0 “

¨

˝

1
4
1
4
1
2

˛

‚

The reason the trajectory is not ultimately periodic follows from the fact that the
eigenvalues ofM0 are 1, r0e

iθ0 and r0e
´iθ0 with r0 “

?
19{10 and θ0 “ cos´1p4{

?
19q.

Figure 7.9 depicts the probability to be in state 1 (the solid line) and ρδ0 (the
circles).

An easy way to obtain ultimately periodic trajectories is to restrict to eigenvalues
v which are roots of real numbers, that is, there exists n P Nzt0u with vn P R.

Proposition 7.10. Let A be a simple MC with eigenvalues ppiqiďm all roots of real
numbers. Then ρδ is ultimately periodic for all distributions δ. The (ultimate) period
of ρδ can be chosen as any m P Nzt0u such that pmi is a positive real number for all
i ď m.

Proof. Let m P Nzt0u such that ri “ pmi is a positive real number for all i. Such an
m exists. Indeed, let ni P Nzt0u such that pnii P R. Let ` be the lcm of pniqiďk and
m “ 2`. Hence every ri “ pmi is a positive real number for all i ď k.

Let δ a distribution. Taking (7.2), let ρpnq “ ρδpmnq for all n P N. We have
ρpnq “ A i�

řk
i“0 aipδqr

n
i ě 0. We have aipδq P R for all i.

For all r P tri | i ď ku, we denote Ir the set of indices i with r “ ri (it is
possible that several eigenvalues pj are the roots of the same positive real ri), and
ar “

ř

iPIr
aipδq. Let r be the largest value in tri | i ď ku such that ar ‰ 0. Notice

that if for all r, ar “ 0, then the trajectory is constant, equal to Aω.
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Figure 7.9 � The solid line represents
k
ř

i“0

aipδqp
n
i and the circles are above the graph

if ρδ0pnq “ A and below if ρδ0pnq “ B.

Obviously, ρpnq is asymptotically equivalent to arrn when n tends to in�nity.
That is, there exists Nδ such that for all n ě Nδ, ρpnq is of the sign of ar. Now,
consider initial distributions δ1 in the �nite set ∆ “ tM0δ, . . . ,Mm´1δu. Let N
be the max over Nδ1 for δ1 P ∆. We have that ρδpmn ` `q “ ρM`δpmnq for all
` P t0, . . . ,m´1u. Let u “ ρδp0q ¨ ¨ ¨ ρδpmN´1q and v “ ρδpmNq ¨ ¨ ¨ ρδpmpN`1q´1q.
We have that ρδ “ uvω, proving that ρ is ultimately periodic of (ultimate) period
m.

Now, for a �nite state (Büchi) automaton B over the alphabet tA,Bu, the mem-
bership problem, of whether a given single trajectory ρδ P LpBq, is decidable. It is
easy to obtain a (small) automaton B for each of the existence, positivity and ulti-
mate positivity problem such that this problem is true i� ρδ P LpBq. For instance,
let us build a non-deterministic Büchi automaton for the ultimate positivity prob-
lem, let B be an automaton with two states tq1, q2u, acceptance condition F “ tq2u,
initial state q1 and non-deterministic transitions as depicted in Figure 7.11. It is
easy to see that this automaton accepts words in which B occurs only �nitely many
times. We thus obtain the following proposition:
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q1 q2
A

A,B A

Figure 7.11 � Büchi automaton for the ultimate positivity problem.

Proposition 7.12. Let A be a simple MC with eigenvalues all roots of real num-
bers. Let δ0 be a distribution. Then the existence, positivity and ultimate positivity
problems from initial distribution δ0 are decidable.

Proof. Let A be a simple MC with eigenvalues all roots of real numbers and let δ0

be the initial distribution. Let ρδ be the symbolic trajectory de�ned in (7.2) and let
B be the (Büchi) automaton such that positivity (or ultimate positivity) problem
is true i� ρδ P LpBq. As the membership problem is decidable, hence it su�ces to
decide if ρδ P LpBq to decide if positivity (or ultimate positivity) is true.

For the existence problem we have to modify the de�nition of ρδ, switching the
inequality to an equality, i.e., ρδpnq “ A i�

řk
i“0 aipδqp

n
i “ γ, and to apply the same

method of proof.

Note that Propositions 7.10 and 7.12 hold even when the matrix associated with
the MC is diagonalizable, but not necessarily simple.

7.2 Language of a MC

Using automata-based methods allows us to consider more complex problems,
where the initial distribution is not �xed. We de�ne the set Init of initial distributions
as a convex polytope, that is the convex hull of a �nite number of distributions.

De�nition 7.13. The language of a MC A wrt. the set of initial distributions Init
is LpInit,Aq “ tρδ | δ P Initu Ď tA,Buω.

Note that A and B, and the language, depend on the threshold γ. As we assumed
this threshold value to be �xed, the language only depends on A and Init. As A is
often clear from the context, we will often write LpInitq instead of LpInit,Aq. For
the yeast example M “Myeast, we have eigenvalues 1; 0.7; 0.6:

M ¨

¨

˝

5{12
1{3
1{4

˛

‚“ 1

¨

˝

5{12
1{3
1{4

˛

‚; M ¨

¨

˝

5{12
´5{12

0

˛

‚“ 0.7

¨

˝

5{12
´5{12

0

˛

‚; M ¨

¨

˝

5{12
0

´5{12

˛

‚“ 0.6

¨

˝

5{12
0

´5{12

˛

‚



102 7.2. Language of a MC

We can decompose two initial distributions δ1, δ2 P Inityeast on the eigenvector
basis:

¨

˝

1{3
1{4
5{12

˛

‚“

¨

˝

5{12
1{3
1{4

˛

‚`
1

5

¨

˝

5{12
´5{12

0

˛

‚´
2

5

¨

˝

5{12
0

´5{12

˛

‚;

¨

˝

1{3
1{3
1{3

˛

‚“

¨

˝

5{12
1{3
1{4

˛

‚´
1

5

¨

˝

5{12
0

´5{12

˛

‚

Projecting on the �rst component, we have ρδ1pnq “ A i� 1
12

0.7n´ 1
6
0.6n ě 0, that is

ρδ1 “ B4Aω. Also, ρδ2pnq “ A i� ´ 1
12

0.6n ě 0, that is ρδ2 “ Bω. With the techniques
developed in the following, we can prove more generally that, for all n P N, we can
�nd an ε s.t., δ “ p1{3 1{3 ´ ε 1{3 ` εqT has trajectory ρδ “ BnAω, and that
LpInityeastq “ B˚AωYBω. Thus, property pPyeastq, from Introduction, does not hold
for any initial distribution.

Now that we introduce the notions of language, we can prove the Lemma that
we mentioned above.

Lemma 7.14. For γ ‰ γstat, we have LpInit,Aq is regular.

Proof. For all distributions δ, we have that Mnδ is converging (uniformly over all
initial distributions ) towards δstat as n tends to in�nity. In fact, the proof of uniform
convergence follows the following lines. In the case of irreducible aperiodic Markov
Chains, it is well known that Mnδ converges uniformly towards a distribution δstat
which does not depend upon the initial δ [LPW09]. For irreducible periodic Markov
chain, Mnδ has the same property. Last, [AAGT15] lift this result to the general
case (reducible chains) by a careful analysis.

Hence for all γ ‰
ř

qPGoal δstatpqq, there exists a N (independent of δ) such that
either for all n ě N, δ P Init, Mnδ will be strictly above γ, or for all n ě N, δ P Init,
Mnδ will be strictly below γ. This gives LpInit,Aq “ S1.A

ω ` S2.B
ω where S1 and

S2 are �nite sets of �nite words of length ă N . Hence LpInit,Aq is regular.

