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ABSTRACT

he issue of singularities in General Relativity dates back to the very first solution to

the equations of the theory, namely Schwarzschild’s 1915 black hole. Whether they be

of coordinate or curvature nature, these singularities have long puzzled physicists, who
managed to better characterize them in the late 60’s. This led to the famous singularity theorems
applying both to cosmology and black holes, and which assume a classical behaviour of the
matter content of spacetime summarized in the so-called energy conditions. The violation of
these conditions by quantum phenomena supports the idea that singularities are to be seen as a
limitation of General Relativity, and would be cured in a more general theory of quantum gravity.
In this thesis, pending for such a theory, we aim at investigating black hole spacetimes deprived
of any singularity as well as their observational consequences. To that purpose, we consider
both modifications of General Relativity and the coupling of Einstein’s theory to exotic matter
contents. In the first case, we show that one can recover known static spherically symmetric non-
singular black holes in principle in the tensor-scalar theory of mimetic gravity, and implicitly by a
deformation of General Relativity’s hamiltonian constraint in an approach based on loop quantum
gravity techniques. In the second case, we stay inside the framework of General Relativity and
consider effective energy-momentum tensors associated first with a regular rotating model a la
Hayward, reducing in some regime to the first example of fully regular rotating black hole, and
then with a dynamical spacetime describing the formation and evaporation of a non-singular
black hole. For the latter, we show that all models based on the collapse of ingoing null shells
and willing to describe Hawking’s evaporation are doomed to violate the energy conditions in a
non-compact region of spacetime. Lastly, the theoretical study of the rotating Hayward metric
comes with numerical simulations of such an object at the center of the Milky Way, using the
ray-tracing code GYOTO and mimicking the known properties of the accretion structure of the
presumed black hole Sgr A*. These simulations allow exhibiting the two very different regimes of
the metric, with or without horizon, and emphasize the difficulty of asserting the presence of a

horizon from strong-field images as the ones provided by the Event Horizon Telescope.






RESUME

e probleme des singularités en relativité générale remonte a la premiére solution exacte

de la théorie obtenue en 1915, a savoir celle du trou noir de Schwarzschild. Qu’elles soient

de coordonnée ou de courbure, ces singularités ont longtemps questionné les physiciens
qui parvinrent a mieux les caractériser a la fin des années 1960. Cela conduisit aux fameux
théorémes sur les singularités, s’appliquant a la fois aux trous noirs et en cosmologie, basés sur
un comportement classique du contenu en matiére de ’espace-temps résumé par des conditions
d’énergie. La violation de ces conditions dans les processus quantiques pourrait indiquer que
les singularités doivent étre vues comme des limitations de la relativité générale, pouvant ainsi
disparaitre dans une théorie plus générale de la gravité quantique. Dans l'attente d’une telle
théorie, nous avons pour objectif dans cette theése d’étudier les espaces-temps de trous noirs
dépourvus de toute singularité ainsi que leurs conséquences observationnelles. A cette fin, nous
considérons a la fois des modifications de la relativité générale et le couplage de la théorie a des
contenus en matiére exotiques. Dans le premier cas nous montrons qu’il est possible de retrouver
des trous noirs réguliers a symétrie sphérique connus, tout d’abord en principe avec la théorie
tenseur-scalaire de gravité mimétique, puis implicitement par le biais d'une déformation de la
contrainte hamiltonienne en relativité générale inspirée des techniques de gravitation quantique
a boucles. Dans le second cas nous restons dans le cadre de la relativité générale, et considérons
des tenseurs énergie-impulsion effectifs. Ils sont en premier lieu associés a un modele régulier a
la Hayward en rotation fournissant dans un certain régime un premier exemple de trou noir en
rotation exempt de toute singularité, puis a un espace-temps dynamique décrivant la formation
et ’évaporation d'un trou noir sans singularité. Pour ce dernier, nous montrons que tout modéle
basé sur 'effondrement gravitationnel de coquilles de genre lumieére visant a décrire I'évaporation
de Hawking est voué a violer les conditions sur I’énergie dans une région non compacte de
Iespace-temps. Enfin, ’étude théorique de la métrique de Hayward en rotation est accompagnée
de simulations numériques d’un tel objet au centre de la Voie Lactée, obtenues a I’aide du code de
calcul de trajectoires de particules GYOTOen reproduisant les propriétés connues de la structure
d’accrétion du trou noir présumé Sgr A*. Ces simulations permettent d’illustrer deux régimes
tres différents de la métrique, avec ou sans horizon, et soulignent la difficulté d’affirmer avec
certitude la présence d’'un horizon a partir d'images en champ fort telles que celles obtenues par

I'instrument Event Horizon Telescope.
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NOTATION

The following notation will be used throughout this dissertation.

¢ The spacetimes we consider are four-dimensional, with metric signature (— + ++).

* Most of tensorial objects are written in bold. In particular, the vectors of the natural basis
are denoted (d;, 0,, dg, 0) while the 1-forms associated with the dual basis read (d¢, dr, d0,

do).

* When a tensorial object is not written in bold, Wald’s abstract index notation applies

(exclusively with indices a,b,c,d,e).

* The components of tensorial objects are denoted with Greek indices ranging from 0 to 3.
When dealing with spatial components only, we use Latin indices i, j, %,/ ranging from 1 to
3.

¢ Einstein’s summation conventions are used. For instance,

3
guvdxtdx'= ) guydatdx”
u,v=0

* 3-vectors are denoted by an arrow (e.g., V).

¢ Unless explicitely mentioned, we use the natural units G =c¢ =1.
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INTRODUCTION

century after their discovery as a solution to Einstein’s equations, black holes are still
at the heart of modern research in General Relativity. The seminal paper [104] by Karl
Schwarzschild, providing the first vacuum solution to the equations of Einstein’s theory
[49], does not explicitly mention the term “black hole” but paves the way for their explicit descrip-
tion as regions of spacetime from which neither matter nor light can escape. In light of the recent
experimental evidence in favor of their existence obtained thanks to the detection of gravitational
waves [3], achieving a full grasp of the nature of these objects becomes an even more pressing

matter.

Among the various fields of research dealing with black holes, the one we have explored in
this thesis consists in better understanding the persistant question of the singularity lying at
their center. The notion of singularity in gravitational physics has little to do with the meaning
of the original Latin world singularitas, translating into “the fact of being unique”. However, the
gravitational singularities we will be dealing with in this thesis do display a unique feature, as
they appear to be predictions by General Relativity of its own limitations. One is for instance
confronted with the presence of a singularity at the center of Schwarzschild’s black hole, where
the curvature of spacetime diverges, which amounts to saying that spacetime itself cannot be
defined there.

Singularity theorems, due to Penrose and Hawking [68, 94], developed in the late 60’s and
shed some light on the assumptions needed for the existence of such singularities, both for black
holes and cosmology (in which one has to deal with the Big-Bang singularity). One of the key
assumptions of these theorems is that matter should be well-behaved, in the sense that it oughts
to satisfy some energy conditions. These conditions, and particularly the weakest of all, the
null energy condition, can be violated when dealing with quantum phenomena. This fact tends
to enforce the generally believed idea that a quantum theory of gravity would be able to cure

singularities.

Since this theory has not yet been found, one is led to follow other approaches in order to study
non-singular black holes reproducing Schwarzschild’s metric at large distance. The very first ex-
ample of such model dates back to Bardeen’s black hole, proposed in 1968 [11]. Since then various
other models have followed, among which some possessing a de Sitter core (Dymnikova [48] and
Hayward [71]), and others inspired by non-commutative geometry (Nicolini [91]). These models
all share a common feature: they introduce a new parameter in the black hole’s metric, preventing

the curvature from diverging as r — 0. This might seem in contradiction with the no-hair theorem,



stating that the unique solution for a steady isolated black hole in four-dimensional vacuum
general relativity is the Kerr-Newman black hole, which depends on only three parameters: the
mass M, the reduced angular momentum a = J/M and the electric charge @. Actually, there

is no contradiction since the non-singular models are not solutions of vacuum Einstein’s equations.

As regards the approaches chosen to study non-singular black holes, pending for a theory of
quantum gravity, this thesis aims at exploring two different ones. The first consists in considering
modified theories of gravity. Starting from the Hamiltonian formulation of General Relativity, one
can for instance add quantum corrections to it by hand (technically, by deforming the constraint
algebra) in order to obtain effective Einstein’s equations, which might be a limit of the quantum
Einstein’s equations from the fully quantized theory. Another option would be to work with
modifed theories of gravity aiming at explaining the structure of the universe at large scale,
in particular dark matter and dark energy, such as some scalar-tensor theories. We will show
how one of these theories, namely mimetic gravity, could in principle allow recovering known

non-singular black hole metrics.

The second approach assumes to stay inside the framework of General Relativity, but to match
non-singular black hole metrics with exotic energy-momentum tensors. Non-linear electrodynam-
ics, for instance, has been shown to be a potential source for some famous non-singular static black
holes, such as Bardeen’s and Hayward’s. After constructing explicitly a regular rotating Hayward
model, reducing to a regular rotating Hayward black hole in some regime and to Hayward’s static
black hole in the absence of rotation, we will show that non-linear electrodynamics does not
provide an adequate energy-momentum tensor anymore in this case. Finally, we will attempt to
build a dynamical model for the formation and the evaporation of a non-singular black hole with

an exotic energy-momentum tensor reducing to Vaidya’s solution in some regimes only.

In this thesis non-singular black holes are studied from quite various perspectives, ranging
from their theoretical description to their observational consequences. At the interface lies the
numerical simulations of the regular rotating Hayward model mentioned above. These simula-
tions produce an image on the observer’s sky, i.e. a set of pixels to which is associated the specific
intensity of a given photon. These images are computed by integrating backward in time the null
geodesics, using the ray-tracing code GYOTO for which we developed an extension implementing
the regular rotating Hayward model. Their comparison to typical Kerr black holes images will
allow a better understanding of the forthcoming results of the Event Horizon Telescope currently

observing the supermassive black hole candidate Sgr A* at the center of the galaxy.

This dissertation is organized as follows. The first chapter (Chap. 1) deals with fundamentals

of General Relativity, and aims at providing the reader with the essential ideas of General

2



Relativity as well as its main tools. Special attention shall be paid to the definition of singularities,
and to the proof of Penrose’s 1965 theorem: the rest of the dissertation will be concerned with
non-singular black holes, and the way they manage to circumvent Penrose’s theorem is to be
highlighted for each of them. Chapter 2 is the last introductive chapter, whose purpose is to
present famous (singular) black hole solutions in General Relativity. Doing so we will come across
several different notions of horizons, all summarized in App. A, the retained one to describe
astrophysically relevant black holes being the trapping horizon. Our first encounter with non-
singular black holes will occur in Chapter 3, where we will present Bardeen and Hayward static
black holes and then follow the first approach mentioned above, the one of modified gravity, to
recover their metrics. Chapters 4 & 5 will be devoted to rotating non-singular black holes: we will
present our regular rotating Hayward model, providing in its regime with horizons the first fully
regular rotating black hole, and then compute with GYOTO the images we would observe if it
were surrounded by an accretion structure similar to the one of Sgr A*. Finally, Chapter 6 will
deal with an attempt to model dynamical non-singular black holes describing the formation and

evaporation of a non-singular trapped region.






CHAPTER

FUNDAMENTALS OF GENERAL RELATIVITY

- <
s 1907 [Fes

‘q~n=j r zh.t rh~n=j w3.t

“Si je suis entré dans I'horizon, c’est que je connais le chemin !”
(Textes des Sarcophages VII, 2w-2x, L2Li [30, 43].)

he purpose of this first chapter® is twofold. To begin with, we aim at giving an intuitive
approach to Einstein’s general theory of relativity (Section 1) . Furthermore, we develop
the various relativistic tools that will be needed in the rest of this dissertation, which range
from basic notions of differential geometry (Section 2) to Einstein’s equations (Section 3). This will
lead us to define the notion of singularity in Section 4 and to give a formal proof of Penrose’s 1965
singularity theorem, hence setting the scene for the study of non-singular black holes in the next

chapters. Finally, we will come across several notions of horizons, which are summarized in App. A.

Contents
1 Space, time and gravitation: from Galileo to Einstein . . . ... ... ........ 6
2 Spacetime in General Relativity . . . . ... .. ... ... ... ... ... ...... 12
3 Einstein’s equations . . . . . . . . . . . . ... e e e 27
4 Singularity theorems . . . . . . . . .. .. ... ... e 31

IThe following sources have been used extensively to write this introductive chapter: [96], [63], [567], [67], and [122].
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CHAPTER 1. FUNDAMENTALS OF GENERAL RELATIVITY

1 Space, time and gravitation: from Galileo to Einstein

There is something unique about gravitation. It is the only force we know that couples identically
to every massive object?. In other words, a feather and a billiard ball launched from the same
height on the Moon will reach its surface simultaneously (since no other force than gravitation,
like the friction of the atmosphere, applies there). This universality of free fall, already identified
by Galileo in the 16" century, will lead us to consider gravitation not merely as a force but as an
intrinsic property of spacetime. This spacetime is a paradigm in favour of which we will argue in
Section 1.1, before following Einstein and showing in Section 1.2 that gravitation is an expression

of its curvature.

1.1 The fruitful union of space and time
1.1.1 Emergence of the notion of spacetime

At the 80" Assembly of German Natural Scientists and Physicians in 1908, Hermann Minkowski

spoke about space and time in these terms:

“The views of space and time which I wish to lay before you have sprung from the soil of
experimental physics, and therein lies their strength. They are radical. Henceforth, space by
itself, and time by itself, are doomed to fade away into mere shadows, and only a kind of union of

the two will preserve an independent reality.”

Evoking “the soil of experimental physics”, Minkowski was actually referring to the exper-
iments of Albert Michelson and Edward Morley in the 1880’s. These experiments aimed at
measuring the speed of light from Earth in two opposite directions on a circular orbit around the
Sun. At that time, light was thought to propagate in a medium called ether, which had a relative
velocity with respect to Earth. Hence, the speed of light measured from Earth at two different
points of its orbit, where it thus has two different relative velocities with respect to the ether,
should vary.

This fact simply stems from the Galilean transformations between two inertial frames of reference

R and R’ with relative velocity v (see Fig. 1.1):

1.1

Michelson and Morley did not detect any difference between the two experiments performed

at two opposite points of the Earth’s orbit, hence calling into question the theory of ether. This

2This is not true for quantum objects though, due to the Schrédinger equation.
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1. SPACE, TIME AND GRAVITATION: FROM GALILEO TO EINSTEIN

Z z/

Figure 1.1: Tllustration of two inertial frames, .# and .#’, with a velocity 7 in the x direction relative to each other.

led Einstein to postulate in 1905 that the speed of light? ¢ is the same in all inertial frames.

This postulate has dramatic consequences, as we shall see now. Let us consider a light ray
bouncing back and forth on two mirrors, as illustrated in Fig. 1.2. In the frame where the mirrors

are at rest, after one bounce one has:

_ 2L
At ==z,
Ax =2L,
Aw=0 (1.2)
y=Y,
Az=0

The same situation seen in a frame where the mirrors are moving towards the right at a
constant velocity v gives a quite different result. As illustrated in Fig. 1.2, the distance travelled

by the light ray from the point of view of an observer in R’ is:

Ax')?
d=2 L2+(7x) (1.3)
Following Einstein’s postulate, we now get
_2 Ax'\2
At = 2y/Le (),
! !/
i’“/ - ‘(’)At ’ (1.4)
Yy =y
AZ'=0
Combining the equations for A¢' and Ax’, we obtain
At 1
—=——= 1.5
A — Y (1.5)

3We do not use ¢ = 1 for now.
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Figure 1.2: Thought experiment illustrating the relativity of time. On the left panel, in a reference frame %, a
light ray is bouncing back and forth vertically on two mirrors separated by a distance L. On the right, in a reference
frame %', the two mirrors are moving with a velocity ¥ in the x direction with respect to the frame of the left panel.
Hence, a light ray travels a bigger distance A — B — A when the mirrors are moving (right). Since the speed of light is
constant in all inertial frames, it means that the observer in %2’ will measure a bigger time interval At' than the one
in 2. Consequently, “time goes more slowly” in 22’.

Hence, the time interval measured in R’ is bigger than the one measured in R! We are forced
to abandon the absolute vision of time stemming from Galileo’s transformations. The new

transformations, known as Lorentz’s transformations, are:

et/ =y (ct— )
x' =y —-vt)

) (1.6)
Yy =Y
2 =z.
They can be obtained by requiring that the interval
As? = =A% + Ax? + Ay? + AZ? (1.7)

remains invariant under such a transformation: As? = As’?. This simply enforces the fact that a

light ray propagates at the same velocity ¢ in all inertial frames.

The spatial and temporal components in Lorentz’s transformations (1.6) thus clearly get
mixed up when going from an inertial frame to another, and two observers in these frames
measure different times (if v is not too small compared to c, i.e. for relativistic motions). This
mixing of space and time leads us to think the motion of observers in terms of a new paradigm,

spacetime, that we will develop in the following section.

1.1.2 The spacetime of special relativity

If light propagates at the same velocity in all inertial frames, it must then be the highest possible

one, i.e. all particles must travel at speed at most equal to c. This is easy to infer from the

8



1. SPACE, TIME AND GRAVITATION: FROM GALILEO TO EINSTEIN

A ct

X

Figure 1.3: Lightcone in Minkowski’s spacetime (with one less dimension of space). The event @ is on the future
lightcone of O, while P is inside the lightcone. Finally, R is separated from O by a spacelike interval. £p is a timelike
curve, and £ is a null one.

invariance of the speed of light: for an observer moving at 0.99¢, a photon passing by will still
travel at velocity c; the latter is thus an unsurpassable velocity.

The spacetime of special relativity, called Minkowski’s spacetime, is a 4-dimensional structure
which enforces the invariance of the speed of light as well as its unsurpassable nature. It consists
of a set of points, called events, characterized by four coordinates (¢,x,y,z). Any two points are

separated by the interval
As? = —At? + Ax® + Ay + A2? (1.8)

where, from now on, we set ¢ = 1. When the points are infinitesimally close, this allows defining

the line element

ds? = —de? + dx? + dy? + dz?, (1.9)

which, as we shall see in Sec. 2.1.3, is associated with a metric which defines a notion of distance

on the spacetime.

Hence, the separation of any two points As’ falls into one the three following categories :
* As? <0: the interval is timelike
* As? =0: the interval is null

e As? > 0: the interval is spacelike
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A curve is then said to be timelike (resp. null, spacelike) if every two points are separated by

a timelike (resp. null, spacelike) interval.

Considering a point O in Fig. 1.3, one can draw the light rays emerging from it, which satisfy
As? = 0: this produces the lightcone at O, and in particular the null curve Zq.- O is therefore
separated from the event @ by a interval, which means that the two can be linked only by a light
ray. P is inside the future lightcone of O, the two points are separated by a timelike interval
(As? < 0). It means that observers with velocities v < ¢ can relate them. Finally, R is outside the
future lightcone of O since they are separated by a spacelike interval (As? > 0): no observer can

go from O to R, for he would have to travel faster than light.

In the end, the spacetime structure gives a global coherent picture which enforces causallity.
The future lightcone of O consists of all the events of spacetime that O can have an influence
on, and it is preserved under Lorentz transformations. Put another way, all inertial observers,
regardless the velocity they may have, will agree on the causal relation between two events
separated by a timelike or null interval. This is not the case when the events are separated by a

spacelike interval. For instance, two different observers could measure tg < tp and tg > tg.

1.2 Gravitation enters the game

Before getting into the formal description of General Relativity (Sec. 2), let us introduce the main

ideas of the theory.

1.2.1 Equivalence principles

We mentioned previously the universality of free fall highlighted by Galileo. It actually comes
from the equality between the gravitational mass m, associated with the weight P = mgg in
a gravitational field g, and the inertial mass m; stemming from Newton’s second law F' = m;a
giving the force applied to an object to give it an acceleration a. When the only force applied to an

object is gravity, assuming m; = m4 one gets

d2x

a=g, ie.

Hence, the way a body falls in a gravitational field does not depend on its internal composition.
Moreover, we can erase locally the effects of a static and uniform gravitational field by going to

an accelerated frame:

— =0. (1.11)

t'=t d2x’
=
x=x— %gtz d2

This result is expressed in the weak equivalence principle, stated as follows.

10



1. SPACE, TIME AND GRAVITATION: FROM GALILEO TO EINSTEIN

Definition 1.1 (Weak equivalence principle). At each point of spacetime, in an arbitrary gravita-
tional field, one can define a locally inertial frame in a small enough region. In this frame, the

motion of a free particle (i.e., only subject to gravity) is linear and uniform.

A classical illustration of the weak equivalence principle is the elevator in free fall. For an
observer in such an elevator, all objects around him will fall at the same (increasing) speed. His
frame of reference is thus a locally inertial frame, in which the motion of the objects surrounding

him is linear and uniform.

Einstein extended this principle in the following way.

Definition 1.2 (Einstein’s equivalence principle). In the locally inertial frame of the weak equiv-

alence principle, all (non-gravitational) laws of nature are those of special relativity.

The notion of locally inertial frame is primordial here. Indeed, in the presence of a grav-
itational field one cannot construct a global reference frame, otherwise the spacetime would
be Minkoswki’s. It thus remains to define how to connect two different regions of spacetime

with coordinates (x#) and (x'#), where two (independant) locally inertial frames can be constructed.

To do so, we will need an additional assumption: the laws of Physics do not depend on the
specific choices of coordinates. In particular we require that the lightcone structure be preserved

under a general transformation of coordinates x* — x'%, i.e. ds? = ds? with:
ds® = g dxt'dx” = ds” = g, 5dx"*dx’? (1.12)
Since the differentials dx'® are by definition dx'® = %dx“, we get:

ds? = o Ox’“d de'ﬁ

~8ap OxH x o0xV

dx” (1.13)

Hence, we have
, Ox* oxV

gaﬁ:ax—,aax—/ﬁg#v . (1.14)

The invariance of the line element ds? thus imposes a very specific constraint on the transforma-
tion law of the metric. As will be shown in Sec. 2.1.3, the metric is actually a covariant object, a

tensor of type (0,2), and thus transforms naturally as prescribed by eq. (1.14).

1.2.2 Gravity as a curvature of spacetime

The universal coupling of gravity, summarized in the weak equivalence principle, suggests that
gravity is not merely a force but a property of spacetime itself. In this Section, we will give two

ways of seeing that gravity is actually related to the curvature of spacetime.

11



CHAPTER 1. FUNDAMENTALS OF GENERAL RELATIVITY

A first hint at the presence of curvature can be directly inferred from Einstein’s equivalence
principle. Indeed, let us make a coordinate transformation from a locally inertial frame with

coordinates (X*) to a general frame with coordinates (x*). The line element reads:
ds? =, dXHdX" . (1.15)

Generalizing eq. (1.11), the coordinate transformations to get to (x*) are dX* = %xifdx“. Hence,

the line element can be rewritten:
—npydx®dal . (1.16)
x

The coordinate transformation from (X*) to (x*) can always be made, but the reverse cannot.
Einstein’s equivalence principle implies that in the presence of gravity, any observer can go only
locally from coordinates (x*) to (X*#), in which the line element takes the simple form (1.15). Such

a transformation is thus not possible globally when gravity comes into play.

The line element thus takes a more complicated form in the presence of a gravitational field.
But it encodes geometry, and can be seen in Minkowski’s spacetime as a generalization of the
Pythagorean theorem. Hence, the presence of a gravitational field will lead to a modification of
geometry, and to the presence of a nonvanishing curvature (which will be defined precisely in
Section 2.2).

Another, more explicit way of seeing this is through a thought experiment. Let us consider
an accelerating rocket, in which a light ray is sent from the left wall to the right one. The light
ray propagates in straight line, and during the time it needs to cross the rocket, the latter has
accelerated. Hence, the light ray will reach the right wall at a smaller height than the one it
was sent from: for an observer in the rocket, the acceleration has curved the light ray ! Via the
Einstein equivalence principle, this acceleration is locally equivalent to a gravitational field.
Hence, we can expect light rays to be curved in a gravitational field.

In the end, the gravitational field appears not to be an additional field of spacetime. It rather
represents the deviation of the spacetime geometry from the Minkowskian flat geometry, and is

materialized by the curvature of spacetime.

2 Spacetime in General Relativity

We have now written down the physical principles underlying the theory of General Relativity,
but they remain to be implemented in a mathematical and practical framework. This is the aim
of this section, where we will introduce the mathematical tools of the theory. They will prove
necessary to understand the corner stone of GR, Einstein’s equations, as well as the singularity

theorems, that we will develop in Secs. 3 & 4.

12



2. SPACETIME IN GENERAL RELATIVITY

2.1 Manifolds and tensors
2.1.1 Manifolds

An essential notion in order to describe the spacetime of General Relativity is the one of a
manifold. Intuitively, a manifold is a set of points linked in a continuous way and which locally
looks like R”, but perhaps not globally [6]. A natural example is the surface of the Earth which
looks flat locally, but clearly not globally !

More precisely, we will be interested in manifolds on which we can make differential calculus,
called differentiable manifolds. The easiest type of differentiable manifolds to work with is the

smooth manifold, defined as follows.

Definition 1.3. A smooth n-dimensional* manifold . is a topological space equipped with charts
Qo %%y — R such that:

(i) %, are a finite number of open sets covering M, called an atlas,

(i1) the transition map @4 © (p/_sl :R" — R™ is smooth (i.e. C*°) when Uy, N%Up # ©.

Property (i) is at the heart of our intuitive definition of a manifold: locally, one can label the
points p € %, < 4 by n coordinates (x?) by using the chart . But globally, one may need more

that one open set %, to cover the whole manifold.

Property (ii) allows defining unambiguously smooth functions f : .# — R. f is smooth if for all
a, fo (p;I :R" — R is smooth (see Fig. 1.4). One can show that f is smooth on V =%, N % using
the chart %,: it suffices to show that f o' is smooth on ¢, (V) c R”. Thanks to property (ii), we
arrive at the same conclusion by using the patch %g: if f ogo;l is smooth on ¢4(V), then f o (plgl
will be smooth on ¢4(V) since f °<,0/§1 =(fopz ) o(pq oq)[al)

2.1.2 Tensors on manifolds

Now that we are equipped with a notion of manifold, we need to define various objects on it that
will allow us to do some Physics. For instance, the notion of metric tensor, giving the concept of
distance on a manifold, will be of the uttermost importance to define the spacetime of General

Relativity.

A few steps are nonetheless necessary to get to the notion of tensors. Let us first define what

a curve on a manifold is.

4in the following, we will restrict ourselves to 4-dimensional spacetimes (n =4)

13
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fo9,

Figure 1.4: Smooth n-dimensional manifold .# along with two of its charts %, and %p. The open sets % covering
A constitute an atlas. The function f : .4 — R is smooth iff f o (pal is smooth for every % in the atlas.

Definition 1.4. A (smooth) curve is a subset £ < M that is the image of a smooth map I cR — 4 :

P:I1-R
A—p=P(A)e .

P is called a parametrization of &£, while A is a parameter along £.

One can also define a scalar field on a manifold .4 as a function f : .4 — R. One can then

define a vector tangent to £ by applying it to f as follows.

Definition 1.5. A vector v tangent to £ at p = P(A) is an operator matching every scalar field [

to the real number

d 1
v(f)= —df =lim —[f(P(A+¢))— f(P(A))] (1.17)
Alg e=0e€

One can define coordinates (x%*) around p € .4, and thus n different curves £, going through
p and parametrized by A = x%. This allows defining d,, the vector tangent to £, when a scalar

field f is applied to it:
df

dx®

_of

= 1.18
- (1.18)

0a(f) =

14



2. SPACETIME IN GENERAL RELATIVITY

One can then rewrite any vector v applied to f as follows®

of dX¢ dx“
= =0 1.19
v(f)= e =0u() (1.19)
Since this is valid for all scalar fields f, we can decompose any vector as
dxe
=v%0 ith v = 1.20
v=0v%,, withv 17 ( )

Definition 1.6. The set of all tangent vectors to a curve at p constitutes the tangent vector space
T, to M at p. The vectors 8, form a basis of T\, M, and the coefficients v* are the components

of v with respect to the coordinates (x%).
One can define linear forms on 7', .4 as follows.

Definition 1.7. A linear form is a mapping w:v € Tp M — (w,v) € R that is linear: (w,v+u) =
Mw,v) +{w,u) for all u,ve Tp M and L €R.

Definition 1.8. The dual space of Ty, denoted by T4, consists of all the linear forms at
p. Given the natural basis (0q) of Tp. 4, there exists a unique basts (dx*) of T,/ such that
(dx“,0p) = 5%.

We now have all necessary tools to define tensors on a manifold.
Definition 1.9. A tensor of type (k,l) at p € M is a mapping

T: T;./%X"'XT;./%X?I;./%X"‘XTP./%{—’R

g

gl
k times [ times

(wl,”' »WE, V1, 5vl)"_) T((l)]_,"' ,WE,01, " ’vl)-
that is linear with respect to each of its arguments.

According to this definition, vectors are simply tensors of type (1,0) while linear forms are
tensors of type (0,1). Given a basis (eq) of Tp.# and a dual basis (e”) in T',.#, a tensor of type
(k,l) reads

T=T""", ;€n® ®ey® ehe...eel . (1.21)

2.1.3 The metric tensor

Let us now define precisely the metric tensor which generalizes the notion of distance on a
manifold, and which will be essential to define curvature as well as the trajectories of observers

in spacetime.

Definition 1.10. A pseudo-Riemannian metric tensor g on [ is a tensor field obeying the

following properties:

5We are now using Einstein’s summation convention
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(1) g is a bilinear form acting at each point p € 4 on vectors in the tangent space: g(p) : (u,v) €
Ty M xTp M —gu,v)eR,
(i1) g is symmetric: g(u,v) =g,u),
(iii) g is non-degenerate: at any point p € 4, a vector u such that Yv € T, 4, gu,v) =0 is

necessarily the null vector.

How does this formal definition of tensors, and in particular of the metric tensor, relate to the
one often used by physicists, characterizing them by the way they transform under coordinate
changes? As we have seen in Section 1.2.1, imposing that the light cone be invariant under

general transformations of coordinates implies a condition on the metric:

, Oxt 0x"

ga',ﬁ = _ax’ll _ax/ﬁ guv (1.22)

Let us check that this property stems from our definition 1.9 of tensors. As we shall see, it actually
directly results from their multilinearity. Let us consider g as a (0,2) tensor, i.e. a bilinear form
(the precise definition of the metric tensor will be given in Section 2.1.3, but is not needed for
this argument), to which we apply the infinitesimal vector dx = dx%d, = dx'*d/, expressed in two

different bases.

We have first:

g(dx,dx) = g(dx"9,,dx"a,)
= g(0,,0,)dx"dx" by linearity of each argument (1.23)
= guvdxtdx”

And with the vectors expressed in the prime basis:

g(dx,dx) = g(dx'*d,, dx'ﬁa;)
= g(0),,0))dx"*dx'P (1.24)
= g'aﬁdx'“dx'ﬁ

But the differentials dx'® are by definitions related to dx* by dx'® = %dx”. Hence, equating
(1.23) and (1.24) leads to:

oax'*  9x'P
guvdxtdx” = g'aﬁ T xH e dx”, (1.25)
and finally, as expected:
oxt 0x”
o
8ap = 9x'% 0P Suv - (1.26)

In the bases where the metric is diagonal, it can be shown that it always has the same number
s of negative (and thus (n —s) positive) components among (g4p): this is the signature of the

metric. When s =0, g is called a Riemannian metric and is positive-definite. When s =1, gis a
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Lorentzian metric.

We are now able to define the category of manifolds we will be dealing with in the subsequent

chapters.

Postulate 1.1. The spacetime of General Relativity consists of a Lorentzian manifold, which is a

pair (M ,g) where 4 is a smooth manifold and g is a Lorentzian metric tensor on /.

How is it that Lorentzian manifolds are best suited for describing the spacetime of General

Relativity? We can provide two answers to this question.

First, the metric is not positive-definitive: this allows implementing the finiteness of the
speed of light and hence causality at each point of the manifold through the use of a light
cone, which will not be changed under general transformations of coordinates. The trajectories

of physical observers, necessary satisfying causality, are then timelike curves inside the light cone.

Furthermore, a Lorentzian manifold allows one to encode the equivalence principle. Indeed, let
us consider a spacetime very different from Minkowski’s, for instance with some curvature (which
will be defined properly in Section 2.2). At a given point p, it will always be possible to define
some inertial coordinates X* such that the spacetime resembles Minkowski’s: g,v(p) =1y, and
(058 uv)p = 0. This means, in total agreement with the equivalence principle, that one can locally
cancel the effects of gravity and place oneself in the frame of a freely-falling observer. Of course

this is valid only locally, as emphasized by the expression of the metric in the neighbourhood of p:
1
Euv =Muv + 5(606pg,w)pX”X” +oe (1.27)

The fact that one cannot impose that the second derivatives of the metric be null is precisely the

manifestation of curvature.

2.2 Curvature

In this section, we will define the notion of curvature of a manifold .4 in an intrinsic way, i.e.
without requiring that there exist a higher-dimensional space in which .# may be embedded. A
way of doing so consists in defining the parallel transport of tensors (Section 2.2.1). The curvature
can thus be characterized by parallel transporting them along a closed curve, via the Riemann
tensor (Section 2.2.2).

2.2.1 Levi-Civita connection on a manifold

What do we mean by parallel transport along a curve? This notion is best illustrated for vectors,
where parallel transport boils down to transporting a vector while it keeps pointing in the same

direction. In the usual Euclidean plane, the parallel transport along a closed curve is trivial as
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e

Figure 1.5: Parallel transport of a vector along a closed curve in a (flat) Euclidean plane (left) and on a (curved)
sphere (right), following the path 1 — 2 — 3 — 4. Keeping the same direction all the way along, the vector on the
sphere follows its curvature and has rotated after travelling along the loop, contrarily to the vector on the plane.

illustrated in Fig. 1.5 (left). Transporting the same vector along a closed curve on a 2-sphere
(Fig. 1.5 (right)) is not as easy: at each point p € S2, the vector belongs to a different tangent
space Tpsz.

Hence we will need an additional structure on the manifold in order to compare vectors (and
then tensors) belonging to different tangent spaces. The structure which allows defining the
variation of a vector field v € # (), hence providing a way of connecting various tangent spaces,

is called an affine connection.
Definition 1.11. An affine connection on . is a mapping
V. (M) x FO(M)— FEO(M)
(u,v)—Vyv
which satisfies the following properties:

(1) Vs bilinear
(ii) For any scalar field f,
Vv =fVyv

(iii) For any scalar field f, the Leibniz rule holds:

of

ax—adxa

V.(fv)=Vf,uyv+fVyv where Vf =

The vector V,v is called the covariant derivative of v along u. The affine connection can be

generalized to tensors: the covariant derivative of a tensor T' along a vector u is a tensor of the
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same type as T'.

An affine connection is entirely defined by its components CZ g Its action on a basis (ey) at a
given point reads:
Vesea =Cl ey, (1.28)

We will use in the rest of this thesis a specific type of affine connection, the Levi-Civita connection,

whose existence stems from the fundamental theorem of Riemannian geometry.

