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ABSTRACT

Temperature is one of the major factors governing life as demonstrated by the fine tuning
of stability and activity of the molecular machinery, proteins in particular. The structural
stability and activity of proteins have been often presented as equivalent. However,
the thermophilic proteins are stable at ambient condition, but lack activity, the latter
recovered only when the temperature increases to match that of the optimal growth
condition for the hosting organism. In discussing the protein stability and activity, me-
chanical rigidity is often used as a relevant parameter, offering a simple and appealing
explanation of both the extreme thermodynamic stability and the lack of activity at low
temperature. The reality, however, illustrates the complexity of the rigidity/flexibility
trade off in ensuring stability and activity through intricate thermodynamic and molecu-
lar mechanisms. Here we investigate the problem by studying three study cases. These
are used to relate the thermal effects on mechanical properties and the stability and
activity of the proteins. For instance, we have probed the thermal activation of functional
modes in EF G-domain and Lactate/Malate Dehydrogenase mesophilic and thermophilic
homologues and verified a “universal” scaling of atomistic fluctuation of the Lysozyme ap-
proaching the melting in different environmental conditions. Our conclusions largely rest
on an in silico approach, where Molecular Dynamics and enhanced sampling techniques
are utilized, and are often complemented with Neutron Scattering Experiments.
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RÉSUMÉ

La température est un paramètre crucial dans le fonctionnement du monde vivant,
notamment de la machinerie moléculaire (les protéines) dont la stabilité et l’activité en
dépendent sensiblement. Celles-ci sont souvent considérées comme étant équivalentes :
si une protéine fonctionne, c’est qu’elle est stable, et vice-versa. Cependant, les protéines
des organismes thermophiles, qui proliférent dans de températures élevées, sont stables
à température ambiante, mais y présentent une faible activité. Cette dernière est opti-
male à la température de croissance de l’organisme hôte. Lorsqu’on parle de stabilité
et d’activité protéique, la rigidité mécanique est souvent utilisée comme paramètre
pertinent, offrant une explication simple et attractive à la fois pour la stabilité ther-
modynamique à haute température et au manque d’activité à des températures plus
modérés. La réalité s’avère souvent plus complexe, et les mécanismes moléculaire re-
liant rigidité/flexibilité avec la stabilité et l’activité sont encore mal compris. Dans ce
travail, nous abordons le problème au travers de trois systèmes. Nous avons examiné
l’activation thermique des modes fonctionnels du domaine G de la protéine EF ainsi que
les homologues mésophiles et thermophiles de la déshydrogénase Lactate/Malate. Par
ailleurs, nous avons mis en évidence l’existence d’un paramètre unique (la moyenne des
fluctuations atomiques) permettant d’expliquer la dynamique de la protéine lysozyme
près de son point de fusion, et ce quelque soit la nature de l’environnement autour de la
protéine (qui décale le point de fusion). Nos conclusions se basent principalement sur
une approche in silico où la dynamique moléculaire et des techniques d’échantillonnage
améliorées sont utilisées et sont complémentées par des expériences de diffraction de
neutrons.
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SOMMAIRE

Il a été suggéré à plusieurs reprises que la vie á des températures élevées serait sans
doute apparue il y a de 30,000 á 100,000 ans. Les sources hydrothermales ont été pro-
posées comme un habitat possible où la vie aurait émergé, puisqu’elles sont actuellement
habitées par des micro-organismes vivant à des températures allant jusqu’à 122 oC.
Malgré l’attrait de cette théorie, aucune conclusion définitive ne peut être tirée. Par
exemple, la chimie prébiotique suggère que le régime à haute température favorise une
décomposition rapide des molécules biologiques. Indépendamment de leur origine, les
organismes appartenant aux trois domaines du vivant – eucaryotes, archées et bactéries,
ont évolué pour habiter la Terre actuelle, y compris dans des environnements extrêmes.
Des colonies bactériennes ont été retrouvées à des températures aussi basses que -60oC,
et aussi hautes que 113oC pour Pyrolobus fumarii ou 122oC pour Methanopyrus kandleri.
Récemment, un spectre biocinétique de température, représentant les taux de croissance
de toutes les souches considérées en fonction de la température, a montré un pic im-
portant à 42oC, et un second pic plus faible à 67oC, correspondant respectivement aux
conditions dans lesquelles les mésophiles et les thermophiles se développent. Le spectre
expérimental a été reconstruit avec un modèle basé sur un compromis entre stabilité et
activité des protéines, un sujet important non seulement dans le contexte de l’évolution
biologique, mais aussi pour de potentielles applications industrielles visant à optimiser
les processus biotechnologiques et la stabilité des médicaments. Dans cette thèse, nous
discutons en détail du problème de la stabilité thermique des protéines en examinant
à la fois des modèles physiques et les détails moléculaires qui leur sont associés, tout
en essayant de comprendre la relation entre la structure et la fonction, sachant que les
protéines thermophiles sont inactives à température ambiante malgré la grande stabilité
de leur structure.

Afin de comprendre l’effet de la température sur la fonction des protéines et sur leur
stabilité, nous considérons trois cas d’étude. Étant donné que la fenêtre de température
optimale pour la l’activité d’une protéine est relativement étroite, nous voudrions ob-
server où et comment cette optimisation est réalisée afin de mieux comprendre la relation
entre la structure des protéines et leur activité. Pour cela, les protéines thermophiles
représentent un modèle idéal puisque leur stabilité à des températures modérées et
élevées est accompagnée par une activité dans le régime à haute température unique-
ment, ce qui suggère que la relation entre un repliement protéique stable et une protéine
active n’est pas aussi simple que ce qui est souvent présenté. Dans notre étude, nous
avons systématiquement comparé des protéines similaires avec des températures opti-
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males de travail différentes afin d’étudier le compromis entre la stabilité et la fonction,
ainsi que sa relation avec la flexibilité mécanique de la protéine.

Des simulations numériques et des calculs sont utilisés comme la méthode de choix.
La dynamique moléculaire (MD) et son extension pour atteindre un meilleur échantil-
lonnage des configurations moléculaires, REST2, sont largement utilisées pour obtenir
des simulations de systèmes sur une échelle de temps de l’ordre de la microseconde. La
dynamique moléculaire produit des trajectoires des positions atomiques dans le temps
et, en exploitant la mécanique statistique, permet le calcul de la thermodynamique à
l’équilibre et des propriétés dynamiques telles les coefficients de diffusion. De plus, la
technique permet l’observation d’événements biologiquement pertinents à une résolution
atomistique, ce qui est d’une grande valeur pour la recherche moderne. Afin de renforcer
davantage nos études, nous complémentons les résultats in silico avec des expériences
de diffusion de neutrons (Neutron Scattering (NS)) qui sondent des gammes similaires
de longueur et d’ échelle de temps. La possibilité de déterminer les quantités observées
dans les expériences de NS à partir des trajectoires simulées fait de l’utilisation com-
binée de ces deux techniques un outil solide pour interpréter les études structurales et
dynamiques des protéines.

Dans la première étude présentée dans la thèse, nous étudions les changements
conformationnels du G-domain se produisant durant le turnover enzymatique d’une paire
d’homologues mésophiles et hyperthermophiles. La comparaison d’enzymes homologues
adaptées à différents environnements thermiques aide à éclairer le délicat compromis
entre stabilité et fonction. La rigidité mécanique des protéines a été proposée comme
assurant la stabilité et la fonctionnalité des protéines thermophiles à haute température.
Nous avons contesté le principe de cette hypothèse pour une paire d’homologues de
domaines GTPase en effectuant de nombreuses simulations de MD, en appliquant
des algorithmes de groupement conformationnel et cinétique, tout en exploitant une
technique d’échantillonnage amélioré (REST2). Comme il a été auparavant montré que
l’amélioration de la flexibilité des protéines et une stabilité à haute température ne
peuvent coexister dans la variante hyperthermophile apo, nous nous sommes concentrés
sur les états holo des deux homologues en imitant le turnover enzymatique. Nous
avons clairement montré que la présence des ligands affecte le paysage conformationnel
visité par les protéines, et il s’agit du principe de l’état correspondant nécessaire pour
certains modes fonctionnels. Dans les espèces hyperthermophiles, la flexibilité de la
région effectrice assurant la communication à longue distance et la boucle P modulant la
liaison du ligand ne sont récupérées qu’à haute température.

De plus, nous avons étudié l’activation thermique des modes doux des protéines en
combinant des expériences de diffusion de neutrons à écho de spin et des simulations de
MD. Le but ultime est de comparer la réponse thermique des modes fonctionnels dans
une paire Lactate/Malate Déshydrogénases. La diffusion de neutrons avec écho de spin
permet de sonder les mouvements à des longueurs et des échelles de temps de l’ordre du
nanomètre et nanoseconde –ce qui est pertinent pour des grandes réorganisations confor-
mationnelles de protéines, tandis que les simulations de MD soutiennent l’interprétation
microscopique des spectres expérimentaux. Les résultats obtenus pour les espèces mé-
sophiles, la Lactate Déshydrogénase 5 eucaryote du muscle de lapin (LDH M5), seront
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largement présentés. Pour la Lactate Déshydrogénase, nous avons sondé l’activation
thermique des modes fonctionnels couvrant les échelles de longueur des séparations
entre les domaines, correspondant à la réorganisation allostérique préalablement sondée
pour les LDHs bactériennes.

Le dernier système considéré, le Lysozyme à l’état de poudre, nous a permis à évaluer
un aspect complémentaire de la relation entre la flexibilité mécanique, la stabilité
et la fonction, avec comme résultat principal l’existence d’une loi d’echelle pour les
fluctuations atomiques à l’approche du point de fusion de la protéine, concept d’ordinaire
utilisé pour décrire la transition de phase dans les solides. Une relation simple, le critère
de Lindemann, prédit l’apparition de la fusion une fois que les fluctuations thermiques
dépassent une valeur seuil à laquelle la cristal fond. Ici, nous cherchons à vérifier si
le concept peut être étendu à la matière biologique non homogène en utilisant comme
modèle le Lysozyme et en utilisant la MD et les simulations d’échantillonnage amélioré
pour atteindre cet objectif. À cet effet, nous avons considéré la protéine dans trois
environnements différents : en solution aqueuse diluée et deux systèmes de poudre, un
solvaté avec de l’eau et l’autre avec du glycérol. Un des effet de ces conditions est le
déplacement de la température de fusion du Lysozyme. Les systèmes ont été simulés et
analysés avec l’objectif final d’élucider si la fusion de protéines est accompagnée d’une
mise à l’échelle universelle des fluctuations atomiques. Le travail a été inspiré par les
expériences récentes de diffraction de neutrons incohérente élastique réalisées par nos
collaborateurs.

En conclusion, notre étude basée sur la MD couplée à des expériences de diffusion
des neutrons nous a permis d’étudier la validité de deux paradigmes classiques liés
aux effets de température - le principe d’état correspondant de Somero et le critère
de Lindemann. Le premier corrèle l’apparition de l’activité enzymatique dans les pro-
téines thermophiles à l’activation thermique de la flexibilité des protéines, tandis que le
second définit l’ampleur critique des fluctuations atomiques pour initier la fusion. Les
deux principes témoignent du rôle central de la température dans la modulation des
adaptations évolutives.
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INTRODUCTION

It has been repeatedly suggested that life originated at high temperatures presumably

between 30,000-100,000 years ago [2, 3, 4]. Hydrothermal vents were proposed as a

likely habitat for life to emerge as they are presently inhabited with microorganisms

thriving at temperatures up to 122oC [5]. Despite the appeal of the theory, no definite

conclusion can be made, e.g. the prebiotic chemistry suggests a quick decomposition of

important biological molecules in the high temperature regime and thus favors somewhat

lower temperatures [6]. Independent of their origin, organisms belonging to all three

domains of life - eukarya, archea, and bacteria, have evolved to inhabit present Earth,

including extreme environments. Bacterial colonies have been found in Antarctica at

temperatures as low as -60oC [7] and as high as 113oC for Pyrolobus fumarii [8] or

122oC for Methanopyrus kandleri [9]. Recently, a biokinetic spectrum for temperature

was reported, where the growth rates of all considered strains have been presented as a

function of temperature, exhibiting a sharp peak at 42oC, and a second lower peak at 67oC

[10], corresponding to the conditions in which mesophiles and thermophiles thrive. The

experimental spectrum was reconstructed with a model based on protein stability/activity

trade off, a topic important not only in the context of biological evolution, but also for

potential industrial applications aiming to optimize biotechnological processes and drug

stability. In this introduction, we extensively discuss the problem of protein thermal

stability by examining both the physical models and molecular details, while trying to

grasp the structure to function relationship, knowing that the thermophilic proteins are

inactive at moderate temperature despite their stable structural fold.
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CHAPTER 1. INTRODUCTION

Figure 1.1: The free energy surface of a protein can be schematically represented as a
rugged funnel. The top of the funnel contains the unfolded states, while the native state
is of significantly lower energy and entropy compared to other states, making the folding
a favorable event. Adapted from Ref [15].

1.1 Structural Stability

X-ray crystallography has equipped us with tools to observe proteins at an atomic-level

resolution [11]. Knowing that all matter is dynamic due to thermal fluctuations of

atoms, the observed static picture emerging from the X-ray crystallography remains

powerful due to high level of detail and resolution it offers, but consequently necessitates

a dynamic complement still preserving microscopic resolution. Several techniques meet

these criteria, most notably Nuclear Magnetic Resonance (NMR) spectroscopy [12], and as

of late, cryo-Electron Microscopy (cryo-EM) [13, 14]. On the other hand, in silico methods,

such as Molecular Dynamics, emerged along the last century as the computational

support for the investigation of protein structure, dynamics, and function.

The experimentally resolved structures target biologically relevant, compact states,

termed the native state. The characteristic three dimensional structural fold of proteins

is the necessary condition for biological activity and, as such, has been the main focus in

protein research. Given the 20N possible combinations to form a protein chain of N amino-

acids, and the vast number of possible configurations a polymer of N monomers can

theoretically accomplish, the fact that proteins fold on biologically relevant timescales

is a remarkable example of evolutionary selection. In fact, a random heteropolymer

placed in solution would exhibit Brownian motion and form energetically favorable

non-bonded intermolecular contacts, forming a collapsed state resembling a random coil
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or a cross-linked gel, depending on the number of contacts formed [16]. These formations

lack the necessary configurational specificity to achieve function. Further increase in

the number of intermolecular contacts would lead to glass formation, with a number of

distinct kinetically trapped states [16]. Any one of these states would be susceptible to

mutational or environmental pressure, without the structural robustness attributed to

proteins. The efficient protein fold has been instead attributed to an energy landscape

resembling a funnel [16, 17, 18], see Figure 1.1, where the native state is of distinctly

lower energy than other states as a consequence of ‘minimal frustration’ [19], i.e. the

presence of interactions that would lead to non-native states is minimized as a result

of natural selection [16, 19]. The complete elimination of ‘frustration’ would produce

perfectly smooth funnel-shaped energy surfaces [20], in contrast to real proteins, whose

funnels are rugged and thus yield a number of non-transient conformational substates

corresponding to the local minima on the free energy surface [16, 17, 18]. The distinct

conformational substates provided by ‘frustration’ are a biological necessity as proteins

must exist in distinct conformational states to accommodate their role in enzyme activity

and signaling. The shape of the conformational landscape further suggests a large

number of protein configurations at the top of the funnel and a dramatic decrease in

the the number of substates along the path of protein folding, producing a positive

entropy contribution to the free energy in the folding pathway. Nonetheless, for the

majority of globular proteins, the collapse of the hydrophobic core and the release of the

caged water molecules from the immediate surface of these residues offers an entropic

compensation accounting for 75% of the free energy of folding [21]. A comparative study

has found the globular proteins to be only marginally stable with folding free energies

of 5.5±1.6 kcal/mol [22], corresponding to a formation of a few hydrogen bonds, whose

energy stabilizing contribution in proteins have been estimated to 0.5-1.5 kcal/mol [23].

This marginal stability is a consequence of enthalpic-entropic compensation in protein

folding, where each stabilizing intramolecular interaction, e.g. formation of salt bridges

and hydrogen bonds, is accompanied by a destabilizing protein entropy reduction upon

folding [24].

The free energy difference reported to characterize protein stability relies on a two

state protein model, where all protein substates are merged to either the folded or the

unfolded state, valid for many globular proteins [17], but invalid for large and complex

proteins [26, 27]. Nonetheless, although the real phase diagram of the protein addition-

ally comprises at least the molten globule and glassy phase [18], the two state model

remains widely used as it can be accompanied by simple equilibrium thermodynamic
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CHAPTER 1. INTRODUCTION

Figure 1.2: Stability curves corresponding to different protein thermal stabilities. Curve
(a) represents the stability of a mesophilic protein, while other three curves represent
the thermophilic curves in three possible variants: (b) upshifting the stability curve,
(c) right-shifting the stability curve, (d) broadening of the stability curve. Taken from
Ref [25].

arguments on protein stability [25, 22]. These arguments trace protein stability in terms

of its pH, ionic strength, and temperature [28], the latter being of special interest to our

studies. The thermal stability of proteins can be understood by outlining the protein

stability curve, the free energy of protein unfolding as a function of temperature ∆G(T),

as shown in Figure 1.2. The important feature of the curves is their parabolic shape,

producing three characteristic temperatures, the maximum defining the optimal temper-

ature stability and the two temperatures corresponding to ∆G=0, the lower temperature

marking the cold unfolding [29], and the higher high-temperature denaturation. We do

not inspect the cold unfolding in our studies, rather we concentrate on the unfolding in

the high temperature regime, referred to from now on ‘melting’, and the temperature at

which it occurs the melting temperature.
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Note that the melting temperature of the protein can be shifted by either of the

three mechanisms shown in Figure 1.2; right-shifting, up-shifting, and broadening of

the stability curve, or a combination thereof. Importantly, with the exception for the

mechanism shown in (c), this does not affect the maximum stability temperature that

clusters around ∼283 K, pointing to the importance of the hydrophobic interactions

in protein stability [21, 30], as its optimum is reached at these values. This agrees

with the observation of a stable structural fold at moderate temperatures for both the

mesophilic and thermophilic proteins, while still failing to account for the inactivation

of thermophilic proteins in the moderate temperature regime. The thermodynamic

stabilization of the thermophilic proteins has been granted mostly to the upshift of the

stability curve with broadening [31, 32, 33, 25] or, in smaller proportions, shifting it

to the right [31]. The molecular mechanisms of the thermal stability can be to some

extent devised from the observed attributes of the stability curve, e.g. from the enthalpic

elimination of the entropic component at the maximum. The enthalpic contribution is

dominated by changes in protein internal energy that can arise by formation of salt

bridges and hydrogen bonds, which would in turn make the protein matrix more rigid

and increase its thermal stability. Indeed it has been found that the thermophilic proteins

contain a surplus of charged amino-acids with respect to their mesophilic homologues [34,

35] and it was additionally suggested that the optimum placement of these amino-acids

in the structure is necessary to achieve the enhanced structural stabilization [36, 37, 38].

Additionally, the increased packing of the protein core [22] and loop shortening [39] seem

to be important in increasing thermal stability, although other studies on protein packing

have also suggested otherwise [40]. In contrast to these conclusions on thermal stability

resting on rigidity, an entropic mechanism has been proposed [41], where the increased

flexibility aids to dissipate thermal stress, supported by studies that found the flexibility

of the thermophilic protein to be as high, and sometimes exceeding their mesophilic

counterpart [42, 43, 44, 45]. In addition to the purely thermodynamic considerations of

protein stability, it is perfectly plausible that the increased thermal stability could be a

consequence of kinetic trapping of the folded state, separated from the unfolded state

in this instance by a large energy barrier [31]. The kinetic trapping has been suggested

as the mechanism by which rubredoxin from Pyrococcus furiosus maintains stability at

temperatures above the boiling point of water [46].

Considering the dramatic changes in properties and structure water undergoes in the

temperature range 0-100oC, it is reasonable to consider the solvent effect on the protein

stability. The number of per-atom water-protein contacts has found to be maximized
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in thermophilic species, forming an extended hydration shell around the protein [47]

due to large hydrophilic patches on the interface with water [48] and preventing the

water to penetrate the hydrophobic core. The notion is further reinforced by showing

the disruption of the water network at the interface being a precursor to melting [47].

To inspect the effect of solvent and protein crowders, we have performed a study on

the mesophilic protein Lysozyme in the framework of the two-state model. The study is

outlined in detail in Chapter 5, and the main result shows the thermoprotective character

of glycerol as compared to water, and the increase in the melting temperature in the

crowded condition. The effect of crowding is attributed to the reduction of entropy of the

unfolded state, observed at the atomic level as the quenching of atomic fluctuations in

the presence of crowders.

As can be deduced from our discussion, the thermal stability cannot be conferred

to a single mechanism, but rather arises form the superimposition of different factors.

An illustration of this is the role of salt bridges in protein stability, which must be

put in the context of solvent temperature increase. Raising the temperature decreases

the dielectric constant of water, which reduces the ‘shielding’ effect and makes the

electrostatic interactions effectively stronger. This is supported by computational studies

showing the desolvation penalty of the salt bridges to decrease in the high temperature

regime, producing a stabilizing contribution to protein stability [49]. Another pictorial

example is the one of Lysine, a charged amino acid that, in addition to forming salt

bridges, increases the entropy of the folded state with its many rotamer substates, thus

participating also in entropic protein stabilization [35]. These examples show that in

probing the factors affecting protein stability, examinations must be put in the context of

the protein environment and biological function.

In addition to the mechanisms of thermal stabilization provided here, we refer the

reader to some excellent reviews that cover the topic in more detail [50, 33, 51, 52, 53,

54], while proceeding to examine, in the following section, protein dynamics and activity

through the rigidity/flexibility paradigm, and the underlying mechanisms pertaining to

the high temperature regime.

1.2 Activity and Dynamics

Assuming different conformational substates is a necessary prerequisite for biological

activity, thus the evolutionary retainment of structural ‘frustration’, as argued in the

previous section. In the context of the protein free energy surface, the biologically active
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substates correspond to local minima in the well of the native state. The transitions

between two conformational substates separated via barrier happen when the relevant

degree of freedom, possessing the energy kBT/2 according to the equipartition principle,

accumulates the energy (and appropriate entropy) sufficient to achieve the improbable

high-energy configuration corresponding to the barrier peak, termed the transition state.

In the framework of the Transition State Theory (TST), the rate of transition is associated

to the energy barrier via a simple exponential relationship k = kBT
h exp− ∆G†

kBT , where ∆G†

corresponds to the free energy difference between the initial (reactant) state and the top

of the barrier. The probability of transition therefore depends on the height of the barrier,

manifesting in a range of protein activated motions occurring at different timescales

[55]. The fastest dynamics corresponds to bond vibrations happening on a femtosecond

timescale. These fluctuations happen within valleys separated by energy barriers of kBT,

which result in picosecond (atomic fluctuations, sidechain rotations) or nanosecond (loop

motion) dynamics at physiological temperature. Finally, the long dynamics on a micro-

and milisecond (matching the characteristic time scale of enzyme catalysis and signaling)

corresponds to transitions between valleys separated by energy barriers of several kBT.

In TST, the rate of conformational transition depends not only on the height of the

barrier between the two states, but also on the temperature. Typically, the transitions be-

tween states such as those in enzymatic reactions yield a twofold enhancement turnover

over a 10oC temperature increase, e.g. increasing the temperature from 37oC to 100oC

would increase the efficiency by a factor of 2
100−37

10 ∼ 80. Based on this notion only, the

conformational transitions and reactions obeying the simple exponential kinetics would

naturally be faster and more efficient in the thermophiles as these reactions take place in

high-temperature habitats, which is not observed in reality [56] as it would bring about

an overrepresentation of enzymatic products in the metabolism, an event unfavorable

to the homeostasis and survival [57]. The compensation for the temperature effect is

identified through different modulations of enzyme parameters and the metabolic tuning

of the substrate/product concentrations [57]. The enzyme tuning is achieved for example

through the temperature dependence of the chemical equilibria, in particular the effect

on the deprotonation of the Lysine, Arginine, and Histidine, which affects the efficiency

of chemical reactions and transitions [58].

In the context of the ideas presented above, efficient conformational changes, enzy-

matic reactions, and signaling would entail protein populating the appropriate minima

on the free energy surface, i.e. being flexible, while at the same time maintaining proper

structural fold, i.e. being rigid. Thus, the trade off between protein flexibility/rigidity
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Figure 1.3: The kinetic spectrum of Hydrogen/Deuterium (H/D) exchange for two ho-
mologous 3-Ispopropylmalate Dehydrogenases (IPMDH), mesophilic from E. coli and
thermophilic from T. thermophilus. The spectrum shows the ratio of unexchanged peptide
Hydrogens (X) as a function of time t, shown here as log(k0t) as the exchange rate k0 is
taken into account. The proteins are solvated in D2O, and a H/D exchange is expected to
happen over time, with a proportion depending on the accessibility of the H atoms to the
solvent, consequently, the highly flexible proteins will exchange a larger proportions of
H, resulting in low X values for flexible, and high X values for rigid peptides. For both
proteins, the experiments were performed at two different pH values, and additionally,
the thin solid lines in the background show the theoretical prediction of the spectrum
that will not be discussed. The left panel shows the experimental results at ambient
temperature (25oC), indicating a lower percentage of unexchanged Hydrogens in the
mesophilic protein as compared to its thermophilic counterpart, pointing that the latter
is rigid at ambient conditions at any measured experimental time. The right panel shows
the convergence of spectra when the experiment is repeated at the optimal working tem-
peratures of the two enzymes, indicating that both proteins exhibit comparable flexibility
at their respective optimal working temperatures. Figure is taken from Ref [59].

is directly related to its function and it should be considered in terms of temperature

dependence. Somero has proposed a corresponding state principle [57, 56], where the

critical degree of protein flexibility is identified as imperative to function, suggesting

flexibilities of proteins at their optimal working temperatures to be comparable. This

further implies that the shift of thermal stability and activity in thermophiles is due to

enhanced mechanical rigidity of the protein matrix recovering the critical flexibility at

high temperatures.