In general, if LpInit,Aq is regular, then any regular question will be decidable.
For instance, if LpInit,Aq is regular, then it is decidable whether there exists δ0 P Init
such that the existence problem is true for A, δ0. One can also ask whether for a
given convex polytope Q, some property (such as positivity) expressed e.g. with
LTLI [AAGT15] is true. Taking δ in the interior of Q, this corresponds to checking
the robustness of the property around δ.

Clearly, simple PA A does not ensure the regularity of LpInit,Aq because of
Theorem 7.8 (by choosing Init “ tδ0u which is a convex polytope). Surprisingly,
restricting eigenvalues to be distinct and roots of real numbers does not ensure
regularity either [AGKV16]. In the following, we thus take a stronger restriction: we
assume that the eigenvalues of M are distinct and positive real numbers. That is,
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p0 “ 1 ą p1 ą ¨ ¨ ¨ ą pk ě 0 with k`1 “ |Q| the number of states. From Proposition
7.10, we obtain as corollary that for all δ0, we have either ρδ0 “ wAω or ρδ0 “ wBω

for w a �nite word of tA,Bu˚:

Corollary 7.15. Let M be a simple (or just diagonalizable) stochastic matrix with
positive real eigenvalues. Then every trajectory ρδ0 is ultimately constant.

However, the language LpInityeast,Myeastq shows that LpInit,Aq is not always of
the simple form

Ť

wPWA
wAω Y

Ť

wPWB
wBω, for WA,WB two �nite sets of �nite

words over tA,Bu˚. Nevertheless, in the next two sections, we succeed in proving
the regularity of LpInit,Aq, which is our main result:

Theorem 7.16. Let A be a MC with distinct positive real eigenvalues, and Init be
a convex polytope of (initial) distributions. Then, LpInit,Aq is e�ectively regular.

7.2.1 Partition of the set Init of initial distributions

Recall that we write uδpnq :“
řk
i“0 aipδqp

n
i , where aipδq are given by Equa-

tion (7.2) from the previous section. Because the eigenvalues are real numbers, aipδq
is a real number for every i and δ. Notice that ai is a linear function in δ, that
is, aipαδ1 ` βδ2q “ αaipδ1q ` βaipδ2q. The trajectory ρδ depends crucially on the
sign of a0pδq, and if a0pδq “ 0, on the sign of a1pδq, etc. First, for all i ď k, let
Li “ tδ | a0pδq “ ¨ ¨ ¨ “ aipδq “ 0u. This is a vector space (in Rk), as for any
ν1, ν2 P Rk, we have ν1, ν2 P Li implies that any linear combination αδ1 ` βδ2 P Li
(since aipνq is linear in ν, and the kernel of a linear function is a vector space).

We will divide the space of distributions into a �nite set H of convex polytopes
H P H to keep the sign of each ai constant on each polytope. Each H P H satis�es
that for all e, f P H, for all i ď k, we have aipeq, aipfq do not have di�erent signs
(either one is 0, or both are positive or both are negative). This can be done since
aipνq is continuous (as it is linear) and the set H is �nite because for each i ‰
k, sets taipδq ą 0, @δu and taipδq ă 0, @δu can be separated by an hyperplane
in Rk`1, so the space can be divided into at most 2k`2 parts. This is pictorially
represented in the left of Figure 7.17. For instance, we divide Inityeast into three
polytopes: tp1{3, y, 2{3 ´ yq | y ď 1{3u and tp1{3, y, 2{3 ´ xq | 1{3 ď y ď 5{12u and
tp1{3, y, 2{3 ´ xq | y ě 5{12u as for δ “ p1{3, 1{3, 1{3q we have a0pδq “ 1, a1pδq “ 0
(and a2pδq “ ´1{5) and for δ “ p1{3, 5{12, 1{4q we have a0pδq “ 1, a1pδq “ ´1{5,
a2pδq “ 0.

In general, we can assume that each of H P H is the convex hull of k ` 2 points
(else we divide further: this can be done as the space has dimension k`1). Consider
the right part of Figure 7.17. Let Init be the convex hull of points e, f, g, h (in three
dimensions) and a0pxq “ 0 and a2pxq ą 0 for all x P te, f, g, h, tu. Hence the sign of
each trajectory ultimately depends upon a1pxq. In the example, a1pgq “ a1phq “ 0
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p = (1/3, 0, 2/3)

q = (1/3, 1/3, 1/3)

r = (1/3, 5/12, 1/4)

s = (1/3, 1/3, 0)

a2(q) = 0

a3(r) = 0

g

h

e

t

f

a1(e) > 0

a1(h) = 0

a1(g) = 0

a1(f) < 0

a1(t) = 0

Figure 7.17 � Breaking into convex polytopes with constant signs

while a1peq ą 0 ą a1pfq. Then there is a point t between e and f for which a1ptq “ 0
(in fact, t “ |a1pfq|{p|a1peq|`|a1pfq|qe`|a1peq|{p|a1peq|`|a1pfq|qf). We have L1XInit
is the convex hull of h, g, t. We break Init into two convex polytopes, the convex hull
of h, g, t, e and the convex hull of h, g, t, f .

Let H P H. We let P be the �nite set of (at most k ` 2) extremities of H. In
particular, H is the convex hull of P . Now it su�ces to show that the language
LpHq (taking H as the initial set of distributions) of each of these convex polytopes
H is regular to prove that the language LpInitq “

Ť

HPH LpHq is regular.

7.2.2 High level description of the proof

The proof of the regularity of the language LpHq starting from the convex poly-
tope H is performed as follows. We �rst prove that there exists a Nmax such that
the ultimate language (after Nmax steps) of H is e�ectively regular using analytical
techniques.

De�nition 7.18. Given Nmax, the ultimate language from a convex polytope H is
de�ned as LNmaxult pHq “ tv | Dw P tA,BuNmax , wv P LpHqu.

In the next section (Corollary 7.25), we show that this ultimate language LNmaxult pHq
is regular, of the form A˚B˚ ¨ ¨ ¨B˚Aω Y A˚B˚ ¨ ¨ ¨A˚Bω with a bounded number of
switches between A and B's. However, while for each pre�x w P tA,BuNmax , the
set Hw of initial distributions in H whose trajectory starts with w is a convex poly-
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tope; the language LpHwq from Hw can be complex to represent. It is not in general
wLNmaxult pHq, but a strict subset.

In Section 7.4 (Lemma 7.28), we prove that the language LpH 1q associated with
some carefully de�ned convex polytope H 1 Ď H is a regular language, of the form
Ť

wPW wAiA˚B˚ ¨ ¨ ¨
B˚AωYwAiA˚B˚ ¨ ¨ ¨A˚Bω for a �nite setW . Further, removingH 1 fromH gives rise
to a �nite number of convex polytopes with a smaller number of �sign-changes�, as
formally de�ned in the next section. Hence we can apply the arguments inductively
(requiring potentially to change the Nmax considered). Finally, the union of these
languages gives the desired regularity characterization for LpHq.

7.3 Ultimate language

7.3.1 Limited number of switches.

We �rst show that the ultimate language LNmaxult pHq is included intoA˚B˚A˚ ¨ ¨ ¨A˚

Bω Y A˚B˚A˚ ¨ ¨ ¨B˚Aω for some Nmax P N, with a limited number of switches be-
tween A and B depending on properties of the set P of extremities of H.

We start by considering the generalisation of a sequence uδ to a function over
positive reals, and we will abuse the notation uδ to denote both the sequence and
the real function.