Theorem 1.1 (Fundamental theorem of Riemannian geometry). Let (M, g) be a pseudo-Riemannian

manifold. Then there exists a unique connection V, called the Levi-Civita connection, which satisfies

(i) V is torsion-free: for any scalar field f, VoV f =VpVof
(i1) V preserves the metric: Vg =0

The condition of preservation of the metric simply means that we require the connection to
preserve the notion of distance, and in particular the structure of the lightcone. It implies the
following form for the connection coefficients, which are the Christoffel symbols:

Cj, _re =Ll a a 1.29

ﬁy=§g ( BEyA +0y8pA — Agﬁy) (1.29)

The absence of torsion means that the Christoffel symbols are symmetric with respect to their
downstairs indices:

ra _F(X

sy =Lyp (1.30)

Given a tensor field T of type (%,[), one can define the covariant derivative of VI' with respect

to the affine connection V. It is a tensor field of type (%k,/ + 1) whose components are:

ay--ap — ay--ap
VHT BB = (VT) Br-Pipt
ith position
l
STy ZT“L peom ZF” o (1.31)
TUH B1+B Bin B1-0By
!
ith position

2.2.2 Riemann and Ricci tensors

Let us come back to Fig. 1.5. Once the vector is parallelly transported around a closed curve on

the sphere, it comes back rotated at the origin because of the curvature of the 2-sphere.

This notion of curvature can actually be encoded in the noncommutation of covariant deriva-
tives applied to a vector:
VyVpva = VpVyva =R, 05 (1.32)
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where the R® apy aT€ the components of the Riemann tensor. Computing explicitly the left-hand

side of eq. (1.32) using eqgs. (1.31) and (1.29) leads to the expression of the Riemann tensor:

R?,, =0,Td, —0,I'% +T¢ %, —T¢ Y, (1.33)

One can then define the Ricci tensor R (which is a contraction of the Riemann tensor) through
its components:
R, =R, (1.34)

And finally the Ricci scalar, also called scalar curvature, reads

R=R_g" (1.35)

Curvature scalars, i.e. scalars formed from the contraction of the Riemann tensor (or other
tensors such as Weyl’s tensor), will be of the utmost importance in the following. Along with the

Ricci scalar, the Kretschmann scalar K will often be computed in the following:

K=R_, ;R (1.36)

afy

Indeed, contrarily to tensors whose components depend on the choice of a specific basis, scalars
are coordinate-independent. The divergence of the curvature scalars thus provides a way of

characterizing singularities in spacetime, as will be explained in more details in Section 4.

2.3 Geodesics
2.3.1 Geodesics’ equation

As previously mentioned, the particles which are subject solely to gravity play a peculiar role in
General Relativity. They are associated with locally inertial frames, in which gravity is erased
and the laws of special relativity are valid. Gravitation being described as a deformation of
spacetime with respect to the flat geometry, it is natural to define the worldlines of these particles
in free fall, called geodesics, as lines that "curve as little as possible" [122]. They will reduce to a
straight line in a flat geometry, since inertial observers in Minkowski’s spacetime are at rest or

in linear and uniform motion. The following definition encapsulates these properties.

Definition 1.12. A smooth curve £ of a pseudo-Riemannian manifold (. ,g) is called a geodesic
iff it admits a parametrization P whose associated tangent vector field v is transported parallelly
to itself along £:

V=0 (1.37)

Such a parametrization is called an affine parametrization of parameter 1. Recall that a

smooth curve is the image of a smooth map .# — .4 (see Def. 1.4). The parametrization is then
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defined by n functions X% : ¢ — R such that x*(P(1)) = X%(A). In terms of components, the

tangent vector is thus v® = cg(_;’ where the (X?) are the coordinates in the neighbourhood of a

point p € £. Hence, eq. (1.37) reads:

0=v%V,0f

a a
= U:BL + rg UIBUY

oxp (1.38)
=v(")+ ngvﬁvy by eq. (1.20)

dv®
=t ngvﬁvy by eq. (1.17)
The geodesic equation thus reads:
d2xe dx? dxr
5 = (1.39)

T A

The interpretation of the geodesic equation is insightful and deeply rooted in the equivalence
principle. Actually, V,v is the acceleration of a particle along the geodesic with velocity v. Hence,
the acceleration of a particle following a geodesic vanishes: no force is exerted on this particle,
which is in free-fall. The inertial observers of General Relativity are those subject only to gravity.
The curved structure of spacetime thus really takes into account the gravitational attraction, and

does not treat it as a force.

2.3.2 Congruences of geodesics

A congruence of geodesics is a family of geodesics such that through each point of spacetime, there
passes one and only one geodesic from this family. The geodesics among a given congruence are

thus non-intersecting.

The expansion of a congruence of geodesics can be defined as the fractional change of area of

a surface following the geodesics. Let us consider a codimension 2 surface . and a vector field 1

associated with a congruence of light rays, also called null congruence (Fig. 1.6). Let us take an

infinitesimal parameter ¢ > 0 and displace each point on % by the infinitesimal vector el. This
forms the new surface .#,, and the resulting expansion of . along [ is

0A.-0A
0y =lim —— 1.40

D=0 6a (140

It can actually be shown that the expansion scalar 6 is independent of the choice of ., and

is a property of the geodesic congruence itself. In the rest of this dissertation, we will use the

following definition of the expansion scalar:
Oay=h""V,l, , (1.41)
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14

Figure 1.6: Codimension 2 surface .# and its image by a translation along the infinitesimal vector el. Figure taken
from [63].

which is equivalent to (1.40). 2*¥ are the components of the induced metric A, defined via the two
independent null vector fields I and & (such thatl-& = -1):

h=g+lok+kl. (1.42)

Raychaudhuri’s equation describes the evolution of the expansion scalar. In the case of a congru-

ence of null geodesics, the equation reads

do 1
0} 21) —0% +w® =R IMY (1.43)

=——0
a2
where o is the shear scalar and w the rotation parameter. This equation will prove essential in

establishing Penrose’s singularity theorem in Sec. 4.

2.4 Causal structure

This Section aims at giving a first approach to black holes and a way of representing them,

namely Carter-Penrose diagrams.

2.4.1 Basic definitions

The metric tensor defined in Sec. 2.1.3 allows classifying vectors in terms of their causal nature.

Definition 1.13. A vector v belonging to the tangent space of a manifold equipped with a metric

&g of signature (— + ++) is
o timelike if glv,v) <0 ,
* null or lightlike if glv,v)=0 ,
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* spacelike if g(v,v)>0 .

Adding the notion of tangent vector (Def. 1.5), this allows defining the causal nature of curves

on a manifold.

Definition 1.14. A differential curve A(t) is said to be timelike (resp. null, spacelike) if at each
p € %, the vector tangent v to the curve is timelike (resp. null, spacelike).

It is said to be causal if v is either timelike or null.

Particles always follow causal curves: the massive ones follow timelikes curves, and the

massless ones null curves.

Let us now define the notion of future and past of a point, which will be of the uttermost

importance in the following.

Definition 1.15. The chronological future I*(p) (resp. chronological past I~ (p)) of p € M is the
set of events that can be reached by a future (resp. past) directed timelike curve starting from p.
For any subset & > M, we define I*(¥)= U I*(p).

pes

The definition of the causal future is analogous, except that it includes null curves.

Definition 1.16. The causal future J*(p) (resp. chronological past J(p)) of p € M is the set of
events that can be reached by a future (resp. past) directed causal curve starting from p. For any

subset ¥ > M, we define JE(F)= U JE(p).
pes

I*(p) can be shown to be an open set, so is I*(.%#) as a union of open sets. One can show that

J*(p) is a closed set when the spacetime is globally hyperbolic (see [57]).

The particularly simple example of Minkoswki’s space illustrates very well these notions,
as seen in Fig. 1.3. The interior of the future null cone is I*(p), while J*(p) consists of all
points in and on the future null cone. This future null cone is simply the boundary of I*(p):
oI (p) = JH(p)\I*(p).

As will be explained in Sec. 4, a way of looking for singularities on a manifold consists in
studying geodesics which should not stop abruptly at a finite affine parameter if no singularity is

present. Let us first define intextendible geodesics.

Definition 1.17. A geodesic y: %, — M is said to be maximal or geodesically inextendible if the
domain %, of y is the largest possible.

This allows defining geodesic completeness, a notion that will play a key role in the demon-

stration of Penrose’s singularity theorem (1.3).
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Definition 1.18. A manifold ./ is said to be geodesically complete if every inextendible geodesic

is defined on the entire real line.

Another important notion in Penrose’s theorem will be the one of Cauchy surface. We first

need to define achronal sets and boundaries as follows.

Definition 1.19. A set .# is said to be achronal if there are no two points with timelike separation,
ie. I'(FA)nF =9.

Definition 1.20. An achronal boundary is a set of the form 01* (%), for some & < M.

We now have all the tools to introduce Cauchy developments, and consequently Cauchy

surfaces.

Definition 1.21. The future (resp. past) Cauchy development D" (%) of an achronal set ¥ em-
bedded in a manifold ., or domain of dependence, is the set of all points p € 4 such that every

past (resp. future) inextendible causal curve through p intersects .

Definition 1.22. A Cauchy surface is an achronal subset # of 4 which is met by every inex-
tendible causal curve. Equivalently, & is such that D~ (¥)uD*(¥)= 4.

In the following, we will make a synonymous use of the presence of a Cauchy surface and of

the property of global hyperbolicity. This stems from the following theorem.
Theorem 1.2. ./ is globally hyperbolic if and only if 4 admits a Cauchy surface.

When a spacetime is not globally hyperbolic, it admits no Cauchy surface and hence possesses

a Cauchy horizon (for concrete examples, see App. A.4).

Definition 1.23. Let X be a partial Cauchy surface, i.e. a Cauchy surface for only some part of
spacetime. The future (resp. past) Cauchy horizon is the boundary of D*(Z) (resp. D*(Z)).

2.4.2 Black holes: a first approach

The aim of this section consists in giving a first definition of a black hole, before studying in detail
various black hole spacetimes in Chapter 2. A black hole can be seen as region of spacetime from
which nothing can escape, neither matter nor light. To make this definition more precise, we will
need to introduce the concept of future infinity, which is best represented on a Carter-Penrose
diagram.

These diagrams, also called conformal diagrams, are a very convenient way of representing a

whole spacetime on a sheet of paper. Their key properties are the following:
1. light rays propagate at +45°
2. the infinities are brought back to a finite distance.
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Definition <t7 7’) (7’7 X)
+ (400, +00)
572 future null infinity . (r—x,0<x<m)
(t — r) finite
— . . (_007 +OO)
f past null infinity (x—m0<x<m)

(t + r) finite

. future timelike .
7 infinity (400, finite) (7,0)

- past timelike .
7 infinity (—o0, finite) (—m,0)

7:0 spacelike infinity (finite, +00) (0,7)

Table 1.1: Definitions of timelike, null and spacelike infinities in Minkowski’s spacetime, in terms of the initial
coordinates (¢,r) as well as of the conformal ones (7, ).

Let us define more precisely the latter property, by considering the simple example of Minkowski’s

spacetime. The metric reads, as seen previously:
ds? = —d¢? + dr? + r2d6? + r?sin? 6%dp? (1.44)

By making the (non-trivial) coordinate change

T = arctan(¢ +r)+arctan(t —r) , (1.45)
x = arctan(t +r)—arctan(t —r), '
one can rewrite eq. (1.44) as
1 2
ds? = (—) [~d7? +dy? +sin? y?(d6? + sin® §%d¢?)) (1.46)
COST +COoSY

Thanks to the arctangent function, the new coordinates (7, y) remain finite when the previous
coordinates (¢,r) diverge. This is illustrated on Table 1.1, where we define future and past
infinities.
The line elements in brackets, in the r.h.s. of eq. (1.46), defines a metric conformally related
to g:
guditdx" = —dr2+ d)(2 +sin? )(Z(dH2 +sin? 62d(p2) . (1.47)
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(a) Minkowski’s spacetime. (b) Oppenheimer-Snyder’s collapse of a star.

Figure 1.7: Carter-Penrose diagrams of the Minkowski spacetime and the Oppenheimer-Snyder collapse. On the
latter, the collapsing star is depicted in grey. Each point on the diagram is a 2-sphere, and light rays propagate at +45°.
They can always reach .#* on Minkoswki’s diagram, while those in the black hole region 9 of the Oppenheimer-Snyder
diagram are forced to fall into the singularity (r = 0).

S = 77 U.#" is said to be the conformal boundary of (.#,g) within the conformal completion
(M = MU I, §). The complete Minkowski spacetime is represented by the Penrose diagram in
Fig. 1.7(a).

On this diagram, radial lights rays propagate at +45°. This is simply because

guvdatds’ =0 = §,,di'dx" = 0 = dr? =dy? . (1.48)

In such a spacetime, all null geodesics terminate on .#* and the timelike geodesics end on i "
(after potentially crossing r = 0). In a word, no geodesic is trapped in a compact region forever.

This is expected in Minkowski’s spacetime, where no black hole is present.

But this may guide us to give a global definition of a black hole. This rather formal definition
consists in considering a black hole as the set of points of .4 that are not in the causal past of
future null infinity, i.e.

B=M\IT (I )NM). (1.49)

The event horizon, a null codimension 1 hypersurface causally separating the black hole region
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from the rest of spacetime, is then

I =0R . (1.50)

One should note that these definitions of the black hole and the event horizon are teleological,
and thus prevent any human being from ever claiming the observation of a black hole... Indeed,
they involve future null infinity and thus require the knowledge of the entirety of spacetime: an

observer would hence need to wait for the end of time before announcing his discovery.

The concept of black hole encoded in eq. (1.49) is best grasped when considering an actual
example, such as the Oppeinhemer-Snyder collapse of a star. It is actually in order to avoid
repeating the locution “completely collapsed object” that John Wheeler contributed to popularise
the term “black hole” in 1967 6. The associated Penrose diagram is shown in Fig. 1.7(b), where
the shells of collapsing matter are pictured in grey. This spacetime can be divided into two zones,
on one side or the other of the event horizon (blue line). Outside, the situation seems rather
similar to Minkowski’s spacetime: radial outgoing null rays can reach .# *, and timelike observers
i*. However, inside the % zone the situation is dramatically different: every causal curve is
doomed to fall towards r = 0, which leaves it no choice but ending its trajectory on the curvature
singularity (which is called so because some curvature scalars, as the Kretschmann scalar K,
diverge at r = 0). Hence no observer nor light ray going crossing the event horizon will ever be

able to escape.

3 Einstein’s equations

3.1 Formulation of the equations
3.1.1 Energy-momentum tensor

Before connecting the curvature of spacetime to its matter content via Einstein’s equations, one
has to define this content. More precisely, one has to do this in a covariant way, i.e. so that that

any two observers will agree on the matter content.

To this end, let us consider the simple example of dust, i.e. of a time-dependent distribution
of electrically neutral non-interacting particles, each of rest mass my. An observer at rest with
respect to this distribution of matter will measure the proper energy density of the fluid, which
is pg = nomy (ng being the density of particles). Now, what density would measure an observer
with constant velocity v? Since, due to Lorentz transformations, lengths are contracted in the

direction of motion, one gets

6the name was shouted at him during a conference, but it was actually first coined during the First Texas
Symposium on Relativistic Astrophysics in Dallas, in 1963 [16]
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mo—7Yymo
(1.51)
no—1Yyno,
where y is the Lorentz factor defined in eq. (1.5):
p2\ 72
c
Hence, the energy density of the fluid seen from the observer with velocity v becomes:
2

Actually, it transforms as the 00-component of a rank-2 tensor. This quick argument encourages
us to define the matter content of a spacetime via a rank-2 tensor named energy-momentum

tensor as follows.

Definition 1.24. The energy-momentum tensor, or stress-energy tensor T of a fluid, is a symmetric

tensor of type (0,2). T is such that an observer at rest with respect to the fluid will measure:
1. an energy density T,
2. an energy flux ¢T% in the i-direction,
3. a momentum density T'°/c in the i-direction,
4. the rate of flow T of the i-component of momentum per unit area in the j-direction.

The energy-momentum of a fluid satisfies a conservation equation which enforces the conser-

vation of both the energy and momentum associated with the fluid:
VT =0 (1.54)

Most of exact energy-momentum tensors are only known in very specific and often simplified

situations (with a high degree of symmetry), such as the dust previously mentioned. Among all
the possible expressions for the energy-momentum tensors, physicists have thus tried to define
the “physically reasonable” ones. That is where the energy conditions come from; they play a
central role in the singularity theorems (Section 4.2).
The weak energy condition, for instance, imposes that every timelike observer must measure
non-negative energy densities. The expression of these conditions in terms of the components
of the energy-momentum tensor (see [96]), as well as the implication links between them, are
visible in Fig. 1.8.

One should regard these conditions with caution. Indeed, the strong energy condition is
currently violated by the acceleration of the expansion of the universe [10], and the null energy
condition is violated in quantum experiments involving Casimir’s effect [52]. In Chapter 6, our
goal will precisley be to violate the weakest of energy conditions, the null energy condition, in

order to make dynamical regular black holes evaporate.
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Dominant Strong
—TMV u” is null 1

or timelike, and <le - §T9W) ufu” >0
future-directed

Weak
T, u"u” >0
Null
T, k"k” >0

Figure 1.8: Main energy conditions, as well as their causal relations. The null energy condition is the weakest one,
implied by all the others: when violated, so are all energy conditions.

3.1.2 The equations

We now have a way of describing the matter content of a spacetime, but it remains to relate it to
the curvature of the latter. A simple way consists in building a rank-2 tensor out of the Riemann
curvature tensor. Einstein first used the Ricci tensor R, but realized it was not divergence free. By
conservation of energy and momentum, he could thus not equate R,; with T;;. He then defined

the now famous Einstein tensor G, leading to Einstein’s equations:

1
Gup =Rgp — ERgab =81Tyw, or G=8aT, (1.55)

where the 87 factor ensures that one recovers Poisson’s equation in the weak-field limit. Eq.
(1.55) contains 16 equations, but we can as of now remove 6 of them due to the symmetry of the
tensors involved. An additional 4 equations (one for each coordinate) can be removed due to the
general covariance of the theory under diffeomorphisms. This latter step actually directly stems
from the identity

V.G =0. (1.56)

Finally, this leaves us with 6 independant equations to describe the spacetime formed by a given

source of matter.
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Einstein’s equations can be written in an even more general form, adding a cosmological

constant A to the Lh.s. of eq. (1.55) while preserving its divergence-free property:

1
Rab — §Rg“b + Agab = 87‘[Tab . (1.57)

3.2 Lagrangian formulation: Einstein-Hilbert’s action

Einstein’s equations can be reformulated using the variational formalism, which will prove useful

in Chap. 3. Let us introduce the action

S[gm/,(P] = SEH[gyv] + Smat[g/,tw (P]

. 1 (1.58)
:fd X\/—8 (—ffEH+$mat s
167

where Sgg is the Einstein-Hilbert action, of lagrangian density gy = R*Y g,y = R. £,y is the
lagrangian density of matter fields, represented by the variable ¢.
By the principle of least action, a variation of the action (1.58) according to a variation g, —

guv +0gy of the metric must lead to

52 (SgH+Smat)=0. (1.59)

The variation of the Einstein-Hilbert action requires to compute the variation of the Ricci
tensor, hence of the Riemann tensor and the Christoffel symbols. The computational details are

not of interest here, and can be found in [76]. One gets

0Sen _ V-8 V-8
oghv 167 167

Hence, in the absence of matter (Zpnat = 0), eq. (1.59) reduces to Einstein’s equations in

1
(RIJ'V - §Rguv) = G#v . (1.60)

vacuum:

1
Ry~ 5Rguw=0. (1.61)

To obtain the full Einstein’s equations in presence of matter, one has to define the energy-

momentum tensor of matter as follows:

Ty =——— : (1.62)

Even if this definition may seem ad hoc, it can actually be shown (see [76]) that the r.h.s of eq.
(1.62) is a divergence free symmetric tensor, hence enforcing the conservation of energy and

momentum.

Finally, we have only considered the variation of the action (1.58) with respect to the variation

of the metric. But one can also consider variations with respect to the variable ¢, encoding
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the matter fields. The Einstein-Hilbert part of the action will not be affected by this variation,
hence the resulting equations will be the equations of motion of the matter fields in the curved

spacetime.

4 Singularity theorems

What is so special about singularities in General Relativity? How can one explain the profusion
of singularity theorems, while singularities are also known features of Newton’s and Maxwell’s
theory? Well, this is simply because in the framework of General Relativity, singularities can

occur regardless of the degree of symmetry of a physical system.

Let us consider the collapse of a perfectly spherical nonrotating shell of dust. In Newton’s
theory, this leads to a singularity at the centre because all the matter reaches r = 0 simultane-
ously. Had we started with a slightly distorded configuration of matter, no singularity would have
occured.

In General Relativity, a nonspherical gravitational collapse leads to a singularity because the
keypoint is that there exists a trapped surface, i.e. a surface from which particles following
timelike or null curves can only go to decreasing values of the radial coordinate. These trapped
surfaces are associated with a very strong gravitational field, dragging back even the outgoing

light rays emanating from the surface.

In this section we will define precisely what a singularity is, before exhibiting the first theorem
which proves the existence of such a singularity regardless of the symmetry of a specific physical
configuration: Penrose’s 1965 singularity theorem [94]. We will then go through the proof in
details in order to understand the role of its assumptions, and to be able to circumvent it when
we will work with non-singular black holes. Finally, we will merely quote another singularity

theorem formulated by Hawking and Penrose in 1970 [68].

4.1 What is a singularity?

Sketching the notion of singularity is a risky business, that we shall now undertake with caution
following [67, 122]. We could be tempted to identify singularities as the locus in spacetime where
curvature blows up, as was the case with the gravitational collapse 2.4.2. But we should not
forget that a spacetime consists of a manifold .# together with a metric g defined everywhere on

A . Therefore, singularities such as r = 0 in Schwarzschild’s solution are not part of spacetime.

Hence, a criterion for defining singularities could take advantage of the "holes" left by their
removal from spacetime. A physically relevant way of exploring the presence of these "holes" is to

follow observers along timelike inextendible geodesics, i.e. geodesics whose domain of definition is
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the largest possible (Def. 1.17). If the affine parameter of this geodesic does not cover the entire
real line, the geodesic is said to be incomplete (Def. 1.18). It means that the trajectory of our
observer ends after or before a finite interval of proper time, which is a good enough reason to

call such a spacetime singular.

This timelike (and null) geodesic completeness is precisely what is established by the singu-
larity theorems under certain assumptions, as we shall see in the next section (4.2). But these
theorems are not exactly forthcoming with details regarding the nature of singularities. They
establish that there exists at least one timelike or null incomplete geodesic, but not whether it is
a curvature singularity (like in Schwarzschild’s spacetime) or a non-curvature singularity (like
in Taub-NUT spacetime, see [87]). Conversely, it should be noted that a curvature singularity,
which stems from the divergence of some second derivatives of the metric, does not imply the

incompleteness of any geodesic [37].

Despite the difficulties generated by the quest for a definition of singularities, we need a

practical definition for the singularity-free black holes we will be considering in this thesis.

Definition 1.25. We will consider that a spacetime is non-singular, or regular, if it is timelike

and null geodesically complete and does not contain any curvature singularity.
In practice, we will check that:

(i) the assumptions of Penrose’s singularity theorem are not simultaneously satisfied, i.e. that
we have a large enough leeway to circumvent the theorem,

(i) the curvature scalars do not diverge.

This being said, one should keep in mind that the above definition is not ideal, as the two

following points illustrate very well:

¢ there exists spacetimes with a non-zero Riemann tensor but whose curvature scalars all
vanish [105],

¢ there exist geodesically complete spacetimes which contain an inextendible timelike curve
of bounded acceleration and finite length, which should then also be considered singular
[60].

4.2 Penrose’s singularity theorem (1965)

4.2.1 Notion of trapped surface

The cornerstone of Penrose’s theorem is the presence of a trapped surface, which describes regions

of spacetime subject to very strong gravitational fields.
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Definition 1.26. A trapped surface X in M is a closed (i.e. compact without boundary)’ co-
dimension two spacelike submanifold of . such that the two families of ingoing (—) and outgoing

(+) null geodesics orthogonal to X are converging on 2: 0_<0and 0+ <0on Z.

By comparison, a normal surface is such that 6_ < 0 and 8, > 0. The fact that 6. <0 on
trapped surfaces expresses the very strong gravitational field which characterizes them: even

outgoing light rays are directed towards decreasing values of the radial coordinate r.

In the following chapters we will also make use of anti-trapped surfaces. They are defined
similarly to trapped surfaces, except that this time the ingoing vectors are directed towards

increasing values of r: 0_ >0 and 6, > 0.

The boundary between a normal surface and a trapped (or anti-trapped) surface is a trapping

horizon. These trapping horizons fall into four different categories, which are detailed in App. A.

4.2.2 Formulation and proof

Theorem 1.3 (Penrose, 1965 [94]). Let ./ be a spacetime satisfying the following conditions:
(i) A is globally hyperbolic
(i) .4 possesses a noncompact Cauchy surface S

(iii) Ry kHEY =0 for all null vector k (null convergence condition).

If M contains a trapped surface Z, then 4 is future null geodesically incomplete.

Numerous examples of non-singular black holes will be displayed through this dissertation,
it is thus of the uttermost importance to understand how these models manage to circumvent
Penrose’s singularity theorem. For that purpose, we will study in detail a proof of this theorem
which can be found in [57].

A schematic view of the proof is given in Fig. 1.9. The general idea is to construct a specific
future inextendible null geodesic y in the boundary of the future of X, 017 (X), and then to show
that it must be future incomplete. It should be noted, as emphasized in [94], that no assumption
of symmetry is made.

In order for this geodesic not to escape from dI*(X) and to be inextendible, 1" (X) must not
be compact. This is proven in step 1 of Fig. 1.9: if 0I*(Z) were compact one can show that it
would be a compact Cauchy surface, which is incompatible with the assumption of existence of a
noncompact Cauchy surface S given that all Cauchy surfaces are homeomorphic. As a boundary,
0I*(2) is closed; this allows constructing a sequence of points g, in 0I*(Z). This sequence can

diverge to infinity due to the noncompactness of I (Z) (step 2). It is then shown in step 4 that

7In this dissertation, when refering to a trapped surface, we will by definition consider that it is a closed surface
(contrarily, for instance, to Hawking & Ellis [67]).
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all points q;, can be reached by a null geodesic y;, starting from X. By compactness of X (step 5),
the sequence of geodesics ), converges towards y, an inextendible null geodesic in 01" (Z) (step 6).
Step 9 is the crucial point of the proof: the Raychaudhuri equation, to which is applied the null
convergence condition (step 7), gives the evolution of the null expansion in the outgoing direction
of the hypersurface H which contains y. Since X is trapped, the inverse of the expansion 6 1
must be negative there, and then reach 0 from below in a finite affine time. Hence 6 diverges in

a finite affine time, which shows that y is future incomplete.

Let us now give the formal proof, following the steps of Fig. 1.9 and giving the details of each
of them.

Step 1

We will show that the existence of a noncompact Cauchy surface S in .# implies that the
boundary of the future of a trapped surface X is noncompact. To do so we will need the following

two propositions, which are standard results of differential geometry whose proof is given in [92].

Proposition 1.1. Let S c .. An achronal boundary dI*(S), if nonempty, is a closed achronal C°
hypersurface in .

Proposition 1.2. If S is a compact C° achronal hypersurface in a globally hyperbolic spacetime
A, then S must be a compact Cauchy surface for /.

Let us start with the future of the boundary of a trapped surface X, 0I*(X), which is by
definition an achronal boundary (see Def. (1.20)). By Proposition (1.1), dI*(Z) is an achronal C°
hypersurface.

Let us now assume 01 *(Z) to be compact. By Proposition (1.2), dI*(X) must then be a compact
Cauchy surface. However, by assumption of the theorem, there exists a noncompact Cauchy
surface S for .4 . Since all Cauchy surfaces are homeomorphic, this leads to a contradiction and

to the conclusion that dI*(Z) must be noncompact.

Step 2

0I*(X) is a boundary, hence it is closed. Then one can build a sequence of points g, in 0I*(X), and

since 01 " (X) is noncompact this sequence can diverge to infinity.

Step 3
In order to prove step 3, the following proposition is needed.

Proposition 1.3. In a spacetime M, if q is in the causal future of p but not in its timelike
future, then any future directed causal curve from p to g must be a null geodesic (when suitably

parameterized).
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S is a noncompact Cauchy surface

¢

A () =J" O\ (D) dl" (X) is noncompact dI"(X)is closed
: 9 |
each gedl"(X) lies on there exists a sequence T is a

anull geodesic in 1" ()
with past endpoint on X

of points {g,} € I (X)
that diverges to infinity

R k'k">0

v

¢

for each k, there is a null
geodesic y, from X to q,
contained in I (%)

trapped surface

X is compact

¢

9-1(/1)\H > 90-1\H %

there exists an inextendible null
geodesic y contained in a smooth 6," y s 0 4-@'
null hypersurface H Cc oI"(X)

0 , T ina finite affine time

9

M is future null
geodesically incomplete

Figure 1.9: Schematic view of a proof of Penrose’s singularity theorem (1965). The assumptions of the theorem are
depicted by red boxes. The arrows represent logical links between the various steps of the proof, and the numbers

indicate the order of reading.
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Figure 1.10: Inextendible geodesic in I (Z) contained in a null hypersurface H and emanating from a trapped
surface Z. It is the geodesic constructed explicitly at step 6 of the proof (Fig. 1.9), which will prove to be incomplete.

0I*(X) is by definition the closure of I*(X) deprived of its interior, i.e. dI*(Z) = J T (Z)\I*(Z).
Hence each g € I (X) is in the causal future of a point on X but not in its timelike future. By

Proposition (1.3), ¢ must thus lie on a null geodesic in 0I*(X) with past endpoint on X.

Step 4

The result of step 3 can be applied to the sequence of points q. Hence, for each & there is a null

geodesic yy from X to g, which is contained in oI (2).

Step 5

By assumption of the theorem, X is a trapped surface, and in particular by definition a closed

codimension two spacelike submanifold of .4 . Hence, X is compact.

Step 6

Since X is compact, there must exist a subsequence y;, which converges to a future inextendible
null geodesic y contained in dI*(X). As seen in Fig. 1.10, this geodesic can be chosen outward
pointing and is contained in a smooth null hypersurface H < dI*(X). It remains now to show that
v is future null incomplete. To do so we will need to compute the null expansion scalar of H along
Y.

Step 7

The null expansion scalar 8 = 6(1) of H along y is given by the Raychaudhuri equation:

do 1
T (1.63)

where k* is tangent to y. Assuming the null convergence condition, and since the geodesic

congruence generated by k& is irrotational (w = 0), the Raychaudhuri equation becomes:
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—| =-=0 1.64
Ay AR ( )
hence:
d _; 1
—0 >—. 1.65
da H 2 ( )
Finally:
A
0t =6, +=, (1.66)
H H 2

where 6 ° is the expansion scalar of H on X.

Step 8

2 being a trapped surface, the expansion scalar in both ingoing and outgoing null directions must

be negative. Hence, 961|H <0.

Step 9

Considering the elements of steps 6,7,8 altogether, we are now able to show that H(A)| 5 diverges
in a finite affine time. Indeed, since 6 1| g <0, H‘1| g must reach zero as A increases. Thus

9|H — —o00 in a finite affine time A = -2 061|H.

Step 10

The geodesic y is thus not defined for 1 > -2 6, 1 | - Hence v is not defined on the entire real line,

and by Def. (1.18) ./ is future null geodesically incomplete.

4.2.3 Circumventing the theorem

For the purpose of studying non-singular black holes, let us now discuss the assumptions of
Penrose’s theorem that we could violate. Actually the only one that we will not call into question is
the existence of a trapped surface, since the models of black holes to be studied in this dissertation
all possess at least a trapping horizon. But this leaves us several options to circumvent the

theorem:

¢ violate global hyperbolicity,
* consider a spacetime .« with a compact Cauchy surface,

* violate the null convergence condition R,k k" = 0, i.e. violate the null energy condition

assuming Einstein’s equations hold.
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A violation of global hyperbolicity is equivalent to the absence of a Cauchy surface in the
spacetime. This situation will be illustrated with Bardeen’s black hole [11], which dates back
to 1968. As pointed out by Hawking and Ellis [67], this spacetime satisifies all the conditions
of Penrose’s theorem but the existence of a Cauchy surface, it contains trapped surfaces but no
singularity. Another example of such a spacetime is Hayward’s static black hole [71], that will be

presented in detail in Sec. 1.2.

Is there any interest in building non-singular black hole spacetimes with a compact Cauchy
surface S? Actually, there is not. Indeed, the assumption of noncompactness of the Cauchy surface
was used at only one place in the proof, in the first step. The key point was that if 0I*(Z) were not
only a C° achronal hypersurface but also a compact one, it should be a compact Cauchy surface
(Proposition 1.2). S being a noncompact Cauchy surface, this led to a contradiction since Cauchy
surfaces are homeomorphic, and thus to the noncompactness of I (X).

But as pointed out by Hawking & Ellis in [67], one can replace the noncompactness of S by the
assumption of existence of a future inextendible curve from S which does not intersect I (X).
This amounts to assuming that an observer can avoid falling into the collapsing star, which is
well motivated physically. In this case the hypersurface 0" (X) is not a Cauchy surface since it is
not crossed by the observer. At least one of the assumptions of Proposition (1.2) must thus be

violated, it happens to be the compactness of I " (X) since by assumption ./ is globally hyperbolic.

The last possibility consists in violating the null convergence condition, which is tantamount
to the null energy condition if Einstein’s equations are satisfied. A violation of the energy
conditions is often related to the presence of quantum effects, for instance the weak energy
condition is violated in the Casimir effect [52]. In Chap. 6, we will introduce regular dynamical
black hole models possessing a Cauchy surface but violating the null energy condition, which

prevents them from the conclusions of Penrose’s theorem.

4.3 Hawking & Penrose’s singularity theorem (1970)

Assuming the existence of a Cauchy hypersurface and the presence of a trapped surface, the
Penrose theorem leads to a breakdown of our ability to predict the future [67]. Indeed, either a
singularity forms, or a Cauchy horizon is required so that it does not form. But il may appear
more physically motivated to drop the global hyperbolicity condition than to accept the presence
of a singularity. That is why Hawking and Penrose formulated a theorem which does not require

the global hyperbolicity of the spacetime, nonetheless predicting the existence of a singularity.