The universality of the flexibility/rigidity paradigm was investigated and questioned

along the years both experimentally [59, 42, 60] and theoretically [61, 62, 63, 45, 64, 65].
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Early Hydrogen/Deuterium (H/D) experiments probing the exposure of amide groups

to solvent by local unfolding revealed agreement between the protective factors of

mesophilic and thermophilic proteins at their respective optimal working temperatures,

as shown in Figure 1.3. [59, 53, 60]. Conversely, the same method did not validate the

corresponding state principle for the very thermostable enzyme rubredoxin from Pyrococ-
cus furiosus [42]. Similarly, Small Angle Neutron Scattering studies probing fast mode

atomistic fluctuations on two Malate Dehydrogenases did not verify the corresponding

state as the thermophilic homologue was found to manifest larger atomistic displace-

ments than the mesophilic variant [66]; it should also be mentioned that the microscopic

interpretation of the experimental signal was later questioned [67]. In other cases, the

principle was proven to be valid for the thermobarophilic protein IF-6 in a combined

Neutron Scattering and molecular modeling study [68]. In Chapter 3, we challenge

the corresponding state principle by considering the case of two homologous catalytic

domains of the elongation factor EF; one from E. coli and the other from S. solfataricus.

The enzymatic turnover is mimicked by simulating the members of the catalytic cycle,

and we observe a similar release of conformational flexibility when transitioning from

the reactant to the product state of the enzymes at their respective optimal working

temperatures, effectively proving the corresponding state principle.

Finally, the issue of the lack of thermophilic activity at moderate temperatures should

be addressed. In addition to the lower activity at low temperatures predicted by the

exponential kinetics, it has been shown that important functional modes are quenched

at ambient temperatures, only to be activated in the high temperature regime [69, 33].

Interestingly, long timescale modes have shown to be dominated by pico- to nanosecond

dynamics of loops in an illustrative example for Adenlyate Kinases [70], showing that the

thermal activation of functional modes can be accessed in Molecular Dynamics studies.

Similar observations on Malate Dehydrogenase have been made, where the propagation

of domain interfacial constraints on the nanosecond timescale was observed in the loop

gating the substrate binding [71] at ambient conditions, while the simulations at high

temperature could not probe the thermal activation of the corresponding mode. The

corresponding state scenario related to the activation of modes and chemical reaction was

addressed in a number of studies. Hydrogen tunnelling contribution to the chemical step

of the enzymatic reaction has found to be comparable at the enzyme working tempera-

tures in the mesophilic and thermophilic Alcohol Dehydrogenase, although the rationale

behind the thermal activation of the tunnelling in the thermophilic enzyme still remains

elusive [72, 60, 73]. Intense focus has also been placed on homologous Dihydrofolate Re-
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ductases [74, 75, 76], where additional complexity in comparing temperature-dependent

activities is introduced owing to the fact that the mesophilic enzyme is monomeric, while

the active form of the thermophilic variant is dimeric. The dimeric state is suggested

to filter accessible conformations by constraining the catalytically important loops at

the dimer interface, which is thought to prevent the electrostatic preorganization of the

active site [73] and the consequent lowering of the kinetic barrier for the enzymatic

reaction [76, 62]. To probe thermal activation of functional modes, in Chapter 4 we

present a combined Spin-Echo Neutron Scattering and Molecular Dynamics study on the

mesophilic rabbit muscle 5 Lactate Dehydrogenase, where a thermal activation of a mode

at lengthscales corresponding to interdomain separations was observed at temperatures

corresponding to the optimal working temperatures of the enzyme. The study looks into

the allosteric communication network and the implications the activated mode pertains

to enzymatic activity. The final goal will be a parallel study on Malate Dehydrogenase,

which is structurally homologous to Lactate Dehydrogenase.

The studies on Somero’s principle yield results on a case-to-case basis, while the

universal conclusion seems to be amiss. In fact, this should come as no surprise taken into

account the numerous factors affecting thermal activity and stability. It is also important

to note that the timescales and lengthscales of protein dynamics are correlated, making

the definition of flexible and rigid vague and dependent on the dynamical range of

interest, consequently offering a possible explanation for the diversity of presented

results. In this thesis, the concept of flexibility will be mostly inspected in terms of

conformational flexibility, while additionally the atomistic fluctuations will also be

addressed.

We proceed by first familiarizing the reader with the methods in Chapter 2, and

continue, in Chapters 3, 4, and 5, with detailed discussions on the ideas and challenges

presented here, only to conclude and pave future paths in Chapter 6.
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METHODS

Numerical simulations and calculations are used as the main method of choice. Namely,

the Molecular Dynamics (MD) and its extension to achieve better sampling of molecular

configurations, Replica Exchange with Solute Scaling (REST2), are employed extensively

to obtain simulations of systems on a microsecond timescale. The Molecular Dynamics

produces trajectories of atomic positions in time and, by exploiting Statistical Mechanics,

ensures the calculation of equilibrium and dynamic properties such as entropy estimates

and diffusion coefficients. Moreover, the technique allows the observation of biologically

relevant events at an atomistic resolution, making it invaluable to modern research.

To further strengthen our studies, we support our in silico results with Neutron Scat-

tering (NS) experiments performed on the same systems, as MD and NS probe similar

ranges of length and time scales. The possibility of determining quantities observed

in NS experiments from the simulated trajectories makes the combined use of the two

techniques a solid tool in interpreting the structural and dynamical studies of proteins.

The experimental techniques are also covered in the sections below, along with the

description of simulation and analysis tools.

2.1 Molecular Dynamics Simulations

Molecular dynamics (MD) is one of the principal computational techniques, the other

being the Monte Carlo method, used to investigate condensed matter in silico. MD

has been especially successful in the study of liquids, soft matter systems, including
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CHAPTER 2. METHODS

biomolecules, and contributed to reinforce the role of computer simulations as the true

third pillar in the scientific effort by partnering experiments and theory [77].

The idea of MD is simple, once a molecular model for the system is provided, i.e. the

classical potential energy describing the interactions between the constituents of the

system, the dynamics of the system is numerically solved by integrating the equations

of motion of classical mechanics. These trajectories are useful in that, in the ergodic

limit, the calculated time averages correspond to the true thermodynamic average. MD

is powerful because it also provides equilibrium transport properties, i.e. diffusion coeffi-

cients, as well as monitoring kinetic relaxation upon an out-of-equilibrium perturbation.

In the specific context of biomolecular simulations all this has an important impact,

having granted for example the quantification of the distribution of the conformational

states accessed by a protein, the mobility of ligands toward a target binding site, and the

relaxation of the protein matrix upon photo excitation or charge separation processes [78,

79, 80]. Depending on the choice of equations of motion used in simulations, the protein

in a MD trajectory samples microstates corresponding to a particular thermodynamic en-

semble. The simplest example is the integration of Newton’s equations of motion, which

produces a trajectory that samples the NVE ensemble, keeping the number of particles

N, the volume V , and the energy E of the system constant. Additionally, reservoirs of

heat and particles, as well as pistons, can be coupled to the simulated system to keep

different quantities constant during simulations, producing trajectories that sample

different statistical-mechanical ensembles.

The Molecular Dynamics simulations consists of:

• model describing the interparticle potential (the force-field)

• calculations of energies and forces from the model

• integration of the equations of motions

The method is routinely applied in biomolecular simulations [81, 82] and is used to

study proteins, nucleic acids, and drug-like molecules. Due to constant efforts to improve

the efficiency of the simulation algorithms and increase in computing power resources,

e.g. the use of specialized machines as done by the D.E. Shaw laboratory or GPUs, MD

all-atom simulations of very large systems, e.g. the viral capsides, or processes on a long

timescale such as the millisecond folding, are now performed [83, 84, 85]. The algorithms

and the Statistical Mechanics underlying MD simulations are provided in many classic

textbooks [86, 87, 88] to which the reader can refer. We only add that the MD technique
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is frequently coupled to enhanced sampling techniques that allow the estimation of

the free energy for complex processes (e.g. the binding of a ligand) or exploration of

the conformational landscape of a biomolecule in an efficient manner. MD can also be

used for systems with a grained resolution, coarse-grained MD, or coupled to explicit

quantum-mechanics as in ab initio MD.

In our work, we have used the NAMD [89] simulation package, found to be partic-

ularly efficient in performing calculations on massively parallel supercomputers. The

algorithms, as used in the simulations, are described in the remainder of the section.

2.1.1 Molecular Force Fields

The molecular models used in classical simulations are termed force-fields [90], and

they describe the potential energy of a protein as a function of particle coordinates,

with coefficients derived from Quantum-Mechanical calculations and experiments. This

approach is based on the Born-Oppenheimer approximation, which assumes that the

electrons always reach their ground state in the timescale of nuclei movement due to

large mass differences between the two (nuclei are 3-4 orders of magnitude heavier),

consequently justifying the description of both with a single potential energy function

used in the framework of the classical system description.

In describing the interparticle interactions, the potential is decomposed to a sum of

terms, each term representing a contribution to the overall protein energy. The energy

terms comprise only of pairwise interactions, a crude representation of reality in which

many particles interact simultaneously. Nevertheless, the parameters of the pairwise

additive potentials are modified so as to account for the multi-body interactions and

finally yield a good agreement with different bulk properties used in parameter fitting.

Many models have been developed in attempts to correctly describe different aspects

of protein behavior, including models that treat each atom separately, all-atom force-

fields, and models treating collection of particles, coarse grained models. In all-atom

models, every atom is a center of force and represented with three Cartesian coordinates.

Among the all-atom models, which are the most accurate and at the same time the

most computationally demanding, different approaches have been developed, the most

commonly used in biomolecular protein simulations are CHARMM [91], AMBER [92],

and OPLS [93]. Their main differences are in the treatment of planarity and chirality

in functional groups, as well as in different ways of obtaining non-bonded atom-pair

parameters through different recombination methods.
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Figure 2.1: Schematic representation of important potential energy terms in a protein
and the potentials with which they are modeled.

We generally use the all-atom CHARMM22/CMAP force-field [91, 94] in our sim-

ulations because it has been employed on a large number of proteins, and has shown

to predict both the structural [91, 95, 96, 97] and the dynamical [98] properties of

the proteins in reasonable limits. It has been described in detail in the section below.

Occasionally we use a modification of this force-field, the CHARMM36 [99].

2.1.1.1 CHARMM22/CMAP

The CHARMM protein potential is given by two main terms, the bonded and the non-

bonded potential energy functions:

U =Ubonded +Unonbonded. (2.1)

Some interactions comprised in the model are depicted in Figure 2.1. The parameters of

the bonded terms were parametrized to reproduce X-ray structure geometries, infrared

and Raman spectra, and ab initio calculations. The non-bonded interactions were fit to re-

produce ab initio interaction energies and geometries between protein polar residues and

water molecules, and empirical data, i.e. heats of vaporization and molecular volumes.

The bonded terms account for bond stretching, angle bending, and dihedrals. Another

three terms, Urey-Bradley, improper angle term, and the CMAP term, are added to
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obtain good agreement with experimental results:

Ubonded =Ubond +Uangle +Udihedral +UUrey−Bradley +Uimproper +UCMAP . (2.2)

The bond stretching between two linked atoms is described by a harmonic potential:

Ubond = ∑
bonds

Kb(b−b0)2, (2.3)

where Kb is the spring constant, b is the bond length, b0 is the equilibrium bond length,

and the sum runs over all the linked pairs of atoms.

An equivalent harmonic potential is used to described the angle bending between

three linked atoms:

Uangle =
∑

angles
Kθ(θ−θ0)2, (2.4)

where Kθ is the angle bending modulus, θ the angle, θ0 is the equilibrium angle, and the

sum runs over the triplets of atoms.

The dihedral angle contribution is necessary to describe the rotation around a given

bond. In order to account for multiple minima, a Fourier expansion is generally used in

the form of:

Udihedral =
∑

dihedrals
Kχ[1+ cos(nχ−σ)], (2.5)

where the sum runs over quadruples of atoms and describes the dihedral angle rotation,

Kχ is the dihedral rotation constant, n accounts for the cosine multiplicity, χ is the

dihedral angle, and σ is the phase.

The three previously described interactions arise naturally from description of chemi-

cal connectivity of the molecule. As the force-fields are approximate, additional terms

are included to improve accuracy of the model and agreement with experimental data.

The Urey-Bradley term is a harmonic correction to distance between the two non-bonded

atoms in an angle (atoms 1 and 3), applied to some angles in the force-field to bet-

ter reproduce the in-plane deformations and to separate symmetric and asymmetric

bond-stretching modes in vibrational spectra.

UUrey−Bradley =
∑
UB

KUB(S−S0)2, (2.6)

where the sum runs over 1, 3 atoms in the angle, KUB is the Urey-Bradley force constant,

S is the 1,3 atom distance, and S0 is the equilibrium 1,3-distance.

The improper dihedral term aids to reproduce the out-of-plane modes in the vi-

brational spectra, and its role is to restrict protein geometry, e.g. to maintain group
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chirality:

Uimproper =
∑

impropers
K imp(φ−φ0)2, (2.7)

where φ is a dihedral angle, φ0 its equilibrium value, and K imp the associated force

constant. Finally, the CMAP correction is applied to improve the protein backbone

conformation accuracy. It is a cross term applied to dihedral angles:

UCMAP = ∑
residues

uCMAP (Ψ,Φ), (2.8)

where the uCMAP is the energetic correction map (CMAP) term for the dihedral pair

Ψ,Φ, applied to correctly reproduce free energy surfaces of dipeptides obtained from QM

calculations. Further modifications have been made to improve this CMAP correction

(see subsection on CHARMM36 [99] below). Another set of corrections has been applied

to all residues other than Gly and Pro in a release termed CHARMM22* [97]. The latter

has been successfully used to fold small proteins in all-atom simulation [85], and contains

a better description of salt bridges as well as better torsion parameters for Asp.

The non-bonded term in the force-field accounts for the van der Waals and electro-

static interactions between atoms that are separated by at least three bonds:

Unon−bonded = ∑
i< j

εi j

(
R0

i j

r i j

)12

−2

(
R0

i j

r i j

)6+ qi q j

r i j

 . (2.9)

The term on the left accounts for van der Waals (vdW) interactions, i.e. induced

dipole interactions, and is modeled by the Lennard-Jones potential, while the right

term accounts for electrostatic interactions. The short-range Lennard-Jones potential

is described with two parameters, εi j determining the potential energy well depth

and R0
i j describing the minimum energy interparticle length. The two parameters are

generally provided for a homogeneous interaction, that is between atoms of the same type.

However, they can be mixed in order to obtain the parameters describing the interactions

between atoms of different types, using e.g. the Lorentz-Berthelodt recombination rules;

εi j =p
εi +ε j , R0

i j =
R0

i +R0
j

2 . The Lennard-Jones potential itself contains two terms, the

right-side
(
1/r i j

)6 term represents the attraction between two induced dipoles and

dominates at higher interparticle distances, while the left-side
(
1/r i j

)12 term accounts for

the repulsion between two atoms coming into close contact, obeying the Pauli exclusion

principle. The power 6 comes from analytical theory, while the power 12 is chosen due

to computational efficiency, as it is merely a square of the
(
1/r i j

)6 term; nonetheless it

provides a steep energy rise with decreasing r i j. It is important to note that the vdW
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term is a short range interaction, which is used to improve the computational efficiency

of the method, as shown later in text.

The second term in the non-bonded interaction represents the Coulomb interactions

between particles with partial charges qi and q j, separated by the distance r i j. As the

electronic cloud is not treated explicitly in these force-fields, these charges represent

the overall charge distribution of the molecule with effective partial charge values,

adding up to a total molecular charge. By using fixed partial charges, the electronic

polarization is not accounted for, and specialized force-fields have been recently developed

to mend this deficiency [100]. Moreover, the hydrogen bond interactions, essential to

structural organization of the biomolecules, arise naturally from the electrostatic and

the Lennard-Jones term [101] and are consequently not represented via an explicit term.

In the case of soluble proteins, the biomolecule is simulated in an aqueous solution.

The CHARMM force-field was parametrized in combination with a specific water model,

the TIP3P model, a ‘three point’ (3P) model with three interaction sites placed on respec-

tive water atoms [102]. Three partial charges are distributed on the respective atoms

of the molecule. To simplify the water model with the goal of increasing computational

efficiency, the number of degrees of freedom of the molecule has been reduced as the

bonds are treated as rigid. This model reproduces first-shell hydration and other impor-

tant liquid properties, while suffering from a high diffusivity due to inaccuracies in the

tetrahedrality of the hydrogen-bond connectivity [102]. Nonetheless, the model presents

a good trade-off of computational cost against reproduced thermodynamics accuracy, and

was thus used in parametrizing the CHARMM22/CMAP force-field [91]. For the same

reason, it presents an ideal water model in our simulations, although more precise water

models with different parametrization, e.g. SPC/E [103] or more interaction sites [104]

have been developed.

2.1.1.2 CHARMM36

The CHARMM36 force-field [99] is an extension to the CHARMM22/CMAP. In the

CHARMM36, the potential energy describing the protein backbone is redefined, as well

as the new side chain dihedral parameters. The CMAP is added so as to improve the

helical bias of the CHARMM22/CMAP (see Subsection 2.1.1.3). The CMAP was modified

for the non-Gly and non-Pro residues in order to fit NMR experiments and QM energy

surfaces calculated at a high level of theory. Side chain dihedrals were modified according

to the QM energy surfaces. The parameters for aliphatic hydrogens were revised, as were

the sidechains of Arginine and Tryptophane. CHARMM36 is supposed to yield a better

17



CHAPTER 2. METHODS

Figure 2.2: The fraction of folded structures for the CLN02 peptide, forming prefer-
entially a hairpin-like structure below T=340 K, as a function of temperature, data
show a comparison between the experiment and eight different force-fields. The largest
outlier is the CHARMM22 force-field, which possesses a strong helical bias and thus
renders the peptide unfolded at all temperatures. Introducing the CMAP correction in
CHARMM22/CMAP (colloquially termed CHARMM27) improves the ratio of folded to
unfolded state. Nonetheless, the stability curve is broadened in all force-fields, most
likely due to lack of proper representation of protein cooperative behavior and many-body
interactions. Taken from Ref [96].

description of hydrogen bonds in proteins, in both the α and β secondary structure, and

better long chain description due to torsion angle side chain improvements, as well as

an improved balance of secondary structure elements. On the other hand, the flexibility

of the protein backbone is increased when compared to both CHARMM22/CMAP and

the experiments [105]. It has also been suggested that the improved CMAP correction

implicitly includes many body effects, witnessed by improved cooperativity in secondary

structure transitions [106]. However, this novel version should be tested against a variety

of study-cases to demonstrate its performance and possible deficiencies.

2.1.1.3 Force-Field Limitations

A major limitation in MD simulation accuracy is the force-field as it determines all

atomic interactions. The limitations arise from attempts to reproduce certain properties

e.g. dihedral angles, secondary structure, spectroscopic features, while neglecting or

simplifying others such as polarization or structural cooperativity.
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Protein behavior in a simulation is necessarily force-field dependent, but artifacts

can be avoided by choosing the model most suitable to maintain structural properties of

the simulated protein and to better represent the property of interest. For most proteins,

the folding free energies are small, and the errors in the force-field development could

easily create an artifact of the minimum free energy state. The error comes from both the

backbone and the side chain, consequently modifying only the backbone potential is not

enough for accurate representation. Moreover, the conformational substates sampled in

a typical simulation depend on the force-field [96] as do the kinetic and thermodynamic

stabilities of these substates. This results in different convergence kinetics of protein

conformational transitions in simulations and different folding/unfolding pathways [96].

Accumulation of small errors and approximations can best be seen in higher-order

structures, such as secondary structure elements, where hydrogen bonds and backbone

torsions drive the formation of α helices, β sheets, and other elements. Force fields have

widely been reported to have a secondary structure propensity; CHARMM22/CMAP,

OPLS-AA/LL, and AMBER03 overstabilize the α secondary structure [96, 107], while

AMBER99SB-ILDN overstabilizes β sheets [108, 96]. Consequently, modifications to

these force-fields; CHARMM36, CHARMM22*, AMBERff03*, and AMBER99SB*-ILDN,

have been developed to improve secondary structure sampling, although further efforts

need to be made to remove the limitations. The secondary structure stabilization artifacts

can lead to shifting the protein stability at different temperatures. Current force-fields

cannot reproduce the melting curves of the proteins in classical brute force Molecular

Dynamics simulations [96] due to sampling problems and failure in representing co-

operative protein behavior from pairwise interactions and poor many-body interaction

inclusion, see Figure 2.2.

Convergence of simulations could be ensured by observing multiple transitions on

the longest timescale, i.e. that of the protein unfolding. These are still in the microsecond

regime, while the pathways themselves are force-field specific [85]. Reversible folding

and unfolding at experimental temperatures in brute force simulations has so far been

performed for α-helical bundle and β-sheet small proteins only in CHARMM22* and

AMBERff03* [96]. The force-field parameters are derived mostly from data on folded

structures, which could again introduce an artifact in representing the unfolded state.

For example the radius of gyration of the unfolded state has been reported to be system-

atically lower in computer simulations using AMBER [109], CHARMM22/CMAP, and

CHARMM36 force-fields [109, 108] when compared to experimental data. Additionally,

the force-field parameters reproduce properties in the temperature range T=300-330 K,
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possibly creating artifacts in high-temperature simulations. As the solvent has a central

role in protein (un)folding, the temperature dependence of solvent properties is a relevant

parameter when considering potential artifacts. Different properties of the TIP3P water

were inspected, with the main finding on the maximum density temperature, signature

of the anomalous water behavior. While water density at 298 K agrees well with the ex-

perimental result, the density of TIP3P water decreases monotonically with temperature

increase throughout the simulated temperature interval [-223, 373] K [110], failing to

reproduce a maximum density at any temperature, and exhibiting lower densities at

temperatures >298 K.

Other artifacts arise from the need to make the potential energy function simple and

computationally effective. A good example is omitting the effect of polarization of the

electronic cloud arising from interaction with its environment. The effect of polarizability

ranges from determining the proper hydrogen bonding geometries to accounting for

10−20% of the ligand-binding energies [111]. Polarizable models developed so far [112,

113, 114] already reproduce protein properties at least as good as their non-polarizable

counterparts [100], and are expected to surpass them with increased interest in their use

and improved parametrization. The caveats are that a larger number of parameters per

atom is necessary, making the parametrization more difficult, and sampling problems, as

the simulation times currently do not extend over 1 µs even for small proteins. Naturally,

implicitly included hydrogen bonds and non-polarizable isotropic monopoles included in

typical protein force-fields make these properties force-field dependent. The variations

in the native hydrogen bond content and the number of ionic interactions are reported

among different models [108].

2.1.2 Force Evaluation

Once the potential energy function to describe the molecule is chosen, evaluating the

forces is theoretically straightforward. For an atom i in the system, the force Fi is

computed as:

Fi(r1...rN)=−∇iU(r1...rN), (2.10)

where ∇i = ∂
∂ri

. The simulations are performed in a box, containing protein and

solvent (water) molecules. The simulation however, is performed under Periodic Boundary

Conditions (PBC), which means that a particle leaving the simulation box re-enters it at

the opposite face of the box. This is necessary to eliminate surface effects as the ratio of

numbers of surface particles and total particles is large when compared to macroscopic
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systems with N = 1023 particles. By exploiting the spatial periodicity of the PBC it is also

possible to apply efficient algorithms in long-range electrostatic interaction calculations

and to maintain constant pressure conditions (see more below).

While the force evaluation is a straightforward procedure, the computational cost

associated to it represents the bottle-neck in computational efficiency. The number of

force evaluations for the bonded terms are relatively small compared to the 1/2N(N −1)

number of terms between N particles. To overcome this, several methods have been

developed and are routinely made use of in our simulations. They rely on the fact that

the Lennard-Jones potential is short-range and can be cut off beyond a certain distance,

while the Coulomb interactions have long-range effects that need to be treated, and other

solutions need to be found.

The short-ranged van der Waals interactions are cut off typically beyond a distance

rc = 10 Å. By using the minimum image convention, each particle interacts with its

nearest periodic image under the PBC. This puts restrictions on the value of the cut off,

which must be rc ≤ L/2, where L is the shortest among the box edges. Instead of making

the interactions beyond this distance abruptly zero, which would lead to discontinuities

when particles’ distance passes through r = rc, a smoothing function is applied, termed

‘switching function’, that smoothly truncates the potential to zero, starting to take effect

at distances ≤ rc. Even with applying a cut off, a large number of interparticle distance

evaluations need to be made in order to determine which particles are within the cut off

distance. This is resolved by using lists of interparticle pairs within a cut off, that are

only periodically updated, eliminating the need to evaluate all interparticle distances at

every time step of the simulation.

The evaluation of the electrostatic forces is the most time consuming, since the

interaction is long-range in nature. An efficient treatment in periodic systems is based

on the Ewald scheme, and further improved by the Particle Mesh algorithm (PME). In

the Ewald scheme, the electrostatic interactions are separated into a short-range and a

long-range contributions. The short-range local contributions are evaluated in the same

manner as the van der Waals interactions, at every time step of the simulation within

a certain cut off and a switching function to smooth out the truncation. Thus the local

electrostatic and van der Waals interactions are computed with a direct calculation:

Ushort(r1...rN)=∑
S

∗∑
i< j

{
εi j

[( Ri j

r i j,S

)12
−

( Ri j

r i j,S

)6
]
+ qi q jerfc(αrij,S)

r i j,S

}
, (2.11)

where S=hm for a box matrix h and m is a vector of integers, α is a constant with

units of 1/length, and erfc(αr i j,S) is the error function that goes to zero when αr i j,S →∞.
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The sum runs over all the non topologically bonded (*) pair atoms i < j.