De�nition 7.19. A function of type k P N is a function of the form u : Rą0 Ñ R,

with upxq “
k
ÿ

j“0

αjp
x
j , where p0 ą ¨ ¨ ¨ ą pk ą 0.

In Figure 7.20 function of type 2.
Now, let u : Rě0 Ñ R be a continuous function. We can associate with function

u the (in�nite) word Lpuq P tA,Buω, Lpuq “ pa0a1 . . .q, where for all n P N, an is
de�ned as an “ A if upnq ě 0 and an “ B otherwise. We have easily that ρδ “ Lpuδq.
Knowing the zeros of uδ and its sign before and after the zeros, de�nes uniquely the
trajectory ρδ.

For example, let u be such that it has four zeros: upN ´ 0.04q “ upN ` 10.3q “
upN ` 20q “ upN ` 35q “ 0 for some integer N . Assume that up0q ă 0, upN ` 1q ą
0, upN ` 11q ă 0, upN ` 30q ă 0 and upN ` 40q ą 0. Thus, by continuity of u, u
is strictly negative on r0, N ´ 1s, strictly positive on rN,N ` 10s, non-positive on
rN ` 11, N ` 34s and non-negative on rN ` 35,8q. Thus the associated trajectory
ρδ “ BNA11B24Aω.

Hence, it is important to analyse the zeros of functions uδ. If the number of zeros
is bounded, then the number of alternations between A's and B's in any trajectory
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Figure 7.20 � Function of type 2 fpxq “ 40 ˆ 0.8x ´ 380 ˆ 0.5x ` 390 ˆ 0.4xpp0 “

0.8, p1 “ 0.5, p2 “ 0.4q

ρδ from δ P H will be bounded. In fact, it is a standard result (which we do not use
hence do not reprove here) that every type k function u has at most k zeros. We
now show a more precise bound on the number of zeros. Namely, for the convex hull
H 1 of a �nite set P 1 of distributions in H, the number of alternations between A's
and B's in H 1 is limited by the number of alternations of the sign of the dominant
coe�cients of the distributions in P 1.

Let z P N. For i P t0, . . . , zu, let uipxq :“ ai0p
x
0`a

i
1p
x
1`¨ ¨ ¨`a

i
kp
x
k, with p0 ą p1 ą

p2 ą . . . ą pk ą 0, representing the functions associated with the z ` 1 extremities
of H 1. We denote dompuiq the dominant coe�cient of ui, that is the smallest integer
j with aij ‰ 0. We reorder puiqiPt0,...,zu such that dompuiq ď dompui`1q for all i ă z.
We denote sign_dompuiq P t`1,´1u as the sign of dompuiq. We will assume, as
for H, that for all i, i1, j, aij and a

i1

j have the same sign, we can do this assumption
as we show in Section 7.2.1. We let Zpu0, ¨ ¨ ¨ , uzq “ |ti ď z ´ 1 | sign_dompuiq ‰
sign_dompui`1qu|. That is, Zpu0, ¨ ¨ ¨ , uzq is the number of switches of sign between
the dominant terms of ui and ui`1. We have 0 ď Zpu0, ¨ ¨ ¨ , uzq ď z. Notice that
as for dompuiq “ dompujq, we have sign_dompuiq “ sign_dompujq, Zpu0, ¨ ¨ ¨ , uzq
does not depend upon the choice in the ordering of puiqiPt0,...,zu. We can now give
a bound on the number of zeros of functions which are convex combinations of
u0 ¨ ¨ ¨uz.

Lemma 7.21. Let u0 ¨ ¨ ¨uz be z ` 1 type k functions. There exists a Nmax P N
such that for all λi P r0, 1s with

ř

i λi “ 1, denoting upxq “
řz
i“0 λiu

ipxq, upxq has
at most Zpu0, ¨ ¨ ¨ , uzq zeros after Nmax. Further, if upxq has exactly Zpu

0, ¨ ¨ ¨ , uzq
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zeros after Nmax, then its sign changes exactly Zpu0, ¨ ¨ ¨ , uzq times (that is, no zero
is a local maximum/minimum).

In other words, we show that upxq behaves like a polynomial of degree Zpu0, ¨ ¨ ¨ , uzq
(as it has Zpu0, ¨ ¨ ¨ , uzq dominating terms), although it has degree k ą Zpu0, ¨ ¨ ¨ , uzq.
To simplify notation, let `piq “ dompuiq for all i. We prove that the coe�cients aijp

x
j

for all j ą `piq play a negligible role wrt. ai`piqp
x
`piq.

To do so, we use derivatives to study the sign of upxq, which is a linear com-
bination of z ` 1 functions, ui for all 0 ď i ď z. Dividing upxq by a well chosen
positive coe�cient (of the form px) before di�erentiation allows us to obtain a linear
combination of z functions. An induction allows us to conclude.

Proof. For all r P N, we introduce a small constant εprq ą 0 depending on the
number pz ´ rq of functions considered. We start by de�ning mpr, p0, . . . , pkq ą 0,

the min over all 0 ď r ď s ď z and 0 ď j ď k with j ‰ `prq of |
logp

p`psq
p`prq

q

logp
pj
p`prq

q
|. The min

exists and it is strictly positive because it is among a �nite number of values, all
strictly positive. We now de�ne recursively ε : t0, . . . , zu ˆ Rz`1

ą0 Ñ Rą0:

� εpz, p0, . . . , pkq “
1
2k

and

� for all 0 ď r ă z, εpr, p0, . . . , pkq “
mpr,p0,...,pkq
p1`3zq2

εpr ` 1, p0, . . . , pkq.

It is now easy to show by induction that for all q R tp0, . . . , pku, for all r,
εpr, p0

q
, . . . , pk

q
q “ εpr, p0, . . . , pkq. We then de�ne εprq “ εpr, p0, . . . , pkq for all 0 ď

r ď z. We can also show by induction that for all r, εprq ď 1
2k
.

We will use the following technical lemma, which we prove later.

Lemma 7.22. Let I be an interval of Rě0. Let p0 ą ¨ ¨ ¨ ą pk ą 0 be positive reals.
Let vipxq :“ bi0q

x
0 ` bi1q

x
1 ` ¨ ¨ ¨ ` bikp

x
k be a function of type k for all i P tr, . . . , zu,

0 ď r ď z, s.t.,

� for all i P tr, . . . , zu, all j ‰ `piq and all x P I, |bijp
x
j | ď |εpz, p0, ¨ ¨ ¨ , pkqb

i
`piqp

x
`piq|

(if this holds, we say that |bijp
x
j | is negligible wrt |bi`piqp

x
`piq| and call this the

negligibility hypothesis)

Then for all λr ě 0, . . . , λz ě 0 with
řz
i“r λi “ 1, the function v : x ÞÑ

řz
i“r λiv

ipxq has at most Zpbr`prqp
x
`prq, ¨ ¨ ¨ , b

z
`pzqp

x
`pzqq zeros in I.

Further, if vpxq has exactly Zpbr`prqp
x
`prq, ¨ ¨ ¨ , b

z
`pzqp

x
`pzqq zeros in I, then its sign

changes exactly Zpbr`prqp
x
`prq, ¨ ¨ ¨ , b

z
`pzqp

x
`pzqq times (that is, its zeros in I are not local

maximum or minimum).