Theorem 1.4 (Hawking & Penrose, 1970 [68]). The spacetime (. ,g) is not timelike and null
geodesically complete if:

1. the null convergence condition is satisfied: R, ,k*k" = 0 for all non-spacelike vector kH
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2. the generic condition is satisfied
3. the chronology condition holds on . (i.e. there are no closed timelike curves)
4. There exists at least one of the following

(i) a compact achronal set without edge
(i1) a trapped surface
(iil) a point p such that on every past (or every future) null geodesic from p the expansion 6

of the null geodesics from p becomes negative

It should be noted that the null convergence condition is tantamount, if Einstein’s equations
are fulfilled, to
1
T;w_iTaaguv kFEY =0, (1.67)

which is nothing but the strong energy condition (see Fig. 1.8).
Finally, we notice that Theorem 1.4 does not make any mention of future incompleteness.
It can indeed be applied to a past trapped surface in a cosmological setup to show that the

associated spacetime is past geodesically incomplete, i.e. that the Universe emerged from the

Big-Bang singularity.
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CHAPTER

BLACK HOLE SOLUTIONS IN GENERAL RELATIVITY

= [T e DTS N O

rd~n=t(w) n=j ‘nh wsr m 3h.t!
“C’est dans I’horizon que m’ont été données vie et puissance !”
(Textes des Sarcophages IV, 109a, S1C [42, 64].)

olutions to Einstein’s equations are reputedly hard to find, due to the nonlinearity of the

latter. But various solutions do exist, in the astrophysical or cosmological regime. We will

focus in this Chapter! on the former, which incidentally gave birth to the very first solution

to Einstein equations, namely the Schwarzschild solution. This static metric, describing the empty

spacetime around a spherically symmetric object, was obtained by Schwarzschild in 1915 [104]

and will be discussed in Section 1. A generalization of this spacetime to the case of a charged, still

static body, was found by Reissner and Nordstrom. It will be detailed in Section 2, and the metric

will be of interest when we obtain black hole solutions from modified theories of gravity in Chapter

3. We will then move on to a stationary solution in Section 3, namely Kerr’s metric, describing the

spacetime associated with a rotating black hole. This metric will be the basis for the non-singular

model of a rotating black hole at the center of the Galaxy that we propose and study in Chapters 4

& 5. Finally, we will present a simple model of collapse, given by Vaidya’s metric (Section 4), which

we will use in Chapter 6 to propose models of collapse leading to non-singular black holes.

Contents
1 Schwarzschild’s solution. . . . .. ... ... ... .. .. ... . .
2 Reissner-Nordstréom solution . . . . . ... ... ... ... .. ... .. .. .. ... .
3 Kerr'ssolution . .. .. ... .. .. e
4 Vaidya’s solution and gravitational collapse . . . . ... ... ... ..........

1The main sources used to write this chapter are the following: [96], [63], [76], [31] and [67].
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CHAPTER 2. BLACK HOLE SOLUTIONS IN GENERAL RELATIVITY

1 Schwarzschild’s solution

1.1 Solving Einstein’s equations in vacuum

Let us start with a spherically symmetric metric cast in its most general form:
ds? = —e2YEIF (¢, r)dt? + F1(¢, r)dr? + r2d6% + r? sin 0d > (2.1)

The geometrical part of Einstein’s equations, namely the Einstein tensor, is computed in details
in App. B.1. The result is

_rF’+F—1

t
Gly=—— (2.2)
F
G,=—— (2.3)
r
Fe™2v
t _
Gr=—13 (2.4)
2rFy' +rF' +F -1
Gr, = 2.5)
r
4y . . ..
G%=G6%,= ;FS [2rF*e®V(y? +y")+ F3e2V(rF" +2F) - rFFy—2r F? + r FF + (3rF' + 2F)e?V F3y/]
(2.6)
We can parametrize F using a function M(¢,r):
2M(¢
Fry=1-2ME") @2.7)
Assuming Einstein’s equations G, = 87Ty, we get:
oM
E = —47T7‘2Ttt (28)
oM
E = 47T7‘2Trt (29)
0
0—"; = 4nrF (=T, +T7,) 2.10)

We want to solve Einstein’s equations in vacuum, i.e. with a vanishing energy-momentum tensor.
Solving egs. (2.8) and (2.9), we get M = M, = cst. Moreover, eq. (2.10) yields ¢’ = 0. Along with
M’ = M =0, this condition is sufficient to satisfy the last Einstein’s equations: G/, = Gag = G‘p(p =0.
We are thus free to choose 1 = 0 (which amounts to reparametrizing time) hence leading to the

line element:

2M, 2Mo\ !
ds2:_(1_ O)dt2+(1— 0) dr? +r2d6? + r?sin? 0d¢? (2.11)
r r

Starting from a spherically symmetric metric and solving Einstein’s equation in vacuum, we
actually ended up with a static solution: no component of the metric with line element (2.11)

depends on the time ¢. We have thus proved Birkhoff’s theorem.
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Theorem 2.1 (Birkhoff). The spacetime geometry outside a general spherically symmetric matter

distribution is the Schwarzschild static geometry

Actually, the line element (2.11) represents the Schwarzschild solution?, and the coordinates
(¢,r,0, @) are the Schwarzschild-Droste coordinates. This metric describes the gravitational field

around a spherical body of mass M.

Two singularities appear in this metric, since it diverges for » =0 and r = 2M. But these two
singularities are quite different in nature. To see this, let us compute the Ricci and Kretschmann

scalars:

R=R,,g" =0 (2.12)
48 M2

K =RyypoRMP7 = r—6° (2.13)

The Kretschmann scalar diverges at r = 0, which is thus the locus of a curvature singularity.
However, as we shall see in the next section, r = 2M is merely a coordinate singularity which

can be dealt with by an appropriate choice of coordinates.

1.2 Crossing the horizon

Let us look at the radial null geodesics of Schwarzschild’s spacetime. The radial null curves are
defined by ds? = 0 with df = d¢ = 0. We thus get

ﬁ
dr

-1
ZMO) . (2.14)

afi-

r
This quantity gives the outgoing (+) and ingoing (—) slopes of a lightcone in a (¢,r) diagram. Hence,
asr — 2My, dt / dr — +oo and the lightcone seems to close up (Fig. 2.1). The coordinates (¢,r)
are thus suited only to describe the regions with 0 < r <2M( and r > 2Mj, and the hypersurface
r =2M, is a coordinate singularity. In terms of the ranges of the Schwarzschild-Droste coordinates
(¢,r,0,p), these regions are:

M =R x (2Mo, +00) x S? ,

(2.15)
M =R x(0,2Mg) x S?
The full region is called the Schwarzschild-Droste domain:
Msp = M7 U M - (2.16)

Let us now obtain a new coordinate system defined both on .#7, .#1, and on the hypersurface

r=2My. Eq. (2.14) can be integrated, yielding:

t=+4r,+cst, with r,=r+2Myln

r
2_Mo - 1’ (2.17)

2obtained by Karl Schwarzschild in 1915, who was then a German soldier on the Russian front.
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t/ M,

— XX >

PO

1 OO
i
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Figure 2.1: Ingoing (red) and outgoing (blue) null geodesics on the Schwarzschild-Droste domain with 6 = 7/2, ¢ = 7.
The lightcone, defined by the intersections of these geodesics, closes up as one approaches the Schwarzschild horizon
at r =2Mj (in black).

From the two solutions of eq. (2.17), we can define the advanced and retarded times v and u such
that:

t=-r.+v (2.18)
t=r.+u (2.19)

When ¢ increases, r must increase for a fixed v and decrease for a fixed v. Hence, the parameters
u and v label respectively radial null outgoing and ingoing curves. Theses curves actually are

null geodesics with parameter A =r, as can be shown using eq. (1.39).

We can now use for instance v as a spacetime coordinate. The line element (2.11) can then be

cast in terms of the null ingoing Eddington-Finkelstein coordinates

2M,
r

ds?=-— (1 - ) dv? + 2dvdr + r2dQ? , (2.20)
where dQ2 = r2d6? + r?sin?dg?. The metric g associated with this line element erases the
coordinate singularity at r = 2M, since both the metric and the inverse metric are regular there

(except for 8 =0 and 0 = 7, which are merely singularities of the spherical coordinates):

M1 10 0 0o 1 0 0
eoq| 100 0 e |1 122 0 0
gwl= g g e R o e 0 22D
0 0 0 r’sin®6 0 0 0 1r%sin®0

Put another way, observers can now start from .#7, reach the hypersurface r = 2Mj in a finite

coordinate time and even cross it to reach the region .. This can be seen from the slopes of the
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lightcone in a (v,r) diagram:

0 (ingoing)
dv { ingoing (2.22)

—_— = -1
dr 2 (1 - %) (outgoing)

r

The curves satisfying eq. (2.22) are plotted in Fig. 2.2(a). They form a lightcone at each point,
which becomes more and more tilted as r approaches r = 2M from the region .#11. After crossing
r =2M,, the lightcones are so tilted that future timelike curves can only have decreasing values
of r: the region ./ is gravitationally trapped. This can be proved by computing the expansion of
null radial outgoing geodesics 6. From the results of App. A.3,

6, =2 (1 - 2M°) (2.23)

r r

Hence,
6,>0 on ./,
0,=0 at r=2M,, (2.24)
6,<0 on 1.

We conclude that the hypersurface .77, in the future of .#; and such that r = 2 M, called the
Schwarzschild horizon, is a future outer trapping horizon (FOTH). Due to the staticity of the
metric, it is also an event horizon, a no-return causal boundary. Observers crossing this horizon
and reaching .11 must then travel solely towards decreasing values of r before finally reaching

the singularity.

The advanced time v has allowed us to extend the motion of particles across the horizon in the
future of .#1: ingoing light rays with constant v = #+r* and decreasing r must have an increasing
t. We can now use the retarded time u = ¢ —r* to define a similar extension in the past of .#1. The

line element (2.11) in terms of the null outgoing Eddington-Finkelstein coordinates reads:

2M,
r

ds?=- (1 - )du2 —2dudr +r2dQ? . (2.25)

It should be emphasized that this metric now describes .#1 but also a new region .11 in the
past of .#1 with r <2M,. The light rays are now defined by

0 (outgoing)
du _{ utgoing (2.96)

— = -1
dr -2 (1 - %) (ingoing)

The lightcones in a (u,r) diagram are plotted in Fig. 2.2(b). They are particularly tilted in region
11 particles can only travel towards increasing values of 7 there. This result can be backed up

by the computation of the expansion of a congruence of null radial ingoing geodesics, using the

9_:—1(1—2M°) (2.27)

results of Sec. 3 in Chapter 1:

r r
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TN IR

7 I

(a) Ingoing Eddington-Finkelstein patch. r =2Mj is a (b) Outgoing Eddington-Finkelstein patch. r = 2M is
future outer trapping horizon (FOTH), characteristic a past outer trapping horizon (POTH), characteristic
of a black hole. of a white hole.

Figure 2.2: Ingoing and outgoing Eddington-Finkelstein patches of the Schwarzschild spacetime, obtained for
6 = n1/2 and ¢ = n. The ingoing (red) and outgoing (blue) null curves form a lightcone at each crossing point, whose
future part is drawn solely. The region . is trapped, while .Z; is anti-trapped.

Therefore,
0_<0 on M,

0-=0 at r=2M,, (2.28)
0_>0 on 1.
Hence, even ingoing lightrays have to go to higher values of r in .#11; the hypersurface such that
r =2M, between .#1 and .11 is then a past outer trapping horizon (POTH). This is why this

region is called a white hole.

1.3 Maximal extension of the Schwarzschild spacetime

The Schwarzschild metric (2.11) can also be cast in a double null form, using both u and v:

2M,
r

ds? = - (1 - ) dudv + r2dQ? (2.29)

But this form of the metric is singular at r = 2M, since the metric is non-invertible. The metric
(2.29) actually does not cover either the outgoing nor the ingoing Eddington-Finkelstein patch
because v —u =2r +4M |2th40 - 1| diverges at r = 2Mj. This issue can be cured by introducing the
null Kruskal-Szekeres coordinates on #1:

U = _e—u/4M0

2.
V = eU/4M0 ( 30)

One then has
dudv = 16M2e "~/ 4Moquqv (2.31)
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But from eqs. (2.18) and (2.19), and while r > 2M one gets

-1
(u-v)aMo _ —ri2My [T _ 1) 9.39
e e (2M0 , (2.32)
which yields
-1 32M3 oM -1
dudy = 16M2e7/2Mo (L - 1) dUdV = =0 772Mo (1 - —0) dUdv .
2M r r
Finally, the line element can be rewritten
32M3
ds? = ———Le2MoquqVv +r2dQ?, (2.33)
r
where r is defined implicitly via the relation
riaMo| _T_ _ 1) =-UV 2.34
e ( oM, ; (2.34)

which directly stems from eq. (2.32). For now, this metric describes the region .#; of the manifold,
which is such that V > 0, U < 0. There exists a very convenient way of representing even
noncompact spacetimes on a sheet of paper, via a compactification which brings back infinities to

a finite distance. We can take for instance:

U = arctanU ,
- (2.35)
V =arctanV .
And the metric can finally be written
32M? 7 Y%
ds? =~ 220 gy AU AV o400 (2.36)
r cos2U cos2V
where eq. (2.32) gives the following implicit definition of 7 in terms of U and V':
e"/2Mo (2LMO - 1) =—tanUtanV . (2.37)

As seen in Fig. 2.3(a), we can then represent the region ./, defined by U <0, V > 0 or
equivalently U € (-%,0) and V € (0,%), on a (U, V) diagram. Each point of such a diagram is a
2-sphere spanned by the coordinates (6, ¢). Ingoing light rays propagate at constant V while the
outgoing ones are at constant U. The location of r = 2M| can be found directly from eq. (2.37):
U =0 or V =0. The region .#; is then represented in Fig. 2.3(a) by a square delimited by U =0
and V=0 (r=2M;), as wellas V = % (v=+00)and U = —% (u = —o00).

The coordinates U and V (and thus U and V) are perfectly regular at the horizon, which
leads us to extend them in the future and the past as was done with Eddington-Finkelstein’s.

Let us start by describing .Z; and the future extension, like in the case of the ingoing patch of
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Fig. 2.2(a). By definition, U = —e WAMo jg negative on .1 and null for r = 2M{; a new definition

is thus needed to account for positive values of U on .#;:

(2.38)

U = +e W4Mo on /1
U =arctanU

This allows us to recover the ingoing Eddington-Finkelstein patch, as shown in Fig. 2.3(a). It
should be noted that on .11 the relation (2.37) implicitly defining r still holds. Indeed, r < 2M
and thus

1
E(v—u):rszoln(l—2LMO) , (2.39)

hence:

o"2Mo (1 _ ) = W—WAMy _ 11y (2.40)

2M

The location of the singularity in the (U, V) diagram can be easily deduced. The condition r = 0
indeed yields

tanUtanV =1 s (2.41)

and then
0=sinUsinV —cosUcosV = cos(lj+V) . (2.42)

The singularity is thus located at U +V = +3.

A similar extension can be done in the past, taking V — —V, hence covering the region .Z
as did the outgoing Eddington-Finkelstein patch. The associated (U,V) diagram is depicted in
Fig. 2.3(b).

Finally, a last region appears when one considers both the transformations U — —-U and
V — —V. This region ./ is a copy of the original normal (i.e., untrapped) region ./}, and is
depicted on the full Carter-Penrose diagram of Fig. 2.4. It is shown easily that the relation

e2Mo (ﬁ - 1) =—tanUtanV (2.43)
0

holds on each of the four regions. The coordinates (U, V) thus allow the covering of the maximally

extended Schwarzschild spacetime ./ :
o~ 2 ~ ~
M (O V)e (—g g) , tanUtanV <1. (2.44)

This maximal extension reveals the two different natures of the horizon r = 2M, which are
detailed on Table 2.1.
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U+V=-—

0|

(a) Ingoing conformal patch. (b) Outgoing conformal patch.

Figure 2.3: Ingoing and outgoing Eddington-Finkelstein conformal patches of the Schwarzschild spacetime, drawn
in terms of the compactified Kruskal coordinates (U, V). Each point of the diagram is a 2-sphere spanned by the
coordinates (6, ¢). Hypersurfaces of constant ¢ and constant r are respectively drawn in dotted blue and red lines.
They change of causal nature (from spacelike to timelike, or vice versa) at the horizon, as ¢ and r exchange roles in
the metric (2.11). Light rays propagate at +45°. Each patch is geodesically incomplete, as illustrate null past ingoing

geodesics in .1, and null future ingoing geodesics in ///I’I’I

Figure 2.4: Maximal extension of Schwarzschild’s spacetime, drawn in the compactified Kruskal coordinates
(U+,V,). It is obtained by gluing the ingoing and outgoing patches of Fig. 2.3 and adding a copy .1y of region .4} so
that every geodesic be complete (or reach the curvature singularity » = 0). The future null and timelike infinities (¥ 7,
it), as well as their past counterparts (.# ~, i”) and timelike infinity (io) are those defined on Table 1.1.
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Trapping horizon Definition Location
- ~ b3
6,=0 V.=0 U+e(0,5]
Future outer

(FOTH)
L6, <0 U,=0 vﬁ(o,g]
9 :0 I7+=0, l7+e[— OJ

Past outer

(POTH)

£,6. <0 g -0, ze{_go]

Table 2.1: Types of horizon present in the maximal extension of Schwarzschild’s spacetime, as well as their location
in terms of the coordinates (U4, V). r = 2M{ actually includes both the future and past outer trapping horizons. More
details can be found in App. A.3

2 Reissner-Nordstrom solution

2.1 Properties

The metric of Reissner-Nordstrom solution, which describes a static charged black hole, is given

by the line element

oM 2 oM, 2\~
0, g2 (1Mo, @) 42,2402 (2.45)
r r2 r r2

dszz—(l—

It is obtained by solving Maxwell’s equations, which yield an electromagnetic-field tensor with
one nonvanishing component F!" = rQ—Z, and then Einstein’s equations. @ is the electric charge of
the black hole of mass M.

A fundamental property of Reissner-Nordstrom solution is that it possesses two horizons:
an inner and an outer one. In order to prove this, let us compute the expansion of null radial
outgoing geodesics 0. As was done with Schwarzschild’s solution, we can define the advanced

and retarded times
v=t+r*
(2.46)

u=t-r*
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with ) )
d 2M?% — _
= = r( = Moln|(r=r)r=r ol + A [l (2.47)
RN 9 / Mg _ Q2 r—r_—
Then, the metric (2.45) can be cast in terms of the advanced time:
ds? = —Frn(r)dv? + 2dvdr + r2dQ? (2.48)
with Frn(r)=1- 2—1:10 + ?—:
The results of Sec. 3 in Chapter 1 apply, and the outgoing expansion thus reads
F
o, = @ (2.49)
r
Hence, the spacetime admits trapping horizons if and only if
2M 2
b.=0 — 1-20,8 (2.50)
r r

Actually, there are two horizons:

ro=Mo+\/M2-Q” (2.51)

In Schwarzschild’s case, the horizon r = 2 M actually integrated a past and a future outer
horizon. In Reissner-Nordstrom case, a similar situation occurs: the outer horizon r = r, will
integrate the FOTH and POTH, while the inner horizon r = r_ will integrate the FITH and PITH.
The FOTH and FITH are defined via 6., but the other two require computing 8_ with the ingoing
Eddington-Finkelstein metric (see App. A.3):

ds? = —Frn(r)du? — 2dudr + r2dQ? , (2.52)
In the end, the expansion
F
o = a0 (2.53)
r

vanishes as expected when r =r..

A spacetime diagram in terms of the coordinates (v,r) and (u,r) helps in understanding the
structure of the black hole (see Fig. 2.5).

On the left panel, the region .#; between the two horizons is trapped (both 6_ and 6, are
negative there), while .#; and .#111 are normal (untrapped) regions. A singularity is located at
r =0in .#1q1, it is thus a timelike surface. It is easy to verify that r = 0 is a curvature singularity,

for instance by computing the Kretschmann scalar:

X 86Mar?-12Q Mor+17Q%)

- (2.54)

Since the singularity is a timelike hypersurface, it is not reached by all geodesics entering the

trapped region. This is visible in Fig. 2.5(a): in region .#11 the lightcone is not as tilted as in
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(a) Ingoing Eddington-Finkelstein patch. r =r+ is a (b) Outgoing Eddington-Finkelstein patch. r =r+ is a
future outer trapping horizon (FOTH), while r =r_ is past outer trapping horizon (POTH), while r=r_is a
a future inner trapping horizon (FITH) past inner trapping horizon (PITH)

Figure 2.5: Ingoing and outgoing Eddington-Finkelstein patches of the Reissner-Nordstrém spacetime, obtained for
0 =n/2 and ¢ = 7. The ingoing (dotted red lines) and outgoing (dotted blue lines) null curves form a lightcone at each
crossing point, whose future part is drawn solely. The region . is trapped, while ///ﬁ is anti-trapped.

region .11, and for instance an observer can stay at a constant r <r_.

In Fig. 2.5(b), an anti-trapped region .Z/] is visible. It is a white hole region relating a
new asymptotically-flat region ///I'I’I to .1, as will become clearer after examining the maximal

extension of Reissner-Nordstréom spacetime.

2.2 Maximal extension of Reissner-Nordstrom spacetime

The metric can be cast in double null form:
ds? = —Fen(r)dudv + r2d6? + r2dQ2 . (2.55)

It is singular at r =0, r =r, and r =r_, but the last two are merely coordinate singularities. In

particular,
v-u

2

Let us first examine the singularity at r = r by introducing the coordinates

=r*—Foo when r—ri. (2.56)

U+ = ie_KJru ,
(2.57)
V+ = eKJrU N
where x, = %FIQN(m). One then has
dU,dv, = —«2U,V,dudv (2.58)

52



2. REISSNER-NORDSTROM SOLUTION

Hence, the metric reads:

ds? = Frn(r)

= dU,dV, +r2d6% + r2dQ? . 2.59
K%U+V+ +aVy+r r ( )

These new coordinates allow us to define a regular metric at r = r.. First, the coordinates are
regular there:

U,V, =570 =32 .0 when r—r,. (2.60)

To show that the metric itself is indeed regular at r = r,, we can approximate Fgry at first order

nearr=~r,:

Fen(r)=2x,(r—-ry). (2.61)
Hence q 1
.
r*= =~ —In|k (r—ry)l (2.62)
Fpn(r)  2x4 " i
Then .
UV, =52 =3k, (r—r,)=7F R;(r) . (2.63)
The metric thus reads, near r ~r,
2
ds® = F-dU,dV,r?dQ?, (2.64)
K+

and is regular at the horizon r = r,. This choice of coordinates has allowed us to go from .1 to
A1 in Fig. 2.5(a), or from .#; to ./ in Fig. 2.5(b).

However, the coordinates (U,,V,) do not allow us to cross the horizon r = r_. Indeed, r* — +o0
there and hence
UV, =5®" - Foo. (2.65)

It is then necessary to define new coordinates:
U_=¢e"*
(2.66)
V_o=Fe ™7,

These coordinates allow us to go from .1 to .11 in Fig. 2.5(a) or from //{I’I’I to .7} in Fig. 2.5(b),

following the procedure used for the coordinates (U, V).

The ingoing and outgoing Eddington-Finkelstein patches of Fig. 2.5 can now be drawn using

a compactified version of the Kruskal coordinates:

(2.67)

U. =arctanU.
Vi =arctanV,

They are visible in Fig. 2.6 below. Each patch contains both r_ and r, and thus necessitates the
use of both the coordinate sets (U_,V_) and (U,,V,).
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(a) Ingoing conformal patch. (b) Outgoing conformal patch.

Figure 2.6: Ingoing and outgoing Eddington-Finkelstein conformal patches of the Reissner-Nordstrom spacetime,
drawn in terms of the compactified Kruskal coordinates (U, V. ) and (U—,V_). Each point of the diagram is a 2-sphere
spanned by the coordinates (0, ). Hypersurfaces of constant ¢ and constant r are respectively drawn in dotted blue
and red lines. Light rays propagate at +45°. Each patch is geodesically incomplete, as illustrate null future outgoing

geodesics in .y, and null past outgoing geodesics in .#{[;.

Finally, the maximal extension is obtained by letting (U, V) take both positive and negative
values (see Fig. 2.7). For instance, there exists another copy of region .#7, ///I’ , accessible when
one considers V, — —V, (or equivalently V, — —V.). And another copy of the region .Zi1, .# 11,
is revealed when taking U_ — —U_ (or equivalently U_ — —U_).

Let us follow the timelike trajectory of a massive particle starting from ./, depicted by a
blue arrow in Fig. 2.7. The particle first crosses r, and reaches the trapped region .1, it is
then forced to go decreasing values of r before eventually reaching r_. It then arrives in the
normal region .1y containing a timelike singularity. Once the particle reaches //ZI’I*, it is in
an anti-trapped region and has to move towards increasing values of r. It then crosses r, and
reaches a new asymptotically-flat universe //ZI’ ’. At this point, the extension can be pursued by
introducing a new coordinate patch (U, V., ) specific to the outer horizon r, then a patch (U_,V_)
specific to the inner horizon r_, and so on. The maximal extension of Reissner-Nordstrom solution
consists in an infinite lattice of such coordinate patches, linking asymptotically-flat universes via

black holes tunnels.
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Table 2.2 summarizes the features of the four different trapping horizons, which are pre-
sented more formally in App. A.3. It should also be mentionned that the inner horizon r = r_
is a Cauchy horizon (see App. A.1 for details). As was shown by Poisson and Israel [97, 98],
when a perturbation is applied to Reissner-Nordstrom spacetime, near this inner horizon the
gravitational-mass parameter of the black hole increases exponentially: it is the mass inflation
phenomenon. The inner horizon of this spacetime is thus unstable. This property is not specific to
Reissner-Nordstrom solution and is actually shared by the next black-hole spacetime that we will

present, namely Kerr’s solution.

Trapping horizon| Definition Location
= V=0, U,e o,fj
Future outer 8‘“ 0 " " [ 2
(FOTH) £6,<0 d.=o, 1&[0,%]
Outer horizon
0 = v =0, U+€[—£,0]
Past outer - 2
(POTH) L6 <0 7. =0, 17;(—’5,0)
. 0 = V =0, ﬁ_e(—”,o)
Future inner + 2
(FITH) £6,>0 0 =0, Ve(—g,OJ
Inner horizon
' 6 = vV =0, ﬁe[o,f]
Past inner - 2
(PITH) L6 >0 J =o, Ve[o,gj

Table 2.2: Types of horizon present in the maximal extension of Reissner-Nordstrém spacetime, as well as their
location in terms of the coordinates (Uy,Vy) and (U, V). The outer (event) horizon r = r actually includes both the
future outer and past outer trapping horizons, while the inner horizon r = r_ includes both the future inner and past

inner trapping horizons.
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Figure 2.7: Section of the maximal extension of Reissner-Nordstrom spacetime, drawn in the compactified Kruskal
coordinates (U, V) and (U_,V_). It is obtained by gluing the ingoing and outgoing patches of Fig. 2.6 and adding
copies of normal regions so that every geodesic not reaching r = 0 be complete. The full extension consists in an infinite
repetition of the drawn block.
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3. KERR’S SOLUTION

3 Kerr’s solution

3.1 Properties of the Kerr spacetime
3.1.1 Metric of a rotating black hole

An exact solution to Einstein’s equations describing rotating black holes was found by Roy Kerr
in 1963 [78]. The Kerr metric reads

2rM 4arM,sin®0 p) 902 rMasin20
dszz—(l— rz 0)dt2— areoshn dtd<p+3dr2+2d92+sin26 P2g?y TR T ZoSln dg?
(2.68)

where
r=r?+a%cos®0, A=r?2-2Mor+a?, (2.69)

and the Boyer-Lindquist coordinates (¢,7,0, ) cover R2 x S2. M is the mass of the black hole, a

is its angular momentum (or spin) in units of M.

We can clearly see that the metric is not static anymore but stationary, since the symmetry
t — —t of Schwarzschild’s metric has disappeared. So has the symmetry ¢ — —¢: the spacetime is
not spherically symmetric anymore, but remains axisymmetric (the metric is invariant under

0 — 7 —0 and its coefficients do not depend on ¢).

A manifestation of the rotation associated with this spacetime is the dragging of inertial
frames. Let us consider an observer with zero angular momentum and 4-velocity u. Then,
u0,=0 <<= gul+8ppp=0 (2.70)
Hence, the observer has an angular velocity
_d¢  8tp 2Mar

= 2.71
d¢ oo z ( )

This velocity grows as the observer reaches smaller and smaller values of r, i.e. approaches the
black hole.

3.1.2 Ergosphere

A very intriguing property of this spacetime is that observers will even be forced to rotate below
a certain radius (depending on ), which defines the ergosphere. Let us consider a static observer,

with 4-velocity
dx*

- 2.72
a (2.72)

ut =yt =
where y is a normalization factor:

;12 1

—g . (2.73)
VvV S&tt

Y= (_g,uvfufv)
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& =0, becomes null when g4 =0, and the observers can not remain static. They have crossed the

ergosphere, which is defined by

gu=0 << r=My+\/My—aZcos2(0) . (2.74)

As in the case of Schwarzschild’s static solution, ¢ is a Killing vector since the components
of the metric do not depend on ¢. However, contrarily to Schwarzschild’s case, € -& = 0 defines
neither a Killing nor an event horizon since the ergosphere is not a null hypersurface (see App. A
for definitions). When 98; is non-timelike, an observer cannot remain at constant values of the
spatial coordinates: this happens below the trapping horizon in Schwarzschild’s spacetime, inside
the trapped region in which no particle can stay at a constant radial coordinate, while it occurs in
Kerr’s spacetime as soon as the ergosphere is crossed, i.e. inside the ergoregion in which particles
have to move in the ¢ direction. The trapping horizons, defining spacelike r = cst. regions in

Kerr’s spacetime, will be the object of study of the next section.

3.1.3 Trapping horizons

Let us thus investigate the causal structure of the Kerr spacetime, and in particular the presence
of horizons. First, we notice that some components of the Kerr metric (2.68) appear to diverge
when X =0 or A = 0. The former condition is actually associated with a curvature singularity (see
3.1.4), but the latter merely reveals coordinate singularities associated with horizons. To see this,

let us define the Kerr coordinates in order to remove the divergence of g, when A =0:

v=t+r*,
{ : (2.75)
w=@+r',
where 5 5
r*:fr T, rTzfgdr. (2.76)
A r
The metric then reads
2rM darM(r)sin?6
dsz=_(1_rT(’"))duﬂzdudr—wdvdw—zasin2(9)drdw+2d02

202 M(r)sin®0 (2.77)
+sin29(r2+a2+%)dw2.

Using the results of App. A.3.2, the expansion of null outgoing geodesics, which is vanishing at

future trapping horizons, reads
rAA

0, = ————. 2.78
T (@Z+7r2)X ( )
Hence (for r #0),
0,=0=A=0 (2.79)
Since
A=r?2—2Mor+a®=(r—-r)r—-r_) (2.80)
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with

re=Mox\/M2-a?, (2.81)

we have:

0, >0o0n . #=Rx(r;,+o00)xS2

0, =00on o ={peR2xS2, r(p)=ri}

0, <0on #r=Rx(r_,r.)xS?

0+=OonJ€inE{p€R2x§2, r(p)=r_}

0, >0o0n =R x(—oo,r_) x S2\ %

Let us now investigate the causal nature of the future trapping horizons at r=r_and r=r,.
A way of proceeding consists in studying the hypersurfaces r = cst. via their normal vector, which

is the gradient vector field Vr of components
oMr=g"o,r=g"". (2.82)
The null hypersurfaces with r = cst. will possess a null normal vector Vr obeying
g(Vr,Vr)=0, (2.83)

and thus
A

E .
From egs. (2.78) and (2.84), we deduce that the hypersurfaces r = cst. are

0=gMo,royr=g""= (2.84)

¢ timelike on .1 and .#111,
¢ null for r =r; and r =r_, which correspond respectively to #,,t and

¢ spacelike on ;.

In the end, we have that .11 is actually a gravitationally trapped region (6 < 0), while ./, and
Hout are null future inner and outer trapping horizons. /£, is the event horizon of Kerr’s black
hole while /5, is called the inner horizon; they also both are Killing horizons. As in the case
of Reissner-Nordstrom solution, it was shown by Barrabes et al. [15] that the inner horizon is

unstable against perturbations.

Finally, eq. (2.81) shows that the Kerr black hole is defined for a? < M? only. In the limiting
case a? = M?, the metric (2.68) describes an extremal Kerr black hole with only one horizon

(r_=r,). For a® > M?, there exists no horizon and the metric (2.68) describes a naked singularity.
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3.1.4 The ring singularity

We have mentioned that the radial coordinate r spans the whole real line R, to the contrary of
Schwarzschild’s and Reissner-Nordstrom solutions. For the latter, » = 0 is a singular point, the
locus of a curvature singularity. In the case of Kerr’s solution, r = 0 actually is a 3-dimensional
cylinder .7 = R x S? called the throat, with induced metric

do? = —dt? +a?cos?0do? + a®sin® 0 dg?. (2.85)
The throat can be split into three components,
To=Ty  URUV Ty (2.86)
with:
* I =Rx (O,%) x (0, 27)
* Z={peR?xS? r(p)=0 and 6=1%}
* I, =Rx(%,7)x(0,2n)

From eq. (2.85), .7;" and .7 are timelike hypersurfaces, and are thus 2-way traversable. Z,
however, is the locus of a curvature singularity. This is visible, for instance, from the expression

of the Kretschmann scalar:

48M§(r2 —a?cos?0)(Z? - 16a2r2cos?0)

o : (2.87)

which diverges when X = r? + a?c0s260 = 0. Due to its topology, Z =~ R x S! is called the ring

singularity of Kerr’s spacetime.

3.2 Maximal extension of the Kerr spacetime

The construction of the maximal extension of the Kerr spacetime is extremely similar to the

Reissner-Nordstrom one, and will thus be only briefly sketched in this Section.

The first step has already been done: it consisted in extending the original metric 2.68 in the
future by defining the Kerr coordinates (v, r, 8, y), which allowed crossing the outer (r.) horizon
starting from region .#1. Null ingoing geodesics are then characterized by v = cst. and = cst.

(as well as 0 =cst.)

Null outgoing geodesics are characterized by u = cst. and v’ = cst., with

u=t-r*,
{ (2.88)

y'=p-rt.
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The coordinates (u,r, 0, ') define a past extension of the original metric (2.68). Following a
past-directed outgoing geodesic, it will cross a past outer trapping horizon at r =r. and then a
past inner trapping horizon at r = r_. These horizons are defined by a vanishing expansion of

null ingoing geodesics 6_, whose expression is obtained in App. A.3.2:

g =248 (2.89)
=2 .

The region ./},

ingoing geodesics must travel towards increasing values of r.

comprised between r =r_ and r = r., is thus anti-trapped: 6_ > 0, and even

In order to obtain two-dimensional conformal diagrams, where lights rays propagate at 45°,
of the ingoing and outgoing patches described above, one can use u and v simultaneously. Due
to the dependence of the metric coefficients on 8, one can only draw two-dimensional conformal
diagrams for specific values of 8. Choosing for simplicity 6 = 0, the metric in double null form
reads

A
ds” = —zdudv = ~F(r)dudv, (2.90)
r a

which is singular at the horizon.

As in Reissner-Nordstrom case, one can define Kruskal coordinates specific to the outer (+)

and inner (—) horizons:

Ui=7Fe", V,y=e"",
" y (2.91)
U_=Fe ™%, V_=-e",
where x4 = %F}((ri).
The final step consists in compactifying these Kruskal coordinates:

U, =arctanU, ,
f . (2.92)
V. =arctanV, .

These coordinates are used to build the ingoing (a) and outgoing (b) patches of Fig. 2.8. An
ingoing photon starting from .#] hence crosses the FOTH r = r,, the trapped region .#11, the
PITH r = r_ and then reaches the normal region .Z1;. An outgoing photon starting from .///I’I'I

will cross the FITH r = r_, the anti-trapped region .#;;, the POTH r = r, before reaching the

normal region /. '

These patches have each extended the spacetime starting from .7, but this extension is not
maximal. Indeed, outgoing photons of the ingoing patch in .#jy stop artificially at V_ =0, just
like the ingoing photons of the outgoing patch in .# stop at U, = 0. The maximal extension of
Kerr’s spacetime, shown in Fig. 2.9, actually consists of an infinite lattice of these ingoing and

outgoing patches.
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(a) Ingoing conformal patch. (b) Outgoing conformal patch.