The long-range electrostatic interactions are evaluated by using the smooth Particle

Mesh Ewald algorithm [115], with the computational cost proportional to NlogN. As

anticipated, the core of this method is the Ewald summation [116]. It performs the

calculation in the reciprocal space as the long-range interactions become short-range in

the reciprocal space composed of reciprocal-space vectors g= 2πn/L:

Ulong =
1
V

∑
g∈S

4π
|g|2 e−|g|

2/4α|S(g)|− ∑
bondedi, j

qi q jerf(αr i j)
r i j

− αp
π

∑
i

q2
i , (2.12)

where the two subtracted terms represent, respectively, the electrostatic interaction

between bonded particles already accounted for in the bonded terms of the potential,

and the self interaction of the particle with its periodic images. The first term includes

these interactions, thus the need to explicitly subtract them. S is a hemisphere of g ≥ 0

and the Fourier sum is truncated at |g| ≤ gmax, where gmax is chosen so that e−g2
max/4α2

is negligible, and the truncation is possible due to g ∼ 1/r. α is a parameter of inverse

length, erf(αr i j) is the error function that ensures the condition r → ∞,erf(αr) = 1.

S(g)= qi
∑

i eig·r is the structure factor and becomes computationally demanding as the

system size increases due to necessary increase in the number of g-vectors that need to

be taken into account. The smooth Particle Mesh Ewald simplifies the structure factor

term by projecting the charges on a uniform lattice. The lattice-spacing controls the

accuracy of the calculations, and for a dense molecular system, its magnitude is in the

order of the characteristic atomic length scale, 1 Å. The mathematical properties of the

B-splines used for charge interpolation over the lattice ensure the smoothness of the

potential and simplify the calculation further. Please refer to Ref [115] for the expression

of the structure factor in the smooth PME method. The use of the Ewald sum requires

the system to be neutral and all our simulations have counter-ions (Na+ or Cl−) added to

them so that the total charge of the system is zero.

2.1.3 Integration of Equations of Motion

Having described the calculation of forces acting on individual particles on the basis

of the analytical potential energy functions, we proceed with a description of system’s

time evolution according to the laws of classical mechanics. Prior to presenting the

algorithms in use, it is worth mentioning a practical limitation concerning the system

initial conditions necessary for the numerical solution of the equations of motion. In

simulating liquids, initial configurations can be obtained by generating random states,
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while the simulations of proteins in their folded state require the knowledge of their

structure. This is taken, when possible, from the databases where the X-ray or NMR

resolved structures are publicly available. When the structure is not available, an initial

guess can be produced via homology modeling or other empirical methods that predict the

folded state on the basis of sequence, however the reliability of these remains uncertain.

Generally, prior to simulating the system, a minimization (conjugate-gradient) proce-

dure is performed so as to remove the steric clashes in the system. The minimization

procedure brings the system to a local minimum found close to the initial state of the

protein structure. Finally, a set of equations of motions is used to describe the system

under particular set of conditions and these are subsequently integrated to produce a

trajectory.

In the thermodynamic limit of very large systems, N →∞, the fluctuations of non-

constant quantities in different ensembles become negligible, and their thermodynamic

averages converge. In practice, the simulations are run on systems of finite size, with the

fluctuation decay scaling as
p

N . For this reason, the choice of the ensemble is important,

particularly if the results are to be compared with experiments. Our simulations are

performed in the NpT ensemble as we often compare them to experiments performed

in equivalent conditions. To sample this ensemble, an appropriate set of equations of

motions must be chosen, one that couples a numerical heat bath and a numerical piston

to the system. The former ensures an exchange of heat and thus acts as a thermostat,

while the latter expands and compresses the volume cell so as to maintain pressure at

desired value. The coupling is stochastic, having the advantage of shortening particle

correlation times, enhancing sampling efficiency, and stimulating ergodicity. Additionally,

the constant pressure control requires Periodic Boundary Conditions.

The coupling between the heat bath and the system is achieved by the Langevin-

Hoover method [117], a combination of the Nose-Hoover constant pressure method [118]

and the piston fluctuation control adopted from the Langevin Dynamics [119]. To achieve

proper NpT sampling, the system volume is an additional degree of freedom in the

equations of motions, along with the particle positions and the momenta:

ṙi =
pi

mi
+ pε

W
ri, (2.13)

where ri, pi, and mi are atomic positions, momenta, and masses of atom i, respectively.

pε is a momentum associated to strain rate of the volume, pε = ε̇W, where ε(t)= V (t)−V0
V0

.

Initial position in the simulations are the Cartesian coordinates and the initial velocities

are obtained by sampling the Maxwell-Boltzmann distribution. W is a fictitious mass
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of the piston, defined as W = 3Nτ2kBT, where N is the number of particles and τ is the

oscillation period. Longer oscillation period slows down the cell volume fluctuations, and

it is generally set to ∼ 100 fs. The cell vectors oscillate isotropically:

V̇= 3V pε
W

. (2.14)

The stochastic coupling is provided by adding a dissipative and a random term to

conservative forces derived from the potential:

ṗi =−∂U
∂ri

− pε
W

pi −γpi +Ri, (2.15)

where γ is the damping constant, usually set to 1 ps−1, and Ri is a stationary Gaussian

process with the following properties 〈R〉 = 0, σ2 =
√

2kBTγm
∆t , where kB is the Boltzmann

constant, T is the target temperature, m is the molecular mass, and ∆t is the time step.

Finally, the momentum associated to the cell volume compressibility evolves in time as:

ṗε = 3V (P −Ptarget)−γp pε+Rp, (2.16)

where γp is the barostat damping coefficient usually set to 0.02 fs−1, Rp is the stochastic

force acting on the barostat with zero mean and variance σ2 =
√

2kBγpW
∆t , and Ptarget is the

target pressure set to 1.01325 bar. P is the pressure similar to instantaneous pressure,

without the contribution of the Langevin thermostat white noise, P = 1
3V [

∑N
i=1

pi ·pi
mi

+∑N
i=1 ri ·Fi]− ∂U

∂V .

The positions, momenta, volume, and volume strain momentum integrations schemes

are derived from the the equations of motion by using the classical propagator and the

Trotter factorization scheme [120], which ensures the multiple-timescale integration:

V t+1/2∆t =V t + ∆t
2

V̇ (V t, pt
ε), (2.17)

pt+1/2∆t
ε = pt

ε+
∆

2
ṗε(rt

i,p
t
i,V

t+1/2∆t, pt
ε,γp pt

ε,R
t
p), (2.18)

pt+1/2∆t
i =pt

i +
∆t
2

ṗi(r
t
i,p

t
i, pt+1/2∆t

ε ,γpt
i,R

t
i), (2.19)

ri
t+∆t = rt

i +∆tṙi(rt
i,p

t+1/2∆t
i , pt+1/2∆t

ε ), (2.20)

pt+∆t
i =pt+1/2∆t

i + ∆t
2

ṗi(r
t+∆t
i ,pt+1/2∆t

i , pt+1/2∆t
ε ,γpt+∆t

i ,Rt+∆t), (2.21)

pt+∆t
ε = pt+1/2∆t

ε + ∆t
2

ṗε(rt+∆t
i ,pt+∆t

i ,V t+1/2∆t, pt+∆t
ε ,γp pt+∆t

ε ,R t+∆t
p ) (2.22)
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V t+∆t =V t + ∆t
2

V̇ (V t+1/2∆t, pt+∆t
ε ). (2.23)

Multiple-timescale integration relies on the fact that protein motions span many

different timescales, which is exploited to improve calculation efficiency. The forces

derived from the potential will typically be fast-varying for intramolecular terms and

slow-varying for the large-scale nonbonded terms. Additionally, the bonded intermolecu-

lar terms are computed quicker than the non-bonded terms, because for the latter, the

interactions are computed between many particle pairs. Consequently, the integration in

NAMD is separated in three parts where different forces are exploited in advancing the

system; bonded forces are used with a small integration time step, non-bonded forces

and short-range electrostatic forces are integrated with a moderate time-step, and finally

long-range electrostatic forces are coupled to the largest integration time-step. This is

achieved by using the Reference System Propagator Algorithm (RESPA) [120]. RESPA

stems from separating the Liouville classical propagator to its fast and slow component,

which yields a numerical integration scheme with separated integration time scales,

as shown above. The shortest time step used in the simulations is 2 fs. This time step

is relatively large for biomolecular simulations, and can be used on account of fixing

the hydrogen bond length and angle to their nominal value defined in the force-field,

achieved by use of the SHAKE algorithm [121].

Integrating the equations of motions produces new particle positions, particle veloc-

ities, and system volume sizes. The particle positions, potential energies, volume, and

pressure are saved in simulation snapshots of the trajectory and are used in subsequent

analysis. The use of Statistical Mechanics ensures that many thermodynamic properties

can be recovered from the simulation snapshots, making the method a valuable quan-

titative tool that either complements experiments or stands alone in cases where, due

to experimentally unachievable resolutions or conditions, simulations offer an excellent

solution. The main drawbacks of the methods is that the equilibrium properties are only

obtained under ergodic assumption, which cannot be proved to be valid in biomolecular

simulations as many protein conformations are separated by high energy barriers, and

the protein most likely does not visit all possible conformational substates in the time

course of a trajectory. Additionally, the simulations are highly dependent on the initial

conditions, and they diverge quickly even for small differences in initial conditions, which

is quantified as the Lyapunov instability. Nevertheless, being familiar with sources of

error in simulations and choosing proper conditions ensures the correct interpretations

of results and makes MD an invaluable, atomic-level resolution tool.

25



CHAPTER 2. METHODS

2.2 REST2 Molecular Dynamics

A major problem in MD simulations is the proper sampling of the potential energy surface,

i.e. producing equilibrium trajectories. The problem of sampling arises from the height

of energy barriers between many major conformational states. The time needed for a

thermal fluctuation of atoms to increase to a threshold value necessary to cross the barrier

often surpasses timescales typically accessible to classical MD simulations. Consequently,

enhanced sampling techniques have been developed to improve the sampling. We use a

Replica-Exchange [122] technique termed Replica-Exchange with Solute Scaling (REST2)

[123, 124] in order to enhance the conformational sampling in the simulations.

Generally, in Replica-Exchange Molecular Dynamics (REMD) simulations, the system

contains n replicas and the simulations of each replica are run simultaneously at different

temperatures T1 < T2 < T3 < ... < Tn. Occasionally, the replicas are exchanged with a

certain probability. The exchange criterion varies depending on the simulated ensemble,

but generally depends on the energy differences between the replicas.

The detailed balance condition ensures the reversibility of the process:

P(r j|ri) f (ri)= P(ri|r j) f (r j). (2.24)

The left side of equation gives the probability of transition from i to j multiplied by

the probability that the system is in state i, while the right side gives the probability of

system transitioning to i multiplied by the probability that it is in state j, from which it

is transitioning. Satisfying the detailed balance condition ensures an unbiased sampling

in the REMD. The efficiency of the exchange procedure depends on the overlaps between

the distributions of the potential energy sampled by the two replicas, i and j. Since

energy fluctuations scale as the inverse of system size, 1/
p

N , the application of the

methodology to very large system is problematic, in fact in order to obtain a decent

exchange (e.g. 30%), a large number of replicas ought to be used. To circumvent this

problem, several schemes have been introduced [125], among them the REST2.

In REST2 simulations, schematically shown in Fig 2.3, the replicas are not simulated

at different temperatures, but rather the Hamiltonian is rescaled for interactions most

dominant in large-scale conformational changes - dihedrals and non-bonded interac-

tions, while the temperature βre f = 1/kBTre f is kept constant in all replica simulations.

Replicas evolving with the smoothed potential energy functions at temperature βre f

are equivalent to the standard REMD implementation, according to the corresponding

state principle. Moreover, these interactions are only rescaled for protein-protein (pp)
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Figure 2.3: Scheme of REST2 simulations. The system is simulated in n copies (replicas).
For each copy, the protein-protein and protein-water interactions are rescaled so as to
lower the energy barriers with increasing the replica number. Lowering of energy barriers
is equivalent to increasing simulation temperatures of the replicas. Replicas occasionally
exchange, achieving exchanges between configurations at low effective ‘temperatures’
and those that are at high effective ‘temperatures’. This enables the low temperature
replica at ambient conditions to cross high energy barriers and improve configurational
sampling in the simulation. Note that T0 in the Figure corresponds to Tre f in the text.

and protein-water (pw) interactions, while the water-water (ww) interactions are not

rescaled. This is done so as to decrease the number of replicas that need to be simulated,

which grows with number of particles as
p

N . As the water atoms represent the majority

of the particles in the system, scaling only the potential energy involving the protein

atoms ensures a larger overlap between the potential energy distributions of the replicas.

This in turn allows for using a smaller number of replicas while still ensuring a good

exchange rate, making the simulations computationally inexpensive when compared to

the standard REMD.

The potential of each replica is rescaled according to:

Ui(r)=λiUpp +
√
λi Upw +Uww, (2.25)

where λi = βi
βre f

= Tre f
Ti

. Furthermore, the dihedrals and Lennard-Jones parameters are

rescaled by λi, while the Coulomb interactions are rescaled by
√
λi .

In REST2, the acceptance criterion between replicas i and j is determined by:

Pacceptance = min[1, e
−(λ jβre f −λiβre f )[Upp(ri)−Upp(r j)]+

p
βre fp

λ jβre f +
p

λiβre f
(Upw(ri)−Upw(r j))

]. (2.26)
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This acceptance criterion will satisfy the detailed balance condition in the simulation

sampling the canonical distribution (NVT). Strictly speaking, the criterion above should

also include terms to account for volume fluctuations in order for the process to satisfy

the detailed balance condition in the NpT ensemble. These are however negligible when

compared to the energy differences and we thus use the expression shown above in NpT

simulations. The acceptance criterion implies that good energy overlap is necessary to

ensure exchange of replicas, which is satisfied in our simulations given that we achieve

exchange ratios of ∼ 40%. Once configurations are exchanged, they continue running

according to a different Hamiltonian. Eventually, a high-temperature configuration will

swap with a low-temperature configuration, enabling the low-temperature replica to

explore a portion of the energy surface that would otherwise be inaccessible at lower

temperatures. Note that, due to configuration swapping, REST2 cannot recover protein

dynamical properties, but is rather used for sampling equilibrium distributions and

calculating appropriate properties.

As the solvent-solvent interactions are left unscaled, the effective temperature of

the solvent and the protein are different. Therefore, the thermal response of the system

can only be obtained in an approximated way. In order to evaluate the temperature

dependence of observable averages collected for different replicas, the scaled potential

energies used to evolve the system are mapped on an effective temperature scale. A

“mean-field” approach was recently introduced [124] to relate the scaled potential energy

terms of a replica, Epp and Epw, to an effective temperature <β′
i >:

<β′
i >=βi

(
1+

[√
βre f

βi
−1

]〈 Epw

Epp +Epw

〉)
. (2.27)

The main benefit of the method is a relatively small number of replicas necessary,

decreasing the computational cost and enabling longer per-replica sampling time. The

sampling of the configuration space is found to be efficient and the exchange frequencies

between replicas are high. Because all replicas are run at the same Tre f , exchanging

the replicas is easy to implement as only their coordinates are swapped, and velocity

rescaling is not necessary. Finally, due to the simplicity of the method that requires only

parameter rescaling, it can also be applied to a portion of the system of interest or a

single chain in the protein system, further increasing the attractiveness of the method

in simulating large systems.

We have rescaled a portion of the protein in REST2 MD simulations to inquire into

the conformational transition associated to the catalytic cycle of two homologous GTPase

catalytic domains, the details are discussed in the Chapter 3. Alternatively, potential
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energy rescaling can be applied to a solution of proteins where only a single protein is

rescaled, while others are not. In the latter case, other proteins in the system effectively

become the solvent, similarly to the case of a single protein in aqueous solution. This

approach has been used to probe the effect of crowding and solvent on the stability of the

Lysozyme protein embedded in powder systems, see the Chapter 5.

2.3 Neutron Scattering Experiments

Neutron Scattering (NS) is an important experimental technique in studying biomolecu-

lar systems as it captures protein dynamics and relates it to the length scale at which

the dynamical processes occur. The basis of the technique, as with any other scatter-

ing method, is the collision of the protein sample with the incident neutron beam and

subsequent collection of the scattered neutron beam on the detector. The properties of

the refracted beam are changed by the interaction with the sample according to the

physical properties of the sample. A wide range of NS techniques exists, probing different

time and length scales. Common methods include those that use either elastically or

inelastically scattered radiation and those that measure the coherent or incoherent

contribution to the signal, and their combinations. The coherent contribution arises from

cross-correlated atom motions, while the incoherent radiation represents self-correlated

particle motions.

Neutrons contain no charge and they interact with the nucleus via short-range, fem-

tometer, nuclear forces, enabling them to penetrate deep into the matter without being

absorbed or scattered. The benefit is that the experiments can be made in containers,

in liquid or powder samples, and in a wide range of experimental conditions. The weak

interaction additionally guarantees that the experiments can be performed on delicate

biological samples with virtually no damage. On the other hand, the weak interaction

comes at the cost of very low scattering signal. To overcome this limitation, large sample

cells and concentrated solutions of samples are often needed.

Neutron scattering can be understood by defining the neutron wave vector traveling

in the direction of the sample with magnitude:

k = 2π
λ

, (2.28)

where λ is the neutron wavelength. When the neutron collides with the sample, its

interaction at an atomic level can be described by the effective area the atomic nucleus,

scattering cross section σ, measured in barns (1 barn=1 m2). Hydrogen has the largest

29



CHAPTER 2. METHODS

scattering cross-section of all atoms in biological materials and a large proportion of

the signal comes from scattering on hydrogen atoms. As water contains many hydrogen

atoms, to increase the resolution of the scattered signal and to capture only the portion of

the radiation scattered from the protein, heavy water (D2O) is routinely used in neutron

scattering experiments instead of water (H2O).

The nucleus acts as a point scatterer for the neutron, which scatters isotropically

around it. The amplitude of the scattered neutron is proportional to the scattering length

of the nucleus, related to the scattering cross section by b =
√

σ
4π . In general, the nuclei

are not fixed perfect scatterers, but rather a momentum transfer occurs between the

neutron and the nucleus, and the difference between the incident and scattered neutron

is described by the scattering vector:

Q=kincident −kscattered. (2.29)

The neutrons scattered from different atoms are bound to interfere. Constructive

interference is achieved upon satisfying Bragg’s diffraction law limiting constructive

interference only to the case where the distance traveled by waves scattered from

different atoms, with positions ri and r j, is an integral multiple of neutron wavelength.

This is only achieved when Q · (ri −r j) is a multiple of 2π as the waves are then in phase,

and when Q ∼ 2π
L , where L is the distance between atoms that produced the constructive

interference. The last relationship relates a quantity measured in all neutron scattering

experiments, the scattering vector Q, with interatomic distances, which is valuable in

interpreting the experiments.

Finally, in neutron scattering experiments, the intensity of the scattered neutrons

is measured as a function of Q. Van Hove showed that the measured quantities can be

written in terms of pairwise spatio-temporal atomic correlations in Fourier space, which

forms the basis of interpretation of neutron scattering experiments.

In our investigations, we often compare our simulation results to Neutron Scattering

experiments. With the support of our collaborator, M. Maccarini at University Grenoble

Alpes, we have performed two Spin-Echo Neutron Scattering Experiments, one at ILL in

Grenoble, France, and another one at MZL II in München, Germany. These experiments

were carried out on two homologous mesophilic and thermophilic dehydrogenase proteins

prepared by our biochemist collaborator D. Madern at IBS, Grenoble. In the context

of a separate collaboration with A. Paciaroni at the University of Perugia in Italy, we

have complemented experimental data from Elastic Incoherent Neutron Scattering

Experiments with our in silico study on the effect of crowding and solvent on the
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atomistic fluctuations of a protein approaching melting. The quantities and analyses of

the two NS techniques of interest will be explained shortly below.

2.3.1 Elastic Incoherent Neutron Scattering

The Elastic Incoherent Neutron Scattering data is obtained in a backscattering device

IN13 at ILL in Grenoble [126]. On its way to the sample, the neutron beam first passes

through a chopper, selecting neutrons by velocity. Ideally, the distribution of energy in

the neutron beam intensity would be a Dirac delta function. In reality, it is a Gaussian

distribution due to experimental limitations in velocity selection. The energy resolution of

the instrument is derived from the half-width at half-maximum of the energy distribution,

in this case ΓR = 4.5 µeV, which can be translated to time resolution of atomic motions

of tR = 150 ps [127]. The instrument can capture the scattering vector ranges of Q ∈
[0.3,4.7] Å, spanning the distances of [1.3,20.9] Å.

In elastic scattering, no momentum is transferred between the neutron and the nuclei,

and the scattering vector is defined as:

Q= 4π
λ

sinθ. (2.30)

As the wavelength is kept constant in the instrument, different Q values are achieved

by placing the detector at different angles from the incident beams, thus capturing

different Q values.

The quantity derived from the incoherent neutron scattering experiments is the

incoherent neutron scattering dynamic structure factor [128]:

S(Q,ω)= 1
2π

∫ +∞

−∞
dteiωtI(Q, t), (2.31)

the Fourier transform of the intermediate scattering function:

I(Q, t)= 1
N

bH
∑
α

〈eiQ·[rα(t)−rα(0)]〉, (2.32)

where only the hydrogen atoms are taken into account with the index α, bH are

the incoherent scattering lengths of the hydrogen atoms, N is the number of hydrogen

atoms, while rα are time-dependent atomic positions and the average is intended over

an ensemble of configurations.

Moreover, the dynamic structure factor for elastic scattering is roughly equivalent to

the intermediate scattering function at tR :

Sel(Q,ω= 0)≈ I(Q, tR)= 1
N

∑
α

〈eiQ·[rα(tR )−rα(0)]〉. (2.33)
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The structure factor clearly reflects the spatio-temporal atomic correlations over a

time-window determined by the temporal instrument resolution. Further quantitative

information can be extracted from the elastic incoherent structure factor by adopting

a double-well jump model [129], which describes hydrogen atom jumping between two

states separated by a free energy difference between the two states separated by a

distance d:

Sel(Q,ω= 0)= e−<u2>vibQ2[1−2p1 p2(1− sin(Qd)
Qd )], (2.34)

where p1 and p2 are occupations of the two wells and < u2 >vib is the vibrational

mean-squared displacement, describing the harmonic atomic displacements in the wells.

< u2 >vib, d, p1, and p2 are fit parameters and they are used in calculating the total

mean-squared displacement (MSD):

< u2 >=< u2 >vib +
p1 p2d2

3
. (2.35)

The second term describes the MSD due to jumping between the two potential wells

and it is added to the vibrational atomic motion of a particle in a well, given by the first

term. MSD is used in characterizing atomic fluctuations over a certain time window and

is thus a good quantitative metric of atomic-level protein dynamics.

2.3.2 Spin Echo Neutron Scattering

The resolution of the neutron scattering can be improved by using polarized polychro-

matic incident radiation, with the energy spread around 20% in the case of Spin Echo

Neutron Scattering. The neutron beam polarized along a direction orthogonal to its

velocity enters a region with highly homogeneous magnetic field before interacting with

the sample. The interaction with the magnetic field causes the neutrons to precess along

the direction normal to their velocity with a frequency depending only on the neutron

gyromagnetic ratio and on the intensity of the applied magnetic field. After interacting

with the sample, the neutron beam progresses through a region having a magnetic field

equal and opposite to that present in the region before the sample.

If the interaction is perfectly elastic, the neutrons will make an equal number of

precessions with opposite angular velocity in the first and the second magnetic fields,

and will recover completely the initial polarization. If however, the neutron interacts

inelastically with the sample, their velocity in the two branches of the instrument will

be different, as will be the number of precessions. Consequently, the polarization of the
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scattered neutrons will be different from that of the incident beam. The measurement of

the polarization can be then related to the inelastic interaction between the neutron and

the sample, which is in turn related to the dynamical processes occurring in the sample.

The details of the method are covered in Ref [130, 131, 132].

The polarized incident neutron beam passes through a flipper that orients the mag-

netic moments of neutrons in a direction perpendicular to the direction of the beam

travel. The magnetic dipoles of the neutron will be therefore oriented orthogonally to the

magnetic field, B, and this will cause a precession of the neutrons around the direction of

the velocity. The precession angle as the neutron proceeds in the magnetic field will be:

φ= γL
BL
v

, (2.36)

where the gyromagnetic ratio of a neutron is γL = 1.832 ·108 rads−1, B is the strength of

the magnetic field, L is the length of travel in the field, and v is the speed of neutrons. If

the neutrons interact inelastically with the sample, their velocities will change and this

will produce a difference in the net precession angle after the second magnetic field:

∆φ= γLBL~
mv3 ω, (2.37)

where m is the neutron mass, ω is the angular frequency of the neutron, and ~= h/2π.