Notice that in Lemma 7.22, `piq is not necessarily the dominating factor for vi.
In fact, vi is ui plus some factors. If I is bounded, it can be the case that |bij| " |b

i
`piq|

with j ą `piq.
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Assume Lemma 7.22 has been proved. We then apply Lemma 7.22 with r “ 0,
vi “ ui for all i ď z and I “ rNmax,8q, with Nmax chosen such that the negligibility
hypothesis is veri�ed, which is possible as `piq is the dominating factor of upiq for
all i. This implies that u has Zpbr`prqp

x
`prq, ¨ ¨ ¨ , b

z
`pzqp

x
`pzqq “ Zpu0, . . . , uzq many zeros,

since these are the dominant coe�cients of the ui. Thus, we obtain the statement of
Lemma 7.21: for all λi P r0, 1s with

ř

i λi “ 1, denoting upxq “
řz
i“0 λiu

ipxq, upxq has
at most Zpu0, ¨ ¨ ¨ , uzq zeros after Nmax. Further, if upxq has exactly Zpu0, ¨ ¨ ¨ , uzq
zeros after Nmax, then its sign changes exactly Zpu0, ¨ ¨ ¨ , uzq times (that is, its zeros
are not local maximum/minimums). This would complete the proof of Lemma 7.21.

It now remains to prove the technical Lemma 7.22, which we do by induction on
r:

Proof of Lemma 7.22. For r “ z, the lemma is trivial as one has a unique function
vzpxq :“ bz0q

x
0 ` bz1q

x
1 ` ¨ ¨ ¨ ` bzkp

x
k. Let ` “ `pzq. For all x P I, we have

ř

i‰` |b
z
i p
x
i | ď

kεpz, p0, . . . , pkq|b
z
`p
x
` | ď k 1

2k
|bz`p

x
` | ď

1
2
|bz`p

x
` |. Hence the sign of vzpxq is the sign of

bz` for all x P I. That is, v
z has no zero in I. The further statement is thus trivially

veri�ed in this case.

Let 0 ď r ď z. Assume that the lemma is true for all instances with functions
pvr`1, . . . , vzq. Let us prove that the lemma is true for all instances with functions
pvr, . . . , vzq.

Let vipxq :“ bi0q
x
0 ` bi1q

x
1 ` ¨ ¨ ¨ ` bikp

x
k, for i P tr, . . . , zu such that 1 ě p0 ą

p1 ą . . . ą pk ą 0, |bijp
x
j | ď |εpr, p0, ¨ ¨ ¨ , pkqb

i
`piqp

x
`piq| for all j ‰ `piq and x P I.

This hypothesis ensures that for all i, p1 ´ kεpr, p0, ¨ ¨ ¨ , pkqq|b
i
`piq|p

x
`piq ď |vipxq| ď

p1` kεpr, p0, ¨ ¨ ¨ , pkqq|b
i
`piq|p

x
`piq. As we have εpr, p0, . . . , pkq ď

1
2k

for all r, it gives

1

2
bi`piqp

x
`piq ď |v

i
pxq| ď

3

2
bi`piqp

x
`piq (7.4)

Let λ1 ě 0, . . . , λz ě 0 with
ř

iďz λi “ 1. Take the maximal xy P I such that
vpxyq “

ř

rďiďz λiv
ipxyq “ 0 (if there is no such zero, then we are done). We can

assume without loss of generality that `prq ‰ ¨ ¨ ¨ ‰ `pzq, else it is easy to merge
several ui with the same `piq together (by replacing all ui with the same `piq by the
sum of all of them). We have |λrvrpxyq| “ |

ř

iąr λiv
ipxyq| because xy is a zero of v.

Taking s ą r with |λsvspxyq| maximal, we have |
ř

iąr λiv
ipxyq| ď zλs|v

spxyq|. Thus
|λrv

rpxyq| ď zλs|v
spxyq|.

We let I 1 “ I X r0, xys. Using (7.4) for vr and for vs at xy P I, we have
λr|b

r
`prq|p

xy
`prq ď λs3z|b

s
`psq|p

xy
`psq. Now, because p`prq ą p`psq, we have for all x P I 1:

λr|b
r
`prq|p

x
`prq ď λs3z|b

s
`psq|p

x
`psq. By applying the hypothesis of the negligibility, we

thus get for all x P I 1 and all j ‰ `prq, λr|brj |p
x
j ď λs3zεpr, p0, . . . , pkq|b

s
`psq|p

x
`psq. That

is, the terms λr
λs
brjq

x
j , with j ‰ `prq are small wrt bs`psqq

x
`psq for x P I

1.
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Let q “ p`prq and consider the function v1pxq “ vpxq
qx

. Functions v1 and v have
the same zeros. We can derive v1, which will cancel out every term using qx: For all
r ď i ď z, we de�ne functions f ipxq :“ ci0p

p0
q
qx ` ci1p

p1
q
qx ` ¨ ¨ ¨ ` cikp

pk
q
qx with:

� for i ‰ s, f i is the derivative of vi, that is cij “ logp
pj
q
qbij for j ‰ `prq, and

ci`prq “ 0.

� csj “ logp
pj
q
qpbsj `

λr
λs
brjq for j ‰ `prq, and cs`prq “ 0.

It is easy to check that fpxq “
řz
i“r`1 λif

ipxq is the derivative of v1. We now
prove the inequalities involving ε for f ipxq for all x P I 1. We do it for the most
complex term, ie csj with j ‰ `psq, `prq. We have

ˇ

ˇ

ˇ

ˇ

csjp
pj
q
q
x

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

logp
pj
q
q

ˇ

ˇ

ˇ

ˇ

|pbsj `
λr
λs
brjq|p

pj
q
q
x

ď

ˇ

ˇ

ˇ

ˇ

logp
pj
q
q

ˇ

ˇ

ˇ

ˇ

εpr, p0, . . . , pkqp1` 3zq|bs`psq|

ˆ

p`psq
q

˙x

ď

ˇ

ˇ

ˇ

ˇ

ˇ

logp
pj
q
q

logp
p`psq
q
q

ˇ

ˇ

ˇ

ˇ

ˇ

εpr, p0, . . . , pkqp1` 3zq2|cs`psq|

ˆ

p`psq
q

˙x

“

ˇ

ˇ

ˇ

ˇ

ˇ

logp
pj
q
q

logp
p`psq
q
q

ˇ

ˇ

ˇ

ˇ

ˇ

mpr, p0, . . . , pkqεpr ` 1, p0, . . . , pkq|c
s
`psq|

ˆ

p`psq
q

˙x

ď εpr ` 1, p0, . . . , pkq|c
s
`psq|

ˆ

p`psq
q

˙x

by de�nition of mprq.
Recalling that εpr ` 1, p0

q
, . . . , pk

q
q “ εpr ` 1, p0, . . . , pkq, we conclude |csj |p

pj
q
qx ď

εpr`1, p0
q
, . . . , pk

q
q|cs`psq|p

p`psq
q
qx for all x P I 1, so we can apply the lemma to f r`1, . . . , f z.

Thus function f has at most Zpcr`1
`pr`1qp

x
`pr`1q, . . . , c

z
`pzqp

x
`pzqq zeros in I

1. It is easy to
see that ci`piq has the opposite sign of bi`piq for all i, and thus we obtain
Zpcr`1

`pr`1qp
x
`pr`1q, . . . , c

z
`pzqp

x
`pzqq “ Zpbr`1

`pr`1qp
x
`pr`1q, . . . , b

z
`pzqp

x
`pzqq.

Now, consider v1. It has the same sign and zeros as v. Hence the last zero
of v1 in i is xy. Because its derivative is f , v1 (and thus v) has at most 1 `
Zpbr`1

`pr`1qp
x
`pr`1q, . . . , b

z
`pzqp

x
`pzqq zeros in I

1.

