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Abstract

This thesis examines some quantitative questions in the framework of two dif-
ferent stochastic models. It is divided into two parts: the first part examines a new
class of stochastic games with priority payoff. This class of games contains as proper
subclasses the parity games extensively studied in computer science, and limsup and
liminf games studied in game theory. The second part of the thesis examines some
natural but involved questions about distributions, studied in the simple framework
of finite state Markov chain.

In the first part, we examine two-player zero-sum games focusing on a particular
payoff function that we call the priority payoff. This payoff function generalizes the
payoff used in parity games. We consider both turn-based stochastic priority games
and concurrent priority games. Our approach to priority games is based on the
concept of the nearest fixed point of monotone nonexpansive mappings and extends
the p-calculus approach to priority games.

The second part of the thesis deals with population questions. Roughly speak-
ing, we examine how a probability distribution over states evolves in time. More
specifically, we are interested in questions like the following one: from an initial
distribution, can the population reach at some moment a distribution with a prob-
ability mass exceeding a given threshold in state Goal? It turns out that this type
of questions is much more difficult to handle than the questions concerning indi-
vidual trajectories: it is not known for the simple model of Markov chains whether
population questions are decidable. We study restrictions of Markov chains ensuring
decidability of population questions.






Résumé

Cette thése examine certaines questions quantitatives dans le cadre de deux
modéles stochastiques différents. Il est divisé en deux parties : la premiére partie
examine une nouvelle classe de jeux stochastiques avec une fonction de paiement
particuliére que nous appelons « de priorité ». Cette classe de jeux contient comme
sous-classes propre les jeux de parité, largement étudiés en informatique, et les jeux
de limsup et liminf, étudiés dans la théorie des jeux. La deuxiéme partie de la thése
examine certaines questions naturelles mais complexes sur les distributions, étudiées
dans le cadre plus simple des chaines de Markov & espace d’états fini.

Dans la premiére partie, nous examinons les jeux a somme nulle & deux joueurs en
se centrant sur la fonction de paiement de priorité. Cette fonction de paiement génére
le gain utilisé dans les jeux de parité. Nous considérons a la fois les jeux de priorité
stochastiques a tour de role et les jeux de priorité simultanés. Notre approche des
jeux de priorité est basée sur le concept du point fixe le plus proche (« nearest fixed
point ») des applications monotones non expansives et étend 1’approche mu-calcul
aux jeux de priorité.

La deuxiéme partie de la thése concerne les questions de population. De maniére
simplifiée, nous examinons comment une distribution de probabilité sur les états
évolue dans le temps. Plus précisément, nous sommes intéressés par des questions
comme la suivante : & partir d’une distribution initiale, la population peut-elle at-
teindre & un moment donné une distribution avec une probabilité dépassant un seuil
donné dans I'état visé 7 Il s’avére que ce type de questions est beaucoup plus difficile
a gérer que les questions concernant les trajectoires individuelles : on ne connait
pas, pour le modeéle des chaines de Markov, si les questions de population soient dé-
cidables. Nous étudions les restrictions des chaines de Markov assurant la décision
des questions de population.
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Chapter 1

Introduction

Discrete time stochastic finite state systems can be modelled in many different
ways. The simplest framework is provided by discrete homogeneous Markov chains
which model systems evolving in time according to a fixed probabilistic transition
function without any external control.

The systems with a single controller are modelled as Markov Decision Processes
(MDP). In MDPs, the controller chooses at each stage an action to execute. The
transition probability, that depends on the current state and on the executed action,
describes how the system evolves in time. Markov chains can be seen as degenerate
MDPs with only one action available in each state.

The next level of complexity is attained by two-player zero-sum games. Such
games correspond to systems that are controlled by two controllers or two agents
that have strictly opposite goals. The performance of each agent is measured through
the payoff that he obtains. Zero-sum refers to the fact that for each game outcome,
the gain of one player is equal to the loss of the other player. Two-player games can
have different flavours:

e deterministic turn-based games where each state is controlled by one player
who chooses the action to execute at this state and the transitions are deter-
ministic,

e turn-based stochastic games where, again, each state is controlled by one
player, but the transitions are probabilistic,

e concurrent stochastic games where at each state both players choose simultane-
ously and independently the actions to execute, and the probabilistic transition
depends on both actions selected by the players.

Independently of whether the system evolves without any external control, or it
is controlled by one, two or more agents, we can examine its behaviour from two
different perspectives.
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One point of view is that the system is at each stage in some state and this state
evolves in stages. We can represent this situation as a single particle that moves from
state to state according to a transition law, the movements influenced or controlled
by the actions executed by the players or by controlling agents. In this framework
(that we call pebble semantics), we are interested in the trajectory of the particle.
This point of view is adopted in the first part of the thesis which is devoted to
stochastic games.

Another point of view, namely population semantics, consists in seeing the sys-
tem as composed of a whole population of particles spread over the states. The
trajectory of a single particle is of no interest in this case, we are interested in how
the distribution of the population evolves in time. This is the framework adopted in
the second part of the thesis which examines population questions in Markov chains.

What is common to both parts of the thesis is that we deal uniquely with quan-
titative questions:

e in the first, part we examine the game value and the optimal and e-optimal
strategies of the players, in some infinite stochastic game,

e in the second part of the thesis, we examine if the population can reach a con-
figuration where the proportion of the population in some goal states exceeds
a given threshold.

This contrast with qualitative questions examined in computer science literature
like, for example, the question if the probability of winning is positive, without spec-
ifying any concrete probability threshold. Here, each play is either winning or losing
and the literature examines the existence of strategies which are surely winning,
almost surely winning or winning with probability arbitrarily close to 1. Qualitative
questions are outside the scope of the thesis.

1.1 Contributions

As mentioned above, the thesis consists of two parts.

1.1.1 Part I: Priority games

In Part I we examine stochastic zero-sum games with priority payoff.

The priority payoff is defined in the following way.

We assume that there is a total priority order over the states (we consider only
games with a finite set of states) and that each state is labelled with a real valued
reward. The priority payoff obtained for an infinite play is equal to the reward of
the highest priority state seen infinitely often along this play. The priority payoff
extends the payoff used in the parity games, a class of games extensively studied
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in computer science. The parity games are priority games with rewards in the two
element set {0, 1} rather than R.

Part I consists of five chapters. We present an introduction of this part in Chap-
ter 2. Chapter 3 is a short technical introduction to monotone nonexpansive map-
pings and their properties. We rely heavily on properties of such mappings in Chap-
ters 4 and 5.

In Chapters 4 and 5 we study two classes of priority games.

In Chapter 4 we examine turn-based stochastic priority games where players play
in turns, one after another.

Chapter 5 is devoted to concurrent priority games where at each stage players
choose their actions simultaneously and independently.

Finally, in Chapter 6 we present the conclusions of Part 1.

For turn-based stochastic priority games, we prove that both players have optimal
memoryless strategies.

For concurrent priority games, optimal strategies do not exist in general and
we construct e-optimal strategies. Unfortunately, such e-optimal strategies are not
simple, to implement them the players need unbounded memory.

However, the crux of Chapters 4 and 5 does not lie in the fact that finite state
priority games have values or in the fact that we can construct optimal or e-optimal
strategies. The main technical contribution is the powerful technique based on fixed
points developed to obtain these results. A more technical and detailed discussion is
postponed to the introduction of Part I. Preliminary version of the results obtained
in Chapter 5 appears in [KZ15].

1.1.2 Part II: Population questions

In Part II, we will consider population questions. Suppose that a continuous pop-
ulation of agents is spread over the states of the system. A configuration is thus a
distribution over the states and actions transform one distribution into another one.
The general problem is thus to bring, by choosing the actions, the initial distribution
of the population into particular configurations. For example we could be interested
to bring at least half of the population in a set of Goal states. The questions con-
cerning global probability distributions of a population of, say, some particles are
considerably harder to tackle than the questions related to individual trajectory of
one particle.

For instance it can be relatively easy to select a sequence of actions such that
each particle will individually pass through some Goal state (or visit some Goal state
periodically). On the other hand, if we consider a whole population of particles, it
is undecidable in general whether there exists a strategy such that at least a half of
particles will visit the same Goal state at the same moment |[CKV*11]. The reason
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of this difficulty is that this question is equivalent to a quantitative undecidable
question for finite probabilistic automata, [Paz71, Ber74].

We are interested in the following question. Given some initial distribution, or
more generally some family of distributions, and some threshold ~, will the distribu-
tion reach a configuration where the fraction of the population in the Goal states is
greater than v?7 We study this problem from the symbolic dynamic perspective. We
consider symbolic trajectories over the two letter alphabet { A, B} describing the evo-
lution of the distributions, where A represents configurations satisfying the threshold
condition while B represents all other configurations. In this way the evolution of
the distribution in time gives rise to an infinite word over the alphabet {A, B}. We
define the language of the Markov chain to be the set of symbolic trajectories. We
prove that if the eigenvalues of the Markov chain are distinct and positive, its sym-
bolic language is regular and can be effectively computed. The findings presented in
Chapter 7 appears in [AGKV16].
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Part 1

Priority games
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Chapter 2

Introduction

This part of the thesis is devoted to a special class of zero-sum two-player stochas-
tic games that we call stochastic priority games.

Stochastic two-player zero-sum games model the long-term interactions between
two players that have strictly opposite objectives.

The study of stochastic games starts with the seminal paper of Shapley [Sha53].
Since then, the subject was intensively studied in game theory where it is seen as
a special case of a more general model of repeated games. Repeated games are ex-
haustively treated in two monographs [Sor02, JEM15], both of them contain chapters
devoted to stochastic games. As the books specifically devoted to stochastic games
we can mention [FV97, NS04].

In computer science stochastic games were first examined from the algorithmic
point of view where the aim is to find an efficient algorithm that computes optimal or
e-optimal strategies for both players. In this line of research, initiated by the paper
of Hoffman and Karp [HK66|, we are interested in “algorithmically implementable”
optimal strategies which means that the strategies should be either memoryless (i.e.
stationary) or their implementation should use a bounded memory. One of the most
challenging open questions in this domain concerns the existence of a polynomial
time algorithm solving so-called simple stochastic games. This is the simplest class
of turn-based stochastic games, examined already in [HK66]. The problem of finding
optimal strategies for these games is known to be in NP n coN P, [Con92], but no
polynomial time algorithm is known.

Since this part of the thesis concerns games that are closely related to the so
called parity games we should mention here that most recent achievement in this
domain is a quasi-polynomial time algorithm solving deterministic parity games
[CIK*16].

Another track of research involving games is motivated by applications to au-
tomata theory, logic and verification. This can be traced down to the groundbreak-
ing paper of Gurevich and Harrington [GHS82|, where games were used in order
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to simplify the solution to the important complementation problem for automata
on infinite trees. Initially this research was limited to deterministic games!, see
the collective volume [GTWO02] for a presentation of the field. Problems related to
the verification of probabilistic programs and systems motivated subsequent exten-
sions based on stochastic game models. First the verification problem for one-player
stochastic systems (Markov Decision Processes) was considered, see [dA97|, next
turn-based stochastic two-player games were examined [MMO02, CJH04| and finally
concurrent stochastic games were explored ? [dAMO04].

In stochastic games the players preferences are expressed by means of a payoff
mapping. The payoff mapping maps infinite plays (infinite sequences of states and
actions) to real numbers. The payoff mappings used in computer science tend to
be different from the traditional payoff mappings used in game theory. The payoffs
prevalent in computer science are often expressed in some kind of logic and the
corresponding payoff mappings take only two values, 1 for the winning plays and 0
for the losing plays.

On the other hand, the payoff mappings used in game theory are rather real
valued: mean-payoff, discounted payoff, limsup and liminf payoffs are among the
most popular ones.

In this thesis we define and examine the class of priority games. The priority
games constitute a natural extension of parity games, this latter class is the class
of games popular in computer science having applications in automata theory and
verification.

To put the results of the thesis in the context let us recall the relevant results
concerning the parity games.

2.1 Context - the parity games and p-calculus

A stochastic zero-sum two-player game is an infinite game played by two players,
player Max and player Min, on an arena with a finite set of states S and a finite set
of actions A (the games where one or both of these sets are infinite are beyond the
scope of the thesis). Turn-based stochastic games and concurrent stochastic games
differ in the law of motion that specifies how the game moves from one state to
another in function of the actions played by the players.

In turn-based stochastic games each state is controlled by one of the players. The
dynamical aspect of the system is captured by the family of probability distributions

1. perfect information games with deterministic transitions

2. The terms “turn-based stochastic games” and “concurrent stochastic games” are commonly
used in Computer Science. In game theory these classes of games are called respectively “perfect in-
formation stochastic games” and “stochastic games”. Thus, in particular “stochastic games” without
any other qualifier refers to concurrent stochastic games.
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p(+]7,a), where for state ¢ € S and action a € A, p(j|i, a) is the probability to move to
state 7 when the player controlling the current state ¢ executes a. It is assumed that
both players know all the history (sequences of visited states and played actions) of
the game up to the current moment.

In concurrent stochastic games it is rather the case that both players control
collectively the transitions. More specifically, in concurrent stochastic games, for
each state 7, both Max and Min have nonempty sets of available actions, A(i) and
B(i) respectively. At each stage, the players, knowing the current state and all the
previous history, choose independently and simultaneously actions a € A(i) and
b € B(i) respectively and the game moves to state j with probability p(jl|i, a,b).
Immediately after each stage, and before the next one, both players are informed
about the action played by the adversary player.

Thus in the concurrent stochastic games the transition mapping assigns to each
state i and to actions a € A(i), b € B(i), a probability distribution p(-|i, a,b) over
states.

We assume that players play an infinite game. At each stage either one of the
players, in the case of the turn-based stochastic games, or both players, for the
concurrent stochastic games, choose action and the game moves to another state
according to the transition probability.

An infinite sequence of states and action occurring during the game is called a
play.

Since we are interested in finite state games, without loss of generality we assume
in the sequel that the set of states is S = [n] = {1,...,n}.

Parity games are endowed with the reward vector r = (ry,...,r,), where r; €
{0, 1} is the reward of state i. The parity payoff ¢(h) of an infinite play h is defined
to be equal® to the reward of the maximal state visited infinitely often in A, i.e. the
payoff is equal to r; if ¢ was visited infinitely often in h and all states 7,5 > i, were
visited only a finite number of times. This definition of the parity payoff is the same
for all classes of parity games: deterministic parity games, turn-based stochastic
parity games and concurrent parity games, the only difference between these three
types of games lies in their transition mappings.

A strategy of a player is a mapping o : H — A(A), where A(A) denotes the set
of probability distributions over A. We will define more precisely the strategies for
turn-based stochastic games in Chapter 4 and for concurrent games in Chapter 5.

The set of all plays is endowed in the usual way with the Borel o-algebra gen-
erated by the cylinders. Strategies o, 7 of players Max and Min and an initial state

3. The payoff of the parity game is usually formulated in a bit different way: The states are a
finite subset of natural numbers and reward of state 7 is equal to 0 if 7 is even and 1 otherwise.
However it is easy to see that our definition is equivalent to the usual one by just renaming the
states.
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i € S give rise to a probability measure P;"" over the Borel o-algebra. The aim of
player Max (respectively Min) is to maximize (respectively minimize) the expected
payoff

RS (p) = f (P77 (dh)

for each initial state 1.

Since the parity payoff is Borel measurable, by the result of Martin [Mar98§],
parity games have value v; for each initial state i, i.e.

supinf E]" () = v; = infsup E]""(¢), VieS. (2.1)

Moreover, for deterministic and for turn-based stochastic parity games both play-
ers have optimal pure memoryless strategies, see for example [EJ91, Zie98, Wal02|,
where the deterministic parity games are examined, and |[CJHO04| for turn-based
stochastic parity games.

One of the techniques used to solve parity games relies on the u-calculus. In this
approach the point of departure is a simple one-step game® played at each state
1 € S. The one-step game has a value for each state ¢ € S and each reward vector
r=(ry,...,m). Let

f=, s fn) (2.2)

be the mapping that maps the reward vectors r € {0,1}" to the vector of values
of the one-step games, i.e. for r = (r1,...,7,) and i € S, f;(r) is the value of the
one-step game played at state i given the reward vector r. We endow [0, 1]™ with
the product order, x = (z1,...,2,) < (Y1, ..,Yn) = y if ; < y; for all ¢ € [n], which
makes it a complete lattice. It is easy to see that

f10,1]" — [0, 1]

is monotone under <, thus by Tarski’s theorem [Tarb5|, f has the least and the
greatest fixed points.

Then one defines the nested fixed point

Fix"(f)(r) = pr, Tn-flr,  Tn1- - Py T fbp T1-f (X1, Toy oo 1, T, (2.3)

where ., z; denotes either the greatest fixed point if ; = 1 or the least fixed point
if 7, = 0 and f is the one-step value function (2.2). The main result obtained in

4. The term “one-step game” is commonly used in game theory. In computer science one-step
games are not named explicitly, but their value function f is used in the p-calculus approach to
parity games, where is often called the predecessor operator.
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the p-calculus approach to concurrent stochastic parity games due to de Alfaro and
Majumdar [dAMO04], is that

v = (Uh . ,Un) = Fan(f)(T%

where the left-hand side vector v is composed of the values v; for the parity game
starting at ¢, cf. (2.1). To summarize, the value vector of the parity game can be
obtained by calculating the nested fixed point of the one-step value mapping®.

Let us note that for deterministic parity games (turn-based games with deter-
ministic transitions) the p-calculus representation simplifies since the one-step value
mappings f; map the binary vectors {0,1}" to {0,1} and the parity games can be
treated in the framework of the boolean p-calculus [Wal02, ANO1|. Since in the the-
sis we do not consider the deterministic games we omit the more detailed discussion
of deterministic parity games.

2.2 From parity games to priority games

The parity games (as well as other related classes of games like the games with the
Muller or Rabin winning conditions) arose from the study of decidability questions
in logic. In this framework the winning criteria are expressed in some kind of logic,
where there is room for only two types of plays, the winning plays that satisfy a
logical formula and the losing plays that do not satisfy the formula. For this reason
the rewards in the parity games take only two values, 0 and 1, with the intuition
that the reward 1 is favourable and the reward 0 unfavourable for our player (and
the preferences are inverse for the adversary player).

However, the restriction to 0, 1 rewards does not allow to express finer player’s
preferences. This motivates the study of the games that allow any real valued re-
wards. We define the priority game as the game where each state i € [n] = S is
equipped with a reward r; € R. Like in parity games the payoff p(h) of a play h is
defined to be the reward r; of the greatest state ¢ that is visited infinitely often in
h.

At first glance, the priority games are just a mild extension of parity games. This
impression is reinforced by the fact that deterministic priority games, which we do
not consider in the thesis, can be reduced to deterministic parity games. However,

5. The traditional presentation of this result is a bit different. Roughly speaking the variables
are regrouped in blocks, each block consists of consecutive variables to which the same fixed point
is applied. In this way the fixed points are applied to the groups of variables rather than to each
variable separately. This allows to decreases the number of fixed points and the resulting formula
alternates the least and the greatest fixed points. However, this is only a technical detail which has
no bearing on the result. For our purposes it is more convenient to apply fixed points to variables
rather than to groups of variables.
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we do not know if such reduction is possible for stochastic (turn-based or concurrent)
priority games.

The interest in priority games is twofold. First, the priority games allow to quan-
tify players’ preferences in a more subtle way than it is possible in parity games.
While in parity games there are only two classes of plays, the plays with the parity
payoff 1 and the plays with the parity payoff 0, in priority games we can distinguish
many levels of preferences. As a motivating simple example consider the priority
game with three states S = {1,2,3} and rewards 1 = 0,ry = 1,73 = %. This game
gives rise to three distinct classes of infinite plays: player Max highest preference is
for the plays such that the maximal state visited infinitely often is state 2 (plays give
him the payoff 1), his second preference is for the plays that visit state 3 infinitely
often (these plays give him the payoff %), and his lowest preference is for the plays
that from some moment onward stay forever in state 1 (they give him payoff 0). It
is impossible to capture such a hierarchy of preferences when we limit ourselves to
the parity payoff.

The second reason to be interested in priority games stems from the fact that
not only they generalize parity games, but they contain as proper subclasses two
other well known families of stochastic games: the lim sup and lim inf payoff games
[MS04]. This point will be discussed in Section 5.1.

Our approach to priority games is inspired by the p-calculus approach to parity
games. There are two major differences however.

It is impossible to solve the priority games using only the least and the greatest
fixed points, we need also other fixed points that we name “the nearest fixed points”.
To define this notion we use the well known fact that the one-step game value
mapping (2.2) is not only monotone but it is also nonexpansive, which means that,
for z,y e R, || f(x) — f(W)|low < || — Y|, Where ||zl = sup;|z;| is the supremum
norm. Let us note that this property of the one-step games is used in the study of
stochastic mean-payoff games |[BK76, Ney03].

In the study of parity games the fact that the one-step game value mapping f
is nonexpansive is irrelevant, the monotonicity of f is all that we need in order to
apply Tarski’s fixed point theorem. When we study the priority games, when other
fixed points enter into consideration, the monotonicity of f is not sufficient and the
fact that f is nonexpansive becomes paramount.

Our study of priority games is organized as follows.

It turns out that the priority games with rewards in R can be reduced through
a linear transformation to the priority games with rewards in the interval [0, 1].
Therefore in the sequel we assume that the reward vector r = (rq,...,r,) belongs
to [0,1]". Under this condition value mapping f of the one-step game (2.2) is a
monotone nonexpansive mapping from [0, 1]™ to [0, 1]™. Since our study of priority
games is based on the analysis of the fixed points of f, in Chapter 3 we prepare the
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background and present basic facts concerning fixed points of monotone nonexpan-
sive mappings from [0, 1] to [0, 1]™. All the facts presented in Chapter 3 are either
well known or are rather straightforward observations. The purpose of Chapter 3 is
to regroup in one place all the facts that we need in the sequel and to introduce the
notion of the r-nearest fixed point

fr.g()

of the monotone nonexpansive mapping ¢ : [0,1] — [0, 1]. Intuitively, p,z.g(x) is
the fixed point of g which is nearest to r € [0, 1]. Note that the least and the greatest
fixed points of g are special cases of this notion, the greatest fixed point is the fixed
point nearest to 1 and the least fixed point is the fixed point nearest to 0. We show
that the notion of the nearest fixed point makes sense for monotone nonexpansive
mappings from [0,1] to [0,1]. In Chapter 3 we define also, for each vector r =
(ri,...,7r) € [0,1]™ and a monotone nonexpansive mapping f : [0,1]" — [0, 1]",
the nested r-nearest fixed point

Fix"(f)(r) = pir, Tpoflr, X1« g Tofly 1. f (X1, Toy ooy Ty, Ty), (2.4)

which generalizes the nested least/greatest fixed point (2.3).
Chapter 4 is devoted to the study of turn-based stochastic priority games. The

main result of this chapter is that, given the reward vector r = (ry,...,7,), the value
vector v = (vq,...,v,) of the turn-based stochastic priority game can be expressed
as the nested r-nearest fixed point

0= (01, ., v) = Fix"(f)(r) (2.5)

of the value mapping f of the one-step game. Moreover, we prove that both players
have optimal pure memoryless strategies.

Chapter 5 examines concurrent stochastic priority games. We prove that the
r-nearest fixed point characterization (2.5) of the value vector holds also for con-
current priority games. However, in general the players have only e-optimal history
dependent strategies.

Although the results of Chapters 4 and 5 can be seen as extensions of the u-
calculus characterization known for parity games [MMO02, dAMO04| there is one more
point that distinguish our approach from the traditional p-calculus approach to
parity games. In the case of parity games, to the best of our knowledge, the u-
calculus proofs presented previously were not inductive. In previous proofs a formula
similar to (2.3) was announced and it was shown, in one big step, that this formula
yields the value of the parity game °.

6. Such single big step proofs characterize also the p-calculus approach to deterministic parity
games [Wal02]. In retrospect, what was lacking in previous proofs was a game interpretation of the
partial fixed point, where some variables remain free.
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The fact that the nested fixed point formula (2.3) is in some sense recursive, was
not exploited to the full extent in the proof.

The novelty of the proofs presented in Chapters 4 and 5 lies in the fact that
they are genuinely inductive. We provide a clear game theoretic interpretation of
the partial fixed point formula

Fixk(f)(r) = U Tk oo ey 1 f (T2 Tl Tt 1y - -+, ), (2.6)
where the fixed points are applied only to the low priority variables 1, ..., z;, while
the free variables x4, ..., z, take values ry,q,...,r, respectively.

Let G(r) be the priority game endowed with the reward vector r. Let Gj(r)
be the priority game obtained from G(r) by transforming all states i,i > k, into
absorbing states”. On the other hand, the states j,j < k, have the same transitions
in G(r) as in G(r).

It turns out that the partial nested fixed point (2.6) is equal to the value vector
v = (v1,...,v,) of the priority game Gy (r). We prove this fact by induction, starting
with the trivial priority game Gy(r), where all states are absorbing. And the induc-
tive step consist in showing that, if (2.6) is the value of the game Gy (r), then adding
the new fixed point p,,,, 2,41 we obtain the value vector of the game Gy 1(r). In
other words, adding one fixed point corresponds to the transformation of an absorb-
ing state into a nonabsorbing one. Note that in priority games the absorbing states
are trivial, if a state m is absorbing then v,, = r,,, i.e. the value of m is equal to the
reward r,,,. Thus transforming an absorbing state into a nonabsorbing we convert a
trivial state into a nontrivial one. The crucial point is that in the inductive proof
given in the thesis we apply this transformation to just one state. And it is much
easier to understand what happens if one state changes its quality from absorbing
to nonabsorbing than when all states are nonabsorbing from the outset.