Figure 2.8: Ingoing and outgoing Eddington-Finkelstein conformal patches of the Kerr spacetime for 6 = 0, drawn
in terms of the compactified Kruskal coordinates o +,V+) and (U _,V_ ). Each point of the diagram is a circle spanned
by the coordinate ¢. Hypersurfaces of constant ¢ and constant r are respectively drawn in dotted blue and red lines.
Light rays propagate at +45°. Each patch is geodesically incomplete, as illustrate null future outgoing geodesics in
11, and null past outgoing geodesics in //I'I’I A major difference with Reissner-Nordstrém spacetime is the presence
of a ring singularity at r = 0 for 6 = n/2.
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Figure 2.9: Section of the maximal extension of Kerr’s spacetime for 6 = 0, drawn in the compactified Kruskal
coordinates (U, V) and (U_,V_). It is obtained by gluing the ingoing and outgoing patches of Fig. 2.8 and adding
copies of normal regions so that every geodesic be complete (as it should be since there is no singularity for 6 = 0). The
full extension consists in an infinite repetition of the drawn block.
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3.3 Deriving Kerr’s solution from the Newman-Janis algorithm

An initially ad hoc procedure was presented in 1965 by E. Newman and A. Janis to construct
Kerr’s rotating solution from the static Schwarzschild one [90]. This Newman-Janis algorithm has
later been applied more generally to known static spherically symmetric solutions of Einstein’s
equations in order to generate new rotating ones [47], as we will see in Chapter 4. In particular,
Kerr-Newman’s metric, describing a rotating charged black hole, was obtained by applying the

Newman-Janis algorithm to Reissner-Nordstrém metric [89].

Let us now detail the algorithm and apply it to Schwarzschild’s metric as a seed metric. We
will follow the five steps introduced by Drake & Szekeres [47].

1. Write the static spherically symmetric seed metric in terms of null retarded coordinates
(u,r,0,¢). Here,

2M,
ds? = - (1— —O)du2 —2dudr + r2dQ? (2.93)
r

2. Find a null tetrad Z} = (I*,n*, m*,m") such that the inverse metric be written (in our
(—+ ++) convention):

g =-I*n" -1"n* + mtm" + m"m" | (2.94)

with [, IF =mymt =n,nt =0, [ nt = -m mt =1, [,mt =n,mt =0. Here, we have

=5t (2.95)
1 2M,
nt =6f—§(1—7)5’,‘ (2.96)
- st ‘ s (2.97)
™ e %0 T Sine ‘
1 i
—u_ H M
mk = 7 (59 - smea(,,) ) (2.98)

3. Extend the coordinates x* to complex coordinates %, and then complexify the null tetrad:
ZH(xP) - ZE &P, %P) (2.99)

This procedure defines a new metric & whose components are real functions of complex
variables,

ZiixE—gEE)ER. (2.100)

Furthermore, we require that

ZE&P xh| =ZH P (2.101)
=%
It should be emphasized that there exists a lot of different choices for the transformation

(2.99) satisfying (2.100) and (2.101). This is why the algorithm may appear as an ad hoc
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procedure. However, Drake & Szekeres [47] managed to prove uniqueness theorems re-
garding the Newman-Janis algorithm without specifying the transformation (2.99). For
instance, the only Petrov type D spacetime generated by the Newman-Janis algorithm with

a vanishing Ricci scalar is the Kerr-Newman spacetime.

A choice that will work in order to recover Kerr’s metric is the following:

H =5k (2.102)
1 1 1

ﬁ“:éf—é(l—Mo(;+;))6f (2.103)
r

A 5 i sk (2.104

"= 27 9+siné ¢ 104)

= 1 p b oop
'= V2F (59 - siné6‘P) ' (2.105)

This allows the metric & to be real valued, provided 6 = 0eR.

. Perform a coordinate transformation, writing the coordinates % as

i=u"—iacost’ (2.106)
F=r'+iacosf’ (2.107)
6=0' (2.108)
p=9, (2.109)

where a is a constant. The new coordinates u’ and r’ are now defined on the whole real line:

(u',r") € (00, +00)?. Under this change of coordinates, the null tetrad transforms as follows

ox'H
zi===21, (2.110)
with
1 0 iasing® O
ox'H 0 1 —iasing 0
iy s (2.111)
ox 00 1 0
00 0 1
The components of the tetrad are then
1" =5 (2.112)
1 1 1
n’”:é‘g—i(l—Mo(;+;))6’f (2.113)
r
1 < i
= jasind (65 — %) + 65 + —— 6% 2.114
m VoY iasinf (6 —67) + &y =% ( )
_ 1 . i
m/ﬂz\/gf _za51n9(5g‘—6’1‘)+5g—sméag . (2.115)
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They can be rewritten in terms of the prime coordinates (u',7',0’,¢’), using:

F=r"+iacosf’
F=7 —iacosf’ (2.116)
0=6",
which gives
1 1 2Mor'
—+=-|My=———F——— 2.117
(f F) 0™ 12 g2 c0s2 6’ ( )

We can now omit the prime signs to simplify notations, and use the coordinates (u,r,0, @)

which from now on span R? x $2. From eq. (2.112)-(2.115), we can use eq. (2.94) in reverse

to get:
—14+ 2 g ~asin?g2Lr
(0] 00 asin?0 @.118)
Ewvl= b} 0 '

sinZ0 (r2 +a? - a?sin? B%Z“r)
where we have defined X = r2 + a2 cos?6.

5. Transform the metric to Boyer-Lindquist coordinates. Here, we recover easily the form
(2.68) by the following change of coordinates:

r2+a?

dt = du - dr d(pzdtp—%dr. (2.119)

where we have defined A =72 + a2 — 2Myr.

4 Vaidya’s solution and gravitational collapse

4.1 An exact dynamical solution to Einstein’s equations

There is not a plethora of exact solutions to Einstein’s equations, even less of dynamical ones.
It is thus worth mentioning Vaidya’s solution, published in 1951 to describe the gravitational
field of a radiating star [116]. In its outgoing version, Vaidya’s metric is the same as the outgoing
Eddington-Finkelstein metric (2.26) except that the mass My is allowed to depend on the retarded

time u: 9M@)
ds? = - (1— . )du2—2dudr+r2d92. (2.120)
r
Computing the Einstein tensor associated with this metric, one gets only one nonvanishing
component:
90M
G=-—2duedu. (2.121)
r

This geometry corresponds, via Einstein’s equation, to the following energy-momentum tensor:

oM

T=-9"_queduy. (2.122)
4712
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The radial null outgoing geodesics are such that u = cst. Hence, a radial null outgoing vector

kH = % will have only one nonzero component %2”. Choosing A = r as an affine parameter, we get

[£#1=(0,1,0,0), [k,]1=(-~1,0,0,0) (2.123)
Hence the 1-form & reads
k=-du, (2.124)
and we can write
oM
T=--%Lok. 2.125
4mr? ( )

This energy-momentum tensor represents a fluid with energy density

oM

u
- _ 2.126
p 4712 ( )

It has a null 4-velocity £ and is called null dust due to the form (2.125) of its energy-momentum
tensor. The outgoing Vaidya metric satisfies the null energy condition T'(k,k) = 0 if and only if M

is a decreasing function of u:

M
i . (2.127)
du

There also exists an ingoing version of the Vaidya solution. The ingoing Vaidya metric reads:

2M(v)
r

ds? = —(1— )dv2+2dvdr+r2d92. (2.128)

The radial null ingoing geodesics are such that v = cst. Hence, a radial null ingoing vector [* = %

will have only one nonzero component [”. Choosing A = —r as an affine parameter, we get

Hence the 1-form I reads
l=—-dv. (2.130)

Solving Einstein’s equations as in the outgoing case, we get the following energy-momentum

tensor:
oM

T=_"5lel. (2.131)

It represents ingoing null dust with energy density
oM
p= 4]‘% . (2.132)
The null energy condition is now satisfied provided

dMm
— =0 (2.133)
dv
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4.2 Gravitational collapse of ingoing null dust

The ingoing Vaidya metric can be used, for instance, to model the gravitational collapse of a thick
shell of null dust. We will provide a schematic Penrose diagram for this process, which will allow

us to give a concrete exemple of distinct apparent and event horizons in preparation for Chapter 6.

We consider the following mass function:

0 for v<vq
M@w)=X m@) for vi<v<vs (2.134)

m(vg) for v=vg,
where m is an increasing function of v.
Let us discuss first the existence of an apparent horizon, which is characterized by a change

of sign of the null outgoing congruence .. To compute 6., let us take an outgoing radial null

vector k with components:

1( oM
[kH] = (1,—(1— (”)),o,o) . (2.135)
2 r
Then,
—oM
0, = hV b, = ) (2.136)
r

where h is the induced metric on the 2-sphere. Hence, an apparent horizon forms as soon as
M) > 0.

The flux of ingoing null dust starts at v = v, as can be seen in Fig. 2.10. An apparent horizon
then develops and reaches higher and higher values of r as M increases. We can show that the
apparent horizon is spacelike in the interval v{ < v < vg, as ingoing null dust comes in. To see

this, let us describe the apparent horizon via a function ¢ =r - 2M(v) = 0. Then,

dM
g1 0,0y = —4—d : (2.137)
U

In the interval vy < v <vg, M(v) is increasing and thus the trapping horizon is spacelike since its

normal d,¢ is timelike.

For v =v9, M = m(ve) is constant and thus the apparent horizon becomes null and remains
at a constant r = 2m(vg). The event horizon can then be drawn backwards from future infinity,
as a null hypersurface. The Penrose-Carter diagram of a Vaidya collapse, shown in Fig. 2.10,
allows emphasizing two features of the event horizon not shared by the apparent horizon. First it
is a teleological notion, since one has to wait for the end of times (i.e., to reach future infinity)
before drawing the event horizon. Second, the event horizon is not necessarily related to strong

gravitational fields (in the sense 0, < 0): in the Vaidya collapse, an event horizon is present in
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4. VAIDYA’S SOLUTION AND GRAVITATIONAL COLLAPSE

Figure 2.10: Carter-Penrose diagrams of a Vaidya collapse. The thick null shells are pictured in light grey, while
the trapped region, in deep grey, is delineated by the apparent horizon (AH). The latter is spacelike and becomes null
as t — 400, where it tends towards the event horizon (EH).

the Minkoswki part (v < v1) of the spacetime. The apparent horizon, to the contrary, delineates a

gravitationally trapped region in dark grey in Fig. 2.10.
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CHAPTER

STATIC NON-SINGULAR BLACK HOLES

N s & I A
N s SN S N

Jnk b3z sw ntr hpr(=w) ds=f
Jnk sr(w) sw pr=fm 3h.t

“Je suis le ba de Chou, le dieu qui est venu a I’existence de lui-méme. [...]

C’est moi qui ai annoncé quand il est sorti de I’horizon !”

(Textes des Sarcophages 1, 314b-320d-322a, S1C [30, 40].)

n this chapter, we encounter for the first time non-singular black holes and present some

results related to static and spherically symmetric ones. These results consist in recovering

known static non-singular black holes, such as Bardeen’s and Hayward’s, from modified
theories of gravity. They were obtained with K. Noui, J. Ben Achour and H. Liu in [17] and [18].
We will start by introducing in detail the Bardeen and Hayward non-singular black holes (Sec. 1)
and review how they can be seen as a solution to Einstein’s equations in the presence of non-linear
electrodynamics. Sec. 2 will be devoted to the analysis of static spherically symmetric spacetimes in
a tensor-scalar theory called mimetic gravity, which opens up the possibility to recover Hayward’s
and Bardeen’s metrics. Finally, in Sec. 3 we will describe the Hamiltonian formulation of General
Relativity and see how, in the spirit of loop quantum gravity, it can be modified to add quantum

corrections once again allowing us to recover non-singular black hole solutions.

Contents
1 Examples of static non-singular black holes . . . . . . ... ... ........... 72
2 Static non-singular black holes from mimetic gravity . .. .............. 80
3 Loop quantum deformation of Schwarzschild’s blackhole . . . . .. ... ... ... 89
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CHAPTER 3. STATIC NON-SINGULAR BLACK HOLES

1 Examples of static non-singular black holes

Let us start with a review of Bardeen’s and Hayward’s non-singular black holes as well as their
potential non-linear electrodynamical source, before investigating in Secs. 2 and 3 how they could

be recovered in theories of modified gravity.

1.1 Bardeen’s spacetime
1.1.1 Metric and horizons

The Bardeen model, which dates back to 1968 [11], is the first example of regular black hole ever

mentioned in the literature. Its metric reads

2Mp(r) _ 2Myr?

ds? = -B(r)dt* +B(r) 'dr? +r2dQ? with B(r)=1- .

3.1)
where g is a constant. When g — 0, one recovers Schwarzschild’s spacetime with mass M. It
allows the components of the metric, and most importantly the curvature scalars, not to diverge

as r — 0. Indeed, the Ricci and Kretschmann scalars read

R= 6Mog2(4g27—r2)

(r2+g%)z
_ 12M2(8g%-4g5r?+47g* r*-12g2rb+4r®) (3.2)
- (r2+g2)7

K

To see that the metric (3.1) describes a black hole, let us compute the expansion of null radial

outgoing geodesics. The results of App. A.3.2 apply, hence
_ B

r

0., 3.3)
For My>M, = %g g, B(r) =0 admits two distinct solutions (and only one in the limiting case
My =M,, see Fig. 3.1). These are future outer and inner trapping horizons, which surround a
gravitationally trapped region. It has been shown recently that the mass inflation phenomenon
occurs not only in Reissner-Nordstrom and Kerr’s spacetimes but also in all spherically symmetric
models of regular black holes [29], including Bardeen’s model as well as Hayward’s. This is a

serious limitation of these models.

1.1.2 Avoiding singularities

In light of Penrose’s singularity theorem proved in Sec. 4.2 of Chap. 1, since Bardeen’s spacetime
is non-singular and possesses a trapped surface, it must violate (at least) one of the following

properties:
¢ global hyperbolicity

¢ existence of a noncompact Cauchy surface
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— M0<M,,
Mo=M.
Mt 1 1 1 1 1 1 L 1 1 1 1 1 1 1 1 1 1 r
2 4 6 8 10 Mo>M,
~0.5}
-1.0

Figure 3.1: Plot of Bardeen’s function B(r) for different values of My, keeping b = 1. The zeros of H represent future
trapping horizons: there are two horizons when My > M, only one when My = M, and none when My < M.

¢ gsatisfaction of the null energy condition

The spacetime satisfies the weak energy condition, and thus by continuity the null energy condi-
tion. But Bardeen’s spacetime possesses a Cauchy horizon. Hence the first two properties are
not satisfied, this is how Penrose’s theorem happens to be circumvented. The Cauchy horizon
is visible in red in Fig. 3.2, where the Carter-Penrose diagram of Bardeen’s and Hayward’s

spacetimes has been drawn.

One might wonder then how Bardeen’s spacetime copes with the singularity theorem 1.4
by Hawking and Penrose, not requiring the existence of a Cauchy surface anymore. Actually,
this theorem relies on the fulfilment of the strong energy condition, which Bardeen’s spacetime

violates (as mentioned in [67]).

1.2 Hayward’s spacetime
1.2.1 Metric and horizons

Hayward introduced in 2006 another regular black hole, in order to describe the formation and
evaporation of non-singular black holes. We will use it extensively in Chap. 6, where dynamics
will enter the game. Let us, as for now, present the static version of his model, which is defined

by the metric

2Mp(r) 2M,r?

- , 3.4
7‘3+2M()b2 ( )

ds?=-H@r)dt® + Hr) t'dr? +r2dQ? with H(r)=1-

where b is a constant. It might be interpreted, according to Hayward, as a Planckian cutoff.
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CHAPTER 3. STATIC NON-SINGULAR BLACK HOLES

Figure 3.2: Carter-Penrose diagram of Bardeen’s and Hayward’s spacetimes. The future domain of dependence of
the hypersurface X (in blue) is limited by a Cauchy horizon (in red) due to the presence of i *.

This metric behaves as a Schwarzschild metric in the limit r — +oo:

2M
Hr) = 1-——, (3.5)
r—+oo r
and as a de Sitter one near the center:
2
H(r) r—:>0 1- 72 (3.6)

This de Sitter core will actually protect the spacetime from the presence of a singularity at the

center. Indeed, the Ricci and Kretschmann curvature invariants read

R= 24(452mo—r3)b%m?
(2b2m0+r3)3 (3 7)
_ 48(326°m¢-16b°mpr®+72b*m2rf—8b%mor® +r12)m?2 :

(262mo+r3)°

K

As in Bardeen’s case, future trapping horizons are present if

: )

r

0.+ (3.8

For Mo > M, = %??b, B(r) = 0 admits two distinct solutions (and only one in the limiting case
My =M,, see Fig. 3.3). These are future outer and inner trapping horizons, which surround a

gravitationally trapped region.
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H(r)
1.0k
05" — Mo<M.
Mo=M,
1 1 1 1 1 M0>M*
2 4 6 8 10
-0.5}

Figure 3.3: Plot of Hayward’s function H(r) for different values of M, keeping b = 1. The zeros of B represent
future trapping horizons: there are two horizons when My > M, only one when My = M., and none when My < M ..

1.2.2 Avoiding singularities

As Bardeen’s spacetime, Hayward’s one possesses a Cauchy horizon, and is therefore not globally
hyperbolic. This allows avoiding the conclusions of Penrose’s 1965 singularity theorem 1.3. It
also violates the strong energy condition, hence circumventing Hawking & Penrose’s singularity
theorem 1.4.

1.3 Energy-momentum tensor from non-linear electrodynamics
1.3.1 General static case in spherical symmetry

The parameter g in eq. (3.1) did not have any physical interpretation before the work of Ayéon-
Beato & Garcia [5]. They showed that g can actually be interpreted as the monopole charge of a

self-gravitating magnetic field described by a nonlinear electrodynamics.

A substantial part of the reasoning in [5] is valid for a general function M(r), and we will
apply it later on in Bardeen’s case (Sec. 1.3.2) as well as Hayward’s case (Sec. 1.3.3). Let us then

start with a spherically symmetric metric in the form

1
ds?=-F(r)dt? + ——dr®+r?dQ?, (3.9)
F(r)
with F(r)=1- w
Let us take the following action of nonlinear electrodynamics in curved spacetime:

S-= %fd‘*x,/——g(ze 167 L(F)) (3.10)
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where & =F,, F!, and £ is a Lagrangian density depending only on . The electromagnetic
tensor F, is defined through the vector potential A ;:

Fuv=V,A,~V,A,. (3.11)

The Einstein equations deduced from the action (3.10) read

Gy =87T,y , (3.12)
with
2 6Snat
Ty = ——o
V-8 o8t
2 o
- — g fd‘lxﬁg(g) (3.13)

=8, ~4%L5F,F,,

while the nonlinear Maxwell equations are
V. (LzF*) =0 (3.14)

Eq. (3.14) reduces to the standard Maxwell equations when £ (%) =%.

Ayon-Beato & Garcia chose the following ansatz for the Maxwell tensor:
F =B(r,0)d0 ndey , (3.15)

where B(r,0) is a general function of r and 6, and A denotes the exterior product (or antisym-
metrized tensor product). They call it a “magnetic ansatz”since the only nonvanishing components

of the Maxwell tensor are Fy, and Fyg.

Let us now solve the nonlinear Maxwell equations (3.14), which can be written in the form
dH =0, (3.16)

where H is the Hodge dual of £z F':
H = %(Z5F) | (3.17)

The Lagrangian density .# is a function of % only, and since the spacetime considered is spheri-

cally symmetric one has g = Z%(r). Hence,

_ B(r,0) £L5(r)

dendr. 3.18
r2sin(0) nar ( )

In order to have dH = 0, one must thus set
B(r,0) = f(r) sin(9) , (3.19)
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where f is a function of r. Since F' is an exact form, it is closed:
0=dF = f'(r)sin(@)dr AndO A do . (3.20)

Hence f(r) is a constant, and we choose f(r) = @,, where @, is a magnetic monopole charge. The

nonlinear Maxwell equations are thus satisfied, for any £(%), if we take'
A=-Q, cosOdy . (3.21)

Let us now solve Einstein’s equations. The nonzero components of the Einstein tensor are

Gl=Qr= rF'+F-1_ _2M'(r)
{ tH . @ rFrf+2F’ Z\;z(r) (3.22)
GG = G<P = 2r =T
Meanwhile, the nonzero components of the energy-momentum tensor are
T!=T' =%
p 0 4g? (3.23)
T@ = T(p =% - 7 zgf
The ¢t and rr parts of Einstein’s equations then yield
1 M)
L =—— . 3.24
4m r? (3.24)

This condition is actually sufficient to satisfy the 80 and @@ parts of Einstein’s equations. To see

this, let us compute M"(r) assuming eq. (3.24) holds:

M'(r)=(-4nr* L)

=-8nr¥ —4nr’ £50,F (3.25)
32182 %
gnre s L LE
r
since £ depends only on & = 2’%2. Hence,
M/I 32 2
Gl =G, =- r(r):sme— "L 25 =817,"=81T," (3.26)

Einstein’s equations will then be satisfied provided eq. (3.24) holds. Therefore, given a specific
2 g2

mass function M(r), one has to find a Lagrangian £ depending only on & = =5 such that
po_ 1L M’ér)
- 4z r2 -

INote that this vector potential is singular at r = 0 (since dy contains terms in 1/r), just as in the case of an
electric monopole.
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1.3.2 Recovering Bardeen’s mass function
Fan and Wang considered in [51] a generalization of Bardeen’s metric:
a—l q3 rk

(r2+q2)?

M(r)= (3.27)

where a and g are two constants satisfying a = and p >0 is a dimensionless constant. We

q4
2Q2’
will for instance recover Bardeen’s metric for =3 and a~!¢3 = M.

Then, they used the following Lagrangian to satisfy Einstein’s equations:

5
7
S L CL (3.28)
4na (1+VaF)*s
Let us show that this yields indeed
1M
LI = rér) (3.29)
First,
It U
M@r)=at q3,urlu_l(’"2 +q2)z —rtt? 4 g%t
(r2 +q®)H)
3 2/JQ%1 rb 1 1-r2(r2 4+ gt
= " 021 q2)§ (3.30)
_ 2qu@? ri1
= (r2 N q2)g+1
As concerns the Lagrangian,
4 2 4
_q° 2@, q
ag—W- r4 —r—4, (331)
m
and thus ;
)8
gy=-H @IV
dna (1+VaF)'tz
2 5(.2\1+5
__Hen ¢ (3.32)

2m q* (2 4 q2)1+§
qu?zrt3
27 (r2 +q2)1*s

which proves that eq. (3.29) holds.

Coming back to Bardeen’s metric, we have in the end shown that the metric (3.9) with

3
M =— Mo (3.33)

]
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is supported by nonlinear electrodynamics with a Maxwell field

2 2
F=Q,sin0d0ndgp, F=F,F"="2n (3.34)
r
and a Lagrangian

5

6 5

3 M (5 )’
L(F) = - 5 - : (3.35)

3271Q3, 8¢ 1+3
(1 /34 9)
0

In the weak field limit (for small %), £(F) x Z** and one unfortunately does not recover

standard Maxwell electrodynamics.

1.3.3 Recovering Hayward’s mass function

Another category of Lagrangians is found by Fan & Wang, corresponding to generalized Hayward

metrics of the form L 3
- L
Mp=294" (3.36)

rt+ gt

where, again, a and q are two constants satisfying a = and p > 0 is a dimensionless constant.

.
2QZ°
As before, it is straightforward to show that the Lagrangian

©+3
gyl
2 =-L (@) — (3.37)
T (14 @)
satisfies 1 MO
LF)=-— (3.38)
4 r
Hayward’s case is recovered for =3, a 1 ¢% = M.
Finally, the metric (3.9) with
M. 3
Mr)=—"2 (3.39)
3, [2Q%
re+ (TO)
is supported by nonlinear electrodynamics with a Maxwell field
_ : _ wv _ 2Q%1
F=Qnsin0dondy, F=F,F"=—8=, (3.40)
r
and a Lagrangian
(o)
M4
(F)=-—12 ° (3.41)
3271Q,, 8Q8 _\i
[+ (%)

In the weak field limit, (%) x %%?2 and standard Maxwell electrodynamics is not recovered

either.
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2 Static non-singular black holes from mimetic gravity

This section aims at presenting the work I contributed to within the scope of a paper we published
with K. Noui , J. Ben Achour, and H. Liu [17]. The main aspect I was interested in was the
recovery of static non-singular black holes with a modified theory of gravitation called mimetic
gravity. This work, even if it could not be concluded, will be presented in Sec. 2.3.2. Before that
we will introduce mimetic gravity in Sec. 2.1 as well as its generalization and, following [35],
show in Sec. 2.3.1 how it can describe a non-singular black hole with limiting curvature (more

precisely with a bounded Ricci scalar).

2.1 Mimetric gravity
2.1.1 Original theory

Mimetic gravity was first introduced by Chamseddine & Mukhanov [34] as a gravity theory with
an extra degree of freedom able to mimic cold dark matter. It is a tensor-scalar theory, where the

physical metric g, is written in terms of a scalar field ¢ and an auxiliary metric g,y :
guv = ¢ng where X = g oupy , (3.42)

and where we use the notation ¢, = d,,¢o. We do not fix for now the sign (+1).

The action reads

. 1 - N
Slau $1= 1o~ d*x\/—g (&uv,®) R (g0 Euvs®)) (3.43)

where g and R, computed out of the physical metric g, are written in terms of the scalar field
and the auxiliary metric. Note that this action, as well as the physical metric g, are confor-
mally invariant: they remain the same under a transformation g, — Q(x)g v, where Q(x) is an
arbitrary function of the spacetime. The conformal mode of the metric hence becomes dynamical,
and the theory propagates an additional scalar degree of freedom with respect to gravity (see [33]
for details)

From eq. (3.42), the inverse metrics satisfy
1
=3 —ghv. (3.44)
g Xg
Hence, we see that g, satisfies the so-called mimetic condition:

X =g"pupy=71. (3.45)

This allows rewriting the action of the theory in a simpler way with a new dynamical variable A
as follows:

1
S[g;m/,(l),A] Efd4x -8 [ER +/1(g'uv([)y(pvi 1) . (346)
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The variation of this action with respect to A yields the mimetic condition?

X+1=0 (3.47)
The variation with respect to ¢ yields
V. (¢t =0, (3.48)
and finally with respect to gy:
Guw=8nTy with Tuy =21y + MX £ 1)gpuy (3.49)
Taking the trace of (3.49), we get
1
A=+——R. (3.50)
16n
Then, eqgs. (3.48) and (3.49) read
VuRp")=0,  GuzRpupy=0. (3.51)

Let us show that, contrarily to what usually happens, the equation for the scalar field is actually

not independant from Einstein’s equations. First, by conservation of the Einstein tensor we have

0=V'Gy
= VH(R(;D[J(,DV) (3.52)
= VAR Py + Ry -

Then, the mimetic condition ¢, ¢ = £1 implies

0=V, H
(fue’) (3.53)
= 29[)# ¢uv .
Combining eqgs. (3.52) and (3.53) finally yields
VAR P, =0. (3.54)

Hence, the equations of motion associated with the action (3.46) can be summarized as follows:

1
GutRoupy =0, X£1=0, 1=z:—R. (3.55)
T

2which allows recovering eq. (3.45) for the (+) choice in the action (3.46).
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2.1.2 Extended mimetic gravity

In [81], mimetric gravity was extended thanks to the presence of a gauge symmetry generalizing

the original conformal symmetry. The mimetic action (3.46) can then be generalized to the form

()

S8 >, Al = fd4x\/——g So B+ Lol s 0p) + AX £1)|, (3.56)

where f is an arbitrary function of ¢, L, depends on ¢ and y, which are variables constructed

with second derivatives of the scalar field according to

n=Trlol = ) ¢ Phr Pl (3.57)

JTINTA
Here, we have used the notation [¢] for the matrix whose coefficients are [¢],y = ¢y . Indices
are lowered and raised by the metric and its inverse. One can show that this extended action
defines the most general mimetic gravity like theory [81, 106] which propagates at most three
degrees of freedom (one scalar conformal mode in addition to the usual two tensorial modes). Due
to the mimetic condition X +1 =0, any X dependency in f or L can be removed. More precisely,
as it was shown in [81], if one starts with an action (3.56) where f and L, depend also on X
(and eventually its derivatives d,X), the associated equations of motion are equivalent to the
equations of motion obtained from the same action where f and Ly are evaluated to X = ¥1 (and
eventually 0,X =0).
The Euler-Lagrange equations for (3.56) can be easily obtained in full generality. But, for
simplicity, we assume that f is a constant (and thus independent of ¢) which can be fixed to f =1.

Deriving the action with respect to ¢ and g, respectively leads to the equations

oL p oL
- —2VFAgp) + Y nVHY ([(,b]z;l —¢) =0 and Gy = 87Ty, (3.58)
a()b n=1 GXn

where [¢p]" is the power n of the matrix [¢] with the convention [(,b]fw = guv, and now the energy-
momentum tensor reads

Tyy = —2Apupy + AX £ Dgpy + T (3.59)

[

with

P oL
Ty =Logu+ Y. n { 2—[¢]” DA B (oS (o 1¢u—[¢]ﬁvl¢a)]}. (3.60)
n=1 n

To get rid of A in the Einstein equations, we proceed as in the previous case. First, we take the

trace of the second equation in (3.58) to express A in terms of ¢» and g,

oL
A= ¢

+

1(R p
—(—+T(‘P’), T = 4L, - Zln{
n=

3|57 ] } (3.61)

+Vv? [(/)a

Then we substitute this expression in egs. (3.58). Furthermore, the equation for the scalar
field can be obtained from the conservation of the energy-momentum tensor, and thus is not

independent from Einstein equations.
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Hence, as the trace of Einstein equations is trivially satisfied (the trace has been used to
determine 1), the equations of motion are equivalent to the mimetic condition and (the traceless

part of) Einstein equations only:
X£1=0, Gu=42 (R +87 T“P)) Py +81TY. (3.62)

Solutions to these equations have been studied in the context of cosmology [36] and black holes
[35] with a particular choice for Ly which makes the solutions non-singular. Here, we focus on
black hole solutions and we are going to see how one can choose L to resolve the black hole

singularity.

2.2 General construction of static spherically symmetric spacetimes in

mimetic gravity

We will now develop a general procedure to construct static spherically symmetric spacetimes in
mimetic gravity, in the hope of being able to describe later on non-singular black holes with this
formalism. Let us then consider a spherically symmetric spacetime whose metric in Schwarzschild

coordinates is given by
ds? = —F1(r)dt? + Fo(r)dr? + r2(d0? +sinZ0d¢?), (3.63)

in terms of the two functions F'; and Fg which depend on the radial coordinate r only.

Now, we ask the question whether one can find a theory of extended mimetic gravity of the
form (3.56) which admits (3.63) as a solution. This is possible if there exists a function f(¢) and a
scalar-field Lagrangian Lg(¢, x1,---, xp) such that the equations (3.62) are satisfied.

2.2.1 Solving the mimetic condition

The mimetic condition X +1 =0 fixed ¢ in terms of the geometry (3.63). If we consider solutions
where the scalar field is also static, i.e. ¢p(r) is a function of r only, then
2

(C;—(f) = FFq(r). (3.64)
It then appears that static scalar field solutions are only possible in regions of spacetime where
+F9(r) < 0. When the metric (3.63) describes a geometry with an event horizon, then Fy(r)
changes sign. This is obviously the case for the Schwarzschild spacetime where Fa(r) > 0 outside
the black hole and Fa(r) < 0 inside the black hole (or equivalently behind the horizon from the
point of view of an observer at infinity for instance). In that case, one would work with the + sign
Lagrangian to be able to describe the region inside the black hole with a static scalar field. In
general, as we are interested in resolving singularities inside black holes, we will consider only +
sign Lagrangians from now on. Hence, we focus on regions where Fao(r) <0 and F1(r) <0 as well,
and then we will use the notations F; = —A2 and Fy = —B2. Without loss of generality, we choose

the positive solution for ¢,:

¢r(r) = VIFao(r)| = B(r) . (3.65)
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2.2.2 Solving the modified Einstein equations

Concerning the traceless Einstein equations (3.62), they are viewed as equations where the
unknown is the Lagrangian (more precisely the functions f and Ly). For static spherically
symmetric spacetime with a static scalar field, Einstein’s equations have three independant
components Gtt, G,” and Ggg = G(p(p. But in our case the trace of Einstein’s equations is already

automatically satisfied, which leaves us only two non-trivial independent equations,
G, —B’R = 8aBT9 +82T, Gy =8xT?, (3.66)

where the Lh.s. of each equation is fixed by the choice of the geometry. Thus, this defines a system
of partial differential equations for f(¢) and L(¢, x1,-*,xp) whose derivatives appear in the
components of the energy-momentum tensor only, in the r.h.s. of each equations. In fact, one can
find solutions when f(¢) =1 and L does not depend on ¢, what we are going to assume from now
on. As there are only two equations (3.66) to satisfy, it is a priori sufficient to look for Lagrangians
L which depend only on two arguments. Thus, for simplicity, we assume that L, depends on the
first two arguments y; and y2 only. In that case, the expression of the energy-momentum tensor
(3.60) simplifies and is given by

TS, = |Lg el gy (

6L¢)
dx1

dLg dLg
o G ( ) A u( ) (3.67)

ox1 ox1

« Ly
+ 2 [(P,uD(pv ‘HPvD(pu_(P Va(P;w (P,LWD(P] +2 [‘P,u(Pav +¢v¢au (Pa(Puv] (OX )

To compute the non-vanishing components T;pr and T;ﬁ of the tensor, we need to compute first the

components of ¢, . It is easy to show that the only non-vanishing components of ¢, are

¢, dFq AA’ o rér r
_ _$r dFy _ - Pee _TOr_ T 3.68
Pt = ok ar B Y20 R B (.68)

where prime denotes derivative with respect to r. Notice that one can interpret the fact that
¢rr =0 from the mimetic condition X +1 =0 which implies that ¢ ¢p,, =0, thus ¢"¢,» =0 and
finally ¢, = 0 as ¢, # 0. We also need to compute third derivatives of the scalar field V¢, which
appear in the expression of the energy-momentum tensor, namely O¢,, Vs and Vy,-. One

shows that Vy¢,, =0 for any a. Furthermore, O¢, and the non-trivial component of V,¢;; are

e, 1A 2 (A2 AA"  AA'B
O¢r=V (/’ar—E 2 T2 Vi = 5 B T B (3.69)
Now, we have all the ingredients to compute the components of the energy-momentum tensor,
and an immediate calculation leads to
2 A'\0Ly 2 (A"\%]0L, _ d (0L
T = -B2L —B( +—)—+4 —+(—) —+B—(—) 3.70
rr PTP\F T A ) oy 2 \A) |oys drlop (8.70)
A, 24 0Ly 2A (A'B' 24’ 0L, A2 d (0Ly\ 2AA' 4 (0L
% - o Y (AT S 2
B 6}(1 B2 B r 6}(2 B dr 6}(1 B2 dr 6}(2
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From these expressions, it is straightforward to deduce its trace which is given by

"\ 0L oL / oL
T¢:4L¢+i(2+‘i)_¢ Zi(_d))_i(&ri)d( ¢)
B\r A)dy; Bdr\oyi) B2\r A
([ AT 5 WAF AT K)o
B? Ox2

dr

)
X2 (3.71)

"B AB 2 A2 A A
2.3 Application to non-singular black holes

Let us now focus, at last, on non-singular black holes. We will first review the limiting curvature
mechanism introduced by Chamseddine and Mukhanov, which produces a non-singular black
hole from an ansatz on the energy-momentum tensor. We will then follow a complementary
approach, in order to find the energy-momentum tensor associated with a given non-singular

black hole geometry.