Furthermore, we can define the neutron spin-echo time:

τNSE = γLBL~
mv3 . (2.38)

The change in the precession angle due to interaction with the sample can now be defined

in terms of the angular frequency and the neutron spin-echo time only:

∆φ= τNSEω. (2.39)

The NSE measures the average change of polarization of a polarized beam upon

interaction with a sample. The measurement of the polarization is done by adding another

polarizer (parallel to the first one) at the end of the second precessing field. Effectively,

the measured quantity is the average value of the projection of the polarization along

the direction of the polarizer, cos(ωτNSE). The probability distribution of this quantity

is linked to the probability that an inelastic event happens (the S(Q,ω)), therefore the

average polarization can be written as

Px(Q,τNSE)=
∫

dωS(Q,ω)cos(ωτNSE)∫
dωS(Q,ω)

, (2.40)
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where S(Q,ω) is the dynamic structure factor. The numerator and the denominator

are the intermediate scattering function and the static structure factor, respectively. The

intermediate scattering function is defined in Eq 2.32, while the static structure factor is

defined as:

I(Q,0)= 1
N

∑
i, j
〈eiQ·[ri−r j]〉. (2.41)

The structure factor gives a distribution of particles in the molecule, determined by

their interatomic correlations. Finally, the quantity measured in the Spin Echo Neutron

Scattering Experiment can now be written as:

Px(Q,τNSE)= I(Q, t)
I(Q,0)

. (2.42)

In order to obtain useful information, the Px is measured as a function of the τNSE by

varying the magnetic field in the coils. Once I(Q,t)
I(Q,0) is obtained, quantitative information

on protein structure can be extracted by appropriate fitting. The procedure is equivalent

to what was done in the numerical calculations, and will be described in the section

Analysis of Molecular Dynamics trajectories, see below.

The main benefit of using Spin Echo Neutron Scattering is that it can access a broad

range of time- and lengthscales, making it particularly useful in measuring large-scale

motions in proteins. The accessible timescales range from ps to ns, while the accessible

lengthscales cover the range from a fraction of Å to tens of Å. The technique measures

quasielastic scattering of neutrons and captures both the coherent and the incoherent

component of the scattering. The coherent dynamics is dominant at low Q values, while

the incoherent dynamics dominates at higher Q.

2.4 Analysis of Molecular Dynamics Trajectories

In this final section, we detail the complete toolbox used for analyzing the MD simulations.

Namely, we describe how we addressed the issue of protein flexibility/rigidity, the central

challenge in our investigation. Subsequently, the comparison with NS experiments is

discussed.

Most of the analysis tools were developed in house and were supported/coupled by

specific publicly available packages, e.g. the package MDAnalysis providing essential

Python libraries for the post processing of MD simulations [133] and the Sassena [134]

suite that performs NS-related calculations.
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2.4.1 Characterizing the Protein Landscape

In order to quantify the protein flexibility, we used a set of clustering strategies that

allow the conformational landscape of a protein to be reduced to an essential ensemble

of conformational states. The number of these states and their relative interconversions

quantify the protein conformational flexibility. This strategy was complemented by ad
hoc entropy calculations.

2.4.1.1 Conformational Clustering

Each simulation snapshot provides a different protein configuration visited along the

MD trajectory, creating a large quantity of data difficult to interpret. To mine the

relevant information from the data, techniques such as clustering are widely used,

helping to cast together similar “information” in a single group (also termed cluster).

The goal of conformational clustering in particular is to produce only the representative

conformational substates visited during the MD simulations or sampled via an enhanced

sampling technique such as REST2. As the protein has many degrees of freedom, the

number of possible conformational substates is large, as well as the number of collective

variables that can be used to distinguish between different conformations. In our work,

we have tested three collective variables that help in characterizing the protein structure

[45, 78]. The simplest variable measuring the distance between two conformations is the

root mean square distance:

RMSD(t)=
√√√√ 1

NCα

NCα∑
i=1

(r i(t)− rcluster
i )2 , (2.43)

where NCα
is the number of carbon Cα atoms, and rcluster

i are the coordinates of an

existing cluster.

Another important variable that can be used to distinguish protein conformations is

the difference in the fractions of native contacts:

d(t)=
√√√√ 1

NCα

NCα∑
i=1

(
l i(t)
l′i

− lcluster
i

l′i

)
, (2.44)

where NCα
is the number of carbon alphas, l′i is the number of native contacts given by

the number of carbon alphas within a spherical cut off from the C i
α in the reference state,

and l i(t) is the number of native contacts calculated for the configuration at time t, while
lcluster
i

l′i
is the fraction of native contact states existing in a particular cluster.
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Finally, large-scale rearrangements in a protein can be further explored by consider-

ing the backbone torsion angle and defining another clustering variable, the fraction of

native torsion angles, thereafter clustering the configurations based on the difference

between the fractions of native torsion angles:

d(t)=
√√√√ 1

Nθ

Nθ∑
i=1

(
exp[− (θi(t)−θ′i)2

σ2 ]−exp[− (θcluster
i −θ′i)2

σ2 ]

)
, (2.45)

where |θi(t)−θ′i| < 180◦, σ = 60◦, Nθ is the number of torsion angles θ, θ′i are the

torsion angle values in the reference state, θi(t) are the torsion angles in the configuration

at time t, and θcluster
i are the torsion angles in a conformation representing each cluster.

Both φ and ψ dihedrals were used in the calculations.

In our work, the clustering is performed with Hartigan’s leader algorithm [135],

where the first simulation snapshot is set as the first cluster centroid, known as cluster

leader. Next snapshot is compared to the first cluster leader by one of the three criteria

described above and if it differentiates by more than a cut off value, a new cluster leader

is created, else the protein structure is merged to the existing cluster. The centroid of

each cluster, i.e. the protein configuration used in comparison with following snapshots,

is the first configuration assigned to the cluster – the cluster leader. The procedure is

repeated for every trajectory frame, merging similar states and separating those that

are vastly different. The algorithm depends on the cut off value used to distinguish the

cluster leaders as a large threshold value will create less clusters, while a small one will

possibly produce a large number of data. Since the clustering is dependent on the cut

off, care must be taken to always use the same cut off value when comparing results.

Additionally, number of possible configurations is proportional to protein amino-acid

length and comparing the clustering results is only meaningful when the number of

amino-acids is similar [45]. Finally, the algorithm also depends on the order of the frame

composing the trajectory, although the main output differences are produced by varying

the cut off. The main advantage of the algorithm is its speed and the fact that the number

of clusters does not need to be provided a priori.

When the clustering is performed, the protein conformation of each snapshot is

assigned to one cluster leader. Consequently, the interconversions of meaningful configu-

rations can be monitored, as well as the time evolution of the total number of clusters.

Assuming the protein landscape is confined, the protein samples a finite number of

accessible conformational substates, therefore the total number of clusters should grow
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and eventually reach a plateau, which can be described with a simple exponential model:

N(t)= N∞ · (1−exp(t/τ)), (2.46)

where N∞ is the number of cluster leaders at infinite time and τ reflects the rate by

which the plateau is reached. However, the growth of the number of cluster depends on

temperature and the explored time scale [136], thus care must be taken when results

are interpreted.

The number of clusters and the frequencies of their interconversions are further repre-

sented as networks of conformational substates. The nodes of networks represent cluster

leaders, which are connected with ‘edges’, i.e. normalized frequencies of interconversion

between the leaders. The complex cluster network is projected on a 2D surface by using a

force-based algorithm, modeling the network with a set of charges and masses assigned

to each node, and spring force constants assigned to edges. The values of these parame-

ters depend on the number of configurations belonging to leaders and the frequencies

of transitions between them. The network is subjected to a gravitational, electrostatic,

and Hookean force, redistributing the nodes on the surface for a clear representation.

The network representation is fully dependent on the choice of the parameters used to

calculate the forces and the same parameter set should always be used when comparing

different networks to obtain meaningful comparison. The force-based visualization is

provided by the software package GEPHI [137].

2.4.1.2 Kinetic Clustering

The output of conformational clustering, a network of conformational substates defined

by its nodes and edges, is used as a starting point for Markov chain clustering [138]. The

algorithm was discovered empirically and was found to be efficient in further merging

clusters that interconvert often, while separating those that rarely interconvert. This is

achieved by starting random walks from each cluster leader and is based on the fact that

the random walks are unlikely to leave frequently interconverted states.

Technically, a transition matrix is built with normalized frequencies of interconver-

sions, i.e. normalized edge weights are matrix elements. In order to mimic the progress

of the random walk, the matrix is subsequently transformed iteratively by applying two

matrix operators to convergence - matrix squaring (‘expansion’) and the Hadamard power

(‘inflation’), where each element is raised to the power p. After applying the Hadamard

power, the matrix has to be rescaled so that the elements belonging to every node add

to unity, a condition necessary for the process to be stochastic. The parameter p will
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Figure 2.4: The schematic representation of how the network of kinetic substates relates
to the conformations sampled from the free energy surface of the protein. The more
flexible the protein, the more configurations it is bound to sample, and consequently
the larger the number of nodes in the network. Conversely, in the extreme limit for a
very rigid protein, the network would produce a single node as the protein would be
trapped in a single minimum. The thickness of the edges reflects the frequency of the
interconversions between states, and the size of the node reflects the population size of a
cluster.

determine the granularity of the network and it represents the height of the kinetic

barrier that will trap random walkers to a single cluster centroid. Applying expansion

causes the random walkers to dissipate within leaders and inflation eliminates the flow

between leaders. While the global convergence of the algorithm is difficult to prove,

it is simple, fast, granularity of the final network is easily controllable, and there is

evidence that the final output reflects the input cluster structure, making it a useful tool

in further reducing the complexity of the protein conformational substates. The final

output is a network of kinetic substates with nodes and edges weighted by occupancy

and transition frequency, respectively. These networks are visualized with a force-based

algorithm in GEPHI (see previous subsection). The final result of kinetic clustering is

shown in Figure 2.4.

2.4.1.3 Entropy Estimation

Entropy is the key driving element in protein folding, hydrophobic interaction formation,

and ligand binding. In order for the entropy to be calculated exactly, the phase space

would need to be sampled to its entirety, which in turn requires an infinitely long simula-

tion time. Advanced methods such the Thermodynamic Integration or other methods can

be employed to estimate the entropy of complex processes [139]. When focusing on the
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folded state of a protein, the entropy associated to small shifts of the configurations, e.g.

caused by the binding of a ligand, can be accessed considering “vibrational” or “rotational”

contributions. A routine approach, related to NMR experiments, is used to estimate the

entropy variation associated to the backbone fluctuations. The movements of the protein

backbone can be described by considering the motion of a rigid bond vector associated to

it, e.g. the NH bond vector. The movement of the bond vector is restricted to different

degrees depending on the steric interaction with the surroundings. In the simplest case

employed here, the motions of all vectors will be described with a single parameter S2,

derived from theory describing NMR relaxation data. The NMR experiment measures

spin relaxations and effectively measures Fourier transformed time correlation functions

that contain dynamic information. To interpret the obtained results, several models have

been adopted, including the model relying on a two-parameter fit of the bond vector

time-correlation, presented here. One of the fitted parameters is later used in estimating

the entropy.

The second-order Legendre polynomial correlation function describing the orientation

of the bond vector v is calculated as follows:

C(t)= (3(v(t) ·v(0))2 −1)/2. (2.47)

The correlation function, in the ideal case, has the following properties: C(0) = 1

and C(∞) = const. The constant is defined as S2, the generalized order parameter, a

measure of spatial restriction of the N-H vector [140]. It lies between 0≤ S2 ≤ 1, where

internal isotropic unrestricted motion will produce S2 = 0, while fully restricted motion

will produce S2 = 1. To describe a correlation function presented above, the simplest

mathematical model of exponential relaxation takes the following form [140]:

C(t)= S2 + (1−S2)e−t/τ. (2.48)

Once the S2 is extracted as a fit parameter, the entropy difference between two

protein states, a and b, is estimated according to [141, 142]:

∆S =−kB
∑

i
ln

{3− (1+8Sa,i)1/2

3− (1+8Sb,i)1/2

}
, (2.49)

where i runs over the residues of the protein and kB is the Boltzmann constant.

2.4.2 Protein Essential Dynamics

In computer simulation, the protein dynamics spans timescales ranging from picoseconds

to microseconds/milliseconds and lengthscales ranging from Ångstroms to nanometers.
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In order to extract biologically important motions, methods such as Principal Component

Analysis (PCA) and Normal Mode Analysis (NMA) have been developed [143, 144, 145].

They break down protein dynamics to independent modes, where motions of different

amplitudes and frequencies are individuated and can be considered separately in terms

of their biological function. Both methods are described below. We anticipate that the PCA

and NMA were used also to support the interpretation of NS experiments as discussed

in the section 2.4.3.

2.4.2.1 Principal Component Analysis

The Principal Component Analysis (PCA) allows the essential dynamics of the protein

to be extracted, with taking into account the multiminima nature of the potential

energy surface of the protein. The calculation was performed in GROMACS 2.9, where

it was implemented according to Ref [145]. The procedure is started with removing the

rototranslations by superimposing the trajectory on a single reference structure. The

covariance matrix of atomic displacements relative to their time average is subsequently

constructed, with the elements of the covariance matrix:

Ci j =
√

mim j 〈(ri−< ri >)(r j−< r j >)〉, (2.50)

where r are atomic positions, m are atomic masses and C is a N ×N matrix, where

N is the number of atoms in the molecule. The covariance matrix is mass weighted so as

to account for the inertial effects, as the displacement of heavy atoms will be smaller,

while the displacement of the light atoms will be larger. The matrix C is symmetric and

can be diagonalized by an orthogonal transformation T:

C=TΛTτ, (2.51)

where Λ is the diagonal eigenvalue matrix, and the matrix T contains as columns

the unit eigenvectors e, also called the principal modes or essential modes. The elements

of the eigenvalue matrix Λ are eigenvalues λ, representing the variance of data along

the orthogonal eigenvectors. Diagonalizing the covariance matrix transforms the atomic

displacements to a new orthornormal basis as defined by eigenvectors, where the new

basis is constructed so that the variance of the displacement along the first eigenvector

will be maximal, and smaller in each subsequent orthogonal direction; λ1 ≥ λ2 ≥ λ3 ≥
... ≥ λ3N . The projection of the atomic coordinates along the normal modes yields the

principal components:
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P(t)=Tτ
p

M (r(t)−< r>), (2.52)

where M contains the atomic masses with elements mim j, and the transposed T
contains the eigenvectors as rows. The main result of this procedure is to simplify the

multidimensional correlated atomic displacements to a space of reduced dimensionality;

from an initial N×N matrix, a maximum of 3N−6 eigenvectors with nonzero eigenvalues

can be obtained; note that the deducted 6 correspond to the previously removed rototrans-

lations. As the first principal component will account for the majority of dynamics, and

each subsequent less, one could assume that considering the first principal components

describes the largest displacements in a molecule, potentially corresponding to domain

motions and secondary structure elements movements i.e. global protein motions. To

visualize these motions in Cartesian coordinates, the trajectory can be projected on one,

two, or several principal components:

rpro jected(t)=< r>+
p

M TτP(t). (2.53)

2.4.2.2 Normal Mode Analysis

Normal Mode Analysis (NMA) is a technique that approximates the protein conforma-

tional landscape with a harmonic potential well. Although the reality of the multiminima

potential energy surface is staggeringly different, this simplification is valid for exam-

ining protein motion in a local minimum. The harmonic approximation breaks down

at physiological temperatures [146], and care must be taken when making conclusions

based solely on the NMA.

NMA is performed by using the Anisotropic Network Model (ANM) [147] as imple-

mented in the Python package ProDy [148]. To improve computational efficiency, only the

Cα atoms are considered, additionally, a cut off is introduced, and only the interactions

within a cut off rc are considered in potential calculations. The Cα atoms are connected

with springs of uniform elastic constant γ. Another major advantage of the ANM is

that no energy minimization is required in the procedure, which is usually case for the

standard NMA.

The harmonic potential function is defined as:

U = γ

2

∑
|r0

i j |<rc

(r i j − r0
i j)

2, (2.54)
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where the r i j are interatomic distances, r0
i j are the equilibrium atomic distances, and

the sum is run over the Cα atoms within a cut off value.

The Hessian matrix H is built of second order derivatives and is of dimensions

3N ×3N for a system with N Cα atoms. Diagonalization of the Hessian H will yield

eigenvectors e and their eigenvalues ω2:

He=ω2e. (2.55)

A normal mode Q j is then specified by:

Q j =
3N∑
i=1

e i jri. (2.56)

The sum runs over the elements of the eigenvector e and has 3N components, where

|e| = 1.

In terms of Cartesian coordinates, the modes can be expressed as:

r i j = e i j A jcos(ω j t+ε j), (2.57)

where A j is the amplitude and ε j is the phase of the harmonic motion, while the square-

root eigenvalue ω is its angular frequency. It can be shown that the lower the frequency ω,

the larger the amplitude will be, pointing to the lowest-frequency modes as functionally

relevant.

Generally speaking, the protein modes can be divided in two classes: anharmonic

modes with large amplitudes of fluctuations and multipeaked distributions, captured

in PCA, and harmonic modes with small amplitudes and Gaussian-like distributions,

captured by NMA [143]. The notion was confirmed on synthetic peptide simulations,

where it was found that the fluctuations of the NMA modes accounted for 30% of protein

total mean-squared fluctuation (MSF) values extracted from MD simulations, while this

number grew to 70% for rigid peptides [149].

2.4.3 Meeting NS Experiments

In this part of the chapter, we introduce the observables used to directly compare the

results from MD simulations with NS experiments, and the complementary analyses that

were done in order to complement the average experimental signal with a microscopic

outlook.
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2.4.3.1 Atomistic Fluctuations

In order to compare with Elastic Incoherent NS experiments, see subsection 2.3.1, the

atomistic fluctuations of the protein system must be computed. Mean squared fluctuation

is a measure of the flexibility of the atomic backbone. It is the variance of atomic positions

over the course of the trajectory. For each atom, it is defined as:

MSF = 1
T

T∑
t

(r(t)−< r>)2, (2.58)

where T is the total number of simulation snapshots and r contains atomic coordinates.

It is contained in experimentally measurable quantities of Neutron Scattering and X-ray

crystallography, as shown below.

Alternatively, it is possible to measure the displacement of the atom at a given time

interval. Mean squared displacement is a measure of atomic movement over a time

window ∆t with respect to a reference position:

MSD(∆t)=< u2 >= 1
T

T∑
t

(r(t+∆t)−r(t))2, (2.59)

where T is the total number of simulation steps. The mean-squared displacement is

experimentally measurable in Neutron Scattering experiments (see section on Elastic

Incoherent Neutron Scattering). For a meaningful comparison, the time window ∆t
should match the resolution of the experimental apparatus. MSD is related to MSF by

[128]:

MSD = 2MSF. (2.60)

Furthermore, the MSD, contains a measure of flexibility in time that is measured in

X-ray crystallography in therms of the ‘temperature factors’, B-factors or Debye-Weller

factors:

DWF = exp
(−Q2 < u2 >

3

)
, (2.61)

where Q is the scattering vector. The atoms with high B-factors belong to disordered

protein regions, while those with low B-factors belong to structured regions that are well

resolved.

2.4.3.2 Support of the NS Spin Echo

The interpretation of the NS Spin Echo experiments is extremely laborious. The main

information we have collected from experiments and simulations concerns the contribu-
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tion of protein internal motions to the diffusion spectrum extracted from the measured

Intermediate Scattering Function. Our goal, as described extensively in the Chapter 4,

was to compare the thermal activation of protein soft modes in two homologous proteins

having different optimal working temperatures.

To start with the most general consideration, the atoms in a molecule are subjected to

constant kicking and dragging from surrounding atoms, either solvent or intramolecular,

which results in random stochastic motion termed diffusion. The theory of random motion

in spatial dimension is extended and generalized for any continuous trajectory random

variable X with the Markov property, yielding the Fokker-Planck equation that describes

the time distribution function of the random variable. In the special case of no external

field applied (i.e. zero drift) the Fokker-Planck equation becomes:

∂p(X , t)
∂t

= D
∂2 p(X , t)
∂X2 , (2.62)

where p(X , t) is the probability density of the random variable X . The solution of the

equation is the distribution of the random variable in time, characterized by the diffusion

coefficient D, shown here for the simplest case where the diffusion of particle is homoge-

neous across the random variable phase-space and can be characterized by a constant

value. As the diffusion coefficient is a property that characterizes the distribution of

any random variable in time, it is a good measure of changes in protein dynamical

properties that are governed by random motions. The diffusivity of a protein at different

characteristic length scale can be extracted from Spin Echo experiments as detailed

below.

The normalized intermediate scattering function, the Fourier transform of the spatio-

temporal particle correlation function, which is obtained in experiments, can be calcu-

lated directly from the MD trajectories using the same expression as in Eq 2.42. The

calculation were done by using the Sassena software package [134]. The function contains

information on protein dynamics encoded as a function of the quantity Q, the scattering

vector, which is inversely proportional to the the interparticle distances L.

The short time decay of the I(Q, t)/I(Q,0) can be approximated by a cumulant expan-

sion [150]:

ln
I(Q, t)
I(Q,0)

=−Γ̄(Q)t+ 1
2

K2t2 + 1
3!

K3t3 +·· · , (2.63)

where K2 and K3 are the second and third cumulant, and Γ̄(Q) is related to the diffusion

coefficient D0(Q) through:

D0(Q)= Γ̄(Q)
Q2 . (2.64)

44



2.4. ANALYSIS OF MOLECULAR DYNAMICS TRAJECTORIES

The extracted diffusion coefficient characterizes the atomic correlation at interparti-

cle distances Q ∼ 1/L. It is assumed that the diffusion coefficient in an MD simulation

corresponds to a dilute condition. It is important to note that three different contri-

butions enter in the coefficient D0, the translational (Q-independent), the rotational,

and internal motions. The experimental samples are concentrated and the diffusion

coefficient extracted from the experimental I(Q, t)/I(Q,0) must be treated to take into

account the concentration and the hydrodynamic effect, see Ref [151].

The calculation of the D0(Q) spectrum allows comparison to experimental data.

However, the important goal is to assess to what extent the internal motion is relevant

in shaping the spectrum. This can be done using several strategies. Firstly, in order to

evaluate whether the internal motion makes a meaningful contribution to the associated

spectrum, the motion of a rigid body can be analytically estimated [152] by projecting

the interatomic distances of atomic positions in an X-ray, rk( j), on the scattering vectors

Q, which are spherically distributed:

D0(Q)= 1
Q2F(Q)

∑
j,k
〈b jbk(Q ·DT ·Q+L j ·DR ·Lk)eiQ·(r j−rk)〉. (2.65)

DT and DR are the translational and rotational diffusion tensors, respectively, and

they can be obtained from theoretical calculations performed using the HYDROPRO soft-

ware [153]. The bk( j) are the scattering lengths, Lk( j) = rk( j)×Q is its angular momentum

vector, and F(Q) is the form factor of the protein:

F(Q)=∑
j,k

b jbk exp[iQ(r j −rk)]. (2.66)

In past work [151], it was shown that the inclusion of internal motion is necessary in

order to reproduce the experimental spectrum, since the simple rigid-body calculations

failed to perfectly reproduce the experimental data, see Figure 2.5. As we discuss in

Chapter 4, this was also the case in our investigation.

Therefore, the MD simulations must be included to quantify the contribution of

internal dynamics by performing an appropriate post-processing of the trajectory before

computing the intermediate scattering function I(Q, t). Following the procedure detailed

in Ref [154], by removing roto-translation from the MD trajectory, the calculation of I(Q, t)
will include internal motion only. The extracted diffusion coefficient will consequently

correspond only to the correlated internal displacement of the protein atoms. This

contribution can be added to the rigid-body roto-translation in order to match the
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Figure 2.5: The diffusion spectrum of the Alcohol Dehydrogenase with experimental
data shown for different cofactor binding conditions, while the solid black line shows the
contribution of the calculated spectrum including only the rotational and translational
component. Taken from Ref [151].

experiments. Moreover, in order to dissect to which modes the larger diffusivity is

associated, a more detailed analysis is adopted by extracting the modes via Normal

Mode Analysis and computing the contribution to diffusivity. Alternatively, Principal

Component Analysis can be performed, where the projection of the MD trajectory on a

finite number of modes is used to quantify their contribution to the internal diffusivity.

Finally, a complementary quantification of internal motion can be provided by the

harmonic approximation. In fact, diffusion coefficient characterizing protein dynamics

can be simply derived for a harmonic collective variable in terms of its fluctuation δA
and time correlation function relaxation τ [155]:

D = δA2

τ
, (2.67)

where δA2 is the variance of the fluctuation δA = A(t)−< A > and τ is the relaxation

time of the correlation function:

C(t)=< A(t)A(0)> . (2.68)

The relaxation time is obtained by fitting a single exponential, exp(−t/τ), to the initial

decay of the autocorrelation function. The collective variable can represent for instance

the distances among separate secondary structure elements in the protein or any other

appropriate variable with harmonic behavior.

46



C
H

A
P

T
E

R

3
STABILITY AND FUNCTION AT HIGH TEMPERATURE

FOR A MESOPHILIC AND THERMOPHILIC GTPASE

HOMOLOGUE

Comparing homologous enzymes adapted to different thermal environments aids to shed

light on their delicate stability/function trade-off. Protein mechanical rigidity was pos-

tulated to secure stability and high-temperature functionality of thermophilic proteins.

In this Chapter we challenge the corresponding-state principle for a pair of homologous

GTPase domains by performing extensive Molecular Dynamics simulations, applying

conformational and kinetic clustering, as well as exploiting an enhanced sampling tech-

nique (REST2). While it was formerly shown that enhanced protein flexibility and high

temperature stability can coexist in the apo hyperthermophilic variant, here we focus

on the holo states of both homologues by mimicking the enzymatic turnover. We clearly

show that the presence of the ligands affects the conformational landscape visited by the

proteins, and that the corresponding state principle applies for some functional modes.