7. Recall that a state i is absorbing if it is impossible to leave ¢, i.e. for all possible actions
executed in ¢ the game remains in ¢ with the probability 1.
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Chapter 3

On fixed points of bounded
monotone nonexpansive mappings

In this technical chapter, we introduce monotone nonexpansive mappings, that
play a crucial role in the study of stochastic priority games. The solution to stochastic
turn-based and concurrent priority games given in Chapters 4 and 5 relies heavily
on fixed point properties of such mappings examined in Section 3.1. In Section 3.2
we define and examine the nested nearest fixed points of monotone nonexpansive
mappings.

The duality of the nested nearest fixed points is studied in Section 3.3.

An element = = (x1,...,2,) of R" will be identified with the mapping x from
[n] = {1,...,n} to R and we can occasionally write z(i) to denote ;.

The set R™ is endowed with the natural componentwise order, for z,y € R",
x <vyif z; <y, for all i € [n].

A mapping f : R® — R¥ is monotone if for z,y € R, x < y implies f(z) <
f(y) (we do not assume that k = n, thus © < y and f(z) < f(y) can relate to
componentwise orders in two different spaces).

We assume that the Cartesian product R" is endowed with the structure of a
normed real vector space with the norm |||, for x € R", |||, = maxe[n)|z;|. Thus,
for z,y € R, ||z — yl|o defines a distance between x and y.

We say that a mapping f : R® — R* is nonexpansive if, for all z,y € R",
1f(2) = FWllee < [l = yllo-

Such a mapping f can be written as vector of k mappings f = (fi,..., fx),
where f; : R" - R, ¢ = 1,... k. Clearly, f is monotone nonexpansive iff all f; are
monotone nonexpansive.

We say that a mapping f : R® — RF¥ is additive homogeneous if for all A € R and
rzeR”
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flz+Xen) = f(z) + Aex,

where e, and e are the vectors (1,...,1) in R® and R* respectively having all
components equal to 1.
Crandall and Tartar [CT80] proved the following result.

Example 3.1. Let f : R” — R the max function such that for all z € R", max(x) =
max(z1,...,2,) and let g : R* — R the zero function such that for all z € R™,
g(xz) =0.

Remark that both f and g are nonexpansive and f is also additive homogeneous,
but ¢ is not additive homogeneous because for any x € R™ and A # 0,

0=g(z+ Xep) #g(z) + A >0.
Lemma 3.2 (Crandall and Tartar [CT80|). For additive homogeneous mappings
f:R™ - R* the following conditions are equivalent:
(i) f is monotone,
(ii) [ is nonexpansive.
We will need only the implication (i)—(ii) that we prove below for the reader’s

convenience. Moreover, if the result holds for mappings from R” to R then it holds
for mappings from R” to R*. Thus we assume in the proof that that f : R* — R.

Proof. For z,y e R", e, = (1,1,...,1) e R® and X = ||z — y||c we have y — Xe,, <
xr <y + Ae,. Thus for f: R®™ — R monotone and additive homogeneous we obtain

fly) =A< f@) < fly) + A

Thus [f(z) = f(y)] < A = llz = yllw. O

3.1 Fixed points of monotone nonexpansive map-
pings

We say that a monotone mapping f : R™ — R* is bounded if f([0,1]") < [0, 1]*.

The set of bounded monotone nonexpansive mappings will be denoted by M, £[0, 1].
Moreover BMN will stand for the abbreviation for “bounded monotone nonexpan-
sive”.

In this section we introduce the notion of the nearest fixed point of BMN map-
pings generalizing the least and greatest fixed points.

In the following lemma states basic properties of fixed points of BMN mappings.
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Lemma 3.3. Let f € M;,[0,1]. Define by induction, fO(x) = z, fP(x) = f(x),
fU (@) = f(fO(2)), for x € [0,1].
Then
(i) for each x € [0,1] the sequence (f@(z)),i = 0,1,..., is monotone and con-
verges to some x* € [0, 1]. The limit * is a fived point of f, f(z*) = x*,
(i1) if © < y are fized points of f, f(x) = x and f(y) = y, then for each z such
that v < z <y, f(2) = 2,
(iii) the sequence (f(0)),i =0,1,2,..., converges to the least fived point L; of f
while the sequence (f¥(1)),i = 0,1,2,..., converges to the greatest fized point
Ts of f. The interval [Lg, T¢] is the set of all fived points of f.
If 0 < x < Ly then the sequence (f9(z)) converges to 1.
If Ty <z < 1 then the sequence (fV(z)) converges to T;.
If0 <z < Ly then x < f(x).
If Ty <2 <1 then f(x) < .

Proof. (i) Suppose that f(x) < x. Then inductively, since f is non-increasing,
fO(z) < fO(x) for all 4, i.e. the sequence f)(x) is non-increasing. Since this
sequence is bounded from below by 0 it converges to some x™.

The case of f(x) > x can be treated in a similar way.

Since f is nonexpansive |f(z*) — f0*Y(z)| < |2 — f@(z)|. As the right-hand
side tends to 0 we can see that f¥)(x) converges to f(®). On the other hand, f®(z)
converges to . Therefore f(x®) = z*.

(ii) Let 0 < 2 < 2 <y < 1and f(z) = z, f(y) = y. Since f is monotone,
x = f(z) < f(2) < f(y) = y. Thus, since f is nonexpansive, 0 < f(y)— f(z) <y—=z
and 0 < f(z) — f(x) < z — x. This implies that f(z) = z.

(iii) is a direct consequence of (i) and (ii). O

Let f e M;4[0,1]. For a € [0, 1] we define the a-nearest fized point of f to be
pa.f () := lim f9(a).

Lemma 3.3 shows that this is really a fixed point of f which is closest to a, i.e.
|CL - ,uax.f(x” = minze[O,I]“a - Z’ | f(Z) = Z}
Moreover, the least and the greatest fixed points of f € M; 1[0, 1] are respectively

equal to poz. f(z) and pix. f(z).
We can see also that

pox-f(z) if a < pox.f(x),
fa-f(T) = { a if pox. f ()
e f(@) i . f()

< . f(z), (3.1)

<a
< a,
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i.e. the fixed point nearest to a is equal either to the least or to the greatest fixed
point or is equal to a itself.

Let f: (z1,...,2,) — f(z1,...,2,) be a BMN mapping from [0, 1] to [0, 1].
For each (r,..., 7% 1,7ks1,---,7n) € [0,1]""! we obtain a BMN mapping

Ty — f(T17 ooy T—1, Tls T4 1y - - - 7Tn)'

from [0, 1] to [0, 1]. This mapping belongs to M; [0, 1] thus, given ry € [0, 1], we
can calculate the rg-nearest fixed point

,Ur‘kxk'f(rla oy T—1, Ty Th+15 - - - 77111)-
This fixed point depends on r = (ry,...,7x_1, 7k, Tks1,---,7n), thus we can define
the mapping
[07 1]n 3 (Th ey Te—1, Tk Tht1, - - 7Tn) — :urk-rk'f(rh vy Te—1, Ty Tt 15 - - - 7Tn) € [07 1]

Lemma 3.4. If (x1,...,2,) — f(x1,...,2,) is BMN then the mapping (3.2) is
BMN.

Proof. Letr = (r1,...,7m,),w = (w1, ..., w,) € [0,1]". Define two sequences (r%),i =
1,2,...and (wi),i = 1,2,..., such that
re =1 and it = f(ry, T, T Th s s Th)
and
wp =wp and  wiT = (Wi, W1, Wy Why 1, - - W)

By Lemma 3.3 both sequences converge to some r;° and w;’ respectively and

T]? = MT'kxk'f(T17 ooy T, Ty Tt 1y - - - 7Tn)
and
e¢]
Wy = Lo Th- [ (W15 o W1, Thoy Wheg 15+« -, W)
We shall prove by induction that for all 7, |rl — wi| < ||r — w]|e-
Clearly, |ri — wp| = |re — wi| < max;|r; — w;| = ||r — wl|o. Suppose that

7, = wil < Ir = wlle.
We have then
’T]?_l_w[i;_l = |f<T1, ceey Tl—1, Tliga Tk+1, - 7rn)_f(w17 cee 7wk—17wli:7wk+17 s ,’an)‘ <
max{max|r; —w;l, [r, — wi[} <
jtk

max{max|r; — w;|, [|r — w|[e} = [|r — w||o.
j#k

Taking the limit ¢ /' o0 we obtain |r{® — w| < [|r — w||eo-
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Lemma 3.5. If f € My,,[0,1] and g € M, ,[0,1] then go f € My ,[0,1], i.e. the
composition of BMN mappings ts BMN.

Proof. For z,y € [0,1]*, we have [|g(f(2)) = g(f(¥) |l < [/ (2) = F(Y)lleo < [l2 = ylloo
i.e. composition of nonexpansive mappings is nonexpansive. Trivially, monotonicity

is also preserved by composition. O

3.2 Nested fixed points of bounded monotone non-
expansive mappings
In this section we define by induction, for each k, 0 < k < n, the nested fixed
point operator.

We define by induction for each k, 0 < k < n, the nested nearest fixed point

operator
Fix* : M, ,[0,1] — M,_,[0,1].

Each Fix"* can be decomposed into n operators Fixf,
Fix? : M, ,[0,1] — M,.[0,1], i€ [n],
such that, for f e M, .,
Fixt(f) = (Fixt (), ..., Fixt (f)).
Let f = (f1,..., fn) € My, [0, 1], where f; € M, 1[0, 1], for i € [n].
For all r € [0,1]" we set Fix"(f) to be such that
Fix’(f)(r) = r.

Thus Fix’(f) is the identity mapping and does not depend of f. Note that Fix} (f)(r) =
7y, i.e. Fix)(f) is the projection on the ith coordinate.

Now, inductively, given Fix*~!(f) we define Fix"(f).
For r € [0,1]™ and ¢ € [0, 1] let us set

EFYCr) = Fix Y ) (e, G Thgts o), forie [k —1]. (3.3)
Note that FF7'(¢;r) depends on ¢ and on (ri,...,7%_1,7ks1,--.,7s) but does

not depend on ry,. Thus F*~! is in fact a mapping from [0, 1]" to [0, 1].
Then we define

Fix{(£)(r) := pr G fe(FFTHEGT), o FEHEGT), G gty ooy T0), (3.4)
Fix?(f)(r) := Fix" (F)(r1, ..., o1, FIXE(F) (1), Tha1s - T),s for i e [k — 1],
Fix!?(f)(r) := 7, forie{k+1,...,n}.
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Since the definition of the nested fixed point mappings uses only the composition
and the nearest fixed point operators, Lemmas 3.5 and 3.4 imply that

Corollary 3.6. If f € M, ,[0,1] then, for all k€ {0} U [n], Fix"(f) € M,, [0, 1].

Let us note finally that Fix*(f) depends only on fi,..., fi but is independent
of f/c-i—ly' . 'afn-

Example 3.7. Let n = 2 and f = (f1, f2) : M2[0,1] such that for all z = (z1,25) €
[0, 112, fi(z1,20) = max(x1, 22), fo(w1,22) = 21 and let r = (r1,7r9) = (0, 1).

Let us calculate the value of Fix® inductively, for & = 0 we have Fix’(f)(r) =
(0,1).

For k =1,

lei(f)(r> = MOC'f1<C7 1) = MUC‘ max(g, 1) =1, and

leé(f)(r) =71y = 1.
Finally, with k = 2,

Fixs(f)(r) = ml. f2(FL(¢, 1), €).

So we need to calculate the value of F}((,1):
FI(¢,1) = Fix; (f)(¢. 1) = po¢-f1(¢, 1) = 1.

Then Fixy(f)(r) = 1 and Fixi(f)(r) = Fix;(f)(0,1) = uo¢-f1(¢,1) = 1.
Hence,

Fix?(f)(r) = (1,1).

3.3 Duality for the bounded monotone nonexpan-
sive mappings

In this chapter we define and examine the notion of duality for the BMN map-
pings.

Forr = (ry,...,r,) € [0,1]" weset 1 —r:= (1 —1ry,...,1—1,).

Given a BMN mapping f : [0,1]" — [0,1] the dual of f is the mapping f
[0,1]™ — [0, 1] such that

flri,..o,m) =1—f(1l—=ry,...;1—ry,).
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The dual of f = (fi,..., fx) € M,u[0,1] is defined as f = (f,..., f,.).

We can write this in a more explicit way if for f = (fi,..., fx) € Mp[0,1] we
define 1 — f:=(1— f1,...,1— fr).

Then using this notation, for f € M, [0, 1], we can write succinctly

fr)=1—f(1-r).
Lemma 3.8. If f is BMN then f is BMN.

Proof. Let (ry,...,ry) < (wy,...,w,).

Then (1 —7ry,...,1 —7ry) = (1 —wy,...,1 —w,) and f(1 —ry,...,1 —1r,) =
f(l=wy, ..., 1—w,).

Thus f(ry,...,mn) =1 —f(1—r,...,1—7r,) <1—f(1—wy,...,1—w,) <

f(wy, ... ,wy,), i.e. f is monotone.

Finally ||f(r)—=f(w)]le = [(1=f(1=7))=(1=f(1-w)) [l < [|(1=7)=(1=w)[|c =

|r — w||, i.e. f is nonexpansive. O
Lemma 3.9. If f € M, 1[0,1] then, for all k € [n] and r = (ry,...,7,) € [0,1]",

Mrkl’k-f(ﬁ,---77“k71,$k77’k+17---;7”n) =

1=yt f(L=rp, o L=, L= g, L= 1pgg, oo, L= 7).

Proof. Let Ty and L; be respectively the greatest and the least fixed points of the
mapping
T > (fT1s e Tty Thy Thg 15 - -+ Tn) -

Similarly let T4, L7 the greatest and the least fixed points of the mapping
vp f(L—ry, 01—, 1 =2, L —rpgn, ., L — 1),
Since f(1=r1, ..., 1=rp_1, Tp, 1=Tpa1, oo mn) = L= f(re, oo Toet, L=, Thits -, )
we have ly=1—Tyand Ty =1— 1.
There are three possibilities concerning the position of rj relative to Ly and T .
If Ty <ry then
Mrk(l’kf?”l, TRy Thy Th 1y -+ 5 Tn) = Ty

However, in this case we have also 1 —r, <1— T, = L7 implying that

,ul_,nk,xk.f(l — Ty L=, Ty L — TRy, e Th) = J_f.
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In a similar way if r, < L, then

Py T f (715 oo Ty Ty Tt 1y - -5 Tn) = Ly

and
,ul—rkxk:'f(]- A TEREE! 1 - Tk—1, Tk, 1- Tht1y .- >Tn) = T?

The last case to examine is when Ly <7, < T4. Then
P T f (T ooy Th 1y Ty Thg s -+ 5 Tn) = T

and, on the other hand,

implying
Nl—rkxk-7<1 — e L=, e, L= Tpq, ey mn) = 1 — 1
L]

Lemma 3.10. Let g € M,,[0,1] and f € M ,[0,1]. Then fog = fog, i.e. the
dual of the composition of BMN mappings is equal to the composition of duals.

Proof. For r € [0,1]" we have (fog)(r) =1—(fog)(1—-r) =1~ f(g(1 —r))
1—fl-(1—-g(1—-r)=1=f1—-7(r) = (f(G(r)).

The following lemma examines the duality for the nested nearest fixed points.

(I

Lemma 3.11. Let f = (f1,..., fn) € Mp,[0,1]. Then for all k, 0 < k < n, and
re [0, 1]" B
Fix"(f)(r) = 1 — Fix"(f)(1 —r). (3.5)

Proof. Induction on k.
r — Fix’(f)(r) = r is the identity mapping independently of f. Thus the left-
hand side of (3.5) is equal to r and the right-hand side is 1 — (1 — ) = r as well.
For each 0 < k < n, let us set

Fix(f)(r) = H(r) = (HY(r), ..., HE(r))

and
k

. ki F —k —k —
Fix“(f)(r) = H (r) = (H(r),..., H,(r)).
Using this notation (3.5) can be written as

H(r)=1—H(1—r). (3.6)
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Our aim is to prove the last equality for £ under the assumption that it holds
for k — 1.

By definition

—k — k-1
Hy(1—=7r)=pmprp.fr(Hy (I—=ry,. . L=, 25, 1= g1, .00, 7)),

.
—k—1
H, {(1—=ry,. . L =rp g, 25, L —Tpp1, .., 1),

Ty L — g1, .o, L—1p).
Let us define a mapping G* € M, [0, 1]:
GF = (HF Y HY T, ety - ),
where 7;(z1,...,2,) = x5, 1 =k, k+1,...,n, is the projection on the i-th coordinate.
Since w; = m;, i.e. the dual of the projection is equal the same projection mapping
we can see that the dual to G¥ is
k—1
e Hp T Tty - )

Therefore, by Lemmas 3.10 and 3.9,

—k - —k
H(1-r)=m_pxr.fr,oG (L—ry,...;, 1 —rpq, 25,1 —rpyr ..., 1 —1p)

=1 T fko GF(L—ry, o 1=y, wp, L — gy oo, 1 — 1)
=1- /’LTk'rkfk OGk(r17' ey k=1, Ty Th+1, - - - 7Tn) =1- H;:(T)
For m e [k — 1],
k k—1 —k

H,(1—-r)y=H,, Q—r,.... =1, H (1 —=7), 1 —751,..., 1 —1p)
=Fﬁ1—1(1—7"1,...,1—Tk_hl—H,’j(r),l—rkH,...,l—Tn)
=1—H Yo, oo, HE(F), Pty oy )
=1 H)

Finally, for m > k,
L= Ho(1—7) =1 — (1 —rp) = rm = HE(r).

This terminates the proof of (3.6).
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Chapter 4

Turn-based stochastic priority games

A turn-based stochastic priority game is played by two players on an arena with
a finite set of states S = [n] = {1,...,n} partitioned into two sets SM** and SMin
where SMa* and SMim are the sets states controlled by player Max and player Min,
respectively. For each state i € S, A(i) is a finite nonempty set of actions that are
available in i. For i, 7 € S and a € A(7), p(j|i, a) is the transition probability to move
to state 7 if action a is played at state q.

The players play an infinite game, at each stage the player controlling the current
state selects an action to execute and the game moves to a new state according to
the transition probability.

The arena is endowed with a reward vector r = (rq,...,r,), where r; € R is the
reward of state 7. The priority payoff of an infinite play is defined to be the reward
of the maximal (in the usual integer order) state visited infinitely often during the
play. The goal of player Max (respectively player Min) is to maximize (respectively
minimize) the payoff.

There are two main results in this chapter:

e the value vector of the turn-based stochastic priority game can be obtained as
a nested nearest fixed point of a monotone nonexpansive mapping f, where f
is the value mapping of the one-step game, and

e both players have pure memoryless optimal strategies.

Note that the last point implies that, since the number of possible pure mem-
oryless strategies is finite, we can find, although in a very inefficient way, optimal
strategies for both players through the exhaustive search among all pure memoryless
strategies.

The turn-based stochastic priority game with the rewards in the two element set
{0,1} is known as the turn-based stochastic parity game. These games have been
examined in several papers [MMO02, CJHO04|. In particular Chatterejee, Jurdzinski
and Henzinger |CJHO04| proved that in turn-based stochastic parity games both
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players have pure memoryless optimal strategies, but their proof is quite different
from the one presented in this chapter and relies on the non-trivial general result of
Martin [Mar98] concerning the existence of the value for Blackwell games.

In our approach we proceed differently. First of all we show that, without loss of
generality, we can limit ourselves to priority games having rewards in the interval
[0, 1].

Next for each state ¢ we define a trivial one-step game. The value of the one-step
game depends on the reward vector r. Thus the one-step game played at state ¢
gives rise to a mapping f; that maps the reward vector r to the value f;(r) of state
¢ in the one-step game. The mappings f;, called one-step value mappings, can be
expressed as either the maximum (for the states controlled by player Max) or the
minimum (for the states controlled by the player Min) of a finite number of linear
functions.

It is immediate to see that f; are monotone and nonexpansive.

Let f = (f1,..., fn) be the mapping from [0, 1]" to [0, 1]™ such that, for each m,
the coordinate mapping f,, is the value mapping for the one-step game played in m.

Let

Fix"(f)(r)
be the nth nested r-nearest fixed point of f as defined in Chapter 3.

The first main result of this chapter is that, for each i € [n], the ith coordinate
Fix!'(f)(r) of this fixed point is the value of state i in the priority game for the
given reward vector r.

The proof has a nice recursive structure. Instead of proving this result in one big
step, we prove it by induction on nesting level of the fixed point .

In our approach we provide for all k£ = 0,1,...,n a game interpretation of the
partial fixed point formula

Fix"(f)(r). (4.1)
We prove that (4.1) is equal to the value vector of the priority game with all states
greater than k transformed into absorbing states 2.

The chapter is organized as follows. Section 4.1 provides some basic definitions.
In Section 4.3 we define the one-step game. This is a very simple one-player game
played at each state of the arena. We show, in Section 4.2, that without loss of
generality we can limit ourselves to priority games with rewards in the interval
[0, 1]. In Section 4.4 we give an inductive proof that priority games have optimal
pure memoryless strategies and that the value of the priority game can be expressed
as a nested fixed point of the value function of the one-step game.

1. This is the main departure from the traditional p-calculus approach to parity games as for
example in [Wal02] and [dAMO04], where the proofs were not inductive in spite of the recursive
structure of the p-calculus formula.

2. Recall that a state ¢ is absorbing if for all possible actions the probability to quit ¢ is 0.
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The chapter ends with Section 4.5 where we show that the results of Section 4.4
do not carry over to priority games with an infinite number of states or actions.

4.1 Preliminaries

An arena A of a two-player turn-based stochastic game is composed of the fol-
lowing ingredients:

e a nonempty countable set S of states partitioned onto the sets SM3* of states

controlled by player Max and the set SM® of states controlled by player Min,

e for each state i, a nonempty countable set A (i) of actions available at 4,

e for all 4,5 € S and a € A(i), the probability p(j|i,a) to move to state j when
action a is executed in state .

We assume that the sets A(i),7 € S, are pairwise disjoint.

An infinite game played by players Max and Min starts at some state s; € S.
At each stage t,t = 1,2, ..., the player controlling the current state s; chooses an
available action a; € A(s;) and the game moves to a state s;y; with probability

p(3t+1 |3t= Clt)-

Example 4.1. Figure 4.2 depicts a two-player arena with SMi» = {2 3} SMax — (1}
action sets A(1) = {a,b,c}, A(2) = {d} and A(3) = {e}. The transition probabil-
ities are given by p(2|1,a) = 0.7,p(3|1,a) = 0.3,p(2|1,¢) = p(3|1,b) = p(3|2,d) =
p(2]3,e) = 1. We represent the states controlled by player Max and Min as squares
and circles respectively.

a,0.3

a,0.7 c 3

Figure 4.2 — A two-player stochastic arena

A history is a finite sequence h = sy, a1, S92, ..., Sm_1, Gm_1, Sm, alternating states
and actions which starts and ends in a state. The set of all histories is denoted H.
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The length of a history A is the number of actions in h. Note that the histories of
length O are of the form s; for s; € S, i.e. they consist of one state and no actions.

Let Hyax be the subset of H consisting of histories ending in a state controlled
by player Max.

For a finite set A, by A(A) we will denote the set of probability distributions
over A. The support of § € A(A) is defined as supp(d) = {a € A | 6(a) > 0}.

A strategy of player Max is a mapping o : Hypax — A(A), such that supp(o(h)) <
A(s), where s is the last state of h.

A selector for player Max is a mapping o : SM® — A such that, for each
se SMax g(s) e A(s).

A strategy o’ of player Max is said to be pure memoryless if there exists a selector
o such that o'(h) = o(s) for each history h ending in a state s controlled by Max.
In the sequel we identify pure memoryless strategies with corresponding selectors.

The definitions of strategies, selectors and pure memoryless strategies carry over
to player Min in the obvious way.

We write 3 and T to denote the sets of all strategies for player Max and Min
respectively.

In the sequel o, eventually with subscripts or superscripts, is used to denote
strategies of player Max. Similarly, 7, with or without subscripts and superscripts
is used to denote strategies of player Min.

An infinite history or a play is an infinite sequence h = s1, aq, S9, s, . . . alternat-
ing states and actions. The set of plays is denoted H®.

Assuming that the sets S and A are equipped with the discrete topology we
endow the set of plays H* with the product topology. By B(H*) we denote the
o-algebra of Borel subsets of S®.

Let h = sy, aq,...,an_1, Sy be a history. By h* we denote the cylinder generated
by h, i.e. the set of plays (infinite histories) having prefix h.

Cylinders form the basis of the product topology on H®  and B(H®) is the
smallest o-algebra generated by cylinders.

A strategy o of player Max, a strategy 7 of player Min and an initial state ¢
determine a probability measure P}"" on (H*, B(H™)).