2.3.1 A non-singular black hole from limiting curvature mechanism

The non-singular black hole introduced by Chamseddine and Mukhanov in [35] is a “static"

spherically symmetric solution of the general mimetic action (3.56) where L is a function of y;

only defined by
2 X1 1, .
= oPm ) =—, =l+-x"-V1-x2 - , 3.72
L(x1) 3p fx), «x = f(x) Zx V1—x% —xarcsinx ( )

where p;, defines a new energy scale in the theory. This expression of Ly seems to be an ad hoc
choice a priori, but it leads to very appealing non-singular cosmological and black-hole solutions.
Notice that, in the cosmological sector, the equation of motion of the scale factor reproduces

exactly the effective dynamics of LQC as it was pointed out in [20, 83].

Let us now consider a spherically symmetric spacetime only, and let us explain physically
why (3.72) produces non-singular black hole solutions. For that purpose, we start writing the
metric in Schwarzschild coordinates

1

2 _ 2
ds® = —F(r)dt +F(r)

dr? +r%(d6? +sin? 6 d¢?), (3.73)

where F' is a function of r only. In usual general relativity (with no modifications), Einstein
equations lead to the Schwarzschild solution where F(r) =1-2My/r, My being the mass of the
black hole. Computing the expansion of outgoing null geodesics in the advanced Eddington-
Finkelstein cordinates, non-singular when F(r) = 0, one obtains 6. = F(r)/r (see App. A.3.2).
There exists thus a future trapping horizon at r = 2M, which is an event horizon due to the
staticity of the metric. One can therefore distinguish between the outside (¥ > 0 or r > 2M, thus
0, > 0) and the inside of the black hole which is gravitationnally trapped (F <0 or r < 2M, thus
0+ <0). The singularity occurs inside the black hole where the curvature becomes arbitrary large
(in the limit » — 0).
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It was shown in the original paper [35] that the action (3.56) with the field Lagrangian (3.72)
reproduces correctly the Schwarzschild metric far from the high curvature regions (compared
with the scale p,,). In particular, spherically symmetric solution (3.73) possesses an event horizon,
very similar to the Schwarzschild horizon. Thus one can still define a region inside (or behind)
the horizon (F < 0) and a region outside the horizon (¥ > 0).

Concerning the scalar field, let us start assuming that it depends on r and T for purposes of
generality. We will shortly reduce ourselves to the case of a static scalar field ¢(r). The scalar
field satisfies the mimetic condition which reads

1 (0¢
0 ot

0

2
—) +1=0. (38.74)
or

2
) +F(r)(

This equation allows to resolve the scalar field ¢ in terms of the geometry F(r). A simple class of

solutions of this partial differential equation can be obtained from the ansatz

Pr,t) = qt +y(r), (3.75)
where q is a constant and y satisfies
dy\? ¢*FF
e . 3.76
( dr ) F2 (3.76)

It is clear that the equation (3.76) admits a solution only if the condition ¢2 ¥ F = 0 is fulfilled.
As a result, in the static case (where g = 0), one cannot find any global spherically symmetric
solution for the spacetime. Indeed, the condition +F < 0 implies that only the action with a +
(resp. —) sign could lead to a description of the region inside (resp. outside) the black hole. Only a
non-static solution for the scalar field (¢ # 0) could enable us to describe a fully static spherically
symmetric spacetime. However, we will proceed as in [35]: we will restrict ourselves to the region
inside the black hole (we expect the limiting curvature hypothesis to affect mainly the regions
inside the black hole), we choose a mimetic action with a + sign, and we will argue how this
is enough to resolve indeed the singularity. From a phenomenological point of view, we could
interpret the action (3.56) with (3.72) as an effective description of general relativity in a region
(inside the black hole) where the curvature becomes high (with respect to the scale p,,). Such a
modification could result from quantum gravity effects for instance [83].
When the scalar field is static, the mimetic condition reduces to a simple differential equation
dep)\? 1
(5) =7 3.77)
in the region (behind the horizon) where F < 0 (with appropriate boundary conditions). The form
of L (the presence of arcsin(r) or V1-x2 with x = X1/v/Pm for instance) imposes that the scalar
field ¢ must satisfy the condition

d
lx1l < vVom = ’5(1"2 —F) S\/pmr2. (3.78)
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If one naively substitutes the Schwarzschild solution in this inequality, one gets the condition

that
M 0o 2

S_
)

which can be interpreted as the fact that the density inside the black hole is bounded from above.

Pm, (3.79)

Hence, one would expect the singularity to be resolved. This has been shown to be indeed the
case in [35] from a resolution of the equations of motion.
2.3.2 Recovering known static non-singular black holes

We can now proceed in reverse, and try to find the energy-momentum tensor from mimetic gravity

associated with a metric of the form:

1
ds® = —F(r)d¢® + mdrz + r2(d6? +sin®0dg?), (3.80)
r
This form of the metric encompasses both the Hayward and Bardeen metrics, which are recovered
for \
2M07‘
Fr)y=Hr=1- ——5-—+ 3.81
(r) (r) 51 262M, ( )
or \
2M
F(r)=B(r)=1- —2"_ (3.82)
(r?+g%):

where mg, b and g are three positive constants (see Sec. 1).

Following the results of Sec. 2.2.1, we solve the mimetic condition inside the black hole by

choosing

$r(r)=v-F(r) (3.83)

The components of the energy-momentum tensor we are interested in, as well as the trace, can

then be computed using the results of Sec. 2.2.2:

1 0Ly ,(0F\? 0L
TS = 2—*% 2(—) +2Lyr?F +16 —=F?
9 2R [ ays \or o7 12
oL F oL oL
+(—¢r26——2(i—¢r2—2—¢r)F)\/—F]
0y1 Or dr dy1 0x1
1 [ 0Ly, _#*F d oL 0L\ OF
T¢=-—|2—"2rF2_ +2L¢,rF+2( "’r+2—"’)F—
2r 0xs  Or2 dr dye O0y2 ) oOr
0Ly OF d oL aL _—
ox1 Or dr oy1 0)(1
1 [OL 0F\%2 oL 2F d oL oL
T = —— —¢r2(—) +—2p2p2 +4L¢,r2F+4( —¢, ¢)F2
r2F 6)(2 or a)(Z or? dr aXQ 5)(2
d oL oL 0F (0Ly ,0F (d oL oL
+(__¢r2+6_¢r)p_+2(_¢r2_+(__¢r2+ ¢) )\/TF]
dr a)(g a)(g or 6)(1 dr 6}(1 6}(1

87



CHAPTER 3. STATIC NON-SINGULAR BLACK HOLES

The Einstein tensor and Ricci scalar read:

rFE +F2-F

Gy = —————, (3.84)
r
rar +F -1
Gy = — 2F (3.85)
P2ZE 4pdf L oF -2
R = - 5 . (3.86)
r
The traceless Einstein’s equations then become:
oF 0Ly _0°F d oL oL oF
rF L F2_F=4n r[2—rF +2L¢rF+2(——¢r+ (P)F—
or dOy2  or? dr 0yx2 Oya2) Or
oL, F (d oL, oL (3.87)
+( ¢ +2( — 2—¢)F)\/j ,
6)(1 or dr 07(1 0x1
and
0°F oF 4m [ _OL 0’F d oL 6L
Pl 43r—+F-1=— |22 2F—+6L¢,r2F+8( —2, ¢)F2
or2 or 0x2 or? dr 6)(2 6)(2
d oL oL oF
+2( 0L 2 g%%e )F_ (3.88)
dr dyxe dx2 ) or
oLy ,0F d oL oL
+3(—“’r2—+2( 292 )F)\/—F]
6)(1 or dr 6}(1 6}(1

Unfortunately, we did not manage to find an explicit solution Ly of the egs. (3.87)-(3.88).
However, the existence of two variables for Ly, y1 and y2, ensures that a solution must exist in

principle and can be found numerically.
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3 Loop quantum deformation of Schwarzschild’s black hole

Let us now introduce another way of modifying gravity in order to recover known static non-
singular black holes, following the paper [18] that I contributed to with K. Noui, J. Ben Achour
and H. Liu. We considered before a gravity theory coupled to a scalar field, we will now describe
General Relativity as a Hamiltonian theory with constraints and directly implement quantum
corrections on these constraints. The natural way of dealing with these constraints is to use

Ashtekar variables, hence following the spirit of loop quantum gravity.

3.1 Introduction to canonical gravity

A proper introduction to canonical gravity in terms of Ashtekar’s variables would require a
full chapter of this dissertation. Such a treatment lies way beyond the scope of this Section,
which aims at sketching the main ideas of the canonical formulation of General Relativity in
which Einstein’s equations are written in terms of constraints satisfying a closed algebra. This
formulation, in terms of Ashtekar’s variables reduced to spherically symmetric spacetimes, will
be particularly well suited to implement quantum corrections on the constraint algebra. More
details can be found in [58, 82, 101, 108].

3.1.1 3+1 decomposition of Einstein-Hilbert action

So far, we have been dealing with a covariant approach to General Relativity, in which time and
space are described on an equal footing. This will not be the case anymore in the Hamiltonian
formulation of General Relativity. For the latter, configuration variables ¢(x) as well as their
canonical conjugate momenta 7,(x) will be defined on a spacelike surface X; at a given time ¢.
Hamilton’s equations will describe the evolution of these fields as time evolves, the topology of

the considered manifold will thus be restricted to R x 2.

Let us consider a manifold equipped with metric g, whose induced metric y on X is such that
Yij=8ijtnin;, (3.89)
where n is a unit normal vector to X and the latin indices are spatial indices ranging from 1 to 3.

The first step of the 3+ 1 decomposition consists in writing the time vector d;, along which

the spacelike hypersurface X evolves, as a sum of components normal and tangential to X:
0;=Nn+N , (3.90)

where we have introduced the lapse function N and the shift vector N. The components of the
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metric g can be expressed in terms of N, N and the components of the induced metric y on Z:

500=8(0;,0,)=0;0,=-N2+N-N+2Nn-N=-N?+N;N* (3.91)
g0i =8(04,0;)=0;-0;=(Nn+N)-0,=0;-N=N;, (3.92)
gii=7i) (3.93)

Hence, one can write
ds? = guvdxt dx?
- (_N2 +NiNi) d£2+2N;dtda’ +y;;da’ do/ (3.94)
= —N?d#? +y;;(da’ + N'dt)(d/ + N7 dt)

We now wish to write the Einstein-Hilbert action (1.58) of Chap. 1 in terms of this 3 + 1 decompo-

sition. Recall that the action reads

_ 1 4
SEg = T6n d*x/-gR . (3.95)

One can first write /=g d*x as follows:

v=gdtx=/yNd3xdt . (3.96)

And the four-dimensional Ricci scalar R evaluated on X can be written, thanks to Gauss-Codazzi

equations (see [62, 96] for details),
R ="R+K"K;;~K* -2V, (nfVpn® —n*Vyn?) . (3.97)

3R is the three-dimensional Ricci scalar computed with the induced metric y, while K is the

(three-dimensional) extrinsic curvature tensor, characterizing the curvature of ~ embbeded in .4 :

1
Kup = Egn Yab - (3.98)

In particular, one has
K®=yijynK K" . (3.99)

It can then be shown (see [62] for details) that the Einstein-Hilbert can eventually be written

to ..
SEH:f dt | d*N ¥ (PR+KVK;;-K?) (3.100)
t1 PN

3.1.2 Hamiltonian formulation of General Relativity

We now have all the ingredients to introduce the Hamiltonian formulation of General Relativity,
also called ADM formulation due to the pioneering work of R. Arnowitt, S. Deser and C. Misner in
the 50’s [4]. Notice that Sy now depends not explicitly on the metric g and its first and second
derivatives but on the new configuration variables of the ADM phase space ¢ =(y;j, N, N ') and

90



3. LOOP QUANTUM DEFORMATION OF SCHWARZSCHILD’S BLACK HOLE

their time derivatives qg.

The Lagrangian density of the gravitational field reads, from eq. (3.100):
2, =N vy PR+K7Ki;~K*| =N y7 PR+ (" —y'y"|KisK) . 3.101)

Since K;; can be written as

1 k k.

Kij:ﬁ(yl-kvjN +7jp ViN* ~ ) (3.102)
it appears that #(q,¢) depends neither on the time derivative of N nor on the one of N. Hence,
the lapse function and the shift vector are not dynamical variables but Lagrange multipliers,
which will enforce constraints in the Hamiltonian formulation. The only dynamical variable is

thus the metric y;;. Its canonically conjugate momentum is

N R4 - .
ij = — KvY —-KW 3.103
n o7 VY ( Y ) ( )
The Hamiltonian density then reads
H=n g~ &L (3.104)

Using eqs. (3.101), (3.102) and (3.103), the Hamiltonian can then be written

H=| dxyy(NC+NCy), (3.105)
7
where
C=-3R-K?+K;; K" (3.106)
C;=2(V,K, - VK| (3.107)

The Hamilton equations with respect to the configuration variables N and N’ are

C=0 (3.108)
Ci =0 (3.109)

Eq. (3.108) is called the Hamiltonian constraint, while eq. (3.109) is the vectorial (or spatial
diffeomorphism) constraint. These four equations impose four constraints on the curvature of Z,
which are analogous to the freedom of choosing the four coordinates x* in the explicitly covariant
version of General Relativity. Egs. (3.108) and (3.109) imply that the Hamiltonian must vanish

on shell.
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The other Hamiltonian equations are the ones concerned with the dynamical variables of the

theory:
0H .
Sai =Yij (3.110)
OH _ i (3.111)
8vij

These two equations are associated with six degrees of freedom (the six independant components
of the symmetric tensor y). Taking into account the Hamiltonian and vectorial constraints, this

leads to 6 —4 =2 degrees of freedom for the theory, which was expected.

Another way to recover the Hamilton equations consists in using the Poisson brackets, which

give the temporal evolution of a quantity F' as follows:
F={F,H}={F,C(N)+C(N)}, (3.112)
where C[N] and C[N] are the smeared (i.e., integrated) Hamiltonian and vectorial constraints:
C(N) = fz a®x yNC (3.113)
¢
C(N)= 5 d3x \/yN'C; . (3.114)
¢
The Poisson brackets are defined by

(1 (), yaa ()} = 81, 87, 6(x —2) . (3.115)

The smeared constraints appear to satisfy a fundamental property, namely a closed algebra, also

called Dirac algebra:

{CN),CN")} = C ([N.N']) (3.116)
[N

{CV),C(N"} =C ( N ) (3.117)

{CV),C(N) =C (% (o'’ —N’aiN)) (3.118)

This algebra is said to be closed because every Poisson bracket between two smeared constraints
produces another smeared constraint. Since the Hamiltonian is nothing but a sum of the Hamil-
tonian and vectorial constraints, it means that its Poisson bracket with another constraint will
produce nothing more than one of the original constraints. In other words, the time evolution of a
constraint

C(N)={C(N),H} (3.119)

will not produce any new constraints. The Hamiltonian and vectorial constraints (3.108) and
(3.109) are thus called first class.
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3.1.3 Ashtekar variables in spherical symmetry

Now that we have an explicit Hamiltonian for General Relativity, it is quite tempting to apply
a quantization procedure in the hope of obtaining canonical quantum gravity. This procedure
consists first in promoting the phase space variables to the rank of operators (7}, #*) on a Hilbert
space, and the Poisson brackets to commutators. The constraint H can then be promoted to an
operator H, and the physical Hilbert space will be the one in which each state 1 satisfies the
Wheeler-DeWitt equation

Hy=0. (3.120)

Despite the apparent simplicity of this procedure, it has never been accomplished successfully.
The main issue lies in the very complex form of the Hamiltonian constraint and the resulting
ambiguities in defining a corresponding operator. Canonical quantum gravity based on the ADM

phase space has thus up to now never been constructed.

Ashtekar introduced in 1984 new variables, related to the variables (y;;, n*7) of the ADM
phase space via a canonical transformation, and thus allowing the recovery of Einstein’s clas-
sical theory. We won’t dive into the details of these variables, but simply mention their main
advantage. It is merely that, with these new variables, the Hamiltonian constraint simplifies
a lot and actually becomes polynomial, which gives hope as regards the possibility of applying
the quantization procedure. The introduction of these variables thus paved the way towards a
renewal of the canonical approach to quantum gravity, and in particular launched the programme

of loop quantum gravity (LQG).

The Ashtekar variables stem from the formulation of General Relativity as a gauge theory.
The configuration variables behave like a an SU(2) Yang-Mills connection, from which one can
reconstruct the extrinsic curvature. Their canonically conjugate momenta are called densitized

triads, and are used to reconstruct the spatial metric y.

Instead of introducing them in full generality, we will concentrate on their formulation
for spherically symmetric spacetimes. The work we have been doing to obtain a Hamiltonian
formulation of General Relativity will be of great use: we will still be be studying General
Relativity in Hamiltonian form, but merely with new canonical variables. In the spherically

symmetric case, notice first of all that the metric becomes:
ds? = —N2d£2 +y,, (dr + N7 dt)® +y99dQ2 . (3.121)

In this case, the metric components can be expressed in terms of the Ashtekar variables E¢(r)
and E7(r) (see [22] for details):
(E¢)?

T , Yoo =E". (3.122)

Yrr =
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The other half of Ashtekar variables, canonically conjugate to (E?, E”), is (K, K;). In analogy
with eq. (3.115), the variables satisfy

{Kp(x),E?(y=6(x—y), (K (x),E"(y)}=25(x-y), (3.123)

where the Poisson bracket is defined as follows:

) SF(r) 5gy) 1 5F() 8g(y)
0.8} =2 f ar1 (éxr(rl) SE"(r1) | 25K, () 5E?(ry)
_OF(r) 3g(y) 1 8F(r) bg(y)

SE"(r1) 8K, (r1) 20E?(r1)6Ky(r1))

(3.124)

As before, the lapse function N and the shift vector N are Lagrange multipliers which enforce

the Hamiltonian and vectorial constraints. These constraints now read

E? 2 _ 12
H-= W(l +K,—-I',))+ VE" (KoK, +0,Ty), (3.125)
V =2EY9,K,—-K,0,E", (3.126)
where I', = —%. Following the results of the Hamiltonian formulation developed above, we
define the smeared constraints H[N]and V[N']:
E(r) 2 2
H[N] =fde (— 1+K,(r)-T,(r)|+ VE"(r) (Ko(r)K, (r)+0,T,(1)]|, (3.127)
s e (L KR =T50) + VETG) (KK ) +0,Ty(r)
V[N"] :fder (2E?(r)0,K ,(r) - K (r)0,E"(r)) , (3.128)

Pursuing the analogy with the Hamiltonian formulation with variables (y;;, nt7), and in particular

eq. (3.116), it can be shown that the smeared constraints satisfy a closed Poisson algebra:

{HINLV [N]]} = -H[N]N'], (3.129)
VNGV [v5]} = v [Npavg) - NjavY ], (3.130)
{HIN11,HINo1} =V [y (NN, - NoNY)] (3.131)

The Einstein equations are obtained as before from the Hamilton equations, describing the time
evolution of a function F":
F={F,HIN]+VIN'T} (3.132)

To summarize, we now have a set of equations, eqs. (3.129)-(3.132), strictly equivalent to General
Relativity. However, this formulation will allow us to apply rather straightforwardly quantum
corrections to General Relativity, as will be shown in the next section.

3.2 Deforming the constraint algebra

3.2.1 Effective Einstein’s equations for a general deformation

Instead of performing the proper quantization of eqs. (3.129)-(3.132) and defining the constraints

as operators, we will follow a much simpler approach to investigate non-singular black hole
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solutions. This approach consists in applying by hand a deformation of the constraint algebra,
which implements quantum corrections to the theory at the classical level. We will then be left
with effective Einstein’s equations, which should be an approximation of the properly quantized

theory up to some energy scale.

The choice of this deformation of the constraint algebra is not entirely up to us, since it
must be anomaly-free. Put another way, it must be such that the Poisson algebra (3.129)-(3.131)
remains closed. A brief argument by Thiemann [108] allows an understanding of this. Imagine
that some first-class constraints Ci, Co and Cg, promoted to operators in quantum canonical
gravity, are such that

[C1,Ca] =ihC3+ 1A, (3.133)

where A is not a linear combination of C 1, ég and C’g, while the classical counterpart of this
commutator is

{C1,C2}=C3 . (3.134)

Suppose that a simultaneous solution ¥ to the three constraints has been found: ¢ i =0 for
i =1,2,3. Then by eq. (3.133) one must also have At// =0, which is a new constraint since A is not
a linear combination of the first-class constraints. Therefore, ¥ must obey a quantum condition
without any classical counterpart, and the quantum theory thus has less states than the classical
one has observables: it can thus not have the correct classical limit. The operator A is called an

anomaly, and should thus be avoided by all means.

To summarize: the Poisson algebra (3.129)-(3.131) of the classical theory is closed, hence
so must be the algebra of commutators in the quantized theory in order to avoid anomalies.
Consequently, the deformed constraint algebra we will consider later, supposed to represent an

approximation of the quantized theory, also must be closed, and thus anomaly-free.

Let us parametrize the deformation of the Hamiltonian constraint as follows:
H:E—(p[1+f(K )—1"2]+\/Er [g(K,)K;+0,T] (3.135)
WE" ® ® @/BrTOrle]- .

As initially derived in [21, 25, 110], one needs to take g(x) = f'(x)/2 so that the Poisson alge-
bra remains closed. Indeed, this leads to the following deformed Poisson bracket between the

Hamiltonian constraints:

{HIN:11,H[Ns]} =V

fII(K ) .
2‘” Y" (NLN,—NoNY) | (3.136)

Such a deformation is anomaly-free since the Poisson algebra remains closed, and point-wise due

to its local character.
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Let us show that we can solve explicitly Einstein’s equations for any F(r), before analyzing
the associated geometry in the next sections. We will solve Hamilton’s evolution equations (3.132)
for the phase space variables E”, E¥ and K, and finally determine K, via the Hamiltonian
constraint (3.135). Let us start with E":

B = {7, HIN1+V [N7]} (3.137)
={E",HIN} +{B", v [N"] | |

The first Poisson bracket reads

E9
{Er(r),H[N]} = {E’(r),fdrlN(rl) (& (1 +f(K¢p(r1))—Fi(7‘1))

2v/E"(r1)
(K (1))
EGD (f+”K,<r1)+arlr¢<r1)))}

(K y(r1))
={E"(), f drlN(rl)\/Er(r1>f+”Kr(r1>}

~ SE"(r) b —— f'(Ky(r1)
—-2 [ D[4 Ne) VB e K )

=— f droN(ro)6(r —ra) VE™(ro) f'(Ky(r2))
= NOVE O FE )

The other reads

[, vt = {B7), [ ar N o) B0, Ky - K00, r0)

—-{E"0), [ ar NGO 00, B )

3 SE™(r) 1) - -
~2 [y oo Dt ([ A N K0, B )

=2 f droN'"(re)é(r—rg)0,,E"(ra)

=2N"(r)0,E"(r)

And finally:

E’:—N\/E’f’(K(p)+2Nr6rEr (3.138)

The equation for E? is
E?={E?,HIN1+V [N"]}
(3.139)

={E?,HN1}+ {E7, v [N"]}
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with

E?ry)
2/ E"(ry1)

"(K,
+vV Er(l‘l) (WK,(I&) + arlr(p(rl))

(1+F &Ky -T5 )

}

N@ry) | E%(ry)
g, f d K, (r ) + VE D F (K (r1 DK (1)
{ r " ( r’(rl)f o(r1 r1) [ (Ky(ry rl)}

[ 8B B NGy [ E?Gry) i
f U2 B0 (rg) 5K ,(r3) (f dri— (\/ﬁf (Ky(r)+ VE (r) f (K (r))K; (rl)))

f'(Ky(r2)+ VE (ro) f"(Ky(ro))K, (rz))

{EY(), HINY} = {E*"(r), [ ariney (

fdr25(x_r2)N(r2) ( E¥(rs)

VE"(r9)

_N@)( E®(r) i
=-— (\/Wf(Kq;(r)H VE"(r) f(Kp(r)K, (r))

and

{E0), vINT} = {E‘P(m, | drlN’(rl)(2E"’(r1>ar1K¢(r1)—K,(r1>ar1E’(r1>)}

=2 {E‘p(r),fd"1Nr(rl)E"’(ﬁ)arlK(p(m)}

. SE"(r) & e
- zfdrz SE KD UdrlN (r)E (rl)arlK(p(rl))

——Qfdr25(x re)———— (Nr(r1)15"”(7‘1)1{4;(7‘1)—fdl’”lar1 (N"(r))E?(r1)) K y(r1)

)
OK(r2)
=—2fdr25(x—r2)(Nr(7‘1)E(’0(7‘1)5(7‘2—rl)—0r2 (N"(r2)E®(r2)))

=20, (N"E*(r)) ,

where the boundary term proportional to (71 — re) vanishes after integration over r.

Hence,
. N |( E¢
Ev = - (ﬁf’(K(p) +VET f”(K(p)Kr) +20,(N"E?) (3.140)
Finally, let us compute
K, ={K, HIN1+V[N"]}

={K,, HINI} +{K,,V [N"]}. G4
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First,
E®(ry) 2
K,(r),HIN1} = K(),fd N(ry) | ———= 1+ f(Ky(r1)) - T2(r1)
{wr } {(,,r riN(rq (2 r’(rl)( f(Kp(ry wrl)
(K p(r1)
EGry) (f+“Kr(r1>+arlr¢<r1>))}
_ E(p(rl) arlEr
—{Kw(r),fdrlzv(m)(—2\/m(1+fu< (r1) - ( o )+\/E (r1) arl( Vo] ))}
5K () E¢(ry) (0-,E"(r1))?
=| drg i fd N — (1 K - !
f 3K (7‘2)5E‘”(r2) ey ,rr(rl)( +IEy(r1) 8VE (r)E?(r1)
r 2 E"
VE (rl_)( 2E(r 1)+6r1E’6r1( 1 ))]
2 E?(rq1) E®¢(r1)
5 NE? <r1> N(r1) (0, E"(r1)?
drod(r— fd 1 K -
f r200r r2>6m(r2){ "o may ) 8VEr)E*(ry)

N(r1)\/E’(r1)631Er(r1) Or, (N(’”l)vEr(’"l)arlEr("l))] Ny \/E (r1) arlEr(rl)}
— + p—

2E%(ry) 2E%(r1) 2E%(r1)

N 1 K, BT /T
=fdr25(r—7‘2) (ra) (1+ /¢ (,,(rg))) Nr2) (0, (7‘2)) + b (r2)2N(7‘2)622Er(7‘2)
2v/E"(r2) 8\/Er(r2 Y(E?(rg))2 2(E?(rg))

0r2(\/Er(rz)N(rz)arZEr(rz)) . /E"(rg) 0, E"(r3)
- +N(ra) - o(rg—r1)
2(E*(r9))? (2E?(rg))?
N (1+ (K () L) (0,E")? . VET(r) N(r)62Er(r)_0,(\/Er(r)N(r)6rEr(r))
- 2VE() SVE (N (E?(r)2  2E?(r)? " 2(E%(r))? '
Then,
{Kp),VINT1} = {Kq,(r), f drle(rl)(2E‘P(r1)ar1Kw(r1)—Kr<r1)ar1Er(r1))}
=2 {K(p(r),[d’“lNr(r1)E(p(7"1)0r1K<p(7“1)}
=2 f dry Kol f dri N"(r1) E#(r1) 0y, K (r1)
e 5K<p(r2)5E‘/’(r2) PN ERD0r Kol
=2fdr25(r—rz)Nr(rg)OrzK(p(rz)
=2N"(r)0,K,(r) .
In the end,

g N0+ Kp)) N@EY VE NOQEr_ar(\/E—’NarEr)
YT avET oVET(EP?  20E¥)Z T 2(E%)2
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3.2.2 Solving effective Einstein’s equations in the static case

We now aim at describing the interior of a non-singular static black hole. Because r and ¢
exchange roles inside the black hole, we will be considering time-dependent fields only. Einstein’s
equations (3.138), (3.140) and (3.142) then dramatically simplify:

E"=-NVE' f(K,), (3.143)
i N 1l E(p /

E‘P:-E VETK,.f (K(p)+\/?f(K(p) , (3.144)
: N

K,=——=|1+f(K,)| . 3.145

The Hamiltonian constraint, from which we will deduce K,., now reads
f’(K(p)ErKr +[1+f(KHIE? = 0. (3.146)

Let us now solve eqs (3.143)-(3.146) for any function f. A simplification occurs for the gauge
fixing choice
N@)f(Ky)=-2, (3.147)

which is nothing but a reparametrization of time. Eq. (3.143) then reads

ET(t)
—92, (3.148)
VvET(t)
which yields
E' ) =(t+a)?, (3.149)

where a is a constant that we fix to a = 0, in order to recover Schwarzschild’s solution in the

classical limit.

Eq. (3.145) then simplifies:

fi(Ky) 1
—_— =——, 3.150
1+f(K, ¢ ( )
or equivalently
1
0/ In(1+f(K,)) = - (3.151)
This equation can be immediately integrated:
fKyp) = r—:—l, (3.152)

where r; is an integration constant with the dimension of a length. Combining the Hamiltonian
constraint (3.146) and eq. (3.144) finally leads to
E? 1 [1+f(K)If"(Kyp)

E? ¢ [F(K )P

(3.153)
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Using eq. (3.152), this equation yields

) = rs f'(Kyp) ))
o; (In (E)) at((ln—1+ ) (3.154)
This is immediately integrated:
f'(Ky)
P=b—>uor— 3.155
1+ /K, ( )

where b is a constant to be fixed later. The remaining variable K, is given immediately from the
Hamiltonian constraint (3.146) together with egs. (3.149) and (3.155). Hence, we have integrated

explicitly and completely the modified Einstein’s equations. The metric (3.94) now reads

ds? = —~N2dt® +y,,(dr + N”dt)* + ygpd Q>

4 s EY o
= f’(K<p)2dt + T dre+E"dQ
bR \2 (3.156)
___¢ t2+l(u) dr? + 2402
& 2\1+f(K,)
1, (2b)? 9 .2 32
‘_%dt +(Z) F@)dr® +¢t°dQ~°,
with 1
F)= (K (1)
1 _1(Ts 2
:Z[f’of 1(7-1)] (3.157)
_ df_l I's B
_[2 - (t 1)

We recall that the aim of this metric is to describe the interior of a non-singular black hole.
Hence, we should expect the constraint algebra (3.129)-(3.130) to be deformed near ¢ = 0, but
almost not near the horizon (¢ = ry) in order to recover Schwarzschild’s solution. Hence, we
expect metric (3.156) to reproduce Schwarzschild’s solution for f(x) = x2, which is the condition to
reduce the deformed Hamiltonian constraint (3.135) to the undeformed one (3.125). In this case
f1(x) = y/x, and then F(¢) = |r¢/t — 1|. Finally, setting b = %S, we recover a metric for the inside of

a Schwarzschild black hole of radius rg.

3.2.3 The standard LQG deformation

We have now a way of exploring the geometry associated with the standard f taken in loop

quantum gravity:
. 2
sin“(px)
Flx)= —p2p : (3.158)

where p is a deformation real parameter that tends to zero at the classical limit. The reciprocal

function then reads

F i) = M. (3.159)
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As a consequence, the effective metric for a black hole in loop quantum gravity is of the form
(3.156) with

F(t)= (r—ts—l)(1+p2—p2r73). (3.160)

This metric is defined a priori for ¢ < rg since Einstein’s equations were solved inside the black
hole, but it can be extended outside the trapped region by using a generalized advanced time
coordinate v such that dv =dr + d¢/F(¢):

ds? = F(t)dv? - 2dvdt + t2dQ2 . (3.161)

The metric and inverse metric are then regular, and as shown in App. A.3.2, the vanishing of an

outgoing congruence of null geodesics is tantamount to
Fi#)=0 (3.162)

Hence, in addition to the future outer trapping horizon at ¢ = ry, a future inner trapping horizon

is present for
2

1+p2—p2r—ts:0<=>t:f+:)s2. (3.163)
The Ricci scalar reads
202
R = _t_2 N (3164)

and diverges for ¢ = 0, which is the locus of a timelike curvature singularity as in Reissner-
Nordstréom spacetime. Our metric is actually very similar to this solution, and leads to the same
Penrose diagram.

However, a main difference is that an outer horizon (¢ = ry) is always present in our geometry,
while naked singularities appear for super-extreme RN black holes. In the end, this naive
extension of the metric is not satisfactory since it does not allow the recovery of Schwarzschild’s
solution in the classical region (r > r), except if the parameter p becomes r-dependent and tends

to zero, which would drastically modify the equations of motion [109].

3.3 Recovering known static spherically symmetric non-singular black holes

We have studied above the spacetime associated with a given deformation of the constraint
algebra, using the standard function f considered in loop quantum gravity. The inverse problem
can also be considered, namely finding a deformation of the constraint algebra for a given metric.
From eq. (3.157), we can indeed obtain the inverse of the deformation function f(x) in terms of
the metric defined by F(¢):

[

-1 _ lfx rs
Fl@w=3] du,F(Hu (3.165)

The metrics of interest to us are the ones of known static and spherically symetric non-singular

black holes, such as Hayward’s and Bardeen’s. We shall then try to find whether they can be
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200 -
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Figure 3.4: Plot of f as a function of x obtained by the numerical integration of eq. (3.165) for Schwarzschild’s,
Hayward’s and Bardeen’s black holes, with m =1 and b = g = 1072,

obtained via a deformation of the constraint algebra parametrized according to eq. (3.146).

Unfortunately, the integral (3.165) with F' replaced by Hayward’s or Bardeen’s functions (3.4)
and (3.1) is not computable analytically. But the integration can be performed numerically, as is
shown in Fig. 3.4 for m =1 and b = 1072. As expected, Hayward and Bardeen’s solutions tend to
Schwarzschild’s near the horizon: their functions f behave as x? at small x. Further work would

be needed to investigate the features of f needed to avoid the presence of a singularity.
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A s e O

pty/ptr r=ft3 pn n(y) zhty.w
“Quel est donc ce pays des habitants de ’horizon?”
(Textes des Sarcophages IV, 223c, M8C [30, 42].)

his chapter is based on results I published with E. Gourgoulhon, T. Paumard and F. Vincent

in [80]. It is devoted to the analytical study of rotating non-singular black holes, while

their numerical aspects will be the topic of Chap. 5. This work originates from a paper by
Bambi and Modesto [9], who applied in 2013 the Newman-Janis algorithm to the well known static
Hayward black hole and claimed they had obtained a regular rotating black hole. We will review
their construction in Sec. 1.1, before showing in Sec. 1.2 that the obtained spacetime is actually
singular in the region of negative values of r. In Sec. 2, we will propose an improved rotating
Hayward metric reducing to a Hayward static black hole in the nonrotating regime (a = 0). This
metric will be shown to describe either a regular rotating black hole or a naked rotating wormhole.
We will then study the associated energy-momentum tensor in Sec. 3, and show that the source
derived from nonlinear electrodynamics in Toshmatov et al. [113] does not satisfy either Einstein’s
nor nonlinear Maxwell’s equations. We actually show that the ansatz used by Toshmatov et al. for
the electromagnetic field solely allows recovering the singular Kerr-Newman metric. We finally
study analytically the geodesics of the spacetime (Sec. 4) in the hope of making connections with

the observations.