If Zpbr`prqp
x
`prq, ¨ ¨ ¨ , b

z
`pzqp

x
`pzqq “ 1 ` Zpbr`1

`pr`1qp
x
`pr`1q, . . . , b

z
`pzqp

x
`pzqq, (or if v has at

most Zpbr`1
`pr`1qp

x
`pr`1q, . . . , b

z
`pzq zeros), the induction proof is �nished.

Else, we proceed by contradiction. It means that the sign of br`prq and of br`1
`pr`1q is

the same. It also means that f has exactly Zpbr`1
`pr`1qp

x
`pr`1q, . . . , b

z
`pzqp

x
`pzqq zeros and

switches sign every time. Without loss of generality, assume that br`1
`pr`1q ą 0. By
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induction, it is easy to see that the sign of fpxyq is the sign of cr`1
`pr`1q, that is strictly

negative.
In the same way, as `prq is the dominating factor of vpxq in I, just after xy

(remember that vpxyq “ v1pxyq “ 0), the sign of v is br`prq ą 0. This contradicts the
continuity of v and the fact that vpxyq “ 0 and that its derivative is negative.

For the second statement, assume that v has exactly α :“ Zpbr`prqp
x
`prq, . . . , b

z
`pzqp

x
zq

zeros in I. We know by the above that the derivative has exactly α ´ 1 zeros
y1, . . . , yα´1 in I 1. For all i P t1, α´ 1u there is one zero xi of v between two consec-
utive zeros yi, yi`1 of the derivative. Now, if by contradiction v does not change sign
at one of its zeros, let say xi, it means that xi “ yi. In particular, it means that in
pyi, yi`1s, there is no zero of v, which contradicts the fact that v has exactly α zeros
in I 1. It is also the case if the derivative is null at xy. Last, v being continuous, it can
not change sign after xy as it has no zero other than xy (by de�nition of xy).

Let H P H, and P its �nite set of extremal points. We can apply Lemma 7.21
to u0, . . . , uz, the functions associated with the points of P (in decreasing order of
dominating coe�cient), and obtain a Nmax. Now, since P is �nite, the trajectories
from P are ultimately constant, hence there exists Ny such that for all i ď y, the
trajectory of ui is wAω or wBω for some w P tA,BuNy . We de�ne NH to be the
maximum of Ny and Nmax. With this bound on the number of zeros, we deduce the
following inclusion for the ultimate language LNHult pHq:

Corollary 7.23. Let y “ Zpu0, . . . , uzq. The ultimate language LNHult pHq Ď C˚1 ¨ ¨ ¨C
˚
y´1

Cω
y YC˚1 ¨ ¨ ¨C

˚
y´1C

ω
y´1 for tCi, Ci`1u “ tA,Bu for all i ă y; and Cy “ A i�

sign_dompu0q is positive.

We can have 4 di�erent sequences for C˚1 ¨ ¨ ¨C
˚
y´1C

ω
y with tCi, Ci`1u “ tA,Bu,

depending on the �rst and last letters C1, Cy (or equivalently, Cy and parity of y
which determines C1).

The proof of our main result on regularity of LpHq will proceed by induction over
the switching-dimension ZpHq ofH which we de�ne as ZpHq “ Zpu0, . . . , uzq. Notice
that we could de�ne the switching dimension for any convex set (not necessarily a
polytope) whenever the sign of aipδq does not change within the convex set. Finally,
we also de�ne sign_dompHq “ sign_dompu0q.

7.3.2 Characterization of the ultimate language.

We now show that the ultimate language ofH is exactly LNHult pHq “ A˚B˚A˚ ¨ ¨ ¨A˚

BωYA˚B˚A˚ ¨ ¨ ¨B˚Aω, with at most ZpHq switches of signs. We will state the asso-
ciated technical Lemma 7.24 in the more general settings of �faces� as de�ned below,
as it will be useful in the next section. Let P be the �nite set of extremal points
of a H. We call pf 0, . . . , f yq Ď P a face of H if Zpv0, . . . , vyq “ y “ ZpHq for the
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functions pv0, . . . , vyq associated with the extremal points pf 0, . . . , f yq. Notice that
denoting H 1 the convex hull of F , we can choose NH 1 “ NH .

Lemma 7.24. Given a face pf 0, . . . , f yq Ď P of H with associated functions vi,
we have, for all n1, n2, . . . , ny P N there exist λi P r0, 1s with

ř

i λi “ 1, such that
denoting rvpxq “

řy
i“1 λiv

ipxq, Lprvq “ wAn1Bn2 . . . BnyAω (assuming y is even) for
some pre�x w P tA,BuNH .

That is, for all n1, . . . ny, one can �nd a pre�x w of size NH and a point δ
in the convex hull of e1, . . . , ey, such that ρδ “ wAn1Bn2 ¨ ¨ ¨BnyAω (assuming the
correct parity of y). Let H 1 be the convex hull of f 0, . . . , f y. As pf 0, . . . , f yq is a face,
ZpH 1q “ ZpHq.

Proof. Let Nmax ă n1 ă ¨ ¨ ¨ ă ny be integers. We de�ne inductively x0 “ Nmax`1{2
and xj :“ xj´1 ` nj for all 1 ď j ď y if nj ‰ 0 and xj :“ xj´1 `

1
2y

if nj “ 0.

We build inductively a function vji pxq, convex combination of tvi, vi`1, . . . , vi`ju,
such that vji pxkq “ 0 for all k P t1, . . . , ju. Further, if i is odd (resp. even), we have
vji pxq ą 0 (resp. vji pxq ă 0) for all x ą xj. The initialization is trivial: we have that
@x ą Nmax, v

1pxq is positive, by choice of Nmax. We let v0
i pxq “ vi for all i.

Induction step: Let 0 ă j ă y. Assume that we have built vj´1
i pxq for all i.

The �rst thing to remark is that for all i, any convex combination of vj´1
i pxq and

vj´1
i`1 pxq will have a zero at x1, . . . , xj´1 as both terms are zero there. It remains to
choose one which also have a zero at xj. By induction, @x ą xj´1, v

j´1
i pxq is positive

(resp. negative) when i is odd (resp. even). Thus it exists λji P p0, 1q such that
λjiv

j
i pxjq`p1´λ

j
i qv

j
i`1pxjq “ 0. We thus de�ne vji pxq “ λjiv

j
i pxq`p1´λ

j
i qv

j
i`1pxq and

it has the required j zeros, after Nmax. As it is a linear combination of v1 ¨ ¨ ¨ vi`j, it
has exactly j zeros after Nmax (by lemma 7.21), and thus, @x ą Nj, v

i
jpxq is positive

(negative) if i is odd (even) (as it has no zero after xj and we know its asymptotic
behaviour).

Then vy1 has tx1, . . . , xyu as zeros, and by lemma 7.21, it switches sign each time.
Hence the language of v1

y is wAn1Bn2 . . . Aω (or wBn1An2 . . . Aω if y odd) for some
pre�x w of size |w| “ Nmax.

Then, the ultimate language of H 1 (i.e., the language after pre�xes of size NH as-
sociated with y) contains A˚B˚ . . . B˚Aω with y switches between A and B, which is
the converse of Corollary 7.23. We can thus deduce the following about the ultimate
language:

Corollary 7.25. LNHult pHq “ LNHult pH
1q “ C˚1C

˚
2 . . . C

˚
yA

ω Y C˚1C
˚
2 . . . C

˚
y´1B

ω with
tCi, Ci`1u “ tA,Bu.