We define inductively P;" for cylinders in the following way. Let o U 7 be the
mapping from H to A(A) defined in the following way, for h € H,

o(h) if the last state of h is controlled by Max,
T(h) if the last state of h is controlled by Min.

(cuT)(h)= {

If hg = s1 is a finite history of length 0 then

0 ifi#sl,

1 1fl=81

Py (h) = {
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Let hy_1 = s1,a1,...,8_1,a;-15; and hy = hy_1, a4, S;41. Then
P77(h) = P77 (h_y) - (0 T)(hu1)(ae) - p(Seralse, ar).

Note that the family of cylinders is closed under intersection, this family is a
m-system of sets, which implies that a probability defined on cylinders extends in a
unique way to all sets of B(H™).

A payoff mapping is any bounded Borel measurable mapping

v: H® - R.

For each play h € H*, p(h) is the payoff that player Min pays to player Max if
h is the play obtained during the game.

For each initial state i, the aim of the player Max (player Min) is to maximize
(respectively minimize) the expected payoff:

BI7lel - | enPrTan)

The game with payoff ¢ has value if, for each state i, there exist v; € R, the value
of state 7, such that

inf sup E]""[p] = v; = sup inf E]"[¢].
T€T Hex oex T€T
Strategies ¢* and 7* are optimal for players Max and Min respectively if, for

each state 1,

sup EZ [] < v < inf EZ 7 [¢],
oen TeT

for all strategies ¢ and 7 of Max and Min.

In other words, given an initial state ¢, player Max using his optimal strategy can
secure the expected payoff of at least v;, while player Min using his optimal strategy
ensures that he will pay no more than v;.

Clearly if o* and 7* are optimal then v; = E7 7 [p].

An arena is finite if the set of states S and all sets of actions A(s),s € S, are
finite.

Except in Section 4.5, all games considered in this chapter are played on finite
arenas.

Thus, except in the last section, we will assume that the set of states is a finite
initial segment of integers, i.e.

To define the turn-based stochastic priority games we assume that S = [n] is
endowed with the usual order relation < over integers.
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For two states i, j € [n] we shall say that j has a priority greater than i if i < j,
in other words the natural order over integers will serve as a priority order over
states.

A reward mapping is any mapping
r:S—R,

where, for i € S, the real number r(i) is called the reward of i. Since S = [n] we will
identify the reward mappings with the elements of the Cartesian product R™ and
for r € R", we write r = (r1,...,7,), where r; is the reward of state i. In particular,
we will often call r the reward vector rather than the reward mapping and r; and
r(i) will be used interchangeably.

The stochastic priority game is the game played on arena A with the payoff
mapping ¢, defined in the following way, for each play h = s, a4, so, . . .,

©r(h) = r(limsup s;).
t

Note that since we assumed that the set of statesis {1,...,n}, the sequence sy, sg, s3, . . .
of visited states is a sequence of integers and lim sup is taken w.r.t. the natural or-
der relation over integers. Thus limsup, s; is simply the maximal state appearing
infinitely often in h and the payoff of the turn-based stochastic priority game is equal
to the reward of the maximal state visited infinitely often.

Example 4.3. Let us take the arena A defined in Example 4.1. Let ¢ and 7 be pure
memoryless strategies for player Max and Min respectively such that o(1)(b) = 1/3,
o(1)(c) = 2/3, 7(2)(d) = 1 and 7(3)(e) = 1. Once the memoryless strategies are
fixed, we get a Markov chain, depicted in Figure 4.4. Let r = (0,1,1/5) be the
reward mapping.

Then if the initial state is 1, the game moves to state 2 with probability 2/3.
In other words P77 (1,b,2) = 2/3. Moreover, once the game is in state 2, it al-
ternates between state 2 and 3, i.e., let hy = 1,0,2,d,3,¢,2,d,3,e,2,... and hy =
1,b,3,6,2,d,3,¢,2, ..., hence we get P77 (hs) = 2/3, P77 (h3) = 1/3 and ¢,.(hy) =
©r(h3) = 1/5. The last equality is because im both histories the bigger state infinitely
often visited is state 3 which has a reward r3 = 1/5. Finally,

E{"[¢r] = 1/5.

The aim of the rest of this chapter is to show that finite state turn-based stochas-
tic priority games have value that can be expressed as a nested nearest fixed point
of piecewise linear mappings (the value mappings of the one-day games) and that
both players have optimal pure memoryless strategies.

The proof will carried out by induction on the number of absorbing states.
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Figure 4.4 — Transition probabilities in A with strategies o and 7.

Definition 4.5. A state i € S is called absorbing if, for each action a € A(i),
p(ili,a) = 1.

If the game enters an absorbing state ¢ (in particular if it starts in an absorbing
state i) then the game remains in ¢ forever and the payoff is equal to the reward r;.
In particular, if all states are absorbing then the priority game is trivial, the value
of each state ¢ is equal to the reward r; and all strategies are optimal.

In general, intuitively, a game with many absorbing states is simpler than a game
with a few absorbing states. This observation leads to the inductive proof presented
in this chapter. We start with the trivial priority game where all states are absorbing
and next we transform the states, one by one, starting with state 1, next state 2 and
so on, from absorbing to nonabsorbing.

4.2 Bounding the rewards

In the sequel it will be convenient to assume that all rewards belong to the
interval [0, 1] rather than to R. This can be achieved for each game without loss of
generality by a simple linear transformation. Let a = min,gr;, b = max;gr; and
g(z) = =2 — 7% Then 0 = g(a) < g(z) < g(b) = 1 for z € {ry,...,r,}. Changing
the reward vector from r = (rq,...,r,) to g(r) = (g(r1),...,9(r,)) transforms
linearly the priority payoffs of all plays h since gy (h) = g(@r(h)).

By the linearity of expectation, this implies that for all starting states ¢ and
all strategies o and 7 we have g(E!" (¢,)) = E7"(g(p,)), in particular the priority

games with the reward vectors r and g(r) have the same optimal strategies.
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4.3 The one-step game

For turn-based stochastic games the auxiliary one-step game is a simple one-
player game played in each state. The one step games are an essential ingredient of
our solution to the turn-based stochastic priority games.

Recall that we assume that the set of states is S = [n] = {1,...,n}.

Let z € R™ be a reward vector. For each state k, we consider the following
one-step game played:

e the player controlling & plays an action a € A(k) and the game moves to state
J with probability p(j|k,a),
e this single move ends the one-step game and player Max obtains from player
Min the payoff x;.
If the player controlling k plays action a € A(k) then the expected payoff obtained
by player Max in the one-step game is equal to Y, p(i|k,a) - z;. As always, the aim
of player Max (Min) is to maximize (minimize) this expected payoff.

As the game is finite, it is clear that the player controlling k£ has an optimal pure
strategy in the one-step game, this strategy consists in playing an action a that
either maximizes (if k is controlled by Max) or minimizes (if k is controlled by Min)
the sum >, p(i|k, a) - z;. Therefore, we can see that the value of the one-step game
played at state k € [n] is equal to

maxX,e p(ilk,a) -z, if ke SMax

minaeA(k) Zz p(Z’k, a) - Ty if ke SMin.

In the sequel we consider the value of the one-step game as a function of the
reward vector = (z1,...,%,), i.e. fi is considered as a function

fk . [0,1]” —>R

defined by (4.2).
We set
f=(f ),
ie. f:[0,1]" — R"™ maps reward vectors z € [0,1]" to the vector of values of
one-step games played in the states of S.

Lemma 4.6. The value mapping f of the one-step game is bounded monotone and
NONEeTPansive.

Proof. That f is monotone is obvious. It is bounded since the convex combination
of elements belonging to [0, 1] belongs to [0,1] as well. It is also evident that f is
additively homogeneous, i.e. for each x € R" and each )\ € R,

f(x+)"en):f(x)+>"ena
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where e, = (1,...,1) € R" is the vector with 1 on all components. By Lemma 3.2
this implies that f is nonexpansive. O

4.4 Nested nearest fixed point solution to priority
games

The priority game having all states absorbing is trivial, the value of state i,
i € [n], is r;, where r € [0,1]" is the reward vector. Moreover, all strategies are
optimal, in particular each pure memoryless strategy is optimal.

In this section we provide an inductive proof that all priority games have optimal
pure memoryless strategies.

Moreover, we show that the value vector for the priority game with reward r is
equal to Fix"(f)(r) — the nested fixed point of the value mapping f of the one-step
game defined Section 3.2.

The induction will be carried out on the number of nonabsorbing states. We show
that if we can solve the priority game with states k,k + 1,...,n absorbing then we
can use this solution to solve the priority game with states k + 1,...,n absorbing,
i.e. we can decrease the number of absorbing states. Note that the order in which we
transform the states from absorbing to nonabsorbing is essential, at each inductive
step we transform the smallest absorbing state to a nonabsorbing one.

Although the idea of making some states absorbing in order to simplify the game
is the one that is behind the proof, the direct application of this idea would lead to a
cumbersome notation. For this reason we shall adopt another, equivalent, approach,
where instead of modifying the transition probabilities of the arena we rather modify
the payoff mapping.

By S; and A, t = 1,2,..., we will denote two stochastic processes such that S;
is the state visited at time ¢ and A; is the action executed at stage t, i.e. for a play
h = s1,a4, 82, as, 3, ..., Sg(h) = s; and A;(h) = a;.

For each state k € [n] we define the random variable

T>k1HOO—>NU{OO}

such that
T.r = min{t | S; > k}.

Thus 7% is the time of the first visit to a state greater than k. Since the minimum
of the empty set is +o0 we have 7., = oo for the plays belonging to the event
{Vt,S; € [k]}, i.e. T-), = o if all visited states are in [k].

Note that Ty is a stopping time with respect to {S;};>1. Indeed, for each time
teN,

{Top =t} ={S1 <k,...,S1 <k, Sy >k},
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i.e. the event {T.; = t} belongs to the sigma algebra o(Si,...,S;) generated by
Si,..., 5.
For each k € {0} U [n] we define the stopped state process St[k],t eN,

S, if 7oy > t,
St[k] _ St/\T>k _ St " >k
., TS, <t

where a A b denotes the minimum of a and b.

Thus if all states visited up to the moment ¢ belong to {1,...,k} then St[k]
equal to the state S; visited at the current epoch t. However, if at some previous
epoch a state > k was visited then St[k] is the first such state. In other words the
process St[k] behaves as if the states > k were absorbing.

For a given reward vector 7, we define a new payoff mapping @Lk] :

@ — (lim sup St[k]).
t

The game with payoff <p£k] will be called stopped priority game or simply 4ka1-

game.

Note that once a state m greater than k is visited, the game with payoff cp,[k] is
for all practical reasons over, independently of what can happen in the future the
payoff is equal to the reward r,, of this state and the states visited after the moment
T- ;. have no bearing on the payoff.

In the stopped priority gpgk]—game the states > k will be called stopping states
while the states < k will be called non-stopping.

Note that since we have assumed that S = [n], i.e. n is the greatest state, we
have o™ = o,.

Note also that solving games starting in stopping states is trivial. If ¢ > k then
for all plays h starting in i, ¢! ](h) = 1y, thus E‘”(gpr ]) = r; for all strategies a 7'
the value of a stopping state ¢, ¢ > k, is r;. In particular, the game with ]])ayoff c,or
is trivial since all states of this game are stopping. Moreover, for the <p7« -game all
strategies are optimal since the payoff does not depend on the strategy.

The main result of this chapter is

Theorem 4.7. Let f : [0,1]" — [0,1]" be the value mapping of the one-step game
defined in (4.2).
Then, for each r € [0,1]", the g07[«k] -game satisfies the following properties:

e for each state i € [n], the value of i is equal to Fix¥(f)(r), where Fix"(f) is
the ith coordinate of the kth r-nearest fized point Fix"(f) of f,

e both players have optimal pure memoryless strategies.
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Theorem 4.7 holds trivially for ¢ such that « > k. Indeed, in the @Lk]—game all
states ¢ > k are stopping thus gp,[,k](h) = r; for all plays h starting in a state ¢ > k.
On the other hand, we have also Fix?(f)(r) = r;.

The recursive formula of the nested fixed points that, according to Theorem 4.7,
represents the value of the stopping game has a natural game theoretic interpreta-
tion.

Let us consider the go’(:l P 1 G 1) SR This is the priority game where

the states ¢ # k have rewards r; while the state k, the smallest stopping state, has
reward (.
Suppose that Theorem 4.7 holds for £ — 1. Thus the value of state i € [k — 1] in

the cp’(“:mmkil’mﬂmm)—game, seen as the function of the reward ( of the state k, is

Fik_l(f;r) = Fixf_l(f)(rlv oy o1, G Tty - o ,rn) (4'3)

in the notation of (3.3).
Now let us consider the gogk]—game where the state k becomes the greatest non-
stopping state. Let us note

val; (Spyc] )
(k]

the value of state i in the ; '-game. Clearly for the stopping states we have

val;(@lF) = 7, fori > k. (4.4)
Suppose that
val(¢l') = ¢, (4.5)

i.e. the value of the state k in the p-game is some unknown € [0, 1].

What are the values of the states ¢ < k in the gpyf]—game? Let us start to play

the @Lk]—game starting at state ¢ < k£ and suppose that both players play optimally.
When such a game hits the state k£ then in the auxiliary game starting at k, the
payoff obtained will be equal to the value ( of k. Thus it seems plausible that the
value of state ¢ < k in the go,[«k]—game is equal to the value of this state in the

[k=1] -game which stops at k with the payoff (, i.e.

(r17"'7rk717<7Tk+17“'77"n)

val; (@l = FFY(¢:r), fori < k. (4.6)

T

But what is the value of the state k in the gpyc]—game? Suppose for example that
k is controlled by player Max. When player Max executes action a at k, the game
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moves to state ¢ with probability p(i|k,a) and starting from 7 player Max can win
at least the value Vali(cp,[nk]). Thus in the goyf]—game starting at k player Max can win
L (o) - p(ilk, a).
nax : val;(¢;) - p(ilk, a)
We obtain a similar expression when £ is controlled by Min with min,ea 1) replacing

MaXqeA (k). Using the definition of the value function of the one-step game played at
k, see (4.2), and (4.4),(4.5),(4.6), we obtain

¢ = valy(pl) = fi(vali (o), ... val, (1))
= fk(Ffil(Cﬂn)a s 7F]f:11(C7r)7 C7Tk+17 o 7Tn)'

Thus we can see that a natural candidate for the value of the state k in the gp,[,k]—game

is a fixed point of the mapping

¢ fo(FFYCGT), . .,F]f__11<<-;7ﬂ)7<.77ﬂ]€+1, ey ).

This mapping can have many fixed points, however one of them seems more plausible
than the others, this is the fixed point which is the nearest to the reward r; of k,
i.e. the natural conjecture is that

Valk(goyg]) = ,LLTkC.fk(Flk_l(C; ), ... ,F,f__ll(c; T), (o Thttly -y Tn)- (4.7)

But (4.4),(4.5) and (4.7) and the definition of the nested nearest fixed point coincides
with the inductive definition of the kth nested r-nearest fixed point,

val(plfl) = Fix"(f)(r)

i.e. the kth nested r-nearest fixed point of the value mapping of the one-step game
is the natural candidate for the value of the @Lk]—game.

Theorem 4.7 confirms these intuitions and the proof formalizes the reasoning
given above.

Example 4.8. Let A be the arena defined as follows: let S = {1,2,3}, A such
that A(1) = {a,b}, A(2) = {c,d} and A(3) = {e}, such that p(2|1,a) = p(3|1,b) =
p(3,3,d) = 1, p(1|2,¢) = 0.8 and p(3|2,¢) = 0.2 as shows Figure 4.9 and let r =
(0,1,1/2).

The stochastic priority game is the game played ion arena A with the priority
payoff mapping ¢, defined above. We want to calculate the value of the ,-game,
notice that, as state 3 is absorbing, gp,[nz]—game and ,-game are equal. We start by
calculating the value of state 2 in cpf -game.

Recall the definitions in Section 3.2 and as state 1 is controlled by player Max
and state 2 by player Min we have f = (f1, f2, f3) : [0,1]> — [0,1] the value
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c, 0.8 c, 0.2 Q d

1 3
s

Figure 4.9 — Game with states S = {1,2,3} and actions Aas defined above.

mapping of the one-step game as defined in (4.2), i.e., f1 : (z1, 29, x3) — max(zs, x3),
fo i (x1, 22, 23) — 0.8x1 + 0.223 and f3 : (z1, T2, x3) — x3.
Hence,

Fix;(f)(r) = ¢ fo(F{ (¢:7), ¢, 1/2) (4.8)
and F}(¢;r) = Fixj(f)(0,¢,1/2) that, by induction, it should be the value of
state 1 in the @Eé1471/2)—game that is the max between ¢ and 1/2. In fact,

Fix! (£)(0,¢,1/2) = pof.f1(£.¢,1/2)
= ppé. max(¢,1/2) (4.9)
= max((, 1/2).

Then, retaking (4.8),

Fix;(f)(r) = (. fo(max(¢,1/2),¢, 1/2)
= 11¢.(0.8 x max((,1/2) + 0.2 x 1/2)
—1/2.

And for state 1,

FlX?(f)(T) = FlX%(f)(Ov FlX%(fxT)v 1/2) = F11(0> 1/27 1/2)
= FlX%(f)(O’ 1/27 1/2)
= max(1/2,1/2) = 1/2.

Last equality is due to (4.9). Finally, Fix3(f)(r) = 1/2 and hence the values of
the game according to Theorem 4.7 are given by (1/2,1/2,0) that match with the
values of the game as the reader can easily verify.
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4.4.1 Optimal strategy for player Max

The aim of this section is to construct an optimal pure memoryless strategy for
Max in the <p7[ak]—game.
Through the section we assume that Theorem 4.7 holds for k£ — 1, i.e. for each
reward vector r € [0, 1]", the c,p,[ﬂkfl]—game satisfies the following properties:
(H.1) for each i € [n], the value of state i is equal to Fix* ' (f)(r) and
(H.2) both players have optimal pure memoryless strategies.
We assume that
F, ikﬂ(CE r)

is defined as in (4.3) and we define

FECGr) o= [o(FENG), o FFM G ), Gy ).

Using this notation we have
Fixi(f)(r) = pn G FE(Gr).

Notation:
For a set of plays C' < H®, we will write 1o to denote the indicator mapping of

the set C,
1 ifheC
1o(h) = ’
c(h) {0 otherwise.

Thus for a mapping ¢, E(¢lc) = §, o(h)dh.

Definition 4.10. By T we will denote the time of the mth wvisit to k of the stopped
state process Si[k], i.€.
TH = min{¢ | S k}

and
T — min{t | ¢t > Tgﬂl and S = k}.

m

Note that since the minimum of the empty set is +c0 we have T = o0 if and
only if the stopped state process St[k] visits state k less than m times.

Note also that if T < oo then the following conditions are satisfied:
— S, =k (the state k is visited at the time Tr[f]),

— forall 1 <t < Tr[f], Sy < k (all states visited up to the time T are non-
stopping),
— t#{t < T | S; = k} = m (the number of visits of the state process S; to k up

to the moment T34 included is m).
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Lemma 4.11. Suppose that for each reward vector r € [0,1]", the @Lkil]-game
satisfies (H.1) and (H.2).
Then for each ¢ € [0,1] such that

¢ < Fi(Gr) (4.10)

there exists a pure memoryless strateqy Ué‘” for player Max such that a’g 15 optimal
k—1]

e 1o ) “IGTTE and for each strategy T of Min we have

for Max in the ng
(C1) For all m,

Fﬁ . < _PUICC’T T[k] T[k]
H(Gr) < CPE (T <o [T < o)

m

O'k,T k
+E (o)) L _py | TR < o),

k
(Pl PR G Thg 10eensn) (T

(C2)
k
U{’T

k
FIE(C’ T) < Ek <<'0Er1,...,rk_1,C,rk+1,...,rn))’
(C3) if the inequality (4.10) is strict then

o—kiT . . .
P.° (Si[k] =k for infinitely many i) = 0.
Proof. We begin with the definition of the strategy a'g. To simplify notation, we

write

Tc_k = (11 ey T, G Tt Ly - - ey Tn)-

By (H.1) and (H.2), player Max has an optimal pure memoryless strategy 015—1

in the go[li_kl]—game such that for each strategy 7 of player Min and each starting
"¢
state © < k,
okl s _
FSNGr) < BT Tpn).
¢

To define the strategy a’g we should examine two cases.
Case 1: k e SMax,
Then

FIE(C7T) = fk(Flkil(C77n)7 s 7F]§:11(C;T)7C7rk717 ce arn> =

g%)fTWQTMMAH(mWh®+anMh®
i<k i>k

and selecting the action a, € A(k) such that

a¢ = argmaXZ Fz‘kil(c;r) 'p(i|k,a) + C 'p(k‘k,a) + Zri 'p(i‘kvco

acA(k) i>k
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we obtain

Fi(Gr) = D FNGr) - plilk, ag) + ¢ pklk, ac) + Y - p(ilk,ac).  (4.11)

i<k >k

We define the strategy U]g in the following way, for each state i € [k] n SMax,

alg(z’) _ {O’lg Y@) ifi <k, (112)

CLC 1fl=k3

Case 2: k e SMin,
Then

F]&(C,T) = fk<F1kil(<) Fklfill(C}T) C Tk—1,--- Tn) =
min Z:F’C Y¢r) - plilk,a) +n - p(klk, a) +Zr, (ilk,ac),

eA(k
@ i>k

which implies that for each action a € A(k) we have

Fi(Cr) < DIFFNGr) - plilk,a) + - plklk,a) + D v p(ilk, a) (4.13)

i<k i>k

and we define a’g in the following way
k. _
UC = O'<

We will examine what happens in the (pgi]k—game starting in the state & when

¢
player Max plays using a’g against any strategy 7 of player Min.

Proof of (C1):
Before we start the proof of (C1) it is worthwhile to examine the intuitive mean-

ing of this inequality. Suppose that Tn[f] < o and consider the moment T#f] when
k is visited for the mth time. Let (ry,...,7%x_1,(, Tk41,- .., 7o) be the reward vector.

Consider the auxiliary game starting at time 7, M in k& with the payoff defined in the
following way:

— player Max receives from player Min the payoff ¢ for the plays that return to
k,i.e. for h € H* such that T[J]rl < 0,

Y

— for plays h that do not return to k, i.e. for plays h such that T,[ﬁl(h) =

the payoff is equal to go[k_]k(h).
¢
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Then the right-hand side of (C1) is the expected payoff of such auxiliary game when
player Max plays according to of and inequality (C1) provides a lower bound for
the payoff obtained in the auxiliary game.

To prove (C1), suppose that at the moment T < o0, when the stopped state

process Si[k] visits the state k£ for the mth time, an action is played and this action

is either the action of (k) if k& is controlled by Max or any action from A(k) if k is
controlled by Min. From (4.11) and (4.13) it follows that

8 k-1 o0t | k]
Fi(¢r) < D FFNGr) PR (Sp,, =i | T < o)

m
m
i<k

O'k,T
+ (P (Spa,, = k| TH < o0) (4.14)

O'k,T .
+ Zri Pk< <STT[n],€]+1 =1 | T,gf] < ).

>k
For a play h, h € {S;m,, =i} for i > k, if and only if
— TW¥(h) < o0, i.e. b visits k at least m times,

— all states visited prior to Tﬂf] are < k,

— T 4 1 is the first moment when a stopping state > k is visited and this state
is 7.

However, for the plays h satisfying these conditions the payoff go[k_]k is equal to r;.
¢
Thus

0k7T . .
r = E.f (o, | Spiwr,, = 1), fori>k. (4.15)
TC m
As the second crucial observation let us note the following inequality:

O'k,T .
FFY(¢r) < PRI, < o0 | Sppa,, = 4)

O'kﬂ'
+E;° (SO[k] 1

—k
"¢

{T[k]H:oo} | ST#L“]—H = i), for i < k. (4.16)

The proof of (4.16), notationally somehow cumbersome, is postponed for a mo-
ment.
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Using (4.15) and (4.16), we substitute r; and F*~!(¢;r) in (4.14) and we obtain

Uk,T .
FﬁCT CZPC m+1<OO’ [k]+1:'i>PkC (ST%]_’_I:Z‘T%]<OO) (Sl)

i<k

O'kT

O'k,T k . y
+ ZEkC ((’OEC_]I“]I{T}:L:@} | STr[,]f]Jrl = Z)P]f (STT[ful =1 ’ Tgc] < OO)
i<k
(52)
O'k,‘l'
+ (P (S, = k| TR < o0) (S3)
Uk,T k O'k \T
+ ZEkc (907[,5]1@ | ST,[,If]+1 )PkC (ST7[71 + =1 ’ T ) (84)
1>k
We shall show that
k
R U L k
S2+ 84 =E,* (cprgk]l (1, =y | T < o0) (4.17)
and
O'k T
51453 =¢ Pl (TH < o0 | TH < o0). (4.18)

To prove (4.17) note that by Bayes’ rule

Kk
7T (k] [¥] -
By (Qprgk]l{g[ﬂlzoo} | To' < 0)

k

- of,T . orT .
ZEkC (SOE,]Z—]k]l{T[k] —o0} | S Tk = Z,Tgf’] <0)P. (S, =1]| T#f] < o).