Contents
1 Rotating Hawyard’s black hole: a first attempt by Bambi and Modesto . . . . . . . 104
2 A non-singular model of rotating blackhole . . . . . ... ... ... ... .... 108
3 Energy-momentum tensor of the non-singular model . ... ... .......... 116
4 Analytical study of geodesics . . . . . .. ... . e 122
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1 Rotating Hawyard’s black hole: a first attempt by Bambi and
Modesto

1.1 Applying the Newman-Janis algorithm to Hayward’s spacetime

Let us first give the main steps of Bambi and Modesto’s work [9], following the steps of the
Newman-Janis algorithm presented in Section 3.3 of Chap. 2. They start from a spherically

symmetric metric of the form®

ds? = —f(r)dt® + f(r)"1dr? + h(r) (d6? + sin? 0d¢?) (4.1)

1. Defining the null retarded coordinate u such that du =d¢— %, we obtain

ds? = —f(r)du?® - 2dudr + h(r) (d6? + sin 0dp?) (4.2)

2. The components of the null tetrad Z5 = (I#,n*, m*, m*) such that

g =-1"nY - 1"n* + mtm” + m"mt (4.3)
read:
JH = 511‘ (4.4)
(r)

nt =6k - %55‘ (4.5)
mt = ! (5“ + ‘ 5“) (4.6)

V2R \ 2 sinf 3 '

1 i

—pu_ B I 4

mn (62 sin963) ' “D

\/ 2h(r)

3. This step consists in transforming the coordinates (u,r,0,¢) into the tilde coordinates
(ﬁ,F,é,(Z)), allowed to take complex values. The null tetrad gets complexified via the two
functions f(r) and A(r):

A = 1.7 (4.8)
h(r) — h(F,7),
keeping in mind the condition
ZE@&EP x| =ZE(xP) (4.9)
=%

1We revisit their computation in our own notation conventions. In particular, we use a (— + ++) signature for the
metric.
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4. We now introduce the real coordinates (u’,r’,0’',¢’) such that

i=u"—iacos (4.10)
F=r'+iacosO’ (4.11)
0=0' (4.12)
(I) = (p’ . (413)
Hence we get the following tetrad components via Z.* = %’;f VA%
F(F, F)
n't =6f - A & (4.15)
1 i .
m' = ———— |iasing (6 —6") + o4 + ——o¥ (4.16)
P sin6
\/ 2h(F,F)
1 ~ i
m't = —iasind (8t - 6" +5“——~5“] : (4.17)
( 0 1) 2 sinf 3

\/ 2A(7,F)

Using eq. (4.10)-(4.13), we can rewrite these components in terms of the new coordinates

w',r',0',¢"). If we define formally two functions f’ and A’ such that

"(r'.0" = F(m =
FU6)=1 0 (4.18)
R'(r',0') = h(F,7),
and use eq. (4.3) in reverse, we get the following metric:
-0 -1 0 asin?0 (f'(',0") - 1)
[ C1 : 0 0 —asin® 4.19)
gMV - . hl(r/’el) 0 :

sin?0’ [A'(r',0") + a®sin?0 (2 - f'(r',0"))]

5. We can perform a last coordinate change to go to the Boyer-Lindquist form of the metric
using coordinates (¢,7,0,¢), which contains only g, as non-diagonal term. This transfor-

mation reads
u'—t suchthat du'=dt+F(")dr’

r—r=r

0 —o—d (4.20)
¢' > ¢ suchthat d¢' =de+G@E")dr',
with ) s
n_ h'(r',0")+a’sin® 0’
F(r)= 1 0N (r' 0" +a2sin? 0’ ° (4.21)
G(r') = v '
F'a 0OR (' 0)+a2sin® 0 *

This transformation is of course not always possible, since the r.h.s. of F and G must depend

solely on the radial coordinate.
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Let us from now on focus on the Hayward case, starting from metric (4.1) with

_ 2M(r) ; = Mo’
{ Zir; _ 12_ =2 with M) = i (4.22)
ry=r-.

The crucial step in the algorithm is the complexification of these two functions (step 3). Inspired

by the Kerr case, we can write:

+

~Nul|=

{ ) — £, ) w93)

h(r) — h(F,

g N
1
—
|
=
—~

::1
S
N’
—
SN

The only requirement on the complexification of M is that one should recover Kerr’s metric in the

limit b — 0. Bambi and Modesto chose not to alter the form of M. With our notations, this gives

P+ 7
2

M(f,%):M( ) = M@,0)=M). (4.24)

And finally, after going to the coordinates (u',7’,0',¢’) defined via eqgs. (4.10)-(4.13),

S r’2+a?cos20’ (4.25)
A7, 7 =h'(r,0")=r"?+a2cos? 0’

{ F& R =F0)=1- 24

In the end, going to the Boyer-Lindquist coordinates (¢,r,60, @) satisfying eq. (4.20) with

N _ /2+ 2
{ F(') = sgarea? » (4.26)
Gr') = sayrra? -

and then omitting the prime signs, we obtain the metric

14+ 2Mz(r)r 0 0 _4aM(r%rsin29
z 0
(gw] = A 0 (4.27)

sin2 (r2 ra24 2aM(r>):rsin29)
It should be emphasized that in this procedure, we started with » = 0 but end up with
r € (—oo,+00), as claimed in [26]. This aspect is not mentioned in Bambi & Modesto’s work, but
it dramatically changes the nature of the spacetime. As we will see in next section, this model

possesses a singularity in the r < 0 region.

1.2 Presence of a singularity in Bambi-Modesto’s spacetime

By means of the Newman-Janis algorithm [90], Bambi and Modesto [9] (see also [112]) have
obtained some rotating generalization of Hayward’s metric as
2a?rM(r)sin0
a’“rM(r)sin d(p2,
z
(4.28)

2rM(r)) 4 4arM(r)sin?6
b3

b2
ds? = —(1— dtdq)+K dr?+2d0%+sin?0|r® +a? +
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where
ZEr2+azcos29, AEr2—2M(r)r+a2,
3 (4.29)
Mr)y=m————.
) s amb?

In addition to the total mass m and the characteristic length b, the new parameter with respect
to Hayward’s metric (3.4) is the spin parameter a, such that the total angular momentum is
J =am. Note that the function M(r) is identical to that defined by eq. (3.4) and that, except for
the dependency of M with respect to r, the line element (4.28) is identical to that of the Kerr

metric expressed in Boyer-Lindquist coordinates.

As claimed in Ref. [9], there is no singularity at r =0 as long as b # 0 (see [112] for a rigorous
proof). However, Bambi and Modesto say nothing about what happens for r < 0, and do not
explicitly give the interval on which r is defined. As we have shown in Sec. 1.1, after applying the

Newman-Janis algorithm, r should a priori be defined on the whole real line R.

Nonetheless, even if the metric (4.28) were limited to r = 0, it would yield a spacetime that is
not geodesically complete: some timelike and null geodesics would stop at r = 0 for a finite value
of their affine parameter, while (i) there is no curvature singularity there and (ii) »r =0 is not a
coordinate singularity as in Minkowski’s spacetime. The last point can be seen by considering the
value of the metric (4.28)-(4.29) at r = 0:

ds? |r:0 = —dt® +cos20dr? + a®cos?0dO? + a®sin®0 d<p2. (4.30)

If a # 0, this defines a regular (i.e. nondegenerate) metric, except for 6 = /2, the vanishing of
sin?@ at 0 = 0 or 7 reflecting only the standard coordinate singularity of spherical coordinates on

the rotation axis.

The Newman-Janis algorithm applied in Sec 1.1 already suggested to let r take any value
in R, but the regularity of the metric at r =0 and the unphysical ending of geodesics definitely

impose to extend the spacetime to negative values of r. In other words, we consider
M =R x S? (4.31)

as the spacetime manifold, with (¢,7) spanning R? and (0, ¢) spanning the 2-sphere S2.

Now, .4 endowed with the metric (4.28)-(4.29) suffers from some curvature singularity, albeit

not at r = 0. Indeed, the Ricci scalar is (see App. C.1.1 for the computation)

R 240%r% (r3 - 452) (4.32)
(a2cos20 +r2)(r3 +252)° .

where a, b, r are expressed in units of m, and R in units of m?2.
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Figure 4.1: Ricci scalar (left) (in units of m~2) and Kretschmann scalar (right) (in units of m %) as functions of r
for the extension to r < 0 of Bambi and Modesto [9]’s rotating version of Hayward’s metric with a/m =0.9 and b/m = 1.
Note that both scalars are diverging at r/m = —21/3 ~ _1.96.

The Kretschmann scalar (in units of m*) reads
48r* 6..14 6 8.4 6 8 6.2 11 6
K= 5 5 [(a®r**cos(0)° —12a°b*r® cos(6)° +8a°b“r™" cos ()
(a®cos?0+r2)°(r3 +2b2)
+96a8b5r% cos(0)® — 15a*r1® cos* 0 + 36a%b*r cos (0)® — 1920868 cos (0)® - 200062713 cos 6
+944a%b5r% cos(0)® + 15a2r® cos? 0 — 924a*b*r1% cos? 0 + 64a®b8r2 cos (0)® + 56 a2b%r15 cos? 0
—48a*b%r" cos*0 —r2° —276a2b*r'2 cos? 0 — 352a*b8r* cos* 0 + 862 r17 + 144a2b%r% cos? 0

~72b*r ~128a%b%r% cos? 0 + 16 6511 - 325%8)]

(4.33)

)3, as is visible in

They are both singular in the entire hypersurface defined by r = —(2mb?
Fig. 4.1). The situation is in some way even worse than with Kerr’s spacetime, where the singu-

larity at r = 0 could be avoided by observers with 6 # 7.

We conclude that the rotating generalization (4.28)-(4.29) of Hayward’s metric proposed by

Bambi & Modesto does not describe a regular black hole.

2 A non-singular model of rotating black hole

2.1 Regular extension tor <0
2.1.1 Metric

Following a prescription applied by Torres [111] to rotating regular black boles arising from
quantum gravity consideration, we define the metric tensor in all .# =R? x S2 by
2a2rM(r)sin?6

a‘rM(r)si d(p2,
z
(4.34)

2rM(r)) 4 4arM(r)sin?6
b3

b2
ds? = —(1— dtdq)+K dr?+2d6%+sin?0|r® +a? +
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(a) Ricci scalar (b) Kretschmann scalar

Figure 4.2: Ricci scalar (a) (in units of m~2) and Kretschmann scalar (b) (in units of m %) of the improved rotating
Hayward metric (4.34)-(4.35) with a/m = 0.9 and b/m =1 as a function of r for 6 =0, n/4 and 7/2.

with
ZEr2+a2cos26, AEr2—2M(r)r+a2,
Mr)=m—7——— .
= m s omp?

The difference with Bambi-Modesto’s metric (4.28)-(4.29) lies only in the replacement of r by |r|
in the function M(r). This is motivated by the expression of M(r) in Torres’ work [111]:

|73

m
73 +&(|r| +ym)’

M(r)rorres = (4.36)

where @ and y are two constants. Note also that this metric allows recovering Kerr’s metric in

the limit 4 = 0, and Hayward’s static black hole in the nonrotating limit (a = 0).

2.1.2 Regularity

The metric (4.34)-(4.35) has no more divergences for X =0, due to the behaviour of M(r) at
r = 0. Actually, the metric does not have any curvature singularity anymore. This can be seen
on Figs. 4.2(a) and 4.2(b), where the Ricci scalar R and Kretschmann scalar K are plotted for
a/m =0.9, b/m =1 and various values of 0 (see App. C.1.1 for details). In addition, we plot the
Chern-Pontryagin scalar CP and Euler scalar E on Figs. 4.3(a) and 4.3(b), which are defined as

_ *pafyd
CP="*R“R @37
E=-K+4R, R" -R?.

All curvature scalars remain finite, although the Ricci scalar is discontinuous at the equatorial
ring r = 0 and 0 = /2 (see Fig. 4.2(a)).
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(a) Chern-Pontryagin scalar

Figure 4.3: Chern-Pontryagin scalar (a) and Euler scalar (b) (in units of m~%) of the improved rotating Hayward
metric (4.34)-(4.35) with a/m = 0.9 and 6/m =1 as a function of  for 0 =0, n/4 and 7/2.

2.2 The two regimes of the model
2.2.1 Presence of horizons

As in Kerr’s case, the metric component g, diverges for A = 0. This coordinate singularity

can be removed by a change of coordinates:

7'2 2
{ U:t-f—ffazg dr, (4.38)
v=¢p+ Lar.
And the metric then reads
o2rM darM(r)sin2
ds? = — (1 _Zr (r)) Q2+ 2dpdr — 2ATMOISINT0 4 asin?@)drdy + 362
z z (4.39)
2 2 .
+sin%6 (r2 +a’+ Za7rM(r)sin”6 rM(Zr)sm 9) dy?

One can then compute the expansion of null outgoing geodesics orthogonal to the 2-surfaces
r =cst. and v = cst. (see App. A.3.3 for details):

rA
o _ 4.40
"7 a2r2 + 74+ (at +a2r2) cos2(0) A

The metric (4.34)-(4.35) then admits trapping horizons for
A=r?—2M@r)r+a®=0. (4.41)

The way of characterizing the causal nature of the hypersurfaces r = cst., and hence the horizons,
is the same as in Sec. 3.1.3. The causal nature of a vector normal to these hypersurfaces is given
by the sign of

g(Vr,Vr)=gto,ro,r=g"" = % . (4.42)
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Hence, Vr is a null vector when A = 0. The horizons defined above by A = 0 will then be null
trapping horizons. They can be shown to be Killing and event horizons as well, the Killing horizon

being associated with a linear combination of the following two Killing vectors:
e ¢ =0, which is null at the ergosphere (g4 = 0).

* 1 =0y, which is null for g,, = 0. The region in which 7 is timelike contains closed timelike

curves, as will be explained in Sec. 2.3.

2.2.2 Regular rotating Hawyard black hole

Eq. (4.41) admits up to two real solutions depending on the values of the parameters a and b,
and spacetime thus has zero, one or two trapping horizons (denoted r_ and r,). In the latter case,
the considered spacetime .# = R? x $2 can be written A = M U Hpyt U M1 U Ay U 11, With:
ME=R % (14, +00) x S?

Hou ={p ER* xS, r(p)=r.},

I Mp=Rx(r_,ry)xS?, ) (4.43)
FHn={peR*xS?, r(p)=r_},

M1 =R x (—00,r_) x $? ,

In /41, i.e. between the two horizons, 6, < 0: this region is gravitationally trapped, r =r, is a
FOTH and r =r_ a FITH. As for Kerr’s spacetime, one could extend the spacetime in the past
and describe an anti-trapped region, as well as past inner and outer trapping horizons. We will
not deal with this extension in the following, since we are interested in describing astrophysical
black holes.

The outermost null trapping horizon, which corresponds to the biggest value () of the radial
coordinate among the solutions of eq. (4.41), is an event horizon that we will call outer horizon. The
innermost null trapping horizon will be called inner horizon. The region of existence of the two

horizons is depicted in blue in Fig. 4.4. The black line represents the extremal case, wherer_=r..

When b =0 one recovers the Kerr case: two horizons exist for values of @ ranging from a =0
to a = m, the latter value corresponding to the extremal Kerr black hole, where the two horizons
coincide. When a = 0 one recovers the Hayward case, with two horizons whose location depends
on the value of the parameter b. The most interesting cases with horizons are the metrics well
different from Kerr (b = 0) and Hayward (a = 0) ones, for instance the metric with a =5 = 0.5m.

The image of such configurations, computed using the ray-tracing code? GYoTo [120], will be

2Freely available at http://gyoto.obspm.fr
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Figure 4.4: Region of existence of one (black line) or two (in blue) future trapping horizon(s), depending on the
parameters a and b.

discussed in Sec. 3 of Chap. 5.

2.2.3 Naked rotating wormhole

In the absence of horizon (hence of trapped region), the spacetime can no longer be qualified of
a regular rotating black hole. The hypersurface r = 0 is visible by any observer, and it is even

traversable.

In .# =R? x S2, the hypersurface r = 0 is a 3-dimensional cylinder .7 = R x $2, spanned by
the coordinates (t,6, @), which we call the throat, as in the Kerr case [93]. The metric induced on
o by the spacetime metric (4.34)-(4.35) is

do? = -dt? +a®cos?0d6? + a®sin? 0 d?. (4.44)

We may then split .7 into three components: % = .7, UZ U .7, , where .7 is the Northern
hemisphere 0 < 0 < 7/2 times (Cartesian product) R, Z is the equatorial ring 8 = 7/2 times R and

Ty~ is the Southern hemisphere 7/2 < 6 < 7 times R. Introducing in .7;" or .7 the coordinates

X =asinfcosp,  ya y2 g2 (4.45)
Y =asinfsing
the line element (4.44) reduces to
do? = -de? +dXx2%+dY2. (4.46)
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We recognize a 3-dimensional Minkowskian metric and conclude that, as long as a # 0, the throat
Jo comprises two flat open disks of radius a times R: .7,;" and .7];". Moreover, from the signature
of (4.44), it appears that the throat is timelike; it is therefore a 2-way membrane, i.e. it can be

crossed by particles from the region r > 0 to the region r <0, in the reverse way as well.

That is why we call each configuration of the metric (4.34)-(4.35) such that eq. (4.41) has no
solution a naked rotating wormhole. Indeed, the wormhole whose throat is located at r = 0, which
is also present in Kerr’s case (with a singularity), is no longer hidden by any horizon. Photons
can even go through the throat and come back to the observer, as will be shown in Sec. 3.2.3 of
Chap. 5.

2.3 Causality

The Kerr spacetime possesses a well-known acausal region, the Carter time machine [32]. In
this region, the Killing vector  =d,, is timelike, giving birth to closed timelike curves. However
the whole spacetime does not become acausal thanks to the presence of an event horizon: the

particles that are able to move backward in time are trapped inside the black hole.

Considering now the rotating Hayward metric extended to r < 0, one has to check whether n
can become timelike even in the absence of horizons, in which case the whole spacetime would
be acausal. Indeed, if 8, becomes timelike, an observer can follow an integral curve of ¢, with
constant (¢,r,0). After a rotation ¢ — ¢ + 27 around the axis 8 = 0, the observer comes back at
the same point of space-time. Any observer could then come from infinity, use the closed timelike
curve for a while, and reemerge from it: it would then have travelled in the future. In view of

(4.34), one has

s o 2a2M(r)rsin?0

— —_— 1 2
MN=8pp =\ +O +— 5 529 | 0, (4.47)

so that

n timelike = (% +a®)(? +a?cos?0)+2a2M(r)rsin?0 < 0. (4.48)

The only negative contribution in the left-hand side of (4.48) comes from the second term, when
r <0. It reaches a minimum for 6 = /2. Fig. 4.5 shows that there exists a red region (region I) for
which gy, <0 while no event horizon is present. The parameters a and b associated with such a
region thus correspond to acausal spacetimes, which we will not deal with in this dissertation. It
should be emphasized though that the cosmic censorship conjecture, which was used to discard
spacetimes (without event horizon, hence with a visible singularity) that did not hide the acausal
region, is no longer an argument here.

Region II also has causality issues, but these are hidden behind an event horizon. Regions III
and IV are totally free of closed timelike curves, the latter is also devoid of any event horizon and

represents a naked rotating wormhole.
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Figure 4.5: Regions of existence of an event horizon (in blue) and of negative &g for 0 = 1/2 in the absence of
horizons (in red), depending on the parameters a and b.

2.4 Energy conditions

The existence of horizons, hence of trapped surfaces, along with the absence of singularity, ques-
tions the hypotheses of Penrose’s singularity theorem. As mentioned in Secs. 1.3.2 & 1.3.3 of
Chap. 3, both Bardeen and Hayward nonrotating metrics fulfill the null energy condition and
circumvent the original theorem by Penrose (Thm. 1.3 of Chap. 1) by the lack of a Cauchy surface.
In the improved version of the singularity theorem by Hawking and Penrose (Thm. 1.4 of Chap.
1), the hypothesis of existence of a Cauchy surface is relaxed, at the price of replacing the null
energy condition by the strong one. This version is still compatible with Bardeen’s and Hayward’s

regular black holes because both violate the strong energy condition.

In the rotating case, it has been shown by Torres [111] that any metric of the type (4.34) with
a # 0 violates the weak energy condition in all the region r < 0 as soon as M'(r) < 0 there. This is
the case for our choice (4.35) for M(r).

Here, we investigate the violation of the weakest of all energy conditions, the null energy
condition (NEC), defined in Sec. 3.1.1 of Chap. 1. It is the weakest condition in the sense that
its violation also implies the violation of the weak, strong and dominant energy conditions (as
shown in Fig. 1.8). For any null vector £* the NEC reads

TuwktkY = 0. (4.49)
In order to compute this scalar we switch to the locally nonrotating frame which diagonalizes the
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metric [14]. Its basis is such that e - e; =13y. The dual cobasis at each point (¢,7,0,¢) reads

[zA
W=y /== de
e _A ,
[x
n_. 1= d
€ A (4.50)

e =3 do,
2M i A
e = —Mdﬂ— \/ = sinfdo,
VZIA z
with
A =2 +a?? -a®Asin?0. (4.51)

Solving Einstein’s equations “in reverse”, we obtain T,;”A,k’ik‘? =G m,kﬂk‘A’/Sn. This effective energy
density is plotted in Fig. 4.6 in the case a/m = 0.9, b/m =1 (see App. C.1.2 for details). One can

see that the NEC is violated from near the centre up to r — —oco.

|
>
L

[NETCEEE

Figure 4.6: Tm,k/:‘kf’ as a function of r for 6 = 7/6,7/3,7/2 and a = 0.9,b = 1. The NEC is violated when any of the
curves goes below zero.
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3 Energy-momentum tensor of the non-singular model

3.1 Results of Toshmatov et al.
3.1.1 A nonlinear electrodynamical source

In[113], Toshmatov et al. claimed they had found a nonlinear electrodynamical energy-momentum

sourcing a metric of the following general form:

2a%r M(r)sin%0
>

2rM(r))dt2_4arM(r)sin29

>
> dtd(p+K dr2+2d6%+sin?0 |r? +a® +

d32=—(1— )d<p2.

(4.52)

They used the following action, coupling general relativity to nonlinear electrodynamics:
1
S=— | d*xy/=g(R-£L(ZF)), (4.53)
167
where & = F,, F*'. The electromagnetic tensor F,, is defined through the vector potential A :
Fu=V,A,—-V,A,. (4.54)
The Einstein equations deduced from the action (4.53) read

1
Gy =2\ L5F, Fro— 7 L8| (4.55)

while the nonlinear Maxwell equations are

V(ZzF")=0 (4.56)
Their ansatz for the vector potential is
A:_Qma cos@dt+Qm(r2+a2)cosed(p. 4.57)
z z
They then claim that
27,3 2.2 4, 2.2 2
a’(3—cos(40)) +4(6a“r-+2r*+a“(a” —6r<)cos(20
F =" [ (40N +4( ( @97] . (4.58)
434
Finally they claim to solve Einstein’s equations with respect to £ and £, yielding
22! ’ (4.59)

Lo = 2(r2—a? cosz(g)g)?lg’(r)—rZM”(r) )

{ P r?[(15a*-8a? r?+8rt+4a? (5a%-27r?) cos(20)+5a* cos(40)) M'(r)+16a%r cos?(0) X M"(r)]

3.1.2 Issues in the derivation of the “solution”

As we mentioned to the authors, the way they solve Einstein’s equations cannot ensure that

% is a function of & only, i.e. that it be a proper lagrangian density. This was also noticed by
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Rodrigues & Junior in [102]. Toshmatov et al. nonetheless claim in [114] that this introduces

only a small inconsistency, and that the difference

0% 0% or 0% 00
ANLy=Lg—o= g 2L T2 T 4.60
F=T 87 77 or 0F 00 0F (4.60)

is on level 1072,

We disagree on two points. First, only the ratio A %%/ %4 could give a relevant dimensionless
number to characterize the deviation from an exact lagrangian. Second, since Zs must be a
function of % only, one must have

0% or 0% 00

= == 4.61
or 0F 00 0F ° (4.61)

and eq. (4.60) then actually reads

ANlg=Lg—=—| 2y — (4.62)

1(6$6r 0% 00
2\ or 0F 00 0F )"

In the end, the consistency checks that should be performed to quantify the deviation from an

exact lagrangian are the following:

X(r,0)=1-5-%292 =0,
_ 1 3% 36 (4.63)
Y(I",Q):l—%wﬁ=0 .
X and Y are plotted below in the case of the Hayward model, where
2mrd
Mry=1- —— 4.64
(") r3 +2m b2 ( )

It appears that both diverge for large values of r (Fig. 4.7, see App. C.1.4 for details). This is in
contradiction with the results of Tomasthov et al., and shows that their lagrangian fails to be a

function of % only.

Another serious drawback in the derivation of Toshmatov et al. is that the authors do not
check whether nonlinear Maxwell equations are satisfied. We will prove in Sec. 3.2.2 that with
their choice of electromagnetic field (4.57), they can actually be satisfied only if £(¥) x Z.

3.2 Exact solutions

3.2.1 Magnetic source

Bardeen’s and Hayward’s solutions are recovered with a magnetic Maxwell field F = gsin(6)do A
do, stemming from the vector potential A = —gcos6dg. Let us now see whether Kerr’s modified
metric (4.34) can be sourced by a nonlinear magnetic field. In axially symmetric and stationary

spacetimes, the Maxwell tensor will have only F,, and Fg, as nonzero components. Let us write
A=qa(r,0)de, (4.65)
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Figure 4.7: Plot of X and Y as a function of r, with @ = 0.5, b = 1/v/2, @, = 1, and 6 = /2.

and then
F=0,adr ndp+0gadf ndyp . (4.66)

Notice that with this construction, the first part of Maxwell’s equations is automatically satisfied:
dF =ddA =0. To check whether the second part is satisfied too, we can then compute the Hodge

dual of Z4 F':
(A—a?sin®0) %z a (A-a?sin®0) Lz d 2arM(r)sind Lz a’
*x (LzF)= diAndr— diAndb - drAnd
(L F) SAsing ner Ssin0 " A race
N 2arM(r);in8$ga’d9Ad(p
4.67)
where we denote 0, a = a’ and dy @ = @. Defining
_ A- 2 . 29
Fr,6) = Agisin'e w68
(r,0) = 2arM(r)sinf .
g b z b
we have
L L
* (%%F) = ! A‘gadt Ar—f ZLza'dt AdO - EL7 40 A dp+g%za'dondy . (4.69)
Then,
. . 1 .
d* (LgF)=—(f%za+[fLra+[Lrd)dt ndr ndO + n (g4Lga+gLaa+gLyid)drndonde

1

A

+(f'Lgd +fLgd +fLza")dt ndr AdO+ (g Lga' + g Lya + gLz a")dr ndO Ady
4.70)
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The nonlinear Maxwell equations then read

fLra+fLra+fLri=-AfLed +fL a +fLza"],
F

. 4.71)
§Lga+gLya+gLgi=-N|g Lya +gLya +g%gad],

d*(EgF)=O<=>{

Hence, for f,g # 0, a necessary condition for the equations to be satisfied is f = g. Therefore,

there exists no solution for a generic M(r).

Notice that we recover easily the static case. For a =0, g =0 and the equation for g is trivially
satisfied. Moreover, the spacetime is spherically symmetric and £ = L% (%) depends only on r,

since & = %(r). Then, the equation for f reduces to
fa+fa=0. (4.72)
This equation is indeed satisfied for the Maxwell field used for Bardeen’s and Hayward’s solutions:

a=-gcosf . (4.73)

3.2.2 Electromagnetic source

Let us now investigate the situation described by the vector potential of Toshmatov et al. (eq.
4.57)):
_Qm azcosedt N Qn (r? +za2) cost

A=

dy . (4.74)

We will not begin with Einstein’s equations, but with the nonlinear Maxwell equations. As we
shall see, they will give us a very strong constraint on the possible lagrangians £, that we will

then implement in Einstein’s equations.

Due to the t-component of A, the electromagnetic field will possess both electric and magnetic

nonzero components:

Fo_ 2Qar cos@dt/\dr+ Q@ a sinf(a? COS29_r2)dt/\d6— 2@, a’r cosf SinQedr/\d(p
>2 >2 2
B Q,, sinb(r* +a? rzz—2 (@ +r?)a? cos?0) do ndo
(4.75)
The electromagnetic field invariant & = F,,F*'" then reads
2(a?cos?0 +2arcos(0) —r?)(a®cos? 0 — 2arcos(0) — r2) Q>
- 2l @ —r*)( ©) )Qm’ 4.76)

24

and differs from the expression (4.58) of Toshmatov et al.
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From eq. (4.75), we get

2a2r cosf sin0. Ly + (r2 —a? cos?0) L

dx (LgF)=- 5 QnditAndrando
2., .2 -Z NPV I I TR 4.77)
2ar(a®+r“)cos0 s1n6$faj +a sin“0(r° —a” cos“0) L%
52 QRndraddade,
where £, = a‘f Z and Ly 629 . The nonlinear Maxwell equations thus reduce to
2a? 0sin0.L. + (% —a?cos?0) Lz =0
dx (LoF)=0 | 20 TCOS0MOL (P maT o5 D L5 =0, (4.78)
2ar(a®+r?)cosh sin@ﬂ}l +asin“0(r‘—a“cos“0)%z =0 .
Hence,
2ar cosO sinf (r2 + a? cosze)fé =0,
2_ 2.2 2 2] o 4.79)
(r“ —a“ cos 0)[acos 0+% Lz =0.
And finally:
,%(Q, =0,
) — Zg=cst.=y (4.80)
Yz =0.

The choice of the constant does not affect the equations of motion (3.14), but it does change the

energy-momentum tensor by a factor y, and then Einstein’s equations. We will then write
L=yF. (4.81)
Hence, the nonlinear Maxwell equations with the ansatz (4.57) must reduce to linear equations

with a lagrangian proportional to the standard Maxwell lagrangian £ = %

Let us now solve Einstein’s equations with an electromagnetic source described by the
lagrangian £ =y%. As in Sec. 1.3.1 of Chap. 3, we use slightly different notations compared to

the ones of Toshmatov et al. The action of nonlinear electrodynamics in curved spacetime reads:

1
= T6n f d*x\/~g (R + 1671 L(F)) . (4.82)
b2
Einstein’s equations read
Guw=8nTy (4.83)
with
T = _i 5Smat
= \/_— 5gl“’
= \/_ 6g,uv /_g Yg (4.84)

=ZL8uw— 4$gF”“FW
Note that these equations are rigorously equivalent to eq. (4.55) of Toshmatov et al., since our

lagrangians are related by a factor (—ﬁ).
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With our expression (4.81) of the electromagnetic lagrangian, Einstein’s equations read
Gy =87y (P80 —4F, F ) (4.85)

The independent components of the Einstein tensor are the following:

230" — (a rM”+2a4M’)cos46+(2a4M’ (a r—a’r )M”)cos 60— 2(a r +r4)M’

t _
(4.86)
2r2M’
G, =- 52 (4.87)
2 2 " 2 2 4 3asl
oM" +2 OM' +r°M
Gae __a’rcos a2cos r (4.88)
z
o ar®M"—2ar®M' +(a®rM" +2a°M')cos?6
;= 53 (4.89)
0 (2(a +2a2r2)M’ (a r+a?r )M”)sm 60— 2(a +a2r2)M (a4r+2a rP+r )M"
Gy = (4.90)
>3
As concerns the components of the energy-momentum tensor, they read:
2(a%cos?0 —2a? —r? 2
-2 )@n"y 4.91)
>3
20,2
Tr = an; Y (4.92)
20.2
7% = - QZ"; ! (4.93)
4 2
", = % (4.94)
9 2 20_2 2_ .2 2
7, - (a*cos a®-r?)Qm’y (4.95)
>3

Taking for instance the trace of Einstein’s equations, one gets immediately T'u” =0 and thus

. 2(rM"+2M)
G, =-——~ =0, (4.96)
hence Y
M'=—- 4.97)
r
Assuming eq. (4.97) holds, G(pt =8n T‘pt yields
4ar? 32 2
_ ;g M = ”;ng , (4.98)
hence 9
8
= 37"%n (4.99)
r
we will then write )
8
M =My + V% (4.100)
r
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where M is a positive constant. This form of M(r) is compatible with eq. 4.97, and is actually

sufficient to solve all the remaining Einstein equations (see App. C.1.4 for details).

To conclude, there is thus no way of building a rotating regular black-hole metric from
nonlinear electrodynamics with the electromagnetic field (4.75). This field however enables us,

for y <0, to recover the Kerr-Newman metric [89] with electric charge e = 4@, /7 |)/| :

2r My —e? 2a(2r Mo —e?)sin?0 2
dsZ:—(l——r 0—¢ )dtQ— a@rMo— €70 4, 4+ = 4r? + 3.d6°
> z A
297 Moy — ¢?)sin20 (4.101)
—e“)sin
+5in26 [r2 424 L2TT0C 0T de? ,
z
with
Y=r2+a%cos?0, A=r?-2M@)r+a’+e?. (4.102)

4 Analytical study of geodesics

4.1 Circular orbits in the equatorial plane
4.1.1 Energy and angular momentum of a massive particle

Let us consider the geodesic motion of a test particle with momentum p and mass mg > 0,
following a circular orbit in the background of the metric (4.34). This motion occurs in the
equatorial plane (6 = 7/2) due to the axisymmetry of the metric. Along with the property of
stationarity, this also implies the existence of two Killing vectors { =; and ) =d,,. The conserved

energy and conserved angular momentum of the particle read:

E=-¢-p=-p'(gu+81pQ)

; (4.103)
L=n-p=p (gtpt+g(p<pQ)a

. _do
with Q = Tr-

The angular velocity 2 can be found by considering the Euler-Lagrange equation for a free

particle whose Lagrangian is

1
L = gt (4.104)

with x# = %, where A is an affine parameter. The Euler-Lagrange equation supplemented by

the conditions for a circular orbit 7 = # = 0 boils down to:

gtt,ri2 + 2gt(p,rt(p + g(ptp,r(PZ =0, (4.105)
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where the comma denotes a derivative with respect to the radial coordinate.

The angular velocity of a particle on a circular co- or contra-rotating orbit is then:

a. - ~8tor+\/Etor —8tt,r8por ‘ (4.106)

8ogo,r

The specific energy and angular momentum of a massive particle on a circular orbit in a stationary

axisymmetric spacetime thus read:

_E, gt +8tpQls
o= = ‘
mo \/_(gtt +2819Qs + 8 ppQ2) 4107
& EE: 8ot +8ppQlt ’
MO [~ + 281y Qs + £ Q)
In the context of our metric (4.34), we obtain in the equatorial plane (6 = 7/2):
e r3+a?rM'(r)- M(r) (a2+2r2$2ar\/A(r))
i =
3 _ 42 2 ! r?B.(r)
(r3—a?M(r) +a?rM'(r)) \/(r3—a2M(r)+a2rM’(r))2 108
P —(@®+3ar® )M(r) +(@®r +ar)M'(r) £ (a%r? + rt + 2a2r M (r)) VA(r) '
+ = ) )
3_,2 2 1 r2B.(r)
(r3—a2M(r)+a2rM'(r)) \/(r3—a2M(r)+a2rM’(r))2
where
M
A =22

B.(r)=—a?r’M"?(r)+ r* =30’ M) = 3(a®’r + r )M ) + (3a%r? + r* + 4a’rM(r)) M' (r)
+2[(a® +3ar® )M(r) - (a®r +ar®)M'(r)] VA®).