Namely, in the hyperthermophilic species, the flexibility of the effector region ensuring

long-range communication and of the P-loop modulating ligand binding are recovered

only at high temperature. The work is published in Ref [78].
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Figure 3.1: Figure (a) contains two panels, the upper shows the superimposition of the
G-domain of E. coli EF-Tu in the active GTP form, where the switch I region (G40-I62) is
in α secondary structure (shown in red), and the inactive GDP form, where the region
is partially in the β state (shown in blue). The same color code is used to emphasize
other important structural elements, the P-loop (G18-T25) lining the active pocket and
the explicitly shown His84, discussed later in text. GTP is shown in the active site. The
lower panel in Figure (a) shows the catalytic cycle of the EF-Tu, and the corresponding
conformational changes. Figure (b) shows the superimposition of the active forms of
EF-Tu E. coli in red and EF-1α S. solfataricus in purple, aligned by GTP in their active
site. The orientations of the proteins in (a) and (b) are similar, and equivalent structural
features can be seen in both Figures. The reader is specifically pointed to notice the double
helical insertion in the switch I region of EF-1α. Figure (c) is taken from Ref [156] and
shows the schematic representation of the EF-Tu in the elongation process. The ribosome,
shown in orange, translates a messenger RNA sequence, while EF·GTP·aa-tRNA ternary
complex is approaching (1), only to be subsequently bound on the ribosome (2). After the
codon-anticodon recognition, the ternary complex undergoes a conformational change
on the ribosome (3), whereafter the GTP hydrolysis to GDP follows (4), after which the
EF·GDP dissociates from the ribosome (5). Other features shown: amino-acids as small
circles, GTP as yellow triangle, yellow lightning bolt represents GTP to GDP hydrolysis,
and the yellow cross represents GDP.
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3.1 Introduction

Despite extensive research, the direct connection between the thermal activation of

protein flexibility and the temperature dependence of the enzymatic activity remains

elusive. In fact, it is plausible that mechanical rigidity controls the stability of the protein

by ensuring a functional fold at high temperature, while the temperature shift of the

activity depends solely on a higher kinetic barrier for the enzymatic chemical step [62,

73]. However, when allostery or conformational changes control substrate binding and

unbinding or signal propagation upon catalysis, thermal activation of relevant modes

has to be considered in detail.

In this work we tackle the problem by considering a model system, a pair of homol-

ogous G-domains from a mesophilic (Elongation-Factor Tu) and a hyperthermophilic

(Elongation-Factor 1α) protein. The Elongation-Factor (EF) [157, 158] participates in

protein translation, which takes place on the ribosome and is schematically shown in

Figure 3.1 (c). The EF carries an aminoacyl-tRNA (aa-tRNA) to the ribosome, where the

mRNA is translated to an amino-acid sequence by pairing its nucleotide bases with those

of the aa-tRNA. Initially, the EF forms a ternary complex EF·GTP·aa-tRNA, and upon

codon-anti codon recognition, the GTP is hydrolyzed to GDP, inducing a conformational

change necessary for the release of the aa-tRNA and dissociation from the ribosome in

the EF·GDP form. The interested readers can find a substantial body of work where the

catalytic boost of the GTPase activity [159] as well as the EF conformational changes

[160, 156, 161, 162] induced by ribosome binding were deeply investigated.

The EF-Tu of E. coli and EF-1α of S. solfataricus are of similar structure [163, 164,

165, 166], both triangular three-domain proteins with a hole in the middle and substan-

tial differences between the reactant GTP (active) and product GDP (inactive) state. The

superimposition of the catalytic subunits of the two proteins is shown in Figure 3.1 (b).

Despite the role of interdomain interactions ensuring long-range communication, some

essential features of the EF activity can be investigated by considering only the catalytic

domain, as the isolated domain is catalytically active [167, 168]. The catalytic subunit

is slightly less thermostable than the three-domain protein for both the mesophile and

the thermophile. The inactivation temperature of the catalytic subunit in the EF-Tu

is 41 ◦C as opposed to 46 ◦C for the entire protein [169, 170]; for EF-1α the catalytic

subunit loses activity at 84 ◦C and the entire protein at 94 ◦C [168]. These temperatures

are close to the optimum growth temperatures of E. coli (37 ◦C) and S. Solfataricus (80
◦C), respectively, confirming that the proteins are optimized to function in a narrow
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temperature window.

Moreover, the important conformational changes during the enzymatic turn-over

[171, 172] occur in some specific regions of this domain. In the mesophilic domain,

the crystallographic structures of the reactant and the product states show marked

differences in the switch I region (also referred to as effector region, residues G40-I62)

and switch II region (G83-T93). The former is reported to undergo a dramatic α to β

secondary structure transition between residues P53 and G59 upon GTP hydrolysis (see

Figure 3.1 (a)) [173, 174], while the latter is a helix that shifts towards the C-terminus

by a single turn [163]. The structure also contains a number of conserved residues, most

notably in the P-loop (G18-T25) and in the region between residue N135 and D138, both

lining the active site and forming hydrogen bonds with the ligand.

The switch I region of the hyperthermophilic variant contains an insertion of two

small α helices, and no conformational change spanning this region was reported in

the literature. Computer simulations [45] showed that the early steps of the protein

unfolding in the mesophilic G-domain occur at the level of the switch I region, indicating

that the structuring effect due to the helical insertions is an essential stabilizing factor

for the hyperthermophilic species.

In order to get more precise insight on the rigidity/function relationship, we used

computer simulations to investigate the two homologous G-domains in their holo states

by virtually mimicking the enzymatic turnover. Molecular dynamics of the protein-

substrate complexes were performed at the microsecond time scales. Enhanced sampling

of the protein conformations was also performed by employing the Hamiltonian-replica

exchange scheme REST2 [123, 124].

Here we verify the validity of the corresponding state principle for some key func-

tional modes of the proteins in their holo state. As stated in the Introduction of the thesis,

Somero’s corresponding state principle asserts that the protein’s conformational flexibil-

ity is adjusted to the optimal working temperature of the enzyme, i.e. the flexibilities

of proteins should be comparable at their respective optimal working temperatures [57,

56]. Here we show that the magnitude of the changes in the flexibility upon GTP binding

and hydrolysis are comparable between the two species at their respective “optimal

working” temperatures. Moreover, we confirm that the stability/function trade-off is

encoded in the structural motif of the switch I region, which is highly flexible and keen

to secondary structure shift in the mesophilic species, while being highly structured and

more resistant to temperature in the hyperthermophilic domain.
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3.2 Methods

3.2.1 Systems

We have studied the isolated catalytic G-domain of the mesophilic (E.coli) EF-Tu and

that of the hyperthermophilic (S.sol f ataricus) EF-1α. The mesophile domain was

considered in the apo state and with the GTP or GDP molecules bound to its active site.

Depending on the nature of the ligand bound to the protein, the switch I region (P53-G59)

is α-helical in the crystal structure isolated in the presence of GTP (PDB 1OB2), while it is

a β-sheet when GDP is present (PDB 1EFC) [163]. Both conformers have been considered,

leading to a total of six systems for the mesophilic domain: the two apo conformers, ecGα

and ecGβ, and the two holo states in all their possible conformations, leading to four

additional states ecGα·GTP, ecGα·GDP, ecGβ·GTP, ecGβ·GDP. The catalytic G-domain

of the hyperthermophilic EF-1α was extracted from the PDB entry 1SKQ [165], with

the missing portion spanning the residues 66 to 76 inserted by homologous modelling

[47]. In the crystal structure, the protein was isolated with GDP bound to it, which was

either removed, kept intact or replaced by GTP to simulate the apo, the holo ssG·GDP

and ssG·GTP states, respectively.

3.2.2 Molecular Dynamics Simulations

The G-domains were capped with COO− and NH3+ terminals. Ligands, when not orig-

inally present in the crystallographic structures, as in the case of GTP, were aligned

to an existing substrate (GDP or GNP). A short minimization was performed to relax

structural clashes. The proteins were inserted in a simulation box and solvated with

water by surrounding the protein with at least 10 Ålayer of solvent. Ions were added

to neutralize the systems. All the simulations have been carried out using the NAMD

2.9 software [89], the CHARMM22/CMAP force field for the protein [91, 94], and the

CHARMM-TIP3P model for water. The details of the method are described in Chapter 2.

After a 4 ns thermal equilibration, the simulations were propagated in the NpT ensemble

using a Langevin thermostat (characteristic time 1 ps) and barostat (dumping time 50

fs). In the simulations we used an integration timestep of 2 fs. All systems were simu-

lated at ambient conditions, T=300 K and p=1 atm, for 0.6 µs. The hyperthermophilic

system was also simulated at a higher temperature, T=380 K, mimicking the working

condition of the enzyme. The short-range interactions and the real space contribution

of electrostatic interactions were cut off at 12 Å, while the long-range contribution of
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electrostatic interactions were handled by the PME algorithm [175] with a grid spacing

of 1 Å. All bonds involving hydrogens were constrained. The trajectories were recorded

with a frequency of 4 ps.

3.2.3 REST2 (Replica Exchange with Solute Scaling)

In order to enhance the conformational sampling of the switch I region, we used a

recent implementation of REST2 [123, 124], a Hamiltonian-exchange parallel tempering

technique, see Chapter 2 for details. The REST2 algorithm is based on the rescaling

of some terms of the potential energy of the system, namely the dihedral potential

energy terms of the protein and the non-bonded protein-protein and protein-solvent

interactions. This scaling may concern the protein in its entirety or a portion of it. Here

we have thermally excited the switch I region of the two systems in the holo state. We

used 12 replicas for the mesophilic systems and 16 for the hyperthermophilic ones as

the thermophilic system contains both a larger protein and a larger number of water

molecules, thus needing a larger number of replicas to achieve similar replica exchange

efficiency (40 %). The replicas were allowed to exchange every 10 ps. According to a

mean-field rescaling scheme [124], the replicas scanned an effective temperature window

Te f f ∈ [280K ,575K] for the fragment. The rest of the system was thermalized at the

reference temperature of 300 K. In order to avoid finite-size effect on the sampling of

the conformation of the switch I region, the proteins were solvated in a larger box with

respect to those used in the unbiased MD set-up. A total number of about 14,000 and

18,000 water molecules were used to solvate the mesophilic and the hyperthermophilic

proteins, respectively.

3.2.4 Conformational and Kinetic Clustering

The main analysis of the protein flexibility was based on conformational clustering [135,

45] that allows determining the number of representative conformational states visited

by the system and the frequency of transitions between them, described in detail in

Chapter 2. Networks of conformational states were built by using the root mean squared

distance, fraction of native contacts, and fraction of native torsion angles as the clustering

collective variable. The results of the conformational clustering are presented in the text

in detail, while the results of the fraction of native torsion and the fraction of native

contacts clustering are reported in Tables in the Appendix of this chapter.

52



3.3. RESULTS AND DISCUSSION

The trajectories were saved with a frequency of 20 ps. Conformational networks were

further clustered using a Markov Chain Algorithm [138], details described in Chapter

2. The granularity parameter was set to 2. Finally, the results of conformational and

kinetic clustering were visualized as network of states by using a force-based algorithm

as implemented in GEPHI [137].

3.3 Results and Discussion

3.3.1 Substrate Effects on Protein Conformations: the
Mesophilic G-domain.

Figure 3.2: Conformational clusters shown in network representations for the protein
with and without its ligands, with each node representing conformations with RMSD
that differ by 2.5 Å. Each node of the network represents a conformation substate, the
size of the node is proportional to its occupancy. The color scale in the network is used to
further stress different occupancy of the conformational states, while the numbers inside
the nodes reflect the temporal occurence of cluster leaders in a simulation, i.e. the first
cluster leader is assigned the label ‘1’, the second cluster leader is assigned label ‘2’ etc.
Nodes of kinetic networks show substates that are separated by high energy barriers,
while a single node contains states separated by low energy barriers. The lowest panel
represents the mean squared fluctuation, a measure of protein flexibility, shown in color
and thickness of the protein backbone. Data refer to the MD simulations performed at
T=300 K.

In this first section we analyze the conformational changes induced by a ligand

bound to the mesophilic ecG. The results are based on long MD simulations extending

to the microsecond time scale (0.6 µs). Namely, by following the hypothetical enzymatic
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turnover of the protein, we have inquired into the equilibrium shift of protein conforma-

tional substates due to binding of the reactant (GTP) and product (GDP) molecules. The

sequence of conformations accessed by the ecG during the EF-Tu activity are schemati-

cally represented in the bottom panel of Figure 3.1 (a), according to the resolved X-ray

structures.

System N(tsim) N∞ τ (ns) Kinetic Clustering
ecGα 22 21.5 189.2 6

ecGα·GTP 4 4.2 228.5 1
ecGα·GDP(*) 14 33.0 1229.1 4

ecGα·GDP 34 37.0 208.7 8
ecGβ 18 21.9 327.7 4

ecGβ·GTP 20 19.7 20.3 4
ecGβ·GDP 18 20.4 249.0 5

ssG 24 23.3 200.0 4
ssG·GTP 12 10.2 114.8 1
ssG·GDP 14 21.5 500.7 4

ssG·GTP (T=380 K) 21 21.3 158.7 2
ssG·GDP (T=380 K) 111 1728 8923.2 14
ssG·GTP‡(T=380 K) 10 9.5 72.2 /
ssG·GDP‡(T=380 K) 40 46.4 316.1 /

Table 3.1: Conformational and kinetic clustering of the MD simulations. The conforma-
tional clustering was based on the collective variable RMSD and using a cut off of 2.5 Å.
The total number of clusters obtained is indicated in the first column, N(tsim). In the
third and fourth column, we report the parameters of a simple exponential growth model
fitting the data, N(t) = N∞ · (1− exp(t/τ)). In the last column we report the number of
independent kinetic states as obtained by applying Markov state model based clustering
algorithm with a threshold of 2.0. (‡)In the last two lines we report the results for the
thermophilic ssG domain simulated at T=380 K but excluding the last 3 and 7 residues
at the N- and C-terminals. At this high temperature, the terminals are not anchored
to the body of the domain and their random motion gives rise to a linear growth of the
number of clusters.

We have performed conformational and kinetic clustering of the long MD trajectories.

The network representation of the complex conformational landscape was reconstructed

highlighting both the population of the states and the frequencies of their interconver-

sions, see Figure 3.2. We first discuss the results obtained for the “reactant” conformer

ecGα. Most notably, the protein gets stiffer when GTP binds to ecGα. In fact, the number

of conformational states accessed by the protein drops down by a factor of 5 as compared

to the apo state, see also Table 3.1. The region mainly affected by the GTP ligand is
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the switch I, which is highlighted in the bottom panel of the Figure 3.2, where we have

magnified the portions of the protein matrix exhibiting larger flexibility, measured by the

atomistic mean squared fluctuations (msf) of Cα. When the GDP is bound to the same

initial ecGα structure, the sampled conformational landscape is less confined, and the

protein preserves its intrinsic flexibility. A very similar behavior was recovered when, as

initial state, we considered an equilibrated configuration from the ecGα·GTP simulation

and replaced GTP with GDP (simulation denoted ecGα·GDP(*)). Again, when the GDP

molecule is bound to the domain, the flexibility of the protein is much higher than in the

case of the GTP bound state (data shown in Table 3.1). Apart from the switch I region,

the flexibility of the protein is mostly concentrated in the switch II region, similar to

what was previously observed in a MD simulation of the entire protein in the apo and

holo GDP states [176].

Transition T∆S [kcal/mol]
ecGα → ecGα·GTP -20.8

ecGα·GTP → ecGα·GDP 16.4
ecGα·GTP → ecGβ·GDP 20.0

ssG → ssG·GTP -11.0
ssG·GTP → ssG·GDP 8.3

ssG → ssG·GTP (T=380 K) -13.9
ssG·GTP → ssG·GDP (T=380 K) 10.5

Table 3.2: Difference of backbone entropy estimated by the second order parameter S2

for the bond vector N-H. The parameter is obtained by considering the time correlation
function of the second order Legendre polynomial function C(t) = (3(v(t) ·v(0))2 −1)/2
where v indicates the NH bond vector. The data refer to the simulations at T=300 K,
unless otherwise noted. The parameter S2 is extracted for each residue by fitting C(t)=
S2 + (1−S2)e−t/τ [177]. Entropy difference between two states, a and b, is estimated

according to the formula ∆S =−kb
∑

i ln{3−(1+8Sa,i)1/2

3−(1+8Sb,i)1/2 }, where i runs over the residues of
the protein [142].

It is important to note that the shift of protein stiffness upon ligand binding is

also visible when considering the kinetic clustering of the trajectories on the basis of

a Markov state model, see Methods section. This type of clustering helps to visualize

protein substates separated by high kinetic barriers (Figure 3.2). The contribution of

the backbone flexibility to the entropy changes in the catalytic cycle has been calculated

estimating the S2 order parameter of the NH bond reorientation [142, 177], see Chapter

2 and Table 3.2, and it adds extra weight to the results obtained by conformational
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clustering, where the change in the number of cluster leaders implies a change in the

probability of microstate occupancy, which is proportional to the overall entropy.

For the EF-Tu, a conversion from the α to the β conformers follows the GTP hydrolysis

according to the literature [163, 173]. Therefore it is convenient to examine the reshaping

of the conformational landscape of the “product” conformer ecGβ. In this case, for both

ligands, the general effect of substrate binding on the global protein flexibility is very

weak. In fact, no dramatic changes are observed in the conformational and kinetic

clustering of the generated trajectories.

While the exact sequence of conformational inter-conversions is not known, and our

data do not provide clues on the selective pathway along the enzymatic turnover, the con-

formational and kinetic clustering of the independent states suggest that heterogeneous

kinetics for GTP hydrolysis could emerge as the effect of the conformational transitions

[178]. These transitions would potentially filter substrate binding/unbinding as well as

modulate the kinetic barrier of the chemical step. Understanding whether the transi-

tions are specific to the mesophilic homologue or are shared with the more thermally

stable ssG will help clarifying the molecular mechanism of the thermal activation of the

hyperthermophilic homologue. This will be addressed in the next sections.

3.3.2 In Quest of the Conformational Transition in the
Mesophilic G-domain.

We have mentioned that the transition from the α toward the β conformer is expected to

occur upon GTP → GDP conversion. This conformational change is a biologically relevant

signal as it triggers dissociation from the ribosome. Trapping the GDP state in the α

configuration prevents this dissociation and thus stops the peptide translation, a fact

exploited by some antibiotics [179]. The switch I region should therefore access the β

state in the ecGα·GDP simulation, and similarly, transition toward the helical state is

expected in the same region when GTP replaces GDP, i.e. in the ecGβ·GTP simulation.

It should be mentioned that because of the small extension of the fragment of interest

(P53-G59), it is difficult to observe extended β-strands. Even in the crystallographic

structure, only two cross H-bonds are detected as β linkers. For this reason hereby our

definition of β-state casts together both the presence of hairpin-like double strand and β

turn-like conformation, similarly to [176].

Despite the high flexibility of switch I, the β secondary structure is poorly sampled

in the simulation of the holo ecGα·GDP state. Similarly, the α-helical state in the P53-

56



3.3. RESULTS AND DISCUSSION

Figure 3.3: Percentage of secondary structure motifs for a part of the switch I region,
residues P53-G59, that is reported to undergo a secondary structure change in the
catalytic cycle. The bottom part of the figure shows the most occupied secondary structure
per residue for three key regions in the protein, shown for different representative states
of the protein during the catalytic cycle.

G59 portion of switch I is weakly populated in the ecGβ·GTP simulation, see Figure

3.3 (a). However, it is interesting to note that the switch I fragment acquires α-helix

when ecGβ is simulated in the apo state. This fact suggests that β to α conformational

change during the enzymatic turnover may occur via the ligand-free state. The average

secondary structure of two other key regions for protein activity is shown in Figure 3.3

(b): the switch II and helix C (residues P113-V125). The switch II is characterized by an

extended helix (10 residues) and is found to rigidly shift upon GTP hydrolysis, one turn

unfolds at the C-ter side and one refolds at the N-ter side [163, 180, 174]. This shift is for

instance observed in the ecGα·GDP, but depending on the initial state, we remark that

the extension of the helix is fluctuating across the simulations. The helix C represents

the anchoring for the P-loop involved in nucleotide binding [181]. The helical structure is

preserved in all the simulations meaning that any conformational change associated to

substrate locking are caused by a rigid body motion of this region.
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Figure 3.4: Enhanced sampling of the switch I region in the REST2 simulations. In the
top panel, we report the fraction of secondary structures (α, β, coil) in the fragment as a
function of the effective temperature exciting the switch I. Lower panel schematically
compares data obtained from the simulations of the holo state ecGα·GTP(GDP) at
different temperatures, based on CHARMM22/CMAP and CHARMM36 force field.

The lack of α→β transition in the brute force MD of the holo ecGα·GDP state could

depend on several factors: i) the presence of a high kinetic barrier separating the two

states that would confine the sampling in the initial state only, ii) an intrinsic bias of

the force field used, for instance it is widely reported that CHARMM22/CMAP favors

helical states [96, 107], iii) the lack of inter-domain interactions in our model, in fact the

crystallographic evidence of the transition was based on the resolution of the structures

of the whole EF-Tu protein, iv) a temperature effect, since the quench into the two

separate states could be caused by the low temperature at which X-ray experiments are

performed. In the following we will address some of these issues.

We have performed enhanced sampling Hamiltonian-Replica Exchange simulations

[123, 124] designed to “thermally” excite the switch I region of the protein. The simu-

lations were performed on both holo states of the ecGα conformers using 12 replicas

for each simulation, see Figure 3.4 (for ecGβ see Figure 3.5). According to a mean-field

rescaling scheme [124], the sampling allowed to scan the effective temperature (Te f f )

window 280-580 K. In Figure 3.4 we report the fraction of secondary structure accessed

by the switch I as a function of the effective temperature Te f f . We observe that for
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Figure 3.5: Enhanced sampling of the switch I region in the REST2 simulations. We
report the fraction of secondary structures (α, β, coil) in the fragment as a function of
the effective temperature exciting the switch I. Data refer to the holo state built from
the conformer ecGβ.

both the GTP and GDP ligands, the α conformation is the most populated at ambient

condition, and its occupation decays with temperature. The most important result is the

meaningful fraction (20%) of β-like state - mainly turn - that can be accessed in both the

holo states, and starting from both conformers (see Figure 3.5). This finding indicates

that the α to β transition can occur, although the details of the associated kinetics would

require ad-hoc calculations and will be reserved for further work. The population of the

β-like structure increases as a function of temperature and compensates the thermal

instability of the helical structure. The high, and almost temperature independent, frac-

tion of unstructured coil state (∼40%) further confirms the intrinsic flexibility of the

fragment.

In order to account for the force-field dependence of the secondary structure propen-

sities and their relative temperature changes, we have performed simulations of the

ecGα·GDP state using the CHARMM36 force field, which was designed to give a better

helix-coil balance [105]. While the helix state is much less populated, the population

of β-like conformation is unchanged when compared to CHARMM22/CMAP. Overall,

CHARMM36 renders the fragment highly unstructured, with the coil population being

as high as ∼50%.

A better sampling of the Hamiltonian-Replica Exchange could be achieved by extend-

ing the simulation time per replica, however despite the force field effects, the obtained

results clearly show that the α to β conversion in the switch I region is possible. The
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Figure 3.6: Binding the GTP or GDP to the EF-1α changes the number of representative
conformational substates as shown by both conformational and kinetic clustering. The
lowest panel shows the amplitude of the mean squared fluctuations of the protein
backbone, coded in thickness of the backbone representation and color. Data refer to the
MD simulations that were performed at T=300 K.

temperature effect on this transition can not be rigorously estimated because of present

force field inaccuracies.

3.3.3 The Holo States of the Hyperthermophilic G-domain.

In a previous work [47, 45, 182] it was observed that the hyperthermophilic apo state

ssG spans a comparable and even larger conformational space than the mesophilic

variant ecG, and shows well-defined substates separated by high kinetic barriers. The

enhanced flexibility is due to the rigid body motion of the highly structured switch

I region. Similarly to the case of the homologous mesophilic ecG, the binding of the

reactant GTP molecule to the hyperthermophilic domain quenches the protein flexibility.

The number of conformational states explored on the same time-scale reduces by a factor
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Figure 3.7: Most occupied secondary structure per residue for three key regions in the
protein. Data refer to the simulations of the two holo states, ssG·GTP and ssG·GDP.

of 2 with respect to the apo state (Figure 3.6 and Table 3.1). In the product holo state

ssG·GDP, the protein gets slightly more excited, and it partially recovers its intrinsic

flexibility that allows sampling a larger number of kinetically relevant states. This

conformational flexibility caused by the GTP hydrolysis localizes at the level of the

switch I and II regions, see the bottom part of Figure 3.6, and is much less pronounced at

ambient temperature than in the mesophilic variant. The secondary structure patterns

of these regions are quite insensitive to the ligand hydrolysis, see Figure 3.7, although

the switch I of the GTP-bound state cages the ligand more extensively by linking the

triphosphate tail.

The increase of conformational entropy in the protein matrix upon catalysis is a

signature of functional efficiency since it relates to both substrate unbinding and long-

range communication. Therefore, the weak excitation observed at ambient temperature

following the virtual GTP hydrolysis could correlate to the known low activity of the

hyperthermophilic domain at ambient condition. Actually we see that at high tempera-

ture (T= 380 K), slightly exceeding the optimal growth temperature of the S. solfataricus
archeon, the flexibility of the ssG·GDP is enhanced when compared to ssG·GTP, an

increase by a factor of 5, similar to what found for the mesophilic domain when compar-

ing the reactant ecGα·GTP and the product ecGβ·GDP states at ambient condition, see

Table 3.1. The high temperature release of excitation in ssG·GDP concentrates again

mainly in switch I and switch II regions.