T +1

Note that the kth summand can be eliminated from the sum above because

O'k,T
E,’ (90£?k]1{T7[7/:]+ =k, TH < o) = 0. (4.19)

=0} | ST,[,f]H

Indeed ST[k]-i-l = k means that the (m + 1)th visit of the stopped state process to

k takes place immediately after the mth visit, i.e. Tl ]+1 = T[ i1 < o0, implying

O'kT

Er (Lyg _py | Sy g =k, T < o0) = 0 and (4.19) follows.
And finally, for i > k, Sy, = @ means that at time T 4+ 1 the stopped

state process hits a stopping state thus St[k] will never return to k£ and therefore
P, 7 (Tm}rl 0 | Sy, =14) = 1 implying

O'k,T .
B (ool =i, T < o) =

(T —c0) | ST,[,{“]H

ok r . .
E° (o ,k | Spik, = i, T < o0), for i > k.
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This ends the proof of (4.17).

To prove (4.18), by Bayes’ rule we obtain

P (T < o0 | T < o0)
ot ik Tl ot | I
ZPk (T <0 [ Sy, =, T < 0)Py 7 (Sppa =1 [ T < o0)
i=1
As we have already noted STL{“]H = k implies that Tgfll 7l < w0, i.e.

TET rlk] [k]
Pk (Tm+1<OO|ST[k] Zk‘,Tm <OO)=1.

+1

: TET rlk
— o0, ie. POT(TH ) < oo

On the other hand, ST%]H = ¢ > k implies that Tr[ﬂl
S

Tl = i, T < ) = 0, which terminates the proof of (4.18).
Now it suffices to notice that (4.17) and (4.18) imply (C1).

It remains to provide the missing proof of (4.16).
For all t > 1 we define the shift mapping,

91‘, . HOO - HOO
which “forgets” all history prior to the moment ¢. Formally,
for a h = s1,a1,89,a9,...€ H®,  0y(h) = sy, a4, Sg41, Qi1y - -+ -

Consider the event
{STT[y]f]+1 =1 < k} (4.20)
which consists of the plays that visit £ for the mth time at the time T and visit
i < k at the next time moment 7,4 + 1. Since Sy, =@ <k implies T < oo, for

the plays belonging to (4.20) all states visited up to the moment T + 1 are < k.
Let us examine the following auxiliary game that is played under condition (4.20)
and that starts at time T)%) + 1 when the game visits ¢, ¢+ < k. We assume that the
payoff applied in the auxiliary game to a play h € {ST[k]H =1 < k} is equal to
k-1
o (B, (1),

i.e. after removin§ all history prior to the moment T 1 we apply to the remaining
play the payoff ¢ P Suppose that in the residual game player Max plays according

T'Ek

to alg while player Min continues to use the strategy 7.
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We claim that

ok.r _ . .
FfHGr) < By WE;’“I] 00,y | Sy, =1), fori<k, (4:21)

i.e. the expected payoff obtained in the residual game (the right-hand side of (4.21))
is greater or equal to the value of the state 7 in the go[k,_kl]—game (which is FF71(¢;r)
"¢

by the induction hypothesis).

The strategy aé“ selects the same actions as aé“_l for all states except k. But
in the residual game it is irrelevant how player Max plays in k since for the plays
that return to k£ the residual game is essentially over and player Max obtains the
payoff (. Thus we can assume as well that in the residual game player Max select
actions according to 0’5‘1. But since 015—1 is optimal for Max in the nglz,_kl]—game, this

guarantees that in the residual game player Max obtains at least the value Ff’l(f i)
of the state ¢ in the g0£]i;1]—game, i.e. (4.21) holds.

Now observe that for the plays h € { +1 < 0, Sy, = i} we have
k—1]
SO[EI@ 0 0pm,,(h) =¢

because k is stopping for the payoff cp[k__kl] and ( is the reward of £k assigned by this
"¢

payoff. Thus

O'k,T _ .
E,° (QOTE’Z,;] 0.0, | T 1 <o Sy, = 1) = C. (4.22)

And finally, by Bayes’ formula and using (4.21) and (4.22), we obtain

k
O'QT

B (907{];_’“1] © 04y | Sy, = 1) =

O'k,T . O'k,T .
B (o0, <90, Spm,, = 1) PE (TR < o0 | Sy, = 1)

e ] | m+1 1Rl

. ok k .
(%] OO?STT[f]+1 =1q)- Pk‘f (TT[nJ]rl = 0 | ST[IC]_’_1 =1)

O'k T
C7 [k 1
. o
+ EZ ( Tgk 6 m +1 | m+1 ™ m

— P <o | S, = i)+ BT (M | Sy, = 19)
+1 T 41 k QOTC—’@' (1] —o0} 41 ’

which terminates the proof of (4.16).

Proof of (C3):
Suppose that ( < Fkﬁ(C; T).
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Since ¢*!, <1, from (C1) we obtain
"¢

O'kT
<o | TH < o0) + P (T = oo | T < 0) > FY(¢G 7).

O'kT
¢-Pr(TY]

m+1

O'kT O'k,T
But P, ¢ (TH = o0 | T < o0) + P,° (T[k]H <o | TH < o) =1, thus

m+1 = m

ok r ]_ — f‘jﬁ N
P (T < oo | T < o) < : k(g’r) 1.
Therefore
O'k,’r [k] . o’k,’r . [k]
P, (Vm, T} <o0) = lim P, (Vi <m,T}" < )
m—00
R TT o (] ]
= 11_1}(1)0Pk (T < o) P, (T, <o | T, < o)
m =0
m—1
1—F}
< hm ( k(gvr)>
m—0o0 1— C
=0,

(4.23)
i.e. if player Max uses aé“ then almost surely £ is visited only finitely many times.

Proof of (C2):
From (4.10) and (C1) it follows that

FACr) < F Gr) - PRI < oo | T < o0)+
O'k,T k;
E;’ (¢££k1{T[k] ) | TIH < o)

which implies

k
O'QT

FCGr) - PE (T = o0 | TH < o0) < E,

Uk T
Multiplying both sides by P,*’ (Tf[f] < o0) we obtain

okt o¥ T
Fi(Gr) PR (T = o0, T < o0) < B 7M1 0 _ 01

" STyl =) (1) <o)

(4.24)
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Let us note that
0
{3m, T = oo} = (T = o} U (T}, = o0, THY < o0},
i=1
where the events on the right-hand side are pairwise disjoint. Moreover,
(51 =k {71 = o0} = &

since if the game starts at k then Tl[k] =1<o0.
This implies that summing over m both sides of (4.24) we get

ok O&sT k
F,ﬁ(gy 7”) ’ PkC (Elm, Tgﬁ] = OO) < EkC (SOEg]kﬂ{Elm,T}f]:OC})' (4-25)
Thus
ECT (LMY Z g7 LM ECT (LM 1
k (¢r5k) Tk (('Orgk {Hm,T}f]:oc}) + By (('Orgk {Vm,TT[f]<oo}) (4.26)

akr ng
> FHCGr) - P (3m, T = o) + ¢ PP (vm, TH < o),

where the last inequality follows from (4.25) and from the fact that go[k,]k(h) = ( for
s

the plays such that h € {Vm,T,L’f] < @} (i.e. for the plays for which the stopping

state process Si[k] visits k infinitely often).

O'k T O'k T
If Ff(C;7) > ¢ then, by (C3), Pi¢" (Vm, T < o0) = 0 and thus P} (3m, T =
) = 1 and (4.26) implies (C2).
Similarly, if F7(¢;7) = ¢ then (4.26) implies also

k
UCT

By (o) = ¢ = Fi(G).

"¢
This ends the proof of (C2). O

Lemma 4.12. Assume that (H.1) and (H.2) are satisfied. Let & # D < [0,1]

and let o, be a pure memoryless strategy of Max optimal in the ‘PEI;:H e ton)”

game[for] all £ € D. Let w = sup D be the supremum of D. Then o, is optimal in
k—1
the (p(,"lv""rkflywyrki»l 77777 T’n)

Proof. By the assumptions of the lemma, for each state i € [k — 1], each strategy T
of Min and each £ € D we have

E?*’T(Sp[k_l] Tn)) = Fixi?_l(f)(rlv ey Te—1, g: Tk+1s--- ,’I"n). (427)

(P1yee sl 1€ TR 1o
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: o ke [k—1]
Since £ < w implies Plr1rbm1 £ s 1ymeesrn) S Plrt b1 0, 1 peetn) WO have
0w, [k—1] 0,7/ [k—1]
EZ (QO(Tl7"'7Tk—l7£7Tk+17"'7rn)) g EZ (gp(rly-.,""k_l7w7T’k+1,...77"n))' (4'28)

From (4.27) and (4.28)

*y k_]- b k}—l
E7 T(@Erl,,,1%71MMH,,,,,T”)) = Fixiy (f)(r, 1,8 ki1, -+ -5 ).
But Fix®* ' (f)(ry,...,7h—1,&, Ths1s - .., Tn) IS @ nonexpansive function of
(1o "1, &, Tty - 5 Tn)

and nonexpansive functions are also continuous which implies that if for some a € R,
a=Fix" )y, o 1, & Thsts i)

for all £ € D then also
a=Fixi ) (ry, e W, Thgts . T)

for w = sup D. In particular

E;’*’T(gp[k_l] )) > Fixf_l(f)(rl, e Th— 1, Wy Tty - -5 T

(Tl yeosTh—1,WTk+1,5-5Tn

O

In the following lemma we construct an optimal pure memoryless strategy for
player Max in the gp,[,k]—game.

Lemma 4.13. Suppose that (H.1) and (H.2) are satisfied.

Then for each reward vector r € [0, 1]" there exists a pure memoryless strategy
o¥ for player Max such that for each strategy T of player Min and each state i € [k]
we have

Fix!(f)(r) < E*7 (o). (4.29)

Proof. Let us note
w = Fix§ (f)(r).

As we did in the proof of Lemma 4.11, ry_k will be used to denote the reward
vector (11, ..., "k—1,Y;Tki1s---,Tn), for y € [0, 1].

We first prove that there exists a pure memoryless strategy o for player Max

such that
[k—1]

(K.1) o% is optimal for Max in the ¢, '-game and

r
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. O'k T
(K.2) Fix{(f)(r) <EJ (o).
As in the previous lemma we set
so that
Fixj(r) = jin, CFE (G 7)-

We examine three different cases.

Case 1: 73, > Fix{(f)(r).
Since w is a fixed point of F,S we have
w = Fi(w;r).

By Lemma 4.11 the last equality implies that player Max has a pure memoryless
strategy o which is optimal in the @Eli_kl]—game and such that, for each strategy 7
of player Min,

o ofr k]

Now it suffices to note that w < r, implies that for all plays h,

() < @lM(h)

Tw

and therefore Ezf’T(gDEki]k) < EZf’T(cpy[«k]) and we conclude that

Fix}(f)(r) < Ef 7 (o).

r

Case 2: 1, = Fix{(f)(r).
Immediately from Lemma 4.11 with = 7ry.

Case 3: 1, < Fix;(f)(r).
Since
Fixj(f)(r) = pn, (- FE(Gir) >

by (3.1) applied to the mapping

¢ FiGr)
Fix;(f)(r) is in fact the least fixed point of this mapping. This implies that
Fi(&r) > ¢
for all ¢ such that
r, < € < Fixk(f)(r). (4.30)

(& — F,ﬁ(f;r) is strictly increasing for the arguments smaller than the least fixed
point).
By Lemma 4.11 player Max has a pure memoryless strategy aé“ such that
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[k—1]
(le"'vrk717£7"1k+l 7777 Tn)

o) = Fi(&r) > ¢ and

(W.1) of is optimal in the ¢ -game,

(W.2) B[ (o0
° k S0(7‘1

s Th—158 k41505

O'k T
(W.3) P,* (S-[k] = k for infinitely many ¢) = 0 for all strategies 7 of player Min.

1

(K]

Now it suffices to observe that the payoff mappings ¢r " and go[l;]

(P15 Tl — 1€ Tkt 1 5o sTn)

differ only for the plays belonging to the set {Sz[k] = k for infinitely may ¢} and this
set has measure zero by (W.3). Thus

Therefore, by (W.2),

By (o) > F(Er) > € (4.31)

For each pure memoryless strategy o* of player Max let
D(o*) = {¢ | i < & < Fix(f)(r) and o* = o},

where, for each &, af is a pure memoryless strategy for player Max satisfying (4.31)
and (W.1).

Since there is a finite number of pure memoryless strategies and each & such that
. < & < Fix}(f)(r) belongs to some D(c*) there exists a pure memoryless strategy
0¥ such that Fix}(f)(r) is an accumulation point of D(c¥). The elements of D(c¥)
are smaller than Fix}(f)(r) thus, in fact, this accumulation point is the supremum
of D(c%), i.e.

Fix}(f)(r) = sup D(o¥).

Since, by (4.31), EZE’T(¢Lk]) > ¢ for all £ € D(o%), we have also

k

E; " () = sup D(o¥) = Fixp(f)(r)-

[k—1]
k

Tw

Note also that, by Lemma 4.12, o* is optimal for player Max in the ¢
This ends the proof of (K.1) and (K.2).

-game.

To prove (4.29) for i < k we proceed as follows.

By the induction hypothesis (H.1), Fix" ™ (f)(r1, ..., The1, W, Ths1, - - - , ) is the
value of state ¢ in the c,oyi_kl]—game and, by (K.1), o% is optimal in the same game,
thus °

Fix® () (71, . o1, W, Thgts - - -5 ) < E?E’T(go[]:l]). (4.32)

Tw
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By Bayes’ rule

B () = P T <Pl <o) (433)

K3 (3

O’k T — o"“ T
E7 (o | T = o) PP (1 = )

)

where Tl[k] is as in Definition 4.10.
The plays satisfying Tl[k] = o0 never visit k thus for such plays it is irrelevant
what is the reward of k£ and it is irrelevant if k is stopping or not, in particular we

have
ok r k— k ok r k
E7 (0 T = ) = BT (ol | T = o0). (4.34)

(2 3

The plays satisfying Tl[k] < oo visit k£ and the states visited prior to the moment
[k—1]

of the first visit to k are all < k. For such plays O is equal to w implying

B (el T < o) = . (435)
On the other hand,
B (o | 1 < ) > w0 (4.36)

Indeed, we have Tl[k] < o for the plays that visit £ and such that before the first
visit to k all visited states were < k. For such plays the value of gp,Lk] does not depend
on the history prior to the first visit to k. But by (K.2), starting from k the strategy
o* guarantees the expected payoff of at least Fix}(f)(r) = w against any strategy
of Min.

From (4.32),(4.33),(4.34),(4.35) and (4.36) we obtain

FiX;{il(f)(?“l’ vy Te—1, W, Tit1, - - - 7rn) <

EC (0 | T < o) P (T < o) + B (M | T = o0)P7 (T = o) =

1

And now it remains to note that the definition of the nested nearest fixed point gives

f l(f)(rlw"7Tk—1;wgrk+1,...7Tn) =
FixE L ()1, FIXE () (), P 7) =
Fix; (f)(r).
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4.4.2 Dual games

In Section 3.3 we have defined the dual of the BMN mappings. In this section
we define and examine the corresponding notion for the priority games.
Given an arena A the dual arena A is defined in the following way:

e A has the same states, actions and transition probabilities as A,
e all states controlled by Max in A are controlled by Min in A,
e all states controlled by Min in A are controlled by Max in A.

From this definition it follows immediately that each strategy o of player Max
(respectively a strategy 7 of Min) in A becomes a strategy of player Min (respectively
Max) in A and vice versa. Moreover, we have the equality of the corresponding
induced probabilities,

P7T(; A) =P77(-5 A),
where the left-hand side denotes the probability induced on plays in A while the
right-hand side denotes the probability on plays in A.

For each reward vector r, by 1—r we denote the reward vector (1—ry,...,1—7,).
Since for each play h € H®, goyf](h) =1- c,ogk_]r(h), we have the following equality
concerning the expected payoffs for the (stopped) priority games played on A and
A:

E77 (ol 4) = 1 - B (o A). (4.37)

This motivates the following definition.

Given a stopped priority game (A, <p,[~k]) the dual game is the stopped priority
game (4, ¢}7,).

Note that a strategy o is optimal for player Max in the game (A, gor[ak]) if and
only if o is optimal for player Min in the dual game (A, @Ek_]r).

A similar statement holds for strategies 7 of Min. Therefore we have also the
following equality for the game values:

val; (A, ) = 1 — val;(A, @Ek_],‘),
where val; (A, <,0£k]) is the value of state ¢ in the original stopped priority game while
val; (A, oM ) is the value of 7 in the dual game.

1—r

4.4.3 The duality of value mappings meets the duality of
games

Recall the definition of a dual mapping given in Section 3.3, f(r) = 1 — f(1—7),
where for r = (ry,...,rp), 1 —=r=(1—7ry,...,1 —1m,).
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Lemma 4.14. Let f : [0,1]" — [0,1]" be the value function of the one-step game,
cf. (4.2).

Then the dual mapping f is the value function of the one-step game played on
the dual arena.

Proof. Let k be a state controlled by player Max in the dual arena A. Thus k is
controlled by player Min in the original arena.

The value of state k for the one-step game played at k on the dual arena with
reward vector r is

acA(k acA(k)

1 — min Zp(ﬂk‘,a) (I=r)=1—fi(1—-7r) = 7k:(7">

acA(k)

max)Zp(i\k,a) -r; = max (1 — Zp(i]k,a) (1=r)) =

i

Interchanging max and min we get the result when £ is controlled by player Min in
the dual arena. O

The duality leads directly to the following counterpart of Lemma 4.13.

Lemma 4.15. Suppose that (H.1) and (H.2) are satisfied. For each reward vector
r e [0,1]" there exists a pure memoryless strateqy 7% for player Min such that for
each strategy o of player Max and each i € [k] we have

7™ (o) < Fixt (£)(r). (4.38)
Proof. In the proof we will go back and forth between the priority game (A, 907[~k])
and its dual (A, @E’i). To avoid ambiguity when we speak about the players then
Max and Min are the maximizer and the minimizer in the original priority game
while the maximizer and the minimizer in the dual game are named Max and Min
respectively.

From Lemma 4.13 applied to the dual game we deduce that there exists a pure
memoryless strategy 7F for player Max such that for each strategy o of player Min
and each state i,

k JR— —
77 (p1],: A) = Fix{(F)(1 - 7). (4.39)

By Lemma 3.11, _

Fix'(f)(1 —7r) =1 - Fix"(f)(r). (4.40)

Using (4.37), (4.39) and (4.40) we obtain

77 (oI 4) = 1= B (ol A) < 1= Fix (1) (1 - 7) = Fixt (£) ().

]
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Therefore we obtain finally:

Proof of Theorem 4.7. By Lemma 4.13 and Lemma 4.15. n

4.5 Remarks on priority games with infinite action
or state sets

A turn-based stochastic priority game with an infinite number of actions may
not have memoryless optimal strategies.

Let us consider the priority game player on the arena depicted on Figure 4.16.
All states are controlled by player Max, S = SMa* = {1 2 3}. State 2 is absorbing,
state 3 has just one available action that leads to state 1 with probability 1.

State 1 has an infinite number of available actions A (1) = {a, as, ...} such that
for all i > 1, p(2|1,a;) = 5- and p(3|1,a;) = 1 — &. The reward vector is such that
ry=0,ro=0and r3 = 1.

The value of state 1 is 1. But there does not exist a memoryless optimal strategy
for player Max. In fact, for each memoryless strategy of Max the probability to
reach state 2 is 1 which results in payoff 0. Moreover, player Max has no strategy
(even with memory) securing the expected payoff 1. However, for each ¢ > 0, he
has a strategy, which is not memoryless, securing for him the expected payoff of at
least 1 — e. In fact, let N € N be such that 1/2¥~1 < ¢, and let be a strategy of
player Max such that he plays action ayy; if the game visited state 1 ¢ times, then
the probability to visit state 2 is 1/2V + 1/2V+1 4 1/2N%2 4 that converges to
1/2V=1 < . Hence, the probability to visit state 3 infinitely often is > 1 — .

Figure 4.16 — Game with infinite set of actions where player Max does not have
memoryless optimal strategy.

We can also consider priority games with an infinite number of states. To this
end we first need to adapt the definition of the priority games to such a framework 3.

3. If the set of states is the set N of all natural numbers then limsup s;, where sq, so,... is
the infinite sequence of visited states can be equal to co, and the priority payoff of such a play is
undefined if we try to apply the definition of Section 4.1.
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A natural way to define a priority game with an infinite number of states is the
one used for parity games.

Let S be an infinite set of states such that for each s € S the set A(s) of actions
available at s is finite. The game is played by two players, Max and Min, and each
state is controlled by one of the players.

We assume that the arena is endowed with a priority mapping

7:8S—{l,...., 0}

from states to a finite set of natural numbers.

The reward mapping
ro{l,..., 0} - [0,1]

maps priorities to the unit interval [0, 1].
For each play h = sy, a4, s2,as ..., the priority payoff mapping is defined as

@(h) =1y,  where k = limsup(m(s;)).
t
Thus the payoff is the reward associated with the highest priority visited infinitely
often.

Let us consider the priority stochastic game depicted on Figure 4.17. All states
are controlled by player Max, S = SM&% = {5, s,.51,89,...}. The priorities are
m(sq) = 0, m(sy) = 1 and, for all i« > 1, 7(s;) = 0. The following rewards are
assigned to the priorities: rg = 0 and r; = 1.

The game has the following actions: for all i > 1, A(s;) = {a, b} and p(sq|s;,a) =
a5, D(Swlsi,a) = 1 — o and p(s;4+1]s;, b) = 1. State s, has just a deterministic action
a that moves to s; and state s; is absorbing.

The value of the game for the initial state s; is 1. But

— for each memoryless strategy of player Max the expected payoff is 0 and

— player Max has no strategy securing the expected payoff 1 (but, as in the last
game, for each ¢ > 0 player Max has a non-memoryless strategy o securing for
him the expected payoff of at least 1 — ¢). Strategy o is built as follows: Let 4
be the times that state s,, was visited and let N € N be such that 1/2V~! < ¢.
Then o(h)(a) = 1 when h = h/sy4; and o(h)(b) = 1 otherwise.
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Figure 4.17 — Game with infinite set of states where player Max does not have
optimal strategy.
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4.5. Remarks on priority games with infinite action or state sets
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Chapter 5

Concurrent stochastic priority games

In this chapter we study concurrent stochastic priority games.

Contrary to the turn-based stochastic games, in concurrent stochastic games, a
given state is not controlled by any particular player. What happens instead is that
the states are controlled jointly by both players. At each state both players choose
actions independently and simultaneously and the probability to move to the next
state depends on the actions chosen by both players.

The fact that the players choose actions simultaneously and independently at
each stage has a significant impact on how the game is played. It turns out that in
concurrent stochastic priority games, the players do not have optimal strategies, in
general. However, they have c-optimal strategies. But these strategies are neither
pure nor memoryless !

The main result of this chapter is that the values of the concurrent stochas-
tic priority games can be obtained as a nested nearest fixed point of appropriate
monotone nonexpansive mapping. This result is analogous to the main result of the
previous chapter. However, the proof is technically more involved, since we need to
cope with the uncertainty due to the fact that the adversary player chooses actions
independently and simultaneously at each state.

If the only possible rewards are 0 and 1, then the concurrent stochastic prior-
ity game is the same as the concurrent parity game examined by de Alfaro and
Majumdar [dAMO4]. These authors proved that the value of such game is given by
a p-calculus formula alternating the least and the greatest fixed points. Thus the
result of this chapter is an extension of the result obtained in [dAMO04], the only
difference is that we replace greatest and least fixed points used in [dAMO4] by the
nearest fixed points.

1. See, for example, a game adapted by de Alfaro and Henzinger [dAHO0] from [KS81] where
both players do not have optimal strategies and for one of the players a e-optimal strategy cannot
be memoryless.
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Our proof is however quite different. The proof of [dAMO04] is not inductive.
De Alfaro and Majumdar give a complete p-calculus formula with all fixed points
applied from the outset and show that this formula gives the values of all states in
the concurrent parity game.

On the other hand, in our approach we provide a game interpretation of the
nested fixed point formula where only some variables are bound by the fixed point
while other variables are free. It turns out that such formula represents the values
of the priority game where free variable correspond to absorbing states.

This approach makes our proof more structured than that of [dAMO04].

Roughly speaking, we start with a trivial game where all states are absorbing.
And next we transform the states, one by one, starting from the lowest priority state
1, next state 2, etc., from absorbing to nonabsorbing. We show by induction that,
if f is the value mapping of the one-step game, then

Py Tk o iy 1 f (T2 oo Tl Tt 1y - -+, ) (5.1)
where the free variables xy1, ..., x, are evaluated to ry,1,...,r,, is the value vector
of the priority game where the states 1,...,k are nonabsorbing while states k +
1,...,n are transformed into absorbing states.

With this approach it suffices to show that solving the priority game where the
states 1,...,k,k + 1 are nonabsorbing while the states k£ + 2,...,n are absorbing,
corresponds to add the next 71-nearest fixed point p,, ,, zx1 to (5.1).

In this way we do not need to examine a fixed point formula where all n fixed
points are applied at once. Instead, we just examine what happens if just one fixed
point is added to (5.1).

The chapter is structured as follows. In Section 5.1 we define the concurrent
stochastic priority games.