These expressions differ from Toshmatov et al. [113] (see App. C.1.3 for details and a comparison
with the results of Bardeen et al. [14]).

Circular orbits can therefore exist only for A(r) = 0 and B.(r) > 0. These three functions are
plotted below, for a/m = 0.9 and b/m = 1. The regions of allowed co-rotating circular orbits are
pictured in grey in Fig. 4.8. The region of positive r goes up to r — +oo, while the one of negative
values of r exists only near the center. This is coherent, since from r — —oo the metric (4.34)
behaves as a Schwarzschild metric with negative mass: the repulsive gravity does not allow

circular orbits for large enough negative radii.

4.1.2 Influence of the spin

Let us study how the regions of allowed circular orbits are modified when the spin varies.

First of all, it should be noted that A(r) does not depend on the value of the spin. Hence for a
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—A(r)

—B.(r)

—B_(r)

| | | I S ST S ——| T/m
-3 2 3 4 5

Figure 4.8: Plot of A(r), B+(r) and B_(r) in the case a/m = 0.9, b/m = 1. The shaded regions represent the zones
where circular orbits are allowed.

fixed b, e.g. b/m =1 like in Fig. 4.8, the shaded regions will be modified only if B.(r) changes. As
shown in Fig. 4.9, decreasing the value of a only widens the zone of circular orbits below » = 0. It

thus does not have any impact on the allowed circular orbits with r > 0.

—A(r) —A(r)
—B,(r) —B. ()
—B_(r) —B_(r)
L _———— T — ’I“/ﬂ I I T
= 2 3 4 5 3 3
a)a/m=0.8 b) a/m =0.7

Figure 4.9: Plot of A(r), B+(r) and B_(r) in the case b/m = 1, for two different values of the spin. The shaded region
for the negative values of r gets wider as a decreases.
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4. ANALYTICAL STUDY OF GEODESICS

4.1.3 Influence of the parameter b

Contrarily to the spin, the parameter b has a direct influence on the region of allowed circular
orbits of positive radius. Going from b/m =1 (Fig. 4.8) to 6/m = 0.7 and b/m = 0.4 (Fig. 4.10), at
a constant a/m = 0.9, we observe that circular orbits can occur for smaller and smaller positive

values of r.

Meanwhile, the region of allowed circular orbits with negative radius shrinks as b decreases.

This region even disappears for b/m =0, as one can see in Fig. 4.11(b) below. In this configuration,
two horizons exist and circular orbits occur only for values of the radial coordinate above the
radius of the outer horizon. For b/m = 0.2 (Fig. 4.11(a)), some circular orbits can also occur below

the radius of the inner horizon.

12 | 12}
—A(r) —A(r)
— B (r) —B.(r)
—B_(r) =B_(r) 10 L
8
6
4l
2+
| T T = 7"/77 I I I e S W s e | 'r/m
=2 3 4 5 H—/f/v 1 2 3 5
(a) b/m=0.7 (b) b/m=04

Figure 4.10: Plot of A(r), B+(r) and B_(r) in the case a/m = 0.9 for two different values of b. The shaded region for
the negative (resp. positive) values of r gets narrower (resp. wider) as b decreases.

4.1.4 Innermost stable circular orbit ISCO)

The innermost stable circular orbit (ISCO), which corresponds to the stable circular orbit of
smallest r, is astrophysically relevant since it provides the highest orbital frequency possible
around the central object. In particular, the ISCO frequency is involved in various models of
quasi-periodic oscillations (QPO) [100].

In the Kerr case, it has been shown by Carter [32] that the radial geodesic motion is governed
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12 | 12 «‘
—A(r) —A(r)
—B,(r) =B, ()
—-B_(r) 100 —B_(r) 10

8 8 -

6 6|

4l a4l

2+ 2k

\l #
! ! | /\ X!__—v ’I“/ﬂ I I L x———‘ T/m
wﬁ/ 1 2 3 4 5 H\\l\ 1 2 3 4 5
(a) b/m=0.2 (b) 6/m =0

Figure 4.11: Plot of A(r), B+(r) and B_(r) in the case a/m = 0.9, in the presence of two horizons (black vertical
lines), for two different values of b.

by the following relation:

sV _ v
dA (4.109)
% =[(r2+a®E—aL]’ - A[@E -LY +m2r®+ 2],

where A is an affine parameter, mo the mass of the particle, and 2, E, L are the three integrals
of motion (respectively the Carter constant, the energy and the angular momentum of the test
particle). The zeros of Z thus represent turning points of the motion of such a test particle in

Kerr’s spacetime.

Stable circular orbits are defined by the three conditions

dR(r)
=0 d
dr . an dr?

d2%(r) -

Z(r)=0, =<0. (4.110)

The frequency (4.106) of a particle following a circular orbit reads:

225 _ 4 4,2 2,8 L -6), [___4b2mPri-mr5
4ab’*mr—amr* £ (4b*m* +4b°mr° +r )\/ Y Py

Q. =
. r’—(a2-4b2)mr* +4(a2b2 + b4)m?2r

(4.111)

The ISCO values of the radius and the orbital frequency (4.111), for co-rotating and contra-
rotating orbits in the equatorial plane (£ = 0), have been computed for different values of ¢ and
b (see App. C.1.3 for details). The result is shown in Table 4.1.
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blm

alm

0 0.5 1

6m  320mHz|5.84m +331 mHz| 5.19m1 +3.86 mHz

6m —320mHz| 5.84m 331 mHz| 5.19m —3.86 mhz

4 23m +5.10mHz| 3.82m1 +5.80 mHz| 1.59m +1.08 mHz

0.5

T 55m —232mHz| 7.46m 236 mrz| 7.14m —2.50 mhz

232m +10.6 mHz 1.04m +8.54 mHz 159m +1.07 mHz

0.9

8.72m -1.89 mHz 865m —1.91 mHz 843m —1.98 mHz

Table 4.1: Radial coordinate of the ISCO and orbital frequency of a test particle at the ISCO for various values of
the parameters a/m and b/m, and m = mgg, o+ Four different results are associated with each combination of a/m
and b/m: the radius of the ISCO (left) and the frequency Q of the co-rotating (resp. contra-rotating) orbit (right) are
located on the upper (resp. lower) pannel. The dark grey boxes correspond to the classical Kerr (and Schwarzschild for
a = 0) black hole, the light grey boxes to the regime of rotating regular black hole (zones II and III of Fig. 4.5), while
the others are associated with a naked rotating wormhole (zone IV of Fig. 4.5).

4.2 Null geodesics

Let us now focus on the propagation of light rays in order to understand the images that can
be seen by an observer on Earth, such as the ones we will show in Chap. 5. Due to (4.109), in
which we now take my = 0, the condition for the existence of a photon of energy E with angular

momentum L and Carter’s constant 2 is
(2 +a®E —aL]’ - (r2 +a® - 2rM(") [@E -L)* + 2] = 0, (4.112)

with M(r) given by eq. (4.35).

In the case of a Kerr spacetime, M(r) = m and eq. (4.112) is polynomial in r, of degree 4. It
can then be shown that a photon trajectory has at most one radial turning point in the black hole
exterior [56]. Here, due to the form (4.35) of M(r), eq. (4.112) reduces to a polynomial equation of
degree 7. The phenomenology is thus much richer than in Kerr’s case. In particular, some photon
trajectories can have more than one radial turning point. This is illustrated in Fig. 4.12 below.

The central shaded region of the right panel is particularly striking: photons with energy E,
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angular momentum L and a Carter constant 2 can oscillate back and forth between two radial

turning points, around r = 0.

Figure 4.12: Plot of % as a function of the radial coordinate r/m. The shaded regions represent the allowed regions
for a photon with Eg/m =1, Lo/m = 2, 29/m? = —1, in the case of a rotating Hayward black hole with a/m = 0.9 and
b/m =0 (a) (the black lines denote the outer and inner horizons) and of a naked rotating wormhole with b/m =1 (b).

This analysis, using the inequality (4.112), also allows us to understand the behaviour of
photons travelling into the region with r < 0 before reaching an observer on Earth, whose
trajectories will be studied in detail in Sec. 3.2.2 of Chap. 5. Fig. 4.13 shows the allowed region for
a photon with E1/m =1, L1/m = -2, 91/m? = -1 in two different cases: b/m = 0 (left) and b/m =1
(right), while a/m = 0.9. One can see that in both cases, a photon going from r >0 to r <0 has a
radial turning point and goes back to the region with positive radial coordinate. However, in the
case b/m = 0 where a trapped region is located between the two trapping horizons (black vertical
lines), this photon cannot cross the inner horizon and thus reach the observer. When b/m =1 no
horizon is present, which allows a photon from the accretion torus to travel towards the region

r <0, reach a turning point and then an observer on Earth.
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R(h Eleval) R(T‘, ElaLla Ql)
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St 5
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Figure 4.13: Plot of % as a function of the radial coordinate r/m. The shaded regions represent the allowed regions
for a photon with E1/m = 1, L1/m = -2, 21/m? = -1, in the case of a rotating Hayward black hole with a/m = 0.9 and
b/m =0 (a) (the black lines denote the outer and inner horizons) and of a naked rotating wormhole with 6/m =1 (b).
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CHAPTER

SIMULATING A ROTATING NON-SINGULAR BLACK HOLE AT THE
CENTER OF THE GALAXY

PER WG

Jj~n=jmjn m drw 3h.t p.t

“C’est des confins de ’horizon du ciel que je suis venu ici.”
(Textes des Sarcophages VII, 313d, B2L [30, 43].)

his chapter aims at presenting the numerical results we obtained with E. Gourgoulhon,

T. Paumard and F. Vincent in [80]. These results concern ray-traced images of the regular

rotating Hayward model introduced in Chap. 4, surrounded by an accretion torus playing
the role of the light source. A ray-traced image is defined as a set of pixels, each corresponding
to a photon with given specific intensity and whose null geodesic is integrated backward in time.
Both the regular rotating black hole and naked rotating wormhole regimes will be investigated in
Sec. 3. Before that, we will explain the general features of black hole images, which stem from the
properties of the spherical photon orbits around the hole, all located inside the photon region whose
shape will be examined (Sec. 1). Of the uttermost importance will be the shadow, delineated in
the numerical computations by a photon ring, which is a central dark region that light rays never
reach due to their capture by the black hole. To make connections with the observations, and in
particular the forthcoming results of the Event Horizon Telescope, the simulations are performed
with an astrophysical model compatible with the known data on Sagittarius A* (Sgr A*), the black
hole at the center of the Milky Way, that we present in Sec. 2 along with the ray-tracing code
GYOTO used for the numerical simulations. A special emphasis is put on the the Hayward plugin

I specifically developed in my thesis to describe our regular rotating Hayward model.

Contents
1 General features of black holeimages . ... ... ................... 132
2 Astrophysical and numericalset-up . . . ... ... ... .. L o o L. 141
3 Images of the regular rotating Hayward model . . . . . .. .. ... ... ...... 149
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1 General features of black hole images

1.1 First approach

Before showing the first ray-traced images of a black hole, let us anticipate on what one should
expect to see. Since a black hole (e.g., Kerr’s black hole) possesses a trapped region from wich
light rays cannot escape, one should expect that some of the light rays emitted by a source
behind the black hole will never reach an observer located on the other side of the hole. The
shadow is precisely the region, in an observer’s sky, that would receive light solely from inside
the outer trapping horizon' if it were to (classically) emit some [38]. In other words, performing a

backwards ray-tracing computation, all photons on the shadow will cross the horizon.

From this definition, we are almost led to think that the shadow is merely the image of the
outer horizon on the observer’s sky. Actually, that would amount to considering a black hole
only as an absorbing sphere in flat spacetime, which it is not. Indeed, one should not forget
that a black hole significantly curves spacetime in its neighbourhood, and actually many light
rays that would not have reached the horizon in a flat spacetime will be bent and eventually
fall into the horizon. This curvature of spacetime reveals itself by the presence of photon orbits
in Kerr’s spacetime, i.e. of trajectories with constant r. These orbits, when unstable, can lead

photons to either fall into the horizon or be ejected at infinity, hence possibly reaching the observer.

It will thus be necessary to understand the properties of these photon orbits (Sec. 1.2) before
explaining the main features of a typical black hole image, and in particular of its shadow (Sec.
1.3).

1.2 Photon region
1.2.1 Definition

The existence of photon orbits can be inferred from the study of null geodesics, whose equations
were first given by Carter [32] for Kerr’s metric. They also apply for a more general metric, where
we allow M to depend on r: M — M(r) (see [115] for instance). It is precisely for this metric
that we will investigate the shape of the photon sphere, so that we can apply it both to Kerr’s

spacetime and to our rotating Hayward model.

The r-motion of a null geodesic is governed by

>\ (dr 2_ 9 9 9 )
(177) (ﬁ) =2 =[(r"+a*)—ap] - Alla-9)*+ 2], (5.1)

Lin this Chapter, it will be referred as outer horizon without ambiguity. We choose not to call it an event horizon,
since the latter notion requires the knowledge of the full spacetime.
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which corresponds to eq. (4.109) with a massless particle (m¢ = 0), and where we have defined

the dimensionless angular momentum and Carter constant ¢ = %, 2= %

Besides, the 8-motion is governed by

2\2(d6)? _ A P
(E) (ﬁ) —@(0):94‘(& —m)cos 0. (52)

Let us focus on the spherical orbits® of photons, which have a constant radius r. At this radius,
one must then have
R(r)=R'(r)=0. (5.3)

This leads to the following two equations

[(r2 +az)—a(p]2

R(r)=0—= 2 = A —(a-¢)? (5.4)
4r|( 2 + 2y _
@r=0e =210 A‘t) a(p]—(a—(p)2. (5.5)
Combining eqgs. (5.4) and (5.5), a first solution is
_ r?+ad?
{ R (5.6)
Q = —? s

However, as in Kerr’s case this solution is unphysical since it leads to §2 < 0 (see [107] for details).

Let us then consider the other solution, obtained for ¢ # “2%’2:

_r’+a® _4rA
Yo=" ) al' (5.7)
20=158—(a-¢)?,
Let us now study the 8-motion described by eq. (5.2), which can also be written
2
DA (a sin®0 - ¢)
Z16%2=2+(@-¢)? - —p—". (5.8)
(E) ¢ sin?6

Plugging the expressions (5.7) in eq. (5.8), and requiring that the -motion be allowed (62 = 0),

yields after a straightforward calculation
16r2a%Asin®6 = (4rA-32A')? (5.9)

This inequality defines the photon region £ in which a spherical orbit goes through every point
(r,0).

Note that we recover the results of Teo [107] in the limit M = cst. This result is also consistent

with Grenzebach’s, applying to a more general class of spacetimes (eq. (3.7) in [65]). Finally, we

2Rigorously, the term “spherical orbits” is specific to Kerr’s black hole. The more general fundamental photon orbits
can be defined in stationary and axisymmetric spacetimes [39], and reduce to spherical orbits in Kerr’s spacetime
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(a) a/m=0.5,b/m=0 (b) a/m =0.5,b/m =0.5

Figure 5.1: Plot of the photon region % for two configurations of the parameter b corresponding to regular rotating
Hayward black holes, on meridional sections of the black hole. The coordinates satisfy x2+ y2 =r2 and x = r cosf, and
the trapped region below the photon region is represented as a black disk.

should recover the photon sphere of Schwarzschild’s spacetime in the limit a = 0 and M = M.

Indeed, eq. (5.9) becomes

(2r (r2=2Mor) - (r - Mo)r?)* <0 (5.10)

This must thus be an equality, which yields r =3 Mj: the well known radius of the photon sphere

in Schwarzschild’s spacetime.

The photon region £ for a Kerr spacetime with a/M = 0.5 is plotted in blue in Fig. 5.1(a).
Spherical orbits correspond to arcs of circle of constant r inside the photon region (blue crescent).
The motion along 8 occurs along this arc of circle, while the motion along ¢ is to be imagined in
the plane perpendicular to the Figure.

+

All photon orbits satisfy rf, <r <r7,, where rig and ryp are actually two circular orbits in

LR = LR’
the equatorial plane, called lighrif rings. This property of the light rings is evident from Fig. 5.1(a),
where they are represented by black dots. Indeed, the only photon orbits in region £ that cannot
move along the 0 direction are the ones at the crossing of the equatorial plane and the boundary
of £ (i.e. the black dots), which must then stay confined in the equatorial plane. More formally,

this can be shown easily by writing down the conditions for the orbit to be at the crossing of the
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equatorial plane and the boundary of % :

6=2%2
2 2 (5.11)
£ 2 2,5 _ + + 2 ’
167t a? A= (arfp A-ri 2]
It is then straightforward to show, from eq. (5.7),
_t Ty _
2(r=ripo=3)=0. (5.12)

Hence, from eq. (5.2), we immediately get 6 = 0: the photon orbit is indeed confined to the equato-

rial plane.

One may wonder why there are two circular photon orbits in Kerr’s spacetime, while there
is only one circular photon orbit (in the equatorial plane) in Schwarzschild’s spacetime (located
at r = 3My). Actually, this is due to the rotation of Kerr’s spacetime, which by the property of
dragging of inertial frames (see Sec. 3.1.1 of Chap. 2) facilitates the co-rotating circular orbit at
r =rip and makes it harder for a counter-rotating circular orbit (r;; >r{z)-

To conclude this subsection, let us show the shapes of the photon region in our rotating

regular model, described by eq. (4.34)-(4.35) of Chap. 4. In the case of the rotating regular black
hole (Fig. 5.1(b)), the photon region is very similar to the one with same spin (a/m = 0.5) and
vanishing b. The crescent shape is only slightly larger, while the radius of the outer horizon is
smaller.
The naked rotating wormhole, however, provides very different examples of photon regions.
Fig. 5.2 displays such photon regions in the configurations a/m = 0.9 and b/m = 0.4 (panel 5.2(a))
and a/m = 0.9 and b/m = 0.7 (panel 5.2(b)). As we will see later, part of these orbits actually are
stable and might thus be a potential threat to the stability of the considered space-time.

1.2.2 Stability of photon orbits

As explained before, the study of the stability of photon orbits is of primary importance: unstable
orbits can be followed by photons which then either fall into the horizon or escape to infinity,

hence potentially reaching the observer and modifying the image of the black hole.

An unstable orbit at r = rq is characterized by

2" (r) >0, (5.13)

r=ro

where %' (r) is evaluated for ¢ and 2 taking their values (5.7).

in Fig. 5.3 are plotted the » = 0 meridional sections of our rotating regular model, for various

values of @ and b. Each figure consists in the juxtaposition of two slices of constant ¢ and —¢,
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(a) a/m=0.9,b/m=0.4 () a/m=0.9, b/m =0.7

Figure 5.2: Plot of the photon region % for two configurations of the parameter b corresponding to a naked rotating
wormbhole, on meridional sections of the wormhole. The coordinates satisfy x2+ y2 =r2 and x = r cos0, and no black
disk is present since there is no trapped region.

separated by the vertical axis of rotation 6 = 0 (not represented). The photon region is pictured
in blue for unstable orbits, and orange for the stable ones. When an outer horizon exists, it is
depicted as a black disk preventing any communication towards the outer domain. The value
of a/m increases from left to right, while that of 5/m decreases from top to bottom. The bottom
row corresponds to b = 0, i.e. to Kerr’s case: we recover the well known result that spherical
orbits are unstable in Kerr’s spacetime [107]. It appears that for a value of b large enough so
that no horizon is present, stable spherical orbits start to exist. Such a property of a spacetime
often makes it unstable, since it can store and focus energy on these orbits (such as gravitational

radiation).

A very characteristic phenomenon occurs for increasing values of b/m at constant a/m, i.e. in
each row of Fig. 5.3 from bottom to top. First, when an outer horizon is present, the photon region
intersects the axis 8 = 0 twice. Then, after the disappearance of the outer horizon, there are four
points of intersection (two for stable orbits, two for unstable orbits). And finally, for a high enough
value of b/m, the photon region does not intersect the axis 8§ = 0 anymore. This seems to have
noticeable effects on the images computed with the ray-tracing code GYOTO, as we shall see in
Sec. 3.
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increasing a
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a/m=02,b/m=0.8
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alm=02,b/m=0.7 a/m=05,b/m=0.5 a/m=09,b/m=04

a/m=02,b/m=0 a/m=05,b/m=0 a/m=09,b/m=0

Figure 5.3: Computation of photon regions for various values of a and b. The unstable stable photon regions are
represented in blue, the stable ones in orange and the trapped region as a black disk when it exists.
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1.3 Structure of a typical black hole image
1.3.1 The Kerr shadow

We have spent quite some time studying the photon region, and in particular the unstable photon
orbits. The reason is that the shadow of a Kerr black hole can be understood from the trajectories
of photons following these unstable orbits. These photons, as soon as a perturbation occurs, will
either travel towards decreasing values of r, and hence cross the horizon, or be ejected outwards,
and potentially reach an observer. The boundary of the shadow is thus to be defined as the locus
of points in the observer’s sky associated to geodesics that barely skim the spherical photon orbits
(as stated in [38]). Hence, all spherical orbits with radius r € [rIJ:R,riR] contribute to the edge of
the shadow, since any of them can be approached by a null geodesic ray-traced backward in time

from the observer.

Let us illustrate this with the explicit computation of Kerr’s shadow, first performed by
Bardeen in 1972 [12]. The edge of the shadow seen from an angle 0y = § satisfies, on a sphere

with celestial coordinates («, ), the parametric equations

{ a(r) = —@o(r), (5.14)

B(r)=+1/20() ,

where @o(r) and Zy(r) are the constants of motion for particles inside the photon region, and
are thus defined only for r € [rfp,r7]. The edge of Kerr’s shadow can then be obtained on a

parametric plot with axes (a(r), f(r)), while r goes from r{ to r .

The plot of the shadow’s edge is shown in Fig. 5.4. The blue curve represents the solution
B(r) = +1/20(r) and the yellow one the solution f(r) = —/20(r). The parametric plot starts at
r= rER (left black dot) and ends at r = r (right black dot), hence following the direction of the

+
LR’

shadow’s edge. Hence, the whole photon region contributes to the shadow’s edge.

arrows. Otherwise, a given value of r € |r riR[ is associated with two distinct points of the

Let us now propose a more precise description of the link between the photon region and the
edge of Kerr’s shadow. This viewpoint is summarized in Fig. 5.5, displaying the photon region
(left) and the shadow’s edge of a Kerr black hole with spin a/m = 0.5 seen by an observer from
an angle 6y = /2. On the photon region (in blue, with a red boundary), 5 different classes of
spherical photon orbits are shown. From left to right, the light ring with r = r is the first
counter-rotating® orbit. It is represented by the points 7 and 7, at which the orbiting photon is
moving perpendicularly to the plane of the image and respectively away from or towards the
reader.

The next class of orbit corresponds to the black arc of circle and is again counter-rotating. The

3i.e., with ¢ <0.
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B(r)=—yQ,(r)
— B)=yQ )

Figure 5.4: Parametric plot of Kerr’s shadow computed from Bardeen’s formula.

photons belonging to this class have a maximal (resp. minimal) angle 6 determined by the points
5 and 5’ (resp 6 and 6’).

The following grey class of orbit is neither counter- nor co-rotating: it has ¢ = 0, and contains the
only orbit going through the poles.

Then, we enter into the region of co-rotating orbits. The yellow dashed curve represents such a
class of orbit, with maximal (resp. minimal) 8 extension given by the points 3 and 3’ (resp. 2 and
2’) at the intersection of the circle of constant radius (here the dashed yellow arc of circle) and the
red boundary of the photon region.

Finally, the orbit represented by the dots 1 and 1’ is the co-rotating counterpart of the light ring

I : — .t
r=rig, withr= TR

Now, how is it that these orbits are related to the shadow’s edge? What we know for sure

is that each set of orbits of constant radius r¢ € [r is associated with two points on the

IR TIR]
shadow’s edge, symmetric with respect to the horizontal axis. My claim, which is also made in
[39] (Fig. 2), is schematically summarized on the right of Fig. 5.5: each point on the shadow
(at r = rg) corresponds to a photon which asymptotically reaches, in a backwards ray-tracing
computation, the intersection of the boundary of the photon region and the circle r = ry. Put

another way, there exist photons almost following the unstable orbit r = ry around the black
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hole which will be ejected from this orbit and reach the observer. To effectively do so, if the black
hole is seen from an angle 6 = /2, they need to arrive perpendicularly to the observer, and thus
initially have 6 = 0.

Actually, this intersection corresponds in general to four points on the left of Fig. 5.5. But only
half of them will be associated with photons coming towards the observer: for instance in the
case of the co-rotating dashed yellow orbit, only photons emitted from points 3 and 2 will reach
the observer, while photons emitted at points 2’ and 3’ will be ejected in the other direction.
Counter-rotating orbits correspond to the right part of the shadow: photons are emitted towards
the observer for instance at points 5’ and 6’

Hence, properties of the shadow directly stem from those of the photon region. In particular, the
sharp edge of the latter actually translates into a sharp edge of the former: points slightly below
the shadow’s edge must fall into the horizon, while those slightly above can skim orbits very close
to the black hole.

In the case of spacetimes without horizon, there is a priori no reason for the existence of a
shadow nor a photon ring since no photons should cross a no-return boundary*. Some lensing
rings very similar to photon rings may nonetheless appear on ray-traced images, as we will see
in 3.2.1.

1.3.2 Main features of a typical black hole image

We now have all the ingredients in order to understand the main features of a typical black hole
image. As sketched before, a ray-traced image is a set of pixels corresponding each to a single
photon, and to which one associates a specific intensity. Such an image is visible in Fig. 5.6, in
the case of a Kerr black hole surrounded by an accretion torus, with a spin a/m = 0.9 and seen

with an inclination angle 6 = 90°.

Four photons emitted from the torus and reaching the observer are depicted in Fig. 5.6.
Photons 1 and 4 are primary images of the torus: they correspond to bent light rays that travel
above or under the torus and form a thick ring on the ray-traced image (also called Einstein ring).
Inside this thick ring, there is a black gap which corresponds to the absence of light source inside
the torus. Besides, the torus also emits photons (like photon 3) which do not have to go through
the black hole region and directly reach the observer: they form the foreground emission on the
ray-traced image. Finally, the most interesting photon to us is the second one. It corresponds to
light rays which skim unstable photon orbits of the photon region, and are then ejected to infinity
towards the observer. Usually in numerical computations, there exist concentric copies of lensing
rings of higher and higher orders with smaller and smaller luminosity. Their limit is defined

as the photon ring, which marks the innermost limit a photon can visit without falling into the

4We will however give a counter-example below, already studied in [74].
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B(r)

2L

Figure 5.5: Relation between Kerr’s photon region and the associated shadow.

outer horizon and delineates the shadow. A last thing that catches the eye on the ray-traced
image is the asymmetry in the luminosity of the torus. The part of the accretion torus on the left
of the image is actually moving towards the observer and hence produces a higher luminosity

(compared to the right part of the torus) due to relativistic beaming effect.

2 Astrophysical and numerical set-up

We have seen in the previous section the main features one should expect to notice when dealing
with ray-traced images. We will now explain how these images can be computed using GYOTO,

taking into account the specificities of Sgr A*, before analyzing them in Sec. 3.
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Figure 5.6: A typical ray-traced image.

2.1 Implementing regular black holes metrics in the ray-tracing code GYOTO

First things first, let us begin with the ray-tracing code GYOTO used to compute images of the
regular rotating Hayward model presented in Chap. 4, which was developed by F. Vincent, T.
Paumard, E. Gourgoulhon and G. Perrin [120]. GYOTO stands for General relativitY Orbit Tracer
of Observatoire de Paris, and as the authors of the code put it themselves, “it aims at computing
images of astronomical objects in the vicinity of compact objects as well as trajectories of massive

bodies in relativistic environments.”

To do so, it integrates the null and timelike geodesic equations in various spacetimes, which
can be defined analytically (e.g., Kerr’s spacetime) or numerically. This integration runs back-
wards: a null geodesic equation is integrated backward in time for each pixel on a screen
representing a portion of the sky as seen by an observer. If the geodesic does not reach any
light source, the associated pixel will be shown dark. If it does, the pixel will be illuminated

and associated with an actual photon reaching the observer. Each photon coming from a light
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source, or emitter, will have a given specific intensity; the color scale on a ray-traced image is

thus directly linked to the measured specific intensity at each pixel.

To determine the specific intensity of each photon, GYOTO integrates the equation of radiative
transfer along the part of the geodesic that lies inside the emitting object, without taking into
account the scattering effect. The specific intensity at some position s along the geodesic and for
a frequency v reads

S S
I,(s) = f exp (— f | av(s”)ds") Jushds' (5.15)
S0 s
where a, and j, are respectively absorption and emission coefficients at a given point, specific to
the astrophysical object playing the role of the emitter, and sg is the locus of a vanishing specific

intensity. We will come back to that when considering the example of the accreting magnetized

torus in Sec. 2.2.3.

On a more technical viewpoint, GYOTO is a C++ code based on several classes, which takes as
input an xml file containing the parameters of the simulation and generates an output in FITS
format. Three classes that will be of particular interest to us are Gyoto::Screen, Gyoto::Astrobj
and Gyoto::Metric. The first one allows one to choose the parameters of the observation such
as the distance of the studied object rg, the field of view of the observer, or the resolution of
the image (i.e., the number of pixels). In our case, we wish to mimic the observations of Sgr A*
and we will thus take ry = 8.33kpc. The second class defines the astrophysical object we are
considering as an emitting source, which will be the accretion magnetized torus of Sec. 2.2.3 for
our simulations. The presence of the object is not considered to have any influence on the metric:

back-reaction effects are not taken into account by GYoTo.

The metric is then fixed independently of the astrophysical object considered. In our case we
have to implement the metric (4.34) of our regular rotating Hayward model, with Mo = Mgg, p*.
To do so I developed in the course of my thesis the Hayward plugin, whose associated metric class
is now part of the standard distribution of GYOTO®. This metric class contains the coefficients of
the metric (4.34) as well as the associated Christoffel symbols in order to integrate the geodesics,
all reproduced in App. B.2. The creation of this plugin has actually taken a few months, due to
the cumbersome expressions of the Christoffel symbols which contain rational fractions of very
high powers of the distance r¢ from the observer. This distance being rather huge (r¢ = 8.33kpc),
I had to write the metric coefficients and Christoffel symbols under three different factorized
forms, to cover the regions r =1, 0 <r <1 and r < 0. This simplified the computation for GYOTO
and allowed us to avoid numerical errors in the integration. The writing of a similar plugin for a

regular rotating Bardeen model is currently in progress.

5freely available at https:/gyoto.obspm.fr
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Elément sous droit, diffusion non autorisée.

Figure 5.7: Orbits of 20 stars around Sgr A*, in the central arcsecond squared of the Milky Way. Figure taken from
[61].

2.2 Mimicking an observation of Sagittarius A" in the simulations
2.2.1 Features of Sgr A*

Sagittarius A* is a compact source of radio waves at the center of galaxy, first observed by
Balick and Brown in 1974 [7]. Its name stems from the fact that it is observed from Earth in
the direction of the constellation Sagittarius. The * (pronounce “star”) was chosen by Brown to
distinguish it from the broader Sgr A region, in reference to the presence of a cloud of ionized
hydrogen surrounding it [84]. Sgr A* is thought to be the locus of a supermassive black hole. This
assumption is based on the study of Keplerian stellar orbits, as the one performed by Gillessen
et al. for 28 stars during 16 years [61] (see the orbits in Fig. 5.7. This figure shows a plot of 20
orbits centered on Sgr A*, representing one arcsecond squared on the sky. Gillessen et al deduced

from their analysis the following mass and distance from Earth of Sgr A*:

(5.16)

My=4.31x105M, ,
ro=38.33 kpc .

Even if there exist arguments in favor of the presence of an outer horizon (see [28]), the nature of
Sgr A* is yet to be ascertained. Indeed the presence of a horizonless ultra-compact object cannot
a priori be disregarded. Such objects include for instance gravastars [86], holostars [95], boson

stars [119], and the naked rotating wormhole we presented in Chapter 4.

How could one then conclude in favor of the presence of a black hole at the center of the Milky
Way? One way, based on a study of the electromagnetic spectrum of Sgr A*, consists in looking
for the presence of a shadow, characteristic of a trapping horizon, in the observer’s sky. It is the

path pursued by the Event Horizon Telescope collaboration, that we shall now describe.
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(a) Taken from [99]. (b) Taken from [77]

Figure 5.8: Comparison of supermassive black hole candidates’ angular sizes: outer horizon (left) and shadows
(right).

2.2.2 Observations with the Event Horizon Telescope

The Event Horizon Telescope is an array of radiotelescopes aiming at capturing the first image of
a black hole [45]. These millimeter and submillimeter wavelength telescopes are distributed all

over the world, and constitute an Earth-sized very long baseline interferometry (VLBI) array.

Providing the first image of a black hole is a huge challenge which requires a good enough
resolution. The first black holes one should observe must thus be those with the biggest angular
sizes for shadows. From Fig. 5.8(a), which shows the opening angle (in pas) of the outer horizons
of various supermassive black holes (SMBH) candidates seen from Earth, it appears that Sgr
A* is the most suited one (with a horizon of 10 uas). This is confirmed in Fig. 5.8(b) where the
real observable, the angular diameter of the photon ring, i.e. the size of the shadow, is plotted for
the same SMBH candidates. Sgr A*, if it were a black hole, should possess a shadow of width
0o =53 uas.

A typical shadow of a Kerr black hole with spin a/m = 0.9 is shown in Fig. 5.9, where the size
of the expected shadow is shown. This shadow has not yet been resolved, but some observations
by the EHT at A = 1.3 mm have constrained the intrinsic diameter of Sgr A*, i.e. the size of the
emitting region, to 371“}8 uas [46].

The difficulty of resolving the shadow can be better grasped when considering that it requires
the same resolution as observing, from Earth, an orange on the Moon. The angular resolution of
a telescope depends on its aperture D and the observing wavelength A:

o= D (5.17)
Improving the resolution of an image can thus be done either by increasing the aperture of the
telescope, or decreasing the observed wavelength. The first option has been explored by the EHT
collaboration, since many observatories are now connected all over the world to form a very long

baseline interferometry array, as illustrated in Fig. 5.10(a). The second option can be followed
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Figure 5.9: Ray-traced image of a Kerr black hole at the center of the Galaxy with a/m = 0.5, surrounded by a
magnetized torus. The shadow’s width is of 53 pas. As a matter of comparison, the Moon’s angular size is = 30as.

only until a certain point. As shown in Fig. 5.10(b), the terrestrial atmosphere is becoming more
and more opaque to increasing frequencies of the light observed, or equivalently to decreasing
wavelengths. But what really constrains the observed frequency is the fact that the millimeter
and submillimeter wavelengths are those emitted closest to the black hole candidate, while the X
and radio waves are emitted much farther away. The millimeter and submillimeter wavelengths
are thus best suited to observe the shadow of a black hole candidate, and that is why a wavelength
such as 1 = 1.3mm (or frequency v = 230 GHz) was used for the first observations of the EHT [46].
It is also the one we will be using in the simulations of Sec. 3. With the current performances
of the instrument, one should expect an angular resolution less than 25 uas, which would in

principle be enough to resolve the 50 yas-wide shadow of Sgr A*.