Proof. We �rst prove the result for LNHult pH
1q. We can apply lemma 7.24 to H 1 and

lemma 7.21 to H 1. We obtain the �rst part of the union. Now, let H2 Ď H 1 be
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the convex hull of e1, ¨ ¨ ¨ , ey (that is excluding e0). Each point δ in H 1zH2 has a
trajectory which ends with Aω, as dompuδq “ dompv1q, and thus sign_dompuδq “
sign_dompv1q by construction of H (and H 1 Ď H). Thus the points with tra-
jectory ending with Bω are in H2, and applying lemma 7.21, we know that their
ultimate trajectory has at most y ´ 1 switches. Applying lemma 7.24 to H2, we
obtain the second hand of the union. Now, LNHult pH

1q Ď LNHult pHq, and LNHult pHq Ď
C˚1C

˚
2 . . . C

˚
yA

ω Y C˚1C
˚
2 . . . C

˚
y´1B

ω by Corollary 7.23.

However, we cannot immediately conclude that LpHq is regular. Though NH is
�nite, computable and there are a �nite number of pre�xes w of size NH , we need to
show that the subset of LNHult pHq appearing after a given w P tA,BuNH is (e�ectively)
regular. This is what we do formally in the following section.

7.4 Regularity of the language

Let te0, ¨ ¨ ¨ , ezu “ P the extremal points of H. Let up the function associated
with each ep P P . We denote y “ ZpHq “ Zppupqpďzq. We will show the regularity
of LpHq using an induction on ZpHq.

For ZpHq “ 0, the regularity of LpHq is trivial as all the dominant coe�cients
have the same sign. Thus, by Corollary 7.23, the ultimate language is LNHult pHq “ Aω

and then the language is LpHq “ Ť

wPW wAω; or the ultimate language is LNHult pHq “
Bω and the language is LpHq “ Ť

wPW wBω, for a �nite set of W Ď tA,BuNH .
For w P tA,BuNH , consider Hw “ tδ P H | ρδ “ wvu, i.e., the language of words

which begin with the pre�x w. It is easy to see that Hw Ď H is a polytope. Hence
ZpHwq ď ZpHq. Observe that LpHq “ Ť

wPtA,BuNH LpHwq. To show the regularity of
LpHq, we show the regularity of LpHwq for each of the �nitely many w P tA,BuNH .
For each w P tA,BuNH , we have two cases: either ZpHwq ă ZpHq; then we apply
the induction hypothesis and we are done. Or else, ZpHwq “ ZpHq “ y. In this case,
the sketch of proof is as follows:

� We show that there exists J such that for all i ď y and all j ě J , we have a
point hij in Hw with trajectory wCj

1C2C3 ¨ ¨ ¨Ci´1C
ω
i . This is shown by applying

lemma 7.24 to each face pf 0, . . . , f yq of H and then using convexity arguments
and the fact that ZpHwq “ ZpHq.

� Subsequently, denoting H 1 the convex hull of h0
J ¨ ¨ ¨h

y
J , we will deduce that

LpH 1q is a regular language of the form wCJ
1 C

˚
1C

˚
2C

˚
3 ¨ ¨ ¨C

˚
i´1C

ω
i ,

� Partitioning HwzH
1 into a �nite set of polytopes, we obtain polytopes of lower

switching-dimensions, which have regular languages by induction.

� We conclude since the �nite union of these regular languages is a regular
language, namely LpHwq.
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We now formalize the above proof sketch in a sequence of lemmas. For all faces
F of H, applying Lemma 7.24 gives for all j P N, a point gjpF q of the convex hull
of F with trajectory wjC

j
1C2C3 ¨ ¨ ¨C

ω
y , for some wj P tA,BuNH . We now prove that

pgjq converges towards f y, the point of F with lowest dominant term.
Let i ď y “ ZpHq. A i-subface of H is a subset F “ pf 0, . . . , f iq of the set P of

extremal points of H such that ZpF q “ i.

Lemma 7.26. For every i ď y and every i-subface Fi “ pf
0, . . . , f iq of H, pgijpF qqjPN

converges towards f i as j tends to in�nity.

Proof. For i “ 0, the result is trivial. Let 0 ă i ď y. By contradiction, assume that
there exists a dimension d (as there is a �nite number of dimensions) and an in�nite
set J of indices j P N such that gij is bounded away from f i on dimension d. Let b be
this bound. Let H 1 be the convex polytope made of points of the convex hull of Fi at
distance at least b from f i on dimension d (gy is an extremal point of H, hence there
is only one direction of being at distance at least b on dimension d). Applying lemma
7.21 to H 1, we obtain a bound NH 1 such that the number of switches after NH 1 (in
general, NH 1 ą NH) of any point of H 1 is at most i´ 1, as ZpH 1q ă ZpFiq “ i. Now,
as J is in�nite, one can �nd a j P J with j ą NH 1 ` 1. We have that the trajectory
of gij P H

1 is w1Cj
1C2C3 ¨ ¨ ¨C

ω
i for some w1 P tA,BuNH , which switches signs i times

after NH 1 , a contradiction.

In the same way, for all r ă i, we can prove that denoting di,rj the distance of
gij to the convex hull of pf 0, . . . , f rq, we have di,r`1

j {di,rj converges towards 0 as j
tends to in�nity. Let Dpe, f 0, . . . , f r`1q be the distance from e to the convex hull of
pf 0, . . . , f r`1q divided by the distance from e to the convex hull of pf 0, . . . , f rq. We
thus want to show that Dpgif , f

0, . . . , f r`1q tends towards 0.

First, for r “ i ´ 1, this is trivial as di,r`1
j “ 0 for all i, j. Else, for r ă i ´ 1,

if it was not the case, there would exist a bound b and an in�nite set J of indices
with di,r`1

j {di,rj ą b for all j P J . Then as above, by considering H 1 the the convex
polytope made of points e of the convex hull of Fi with Dpe, f 0, . . . , f r`1q ą b, we
have ZpH 1q ă ZpFiq “ i and the same contradiction as above applies.

For all j, we consider F py, jq the convex hull of tgjpF q | F is a face of Hu. Every
point of F py, jq has trajectory w1Cj

1C2C3 ¨ ¨ ¨C
ω
y for some w1 P tA,BuNH . We then

show by convexity that H2 intersects F py, jq, i.e., it has a point with trajectory
w1Cj

1C2C3 . . . C
ω
y .

Lemma 7.27. Let a convex H 1 Ď H and w P tA,BuNH with ZpH 1
wq “ ZpH 1q. There

exists J s.t. for all j ą J , F py, jq X ClosurepH 1
wq ‰ H.

Proof. Let y ` 1 points h0, . . . , hy in ClosurepH 1
wq such that Zph0, . . . , hyq “ y. We

choose J such that for all face F “ pf 0, . . . , f yq of H, for all j ą J ,
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� gyj pF q is closer to f
y than any hi is from hy, i ‰ y.

� for all r and all k ą r, Dpgyj pF q, f
0, . . . , f rq ă Dphk, h1, . . . , hrq

Then we have that ClosurepH 1
wq intersects the convex hull of pgijpF qqF a face of H .

As gyj pF q P F py, jq for all j, F , we have In particular F py, jq X ClosurepH 1
wq ‰

H.

Similarly, for all i ď y we can de�ne a polytope F pi, jq. All the points in F pi, jq
have trajectory w1Cj

1C2C3 ¨ ¨ ¨C
ω
i for some w1 P tA,BuNH . We can �nd a Ji and a

point hij P Hw with trajectory wCj
1C2C3 ¨ ¨ ¨C

ω
i for all i ď y and all j ą Ji. Now, as

the number of i ď y is bounded, one can �nd such a J uniform over all i ď y (by
taking maximum over all i).