Section 5.2 defines and examines one-step games. These games are auxiliary
matrix games played at each state. The crucial observation concerning the one-step
game is that its value mapping f is monotone nonexpansive.

In Section 5.3, we define and examine the class of stopping concurrent priority
games. In such games, all states greater? than a fixed state k are absorbing (or
equivalently stopping). We prove by induction that (5.1) is the value vector of this
game.

As a corollary we obtain that the values of concurrent priority games can be
expressed as the nested nearest fixed points (without free variables).

2. greater in the priority order
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5.1 Concurrent stochastic priority games

An arena for a two-player concurrent stochastic priority game is composed of a
finite set of states S = [n] = {1,2,...,n} = N (we assume without loss of generality
that S is a subset of positive integers) and finite sets A and B of actions of players
Max and Min. For each state i, A(i) € A and B(i) € B are the sets of actions
that players Max and Min can play at s. We assume that A and B are disjoint and
(A(7))ies, (B(7))es are partitions of A and B.

Fori,j € S,ae A(i),be B(i), p(j|i,a,b) is the probability to move to j if players
Max and Min execute respectively actions a and b at i.

An infinite game is played by players Max and Min. At each stage, given the
current state 7, the players choose simultaneously and independently actions a € A(3)
and b € B(7) and the game moves to a new state j with probability p(j|i, a,b). The
couple (a, b) is called the joint action.

A finite history is a sequence h = sy, (a1, b1), so, (ag,b2),s3...,s; alternating
states and joint actions and beginning and ending with a state. The length of A is
the number of joint actions in A, in particular a history of length 0 consists of just
one state and no actions. The set of finite histories is denoted H.

A strategy of player Max is a mapping 0 : H — A(A), where A(A) denotes the
set of probability distributions over A. We require that supp(o(h)) € A(7), where i
is the last state of h and supp(o(h)) := {a € A | o(h)(a) > 0} is the support of the
measure o(h).

A strategy o is memoryless if o(h) depends only on the last state of h. Thus
memoryless strategies of player Max can be identified with mappings from S to
A(A) such that supp(o(i)) < A(i) for each i € S.

A strategy o is pure if supp(o(h)) is a singleton for each h. Pure memoryless
strategies of player Max are identified with mappings ¢ : S — A such that o(i) €
A(7).

Strategies for player Min are defined in a similar way.

We write ¥ and T to denote the sets of all strategies for player Max and Max
respectively.

We use o and 7 (with subscripts or superscripts) to denote strategies of players
Max and Min respectively.

An infinite history or a play is an infinite sequence
h = s1,(ay,b1), s2, (az, b2), s3, (as, b3), ... alternating states and joint actions. The
set of infinite histories is denoted H*. For a finite history h, by A" we denote the
cylinder generated by h consisting of all infinite histories with prefix A. We assume
that H” is endowed with the o-algebra B(H®) generated by the set of cylinders.

Strategies o, 7 of players Max and Min and the initial state ¢ determine a prob-
ability measure P{" on (H®, B(H™)).
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We define inductively P for cylinders in the following way.
Let hy = s; be a finite history of length 0. Then

0 if?;#é’l,
1 1fz=sl

-

Let ht—l = 51, (a/b b1)7 <y St—1, (at—la bt—1)7 St and ht = ht—la (at7 bt>7 St+1- Then
P7T(h) = P77 (hq) - o(he1)(ae) - 7(he1)(be) - P(Str1[8e, ar, br).

Note that the set of cylinders is m-system (i.e. a family of sets closed under
intersection) thus a probability defined on cylinders extends in a unique way to all
sets of B(H®).

The payoff mapping is a bounded Borel measurable mapping
p: H* - R.

The aim of player Max (player Min) is to maximize (resp. minimize) the expected
payoff

BIlel = | onPyTan)

The game has value if for each state ¢ there exists a real number v;, the value of the
game for the starting state ¢, such that

inf sup E"[¢] = v; = sup inf E"[¢].
€T sex oex T€T
A strategy 7 of player Min is e-optimal, € > 0, if for each state ¢ and each strategy
o of player Max,
sup E7"[¢] < v; + €.
oeEX
Symmetrically, a strategy o of player Max is e-optimal if for each state ¢ and
each strategy 7 of player Min,

inf E7"[p] > v; — €.
inf E7"[p] > v, — ¢

An e-optimal strategy with ¢ = 0 is called optimal.
To define the concurrent stochastic priority game we endow the arena with the
reward vector

r=(ry,...,m)

associating with each state 7 a reward r; € R.
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The priority payoff ¢, (h) of an infinite history h = s1, (a1, b1), s, (ag, ba), s3, . . .

is defined as
or(h) =1y,  where £ = limsup s;. (5.2)
t

Thus the payoff is equal to the reward of the greatest (in the usual integer order)
state visited infinitely often.

The aim of player Max (player Min) is to maximize (resp. minimize) the expected
priority payoff

BTl = | (WP (ah),

Concurrent priority games contain as special cases some other well known classes
of games:

(i) If the reward mapping takes only values in {0,1} then we obtain the usual
concurrent parity games [dAMO4].

(ii) The second subclass of concurrent priority games is the class of Everett’s
recursive games [Eve57]. Everett’s games are concurrent priority games having
reward 0 for all nonabsorbing states®.

Thus in Everett’s games players receive the payoff 0 if the play remains forever
in nonabsorbing states, otherwise, for plays ending in an absorbing state ¢, the
payoff is equal to the reward r;.

(iii) Everett’s games contain as a subclass the class of reachability games. Reach-
ability games are Everett’s games such that all absorbing states have non-
negative rewards [CAAH13, dAHKO07].

(iv) The limsup games studied by Maitra and Sudderth [MS96] are the games with
the payoft lim sup,, r;,, where r;,, 7,7, ... is the infinite sequence of rewards
associated with the states visited at the stages 1,2, 3, ... during the game. To
see that limsup games are priority games it suffices to rename the states in
such a way that i < j implies r; < r; for all states 4, j € [n]. If this condition
is satisfied then the limsup payoff and the priority payoff are equal.

(v) The liminf games are the games with the payoff lim infy, r;, , where r;,, 74y, 74, - . -
is the infinite sequence of rewards associated with the states visited at the
stages 1,2, 3, ... during the game.

Let us rename the states in such a way that, for all states i,j € [n], i < j
implies 7; > r;. Then the liminf payoff is equal to the priority payoff, thus the
liminf games constitute a subclass of priority games.

From the determinacy of Blackwell’s games proved by Martin [Mar98]| it follows
that concurrent priority games have values, i.e. for each state 7, sup, inf, E]""[p,] =

3. A state 7 is absorbing if p(i]i, a,b) = 1 for all joint actions (a,b).
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inf, sup, E;"[¢,]. (The Blackwell games do not have states but the result of Martin
extends immediately to games with states as shown by Maitra and Sudderth [MS04].)

A proof of determinacy of concurrent stochastic parity games using fixed points
was given by de Alfaro and Majumdar [dAMO04]|. For Everett’s recursive games,
Everett proved non only that such games have values but also that both players
have e-optimal memoryless strategies [Eve57|. For concurrent reachability games,
player Min has an optimal memoryless strategy while player Max has, for each
e > 0, an e-optimal memoryless strategy, [CAAH13].

Terminology: As in this chapter we deal only with concurrent stochastic priority
games, always when we say a priority game it would mean concurrent stochastic
priority games.

5.2 Concurrent one-step game

In this section we define an auxiliary one-step game. This simple game constitutes
an essential ingredient in our solution to the general priority games.

Let © = (z1,...,%,) € R" be a reward vector assigning to each state ¢ the reward
ZTi.

A concurrent one-step game M (x) is the game played in the following way. If
the game starts at a state & then players Max and Min choose independently and
simultaneously actions a € A(k) and b € B(k). Suppose that upon execution of (a, b)
the game moves to the next state m. This ends the game and player Max receives
from player Min the payoff z,,.

A concurrent one-step game played at state k given the reward mapping = will
be denoted M (x).

Note that M (z) can be seen as a matrix game where

M, (x)[a,b] := Z T - p(mlk, a,b)
meS
is the (expected) payoff obtained by player Max from player Min when the players
play actions a and b respectively.
The value mapping of the one-step game is the mapping f = (f1,..., fn) from
R™ to R™ such that, for each state k € [n],

fr(xy, ..o ) = val(Mg(x)), (5.3)

where val(M . (x)) is the value of the matrix game M (z), In other words, fi(x1,...,z,)
is the value of the concurrent one-step game played at state k seen as a function of
the reward vector z = (x1,...,x,).

We will be interested in fi(z) seen as a function of the reward vector x =

(Zl’fl, c. ,ZEn).
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Since all entries in the matrix game M (x) belong to R, fi(x) € R, i.e. fi is a
mapping from R" into R.

Lemma 5.1. The value mapping f of the one-step game defined in (5.3) is monotone
and nonexpansive.

Proof. Tt is easy to see that f is monotone and it is also straightforward that f is
additively homogeneous, i.e, for all z € R™,

flx+Xe,) = f(z)+ X ey,

where e, = (1,...,1) € R" is the vector with 1 on all components. By Lemma 3.2
this implies that f is nonexpansive. ]

In the sequel it will be convenient to assume that all rewards belong to the
interval [0, 1] rather than to R. This can be achieved without loss of generality by
a simple linear transformation, as we did in Section 4.2.

5.3 General concurrent stopping priority games

Concurrent stopping priority games generalize the priority games defined in Sec-
tion 5.1 by allowing some states to be stopping. In particular if the number of
stopping states is zero then we obtain concurrent priority games.

We solve concurrent priority stopping games by induction on the number of non-
stopping states and we show that the value function can be expressed as the nearest
fixed point of the value function (5.3) of the concurrent one-step game.

By S;, A} and A?, t = 1,2,..., we will denote stochastic processes such that
S; is the state visited at time ¢, A} is the action executed by player Max at
stage t and A? is the action executed at stage t by player Min. i.e. for a play
h = s, (a1, b1), s2, (ag, ba), 83, . .., Si(h) = s¢, AL(h) = a; and A?(h) = b;.

For each state k € [n] we define the random variable

Top: H” - Nu {0}

such that
Ty = min{t | S; > k}.

Thus 7. is the time of the first visit to a state greater than k.
We define a new stochastic process St[k],t e N, that we shall call the stopped state
Process:

S[k] B Sy TS, >t,
! S, ifq="T. <t.
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Thus if all previously visited states belong to {1,...,k} then St[k] is equal to the
state visited at the current epoch t. However, if at some previous epoch a state > k
was visited then St[k] is the first such state. In other words, St[k] behaves as if the
states > k were absorbing, if St[k] > k then S,gk] = St[k] for all ¢ > t.

For a given reward vector r and k € [n] we define the stopping priority payoff

k
A

ol = r,  where ¢ = lim sup St[k].
t

The games with payoff (ka] will be called stopping pm‘om’t{/ games. We will also
speak about the @Lk]—game to refer to the game with payoff gprk]. Similarly ¢,-game
will stand for the usual priority game.

Note that once a state j greater than k is visited the game with payoff cp,[fﬂ is
for all practical purposes over, independently of what can happen in the future the
payoff is equal to the reward r; of this state and the states visited after the moment
T, have no bearing on the payoff.

In the @Lk]—game the states [k] will be called non-stopping while the states > k,
will be called stopping.

Note that since we have assumed that S = [n], i.e. n is the greatest state, we
have o™ = ..

Note also that solving games starting in stopping states is trivial. If + > & then
for all plays h starting at ¢, gpyﬁ](h) = r;, thus Ef’T(goqu]) = r; for all strategies o, T,
in particular the value of stopping state ¢, i > k, is r;.

5.4 Constructing cs-optimal strategies

The rest of this section is devoted to the proof of the following main result
characterizing the values of the stopping concurrent priority games by means of
fixed points.

Theorem 5.2. Let f : [0,1]" — [0,1]" be the value mapping of the concurrent
one-step game defined in Section 5.2. For 0 < k < n, let

Fix"(f)

be the k-th nested fixed point of f, see Section 3.2. Then, for each reward vector r,
for each initial state i € [n], the concurrent stopping priority @Lk] -game starting at 1
has value FixF(f)(r).

Proof. For each € > 0 we construct e-optimal strategies for both players.
The proof is carried out by induction on k.
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The case k = 0 is trivial since when all states are stopping then the value of each
state is equal to its reward, i.e. the value of state i is Fix?(f)(r) = r;.
Under the assumption that the theorem holds for k — 1, i.e. Fix¥ ' (f)(r) is the

value of the non-stopping state i € [k — 1] in the ¢£k_1]—game, we shall prove that
Fix"(f)(r) is the value of the non-stopping state i € [k] in the oM game.

We will use the following notation:

Wy = Fleli(f)(T) = ﬂrkxk-fk<F1k_1($k; T)? tr Flf—_ll(xk; T)? Ty Th41y - -+ ,Tn) (54)
and
w; = FixF(f)(r) = FFYwy;r), ie[k—1], (5.5)
where FF~! are defined as in (3.3). Thus our aim is to prove that (wy, ..., w1, wy)
are the values of the states {1,...,k —1,k} in the goyc]—game.
Since wy, is a fixed point of (5.4) we have

Wi :fk(wl,...,wk,l,wk,mﬂ,...,rn). (56)

Let T, be the random time of the m—th visit to state k of the stopping state
process (St[k])tg:b ie.

Ty = min{t | S = &},
T, = min{t | t > T,,_; and S = k} form > 1. (5.7)
Notice that T}, can be infinite if the number of visits of the stopping state process

St[k] to the state k is smaller than m and 7; = 1 if the game starts at k. Note that
since T, is defined w.r.t. the stopping state process St[k], T,, < oo implies that all
states visited prior to the moment 7,, are < k.

Let T be any random time, i.e. a mapping from plays to {1,2,...} U {00} such
that for each m € {1,2,...} the event {I" = m} belongs to the o-algebra

fm = U(Sl, (Ai,A%), SQ, N Sm)

In other words, F,, is the o algebra generated by the cylinders A, where h,, are
histories of length m.

Intuitively that means that knowing the states and actions up to time m we can
decide if T = m or not.

Definition 5.3. For a random time T, 07 : H* — H® will denote the shift mapping
that maps plays to plays and is defined in the following way

QT(Slv (A%v A%)v 527 .- ) = ST> (A%H A%«), ST+17 (A;+17 A%“+1)7 ST+2a (A%“+2a A%“+2)a ceee

Thus the shift 7 “forgets” all history prior to time 7'. Of course, 67 is well defined
only on plays such that T" < 0.

Below we use the shift 07, 1, where T, is the time of the mth visit to state k.
This shift will be applied only to the plays with 7,, < co.
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5.4.1 ¢/2-optimal strategy o, for player Max when r;, < w; and
k is the starting state.

We assume that
e < W (58)

and the aim is to construct a strategy o, for player Max satisfying

E77(0) 2wy —2/2 (5.9)
for each strategy 7 of Min.
Let
n € (wy —&/2, wy)
and define
& =F" (), Viel[k—1]. (5.10)
[k—1]

By the induction hypothesis, &; is the value of the ¢
starting at the state 1.

Let us consider the concurrent one-step game Mg (&1, ..., 1,7 Thits -y Tn)
played at state k. Then

Ny 1= fk(glw"75k—1777ark+17-"7rn) (511)

is the value of this game.

(Tlv"arkfl7n’rk+17"'7rn)_game

By the properties of monotone nonexpansive mappings, (5.8) implies that wy, is
in fact the least fixed point of the mapping

Ty —> fk(Flk_l(xk; 2 T F,f:ll(atk;r), Thy Tkt ds -+ 5 Tn)-
Thus 1 < wy implies that

n< fk(§17 s 7£k—1a7’/7rk+1a s 7Tn) =1 < Wg. (512)

Fix 6 such that
0<d<mn—n. (5.13)

We define the strategy o, of player Max in the following way:

e during the m-th visit to the state k, which takes place at time T,,, c.f. (5.7),
player Max selects actions according to his optimal strategy in the concurrent

one-step game Mk(glv B 7516—17 M Thk+1, - - ,T‘n).
e during all stages j such that 7T, < j < T,,41, i.e. between the mth and

(m + 1)th visit to k, player Max plays according to his J-optimal strategy for

[k—1]
the QD(T17"'7T]€—17777Tk+17~-~7rn)

When he applies this strategy then we tacitly assume that after each visit to k
player Max “forgets” all preceding history and he plays as if the game started
afresh at the first state visited after the last visit to k.

-game.
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From the optimality of o, in the concurrent one-step game My (&1, ..., k1,7, k1, -

we have

D& PR (Spn =i | T < )
i<k

+n-Pr (St 41 =k | Ty < 0)
+ Zri : PZ*’T(ST 1 =1 | T, < OO)

m

i>k

> 1. (5.14)

Indeed, when player Max plays according to the strategy o, at the moment 7,
then the current state is & and he plays using his optimal strategy in the concurrent
one-step game My (&, ..., &k—1,M,Tk+1,---,7n). Now it suffices to notice that the
left-hand side of (5.14) is nothing else but the payoff that player Max obtains in
the concurrent one-step game M (&1, ..., {k—1,7, k1, - - -, Tn) (because St, 41 is the
state visited at the next time moment 7}, +1). Since 7, is the value of this concurrent
one-step game the inequality follows.

In the sequel we will note 1 4 the indicator of the event A, i.e. the mapping that
is equal to 1 on A and to 0 on the complement of A.

Let us note the following equality:

S PR (Spn =i | T < 0) = BP0 gy oy | T < 0). (5.15)

>k

Indeed, if a play belongs to the event {St, 1 =4, T,, < o} for i > k then T, < o
means that at the moment 7;, this play visits k£ and prior to 7,, it never visited
states > k cf. (5.7), and at the next time moment 7T,, + 1 such a play visits the

stopping state ¢ > k. But for such plays the payoff @E’ﬂ is equal to r;.

Consider now the event {Sr, 1 = i,T,, < 0}, for i < k, see Figure 5.4.
This event consists of the plays such that

— the stopping state process SZ-[k] visits k for the mth time at time T, (this is
guaranteed by T, < oo, c¢f.(5.7)) and

— at the next time moment 7}, + 1 the play visits the state ¢ < k.

From the definition of o, it follows that starting from the time 7,, + 1 player Max
plays using his d-optimal strategy in the go[kfl -game. Since, by the

(7155 Tk—1,T k4 15+-5Tn)
inductive hypothesis (5.10), the value of such a game for state i is §;, we have

Ow,T k— . .
B (o iy 007, | Sty =0, T < 0) = & — 6, foralli ? k, |
5.16

B 7rn>7
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{Tms1 < 00,87, ., =4, Tiny1 < 00}
Tm-&-l

{Tms1 < 00,87, =i, Tinp1 = 0o}

{Tms1 < 00,87, =i, Tt < 00}

{Tms1 < 00,81, =i, Tngr = 00}

Figure 5.4 — The upper figure: The event {S. ., =1,T,, < o0} consists of the plays
that at time T}, visit state k for the mth time without ever visiting the states > k
before, and at time T,, + 1 they visit state ¢, where ¢ < k. These plays are partitioned
into two sets. The set {141 < 00,5, 1 = 4,1, < oo} of plays that will visit &
for the (m + 1)th time and the set {T;,,1 = ©,S; | = 4,1, < ©} of the plays
for which the mth visit in & was the last one. The lower figure : The shift mapping
Or, +1 “forgets” all the history prior to the time 7;, + 1.

where 07,1 is the shift mapping that deletes all history prior to the time 7}, + 1.
Using the fact that for all events A and B and each integrable mapping f we
have E(f | A,B)-P(A) = E(f 14y | B) we can rewrite (5.16) in the following form

Ow,T k—1
Ek (90[ : ) © 01,41 - ]l{STm+1=i} ‘ T < OO) =

(P1yee s Tl 15Tk 150 T

(& —0) P (Sp,e1 =1 | T <), fori<k. (5.17)
We shall prove that for ¢ < k,

Ox,T k—
Ek (90[ ! © 9Tm+1 : ]l{STm+l:i} ‘ Tm < OO) =

(7‘1,...,7’]€,1,17,7’]€+1,...,"'n)
NPT (Thg1 < 90,8741 =i | Ty < 00)+E7 (0 Lip,—ooy Lisy, o1miy | T < (oo). |
5.18

Indeed the left-hand side of (5.18) is the sum of

Ox,T k—
By (ol ! ) 001,41 Uiy, =iy - Ltpn—ooy | T < 0)  (5.19)

(7‘17,,,77’%71 yTHTk+15-Tn
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and

B (o 0111 - L5y n=it - UTpya<on) | Tn < ). (5.20)

(P01 s Tl — 1T 150 5T02)

Consider first (5.20). For plays h belonging to the event {T},,1 < 00, Sz, 11 =i},i <
k, the shift 61, .1 removes all prefix history up to the time 7}, + 1, see Figure 5.4.
Since T,,41 < o in the remaining suffix play 01, ,1(h) all visited states up to the
next visit to k are < k. But for the plays that visit k£ at some moment and for
which all states prior to this first visit to k are < k the payoff gp%kil]

TLyeesTh— 1,1k 15570
is constant and equal to the reward 7 associated with k. Thus (5.20) is equal to

n-Pr (Do < 0,57,01 =i | Ty < 0).

Let us examine now (5.19). The plays h belonging to the event {Sz, 1 =
i, Trn1 = 00, T, < oo} have the following properties:

— at time 7,,, they visit £ and all states visited prior to T}, are < k,

— at time 7T,,, + 1, just after the mth visit to k, they visit the state ¢,

— since T),,1 = oo the suffix play 67 .1(h) does not contain any occurrence of k

(k is never visited for the (m + 1)th time).

These properties assure that for such plays apyﬁ](h) = ng(QTmH(h)). However,
07, +1(h) has no occurrence of k, which implies for the resulting payoff it is ir-
relevant if & is stopping or not and what is the reward of k. Thus @Lk](HTmH(h)) =

[k=1] (0, +1(h)). This terminates the proof that (5.19) is equal to

Sp(rl7...,Tk71,?777"k+1r“774"
EF (0 Wyp oy Loy iy | Ton < 0).

This concludes also the proof of (5.18).
From (5.17) and (5.18) we obtain

n'PZhT(Tm-&-l < 00, ST7n+1 =1 | T < OO)"'_EZ*’T(%O[H']l{Tm+1=OO}'IL{STm+1:i} | T < OO)

T

> (& —06)- Py (Sp,e1 =i | Ty < 0).

Summing both sides of this inequality for ¢« < k and rearranging the terms we obtain
Zfz : PZ*7T(STM+1 =1 ‘ Tm < OO) <n- PZ*’T(Terl < 0, STerl <k ’ Tm < OO)
i<k

+ Ez*ﬁ(SO?[“k] ) ]l{Tm+1=°O} ’ ]l{STm+1<k} ‘ T < OO)

+0-P7 (St 11 < k| T, < 0)

<n- P (T < 0,87,41 < k| Ty < 0)
+EFT(OM Doy - Lisy i<ty | T < 0)
+ 9.
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The last inequality, (5.14) and (5.15) yield

e < 0P (T < 00,S7,41 < k| T, < 0)
+ET (O W, oy U, <hy | T < 0)
+0 (5.21)
+n- P (Sty41 =k | T < 0)
+EZ*’T(<p[’“] Tysy sk} | T < 0).

r

Notice that

PZ*’T(Tm_;,_] < o0, STm+1 <k ‘ T, < OO) + PZ*VT(STM_;,_l =k ‘ T, < OO)
=P (T <0 | T, <o) (5.22)

which allows to regroup the first and the fourth summand of right-hand side of
(5.21). Indeed, {T},4+1 < 0, T}, < oo} is the union of three disjoint events, depending
on whether the state visited at the next time moment 7}, + 1 is < k, = k, or > k.
But for the second of these events we have {T,,.1 < 0,7, < oo,Sq[ff}L+1 =k} =

(T, < o0, S| = k} since SY), | = k implies that T4y = T + 1 < 0,

And finally the third event {T,4; < 00,T,, < 0, SH), | > k} is empty since
ngﬂ > k means that at time 7), + 1 the game hits a stopping state thus the
stopping state process will never return to k, therefore 7,,,1 = co. This terminates
the proof of (5.22).

We can regroup also the second and the last summands of (5.21) since

Py (L1 = 0,871,110 < k| T, <) + P (St 41 >k | T < 0)
=P (T =0 | T < 0)

We obtain this again by presenting the event {7,,,1 = 00,7, < 0} as the union
of three disjoint events depending on the value of Sy .,. However, St .1 = k
contradicts T,,,1 = o and Sp, 1 > k implies T},,1 = 0.
Using these observations we deduce from (5.21) that
ne<n-Pr" (T <o|T, <wx)
+ EZ*VT(SDLIC] : ]l{Tm-H:OO} | Tm < OO) (523)
+ 9.

Since o™ < 1, from (5.23) we obtain that

NP (T <0 | T <o) + P (T = © | Thy, < 0) =1, — 0.
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But P (11 = 0 | T, < 0) + P77 (141 < 0 | 1), < ) = 1 thus the last
inequality yields

1+5—m<1+(77*—77)—77*

]_:)Z’”T(T;n-‘rl<<X)’T’m<oo)< 1_77 1_77 -b
Therefore
P{ (Y, Ty < ) = lim P{ (i < m.T; < )
m—00

m—1

= aim Py w (T < o0) - HPOM Typr <0 | Ty < 0)
o (5.24)

L—n +0\""
< lim (77_+5>

i.e. if player Max uses the strategy o, then with probability 1 the state k is
visited only finitely many times.