3.4 What Specializes the Thermophilic G-domain

In this final section, we present a comparative discussion of the molecular factors that

cooperate during the enzyme activity of the G-domain in particular, and of the EF
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protein in general. The focus is firstly placed on the behavior of the switch I region

considered an essential element of the protein matrix to regulate both the ligand binding

kinetics and long-range communication upon catalysis [183]. This region has also been

pointed out as the weak spot of the mesophilic ecG domain, where the early steps of

thermal unfolding take place [45]. In the hyperthermophilic variant ssG, the same region

is structurally stabilized by the insertion of two extra small α-helices, α′ and α′′. By

performing enhanced sampling on the two homologues in their holo states via REST2,

the stability of the region upon thermal stress has been assessed. In Figure 3.8 we

compare the stability curve obtained for three secondary structure states populated by

the fragment in the reactive states of the mesophilic and hyperthermophilic domains, the

ecGα·GTP and ss·GTP. The mesophilic fragment is not only systematically more flexible

at all temperatures, as seen from higher content of coil, but more importantly, its helical

component is shown to be significantly less stable than that of its hyperthermophilic

counterpart. The switch I region loses half of its initial fraction of helical content at

about Te f f =400 K in the mesophilic ecGα·GTP, while for the hyperthermophilic domain,

the helical disruption occurs at much higher value of the effective temperature exciting

the fragment. These data confirm that the stability and function of the ssG domain are

granted by the more robust structure of its switch I region.

Figure 3.8: Fraction of secondary structure in the switch I region as a function of
temperature for the holo state of the mesophilic and hyperthermophilic domains when
bound to the reactive substrate GTP, ecGα·GTP and ssG·GTP, respectively.

A second motif, structurally conserved across EFs G-domains, and more broadly in

NTPases [184], acting as molecular gate for substrate binding and unbinding is the

P-loop [181]. The changes in flexibility caused by the substrates is obtained by clustering

the conformations explored by this short fragment in the apo and holo states. As it was

observed for the global behavior of both proteins, the number of states visited by the

P-loop is strongly reduced when the GTP is bound, see Figure 3.9. The rigidification of
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Figure 3.9: Number of conformational states of the P-loop obtained by cluster analysis
of the fragment. Panel (a) refers to the mesophilic domain, panel (b) to the hyperther-
mophilic domain. RMSD is used as the collective variable in the clustering, with the cut
off of 0.5 Å.

the P-loop is the consequence of an extended network of interactions formed with the

GTP substrate. This connectivity is graphically represented in Figure 3.10, for both ecG

and ssG.

In the mesophilic variant, the rigidification of the P-loop is alleviated when the

substrate is changed in GDP and when the product β conformer is considered. This

mimics the effect of GTP hydrolysis. The recovered flexibility of the loop is the result of a

cooperative effect involving the cleavage of the final phosphate bond of the triphosphate

tail, and the associated conformational change of the switch I region, α→β [181]. The

excitation of the loop flexibility upon GTP toward GDP conversion is also found in the

hyperthermophilic variant ssG, although no secondary structure change occurs at level of

the switch I. For ssG, the flexibility gap of the switch I between the GTP and GDP bound

states further increases when considering the simulations at high temperature (T=380

K). It is important to stress that only at high temperature the P-loop in ssG·GTP(GDP)

exhibits a flexibility comparable to that of the mesophilic domain at ambient condition.

This is an indication of the validity of the corresponding state principle for the involved

degrees of freedom. However, a precise connection of the observed variabilities of the

P-loop flexibility with the dissociation kinetics of the product molecule GDP is beyond
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Figure 3.10: The occupancy of hydrogen bonds formed with the ligand in the protein
binding pocket. The sidechains that form hydrogen bonds with the ligand are represented
in ball-and-stick style, and the radius and color of the ball is equal to the proportion of
hydrogen bond existence in the total simulation time. Different backbone elements are
also emphasized by color coding (blue - switch I, red - switch II/helix B, yellow - helix C,
purple - P-loop). We used a geometrical definition to identify the hydrogen bonds, the
donor-acceptor distance cut off is set to 3.5 Å, and the hydrogen bond angle limit to 120◦.

the scope of the present work since it requires a specialized approach. For example, it

is worth mentioning that when considering the dissociation kinetics of the mant-GTP

molecule from EF-Tu, it was surprisingly found that a mutation supposed to increase the

local flexibility of the P-loop actually slows down the dissociation kinetics as compared to

the wild-type protein [181]. This slowing down is the result of a delicate entropy/enthalpy

compensation. The in silico estimate of the enthalpic and entropic contributions to the

free energy barrier controlling the substrate dissociation kinetics is challenging because

of the difficulties to individuate correct reaction coordinates for the process of interest,

and to perform correct sampling.

We conclude by inspecting the correlation between the orientation of His84, a univer-

sally conserved residue in translation GTPases [185, 161, 156], and the dynamics of the

so-called hydrophobic-gate (Val20 and Ile61) [160, 161]. The residue His84 is considered
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as being a key residue for GTP hydrolysis and several point mutations of this residue in

EF-Tu from E. coli showed anti-catalytic effects [156, 185]. It is however not clear if the

role for catalysis is direct, i.e. by activating a water molecule for a nucleophilic attack

on the γ-phosphate [180], or indirect, i.e. by helping the conformational rearrangement

of the catalytic site upon ribosome-binding [156]. In a cryo-electron microscopic map

of the aa-tRNA·EF-Tu·GDP·kirromycin bound to ribosome, and reconstructed by the

help of atomistic modelling [160], the position of the His84 toward the GTP substrate

was correlated to the opening of the hydrophobic gate, see PDB 4V69. Although in our

simulations we lack the effect of ribosome binding, we explored the dynamics of the

hydrophobic gate and of the orientation of His84. The former was monitored by the

distance between the sidechain centre of mass of the two residues, and the latter by

measuring the distance between the His84 sidechain centre of mass and the Pβ of GTP

and GDP molecules. The analysis is extended to the hyperthermophilic domain where

upon structural superimposition, we identified analogous residues [165, 186].

In Figure 3.11 (a) and Figure 3.11 (b) we report the two dimensional probability

distributions of both distances in GTP and GDP bound states for the two homologous

domains ecG and ssG, respectively. For each protein and each holo state, in the top panels

we report the data from MD trajectories and in the bottom panels that from Replica

Exchange simulations. In the mesophilic domain, we find that although the hydrophobic

gate is always in the open state, the His84 is oriented quite far from the GTP molecule.

In the cryo-electron microscopy derived structure (PDB code 4V69), the gate distance

is about 12 Å, and His84 approaches Pβ up to 5 Å, see the symbol in Figure 3.11. Our

results show that in the isolated mesophilic G-domain, the orientation of His84 and

hydrophobic gate are uncorrelated. Interestingly, when moving to the hyperthermophilic

ssG, we find that at ambient temperature the analogue of the mesophilic His84, His94

(see sequence alignment in [165]), is localized far from the catalytic site, at a distance

preventing any direct contribution to the GTP hydrolysis. Only at high temperature does

the distance decrease to values ∼ 6 Å, supporting a possible contribution to the catalysis.

Putative analogue of the mesophilic hydrophobic gate in ssG [186] is always found in

open state in our simulations, shown with a dashed line in the figure.

3.5 Conclusions

In this Chapter, we have investigated the effect of substrate binding on the conforma-

tional flexibility of two homologous GTPase domains of different stability content. In
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Figure 3.11: 2D probability distribution of the hydrophobic gate and His84(94)-Pβ dis-
tances. The top chart refers to the mesophilic domain while the bottom chart to the
hyperthermophilic domain. For each domain, data are reported for the GTP bound state
(left panels) and for the GDP bound state (right panels). For each system we compare
results from MD (top panels of a and b) and REST2 (bottom panels of a and b). Sym-
bols refer to the distances measured in the crystallographic structures indicated in the
legend by their PDB codes. For the hyperthermophilic domain, the average value of the
hydrophobic gate distance extracted from the simulation at T=380 K is also reported.
The dashed line represents the average His94-Pβ distances in both 1SKQ and 1JNY
crystal structures which are the same.
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both homologues, the flexibility of the apo protein is readily quenched when the reactant

GTP molecule binds to the protein, but conversely recovered when the virtual hydrolysis

is mimicked by considering the GDP bound state. The flexibility changes are localized

at the level of structural key motifs, the switch I, switch II, and the P-loop. The magni-

tude of the entropy released in the protein matrix upon the reaction differs between the

mesophilic and the hyperthermophilic enzymes. For the latter, a flexibility of switch I and

of P-loop comparable to the mesophilic variant is only attained at high temperature. This

finding confirms the validity of the corresponding state principle for these modes, despite

the fact that the apo hyperthermophilic domain shows comparable, if not enhanced,

flexibility with respect to the apo mesophilic domain. As a final remark, we point out

that the stability/function trade-off in the two species relates to the different structure of

the switch I region. In the mesophilic domain, the high flexibility of the fragment allows

for a secondary structure rearrangement along the functional process, but at the same

time renders the fragment highly unstable in temperature. On the other hand, in the

hyperthermophilic species, the insertion of extra secondary structure motifs renders

the fragment more resistant to temperature, reflecting once and again, the evolutionary

pluralism in optimizing the function in different temperature regimes.
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System N(tsim) N∞ τ (ns)
ecGα 46 45.2 61.4

ecGα·GTP 6 6.6 195.6
ecGα·GDP(*) 10 9.3 89.3

ecGα·GDP 11 10.6 62.3
ecGβ 896 1289.0 540.6

ecGβ·GTP 13 13.9 168.2
ecGβ·GDP 16 16.9 144.4

ssG 4 4.1 44.9
ssG·GTP 3 5.7 815.4
ssG·GDP 7 7.9 229.5

ssG·GTP (T=380 K) 19 18.1 45.3
ssG·GDP (T=380 K) 47 44.6 133.2

Table A.1: Fraction of native contacts clustering of the MD simulations. The con-
formational clustering was based on the collective variable Q(t) formally defined as
Q(t)= 1

NCα

∑NCα
i=1

l i(t)
l′i

, where NCα
is the number of carbon alphas, l′i is the number of na-

tive contacts given by the number of carbon alphas within 8 Å cut off from the C i
α in the

reference state, and l i(t) is the number of native contacts calculated for the configuration
at time t. Clustering cut off used was 0.35. The total number of clusters obtained is
indicated in the first column, N(tsim). In the third and fourth columns, we report the para-
meters of a simple exponential growth model fitting the data, N(t)= N∞ · (1− exp(t/τ)).
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System N(tsim) N∞ τ (ns)
ecGα 34 33.5 250.4

ecGα·GTP 9 10.9 377.7
ecGα·GDP(*) 36 52.1 609.1

ecGα·GDP 25 26.4 217.1
ecGβ 174 332.7 804.7

ecGβ·GTP 21 84.9 1909.3
ecGβ·GDP 34 45.8 470.4

ssG 21 19.8 136.5
ssG·GTP 8 7.3 113.7
ssG·GDP 11 32.9 1423.3

ssG·GTP (T=380 K) 77 76.6 212.6
ssG·GDP (T=380 K) 149 180.1 373.2

Table A.2: Fraction of native torsion angles clustering of the MD simulations. The
conformational clustering was based on the collective variable that can be expressed

as nt(t)= 1
Nθ

∑Nθ

i=1 exp[− (θi(t)−θ′i)2
σ2 ], where |θi(t)−θ′i| < 180◦, σ= 60◦, Nθ is the number of

torsion angles θ, θ′i are the torsion angle values in the reference state, and θi(t) are
the number of torsion angles in the configuration at time t. Both φ and ψ dihedrals
were used in the calculations. Clustering cuto ff used was 0.20. The total number of
clusters obtained is indicated in the first column, N(tsim). In the third and fourth
columns, we report the parameters of a simple exponential growth model fitting the data,
N(t)= N∞ · (1− exp(t/τ)).
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THERMAL RESPONSE OF MESOPHILIC AND

THERMOPHILIC DEHYDROGENASE HOMOLOGUE

In this chapter, we inspect the thermal activation of protein soft modes by combining

Neutron Spin-Echo scattering experiments and Molecular Dynamics simulations. The

ultimate goal is comparing the thermal response of functional modes in a pair of ho-

mologous tetrameric Lactate/Malate Dehydrogenase proteins. The Neutron Spin-Echo

scattering can probe motions at nano length- and timescales that are relevant in large pro-

tein conformational reorganization, while the Molecular Dynamics simulations support

the microscopic interpretation of the experimental spectra. The results obtained for the

mesophilic species, the eukaryotic Lactate Dehydrogenase from Rabbit muscle 5 (LDH

M5), will be extensively presented. The analysis of the experiments and simulations

for the thermophilic homologue are still under way. For the Lactate Dehydrogenase, we

probed the thermal activation of functional modes spanning the lengthscales of interdo-

main separations, matching the allosteric reorganization previously probed for bacterial

LDHs. A manuscript presenting the results for the LDH protein is in preparation.

4.1 Introduction

Protein dynamics and functionality are intimately related. Despite general consensus,

the fine details on how protein conformational changes modulate and regulate activity

is constantly debated [73, 55, 187, 188]. It is now accepted that protein dynamics is
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characterized by a hierarchy of timescales, from picoseconds to microseconds, reflecting a

rough manifold conformational landscape [189, 190, 191]. Great effort has been devoted

to link these dynamics to functionality, i.e. substrate binding/unbinding kinetics [70],

allosteric relaxation [192, 141], and catalysis [60, 178]. While so far the Nuclear Magnetic

Resonance [191] and single molecule spectroscopy represented the privileged means of

investigating these phenomena [178, 152], recent development of the Neutron Scattering

spectroscopy paved the way for further exciting applications in exploration of protein

soft modes at the nanometer and nanosecond scales [150, 151, 193, 194]. Specifically, the

Neutron Spin Echo (NSE) spectroscopy has been applied to systems exhibiting long-range

signaling modes via domain displacement, as in the case of the NHERF1 [193], Taq

polymerase [150], and Phosphoglycerate Kinase [194], as well as to a more compact

multimeric protein Alcohol Dehydrogenase [151]. The studies conducted so far have

combined experiments and molecular modelling, e.g. normal mode (NM) analysis, and

molecular dynamics simulations (MD), to determine the contribution of specific functional

modes along with the changes associated to substrate binding. While quasielastic NS is

routinely used in monitoring the thermal variation of the protein atomistic fluctuations

[129, 66, 195], this is the first time NSE is used in probing the temperature response

of a protein system in the nanoscale regime. In our investigation, we have combined

NSE spectroscopy and MD simulations in order to investigate the thermal activation

of the soft modes in two tetrameric homologous proteins in the apo state, the Lactate

Dehydrogenase from rabbit muscle 5 (M5) (optimum growth temperature range 37.7-

39.4 oC) and the Malate Dehydrogenase from Methanocaldococcus jannaschii (optimum

growth temperature range 48-94 oC [196]).

Seminal study on LDH M5 [197] showed the activation of the enzyme in the presence

of pyruvate, while enhanced activity is measured upon high-temperature incubation.

Conformational changes accompanying the enzymatic turnover are expected to occur,

as in the case of the majority of the bacterial LDHs that are allosteric in a proper sense

[198], the latter is extensively verified through the fructose 1, 6-bisphosphate allosteric

regulation. By comparing the crystallographic structures of the bacterial LDHs in apo

and holo states, the reorganization of key parts of the protein matrix upon substrate

binding was detected [199, 200, 201, 202]. The structural reorganization of the tetramer

includes movements of various amplitudes, e.g. the closure of the active site loop, the

rearrangements of several mobile regions (MR), and the favorable positioning of catalytic

residues. Moreover, the active site loop gating was found to be the rate-limiting step

for the catalysis of the wild type bacterial LDH from B. Stearothermophilus [203]. The
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paramount importance of the loop region in the catalysis of MDHs is reflected by its

high conservation across the protein family members [204]. Importantly, as pointed out

by experiments and theoretical calculations, the kinetic heterogeneity of the enzymatic

activity is related to conformational fluctuations of this loop [205, 206, 207].

The presence of long-range correlated motions potentially relevant for functionality

makes the NSE an advantageous/pertinent choice. Moreover, the protein crystallographic

structure has been solved, offering a good starting point to carry out MD simulations,

spanning the protein motion at the atomistic resolution.

4.2 Methods

4.2.1 Neutron Spin Echo

Neutron Spin Echo (NSE) spectroscopy (see Chapter 2) extends the experimental time

resolution of Inelastic Neutron Scattering to hundreds of nanosecond by encoding the

velocities of polarized neutrons in their precession motion across a highly homogeneous

magnetic field [208]. Unlike conventional Inelastic Neutron Scattering, the NSE tech-

nique returns the Intermediate Scattering Function I(Q, t)/I(Q,0) directly in the time

domain.

The experiments were performed on the J-NSE spectrometer at the FRM-II reactor

in Munich at two wavelengths, 8 and 10 Å, giving a maximum spin echo time of 65 ns in

Q-range 0.037<Q < 0.214 Å−1. The LDH concentration in the D2O buffer was 90 mg/ml,

a concentration well higher than that corresponding to the dilute regime, necessary

to achieve a sufficient Spin Echo signal. Note that the LDH protein is soluble even in

this high concentration regime and that an exchange between deuterium and hydrogen

happens on the protein surface, but that all atoms contribute to the experimental signal

and the exchange process is thus not explicitly treated. Both the protein solution and the

buffer alone were measured at the same experimental conditions to allow background

subtraction. The samples were investigated at three temperatures: 283 K, 298 K, and

313 K.

4.2.2 Small-Angle X-Ray Scattering

Small-Angle X-ray Scattering (SAXS) experiments were performed at the high-brilliance

beamline ID02 at the European Synchrotron Radiation Facility (ESRF) in Grenoble,

France. A sample to detector distance of 2 m was chosen to cover a Q-range 0.05 ≤
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Q ≤ 3 nm−1. The incident X-ray wavelength λ was 0.1 nm. The measurements were

performed in a Peltier-controlled flow-through capillary of 1.8 mm diameter to minimize

beam damage of the samples and to ensure an accurate subtraction of the background

(buffer solution). The two-dimensional scattering patterns were recorded using a Rayonix

MX-170HS fiber-optic taper coupled charge-coupled device camera. The two-dimensional

spectra were normalized to absolute intensity scale after applying the detector corrections

for spatial homogeneity and linearity. Normalized SAXS patterns were azimuthally

averaged to obtain the one-dimensional scattering profiles [I(Q) vs. Q]. The background

corrected protein SAXS curves are displayed in the left panel of Figure 4.1 as a function

of Q, after rescaling by the concentration C (mg/ml).

The scattering I(Q) of a solution of N proteins is proportional to the product of the

structure factor S(Q), associated to the concentration-dependent interaction between

different proteins, and the form factor F(Q), which accounts for the spatial correlations

of the atoms within the single protein and is independent of the concentration, I(Q)∼
NS(Q)F(Q). At low concentration, the interaction is negligible (S(Q)∼1), so that one can

estimate F(Q) directly by extrapolating the concentration-dependent scattering to C = 0.

On the other hand, at higher concentrations, a drop of the scattering intensity at low Q
is caused by the interparticle interactions, i.e. the S(Q) is in turn extracted by the ratio

I(Q,C)/(C · I(Q,C = 0)). As expected, at high Q, the scattering curves are unaffected by

the interaction and overlap.

4.2.3 Dynamic Light Scattering

Dynamic Light Scattering (DLS) measurements were carried out using an ALV CGS-3

Compact Goniometer equipped with a HeNe Laser with a wavelength of 632.8 nm, a

22 mW output power, and an ALV LSE-5004 Correlator. Samples were measured at a

scattering angle of 90o, while the sample temperature was controlled via an external

waterbath circulator.

4.2.4 Molecular Dynamics Simulations

The protein structure of the LDH M5, as obtained by X-ray scattering (PDB 3H3F,

chains E, F, G, H), was embedded in a simulation box containing 34275 water molecules,

producing a system of 123,627 particles including counter-ions. We used the NAMD 2.9

software [89] and the CHARMM22/CMAP force-field [94] to perform all-atom simulations

in the NPT ensemble using Periodic Boundary Conditions. Water was modelled by the
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TIP3/CHARMM model [91]. Four simulations were carried out at P=1 atm and T=[283 K,

298 K, 313 K, 330 K], where the first three temperatures match those in experiments,

and the fourth further probes the high-temperature regime. The integration time step

was set to 2 fs. The non-bonded interactions and the short range electrostatic interactions

were cut off at 9 Å, while the long range electrostatic interactions were treated with the

PME algorithm with a grid spacing of 1.3 Å. After initial equilibration, the simulations

were run another 0.6 µs, and the latter were used for analysis purposes. The trajectories

were recorded with a frequency of 5 ps. The simulations of the thermophilic variant

MDH (PDB 1HYG) were conducted using the same protocol, and the analysis is under

way at the moment of the redaction of the thesis.

4.2.5 Analysis of Molecular Dynamics Trajectories

4.2.5.1 Conformational and Kinetic Clustering

As a probe in exploring the change in protein flexibility as a function of temperature,

conformational and kinetic clustering were employed, see Chapter 2 for details. In this

work, we used the root mean square deviation (RMSD) among conformations as an order

parameter to distinguish the different substates with a cut off of 1.5 Å. The kinetic

networks were generated by setting the granularity parameter to 2. The networks of

substates obtained by both clustering strategies are graphically visualized by using a

force-based algorithm implemented in GEPHI [137].

4.2.5.2 Principal Component Analysis

To decompose the complex dynamics of the multimeric LDH to independent motions, we

used Principal Component Analysis (PCA) [209], see Chapter 2. By using the PCA, the

principal modes on which the larger fluctuations of the protein motion is concentrated

can be individuated and additionally, a virtual trajectory projected on these modes

can be obtained (Eq. 2.53) in order to quantify the contribution of these modes to the

Neutron Scattering spectra. The procedure was performed by exploiting the analysis

suite available through the Gromacs package [145].

4.2.5.3 Diffusion Coefficient in Harmonic Approximation

In order to characterize modes relevant for functionality, we estimated the diffusivity

associated to particular elements of the LDH, namely for the distance between each
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Figure 4.1: Left panel shows the SAXS spectra as a function of Q, rescaled to the protein
concentrations, and a graphical representation of the protein structure, where different
colors correspond to different subunits. Right panel shows the intermediate scattering
function I(Q, t)/I(Q,0) as a function of the spin echo time (circles) measured at T=298 K,
shown for different Q along with the exponential fits to the data (lines). The Figure is
reported by the courtesy of M. Maccarini (University Grenoble Alpes, Grenoble).

domain pair (α,β) of the catalytic loops (Ala95-Arg105). The collective variable (CV)

combining the distances between the Cα atoms in the loops is first designed:

dα,β(t)=
(

1
NαNβ

Nα∑
i

Nβ∑
j
|r i − r j|2

)1/2

, (4.1)

with the sum running over the Cα atoms in the loops α and β. The diffusion of the relative

collective distance between the loops, fluctuating around their equilibrium values as seen

in Figure B.1 in the Appendix of this chapter, is estimated in the harmonic approximation.

The exponential fit of the time correlation function of dα,β is shown in Figure B.2 in the

Appendix of the chapter.

4.3 Protein Diffusion

In this section we present the results on the effective protein diffusion as obtained by

Spin-Echo spectroscopy. The short time decay of the I(Q, t)/I(Q,0) can be approximated

by a cumulant expansion given in Eq 2.63, from which the diffusion coefficient can be

extracted by using Eq 2.64. The Q-dependent diffusion of the protein can therefore be

76



4.3. PROTEIN DIFFUSION

Figure 4.2: Diffusion spectra of LDH at three different temperatures. Circles indicate the
experimental points, the horizontal dashed lines indicate the value of the translational
diffusion evaluated by DLS measurements. The dashed line curves indicate the Q-
dependent diffusion constant calculated for a rigid-body (X-ray structure) and using the
mobility tensors DR and DT calculated by the HYDROPRO program.

extracted by fitting the normalized intermediate scattering function I(Q, t)/I(Q,0), as

shown in Figure 4.1. The lines correspond to the exponential fit performed on the short

time decay, 0.1-10 ns, of the I(Q, t)/I(Q,0) set of functions obtained at T=298 K. The

exact time window of the fit depends on the Q value considered. Since we performed

measurements on protein solutions at concentrations where protein-protein interactions

might be significant, we extracted the single-protein diffusion coefficient in the infinite

dilution limit D0(Q) from the effective diffusion De f f (Q) of Eq 2.64, by considering

concentration-dependent interprotein interactions and solvent-mediated interactions

[210]:

D0(Q)= De f f (Q) ·S(Q)
H(Q)

, (4.2)

where H(Q) is the hydrodynamic function representing Q-dependent hydrodynamic

interparticle interactions mediated by the solvent, while the structure factor S(Q) de-

scribes the direct interactions.

To account for the hydrodynamic contribution, we followed the procedure described

in Ref [151]. Consequently, we have scaled the term De f f (Q) ·S(Q) to match the Q-
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independent value of the translational diffusion measured by DLS. Theoretical calcu-

lations on model solutions of spherical charged proteins have shown that H(Q) has a

similar trend as S(Q) and, quite importantly, does not manifest significant oscillatory be-

havior in the Q-range above 0.06 Å−1 [211]. Thus, any modulation of the D0(Q) spectrum,

reported in Figure 4.2, can be ascribed to the single tetramer dynamics.

At all temperatures, the spectra show a well defined first peak at Q=0.11 Å−1, whose

intensity grows with temperature. This peak, at the characteristic length λ= 2π
Q ∼ 57Å,

relates to the correlated motion of regions of the tetramer at the external surface. A

second peak is visible at shorter length scales, namely for Q approaching the value 0.2

Å−1. The resolution of the second peak region is poor, and the rise in the protein diffusion

is evident only at the highest temperature 313K in this Q-range, thus we concentrate

our efforts in discussing the first peak only.