Consider F pJq the convex hull of F p0, Jq, . . . , F py, Jq. By convexity, all the points
in F pJq have their n-th letters of trajectory as C1 for all n P rNH ` 1 ¨ ¨ ¨NH ` Js,
since this is true for all points of F pi, Jq. Hence, the language of Hw X F pJq is
included into wCJ

1 C
˚
1C

˚
2 ¨ ¨ ¨C

ω
y Y wCJ

1 C
˚
1C

˚
2 ¨ ¨ ¨C

ω
y´1, because of the bound on the

number of alternations after NH of trajectories from points of H (Lemma 7.21). We
show now that we have equality.

Lemma 7.28. The language of the convex hull of th0
J , . . . , h

y
Ju is exactly

wCJ
1 C

˚
1C

˚
2C

˚
3 ¨ ¨ ¨C

˚
y´1C

ω
y Y wC

J
1 C

˚
1C

˚
2C

˚
3 ¨ ¨ ¨C

˚
y´2C

ω
y´1.

Hence the language of Hw X F pJq is wCi
1C

˚
1 ¨ ¨ ¨C

ω
y Y wC

i
1C

˚
1 ¨ ¨ ¨C

ω
y´1.

Next, we prove Lemma 7.28 for which we �rst need an intermediate lemma
describing the exact language of the convex hull of two points ofHw. In the following,
we will abuse notation of a point to also de�ne the function associated with its
trajectory: gpnq ě 0 i� the n-th letter of the trajectory starting from g is an A.

Lemma 7.29. Let e0 ¨ ¨ ¨ ey be points of Hw with Zpe0, . . . , eyq “ ZpHwq. Assume that

the trajectory of e “ ek is wC
i1
1 C

i2
2 ¨ ¨ ¨C

ik´1

k´1 C
ω
k with ij ą 0 and tCj, Cj`1u “ tA,Bu

for all j ă k. Assume also that the trajectory of f “ ek´1 is wCi1
1 C

i2
2 ¨ ¨ ¨C

ik´2

k´2 C
ω
k´1.

Let i1 ą ik´1. Then there is a point g on the segment pe, fq with gpNmax`
řk´2
j“1 ij `

i1 ` 1{2q “ 0.

Notice that any g on pe, fq has at least k´2 zeros, one in each pNmax` i1`¨ ¨ ¨`
ij, Nmax`i1`¨ ¨ ¨`ij`1q. The g we will build thus have trajectory wC

i1
1 C

i2
2 ¨ ¨ ¨C

i1

k´1C
ω
k .

Hence, the language of re, fq is

wCi1
1 C

i2
2 ¨ ¨ ¨C

ik´1

k´1 C
˚
k´1C

ω
k

Proof. Let i ą N . Let g de�ne a point on pe, fq to be speci�ed later. For a P te, f, gu,
we de�ne ua as the function associated to the point a. Let x :“ |w| ` i1 ` i2 ` . . .`
iz´3`i`1{2. We have uepxq ą 0 and uf pxq ă 0 (in the unlikely case where uf pxq “ 0



Chapter 7. Analysing population dynamics of Markov chains 115

with this x, i.e., uf pxq “ 0 implies the letter is B and the derivative of uf is null in x,
we just take x`1{4. Because of the maximal number of zeros of uf , uf px`1{4q ‰ 0
if uf pxq “ 0). So there exists λ P p0, 1q such that λuepxq`p1´λquf pxq “ 0. Let g be
the point λe ` p1 ´ λqf on segment pe, fq, and ug its associated function. We have
ug “ λue`p1´λquf by linearity. Further, as g “ λe`p1´λqf and both e and f have
pre�x wAi1Bi2Ai3 ¨ ¨ ¨Aiz´3 , then g has also pre�x wAi1Bi2Ai3 ¨ ¨ ¨Aiz´3 . It means that
ug changes sign between |w|`i1´1 and |w|`i1, . . ., between |w|`i1`i2`. . .`iz´3´1
and |w|`i1`i2`. . .`iz´3. In particular, ug has a zero in every of these z´2 intervals.
Thus ug has z´1 zeros. By lemma 7.21, it switches signs exactly at these zeros, and
never elsewhere in rNmax,`8q. Thus the trajectory of g is wAi1Bi2Ai3 ¨ ¨ ¨Aiz´2BiAω.
Further, as g is on the segment re, f s, both e, f P Hw and Hw is convex, then
g P Hw.

We can now �nish the proof of lemma 7.28.

Lemma 7.28. Let e0 ¨ ¨ ¨ ey be points of Hw with Zpe0, . . . , eyq “ ZpHwq. Let J P N.
Assume that the trajectory of ei is wC

J
1 C2C3 ¨ ¨ ¨C

ω
i with tCj, Cj`1u “ tA,Bu for

all j ă i (that is ei has the maximum number of alternance in its subspace). Then
the language of the convex hull of te0, . . . , eyu is exactly wC

i
1C

˚
1C

˚
2C

˚
3 ¨ ¨ ¨C

˚
y´1C

ω
y Y

wCi
1C

˚
1C

˚
2C

˚
3 ¨ ¨ ¨C

˚
y´2C

ω
y´1.

Proof. We �rst consider the case wCi
1C

˚
1C

˚
2C

˚
3 ¨ ¨ ¨C

˚
k´1C

ω
k . Then, we consider the

other case of wCi
1C

˚
1C

˚
2C

˚
3 ¨ ¨ ¨C

˚
k´2C

ω
k´1 in a second step.

Let x be a point in the interior of the convex hull of e1 ¨ ¨ ¨ ez. Then the trajectory
of x is wCi

1u for some in�nite word u as all the point e1 ¨ ¨ ¨ ez are of this type and by
linearity of M i for all i. Now, by lemma 7.21, the number of alternation after w is
at most z ´ 1, hence the trajectory of x is of the form wCi`i1

1 Ci2
2 C

i3
3 ¨ ¨ ¨C

ik´1

k´1 ¨ ¨ ¨C
ω
k

with ij P N for all j. We will show that every of these trajectories is reached for a
point in the convex hull of e1 ¨ ¨ ¨ ez.

Let pijqjďk be a family of integers. At �rst, we assume that ij ‰ 0 for all j. For
all j P t1, . . . , z´ 1u let xj :“ Nmax` i` j. Also, for all j P t1, . . . , z´ 1u, we de�ne
yj :“ Nmax ` i` i1 ` . . .` ij ` 1{2.

We will prove that there exists a point f in the interior of the convex hull of
e1, ¨ ¨ ¨ , ez such that fpyjq “ 0 for all j P t1, . . . , z´1u. Then Lemma 7.21 will imply
that the language of f is wCi`i1

1 Ci2
2 C

i3
3 ¨ ¨ ¨C

iz´1

k´1 ¨ ¨ ¨C
ω
z .

We build f by induction. Applying lemma 7.29 for all j P t1, . . . , z´2u to ej, ej`1,
we obtain a point e1

j in pej, ej`1q such that e1
jpyz´1q “ 0. As e1

j is in pej, ej`1q, by
linearity, the pre�x of its trajectory is wCi

1C2 ¨ ¨ ¨Cj´1Cj (and it ends up with Cω
j`1),

which implies that it has additionally j ´ 1 zeros in pNmax ` i, Nmax ` i ` j ` 1q,
with Nmax ` i` j ` 1 ď yz´1.

Thus, the sign of e1
jpxq is constant in x P rxj´1`1, yz´1q, depending on the parity

of j. In particular, yz´2 P rxj´1 ` 1, yz´1q for all j ď z ´ 2.
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We now consider points pe2
jqjďz´3 in the convex hull of pe1

jqjďz´2. Thus any of
these points have e2

jpyz´1q “ 0 by linearity. Let j P t1, . . . , z´3u. We chose e2
j in the

segment pe1
j , e

1
j`1q such that e2

jpyz´2q “ 0. It is possible as the sign of e1
jpyz´2q ą 0

and the sign of e1
j`1pyz´2q ă 0 (or vice versa, depending on the parity of j). We have

that e2
j has j ` 1 zeros: yz´1, yz´2 and one zero in every of rxk, xk`1q for all k ă j.