Multiplying both sides of (5.23) by P7*"(T,, < o), taking into account that
0 < 0 < n, —n and rearranging we get

EL (oM Um0y - L)) > 1 PET (T < 0)
—n- Pl (Thsr < 0,1, < 0) (5.25)
=n-P7 (T = 0, T, < ©).
Since the events {T,,11 = 0, T,, < ©}u=0 and {¥Ym, T,, < oo} form a partition

of the sets of plays but the last event has probability 0, summing up both sides of
(5.25) for all m > 1 we obtain

E;" (¢ ])>7]>wk—%

which terminates the proof of (5.9).

5.4.2 ¢/2-optimal strategy 7. for player Min when r; < w; and
k is the starting state.

We assume that 7, < wi and € > 0. The aim of this section is to construct a
strategy 7, for player Min such that

E;™ (o) < wy, + ¢/2 (5.26)

for each strategy o of Max.
The strategy 7. of player Min is constructed in the following way.
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(i) If the current state is k then player Min selects actions with probability given
by his optimal strategy in the concurrent one-step game

My (Wi, .o Wh1, Wiy Tty - -5 Tn)-

Thus the strategy of player Min at k is “locally memoryless”, the probability
used to select actions to execute at k does not depend on the previous history.

(ii) During all stages j such that T,,, < j < T;,+1 (between the mth and (m + 1)th
visit to state k) player Min plays using his &,,, := £/2™"-optimal strategy in the
El:;.l_{rk_hwk,ml,._mn)—game4. In general the strategy played by Min between
two visits to state k is not memoryless because ¢, changes at each visit to k.
When player Min applies this strategy during all stages j, T,, < j < T41, In
the goyg]—game then we assume tacitly that starting from stage T, + 1 player
Min “forgets” all history preceding this stage and he plays this strategy as if
the game started afresh at stage 7T, + 1.

From the optimality of 7, in the concurrent one-step game
M (wy, ..., Wg_1, Wk, Tks1,---,Tn) We obtain

O, Tx k .
w; PP (SE L = | T < )

Jj<k
+wg - P (SH = kT, < 0) (5.27)
O, Tx k .
+ 30 PUT(SH L = T < )
7>k
< Wg.

Indeed, at the time 7T), the current visited state is k£ and player Min se-
lects actions according to his optimal strategy in the concurrent one-step game
M (wy, ..., Wg1, Wk, Tkt1,---,7n) and, by (5.6), the left-hand side of (5.27) gives
the payoff in this concurrent one-step game while the right-hand side is the value of
this game. Since he plays optimally the payoff cannot be greater than the value.

Let us consider the event

{T, < 0,57, 1 =1}, wherei<k. (5.28)
This event, presented on the upper side of Figure 5.4, consists of plays h satisfying

the following conditions:

(i) h visits k at least m times and prior to the m-th visit to & (which takes place
at time T,,,) the stopping states {k+1,...,n} were not visited, i.e. S; € [k] for
all t < T,

4. This strategy exists by the induction hypothesis.
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(i) at time T,, the game moves from k to i, i.e. Sy 1 = i.

The definition of 7, says that starting from time 7, + 1, if the current state

St,+1 18 < k and until the next visit to state k, player Min plays according to
[k—1]
(rl7"'7rk717wk77‘k+17'~~yrn)

g/2m* 1 optimal strategy in the ¢ -game. By (5.5), the value of
k—1 . . .
the cpErl7__1“_1’wwkﬂ,_wrn)—game starting at state i € [k — 1] is w;.

Thus if we consider the game that, in some sense, restarts afresh at state ¢ at
time T, + 1 and we apply to such residual game the payoff gogfl_l] kR o)
and we assume that player Min plays 7, then the expected payoff will not be greater
than w; + ¢/2™*1, ie.

E™ (ol )0 01,41 | Stpst = i, T < 0) <wi+/2"7 (5.29)

(Tl7"'7rk717wk’7‘k+17"'7rn

where f o g denotes the composition of mapping f and g.

Now let us note that (5.27) closely resembles (5.14) while (5.29) resembles (5.16).
What is different but symmetric is that the first two formulas concern strategies
(04, 7) and the last two (o, 7, ). Moreover, the inequalities are reversed. The following
table resumes the correspondence between constants appearing in the formulas:

Eq. (5.14), (5.16) | Eq. (5.27), (5.29)
n Wk
T Wk
& W
) —Em

Thus exactly in the same way as we deduced (5.23) from (5.16) and (5.14) we
can deduce from (5.27) and (5.29) the following formula analogous to (5.23) (just
reverse the inequality and replace the constants as indicated above):

wy - PU™ (Thps1 < 0 | Th, < 0)
+E;T (0 g,y maoy | T < 0)

r

—Em < Wy

Rearranging the terms and multiplying by P} (7}, < o) we obtain from this
inequality that

O, T% O, Tx 8 O, Tx
EF™ (oM Lir, oy D<) < g PP (Tgy = 0, T, < 0) + il Py (T < )

The events {1,,,1 = 00,7, < oo} are pairwise disjoint and their union is equal to
{Im, T,,, = o} thus summing over m > 1 both sides of the inequality we obtain

EZ’,’T}(@L]{I] . ]].{Elijm:(X)}) < wk‘ . PZ7T*(3m7 Tm = OO) + 6/2.
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On the other hand, for all plays in {Vm,T,, < oo} the state k is visited infinitely

often thus gka]

Thus

is equal to 7.

E7™ (o) = EP™ (0 - 1 gmm—ey) + EF™ (0 L z—ony)

= E]7 (ol Lam,—c}) + 15 - PU™(Vm, T, < 0)

<wg - PU™(3Em, T, = ) + 1 - PUT(Ym, T, < 0) +¢/2
< wy +€/2.

5.4.3 ¢/2-optimal strategies for the other cases when the start-
ing state is £

In Sections 5.4.1 and 5.4.2 we have constructed £/2-optimal strategies for player
Max when wy > r; and for player Min when w; > 7, under the condition that
Fix"~!(f)(r) is the value vector of the ol 1-game.

But passing to the dual game, the last condition implies that Fix"~*(f)(F) is the
value vector in the dual stopping game with payoff gpgf_l]

Therefore, proceeding exactly as in Section 5.4.1, we can construct a strategy 7*

for player Max in the dual game with payoff (,oL’“] such that
B (o) > w — 2/2 (5.30)
for all strategies o of player Min if

Wy > Tg. (531)

By duality of games and fixed points, E (o) = 1 = EZ™ (o), w), = 1 — wy
and 7, = 1 — ri. Thus (5.30) is equivalent to EJ7 ( My < wy, + £/2 and (5.31)
is equivalent to wy < 71, i.e. we get a £/2- optlmal strategy of player Min in the
goyc]—game if wy < rg.

In the similar way, applying the construction of Section 5.4.2 to the dual game
and coming back to the original game we get a strategy o* for player Max such that

E T((pL]) > wy, —e/2 if wy < 7y

5.4.4 c-optimal strategies for the @Lk]-game starting at states

< k.

It remains to prove that

Fix; (f)(r) == F{ ™ (wgir)
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is the value of the ¢7[k]—game starting in the state ¢+ < k. To this end we must

construct strategies oy and 74 for player Max and Min, respectively, such that

B (o) < Fixt()(r) + ¢ and EP7 (o) > Fixt()(r) - (5.32)

% 7

for all strategies o, 7. We define only the strategy 7 for player Min and prove the
first equation of (5.32). The definition of oy and the proof of the right-hand side of
(5.32) are symmetrical and are left to the reader.

Recall that T; was defined as the (random) time of the first visit of the stopped

state process St[k] to the state k, cf. (5.7). Let 7. be the strategy of player Min

defined at page 81 that satisfies (5.26), i.e 7, is an £/2-optimal for player Min in the
[k]_ :
or -game starting at the state k.
By the induction hypothesis, there exists an £/2-optimal strategy « for player
[k—1]
(Tl ----- Tl—1,WkTl415--+5

We define the strategy 7y for player Min by composing strategies o and 7, as
follows:

Min in the ¢

a(Sy, (Al A2). .- S, T > m,
Tﬁ(sla(AivA%)v 7Sm): {7_( ' ( ! 1) ) '

(STU(A%H’A%‘I);"' ,Sm) lle <m.

Intuitively, 7 is the strategy such that player Min plays according to a until the
first visit to k and starting from the moment of the first visit to & he switches to ..
Moreover, when he switches to 7, then he “forgets” all history prior to the moment
T, and behaves as if the game have started afresh at k.

First we want to show that, for each strategy o of player Max and for each state
1<k,
E7 (oM Ty < 0) = BV (@F 0 67 | T < 0) < wy + £/2

K3 K3

where 7, is the shift operation, cf. Definition 5.3, and wy, = Fix}(f)(r) is the value
of k.

To justify the first equality let us notice that the plays with 77 < oo do not visit
the stopping states, i.e. the states > k, prior to 7. Therefore the payoff goyf] for such
plays is not modified if we shift them by 77.

The second inequality follows from the definition of 7;. When the game hits state
k at time T player Min switches to strategy 7. and forgets the history prior to 77.
Since 7, is €/2-optimal for player Min in the cp,Lk]—game for plays starting at k, using
this strategy limits the payoff to at most wy, + /2.

Now we examine the expected payoff for plays with 7} = co. Such plays never
visit k, therefore it is irrelevant for them if % is stopping or not like it is irrelevant
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what is the reward associated with k. Moreover, for such plays player Min plays
according to strategy 7.. For these reasons we have

E('J’,Tu (907[”]{;] | Tl _ OC) _ E?T* (Sp[k_l] n) | Tl = OO) <533)

v (T‘l,...,T’k,l,’wk,rk+1,...,’f’

From (5.33) we obtain

E; () = BT (ol | Ty < 00) - PTH(TY < o)

3 3

+E (@M | T = 0) - PYH(T = )

(2

< (wp +¢/2) - Py < o)
+E (o oy | T1 =) PIH(T = o0).

(Tl7"'7rk71’wk’7‘k+17"'7 ¢

(5.34)

k—1]
Tl Tk—1,Wk,Tk4+15--yTn

Since 7, is €/2-optimal for player Min in the goE )-game we have

- O, Tx k—1
Ff N wgr) +¢/2 = E; WEM7..1rk71,wk,rkﬂ,...,rn))
O, Tx k—1 O\
- EZ <90ETI7--17%—1,1%,Tk+1,~~77"n) ‘ Tl < OO) ' Pz (Tl < OO)
O, Tw k—1 .
T EZ <SDET17"11rk—l7wk77‘k+1 ..... 'r’n) ‘ TI = OO) : P’L (Tl = OO)

Notice that plays with 77 < oo have payoff wy in the gpgfl_l] R 1)~ ST

because k is stopping in this game and the reward of k is equal to wy. Hence we can
rewrite (5.35) as

FFYwg;r) +¢/2 = wy - PY™ (T < 0)
FEDT (! o) | Th =) - YT} = o).

(rl7""Tk71’wkzrk+17“"

Thus

o1 (k-1 o
Ei (@Erl’,,17']6717’wk,7‘k+1,.~~,rn) ‘ T]_ = OO) . PZ (T]_ = %)
< Ff M) +¢/2 = wy - PYT(T < o0). (5.35)

From (5.34) and (5.35) and since P} (T} < o0) = P{™ (T} < ) we get

E] " (M) < (wy, +£/2) - PYH(T) < 0) + FF 7 wiir) + €/2 — wy, - PY™ (1) < 0)
= FFYw;r) +¢/2 4 (¢/2) - P]™(T) < o)

< FFlwgr) + ¢

~ Fixt()(r) + =

which terminates the proof of the e-optimality of 7.
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5.4.5 Dual game

We have constructed a e-optimal strategy for Max and Min for the game starting
at k but the strategy for Max was constructed under the condition r, < wy while
the strategy for Min was constructed under the condition r, < wy.

How to obtain e-optimal strategies for both players for two remaining cases
(r, = wy for Max and ry > wy for Min) we use the natural duality of the nested
fixed points and the games.

Let G be a priority game. The dual game G is obtained in the following way:

(Di) G has the same states, actions and transition probabilities as G,

(Dii) if r = (71,...,r,) is the reward vector in G then 7 = (74, ...,7,) is the reward
vector in GG, where for z € [0,1], Z := 1 — z,

(Diii) players Max and Min exchange the roles, in the dual game for each state i € S,
A (i) are the actions of player Max while B(7) are the actions of player Min,
moreover in the dual game player Max wants to minimize the priority payoff
o7 while Min wants to maximize the priority payoff or.

To avoid confusion, we write Max and Min to denote the players, respectively, max-
imizing and minimizing the priority payoff in the dual game.

A strategy o is a strategy of player Max in G if and only if it is a strategy of
player Min in the dual game G. A symmetric property holds for strategies of player
Min.

For each play h we have ¢,.(h) = 1 — p(h), thus E]"(¢,) = 1 — E?(¢7), where
the left hand side is the expected payoff in G, while E?(¢7) is the expected payoff
in G when Max plays according to 7 and Min plays according to o.

This implies that v; = 1 — 7;, where v; is the value of state 7 in G while v; is the
value of 7 in the G. Moreover, a r, a strategy is e-optimal for player Max in G if and only
if it is e-optimal for player Min in G. A symmetric property holds for strategies of
player Min.

O
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Chapter 6

Discussion and conclusions

In Chapter 4 we proved that in turn-based stochastic priority games both players
have pure memoryless optimal strategies. Since the number of states and actions are
finite, the number of possible pure memoryless strategies is also finite. Therefore,
comparing game values obtained for all pairs of pure memoryless strategies (o,7),
we can find pure memoryless optimal strategies. This method is highly inefficient.

The question whether there exists a more efficient way to find these pure mem-
oryless optimal strategies for both players is open.

Concerning concurrrent priority games, in the future we hope to use the approach
developed in Chapter 5 to find non-trivial classes of concurrent priority games where
one or both players have c-optimal memoryless strategies. In this direction let us
mention the result of Secchi [Sec98] who proved that in concurrent limsup games!
player Min has an e-optimal memoryless strategy.

Another interesting problem is to find a method allowing to approximate the
values of the concurrent priority games with a given accuracy.

1. A limsup game is a game with payoff equal to limsup, rs,, where (s;)5, are the visited
states during the play.
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Part 11

Population questions
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Chapter 7

Analysing population dynamics of
Markov chains

In this chapter we analyse the simplest framework among discrete time stochastic
finite state system: Markov chains. Contrary to what we did in the first part of
the thesis, here we use another interpretation. Namely, the population semantics:
it explains how a distribution over the states is transformed at each step. Let us
consider the following example: let M be the transition stochastic matrix defined
in (7.1). We can draw the Markov chain as showed in Figure 7.1: each arrow shows
the probability to move from each state to another one. Assume that initially 1/2
of the population are in state 2 and the other half is in state 3. Then if we want to
know the proportion of the population in each state in the next step it suffices to
multiply the matrix M by vector (0,1/2,1/2) and we obtain (0.45,0.3,0.25).

0.1 0.7 0.2
04 0 06 (7.1)
0.5 0.3 0.2

With such semantics, properties considered are different than reachability, parity,
etc. Instead, we want to know whether there exists a step at which the proportion of
the distribution in a set Goal of states is higher than some threshold - (population
question). This is orthogonal to the question of bringing with high probability a
pebble in a set of state, where the number of steps to bring the pebble is non
uniform over all the runs (PCTL question) [BRS02| . The population question is
much harder to verify than the PCTL question: it is actually not known whether this
kind of question can be decided on Markov Chains (JAAOW15], as will be discussed
in Section 7.1.2). In this chapter we approach this problem by studying the languages
generated by Markov chains, whose regularity would entail the decidability of this
question.

More precisely, in this chapter we study classes for which the language of tra-
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Figure 7.1 — Markov chain with three states.

jectories is (w-)regular, allowing for the exact resolution of any regular question
(e. g. checking any linear temporal logic with intervals (LT Lz) formula as defined
in [AAGT15], it means, a linear temporal logic in which an atomic proposition will
assert that “the current probability of the node i lies in the interval d”). More pre-
cisely, we define the trajectory from a given initial distribution as an (infinite) word
over the alphabet {A, B}. The n—th letter of a trajectory being A (for Above, re-
spectively, B for Below) represents that after n steps the probability to be in Goal
is greater than or equal to (respectively lesser than) the threshold ~. Further, we
consider the language of MC as the set of trajectories (words) ranging over a (pos-
sibly infinite) set of initial distributions. Thus, we can answer questions such as:
does there exist a trajectory from the set of initial distributions satisfying a regular
property or do all trajectories satisfy it. We prove that the language of a MC with
distinct real positive eigenvalues is regular.

7.1 Preliminaries and definitions

A distribution ¢ over @ is a function 6 : @ — [0, 1] such that ¥, 6(¢) = 1. Given
M € |Q] x |Q], the matrix associated with a MC, we denote by M¢ the distribution
given by Md(q) = X.,.00(¢')M(q,q) for all ¢ € Q. Notice that, considering &
and M¢ as row-vectors, this corresponds to performing the matrix multiplication.
That is, we consider M as a transformer of probabilities, as in [KVAK10, AAGT15]:
(M0)(q) represents exactly the probability to be in ¢ after applying M once, knowing
that the initial distribution is d. Inductively, (M"0)(q) represents the probability to
be in ¢ after applying n times M, knowing that the initial distribution is 9.

For example, let (S, M) be the transition matrix of the Markov chain presented
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in Figure 7.1 and (7.1) with initial distribution given by

0
d =105
0.5

Hence the initial probability to be in state 2 is  and % for state 3. The distri-

2
bution at the next step is given by

0.45
Mo=1| 03
0.25

7.1.1 Motivation

As motivation, consider a population of yeast under osmotic stress [MTC™14].
The stress level of the population can be studied through a protein which can be
marked (by a chemical reagent). For the sake of illustration, consider the following
simplistic model of a Markov Chain M., with the protein being in 3 different
discrete states (namely the concentration of the protein being high (state 1), medium
(state 2) and low (state 3)). The transition matrix, also denoted Mqs¢, gives the
proportion of yeast moving from one protein concentration level to another one, in
one time step (say, 15 seconds).

0.8 0.1 0.2
Myeast = [ 0.1 0.8 0.1
0.1 0.1 0.7

For instance, 20% of the yeast with high protein concentration will have low
protein concentration at the next time step. The marker can be observed optically
when the concentration of the protein is high. We know that the original proportion
of yeast in state 1 is 1/3 (by counting the marked yeast population), but we are
unsure of the mix between low and medium. The initial set of distributions is thus
Inityeqst = {(1/3,2,2/3 —x) | 0 < 2 < 2/3}. The language of Myc.s will tell us
how the population evolves wrt the number of marked yeast being above or below
the threshold vye.st = 5/12, depending on the initial distribution in Init,e,s. Now,
suppose an experiment with yeasts reveals that there are at first less than 5/12
of marked yeast (i.e. with high concentration of proteins), then more than 5/12 of
marked yeast, and eventually less than 5/12 of marked yeasts. That is, the trajectory
is B for a while, then A for a while, then it stabilises at B, in other words, the
trajectory is B"A™B* for some n,m > 0. Let us call this property as (Pyeqst) (note
that this is a regular property). We are interested in checking whether our simplistic
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model exhibits at least one trajectory with the property (Pyeqs:), and if yes, the
range of initial values generating trajectories with this property.

Our method computes effectively the language of Myeqst, a8 Myeqs: has positive
real eigenvalues, answering the question whether there exists an initial trajectory
s.t. property (Pyeqst) holds.

7.1.2 Relation with the Skolem problem

Skolem problem can be formulated as follows: for an integer matrix M, does
there exist n such that M"[s,t] = 07 where M"[s,t] = esM™e; and e¢; is a vector
whose components consist of a one in the i-th position and 0 otherwise. On the
other hand, the Markov reachability problem can be formulate as: given a stochastic
matrix M with rational entries and a rational number r, does there exist n such that
M™[s,t] = r? Hence, the Markov reachability problem is a sub-case of Skolem, for
the particular case where matrices are Markov chains. In [AAOW15] it is proved that
Markov reachability problem is at least as hard as the Skolem problem, in particular,
they show that the Skolem problem can be reduced to the Markov reachability
problem in polynomial time.

We define three basic problems which have been studied extensively in different
contexts. Given an initial distribution J; and a MC A with Matrix M, target states
Goal and threshold ~:

Existence problem: does there exist n € N such that the probability to be in Goal
after n iterations of M from &y is v (i.e., quGOGZ(M”cSO)(q) =)?

Positivity problem: does there exist n € N such that the probability to be in Goal
after n iterations of M from dy is at least v (i.e., X} cqou(M™0)(q) = 7)7?

Ultimate Positivity problem: does there exist n € N s.t., for all m > n, the proba-
bility to be in Gooal after m iterations of M from dy is at least 7 (i.e., X} g0 (M™d0)(q) =
)7

Note that all these problems are defined from a fix initial distribution dy. These
problems for MCs are specific instances of problems over general recurrence se-
quences, that have been extensively studied [OW12, HHHOG]. It turns out that the
existence for the special MC case is as hard as the existence (Skolem) problem over
general recurrence sequences as shown in [AAOW15].

Theorem 7.2. [AAOW15, HHHO06] For general MCs, the ezistence and positivity
are as hard as the Skolem’s problem.

The positivity result comes from the interreducibility of Skolem’s problem and
the positivity problem for general recurrence sequences [HHHOG]. The decidability
of Skolem has been open for 40 years, and it has been shown that solving positivity,
ultimate positivity or existence for general MCs even for a small number of states
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(<50, depending on the problem considered) would entail major breakthroughs in
diophantine approximations [OW14b].

7.1.3 Simple MCs

In order to obtain decidability, we will consider restrictions over the matrix M
associated with the MC. The first restriction, fairly standard, is that M has distinct
eigenvalues (they can be complex numbers too), which makes M diagonalizable.

Definition 7.3. A stochastic matriz is simple if all its eigenvalues are distinct. A
MC is simple if its associated transition matrizc is.

Some decidability results [OW14¢, OW14a] have been proved in the case of dis-
tinct eigenvalues for variants of the Skolem, which implies the following for simple
MCs:

Theorem 7.4. For simple MCs, ultimate positivity is decidable [OW1/c].
For simple MCs with at most 9 states, positivity is decidable [OW1ja.

We will consider the simple MC restriction. Notice that the decidability restric-
tions in Theorem 7.4 for these two closely related problems have led to two different
papers [OW14a|,JOW14c¢| in the same conference, using different techniques. As we
want to answer in a uniform way any regular question (subsuming among others the
above three problems and regular properties such as (Peqs:)) for MCs of all sizes, we
will later impose more restrictions. We start with the simple well-known observation
that a simple MC has a unique stationary distribution.

Lemma 7.5. Let M be a simple stochastic matriz. Then there exists a unique dis-
tribution Ogqr such that Mg = Ostat-

Proof. We give a sketch of proof here. We will later get an analytical explanation
of this result. We have Mo = ¢§ iff (M — Id)d = 0. As M is diagonalizable and 1 is
a eigenvalue of M of multiplicity 1, we have Ker(M — Id) is of dimension 1. The
intersection of distributions and of Ker(M — Id) is of dimension 0, that is, it is a
single point. O

As usual with MCs, we consider the probability to be in the set of states Goal
after n steps, that is 3. ., (M"0)(q). We consider only one threshold -, for simplic-
ity. In fact, the case of multiple thresholds reduces to this case, since the behaviour
is non-trivial for only one threshold, namely g = D] 4eGoal Ostat(q), as Lemma 7.14
shows. Before to prove this Lemma we need some definitions.
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7.1.4 Trajectories and ultimate periodicity

We want to know whether the n'* distribution M"§ of the trajectory starting in
distribution § € I'nit is above the hyperplane defined by quGoal Ty = 7, i.e., whether
> gecoal M™0](q) = 7. We will write ps(n) = A (Above) for 3} ,.[M"5](q) = 7,
and ps(n) = B (Below) else.

Definition 7.6. The trajectory ps = pop1--- € {A, B}* from a distribution ¢ is the
infinite word with p, = ps(n) for all n € N.

We write the eigenvalues of M as po,...,p, with |[p;|| = ||ps]| for all i < j.
Notice that £+ 1 = |Q] the number of states (as the MC is simple). It is a standard
result that all eigenvalues of Markov chains have modulus at most 1, and at least
one eigenvalue is 1. We fix pg = 1. As shown in the next Lemma 7.7, we have, for
some a;(0) € C:

k
ps(n) = Aff Y a;(S)p} = . (7.2)
i=0
Lemma 7.7. Given a matriz M with distinct eigenvalues (po, p1,--.,Pr), we have

k
ps(n) = A iff > a;(0)pl =~ for some constants a;(0);<k independent of n.
i=0

Proof. As the eigenvalues are distinct the eigenvectors (v;);<r form a basis. Let
d = a,v;. By definition ps(n) = A iff > [M"™0](q) = v, then

qeGoal

y <D [M)(q)

qeGoal

k
= Z ( OéiMn’Ui> €q
0

qeGoal \i=

k
n
= Z aivipi eq
qeGoal \i=0

k
7
= D; Z QiV;€q,
0

i= qeGoal

with e, = (0,...,0,1,0,...,0)" where 1 is it the ¢-th position. Now fixing

a;(0) = Z Q;v;eq, (7.3)

qeGoal
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k
we have ps(n) = A iff > a;(6)p} = 7.
i=0

]

In the following, we denote ug(n) = S a;(8)p} for all n € N, where a;(0) is
defined in (7.3). If ps is (effectively) ultimately periodic (i.e, of the form wv*), every
(omega) regular property, such as existence, positivity and ultimate positivity is
decidable (and are in fact easy to check). Unfortunately, this is not always the case,
even for small simple MCs.