In Figure 4.2 we also report the theoretical curves for the rigid body roto-translational

diffusion calculated according to Eq 2.65 in Chapter 2 [150]. The translational and

rotational tensors needed for the calculation were obtained by hydrodynamic calculations

performed using the HYDROPRO software [153]. The values for the translation diffusion

coefficients obtained by DLS (horizontal baselines in Figure 4.2) and those obtained by

HYDROPRO are close at all considered temperatures, they differ by a factor 1.2 (see

Table B.1 in the chapter Appendix). This factor was used to rescale the elements of the

translational and rotational diffusion tensors in Eq 2.65 for a correct comparison with

the experimental spectra. The plotted curves immediately reveal that the rigid body

rotational diffusion (dashed curves) accounts for the main features of the spectra, apart

from the peak zone around Q ' 0.11Å−1, which contains an additional contribution at

298 K and 313 K. The latter stems from the internal motion of the protein that, along

with the rotation and the translation, contributes to the the overall protein diffusivity:

D0(Q)= DTra
0 +DRot

0 (Q)+D Int
0 (Q). The internal contribution is negligible at the lowest

temperature T=283 K but, at higher temperatures, it represents 10-15 % of the total

diffusion of the protein when translation is removed.

The contribution from the internal Q-dependent motion can be dissected by using NM

analysis [212] (see Chapter 2) and focusing on the low frequency modes. These have been

extracted for the crystallographic configuration, Figures B.4 and B.3 in the Appendix

of the chapter. Because of the highly symmetric nature of the LDH protein, at variance

with previously investigated systems where large domains displacements occur at low

frequency [150, 193], it is difficult to single out a dominant mode. Therefore, in order to

gather microscopic insights on the protein internal dynamics, we have performed MD
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Figure 4.3: Experimental diffusion spectra at different temperatures compared to the
theoretically reconstructed spectrum (solid line) obtained by adding the rigid-body
contribution (dashed line) to the internal-dynamics contribution derived from long MD
simulations (shown in the shaded area).

simulations and estimated the contribution of internal motion to the D0(Q) spectra.

4.4 Protein Internal Motion

Following the work flow proposed by Smolin et al [154], the diffusion spectrum D0(Q)

extracted from the MD simulations can be decomposed in its translational, rotational, and

internal contributions by adequate post-processing of the trajectories. For instance, by

removing the translation of the protein’s center of mass from the original MD trajectory

and fitting on it a rigid reference structure, a virtual trajectory is generated where only

the rigid body rotation is present. In the same spirit, if the MD trajectory is fitted, frame

by frame, on a reference structure, thus removing roto-translation, only the internal

modes will be maintained. The processed trajectories are used in the calculations of the

intermediate scattering function I(Q, t) in order to extract respectively the rotational

diffusion DRot
0 (Q) and the internal diffusion D Int

0 (Q) by fitting the initial decay of the

obtained I(Q, t)/I(Q,0). However, when employing this strategy for a direct comparison

with experimental data, ad hoc numerical manipulations are needed. In fact, molecular

force-fields routinely used in MD simulations of protein-water solutions generally bias
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Figure 4.4: The internal contribution to the diffusivity as obtained from MD trajectories,
by fitting the calculated I(Q, t) for different temperatures, without rescaling for the
translational diffusion.

protein motion and empirical rescaling of roto-translation is necessary [154]. Moreover,

care should also be placed on practical issues such as the system-size dependence as well

as the accuracy of the fitting procedure to extract the diffusion coefficients [213].

In order to limit the impact of these weaknesses, we used MD-based calculations for

the internal motion only. From our MD simulations, we removed roto-translation, and

obtained the internal component of the spectra. The internal diffusion has been added to

the curve calculated by considering the rigid-body motion as described in the previous

section, and compared to the experimental data, see Figure 4.3. Most notably, we observe

the activation of the internal motion at T=298 K. Between T=298 K and T=313 K, the

internal contribution at the peak is comparable (0.4 Å2/ns), becoming much larger at the

highest simulated temperature, T=330K (∼0.8 Å2/ns), see Figure 4.4. Importantly, the

addition of the internal contribution allows to quantitatively reproduce the experimental

value of the diffusion coefficient D0(Q).

To inspect these thermally activated internal protein modes in a length-range cor-

responding to the first peak of the calculated spectra, and to further understand the

temperature effect on these modes, we performed Principal Component Analysis (PCA)

[209] on the processed trajectories with removed roto-translations, at T=298 K and T=313

K (see section Methods). By projecting these trajectories on a different number of modes,
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Figure 4.5: Contribution of the principal modes to the diffusion spectra at temperature
298 K and 313 K.

components summed T=283K [Å2/ns] T=298K [Å2/ns] T=313K [Å2/ns]
1-5 0.0035 (4.99%) 0.033 (8.45%) 0.025 (6.99%)
1-10 0.014 (20.2%) 0.094 (23.9%) 0.077 (21.4%)
1-50 0.041 (59.3%) 0.24 (60.7%) 0.22 (61.3%)

1-100 0.050 (74.4%) 0.29 (74.1%) 0.28 (76.4%)

Table 4.1: The dynamics of protein described by a varying number of Principal Com-
ponents taken into account, and represented by the value of the diffusion coefficient
associated to Q = 0.118 Å−1, where the experimental data peak is demonstrated. The
parentheses contain the percentage of the total internal dynamics at Q = 0.118 Å−1

described by these components.

we are able to extract the contribution of specific internal motions to D0(Q). This is done

by calculating, and subsequently fitting I(Q, t)/I(Q,0) from the projected trajectories. For

the thermally activated state (T>283 K), it is found that the first 100 modes account for

∼75% of the diffusive contribution in the first peak, see Figure 4.5 and Table 4.1. The

regions of the protein interested by these modes are highlighted in Figure B.5 in the

chapter Appendix. The Figure clearly shows that the larger flexibility induced by the

modes localizes at the level of the loops on the protein surface, most notably the catalytic

site loop, and this distribution of flexibility is the same for the four subunits.

We now provide a complementary view of the protein soft modes underlying the inter-

nal motion by performing conformational and kinetic clustering of the MD trajectories,

see section Methods. The results are reported in the Figure 4.6. In the upper layer of
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the Figure, the network of states visited during the dynamics is represented for the four

simulated temperatures. At the lowest temperature, only few conformational states are

accessed by the protein at the 0.6 µs time scale, this number increasing exponentially

with temperature (see Table B.2 in Appendix). While conformational clustering classi-

fies conformational states only on the basis of their proximity according to the RMSD,

a more subtle casting is achieved by merging together the frequently interconverted

states, yielding a representation of states that are mutually distinguished by high kinetic

barriers, as represented in the middle part of the Figure 4.6 [45, 78]. The thermally

activated conformational disorder is in fact due to different orientation of the binding

site loops and adjacent peripheral helices, as the reader can appreciate from the last

layers of the Figure 4.6, where the protein regions manifesting the highest flexibility

are magnified in proportion and accentuated in color. The pictorial representation of the

protein is complemented by the sequence profile of the mean square fluctuation for one

domain. Among the flexible regions activated in temperature, we individuated two of the

principal protein regions involved in the allosteric reorganization of bacterial LDHs [199,

200, 201, 202]; the active site loop (CL) and region MR2 around the E222 residue.

The results of the PCA and the clustering clearly show that the contribution to

internal diffusivity stems from an ensemble of modes involving the peripheral regions

nearby the catalytic site. This collective reorganization of the protein matrix is the

source of the plasticity necessary for functionality, i.e. the conformational shifts due to

cofactor and substrate binding, as well as the gating of the binding site loop required

for efficient catalysis. Since the binding site loops play a fundamental role in LDH

activity [203, 205, 206, 207], we have specifically targeted them in further investigation

by considering their correlated motion. The distances between the loops span the range

36-75 Å, their correlated motion therefore falling in the probed region of the peak,

0.08 Å−1 <Q<0.14 Å−1. By using the harmonic approximation, details being provided in

the Methods section, it is found that specific correlated motions account for about 2%

of the internal diffusivity in the peak region, see Table B.3 in Appendix. The same is

found by processing a trajectory containing the internal dynamics only, and excising the

loop region, see Figure 4.7. Interestingly, the thermal response of the correlated loops

motions seems to depend on the considered subunit, see Figure B.6 in Appendix.

The obtained results reinforce the notion that a wide set of correlated motion across

the four domains contribute to the internal component of the diffusivity peak. It is

important to note that the relative distances between flexible amino-acids in the MR2

across all four domains fall in the range of ∼36 Å, probably contributing to high Q region
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Figure 4.6: Network of conformational states visited by the LDH protein in MD sim-
ulations at different temperatures. In the top layers we report the networks obtained
by conformational and kinetic clustering, respectively. In the bottom layers, the flexible
regions of the protein individuated by the local atomistic fluctuations are highlighted in
the protein structure and along the domain sequence. We also emphasize the position of
the loop of the catalytic site (CL) and the adjacent helical region (MR2 according to the
annotation of Ref [200]) on one of the proteins.
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Figure 4.7: The internal dynamics diffusion coefficent extracted from fitting the I(Q, t)
from a single trajectory where the loop was removed (‘no loop’) and kept (‘loop’). After
calculating and fitting the I(Q, t), the results indicate the loop accounting for 9% of the
0.417 Å2ns−1 peak. The loop dynamics is thus characterized with a diffusion coefficient
of 0.038 Å2ns−1, agreeing well with calculations using the harmonic approximation.
T=298 K.

of the spectra, while the distance across the four domains between MR2 and the active

site loop atoms are ∼60 Å for adjacent and intra-dimer domains, and 80 Å for diagonal

distances, respectively. Thus, the correlated fluctuations of the catalytic loop with the

MR2 region are a likely contributor to the observed first peak in the diffusion spectrum.

4.5 Discussion and Conclusions

NS Spin-Echo spectroscopy enabled us to probe the thermal activation of the soft modes in

a mesophilic tetrameric LDH enzyme relevant for its activity. At the lowest investigated

temperature, T=283 K, the protein motion is substantially dominated by rigid body

roto-translation. Only by considering the ambient temperature condition do the internal

motions give a significant contribution to the Q-dependent diffusivity. At Q=0.166 Å−1 ,

this contribution, D Int, is about 0.4 Å2/ns, and is equal at 298 K and 313 K. This finding

suggests that in the optimal temperature window for the protein activity, 298 K<T<313 K

[66], protein requires and sustains a steady level of internal flexibility. Additional thermal

excitation would have a degrading effect on functionality by provoking the distortion of

the catalytic site and dissipating conformational changes in non-allosteric paths. LDH

maximal activity occurs at ∼313 K and is compromised at higher temperatures [66]. The

loss of activity anticipates the thermodynamic unfolding detected at 330-340 K [214, 215].
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On the basis of MD simulation in this high temperature regime, our findings identify

that high flexibility interests a greater portion of the protein and induces a substantial

distortion of the structure around the catalytic pocket.

The analyses of the MD trajectories based on PCA and clustering strategies highlight

that the functional internal diffusivity cannot be reduced to a single dominant motion,

but is rather attributed to a wide range of modes covering the peripheral region of the

protein around the catalytic sites, the binding site loops Ala95-Arg105, and the helices

Arg105-Ser127 (MR2 region). It is speculated that the activation of some of these modes

are fundamental to the functionality of the protein similarly to the allosteric regulation

in bacterial LDHs. In fact, by comparing the X-ray structures of apo and holo bacterial

LDHs [200, 201], it was possible to single out the regions involved in the allosteric

conformational shifts.

In our experiments and simulations, the protein is in the apo state, where we always

find the binding site loop sampling the open configuration. The closed loop configuration,

that is rate-limiting the catalysis, is most likely only accessible upon co-factor and

substrate binding. However it is important to note that in the MD simulations we observe

the reorganization of the catalytic site toward a reactive configuration as temperature

increases. At variance with bacterial LDHs, in the rabbit muscle 5 LDH, the extension of

a supplemental N-ter helix from one domain to another locks the movement of the MR1

region, the latter found to be rigid in our structure. In bacterial LDHs, the displacement

of MR1 (Leu164-Gly186) from the apo to the holo state allows the reorganization of the

active site to its reactive state, notably inducing the correct positioning of the catalytic

residue, equivalent to Arg168 in the rabbit muscle 5 LDH, towards the oxamate. In our

system, the positioning of Arg168 toward the reactive configuration is enhanced by the

temperature increase. This is shown by monitoring the conformational fluctuations of

the residue side chain oscillating between an extended configuration, mimicking the

configuration it assumes when pyruvate is bound in the catalytic pocket, to state bound

with the Asp165. Between 298 and 313 K, the temperature eases the breaking of the

ion pair Asp165-Arg168 and increasingly favors the extension of Arg168 as well the

interaction of Asp165 with the catalytic His192, see Figure 4.8. Further increase in

temperature enables the Arg168 to start visiting conformations pointing outside the

active site, which resembles the inactive state of bacterial LDHs. For a complete overview

of the process, see the discussion in Appendix B and Figure B.7. The analysis of the

conformational shifts induced by the substrate binding [151, 215, 78] will be the next

step of the investigation.
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Figure 4.8: Representation of different conformations sampled by the residue Arg168
in the active site during the MD simulations at different temperatures. In the top right
panel we also report the organization of the catalytic site in the presence of oxamate
and pyruvate molecules as resolved in the X-ray structure of the LDH of rabbit muscle 5
(PDB code 3F3H). For the sake of comparison with figure B.7, we have also reported the
instantaneous distance between the Arg168 and Asp165 charged terminals. The Figure
is reported by the courtesy of D. Madern (IBS, Grenoble).

In conclusion, we have shown the effectiveness of a combined use of Spin-Echo NS

spectroscopy and MD simulations in studying the thermal response of the protein motion

relevant to functionality. The experimental and numerical tools presented here allow

the characterization of the multiple time- and length scales of protein dynamics with a

specific focus on functionally relevant modes. The exploration of thermal response of these

modes is essential in comparing proteins with different optimal working temperatures

[71] and addressing different evolutionary mechanisms of functional regulation. The

NSE experiments of the thermophilic MDH from Methanocaldococcus jannaschii have

been completed in a large temperature range up to the optimal working temperature of

the protein; the maximum scanned temperature was T=343 K. Long MD simulations

at the µs time scale have been carried out at the experimental temperatures and the

comparative analysis is under way.
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temperature DLS [Å2/ns] HYDROPRO [Å2/ns]
283K 3.0 3.6
298K 4.6 5.1
313K 6.6 8.2

Table B.1: Comparison between translational diffusion coefficients as measured by the
Dynamic Light Scattering and calculated in the HYDROPRO program (see main text for
details).

temperature N(tsim) N∞ τ (ns) Nkinetic
283K 8 23.0 1427.7 2
298K 27 34.4 470.0 9
313K 33 68.0 939.0 8
330K 150 - - 37

Table B.2: Conformational and kinetic clustering of the MD simulations. The conforma-
tional clustering was based on the collective variable RMSD and using a cut off of 1.5 Å.
The total number of clusters obtained is indicated in the first column, N(tsim). In the
second and third column, we report the parameters of a simple exponential growth model
fitting the data, N(t)= N∞ · (1− exp(t/τ)). In the last column, we report the number of
independent kinetic states as obtained by applying Markov state model based clustering
algorithm with a threshold of 2.0.
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Figure B.1: Timelines of interloop distances between four subunits named E, F, G, H,
defined as dα,β = ( 1

Nα

1
Nβ

∑Nα

i
∑Nβ

j |r i − r j|2)1/2.

subunits involved T=283K [Å2/ns] T=298K [Å2/ns] T=313K [Å2/ns] T=330K [Å2/ns]
intradimer (FH, EG) 0.053 0.13 0.15 0.20

adjacent (EF, GH) 0.046 0.061 0.23 0.30
diagonal (FG EH) 0.019 0.056 0.095 0.13

Table B.3: Diffusion coefficient of the interloop distances obtained as Dα,β =
〈δd2

α,β〉
τ

, where

d is the interloop distance defined for all atoms in the loop as dα,β = ( 1
Nα

1
Nβ

∑Nα

i
∑Nβ

j |r i −
r j|2)1/2, and τ is the relaxation time of the autocorrelation function of this distance.
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Figure B.2: Fitting the exponential model e−t/τ to the autocorrelation function,
C(t) =< dα,β(t)dα,β(0) >, of the interloop distances as defined by the metric dα,β =
( 1

NαNβ

∑Nα

i
∑Nβ

j |r i − r j|2)1/2 to obtain relaxation time τ, necessary for calculating the
diffusion coefficient in harmonic approximation (see main text). The results are shown
for all pairs of loops α,β in the four subunit protein, and for all simulated temperatures.
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Figure B.3: Diffusion coefficient obtained from projecting the normal modes of the
X-ray structure PDB 3H3F on vectors scattered over a sphere so as to mimic a
point scatterer, see Chapter 2 and Section on NMA in it for details on the calcu-
lation. For each mode α, the diffusion coefficient is calculated as follows; Dα(Q) =

C
Q2F(Q)〈

∑
k,l bkbl exp[iQ(rk −rl)](Q ·eαk )(Q ·eαl )〉, where F(Q) = ∑

k,l bkbl exp[iQ(rk −rl)],

and C =λα kBT
mω2

α
, where ω2

α is the eigenvalue associated to each mode, and the λα is the
mode-dependent relaxation rate, containing friction coefficients within the molecule and
with the surrounding water. As the latter are unknown, we cannot estimate the prefactor
C and thus show D in arbitrary units.
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Figure B.4: Representation of the first 6 nontrivial Normal Modes of the X-ray structure
PBD 3H3F. The arrows’ magnitude and direction reflect the intensity and the direction
of movement in the harmonic perturbation.
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Figure B.5: Displacements of the protein backbone described by summing different
numbers of Principal Components, coded in color and thickness. T=298 K.
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Figure B.6: Table B.3 plotted.
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Figure B.7: In the top panel of the figure, we report the distance variations in Å between
R168 and D165 amino-acids for each domain of the apo-state protein (labeled E, F, G,
and H), and at various temperatures during the 0.6 µs MD simulations. The distance
computed is the center of mass of the charged terminals of the sidechain ends. The
bottom panel reports the probability distribution of the distances averaged over the four
domains.
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B.1 Arg168-Asp165 Sidechain Center of Mass
Distances

In Figure B.7 we report the distance variations in Å between R168 and D165 amino-

acids for each domain of the apo-state protein and at various temperatures during the

0.6 µs MD simulations (labeled E, F, G, and H). The distance of approximately 4 Å

corresponds to the R168 lateral chain protruding within the catalytic site and forming

a salt bridge with D165, as illustrated by the representative view extracted from the

simulation at 283 K in Figure 4.8. A distance higher than 4 Å, typically between 6 and

8 Å, indicates that the R168-D165 salt bridge is broken, as shown in representative

conformation extracted from the MD simulation at 298 K, see Figure 4.8. The distance

of 10 Å indicates the R168 lateral chain is located outside of the catalytic site as it

is illustrated on the snapshot of active site of the domain E taken at the end of the

simulation at 313 K, see Figure 4.8. For sake of comparison, a close-up view of the

ternary complex crystal structure (PDB code 3F3H) is shown with the same orientation.

The substrate analogue (oxamate) is colored in red, while the coenzyme is shown in

orange. Domains E and F are in green and blue, respectively. For the sake of clarity,

other domains are not shown. Important residues are represented in sticks. It is to be

noted that the residue D165 helps in polarizing the catalytic residue H192 during the

catalysis. R168 lateral chain is orientated within the catalytic site and interacts with the

negatively charged analogue. The R168-D165 distance in the X-ray structure of the holo

state is ∼6.5 Å. The MD simulation data show that in the apo state, as is expected for

an eukaryotic LDH, R168 from rabbit LDH is mainly located within the catalytic site

at 283 K. Because there is no substrate analogue, R168 forms a strong salt bridge with

D165, and fluctuates around this tight position. At 298 K, R168 is always in the catalytic

site, but the salt bridge is more labile as it is indicated by the distance increasing up

to 8 Å, especially in domains E, F, and G. This position of R168 in the apo state, with

an extended lateral chain, mimics the one observed within the ternary complex. At

313 K, fluctuations become of wider amplitude. It is striking to observe that in domain E,

during the last part of the simulation, R168 lateral chain goes outside the catalytic site.

This drastic local change was not detected in others domains. In domain E, some other

structural reorganizations involving the kinked helix (H1G-H2G) and helix H2F which

carries R168 are observed. The mobile loop covering the catalytic site is not show in the

bottom panels of Figure 4.8. During the simulations, this loop always samples the open

conformation for the higher temperatures T=298 K and T=313 K. We put forth that in
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the snapshot at 313 K, H192 and D168 of the apo state display the same conformation

as in the crystal structure.

Eukaryotic LDH are considered non-allosteric i.e, both the apo and the ternary

complex look like the R-(active) state of bacterial LDH. Our data indicate that in certain

conditions, fluctuations of the apo state of an eukaryotic LDH may sample some local

conformations which look like those observed with the T-(inactive) state of allosteric

bacterial LDH.
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TRACKING THE LINDEMANN CRITERION FOR PROTEIN

MELTING

The universal scaling of atomic fluctuations has often been used to describe phase

transitions in solids. A simple relationship, the Lindemann criterion, predicts the onset

of the melting once the thermal fluctuations exceed a threshold value upon which the

crystal “shakes itself to pieces”. Here we aim to verify whether the concept can be

extended to biological inhomogeneous matter by using as a model the protein Lysozyme,

and performing Molecular Dynamics and enhanced sampling simulations to meet this

goal. To this purpose, we considered the Lysozyme protein embedded in three different

environments: in dilute aqueous solution and two powder systems, one solvated with

water and another with glycerol. An effect of these conditions is the shift of the Lysozyme

melting temperature. The systems were simulated and analyzed with the final goal

of elucidating whether protein melting is accompanied by universal scaling of atomic

fluctuations. The work has been inspired by recent Elastic Incoherent Neutron Scattering

experiments performed by our collaborators.

5.1 Introduction

Protein thermal stability is a key issue in both research and industrial application [216,

217, 54, 218, 219, 220]. Design of thermally stable proteins requires the understanding of

means by which proteins lose their stability and of the extent to which this process can be
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controlled. To this purpose, one can modify the protein structure and sequence [216, 217,

54, 218, 219] or tune the physico-chemical properties of the environment surrounding the

biomolecule [221, 222, 223, 224]. Even though still an object of debate [225], it has been

proposed in the past that protein flexibility is inversely correlated with thermal stability

[226, 227, 228, 229], identified by the value of its melting temperature Tm, the midpoint

of the thermal transition. The intrinsic flexibility of a protein and how it responds to

external perturbations can be probed by the magnitude of atomic thermal fluctuations

[230] spanning the picosecond time scale, which deserve to be carefully described along

the path toward unfolding.

In this final part of the thesis, we investigate the effect of protein crowders and bio-

protectants to the change in atomic fluctuations magnitude and their scaling. Crowding

usually refers to the effect of the volume excluded by one molecule on the thermody-

namics and kinetics of folding, binding, and chemical reactivity of another molecule

[231]. The crowding effect is mainly attributed to the reduction of the entropy of the

unfolded state under the influence of the crowders due to the excluded volume effect. A

seminal work on the Lysozyme shows different crowders having qualitatively similar

effects on protein refolding [232], therefore showing that the excluded volume argument

is sufficient in explaining the protein behavior under crowding. However, there certainly

exists a dependence on the nature of proteins, crowding agents, and their interactions

[233], a consequence of electrostatic interactions and the hydrophobic effect [234, 235,

236]. In fact, studies on the Lysozyme embedded in a single or multiple crowder envi-

ronment point to the presence of non-additive effects, emphasizing further additional

contributions to macromolecular crowding [237]. Here we use the Lysozyme protein

as a model to study the effect of homogeneous crowding with the additional effect of

solvent, i.e. water versus glycerol. By using these well-known bioprotectant media, which

make proteins more stable against thermal degradation [222], we progressively increase

the Lysozyme melting temperature and study the behavior of its flexibility at different

critical thermal conditions.

The exploration of the universal scaling of the atomic fluctuation while approaching

melting relies on the Gillvary’s modernization [238] of the Lindemann theory [239], where

melting is onset once the MSD of atomic thermal vibrations reach a critical fraction of

the interatomic separations, while in the original Lindemann model the assumption was

made that the neighboring atoms must collide to onset melting. The main criticism of

the Lindemann theory is that it only considers the atomic vibrational amplitude, without

taking into account the configurational entropy of the system, particularly important
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in the molten phase [240]. Translating the argument to protein atomic fluctuation, the

question remains whether to consider the folded phase alone or to explicitly take into

account the atomic fluctuations of the unfolded state in addition.

The investigation presented here aims to clarify whether atomic fluctuations can

be used to predict system large-scale behavior when approaching protein melting. The

results indicate that the thermal fluctuations of the Lysozyme in solution, powder, and

crowding environment are similar, reminiscent of the Lindemann criterion. The protein

melting temperature is upshifted in the crowded powder environment and further shifted

when water is replaced by glycerol. This shows the importance of the excluded volume

effect and solvent in the protein melting, while further suggesting that melting can

be described by universal concepts independent of the thermoprotective mechanism in

place.

5.2 Methods

5.2.1 Elastic Incoherent Neutron Scattering Experiments

The Elastic Incoherent Neutron Scattering experiments, described in Chapter 2, were per-

formed by A. Paciaroni (University of Perugia, Italy) on the following samples: Lysozyme

in dehydrated powder (mass ratio of protein to D2O = 0.4) in the temperature range [20-

350] K, and Lysozyme embedded in deuterated glycerol (mass ratio of protein to glycerol

= 1) in the temperature range [20-410] K. The melting temperatures Tm of Lysozyme in

these crowded conditions are 347 K and 398 K, respectively, as measured by Differential

Scanning Calorimetry [241]. Both the dialyzed salt-free chicken egg white Lysozyme and

solvents have been purchased by SIGMA. Lysozyme was previously dissolved in D2O

to allow the substitution of all the exchangeable hydrogen atoms, which are essentially

located at the protein surface. Additionally, deuterated solvents were used to minimize

the contribution of the solvent to the overall signal [242]. The measurements were done

at the IN13 backscattering spectrometer (Institut Laue-Langevin, Grenoble), with an

energy-resolution of Γ=4.5 eV (half-width at half-maximum) in the wide Q range [0.3-

4.7] Å−1. An amount of about 0.5 g of sample was held in a standard flat aluminium cell

with internal spacing of 0.5 mm, placed at an angle of 120o with respect to the incident

beam. The data were corrected to take into account for incident flux, cell scattering,

self-shielding, and detector response. Finally, the intensity of each sample has been

normalized with respect to the corresponding lowest measured temperature.
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Figure 5.1: Lysozyme in solution, and in powder with water and glycerol, shown from
left to right. Note that while the powder systems contain 8 equivalent proteins, only
one protein is targeted in simulations and analysis, while the others represent protein
crowders.