By induction, we get f :“ ez´1
1 such that fpyiq “ 0 for 1 ď i ď z ´ 1 and

it switches sign between each zeros, hence its trajectory is wCi`i1
1 Ci2

2 ¨ ¨ ¨C
iz´1

z´1 C
ω
z .

Hence the case for ij ą 0 for all j is solved.

Consider now the case where some ij “ 0. First, if i1 “ 0, then the above
procedure works. Now, for ij “ 0 for j ‰ 1, it means that the desired trajectory is
wCi`i1

1 Ci2
2 ¨ ¨ ¨C

ij´1

j´1 C
ij`1

j`1 ¨ ¨ ¨C
iz´1

z´1 C
ω
z “ wCi`i1

1 Ci2
2 ¨ ¨ ¨C

ij´2

j´2 C
ij´1`ij`1

j´1 C
ij`2

j`2 ¨ ¨ ¨C
iz´1

z´1 C
ω
z

as Cj´1 “ Cj`1, hence with 2 less switches. It su�ces to start with the above proce-
dure, but with z1 “ z´ 2 and points e1 ¨ ¨ ¨ ez1 “ ez´2. For instance, take e1, e2. Their
trajectories are respectively wCω

1 and wCi
1C

ω
2 . Applying lemma 7.29, we get the ex-

istence of a point f1 in the convex hull of e1, e2 with a zero in y1 “ Nmax`i`i1`1{2.
Its trajectory is wCi`i1

1 Cω
2 .

Last, for the case of wCi
1C

˚
1C

˚
2C

˚
3 ¨ ¨ ¨C

˚
k´2C

ω
k´1, it su�ces to proceed in the same

way in the convex hull of pe0, . . . , ey´1q.

Next, we note that the set HwzF pJq may not be convex. However, one can
partition HwzF pJq into a �nite number of convex polytopes. Now, let G be a convex
polytope in HwzF pJq. We want to show that ZpGq ă ZpHwq “ ZpHq “ y. Indeed,
else, one could apply Lemma 7.27 to Gw “ G and for some J 1 obtain F pi, jqXG ‰ H
for any j ą J 1, which contradicts G being a convex set in HwzF pJq.

Hence one can compute the language of every G inductively, and each of them
is regular. Finally, this leads to the regularity of LpHwq by �nite union, and to
the regularity of LpHq, and again by �nite union to the regularity of LpInitq. This
concludes our proof of the main regularity result, i.e., Theorem 7.16.

7.5 Discussion and conclusions

In this chapter, we have shown the following, summed up in table 7.1: if the
eigenvalues of the transition (row-stochastic) matrix associated with the MC are
distinct roots of real numbers, then any trajectory from a given initial distribution is
ultimately periodic. This is tight, in the sense that, there are examples of trajectories
which are not ultimately periodic even for MCs with 3 states [AAGT15, Tur68] (with
some eigenvalue not root of any real number). Further, the eigenvalues are distinct
positive real numbers, then the language generated by a MC starting from a convex
polytope of initial distributions is e�ectively regular. Surprisingly, this result is also
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tight: there exist MCs with eigenvalues being distinct roots of real numbers (starting
from a convex initial set) which generate a non-regular language.

Theorem 7.28. [AGKV16] There exists a MC A1 with eigenvalues which are roots
of real values and 7 states such that LpInit,A1q is not regular.

We proved that if the eigenvalues of the transition matrix associated with the
Markov chain are all distinct positive real numbers and we know these values, then
the language, for any convex polytope of initial distributions, is e�ectively regular.
We proved that by building its language of trajectories.

Notice that in general, the eigenvalues of a Markov chain can only be approxi-
mated. However, in case these eigenvalues are rational, then one can use the rational
root theorem (see, for example, [Lan13]) in order to �nd them explicitly. This also
provides a test whether all the eigenvalues are rational, and if yes, whether they are
all positive numbers.

Hence, if the Markov chain of the reduction from a Skolem problem to a Markov
reachability problem have distinct positive real eigenvalues and they are known or
its eigenvalues are distinct positive rational values, then we can decide the original
Skolem problem.

Though Markov Chains are a simple formalism, there are still many basic prob-
lems, whose decidability is open and thought to be very hard. Indeed, it is surprising
yet signi�cant that even after assuming strong hypotheses, their behaviours cannot
be described easily.

Property of eigenvalues of MC Regular language Ultimately periodic trajectories

Distinct, positive real numbers X (Thm.7.16) X (from below)
Distinct, roots of real numbers ˆ [AGKV16] X (Prop.7.10)
Distinct ˆ (from above) ˆ ([AAGT15], Thm.3)

Table 7.1 � A summary of the results in this chapter.

Besides imposing strong restriction as positive eigenvalues, another way to tackle
the problem is to approximate it, asking whether for all ε there exists a number of
steps nε after which the probability to be in Goal is at least γ ´ ε. The decidabil-
ity and precise complexity of this problem has been explored in [CKV14]. A more
general approximation scheme, valid for much more general questions which can be
expressed in some LTL logic, has also been tackled by generating a regular lan-
guage of approximated behaviors [AAGT15], where the authors de�ne a notion of
an ε-approximation of a disitribution ξ, such that ξε is an ε-approximation of ξ i�



118 7.5. Discussion and conclusions

ξε and ξ are in the same class until some nε, that depends on ε, and after that both
distributions are in the same set of �nal classes, a set of con�gurations where the
con�gurations cycle in the steady state phase.

We now explain the relationship between checking population questions on MC
and MDP and checking reachability for stochastic systems with imperfect informa-
tion. In some sense, checking population questions is harder than checking reacha-
bility for systems with full observation (as this is decidable), but it is simpler than
reachability with imperfect information.

Hence, �nding strategies ensuring quanti�ed reachability in MDPs with imperfect
information (that is in POMDP, i.e. partially observable MDPs) is harder than
solving population problems for MDPs (because population questions on MDPs
corresponds to the particular imperfect information case of PAs, that there is no
information). In turn, this is harder than the case where the (PO)MDP is unary (that
is it a Markov chain that there is no choice of action), and in this case quanti�ed
reachability in unary POMDPs and population questions on Markov Chains is the
same problem.

A Probabilistic Automaton (PA) can be de�ned as a MDP such that all actions
are available in each state and the player do not know in which of these states he is.

Unary PAs [CKV14, Tur68], have an alphabet with a single letter. That is, there
is a unique strategy, and the model is essentially a Markov chain.

Population questions on MDP, with uniform strategy per time point correspond
to reachability in PA. Assume that there exists a number n of steps such that there
is at least γ of the population in Goal after n steps of Markov Chain. Then playing
n steps of the associated unary PA, there is probability at least γ to reach Goal.
Reciprocally, a wining strategy of a unary PA translates to a number of steps after
which at least γ of the population is in Goal. Hence reachability for unary PA is
open (Skolem complete).

For PAs, the problem of whether there is a strategy to reachGoal with probability
at least a threshold γ (also called a cut-point) is already undecidable [Ber74]. Even
approximating this probability has been shown undecidable in PAs [MHC03]. In fact,
deciding whether there exists a sequence of strategies with probability arbitrarily
close to γ “ 1 is already undecidable [GO10], and only very restricted subclasses
are known to ensure decidability [FGO12, CT12].
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