Theorem 7.8. [AAGT15] There ezists an initial distribution &y and simple MC' A
with 8 states, and coefficients and threshold in Q, such that ps, is not ultimately
periodic.

Proof Sketch. The MC is given by: Goal = {1} is the first state, 7 = % and the
associated matrix M, and initial distribution d, are:

0.6 0.1 0.3 1
My=103 0.6 0.1]andd= |1
0.1 0.3 0.6 1

The reason the trajectory is not ultimately periodic follows from the fact that the
eigenvalues of My are 1, roe’® and roe ™% with ro = v/19/10 and 6y = cos™'(4/4/19).
Figure 7.9 depicts the probability to be in state 1 (the solid line) and ps, (the

circles).
0

An easy way to obtain ultimately periodic trajectories is to restrict to eigenvalues
v which are roots of real numbers, that is, there exists n € N\{0} with v" € R.

Proposition 7.10. Let A be a simple MC with eigenvalues (p;)i<m all roots of real
numbers. Then ps is ultimately periodic for all distributions 6. The (ultimate) period
of ps can be chosen as any m € N\{0} such that p"* is a positive real number for all
1< m.

Proof. Let m € N\{0} such that r; = p!* is a positive real number for all 7. Such an
m exists. Indeed, let n; € N\{0} such that p;* € R. Let ¢ be the lem of (n;);<x and
m = 2(. Hence every r; = p!"* is a positive real number for all 7 < k.

Let § a distribution. Taking (7.2), let p(n) = ps(mn) for all n € N. We have
p(n) = Aiff Zf:o a;(0)r? = 0. We have a;(9) € R for all 1.

For all r € {r; | i < k}, we denote I, the set of indices i with r = r; (it is
possible that several eigenvalues p; are the roots of the same positive real r;), and
ar = Y, @i(0). Let v be the largest value in {r; | i < k} such that a, # 0. Notice
that if for all r, a, = 0, then the trajectory is constant, equal to A“.
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Figure 7.9 — The solid line represents »; a;(0)pl" and the circles are above the graph
i=0

if ps,(n) = A and below if ps,(n) = B.

Obviously, p(n) is asymptotically equivalent to a,r™ when n tends to infinity.
That is, there exists Ns such that for all n > Ns, p(n) is of the sign of a,. Now,
consider initial distributions ¢’ in the finite set A = {M°6,..., M™ 1§} Let N
be the max over Ny for ¢’ € A. We have that ps(mn + ¢) = pypes(mn) for all
0e{0,...,m—1}. Let u = ps(0) - - - ps(mN—1) and v = ps(mN) - - - ps(m(N+1)—1).
We have that ps = wv®, proving that p is ultimately periodic of (ultimate) period
m. [

Now, for a finite state (Biichi) automaton B over the alphabet {A, B}, the mem-
bership problem, of whether a given single trajectory ps € L£(B), is decidable. It is
easy to obtain a (small) automaton B for each of the existence, positivity and ulti-
mate positivity problem such that this problem is true iff ps € £(B). For instance,
let us build a non-deterministic Biichi automaton for the ultimate positivity prob-
lem, let B be an automaton with two states {qi, g2}, acceptance condition F' = {¢s},
initial state ¢; and non-deterministic transitions as depicted in Figure 7.11. It is
easy to see that this automaton accepts words in which B occurs only finitely many
times. We thus obtain the following proposition:
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Figure 7.11 — Biichi automaton for the ultimate positivity problem.

Proposition 7.12. Let A be a simple MC with eigenvalues all roots of real num-
bers. Let g be a distribution. Then the existence, positivity and ultimate positivity
problems from initial distribution oy are decidable.

Proof. Let A be a simple MC with eigenvalues all roots of real numbers and let &y
be the initial distribution. Let ps be the symbolic trajectory defined in (7.2) and let
B be the (Biichi) automaton such that positivity (or ultimate positivity) problem
is true iff ps € L£(B). As the membership problem is decidable, hence it suffices to
decide if ps € L(B) to decide if positivity (or ultimate positivity) is true.

For the existence problem we have to modify the definition of ps, switching the
inequality to an equality, i.e., ps(n) = A iff Zf:o a;(0)pl" = =y, and to apply the same
method of proof. |

Note that Propositions 7.10 and 7.12 hold even when the matrix associated with
the MC is diagonalizable, but not necessarily simple.

7.2 Language of a MC

Using automata-based methods allows us to consider more complex problems,
where the initial distribution is not fixed. We define the set Init of initial distributions
as a convex polytope, that is the convex hull of a finite number of distributions.

Definition 7.13. The language of a MC A wrt. the set of initial distributions Init
is L(Init, A) = {ps | 0 € Init} = {A, B}“.

Note that A and B, and the language, depend on the threshold . As we assumed
this threshold value to be fixed, the language only depends on A and Init. As A is
often clear from the context, we will often write £(Init) instead of £(Init,.A4). For
the yeast example M = M., we have eigenvalues 1;0.7;0.6:

5/12 5/12 5/12 5/12 5/12 5/12

M-\ 13 =113, M|-512]=07|-5/12]; M| 0 |=06[ o0
1/4 1/4 0 0 —5/12 —5/12
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We can decompose two initial distributions 41,9, € Inityc.s on the eigenvector
basis:

1/3 512\ | (5/12\ [ 5/12 1/3 5/12\ | [ 5/12
N il CE R 742 = IR KR BV Bl I 2 B
5/12 1/4 0 —5/12 1/3 1/4 —5/12

Projecting on the first component, we have ps, (n) = A iff 50.7"—£0.6" > 0, that is
ps, = B*A. Also, ps,(n) = Aiff —50.6" > 0, that is ps, = B*. With the techniques
developed in the following, we can prove more generally that, for all n € N, we can
find an € s.t., § = (1/3 1/3 —€ 1/3 + €)T has trajectory ps = B"A“, and that
L(Inityeqst) = B*AY U BY. Thus, property (Pyeqst), from Introduction, does not hold
for any initial distribution.

Now that we introduce the notions of language, we can prove the Lemma that
we mentioned above.

Lemma 7.14. For 7 # s, we have L(Init, A) is regular.

Proof. For all distributions 0, we have that M"§ is converging (uniformly over all
initial distributions ) towards 0, as n tends to infinity. In fact, the proof of uniform
convergence follows the following lines. In the case of irreducible aperiodic Markov
Chains, it is well known that M"™§ converges uniformly towards a distribution g4
which does not depend upon the initial § [LPW09]. For irreducible periodic Markov
chain, M"™§ has the same property. Last, [AAGT15] lift this result to the general
case (reducible chains) by a careful analysis.

Hence for all v # >, 00 0stat(q), there exists a N (independent of &) such that
either for all n > N, € Init, M"¢ will be strictly above v, or for all n = N, € Init,
M™§ will be strictly below . This gives £(Init, A) = S;.A¥ + Sy.B¥ where S; and
Sy are finite sets of finite words of length < N. Hence £(Init, A) is regular. O

In general, if £(Init,.A) is regular, then any regular question will be decidable.
For instance, if £(Init, .A) is regular, then it is decidable whether there exists dp € Init
such that the existence problem is true for A, dy. One can also ask whether for a
given convex polytope @), some property (such as positivity) expressed e.g. with
LT Lz [AAGT15] is true. Taking § in the interior of @, this corresponds to checking
the robustness of the property around ¢.

Clearly, simple PA A does not ensure the regularity of £(Init,.A) because of
Theorem 7.8 (by choosing Init = {Jo} which is a convex polytope). Surprisingly,
restricting eigenvalues to be distinct and roots of real numbers does not ensure
regularity either [AGKV16]. In the following, we thus take a stronger restriction: we
assume that the eigenvalues of M are distinct and positive real numbers. That is,
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po=1>p; > - >p,=0with k+1 = |@Q| the number of states. From Proposition
7.10, we obtain as corollary that for all dp, we have either ps, = wA“ or ps, = wB*
for w a finite word of {A, B}*:

Corollary 7.15. Let M be a simple (or just diagonalizable) stochastic matriz with
positive real eigenvalues. Then every trajectory ps, is ultimately constant.

However, the language L(Inityeqsi, Myeqst) shows that L(Init, A) is not always of
the simple form (J, ey, wAY U Uy, wB®, for W4, Wp two finite sets of finite
words over {A, B}*. Nevertheless, in the next two sections, we succeed in proving
the regularity of £(Init, A), which is our main result:

Theorem 7.16. Let A be a MC with distinct positive real eigenvalues, and Init be
a convex polytope of (initial) distributions. Then, L(Init, A) is effectively regular.

7.2.1 Partition of the set Init of initial distributions

Recall that we write us(n) := Zf:o a;(0)plr, where a;(0) are given by Equa-
tion (7.2) from the previous section. Because the eigenvalues are real numbers, a;(9)
is a real number for every ¢ and §. Notice that a; is a linear function in J, that
is, a;(ad; + Pdy) = aa;(d1) + Pai(d2). The trajectory ps depends crucially on the
sign of ag(d), and if ag(d) = 0, on the sign of a;(9), etc. First, for all i < k, let
L; = {6 ] ao(6) = --- = a;(6) = 0}. This is a vector space (in RF), as for any
V1,05 € R we have vy, v, € L; implies that any linear combination ad;, + 8, € L;
(since a;(v) is linear in v, and the kernel of a linear function is a vector space).

We will divide the space of distributions into a finite set H of convex polytopes
H € H to keep the sign of each a; constant on each polytope. Each H € H satisfies
that for all e, f € H, for all i < k, we have a;(e), a;(f) do not have different signs
(either one is 0, or both are positive or both are negative). This can be done since
a;(v) is continuous (as it is linear) and the set H is finite because for each i #
k, sets {a;(0) > 0,Vd} and {a;(9) < 0,Vd} can be separated by an hyperplane
in R**1 so the space can be divided into at most 2**2 parts. This is pictorially
represented in the left of Figure 7.17. For instance, we divide Initye,s into three
polytopes: {(1/3,v,2/3 —vy) |y < 1/3} and {(1/3,v,2/3 —x) | 1/3 <y < 5/12} and
{(1/3,y,2/3 —z) | y = 5/12} as for 6 = (1/3,1/3,1/3) we have ao(d) =1, a1(6) =0
(and ay(d) = —1/5) and for 6 = (1/3,5/12,1/4) we have ao(d) = 1, a1(d) = —1/5,
ag(d) = 0.

In general, we can assume that each of H € H is the convex hull of k£ + 2 points
(else we divide further: this can be done as the space has dimension &+ 1). Consider
the right part of Figure 7.17. Let Init be the convex hull of points e, f, g, h (in three
dimensions) and ag(x) = 0 and as(x) > 0 for all = € {e, f, g, h,t}. Hence the sign of
each trajectory ultimately depends upon a;(x). In the example, a;(g) = a;(h) = 0
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p=(1/3,0,2/3)

s=(1/3,1/3,0) h f

al(f) <0

g
ai(g) =0

Figure 7.17 — Breaking into convex polytopes with constant signs

while a;(e) > 0 > ay(f). Then there is a point ¢ between e and f for which a;(t) =0
(in fact, ¢ = |ax(f)]/(lar(e)[+|ar(f)])e+lar(e)l/(lar(e)[+]ar(f)]) f). We have Ly ~Init
is the convex hull of h, g,t. We break Init into two convex polytopes, the convex hull
of h,g,t,e and the convex hull of h, g, t, f.

Let H € H. We let P be the finite set of (at most k + 2) extremities of H. In
particular, H is the convex hull of P. Now it suffices to show that the language
L(H) (taking H as the initial set of distributions) of each of these convex polytopes
H is regular to prove that the language £(Init) = |y, £(H) is regular.

7.2.2 High level description of the proof

The proof of the regularity of the language L(H) starting from the convex poly-
tope H is performed as follows. We first prove that there exists a IV,,q, such that
the ultimate language (after N,,.. steps) of H is effectively regular using analytical
techniques.

Definition 7.18. Given N,,.., the ultimate language from a convex polytope H is
defined as LY (H) = {v | Jw e {A, B}YNmes wv e L(H)}.

In the next section (Corollary 7.25), we show that this ultimate language £ (H)
is regular, of the form A*B* ... B*A“ U A*B* ... A*B“ with a bounded number of
switches between A and B’s. However, while for each prefix w € {A, B}"ma=  the

set H,, of initial distributions in H whose trajectory starts with w is a convex poly-
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tope; the language £(H,,) from H,, can be complex to represent. It is not in general
wLlmes (H), but a strict subset.

In Section 7.4 (Lemma 7.28), we prove that the language £(H') associated with
some carefully defined convex polytope H' < H is a regular language, of the form
Uy WA A*B* - -

B*AYUwA'A*B* - .- A* B* for a finite set WW. Further, removing H' from H gives rise
to a finite number of convex polytopes with a smaller number of “sign-changes”, as
formally defined in the next section. Hence we can apply the arguments inductively
(requiring potentially to change the N, considered). Finally, the union of these

languages gives the desired regularity characterization for £(H).

7.3 Ultimate language

7.3.1 Limited number of switches.

We first show that the ultimate language £+ (H) is included into A* B*A* - .. A*
BY v A*B*A* ... B*A¥ for some N,,., € N, with a limited number of switches be-
tween A and B depending on properties of the set P of extremities of H.

We start by considering the generalisation of a sequence us to a function over
positive reals, and we will abuse the notation us to denote both the sequence and
the real function.

Definition 7.19. A function of type k € N is a function of the form u : R.y — R,
k

with u(zr) = Z a;pj, where pg > -+ > pg > 0.
=0

In Figure 7.20 function of type 2.

Now, let u : Ryg — R be a continuous function. We can associate with function
u the (infinite) word L(u) € {A, B}, L(u) = (apay ...), where for all n € N, a,, is
defined as a,, = Aifu(n) = 0 and a,, = B otherwise. We have easily that ps = L(us).
Knowing the zeros of us and its sign before and after the zeros, defines uniquely the
trajectory ps.

For example, let u be such that it has four zeros: u(N — 0.04) = u(N + 10.3) =
u(N +20) = u(N + 35) = 0 for some integer N. Assume that (0) < 0,u(N +1) >
0,u(N + 11) < 0,u(N + 30) < 0 and u(N + 40) > 0. Thus, by continuity of u, u
is strictly negative on [0, N — 1], strictly positive on [N, N + 10], non-positive on
[N + 11, N + 34] and non-negative on [N + 35,00). Thus the associated trajectory
D5 = BNAHB%LAW.

Hence, it is important to analyse the zeros of functions us. If the number of zeros
is bounded, then the number of alternations between A’s and B’s in any trajectory
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Figure 7.20 — Function of type 2 f(x) = 40 x 0.8" — 380 x 0.5 + 390 x 0.4%(py =
0.8,p1 = 0.5,p = 0.4)

ps from § € H will be bounded. In fact, it is a standard result (which we do not use
hence do not reprove here) that every type k function u has at most k zeros. We
now show a more precise bound on the number of zeros. Namely, for the convex hull
H’ of a finite set P’ of distributions in H, the number of alternations between A’s
and B’s in H' is limited by the number of alternations of the sign of the dominant
coefficients of the distributions in P’.

Let z € N. For i € {0,..., 2}, let u'(x) := alp? + aipf + - -+ atp?, with py > p; >
p2 > ... > pr > 0, representing the functions associated with the z + 1 extremities
of H'. We denote dom(u’) the dominant coefficient of u’, that is the smallest integer
j with @} # 0. We reorder (u')ieq,....y such that dom(u') < dom(u'*") for all i < z.
We denote sign_dom(u’) € {+1,—1} as the sign of dom(u’). We will assume, as
for H, that for all 4,7, 7, aé and aj-’ have the same sign, we can do this assumption
as we show in Section 7.2.1. We let Z(u°,--- ,u?*) = |{i < 2 — 1| sign_dom(u®) #
sign_dom(u'™1)}|. That is, Z(u,- - ,u?) is the number of switches of sign between
the dominant terms of v’ and u'™'. We have 0 < Z(u°,--- ,u*) < z. Notice that
as for dom(u') = dom(u’), we have sign_dom(u’) = sign_dom(u?), Z(u®,--- ,u?)
does not depend upon the choice in the ordering of (ui)ie{o _____ 1. We can now give

a bound on the number of zeros of functions which are convex combinations of

UO"‘U/Z.

Lemma 7.21. Let v®---u* be z + 1 type k functions. There exists a Npgr € N
such that for all \; € [0,1] with Y, \; = 1, denoting u(z) = >,;_, Nu'(x), u(x) has
at most Z(u, -+ ,u*) zeros after Nyap. Further, if u(x) has exactly Z(u°,---  u?)
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zeros after Noaz, then its sign changes exactly Z(u®, -+ u®) times (that is, no zero
is a local mazimum/minimum,).

In other words, we show that u(x) behaves like a polynomial of degree Z ( LU
(asit has Z(u°, -+ ,u*) dominating terms), although it has degree k > ZW®, - u?).
To simplify notation, let £(7) = dom(u?) for all .. We prove that the coefﬁClentS alp?
for all 7 > ¢(i) play a negligible role wrt. az( Py

To do so, we use derivatives to study the sign of u(z), which is a linear com-
bination of z + 1 functions, v’ for all 0 < ¢ < z. Dividing u(z) by a well chosen
positive coefficient (of the form p*) before differentiation allows us to obtain a linear
combination of 2z functions. An induction allows us to conclude.

Proof. For all r € N, we introduce a small constant £(r) > 0 depending on the

number (z — r) of functions considered. We start by defining m(r, ]279’ ooy pr) > 0,
the min over all 0 <7 < s <z and 0 < j < k with j # £(r) of iogig";ﬁ;;;| The min
exists and it is strictly positive because it is among a finite number of values, all
strictly positive. We now define recursively ¢ : {0,..., 2} x RZ! — R_g

— e(z,p0, -, Pk) = i and

— forall 0 <r <z, e(r,po,...,pk) = %6(7‘4—1,]}0,...,%).

It is now easy to show by induction that for all ¢ ¢ {po,...,px}, for all r,

e(r, B %) = e(r,po,-..,pr). We then define e(r) = &(r, po, ..., px) for all 0 <
r < z. We can also show by induction that for all r, e(r) < 5.

We will use the following technical lemma, which we prove later.

Lemma 7.22. Let I be an interval of Ryg. Let pg > --- > pp > 0 be positive reals.
Let v'(x) := biq¥ + bigi + -+ + bipt be a function of type k for all i € {r,... 2},
0<r<z st,

— forallie{r,... 2}, all j # £(i) and all x € I, |bip?| < |e(z,po, - -+, P, Pl
(if this holds, we say that |b’p?| is negligible wrt |b£( Pyl and call thzs the
negligibility hypothesis)

Then for all A, = 0,...,A, = 0 with >,7_ N, = 1, the function v : x —
dv_ vt (x) has at most Z (b, 1 Piry 2 Vi) Piy) 2€ros in 1.

Further, if v(xz) has exactly Z(b] )Py ,bj(z)pf(z)) zeros in I, then its sign
changes exactly Z(b APy 7b€(z)p€(z)) times (that is, its zeros in I are not local
mazimum or mzmmum)

Notice that in Lemma 7.22, £(i) is not necessarily the dominating factor for v’.
In fact, v" is u’ plus some factors. If I is bounded, it can be the case that [0 » [bj;|
with 7 > £(7).
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Assume Lemma 7.22 has been proved. We then apply Lemma 7.22 with r» = 0,

v' =’ for all i < z and I = [N,4z, ), With N4, chosen such that the negligibility
hypothesis is verified, which is possible as £(i) is the dominating factor of u(i) for
all 4. This implies that u has Z(by, Py, bi\Pi() = Z(u®,...,u*) many zeros,
since these are the dominant coefficients of the u!. Thus, we obtain the statement of
Lemma 7.21: for all \; € [0, 1] with >}, A; = 1, denoting u(z) = >};_, Mu'(x), u(z) has
at most Z(u°, -+ ,u*) zeros after N,,q,. Further, if u(z) has exactly Z(u°, -, u?)
zeros after N,,q,, then its sign changes exactly Z(u°, - -+, u*) times (that is, its zeros
are not local maximum /minimums). This would complete the proof of Lemma 7.21.
O

It now remains to prove the technical Lemma 7.22, which we do by induction on
T

Proof of Lemma 7.22. For r = z, the lemma is trivial as one has a unique function
v*(x) = big§ + bigf + --- + bipp. Let £ = £(z). For all z € I, we have ., [bip}f| <
ke(z,po, -, pi)[Uipf| < ko bipf| < |bipf|. Hence the sign of v*(z) is the sign of
b for all = € I. That is, v* has no zero in I. The further statement is thus trivially
verified in this case.

Let 0 < r < z. Assume that the lemma is true for all instances with functions
(v"™1 ... v®). Let us prove that the lemma is true for all instances with functions
(V" ..., v%).

Let v'(x) = bigd + bigi + -+ + bipy, for i € {r,..., 2z} such that 1 > py >
pr> > e > 0, [UhpT] < le(r, po, - ,pk)bé(i)pf(iﬂ for all j # ((i) and x € I.
This hypothesis ensures that for all i, (1 — ke(r,po, - - - ,pk))|b;}(i)|p§(i) < i) <

14 ke(r,po,- -+ o)) Do~ [p% .. As we have (7, po, ..., pr) < = for all r, it gives
£(3) 170(7) 2k

5%(@??(@) < [u'(2)] < ;bi(i)ﬁ(i) (7.4)
Let Ay > 0,...,A, = 0 with >}, __ A = 1. Take the maximal x, € I such that
v(xy) = i, AV (2y) = 0 (if there is no such zero, then we are done). We can
assume without loss of generality that £(r) # --- # {(2), else it is easy to merge
several u’ with the same £(i) together (by replacing all u’ with the same £(i) by the
sum of all of them). We have |\v" ()] = | 2., \iv"(x,)| because z, is a zero of v.
Taking s > r with |A\,v%(z,)| maximal, we have | >, \v'(x,)| < zAs|v*(z,)]. Thus
At ()| < 2As[v* ()]

We let I' = I n [0,z,]. Using (7.4) for v" and for v* at =, € I, we have
)\T|bz(r)\p§(‘l’r) < /\53z|b§(s)\pf(ys). Now, because py) > pus), we have for all z € I”:
)\r\bz(T)\pf(r) < ASBZIbZ(S)\pf(S). By applying the hypothesis of the negligibility, we
thus get for all z € I" and all j # £(r), A\ [b|pj < As3ze(r, po, . . ., pi)[bj 5 IPj(s)- That
is, the terms i—;bgqf, with j # £(r) are small wrt by is) for z € I

>r
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Let ¢ = pyy and consider the function v'(z) = ”éf). Functions v' and v have

the same zeros. We can derive v/, which will cancel out every term using ¢*: For all
r <i < z, we define functions fi(z) := cO( 0)* + cl(pl) + -+ c};(%)x with:
. Z . . . _ p 1’ .
— fqr i # s, f"is the derivative of v, that is ¢} = log(“2)b; for j # {(r), and
— = log(%)(bj + :\\—7b§) for j # £(r), and ¢, = 0.
It is easy to check that f(z) = >/ ., A\if'(x) is the derivative of v'. We now

prove the inequalities involving e for f*(z) for all z € I’. We do it for the most
complex term, ie ¢ with j # £(s), £(r). We have

S pj T pj S )\7" T pj T
Pyl — o (B0 (b5 + 22pm) (2L
Cj(q) Og(q) (3+A5])\(q)
j Pes *
< log(%) e(rypos - - i) (1 + 32) b3, |( 2>>
10%(&) De(s)
< W (’/‘ po,...,pk)(l—i—Sz |C£(S| 7 )
log (%) Pus) \ "
— W m(r,po,...,pk)e(r+1,p0,...,pk)|c£(s)|< . )

s Pe(s ‘
E(T + 1ap0a v 7pk>‘cf(s)| (T()>

by definition of m(r).
Recalling that e(r +1,2,..., 2) = &(r + 1,po, ..., py), We conclude |c5|(%)* <
e(r+1,2, ... Bc S)|(m;s>) for all 7 € I’, so we can apply the lemma to f7+1, ..., f>.

Thus fungtlon f has at most Z(c;(til)pf(rﬂ), e ,cj(z)pf(z)) zeros in I'. It is easy to
see that Cii) has the opposite sign of b;(.) for all 7, and thus we obtain

r+1 z T _ 1 e z i
Z(Cz(tﬂ)pz(rﬂy e 7C€(z)p€(z)) = Z(b, 4;«+1)19z(7~+1)7 e 7b€(z)p€(z)>'

NOW, consider v’. Tt has the same sign and zeros as v. Hence the last zero
of v/ in i is x,. Because its derivative is f, ¢/ (and thus v) has at most 1 +

r+1 x z e :
Z (b t-&-l)pé(r-i-l)’ e 7b€(z)pé(z)> zeros in I,

I Z (b Py -+ VieyPizy) = 1+ Z(bZ(rH)pz(rH) - Ui\ Piz))> (o1 if v has at
most Z(b”ﬂ)pwﬂ) -5 bi zeros), the induction proof is finished.