5.2.2 System Preparation

Three setups of Lysozyme were simulated, Lysozyme in solution, hydrated powder, and

in powder with glycerol. The latter two were created to match exactly the experimental

samples in the Elastic Incoherent Neutron Scattering Experiments described previously.

Lysozyme in solution was created by placing the protein structure resolved by X-ray

crystallography (PDB code 2LYM [243]) in a box of TIP3P water [102], and adding

counterions, creating a system of 31341 particles. This system was built to contrast the

crowded conditions of the protein powders, where 8 proteins are arranged within a cubic

box by using symmetry transformations of the 2LYM crystal space group, and adding

TIP3P water and counterions to create a dehydrated powder of 22467 atoms in total.

This system matches the experimental system where the mass ratio of protein and D2O

was 0.4. Lastly, Lysozyme in the powder containing glycerol as solvent was created in an

equivalent manner as the protein powder system, with the difference of adding glycerol

as solvent along with the counterions, obtaining 30654 particles in total, corresponding

to the experimental system where the mass ratio of protein and glycerol was 1. The three

systems will be termed ‘solution’, ‘powder/water’, and ‘powder/glycerol’ in the Results

section, and are shown in Figure 5.1.
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5.2.3 Replica Exchange with Solute Scaling (REST2)

As our main aim was to determine fluctuations when approaching melting, an enhanced

sampling technique is used to achieve the unfolding in a reasonable simulation time. Here

we exploit REST2 [123, 124], described in detail in Chapter 2, a Hamiltonian-exchange

replica exchange technique that allows us to achieve unfolding within a 200 ns/replica

simulation time and estimate the melting temperature in silico. In each of the three

systems, prepared as described in the previous section, only one protein is subjected

to Hamiltonian rescaling and targeted for unfolding, while the other proteins, along

with the solvent, are subjected to an unscaled Hamiltonian. The entire simulation setup

is run at 300 K, although the mean-field rescaling scheme [124] grants the rescaled

protein to explore a potential energy surface available in the temperature range T=[292,

528] K for Lysozyme in solution and hydrated powder, and T=[291, 720] K for Lysozyme

embedded in a powder with glycerol. Each system was simulated using 24 replicas

allowing simultaneously the protein to unfold and achieving good energy replica overlap,

finally yielding a 40 % exchange efficiency with exchanges attempted every 10 ps. The

simulations were performed with the CHARMM22/CMAP force-field and are run in the

NpT ensemble using algorithms described in Chapter 2. The non-bonded and short-range

electrostatic interactions are calculated for atoms within a 9.0 Å cut off, while PME with

a grid spacing of 1.2 Å is used for long-range electrostatics. The equations of motion were

integrated using the multiple timestep integration scheme, with the shortest integration

time of 2 fs. Simulation snapshots were saved every 20 ps.

5.2.4 Molecular Dynamics Simulations

All-atom Molecular Dynamics simulations were performed for the Lysozyme in solution

and powder systems, with the goal of calculating mean squared displacement of hydrogen

atoms at temperatures approaching melting. After determining the in silico melting

temperature and defining the criteria of folded and unfolded state, as explained later in

the Results section, the Molecular Dynamics simulations were ran with rescaling the

Hamiltonian in an equivalent manner as for the REST2 simulations, see previous section

and Chapter 2. For each system, four configurations corresponding to the unfolded state

and one configuration corresponding to the folded state were chosen, and separate MD

runs were performed. Again, the Hamiltonian was rescaled for one protein in each

system, and according to the mean-field rescaling scheme [124], the rescaled portion

was effectively thermalized over a temperature range T=[300, 393] K for Lysozyme
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in solution, T=[300, 469] K for Lysozyme in powder with water, and T=[300, 586] K

for Lysozyme in powder with glycerol. The simulation scheme is equivalent to the one

described in the previous section for REST2 MD, with the difference that the snapshots

were saved every 2 ps and the production ran of 20 ns.

5.2.5 Analysis of Native Contacts

The Native Contacts definition was adopted from Ref [85]. The native state of the

Lysozyme in the three systems was defined by first performing conformational clustering

(see Chapter 2) on the REST2 MD trajectories at T=300 K, with the RMSD=2.0 Å as

clustering criterion. The native contacts that occur in configurations belonging to the

most populated cluster more than 80 % of the time were used to define the Lysozyme

native contacts, while only taking into account Cα atoms separated by 7 or more residues

and by less than 10 Å. The average number of native contacts in a trajectory was then

computed by averaging the following metric:

Q(t)=
∑Nres

i=1
∑Ni

j=1
1

1+e
10(di j (t)−(d0

i j+1))∑Nres
i=1 Ni

, (5.1)

where d0
i j are native contact distances, di j(t) are the native contact distances existing in

frame t, Ni are the native contacts of a residue i, and Nres is the number of residues, i.e.

the number of Cα atoms present in the system. According to this definition, a protein

folded in all trajectory frames would result in <Q >= 1, while the fully unfolded protein

would yield <Q >= 0.

5.3 Results

5.3.1 The Experiment

As a starting point, we put forth the experimental results of the Elastic Incoherent

Neutron Scattering Experiments (see Methods), shown in Figure 5.2. The experimental

signal stems mainly from the hydrogen atoms, which have high incoherent scattering

cross section. Hydrogen atoms are abundantly distributed throughout the protein and

EINS allows sampling atomic protein fluctuations by estimating the atomic mean square

displacements (MSD, see Chapter 2) of protein non-exchangeable hydrogen atoms [129,

244] from the dynamic structure factor measured in the experiment. The quantitative

information in terms of MSD is extracted by adopting the double-well jump model (see
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Figure 5.2: Mean squared displacement as a function of temperature as reported by an
Elastic Incoherent Neutron Scattering experiment. Panel (a) shows the temperature
in Kelvin, while panel (b) shows the normalized temperature scale so that the reader
can easily appreciate the convergence of fluctuations when approaching the melting
temperature, marked in the figures with a dashed vertical line. This plot is reported with
the courtesy of A. Paciaroni.

Chapter 2), which has been successful in describing the dynamics of protein powders [129,

245] and proteins in glassy environments [244, 246, 247] on the same energy resolution

and Q-range as in the present experiments. Additionally, the double well model can

properly describe the non-Gaussian behavior of the elastic data. The experimental curves

are normalized with respect to signal at a temperature of 20 K, thus showing in Figure 5.2

the hydrogen MSD in Lysozyme embedded in powders with water and glycerol, relative

to the MSD at 20 K, as a function of temperature.

In Figure 5.2 (a), it can be appreciated that for both samples, the MSD deviate from

the initial low-temperature trend at 175 K. This departure has been assigned in the

past to the onset of methyl group dynamics [248, 249, 250] which is indeed independent

of both the hydration degree and the type of glassy matrix in which the biomolecule

is embedded [247, 249]. Further temperature increase drives the protein dynamical

transition at Td, marked by a steep rise of the protein MSD . The experimental data

point to the fact that the dynamical route of Lysozyme towards thermal unfolding is

103



CHAPTER 5. TRACKING THE LINDEMANN CRITERION FOR PROTEIN MELTING

dependent on the surrounding matrix, reinforced by the shift of the protein dynamical

transition onset closer to the melting temperature in the thermoprotective glycerol when

compared to the dehydrated protein powder.

Most importantly, Figure 5.2 (b) shows similar internal dynamics of both samples at

melting, indicated by comparable amplitudes of atomic displacements near the melting

temperature <u2>=0.68 Å2. The reported value is expected to depend on the experimental

energy resolution, possibly increasing as the accessible time range is extended to include

slower dynamical processes. Using atomic fluctuations to probe melting is a familiar

concept in the melting of solids and quantified in the Lindemann criterion, predicting

the onset of melting when the atomic thermal fluctuations exceed a threshold value with

respect to the equilibrium interatomic distances [239, 251]. To further inspect the exper-

imental results, we make use of Molecular Dynamics simulations of the experimental

systems and additionally Lysozyme in solution, aiming to compute the MSD average

directly from the atomic-level resolved trajectories.

5.3.2 Protein Melting in silico

We begin our computational exploration by devising means to determine the melting

curve of a protein in silico, a necessary step in order to follow the scaling of atomic

fluctuations when approaching melting. The melting of small globular proteins, such

as the Lysozyme, can be approximated with a two-state model in which only two states

exist, the folded (native) and the unfolded (denatured) states, separated by an energy

barrier [252]. It is to be noted that both the folded and unfolded states are in fact

represented by an ensemble of protein substates. The model is kinetically justified by

assuming the transitions between the unfolded states to be fast [253] and assuming that

any intermediate states, i.e. the molten globule, are unstable and transiently populated.

Within the framework of the two-state model, protein melting is defined by an equilibrium

of folded and unfolded states in equal proportions, and finding the temperature at which

this condition is satisfied will yield the in silico melting temperature.

To this end, we have used the REST2 method (see section Methods) to overcome

the long simulation time necessary to sample the transition of folded to unfolded state

in classical MD, as well as to overcome the limitations in sampling the unfolded state

at appropriate temperatures due to inherent force fields limitations (see Chapter 2).

REST2 scales well with system size and allows the exploration of the thermodynamics

of protein stability, while the standard Replica Exchange MD is too expensive for our

purposes. REST2 applies the corresponding state principle and instead of raising the
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temperature in subsequently arranged protein replicas, the potential energy of a single

protein in each system is scaled to allow for extensive sampling of the potential energy

surface, including the unfolded state. It is to be noted that the scaling interests the

intramolecular protein potential energy and the interaction between the target protein

and the rest of the system. To distinguish the folded and the unfolded states, a ‘reaction’

coordinate or order parameter must be defined. Our choice is the RMSD, measuring the

distance between the protein structures in the trajectories with respect to a reference,

e.g. the equilibrated structure at T=300 K. The RMSD makes an appropriate choice as it

measures the deformation of the protein matrix and is responsive to thermal excitation,

as evident from Figure 5.3 (a). The temperature scale shown in all Figures is associated

to different values of scaled potential energy in the REST2 method through the mean

field rescaling scheme (see Chapter 2 and Ref [124]).

Based on the distribution of the RMSD in the trajectories, we chose the threshold

RMSD=4.0 Å as the separating surface to distinguish the folded and unfolded states.

The population of the folded state f was determined by applying Fermi function to the

RMSD values:

f i = 1
1+exp(RMSD−4.0)

, (5.2)

and counting the proportion of the folded state. Subsequent determination of the fraction

of unfolded state is trivial with the assumption of the two-state model and the free energy

is computed from the two fractions. Finally, the free energy is fit [254, 124]:

∆G =−∆Cv[T(ln(
T

Tm
)−1)+Tm]+∆Hm(1+ T

Tm
), (5.3)

where ∆Cv is the change in heat capacity between the folded and unfolded state, here

considered constant, ∆Hm is the melting enthalpy, and Tm is the melting temperature.

The main result reported in the Figure 5.3 (b) is the increase in the melting tempera-

ture upon introduction of crowders, and further increase when glycerol replaces water,

agreeing well with the experimental trend presented in the previous section. The result

is a familiar one, as the hydration of a dehydrated Lysozyme sample has previously

found to lower the protein stability [255] and lyophilization is generally used as means of

preserving proteins for transport and storing. Furthermore, glycerol has shown to favor

the native state of Lysozyme [256], producing the observed cryoprotective effect.
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Figure 5.3: The melting curves of the protein Lysozyme shown by choosing different

criteria to distinguish the folded and the unfolded substates. The RMSD temperature

dependence is shown in (a) and a dividing criterion between the folded and unfolded

state is chosen as 4.0 Å , illustrated by the inset figure where the RMSD distributions

for the powder/water system are shown for two temperatures, T=300 K and T=453 K,

and the dividing surface chosen is marked by a vertical line. The melting curve produced

with the RMSD criterion is shown in (b). The native contacts can also be used to generate

the melting curve, shown in (d). The native contact analysis is based on choosing the

native contacts from the ensemble of most visited clusters. The clustering is shown in

(c), where clustering Cα positions with a cut off RMSD=2.0 Å was applied. Note that the

color code for the networks of conformational substates is equivalent as in the remainder

of the figure.
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As the results are entirely dependent on the choice of the order parameter and

dividing surface used to separate the folded and unfolded state, we chose yet another

parameter, the fraction of native states, to determine the melting curve of the three

systems. The native contacts (see Methods and Ref [85]) are calculated form the ensemble

of the most populated cluster in protein conformational clustering of trajectories at

T=300 K. The networks of conformational substates for the three systems are shown

in Figure 5.3 (c) and reveal the constraints on the configurational space of native state

Lysozyme in powder, reducing the number of cluster leaders from 14 in solution to 2, and

the combined effect of crowding and glycerol, producing protein dynamics described by a

single cluster. The computed average fraction of native states at different temperatures

represents the melting curve shown in Figure 5.3 (d). The melting temperatures at

<Q>=0.5 are extracted after Gaussian smoothing, and they fully agree with previous

observations. Interestingly, the new metric represents a strongly conservative definition

of the folded and the unfolded state, as the melting curves show no fully folded or

unfolded state for any of the three systems. Once with the melting temperatures in hand,

we proceed with observing the atomistic fluctuations when approaching melting.

5.3.3 Scaling of the Atomic Fluctuations

Figure 5.4: Atomistic fluctuations, expressed as MSD and calculated over a time window
of 150 ps, of the protein Lysozyme in folded (full line) and unfolded (dashed line) states
as a function of temperature. The three panels refer to the three systems, Lysozyme
in solution, powder/water, and powder/glycerol. The vertical line marks the melting
temperature as determined by using the RMSD as the unfolding order parameter.

Since approaching the melting the contribution from the unfolded state becomes

increasingly important, we have carried out MD simulations of configurations belonging
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to four different unfolded states and a single folded state, and computed the temperature

dependence of their fluctuations for all three systems, shown in Figure 5.4. For the sake of

coherence, we use the same Hamiltonian rescaling scheme as in the REST2 simulations,

which allows us to maintain the same temperature scale and assure that we are indeed

exploring the melting-approaching temperature regime. Atomistic fluctuations were

monitored by computing the mean square displacement of hydrogen atoms attached to

carbons, and using a time window of 150 ps as suggested by the experimental resolution

(see Chapter 2 and section Methods). Upon examining the data in Figure 5.4, it is

worth to note that for the Lysozyme in solution, the folded and unfolded systems exhibit

markedly different atomistic fluctuations, with the unfolded protein exploring larger

motion amplitudes. On the contrary, in the crowded systems, the atomistic fluctuations

of the unfolded and folded states are quenched to very similar values. The data thus

suggests that macromolecular crowding is the dominant factor in determining not only

the large scale configuration changes due to volume exclusion [231, 232], but that it

also exerts a local influence at an atomistic level. Further steps in the investigation

would include the explicit determination of Voronoi volumes to quantify the extent of the

excluded volume effect as well as running more simulations of the folded state protein

for all systems.

As a final step in determining the fluctuations when approaching melting, we have

weighted the atomistic fluctuations of the folded and unfolded states according to their

statistical weights, i.e. the fractions of the folded and unfolded states:

< u2 >= f < u2 > f +(1− f )< u2 >u, (5.4)

where the MSD of the folded and unfolded states are given indices f and u, res-

pectively, and f is the fraction of folded state. Results in Figure 5.5 clearly show the

protein flexibility increase with increasing the temperature, as the system may access a

larger number of conformational substates. Most notably, on increasing the temperature,

the system reaches critical conditions where thermal melting takes place and shows a

striking similarity in the magnitude of the atomic fluctuations, specifically in the powder

systems. Note that the Lysozyme in solution is specific in that full hydration grants the

protein full flexibility and a large number of available conformational substates exist in

this condition. Thus, to achieve a proper weighing of fluctuations under full hydration,

more configurational averages most likely have to be performed in order to achieve the

convergence of the fluctuation magnitudes with crowded systems. Additionally, the high

divergence of fluctuations for Lysozyme solution in Figure 5.5 (b) at all temperatures
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Figure 5.5: Combined total MSD calculated over a time window of 150 ps as a function
of temperature. Panel (a) shows the MSD when RMSD is used to distinguish the folded
from the unfolded state, while the panel (b) shows the same result when the fraction of
native contacts is utilized to distinguish the two states. The temperature scale in panel
(a) is normalized with values obtained from Fig 5.3 (b), while the temperature scale in
panel (b) is normalized with values obtained from Fig 5.3 (d). The vertical line marks the
normalized Tm, while the average is performed over four different unfolded states.

reflects that the fraction of native contacts yields a strong contribution of high amplitude

fluctuations due to the lack of unfolding cooperativity the metric produces in the melting

curve, and the subsequent high contribution of the fluctuations of the unfolded state

when approaching melting. The effect is absent in the crowded conditions due to the

similarities in the fluctuation magnitudes of the folded and unfolded states.

The similarity in the magnitudes of atomic fluctuations when approaching melting

is a strong model-independent suggestion that the protein structural fluctuations at

the melting point are similar, irrespective of the matrix around its surface. It can be

argued that the common dynamical behavior corresponds to a condition in which the

protein conformational substates are populated in the same critical way. Thus, the

matrix surrounding the protein surface would manifest its bioprotectant character by

abating the thermal fluctuation amplitude and shifting the critical flexibility to higher

temperature conditions needed for protein melting.
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5.3.4 Validating the Lindemann Criterion

Figure 5.6: The Lindemann parameter, the root mean squared displacement divided
by the typical nonbonded atomic distance, as a function of temperature. The typical
lengths were determined separately for each system, as explained in text. Panel (a)
shows the result when RMSD is used to distinguish the folded from the unfolded state,
while the panel (b) shows the same result when the fraction of native contacts is utilized
to distinguish the two states. The temperature scale in panel (a) is normalized with
values obtained from Fig 5.3 (b), while the temperature scale in panel (b) is normalized
with values obtained from Fig 5.3 (d). The vertical line marks the normalized Tm, while
the average is performed over four different unfolded states.

Inspired by previous computational studies tracking the Lindemann criterion on

heavy atom noble gas clusters [251] and proteins [257], we scaled the MSD with respect

to the typical interatomic distance of the matrix, an equivalent to lattice space in solids.

As the protein is not homogeneous, the characteristic distance reflects the criterion

defined in Ref [257], computed as the most probable non-bonded interatomic heavy atom

distance between different and non-neighboring residues of the main chain, with no cut

off applied in the calculation. The calculations were performed on trajectories at 300 K,

and reveal the effect of the crowding condition on the protein configuration and the

interatomic separations. In the crowded conditions of the powder and glycerol system,

the typical interatomic distance amounts to 4.75 Å, while in the solution conditions it

increases to 5.25 Å. Previously reported values for Crambin, Ribonuclease A, Barnase,
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and Myoglobin [257, 258] fall between 4.0-5.0 Å, agreeing reasonably well with our

result. The data on the distribution of interatomic distances additionally reveals the well

known effect of the crowded environment, in which the volume available to the protein is

decreased, favoring the compact protein substates and conversely rendering smaller the

observed interatomic separations [231].

By dividing the MSD with the typical interatomic separation r̄, as previously argued,

the Lindemann parameter is obtained ∆L =
p
<u2>

r̄ , shown in Figure 5.6 as a function of

temperature. Using the RMSD as the order parameter, ∆L is similar in all Lysozyme

systems and clusters at ∆L ∼ 0.25. The native contact ∆L values converge relatively well

as compared to the MSD values in Figure 5.5 (b), all pointing to universal behavior. The

Lindemann parameters for proteins have been previously estimated by utilizing MD

simulations [257], yielding results in the range 0.12-0.16 at 300 K. The value of the

Lindemann parameter predicting the onset of melting in solids is in this same range of

values (0.1-0.15) [259, 260, 261], indicating that the values for proteins might be different

than those for solids, as protein melting at ambient temperatures is not a likely event.

The temperature dependence of the Lindemann parameter has been studied for

proteins Crambin and Ribonuclease A, associating an observed change in slope at

∆L=0.14 with melting [257]. While falling in the range of the values predicted for solids,

the result must be commented in the context of the following: (i) the critical value

determined from the slope change corresponds to that determined at physiological

temperature in the same type of simulations and should not be equated with melting, (ii)

the melting temperature in silico has not been determined in the simulated conditions,

thus the relationship between the simulated temperature range and the Tm is not

familiar and the represented ∆L values might not correspond to melting nor approaching

melting, (iii) the calculations were 200 ps long, while we have shown, based on enhanced

sampling 200 ns simulations, that the atomic fluctuations are configuration-dependent,

and the relevant configuration changes are most likely not explored on a picosecond time

scale. Nonetheless, the same study offers another interesting perspective, where the

melting of the surface is onset prior to the melting of the core [257] and a computational

analysis can be easily envisaged along similar lines, where computations presented in

this chapter are accompanied by a separate treatment of the protein surface and core.
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5.4 Conclusion

In conclusion, the present results provide a description of protein thermal fluctuations

approaching the melting of the protein in different environments. The amplitude of

the protein MSD at the melting point is rather independent of the environment, thus

suggesting the existence of a threshold for the dynamical contribution of thermal fluc-

tuations in native Lysozyme. The slight deviations from this universal scaling can be

ascribed to a series of approximations made while determining the Tm (order parameter

choice, two-state model, sampling in the simulation), calculation of <u2> (taking into

account relevant protein configurations), and finally calculation of the typical interatomic

separation. With this in mind, we put forth the result that the values of the ∆L are

similar for all three systems, showing that with the same error in aforementioned ap-

proximations, one can use the ∆L as a hallmark of the melting process. It is particularly

interesting to note that the magnitude of the atomistic fluctuations in the representative

folded and unfolded states are rather similar in the powder systems, while in the dilute

aqueous solution, the unfolded state exhibits systematically larger atomistic fluctuation

due to its less compact nature. This implies that the vibrational entropy from the folded

and unfolded states combine similarly at melting, but that their relative contribution is

different depending on the environmental conditions.
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CONCLUSION

This thesis seeks to understand the effect of temperature on protein function and stability

by considering three topical study-cases. As the optimal temperature window for protein

activity is relatively narrow, we are interested in observing where and how the fine tuning

is achieved in order to better understand the relationship between protein structure

and activity. For this purpose, thermophilic proteins represent an ideal model as their

stability at moderate and high temperatures is accompanied by protein activity in

the high temperature regime only, suggesting that the relationship between a stable

protein fold and an active protein is not as straightforward as is widely presented. In our

investigation, we have systematically compared similar proteins with different optimal

working temperatures in order to tackle the stability/function trade-off, as well as its

relationship with protein mechanical flexibility.

In performing Molecular Dynamics studies and coupling them to Neutron Scattering

experiments, we have investigated the validity of two classic paradigms related to

temperature effects - the Somero’s corresponding state principle and the Lindemann

criterion. The former correlates the emergence of enzymatic activity in thermophilic

proteins to the thermal activation of protein flexibility, while the latter defines the critical

magnitude of atomic fluctuations to define melting. Both principles witness the central

role the temperature plays in modulating evolutionary adaptations.

In the first study presented in the thesis, we investigated the G-domain conforma-

tional changes occurring during the ideal enzymatic turnover of a pair of mesophilic and

hyperthermophilic homologues. Considering the essential functional modes, we verified
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that the two proteins behave similarly when placed at their working temperatures, which

is in agreement with the essence of Somero’s principle. The scaled relationship among

flexibility and function was also investigated for a pair of homologous Lactate/Malate

Dehydrogenase proteins. The data we present in the manuscript regard the mesophilic

species only, but a preliminary comparison with the results for the thermophilic protein

confirms a shifted thermal activation of the allosteric-like, functional modes of the two

proteins at their working temperatures. The final system considered, Lysozyme in pow-

der condition, helped us in assessing a complementary aspect of the relationship among

mechanical flexibility, stability, and function, with the result of proving universal scaling

of atomistic flexibility when approaching the unfolding transition.

Although our studies offer substantial data on different effects in protein thermal

(in)stability and (in)activity, they also open new doors and make opportunities to further

push the frontiers in several directions. Regarding the activity of the G-domain, an

interesting prospect is focusing on the chemical step of the enzymatic activity, therefore

employing quantum/classical simulations to evaluate the barrier for the GTP hydrolysis

in the two proteins. It would be also of interest to estimate the free energy of α to β

secondary structure transition with the goal of establishing whether the structurally

conserved portions of the protein have evolved as energetic drains in enzymes, and to

which extent these drains can be used to influence protein stability. Furthermore, the

long-range communication studies on the Lactate/Malate Dehydrogenases will continue

in protein holo states as the next logical step. The complexity of the system offers

numerous possibilities that can be undertaken to examine the role of its symmetry

and multiple oligomeric states, as well as to understand the substrate binding and

population in multimeric enzymes. MD explorations will prove to be, once and again,

indispensable in these endeavors, as experimentally impossible situations will be easily

achievable - populating varying number of domain active sites and observing the effect

in long-range communication across the domains is an exciting possibility to be explored.

Lastly the Lysozyme remains a favorite ‘toy’ model to further push in understating

protein folding and stability in crowded, cytoplasm-like conditions. Our studies have only

scraped the surface of the matter, and many questions are left to answer. Among them

the most obvious are the effect of inert crowders, i.e. with no long-range interactions,

and examining the model case of reduced Lysozyme, i.e. without disulfide bonds. These

studies are under way and will illuminate the atomistic details of the crowded condition.
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