Else, we proceed by contradiction. It means that the sign of bZ(r) and of brtfrl)

the same. It also means that f has exactly Z (b} (r+1)p€(r+1) N )pf(z)) zeros and
> (. By

18

br-i—l

switches sign every time. Without loss of generality, assume that (1)
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induction, it is easy to see that the sign of f(z,) is the sign of cz(tfrl),
negative.

In the same way, as ¢(r) is the dominating factor of v(z) in I, just after z,
(remember that v(z,) = v'(z,) = 0), the sign of v is by, > 0. This contradicts the
continuity of v and the fact that v(x,) = 0 and that its derivative is negative.

that is strictly

For the second statement, assume that v has exactly a := Z(bz(r)pf(r), e bj(z)p;”)
zeros in I. We know by the above that the derivative has exactly a — 1 zeros
Yl -+ Ya_1 in I'. For all i € {1, o« — 1} there is one zero x; of v between two consec-

utive zeros y;, ;41 of the derivative. Now, if by contradiction v does not change sign
at one of its zeros, let say x;, it means that x; = y;. In particular, it means that in
(Yi, yiv1], there is no zero of v, which contradicts the fact that v has exactly « zeros
in I'. It is also the case if the derivative is null at x,,. Last, v being continuous, it can
not change sign after x, as it has no zero other than z, (by definition of x,). O

Let H € H, and P its finite set of extremal points. We can apply Lemma 7.21
to u’, ..., u* the functions associated with the points of P (in decreasing order of
dominating coefficient), and obtain a N,,.,. Now, since P is finite, the trajectories
from P are ultimately constant, hence there exists IV, such that for all ¢ < y, the
trajectory of u' is wA¥ or wB* for some w € {A, B}Nv. We define Ny to be the
maximum of Ny, and N,,,,. With this bound on the number of zeros, we deduce the
following inclusion for the ultimate language L (H):

Corollary 7.23. Lety = Z(u°, ..., u?). The ultimate language L7 (H) < CF - -- Cry
Cy uCt---Cr Cyy for {C;,Cipay = {A, B} for all i < y; and C, = A iff
sign_ dom(u®) is positive.

We can have 4 different sequences for C} - Cy_,Cy with {C;, Ci11} = {A, B},
depending on the first and last letters C1, C, (or equivalently, C, and parity of y
which determines C).

The proof of our main result on regularity of £(H) will proceed by induction over
the switching-dimension Z(H) of H which we define as Z(H) = Z(u°, ..., u?). Notice
that we could define the switching dimension for any convex set (not necessarily a
polytope) whenever the sign of a;(d) does not change within the convex set. Finally,
we also define sign_dom(H) = sign_dom(u®).

7.3.2 Characterization of the ultimate language.

We now show that the ultimate language of H is exactly LN (H) = A*B*A* ... A*
BYUA*B*A* ... B*A¥ with at most Z(H) switches of signs. We will state the asso-
ciated technical Lemma 7.24 in the more general settings of “faces” as defined below,

as it will be useful in the next section. Let P be the finite set of extremal points
of a H. We call (f° ..., fY) < P a face of H if Z(v°,...,vY) =y = Z(H) for the
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functions (v°,...,vY) associated with the extremal points (f°,..., f¥). Notice that
denoting H' the convex hull of F', we can choose Ny = Ny.

Lemma 7.24. Given a face (f°,...,fY) € P of H with associated functions v',
we have, for all ny,ng,...,n, € N there exist \; € [0,1] with >, \; = 1, such that
denoting v(z) = Y,0_, \v'(z), L(D) = wA™ B" ... B™A* (assuming y is even) for
some prefiz w e {A, B}V,

That is, for all ny,...n,, one can find a prefix w of size Ny and a point ¢
in the convex hull of !, ... €Y, such that p; = wA™ B™ ... B A“ (assuming the
correct parity of y). Let H' be the convex hull of fO ... f¥. As (f°,..., f) is a face,
Z(H") = Z(H).

Proof. Let Nyqp <ny < --- < n, be integers. We define inductively 2o = Ny +1/2
and zj :=x;_1 +n;forall 1 <j<yifn; # 0 and z; :zxj_l—ki if n; = 0.

We build inductively a function v/ (), convex combination of {v?, v'*1, ... viti},
such that v/(z;) = 0 for all k € {1,...,j}. Further, if i is odd (resp. even), we have
vl (z) > 0 (resp. v!(x) < 0) for all x > z;. The initialization is trivial: we have that
V2 > Nyae, v1(x) is positive, by choice of N,,q.. We let v)(z) = v* for all .

Induction step: Let 0 < j < y. Assume that we have built v/~'(z) for all i.
The first thing to remark is that for all 7, any convex combination of vg_l(x) and
vl7 | (z) will have a zero at 21,...,2;_ 1 as both terms are zero there. It remains to
choose one which also have a zero at ;. By induction, Vo > x;_1, Ug_l(a:) is positive
(resp. negative) when 7 is odd (resp. even). Thus it exists ) € (0,1) such that
Nl (z;) + (1= M)l (x;) = 0. We thus define v} (z) = X! (z) + (1—X)vl, ,(z) and
it has the required j zeros, after N,,q,. As it is a linear combination of vy - - - v;4;, it
has exactly j zeros after Ny, (by lemma 7.21), and thus, Vo > N, U;- (x) is positive
(negative) if ¢ is odd (even) (as it has no zero after x; and we know its asymptotic
behaviour).

Then v{ has {z1,...,z,} as zeros, and by lemma 7.21, it switches sign each time.
Hence the language of v, is wA™ B™ ... A% (or wB™A™ ... A if y odd) for some
prefix w of size |w| = Npaz- O

Then, the ultimate language of H' (i.e., the language after prefixes of size Ny as-
sociated with y) contains A*B* ... B* A¥ with y switches between A and B, which is
the converse of Corollary 7.23. We can thus deduce the following about the ultimate
language:

Corollary 7.25. L)} (H) = Ll (H') = C{C5 ...CrAY U C¥C5 ... Cr_ B® with

ult ult

{Cz‘, Ci+1} = {A, B}-

Proof. We first prove the result for LZ?(H’). We can apply lemma 7.24 to H' and
lemma 7.21 to H'. We obtain the first part of the union. Now, let H” < H’ be
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the convex hull of e!,---  e¥ (that is excluding €°). Each point ¢ in H'\H” has a
trajectory which ends with A, as dom(us) = dom(v'), and thus sign_dom(us) =
sign_dom(v') by construction of H (and H' < H). Thus the points with tra-
jectory ending with B“ are in H” ) and applying lemma 7.21, we know that their
ultimate trajectory has at most y — 1 switches. Applying lemma 7.24 to H”, we
obtain the second hand of the union. Now, LYY (H') < LN¥(H), and LY (H) <

ult

CYCs...CyAY v CTC5 ... Cy_ B® by Corollary 7.23. O

However, we cannot immediately conclude that £(H) is regular. Though Ny is
finite, computable and there are a finite number of prefixes w of size Ny, we need to
show that the subset of £ (H) appearing after a given w € {A, B}V# is (effectively)
regular. This is what we do formally in the following section.

7.4 Regularity of the language

Let {¢° --- e’} = P the extremal points of H. Let u? the function associated
with each e? € P. We denote y = Z(H) = Z((u”)p<.). We will show the regularity
of L(H) using an induction on Z(H).

For Z(H) = 0, the regularity of £(H) is trivial as all the dominant coefficients
have the same sign. Thus, by Corollary 7.23, the ultimate language is EZ?(H) = AY
and then the language is £(H) = | J,.;y wAY; or the ultimate language is L7 (H) =
B“ and the language is L(H) = |, o wBY, for a finite set of W < {A, B}z,

For w € {A, B}™#  consider H,, = {0 € H | ps = wv}, i.e., the language of words
which begin with the prefix w. It is easy to see that H,, £ H is a polytope. Hence
Z(Hy) < Z(H). Observe that L(H) = J,c(a pyvu £L(Hw). To show the regularity of
L(H), we show the regularity of L(H,) for each of the finitely many w € {A, B}V#.
For each w € {A, B}%, we have two cases: either Z(H,) < Z(H); then we apply
the induction hypothesis and we are done. Or else, Z(H,,) = Z(H) = y. In this case,
the sketch of proof is as follows:

— We show that there exists J such that for all 7 < y and all j > J, we have a
point h; in H,, with trajectory wC{CQCg .- (C;_10¢. This is shown by applying
lemma 7.24 to each face (f°,..., f¥) of H and then using convexity arguments
and the fact that Z(H,) = Z(H).

— Subsequently, denoting H' the convex hull of A5 ---hY, we will deduce that
L(H') is a regular language of the form wC{C;C3C% .- CF ,C¥,

— Partitioning H,,\H' into a finite set of polytopes, we obtain polytopes of lower
switching-dimensions, which have regular languages by induction.

— We conclude since the finite union of these regular languages is a regular
language, namely L£(H,).
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We now formalize the above proof sketch in a sequence of lemmas. For all faces
F of H, applying Lemma 7.24 gives for all j € N, a point ¢;(F') of the convex hull
of F with trajectory w;CJCyCl - - - Cy, for some w; € {A, B}™". We now prove that
(gj) converges towards fY, the point of F with lowest dominant term.

Let i <y = Z(H). A i-subface of H is a subset F' = (f°, ..., f') of the set P of
extremal points of H such that Z(F) = i.

Lemma 7.26. For everyi < y and every i-subface F; = (f°, ..., f") of H, (gé(F))jeN
converges towards f' as j tends to infinity.

Proof. For ¢ = 0, the result is trivial. Let 0 < ¢ < y. By contradiction, assume that
there exists a dimension d (as there is a finite number of dimensions) and an infinite
set J of indices 7 € N such that g]L is bounded away from f? on dimension d. Let b be
this bound. Let H' be the convex polytope made of points of the convex hull of F; at
distance at least b from f* on dimension d (g is an extremal point of H, hence there
is only one direction of being at distance at least b on dimension d). Applying lemma
7.21 to H', we obtain a bound Ng such that the number of switches after Ny (in
general, Ny > N ) of any point of H' is at most i — 1, as Z(H') < Z(F;) = i. Now,
as J is infinite, one can find a j € J with j > Ny + 1. We have that the trajectory
of gi € H' is w'C{CoCs - - C for some w' € {A, B}V, which switches signs i times
after Ny, a contradiction. O

In the same way, for all » < 7, we can prove that denoting dé»’r the distance of

g5 to the convex hull of (f°,..., f"), we have d;-’rﬂ/dé»’r converges towards 0 as j
tends to infinity. Let D(e, fO,..., f71) be the distance from e to the convex hull of
(f°,..., fr*1) divided by the distance from e to the convex hull of (f°,..., f"). We
thus want to show that D(g}, f%, ..., f™*!) tends towards 0.

First, for » = ¢ — 1, this is trivial as d;ﬂrﬂ = 0 for all 4, j. Else, for r < i — 1,
if it was not the case, there would exist a bound b and an infinite set J of indices
with d?”l/d;’r > b for all j € J. Then as above, by considering H’' the the convex
polytope made of points e of the convex hull of F; with D(e, f°,..., f*™!) > b, we
have Z(H') < Z(F;) = i and the same contradiction as above applies.

For all j, we consider F'(y, j) the convex hull of {g;(F) | F is a face of H}. Every
point of F(y,7) has trajectory w'CCyCl - - - Cw for some w' € {A, B}, We then
show by convexity that Hs intersects F'(y,j), i.e., it has a point with trajectory
w'C{CaCs ... CY.

Lemma 7.27. Let a conver H' = H and w € {A, B}N# with Z(H!)) = Z(H'). There
exists J s.t. for all j > J, F(y,j) n Closure(H}) # .

Proof. Let y + 1 points h°, ..., h¥ in Closure(H,,)) such that Z(h°,... hY) =y. We
choose J such that for all face ' = (f°,..., f¥) of H, for all j > J,



114 7.4. Regularity of the language

— g/(F) is closer to f¥ than any A’ is from h¥, i # y.
— for all r and all k > r, D(g}(F), f°,..., f") < D(R*,h',... }")

Then we have that Closure(H],) intersects the convex hull of (g;(F))F a face of H -

As gj(F) € F(y,j) for all j, ', we have In particular F'(y, j) n Closure(H,,) #
. ]

Similarly, for all ¢ < y we can define a polytope F(i,7). All the points in F(i, j)
have trajectory w'C]CyCy---C¥ for some w' € {A, BYN#. We can find a J; and a
point h; € H,, with trajectory waCQCg -C¢ for all + <y and all 5 > J;. Now, as
the number of ¢ < y is bounded, one can find such a J uniform over all i < (by
taking maximum over all 7).

Consider F'(J) the convex hull of F/(0,.J),..., F(y, J). By convexity, all the points
in F'(J) have their n-th letters of trajectory as C for all n € [Ng +1--- Ny + J]|,
since this is true for all points of F(i,J). Hence, the language of H, n F(J) is
included into wC{CFCy---Cy v wC{CFCs ---Cy_;, because of the bound on the
number of alternations after Ny of trajectories from points of H (Lemma 7.21). We
show now that we have equality.

Lemma 7.28. The language of the convex hull of {hY,... h%} is ezactly
wC{CyC3C% - - Cy1Cy v wC{CyC3C% - - Cy2Cyy

Hence the language of H, n F(J) is wC{C} --- Cy v wC{CY ---Cy

Next, we prove Lemma 7.28 for which we first need an intermediate lemma
describing the exact language of the convex hull of two points of H,,. In the following,
we will abuse notation of a point to also define the function associated with its
trajectory: g(n) = 0 iff the n-th letter of the trajectory starting from g is an A.

Lemma 7.29. Let ey - - - e, be points of H,, with Z(eq, . .., e,) = Z(H,). Assume that
the trajectory of e = ey, is wCICi2 - .. C* ' C¥ with i; > 0 and {C},Cj41} = {A, B}
for all j < k. Assume also that the trajectory of f = ej_1 is wCICP - - C,i’“ ;C,jj 1-

Let i > iy_1. Then there is a point g on the segment (e, ) with g(Npasr + Z] L4+
i +1/2) = 0.

Notice that any g on (e, f) has at least k — 2 zeros, one in each (Npaz + 171+ +
ij, Nonaz+i1-+ - -+ijy1). The g we will build thus have trajectory wC}'C%2 - - - Cf_,C%.
Hence, the language of [e, f) is

wCichQ M Clk 10]{: 1Ck:

Proof. Let i > N. Let g define a point on (e, f) to be specified later. For a € {e, f, g},
we define u, as the function associated to the point a. Let z := |w| + 41 + iy + ... +
i,—3+1i+1/2. We have u.(z) > 0 and us(z) < 0 (in the unlikely case where us(z) =0
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with this z, i.e., ug(x) = 0 implies the letter is B and the derivative of u is null in z,
we just take x4+ 1/4. Because of the maximal number of zeros of uys, us(z+1/4) # 0
if ug(x) = 0). So there exists A € (0, 1) such that Au.(z)+ (1 —X)ug(x) = 0. Let g be
the point Ae + (1 — \) f on segment (e, f), and u,, its associated function. We have
ug = A+ (1—A)uy by linearity. Further, as g = Ae+(1—\) f and both e and f have
prefix wA" B2 A% ... A= then ¢ has also prefix wA" B2 A% ... A%=3 It means that
u, changes sign between |w|+i; —1 and |w|+1iy, .. ., between |w|+iy+io+.. . +1,_5—1
and |w|+iy+i2+...+1,_3. In particular, u, has a zero in every of these z—2 intervals.
Thus u, has z—1 zeros. By lemma 7.21, it switches signs exactly at these zeros, and
never elsewhere in [ N,,4., +0). Thus the trajectory of g is wA" B2 A% ... A==2 B1 A».
Further, as g is on the segment [e, f], both e, f € H, and H, is convex, then
ge H,. [

We can now finish the proof of lemma 7.28.

Lemma 7.28. Let ey - - - e, be points of H,, with Z(ey,...,e,) = Z(H,). Let J € N.
Assume that the trajectory of e; is wC{CoCy---C¥ with {C;,Ci1} = {A, B} for
all j < i (that is e; has the mazimum number of alternance in its subspace). Then
the language of the convex hull of {e, ..., e,} is exactly wC{CFC5C% - - - 10y v
wCiCYC5C5 - Cp Oy .

y—2

Proof. We first consider the case wC;CFC5C% - Cf_Cy¥. Then, we consider the
other case of wCiCFC3Cs -+ - Cf_,Cy¥ | in a second step.

Let x be a point in the interior of the convex hull of e; - - - e,. Then the trajectory
of z is wCiu for some infinite word u as all the point e; - - - e, are of this type and by
linearity of M* for all i. Now, by lemma 7.21, the number of alternation after w is
at most 2z — 1, hence the trajectory of z is of the form wC|™ C3Ci --- Cr -+ O
with i; € N for all j. We will show that every of these trajectories is reached for a
point in the convex hull of e; - - - e,.

Let (4;);<x be a family of integers. At first, we assume that i; # 0 for all j. For
all je{l,...,z—1} let z; := Ny + i+ j. Also, for all j e {1,...,z—1}, we define
Yj = Npaz + 1+ + ...+ 1+ 1/2.

We will prove that there exists a point f in the interior of the convex hull of
ey, -+, e, such that f(y;) = 0forall je{l,...,2—1}. Then Lemma 7.21 will imply
that the language of f is wC " CR2CE ... O ... CY.

We build f by induction. Applying lemma 7.29 for all j € {1,...,2—2} to e;, ej41,
we obtain a point e in (e;, e;11) such that ej(y.—1) = 0. As e} is in (e;, e;11), by
linearity, the prefix of its trajectory is wC;Cy - - - C;_1C; (and it ends up with C%y),
which implies that it has additionally j — 1 zeros in (Npaz + % Nppaz +0 + 7 + 1),
with Npew +1+ 7+ 1 < y._1.

Thus, the sign of e} (z) is constant in = € [xj_1+1,y,_1), depending on the parity
of j. In particular, y,_o € [xj_1 + 1,y,_1) forall j < z — 2.
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We now consider points (e3);<.—3 in the convex hull of (});j<.—2. Thus any of

these points have ¢3(y.—1) = 0 by linearity. Let j € {1,...,z—3}. We chose ¢ in the

segment (e, e}, ;) such that e3(y._o) = 0. It is possible as the sign of €}(y.—5) > 0
and the sign of e}, | (y.—2) < 0 (or vice versa, depending on the parity of j). We have

that e? has j + 1 zeros: y,_1,y.—2 and one zero in every of [z, zx41) for all k < j.
By induction, we get f := e~ such that f(y;) = 0 for 1 < i < z— 1 and

iz—1

it switches sign between each zeros, hence its trajectory is wCit"C% ... C=7'C¥.
Hence the case for ¢; > 0 for all j is solved.

Consider now the case where some ¢; = 0. First, if 4y = 0, then the above
procedure works. Now, for i; = 0 for j # 1, it means that the desired trajectory is
UJCi-Hl C;Q . CJZ']:f C’JZ']:ll L sz_—ll C;; _ fUJCi-Hl C«;z . 0;1:220;7:11+lj+1 C«;j:; . C(;z_—ll C«;,
as Cj_1 = Cj41, hence with 2 less switches. It suffices to start with the above proce-
dure, but with 2/ = 2z — 2 and points e; - - - €,; = e,_o. For instance, take ey, e5. Their
trajectories are respectively wC% and wCiCY. Applying lemma 7.29, we get the ex-
istence of a point f; in the convex hull of eq, e5 with a zero in y; = N +i411 4+ 1/2.
Its trajectory is wCi " CY.

Last, for the case of wC{CFCsC%¥---C}_,C¥ |, it suffices to proceed in the same
way in the convex hull of (e, ..., e,_1). ]

Next, we note that the set H,\F(J) may not be convex. However, one can
partition H,\F(J) into a finite number of convex polytopes. Now, let G be a convex
polytope in H,\F(J). We want to show that Z(G) < Z(H,) = Z(H) = y. Indeed,
else, one could apply Lemma 7.27 to G,, = G and for some J’ obtain F(i,j)nG # &
for any j > J’, which contradicts G being a convex set in H,\F(J).

Hence one can compute the language of every G inductively, and each of them
is regular. Finally, this leads to the regularity of L£(H,) by finite union, and to
the regularity of £(H), and again by finite union to the regularity of £(Init). This
concludes our proof of the main regularity result, i.e., Theorem 7.16.

7.5 Discussion and conclusions

In this chapter, we have shown the following, summed up in table 7.1: if the
eigenvalues of the transition (row-stochastic) matrix associated with the MC are
distinct roots of real numbers, then any trajectory from a given initial distribution is
ultimately periodic. This is tight, in the sense that, there are examples of trajectories
which are not ultimately periodic even for MCs with 3 states [AAGT15, Tur68| (with
some eigenvalue not root of any real number). Further, the eigenvalues are distinct
positive real numbers, then the language generated by a MC starting from a convex
polytope of initial distributions is effectively regular. Surprisingly, this result is also
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tight: there exist MCs with eigenvalues being distinct roots of real numbers (starting
from a convex initial set) which generate a non-regular language.

Theorem 7.28. [AGKV16] There exists a MC' A, with eigenvalues which are roots
of real values and 7 states such that L(Init, Ay) is not regular.

We proved that if the eigenvalues of the transition matrix associated with the
Markov chain are all distinct positive real numbers and we know these values, then
the language, for any convex polytope of initial distributions, is effectively regular.
We proved that by building its language of trajectories.

Notice that in general, the eigenvalues of a Markov chain can only be approxi-
mated. However, in case these eigenvalues are rational, then one can use the rational
root theorem (see, for example, [Lan13]) in order to find them explicitly. This also
provides a test whether all the eigenvalues are rational, and if yes, whether they are
all positive numbers.

Hence, if the Markov chain of the reduction from a Skolem problem to a Markov
reachability problem have distinct positive real eigenvalues and they are known or
its eigenvalues are distinct positive rational values, then we can decide the original
Skolem problem.

Though Markov Chains are a simple formalism, there are still many basic prob-
lems, whose decidability is open and thought to be very hard. Indeed, it is surprising
yet significant that even after assuming strong hypotheses, their behaviours cannot
be described easily.

‘ Property of eigenvalues of MC ‘ Regular language ‘ Ultimately periodic trajectories ‘

Distinct, positive real numbers | v (Thm.7.16) v (from below)
Distinct, roots of real numbers x [AGKV16| v (Prop.7.10)
Distinct x (from above) x ([AAGT15], Thm.3)

Table 7.1 — A summary of the results in this chapter.

Besides imposing strong restriction as positive eigenvalues, another way to tackle
the problem is to approximate it, asking whether for all € there exists a number of
steps n. after which the probability to be in Goal is at least v — e. The decidabil-
ity and precise complexity of this problem has been explored in [CKV14]. A more
general approximation scheme, valid for much more general questions which can be
expressed in some LTL logic, has also been tackled by generating a regular lan-
guage of approzimated behaviors [AAGT15|, where the authors define a notion of
an e-approximation of a disitribution &, such that &, is an e-approximation of & iff
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& and € are in the same class until some n., that depends on ¢, and after that both
distributions are in the same set of final classes, a set of configurations where the
configurations cycle in the steady state phase.

We now explain the relationship between checking population questions on MC
and MDP and checking reachability for stochastic systems with imperfect informa-
tion. In some sense, checking population questions is harder than checking reacha-
bility for systems with full observation (as this is decidable), but it is simpler than
reachability with imperfect information.

Hence, finding strategies ensuring quantified reachability in MDPs with imperfect
information (that is in POMDP, i.e. partially observable MDPs) is harder than
solving population problems for MDPs (because population questions on MDPs
corresponds to the particular imperfect information case of PAs, that there is no
information). In turn, this is harder than the case where the (PO)MDP is unary (that
is it a Markov chain that there is no choice of action), and in this case quantified
reachability in unary POMDPs and population questions on Markov Chains is the
same problem.

A Probabilistic Automaton (PA) can be defined as a MDP such that all actions
are available in each state and the player do not know in which of these states he is.

Unary PAs [CKV14, Tur68|, have an alphabet with a single letter. That is, there
is a unique strategy, and the model is essentially a Markov chain.

Population questions on MDP, with uniform strategy per time point correspond
to reachability in PA. Assume that there exists a number n of steps such that there
is at least v of the population in Goal after n steps of Markov Chain. Then playing
n steps of the associated unary PA, there is probability at least v to reach Goal.
Reciprocally, a wining strategy of a unary PA translates to a number of steps after
which at least 7 of the population is in Goal. Hence reachability for unary PA is
open (Skolem complete).

For PAs, the problem of whether there is a strategy to reach Goal with probability
at least a threshold « (also called a cut-point) is already undecidable |[Ber74]. Even
approximating this probability has been shown undecidable in PAs [MHCO03]. In fact,
deciding whether there exists a sequence of strategies with probability arbitrarily
close to v = 1 is already undecidable [GO10]|, and only very restricted subclasses
are known to ensure decidability [FGO12, CT12].
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