2.2.3 Accretion model used in the simulations

As already explained, the first observation of Sgr A* was performed by Brown & Balick [7], who

reported the “detection of strong radio emission in the direction of the inner 1-pc core of the
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(a) Taken from [45] (b) Taken from [85]

Figure 5.10: Increasing the resolution of the Event Horizon Telescope: increasing the effective aperture of telescopes
with very long baseline interferometry (left) or decreasing the observed wavelength (right).

Elément sous droit, diffusion non autorisée.

Figure 5.11: Spectral energy distribution of Sgr A*, taken from [59].

galactic nucleus”. The electromagnetic spectrum of Sgr A* is now much more documented: in its

036 erg/s essentially at radio to submillimeter wavelengths (see

steady state®, Sgr A* emits ~ 1
[569] for details), as seen on the spectral energy distribution of Fig. 5.11. This radiation essentially
stems from the accretion of stellar winds from nearby stars. These flows of gas coming from the
surfaces of stars spiral around Sgr A*, and hence lose gravitational energy which is converted

into radiation.

There exists no direct evidence for the presence of an accretion disk around Sgr A*, but the
data can be understood from analytical or numerical models. Among the analytical ones, we will
be interested in advection dominated accretion flow (ADAF) models pionereed by Narayan et
al [88], but we should also mention the existence of jet models [50]. The advection dominated
flow models explain the relatively low luminosity of Sgr A* compared to other SMBH candidates:

most of the energy of the spiralling accretion structure is not lost through radiation, but by

6Sgr A* also possesses a variable emission component, which is still not fully understood and that we will not
consider in the following
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transportation inside the black hole. A subclass of the ADAF models is the radiatively inefficient
accretion flow (RIAF) model, whose latest version can be found in [27]. The RIAF model of Yuang
et al. [123], for instance, reproduces very well the data as shown in Fig. 5.11. More details can be
found in F. Vincent’s thesis [117]

We have seen in Sec. 2.2.2 that Sgr A*, due to its angular size on the sky, is the best suited
black hole candidate in order to detect the first black hole shadow. To compare the shadows of
non-Kerr black holes using GYOTO to the observations of the Event Horizon Telescope, one must
thus make simulations with an astrophysical environment as close as possible to the one of Sgr
A*. In particular, one has to choose an accretion structure reproducing the spectral properties of
Sgr A*, at least at the observed wavelength A = 1.3mm.

Such an accretion model precisely has been implemented in GYOTO, it is a magnetized
optically thin torus developed by Vincent et al [121] and based on a paper by Komissarov [79].
This torus is composed of a non-self-gravitating perfect polytropic fluid which orbits circularly at
a constant specific angular momentum /. It is thus not spiralling as one would expect, but it can
nonetheless be considered as an approximation of a spiralling accreting structure at a given time.
The model has already been used in simulations of Kerr black holes with scalar hair [118] and
boson stars [119], and it was shown in [121] to reproduce well the spectral properties of Sgr A*
in the millimeter domain. Seven parameters are required to define it: the spin of the black hole
a, the inclination angle i (angle between the black hole rotation axis and the line of sight), the
angular momentum [ of the torus, the ratio of gas to magnetic pressures S, the polytropic index %
defining the equation of state of the torus’ fluid, the central density n. and the central electron
temperature T.. From these parameters, the synchrotron absorption and emission coefficients
can be computed (see [121] for details), and the equation of radiative transfer integrated by

GYOTO, hence producing a map of specific intensities over a chosen field of view (i.e., an image).

Fig. 5.12(b) shows the spectrum predicted by the magnetized torus model with parameters
given in Fig. 5.12(a) and its comparison with the RIAF model, which is very satisfying in the
millimeter domain. The parameters we will be using in the following simulations are given on
Table 5.1. They are consistent with the spectral energy distribution of Sgr A* at wavelength
A =1.3mm (or frequency 230 GHz).The choices of / and of the inner radius of the torus, hence
fixing the outer radius, were made so that the size of the torus be compatible with the size of the
emitting region constrained to < 37nas by the first EHT results (see Doeleman et al [46]). The
outer radius varies according to the value of the spin parameter, it is for instance ryuter = 30 My
for a = 0.9. The spin of Sgr A* is still not known precisely, but in the following simulations we will
consider rather high values of a/m (essentially between 0.5 and 0.9). We have indeed evidence for
the existence of many rapidly rotating supermassive black holes (see for instance the spin values
in Table II of [8]).
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Parameter Value
spin a 0
inclination i 5°
angular momentum l 0.35
gas/magnetic pressure ratio B 10
polytropic index k 5/3 Elément sous droit, diffusion non autorisée.
central density (cm™3) ne 7.7x10%cm™3

central electron temperature (K) 7T 8.7x 1011 K

(b)
(a)

Figure 5.12: Left: Parameters of the magnetized torus whose spectrum is plotted on Fig. 5.12(b). The spin and
angular momentum are expressed in units of M. Right: comparison of the spectra of the RIAF model and the
magnetized torus. The agreement is clear in the millimeter domain (v = 1011 Hz)

Parameter Value
spin a 0.3-0.9
inclination i 85° —90°
angular momentum l 4
gas/magnetic pressure ratio B 10
polytropic index k 5/3
central density (cm™3) ne 6.3x108

central electron temperature (K) 7. 5.3x 10

Table 5.1: Parameters of the magnetized torus used in the simulations of Sec. 3. The spin and angular momentum
are expressed in units of M.

3 Images of the regular rotating Hayward model

Let us now describe the results obtained in [80] regarding the ray-traced images of the regular
rotating Hayward model presented in Chap. 4. The regular black hole and wormhole regimes of
the models will be investigated in Secs. 3.1 and 3.2.

3.1 Regular rotating Hayward black hole

In this section as in the following, the emitting astrophysical source is the magnetized torus
presented in Sec. 2.2.3, with parameters of Table 5.1. The observer is located at a radial coordinate
which corresponds to the distance between Earth and Sgr A* (ro = 8.33kpc), and the images are
computed with GYOTOat a frequency of 230 GHz.

The regular rotating Hayward black hole with a/m = 0.5, b/m = 0.5 possesses an outer horizon

located at ro = 1.65m. It is thus at a smaller value of the radial coordinate from the center than
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Figure 5.13: Images of an accretion torus surrounding a Kerr black hole (a) and a regular rotating Hayward black

hole (b), seen from a distance of 8.31 kpc. The field of view is 200 pas and the inclination 6 = 90°. The specific intensity
I, is plotted in CGS units, as will be the case for the following images.

in the Kerr black hole case (b/m =0), where r, = m + vVm?2 —a? =~ 1.87m. Hence, for a given ADM

mass, the black hole radius is smaller when b # 0.

The millimeter images of these two black holes are visible in Fig. 5.13. On both panels, we
observe the distorted primary image of the torus, that forms an Einstein ring. The very center of
the image shows a thin photon ring delineating the black hole shadow. The differences between
the millimeter images of the two black holes appear to be indistinguishable with the naked eye.
However, substracting one image from another we can distinguish the two different lensing
rings (Fig. 5.14). The difference of diameter between these two rings is about 2 pas (= 3%). This
difference is out of reach for the observations in the foreseeable future, but we may hope that a
telescope would be able to measure the radius of the lensing ring in a far future, or equivalently
the area of the shadow, and could thus discriminate between the two black holes for a given ADM

mass.

It should be noted that we considered here a macroscopic value of b (b = 0.5m) when com-
puting these images. The underlying assumption is that this parameter arises because of some
“macroscopic” energy-momentum tensor supporting this regular geometry, though it cannot be
non-linear electrodynamics (as we have shown in Chap. 4, and contrarily to the claims of Tosh-
matov et al. [114]). Had we assumed that the singularity was resolved by using b as a Planckian
cut-off, the difference between the images would have been invisible to any telescope even in the

far future.
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Figure 5.14: Difference of the images of Fig. 5.13. The lensing rings of the configurations b/m = 0.5 (black) and
b/m =0 (white) are visible at the centre.

3.2 Naked rotating wormhole
3.2.1 Ray-traced images

Let us now discuss the case of geometries without horizons described by the rotating Hayward
metric extended to r < 0 (4.34), that we call naked rotating wormholes. We will first describe the
results obtained with GYOTO as well as their consequences, and then explain them by studying

some relevant geodesics.

The major difference in this configuration, with respect to the previous section, is the absence
of horizons. Hence, the images obtained with this geometry do not contain any shadows, in the
precise sense defined above. However, they do contain a central faint region showing a mixture of
low-flux regions and strongly lensed contours (of increasing order from left to right, see Fig. 5.15).
The shape of these contours highly depends on the value of the parameter b/m. It it is thus very
important to stress that observing such strongly lensed contours, which can look like a lensing
ring without a good enough resolution, does not imply the existence of an event horizon, just as

in the case of boson stars [119].

The two panels of Fig. 5.15 are remarkably similar to the images of accretion tori surrounding
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Figure 5.15: Images of an accretion torus surrounding a naked rotating wormhole with a/m = 0.9, b/m = 0.4 (a) and
b/m = 0.7 (b). The field of view is 200 uas and the inclination 6 = 90°.

rotating boson stars (see the middle- and lower-right panels of Fig. 5 in Ref. [119]). However,
these spacetimes are completely different, those analyzed here corresponding to naked rotat-
ing wormbholes, while boson stars are compact distributions of fundamental scalar fields. It is
thus rather intriguing that such very different spacetimes lead to images that are difficult to
differentiate. Further studies would be necessary in order to determine whether the distorted,
hyper-lensed contours of Fig. 5.15 are general features of spacetimes of compact object with no
event horizon and no hard surface (i.e. different from neutron stars). A first hint could probably
come from the study of the photon regions of such objects. For instance, the lensing rings for the
configurations (a/m = 0.9, b/m = 0.4) and (a/m = 0.9, b/m = 0.7) (see Fig. 5.15) are very different:
the crescent shape forms a whole circle only in the first configuration, where its extremities reach
the horizontal axis. This should probably be compared with the two very different photon regions
for the same values of parameters (Fig. 5.3), whose meridional sections cross the vertical axis
0 =0 in the first configuration but not in the second. Further analysis would be needed to explain

this behaviour of the photon region and its relation to the shape of the shadow.

3.2.2 Aglimpseatr<0

Another interesting feature appears when the accretion torus is observed from an inclination
angle 6 different from 90°. In this case, the disk r = 0 located in the equatorial plane becomes
visible. It can hardly be seen in Fig. 5.16(a), but a zoom clearly allows identifying a central dark

ellipse’ on the image in Fig. 5.16(b). Its contour corresponds to the throat of the wormhole.

It is not necessarily an ellipse in the mathematical sense.
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Figure 5.16: Images of an accretion torus surrounding a naked rotating wormhole with a/m = 0.9, b/m = 1. The
inclination is 6 = 80° while the field of view is 200 pas (a) or 25 uas (b)

The blue pixels forming this ellipse-like shape (right panel) represent geodesics coming from
r — —oo; a similar distorded disk also appears in the case of naked Kerr singularities [74]. These
pixels are not completely black since a part of the torus, located between the throat and the
observer, emits some photons directly towards the latter: it is the foreground emission visible in
Fig. 5.6. However there also exists luminous (green and yellow) pixels inside the dark ellipse.
All these illuminated pixels are associated with photons emitted from the torus and travelling
through negative values of r back to the observer. The location of this luminous feature inside the
dark ellipse highly depends on the value of 6/m, as is illustrated by comparing the right panels of
Figs. 5.16 and 5.17.

There exists a sharp contrast between the dark ellipse and this luminous feature, which can

be studied in further detail if we consider three different geodesics (Fig. 5.18).

3.2.3 Following 3 typical geodesics

The green geodesic of Fig. 5.18 corresponds to a luminous pixel just outside the dark ellipse.
This geodesic comes from r = +o00, crosses the torus on its way in, approaches the r = 0 disk
(represented by the grey sphere in Fig. 5.18) without reaching it, and escapes to the observer
(crossing a second time the torus on its way out). Similarly, the blue geodesic comes from r = +oo
and crosses the torus on its way in. Contrarily to the green geodesic, it enters the wormhole

throat, reaching negative values of r. It also reaches a turning point and comes back to r > 0,
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Figure 5.17: Images of an accretion torus surrounding a naked rotating wormhole with a/m = 0.9, b/m = 0.5. The
inclination is 6 = 80° while the field of view is 200 pas (a) or 25 uas (b)

also eventually reaching the observer after having crossed the torus a second time on its way
out. Finally, the red geodesic originates from r = —co. It emerges from the throat and crosses the

torus only once, on its way out to the observer.

3.3 Low resolution images as seen by the Event Horizon Telescope

As a conclusion of this Chapter, we present the ray-traced images of the naked rotating wormhole,
compared to Kerr’s black hole, as it would be seen with the resolution of the Event Horizon
Telescope. Of course, since we do not use the simulation codes of the instrument, the images we
will present only give a rough picture of what the EHT would actually be able to see. As explained
by Doeleman [45], the shadow of a Kerr black hole with My = Mgg,4+ at the center of Galaxy, of
width = 50 uas, would be visible in principle by the EHT whose resolution is = 25 yas. The shadow
of a Kerr black hole would thus represent 4 pixels on an image seen by the EHT, as plotted in
Fig. 5.19(a). It seems extremely difficult to distinguish this image from the one of a (horizonless)

naked rotating wormhole surrounded by the same accretion torus 5.19(b).

We thus wish to emphasize that the results of the Event Horizon Telescope shall be taken
with caution, since the observation of a low resolution shadow does not allow one to infer the
presence of an outer horizon. To end on a more optimistic note, the differences appear to be more

noticeable with a twice as good resolution (Fig 5.20).
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Figure 5.18: The null geodesics associated with three different pixels, starting from the accretion torus for a/m = 0.9,
b/m =1, are plotted in a frame with x = e" sinfcos¢, y = e" sinfsing, z = € cosH. A frame is drawn at the origin,
where r — —oco. Geodesic I (in green) has a turning point and does not enter the grey sphere of radius r = 0. Geodesic II
(in red) has no turning point, it represents the trajectory of a photon in the central dark ellipse coming from r — —oo.
Finally, geodesic III (in blue) enters the sphere of radius r = 0 but has a turning point inside, and goes back to an
observer at r — +oco.
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Figure 5.19: Images of an accretion torus surrounding a Kerr black hole (a) and a naked rotating wormhole (b),
seen from a distance of 8.31 kpc and with a resolution of 8 x 8 pixels. The field of view is 200 pas and the inclination
0=90°.
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Figure 5.20: Images of an accretion torus surrounding a Kerr black hole (a) and a naked rotating wormhole (b),

seen from a distance of 8.31 kpc and with a resolution of 16 x 16 pixels. The field of view is 200 pas and the inclination
6=90°.
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CHAPTER

DYNAMICAL NON-SINGULAR BLACK HOLES
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“Si mon vol a atteint ’horizon, c’est que j’ai dépassé les dieux du ciel.”
(Textes des Sarcophages 11, 223b-223¢, S1C? [30, 41].)

fter exploring static or stationary non-singular black holes in the previous chapters, let us now

turn to dynamical ones and describe the results obtained with P. Binétruy and A. Helou in

[19]. Astrophysical black holes are by essence dynamical: they are formed after a gravitational
collapse (contrarily to Schwarzschild’s eternal black holes and its maximal extension presented in
Sec. 1 of Chap. 2), and are also thought to radiate via Hawking’s evaporation [66]. A few solutions
to Einstein’s equations describe the dynamical formation of a black hole, such as Vaidya’s metric
presented in Chap. 1, but they remain classical. In this Chapter, we aim at studying effective metrics
which incorporate quantum effects both near the outer horizon, to describe Hawking’s evaporation,
and in the high curvature regime near r = 0 in order to avoid the singularity. A way of doing so consists
in studying closed trapping horizons, whose dynamics can implement these two types of quantum
effects. In Sec. 1 of this Chapter, we will start by deriving general conditions for the existence of
singularity-free closed trapping horizons. We will then implement and study in Sec. 2 explicit models
of closed trapping horizons inspired by the work of Hayward, Frolov and Bardeen, before discussing
the behaviour of null geodesics in those models (Sec. 3). Finally, in Sec. 4 we solve Einstein’s equations
in reverse to obtain the expression of the energy-momentum tensor for these models and analyse the
weakest of energy conditions, the null energy condition (NEC). We find an explicit metric that recovers
a null outgoing fluid mimicking Hawking radiation on .#*, without having to make junctions. We
ultimately show that all models based on the collapse of ingoing null shells, hence (asymptotically)
described by a Vaidya metric on .# ~, and aiming at describing Hawking’s evaporation, are doomed to

violate the energy conditions in a non-compact region of spacetime.
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CHAPTER 6. DYNAMICAL NON-SINGULAR BLACK HOLES

1 Non-singular spacetimes with closed trapping horizons

1.1 Motivations

A general feature of collapses leading to black holes is the formation of trapping horizons [69].
These are foliated by 2D marginally outer trapped surfaces (MOTS), which are also called
apparent horizons (see App. A.3 for details). In the course of the collapse, a first MOTS will
appear, and trapped surfaces will then develop. In the usual, analytic black hole spacetimes, the
location of this first! MOTS is known. It appears at the surface in the Oppenheimer-Snyder (OS)
homogeneous dust collapse (see middle panel of Fig. 6.1), in the bulk of the collapsing matter for
some classes of Lemaitre-Tolman-Bondi (LTB) spacetimes, or at the centre in Vaidya null-dust
collapse (left panel of Fig. 6.1) as well as in some other classes of LTB spacetimes [23, 73]. When
it is not formed at the centre, it immediately separates into an ingoing apparent horizon and an
outgoing one, where ingoing/outgoing refers to the motion with respect to the collapsing matter
(this is a hydrodynamical concept, not to be confused with the geometrical one of inner/outer

trapping horizons).

The idea of closed trapping horizons was studied in [103], where it was given the general
form of Fig. 6.1 (right panel). This horizon is null at four points A, B, C and D. In the classical
diagrams, the apparent horizon is usually spacelike, i.e. only a portion of CB, where B is the point
at which the black hole becomes isolated and the apparent horizon becomes indistinguishable
from the event horizon. In some situations, one can also have a timelike inner horizon, i.e. a
portion of CA [23, 73]. The reason why a classical black hole cannot produce a horizon on portion
ADB is the following: in spherical symmetry, when the Null Energy Condition (NEC) is satisfied,
an outer horizon is achronal while an inner horizon is timelike or null (see Theorem 2 of [69], as
well as [23, 70]). Therefore we must have a violation of the NEC on portion ADB. Considerations
of this portion seldom appear in the literature, although it is inherent to the widely discussed
Hawking radiation of the outer horizon, which produces a timelike horizon of type BD (see Fig. 2
of [75]). Having a spacelike inner horizon of the type AD is even less considered (see, however,
Fig. 2 of [13]), but it is a way to avoid the conclusions of the Penrose singularity theorem [94] by
violating the NEC.

We want to stress here, in accordance with [13, 55, 71, 103], that one should not a priori
discard any of the above behaviours for the trapping horizon. As we still do not know what happens
(beyond General relativity) when the inner horizon reaches the centre of the configuration, or at
the end of black hole evaporation, we think it is worth investigating these possibilities, which
display a very different phenomenology from the usual classical and semi-classical picture.

In the following of this section we will investigate the conditions needed to achieve a non-

singular spacetime with closed trapping horizons of the Roman-Bergmann type, before considering

1Using the time-slice of the comoving observer [73].
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Figure 6.1: Penrose-Carter diagrams for Vaidya null dust collapse (left), Oppenheimer-Snyder
homogeneous dust collapse (centre) and Roman-Bergmann closed trapping horizons [103] (right).
The outer horizon is represented in blue while the inner one is shown in yellow. These are defined
from [69] using the Lie derivative, along the ingoing null direction, of the expansion of outgoing
null geodesic congruence 6, : £_6, <0 for outer trapping horizons, Z_0. > 0 for inner trapping
horizons. The horizons are drawn as a solid line when the NEC is satisfied, and as a dashed line
when it is violated.

some examples adapted from the literature in Sec. 2.

1.2 Existence of non-singular spacetimes with closed trapping horizons

Let us study the general conditions for the existence of a non singular spacetime containing
closed trapping horizons. We will work in advanced Eddington-Finkelstein coordinates, in which

the metric reads

ds? = —F(u,r)dv? + 2dvdr +r2dQ2 , 6.1)

where r is the areal radius, dQ? = d6? + sinZBd(pz, and F is a function of v and r not specified yet.
This is not the most general spherically symmetric metric, whose expression will be used later
(eq. (6.27)). However, as eq. (6.40) will illustrate, the additional degree of freedom of the general
metric does not affect the shape of the horizons given by the metric (6.1) used in the present

section.
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We will assume that F' can be written in the following way

2M(v,r) r% 4y o@Ir* 2+ +a1(v)r +aov)
A o T A b by PO 62

Fw,r)=1-

Assuming that F — 1 can be written as a ratio of polynomial functions, this is the most general
form one can use to recover Vaidya’s limit when r — +o0o (and Schwarzschild’s limit if, in addition,

m(v) = cst). The function m(v) plays the role of the Misner-Sharp mass for an observer at infinity.

1.2.1 Conditions for the existence of closed trapping horizons

The existence of closed trapping horizons requires the presence of two horizons, i.e. of one
marginally outer and one marginally inner trapped surfaces, whose coordinates r1(v) and ra(v)
match for at least two different values of v.

The locus of the marginally trapped surfaces is defined via the expansion of a null outgoing

geodesic congruence (see App. A.3 for details):
0. =h"®V,ky =0, (6.3)

where h,p is the induced metric on the 2-spheres of symmetry and k5 an outgoing radial null
vector.

For the metric (6.1), the expansion along the null vector 2% = (1, %,0,0) isf, = g and thus
the locations of the horizons r(v) are defined by

0.=0<F(v,r(v))=0. (6.4)

Since the existence of a closed trapped region requires the presence of two horizons, the equation

F(v,r(v)) = 0 should thus be of at least degree 2 in r. In this minimal case of degree 2, one has

L r+ao(v)
Fw,r)=1 2m(v)r2 b1+ bo) (6.5)
and
F,r)=0<r2+(b1()—2m@))r+bo@®) — 2m)ag(v) =0
(6.6)

N _ 2m@)=b1(0)£V(51(0)-2m(v))>=4(bo(v)-2m(v)ao(v))
r(v) = 5 .

Another condition is that there must exist two different v at which r1 = rg, so that the trapping
horizons be closed. It is thus entirely possible to choose ag(v), b1(v) and bo(v) in order to construct
closed trapping horizons. However such a spacetime cannot be singularity-free, as we shall now

see.
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1.2.2 Conditions for the absence of singularities

In order to investigate the presence of a singularity in our spacetime, we need to verify that
no curvature scalar diverges at any point of spacetime. We will thus compute the Ricci and
Kretschmann scalars, which will give us constraints on the parameter « in eq. (6.2). They read

r22E 4 4r3F Lo F(v,r)-2

R =g R =T 0

r

2
r "ZF) +472(2E Y 14 F (0,728 F (v,r) +4

(6.7)
4
K =R ypoR'P7 = (drz T

r
Let us focus on the Ricci scalar first. One has to ensure that the expression
r2 6?F o, 0F fF @1
——— +2r— v,r)—-1,
2 or? or

is of at least degree 2 in r to avoid the presence of a singularity.

First of all one notices that b¢(v) # 0 so that F does not diverge when r — 0. This implies that

D . . 2 2F .
% will contain no divergence, and %% will be at least of degree 2.

Then, one can show that

—2m(v)

oF
2r—+F(@,r)-1= ———"—
or (r®+---+bg)

[+ r2(5agbg+a1bi —3agbs) +r(8ai1by—biag) + aobo] ,

(6.8)
where the dots denote higher order terms in r. Since by # 0, one must have ag =0 and a; =0
so that the expression in brackets be of at least degree 2. This means that the first nonzero
coefficient must be ag, which implies

az=3]|. (6.9

A similar reasoning with the Kretschmann scalar leads to the same result, a = 3.

1.2.3 Minimal form of F

This draws us to the conclusion that the simplest form of F describing a spacetime without
singularities and containing closed trapping horizons, as well as allowing to recover Vaidya’s

solution when r — +o0, will have the general, minimal form

r2

Fo ) = 2m o + by + bo) 6.1

Since we are interested only in the asymptotic behaviours, we can choose for simplicity b1(v) =

b2(v) =0. Then, by writing by(v) as bo(v) = 2m(v)b?, we get

B 2m(v)r?
B = bR i
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where we recover Hayward’s metric [71] when we set b(v) = b = cst. This metric has the interesting
property of exhibiting a de Sitter limit when r — 0, on top of the Vaidya limit when r — +oo. The
constant parameter b plays the role of a de Sitter radius, and is interpreted as a Planckian cutoff
[13, 71].

2 Examples of closed trapping horizons: properties and limits

For now, we have argued that the form of F' given by eq. (6.11) is the most simple way of building
a singularity-free spacetime with closed trapping horizons while recovering Vaidya and de Sitter
limits (provided b(v) = cst for the latter one). Let us then get more specific and obtain the

coordinates of the horizons from eq. (6.11), before discussing the details of specific models.
2.1 Location of the trapping horizons
The location of the horizons is by definition
0,=0sF(v,r(v))=0, (6.12)
which, with our expression (6.11) of F', boils down to a polynomial equation in r
r®—2mr?+2mb*=0. (6.13)

Using Cardan’s method, one gets the discriminant A = 4m2b2(16m?2 — 27b62). The equation admits

at least two distinct real solutions if A >0, and two degenerate real solutions if A =0. One has

AzOcmz%gb. (6.14)

The starting point and endpoint of the trapping horizons in a (r,v) diagram are thus defined by

m= %b. Provided m = %b, one finally gets three solutions for a given value of v

rj=-——cos garccos B2 3 , j=1,2,3 (6.15)

4m (1 ( 2752) 2(j—1)n) 2m
1- + +—

3

r1 and r3 are the only positive solutions, describing the outer and inner trapping horizons

respectively. In the case where b < m (e.g. when b is a Planckian cutoff), expanding these

solutions in terms of b/m leads to

2 2
r1=2m—2b—m+o(%) ,

2 2
r3=b+f—m+o(%) .

(6.16)
r1 will play the role of the future outer trapping horizon, reducing to Schwarzschild’s event
horizon when b = 0 and m = cst. r3 is actually a future inner trapping horizon. As seen in the
case of Reissner-Nordstrom black hole (Sec. 2 of Chap. 2), the presence of an inner horizon,
hence preventing the existence of a trapped region between it and r =0, is not enough to avoid a

singularity. That is why we have chosen carefully the form (6.11).
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2.2 Hayward-like model

Hayward presented in [71] a simple model describing the formation and evaporation of a trapped
region, relying on the form (6.11) of the metric with a constant Planckian cutoff . He chose a
symmetric function m(v) containing a plateau that describes similarly the formation and the

evaporation phases. We have here used the following form for m(v) and b

)2
m@)=ro exp{ (__(v ZO) )} ) (6.17)
o
_7o
b= (6.18)

which is plotted in Fig. 6.2(a) and where ro = 100, vy = 1000, o = 400. Here we chose a macroscopic
value for b solely for pedagogical reasons, so that the inner horizon be distinguishable from the
horizontal axis in Fig. 6.2(b). This model, although it displays closed trapping horizons and no

singularity, suffers from certain limitations in its physical interpretation.

First of all, let us consider the NEC along the ingoing radial null direction /*:

1 oF 1 m'(v)rt
Tl == o v ~ 16100 27(71()v)b2)2 =0, 6.19)
where T, is the energy-momentum tensor. We see that the NEC is violated when m'(v) <0,
which happens along lines of constant v = vg, vg being the time when the outer horizon starts
shrinking. This allows circumventing Penrose’s singularity theorem 1.3, but remains problematic
since it would imply a violation of the NEC in regions arbitrarily far from the collapsed body (e.g.
v =cst, r — +00). In Sec. 4, we will show that this limitation is inherent to the black hole models

asymptotically constructed out of ingoing Vaidya shells.

Another limitation in the physical interpretation is the symmetry in the outer trapping
horizon growing and shrinking. The increase in horizon radius physically comes from the inflow of
matter or radiation into the trapped region, while its decrease must come from Hawking radiation.
These two effects have no reasons to show the same scaling, which they do in Hayward’s model
(see Fig. 6.2(b)).

Moreover, the reason why the inner trapping horizon is quantum mechanically held at a fixed
distance from the centre is not clear, and this feature appears to be quite artificial. Lastly, as
noticed in [44], this model does not allow for a time delay between the centre of the cloud and

infinity since F — 1 when r — 0 as well as r — +co0.

We will call Hayward-like models those that exhibit symmetric phases of formation and
evaporation whilst their inner horizon’s radius remains at a Planckian distance from the centre
r=0.
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Figure 6.2: Hayward-like model

2.3 Frolov’s model

Frolov’s construction [53] aims at modeling the Hawking evaporation, and thus introduces
an assymetry between the formation and the evaporation phases. F has the same form as in

Hayward’s model, but here the mass function is defined by parts

—oco<v<vg :m(w)=0,
vo<v<O0 :m@)/b =(my/b)® +v/b ,
O<v<ug :(m@)/b)3 = (mo/b)® —v/b

vi<v<+oo :m(@)=0,

(6.20)

where v, m(v) and my =4 are expressed in units of 6. The form of m(v) during the evaporation
phase (0 < v <wvj) is chosen so that one recovers the correct scaling for the mass loss m due to
Hawking radiation, i.e.
i~ —C (@)2 , (6.21)
m
where C is a coefficient depending on the details of the emitted particles, and mp; is the Planck
mass. This gives a more realistic description of the evaporation process than the symmetric model
of Hayward. The obtained shapes for the parameter functions and for the horizons are shown in
Fig. 6.3.
However, this model still displays some important limitations from the point of view of the
physical interpretation: the violation of the NEC at infinity when the outer trapping horizon
starts shrinking, the constancy of the inner trapping horizon radius, and the absence of time

delay between the centre and infinity.

2.4 Bardeen-like model

In the two previous models, we have noticed that the inner horizon almost stays at a constant
and small radius r. This actually results directly from the expansion (6.16), which implies that

the inner horizon radius is essentially given by the constant Planckian cutoff 5.
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Figure 6.3: Frolov’s model

However, one of Bardeen’s main points in [13] consists in giving a dynamics to the inner
horizon. More precisely, Bardeen argues that some Hawking pairs will be created at the inner
horizon, which will begin to grow due to Bousso’s covariant entropy bound [24] and finally reach
the outer horizon at macroscopic scales. We will thus call Bardeen-like models those which exhibit
such a property of the inner horizon (Fig. 6.4(b)). We have tried to explicitly recover this model
with the following parameter functions, plotted in Fig. 6.4(a)

2
m(v)zroexp{(—wn , (6.22)

(v —vp)?
b(v)=roexp —om +bg, (6.23)

where ro =100, vo = 1000, v; = 800, o =400, o’ = 200, by = 5.
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Figure 6.4: Bardeen-like model

Once again, this model possesses important limitations in its physical interpretation: the
NEC is violated in a non-compact region as soon as the outer trapping horizon starts shrinking,

and the time-delay between the centre and an asymptotic clock is absent.
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Another model of non-singular black hole, based on the metric (6.1) with a function F(v,r)
given by eq. (6.11), and known as Planck stars, is free from some of these limitations: the NEC
is violated in a compact neighbourhood of the source and the time-delay in the core is present
[44]. However, this model is static, with fixed values for the radii of the outer and inner trapping
horizons, and therefore cannot describe the dynamics of the formation and evaporation of a closed
trapped region.

Before presenting in Sec. 4 our attempt to answer the aforementioned limitations of the
models that are found in the literature, let us investigate in more detail in Sec. 3 some properties

shared by all these models.

3 Behaviour of null geodesics in models with closed trapping

horizons

The above models do not possess any event horizon since they are dynamical and aim at describing
a trapped region that will eventually be fully evaporated, leaving no region of spacetime causally
disconnected from future null infinity. It is nonetheless of interest to study the relevant geodesics

of such spacetimes.

3.1 Null geodesic flow

The radial null geodesics for metric (6.1),

ds? = -F(v, rdv? + 2dvdr + r2 dQ? , (6.24)
are given by
9 dv=0,
ds“=0< & _ Fwr) (6.25)
dv = 2 °

In the case of Minkowski spacetime, F' = 1 and the radial null geodesics are trivial since the
lightcone is the same at each point of spacetime. In a (v,r) diagram, ingoing radial null geodesics
are v = cst lines while outgoing ones are lines of slope 1/2; this is the behaviour we will recover

far from the trapped region.

When the metric is not trivial, the outgoing radial null geodesics will differ from straight lines
in the (v,r) diagram. This can been seen in Fig. 6.5(a), where we have plotted these geodesics for a
Schwarzschild metric (with M = 1). Visualizing the outgoing geodesics reveals the existence of an
event horizon: the lightcone prevents any matter or light from the region r < 2 from escaping, and
this is the case for all v. Therefore there exists a region of spacetime that cannot communicate

with .#*, and this region is by definition bounded by an event horizon.
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Figure 6.5: Plot of the outgoing (in red) and ingoing (in green) null vectors depicting the lightcone of Schwarzschild
(a) and Hayward-like (b) spacetimes. In Schwarzschild’s case there is only one horizon (in blue), which is a null
hypersurface for all v hence called event horizon. As regards the Hayward-like geometry, the outer (in blue) and inner
(in yellow) trapping horizons are successively timelike, null and spacelike.

In our models (e.g. the Hayward-like model, Fig. 6.5(b)), no event horizon appears. However
trapping horizons develop, and are not necessarily tangent to the lightcones. Indeed, trapping

horizons are dynamical and can be spacelike, null or timelike [69].

3.2 Frolov’s separatrix and quasi-horizon

In spite of the absence of a region causally disconnected from future null infinity, there is still
a non-trivial behaviour of the radial null outgoing geodesics due to the trapped region, which
is interesting to investigate. In particular, since the apparent horizon can now be timelike
and therefore traversable, we may want to look for an alternative surface that would not be
traversable from the inside. This surface is easily found to be the one generated by the radial
null outgoing geodesic which passes through the last trapped sphere, i.e. point D of Fig. 6.1. It is
the last radial null outgoing geodesic to leave the trapped region (in terms of time v, see Fig. 6.6),
and we may call it the D-geodesic. This boundary of the no-escape region (a region which has
finite lifetime here) is dubbed “quasi-horizon” in [54]: it traps all the matter it contains until the
final evaporation of the trapped region.

It was also suggested in [54] to use the separatrix of the null outgoing radial vector field,

defined by the vanishing of %; for the geodesics of eq. (6.25), g—z = % This yields

o,F daro,F F FF' _

+ ==+ 0 o 2F+FF' =0, (6.26)
2 dv 2 2 4
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outer horizon

inner horizon

v D-geodesic

Frolov's separatrix

-------- other solutions to Frolov's equation

Figure 6.6: Example of separatrix (in red) and D-geodesic (in green) for Frolov’s model with b =1, m‘g = 4. The field
of outgoing null vectors (blue arrows) illustrates that the separatrix is traversable by outgoing null or timelike matter,
while the D-geodesic is not.

where a dot (resp. prime) denotes a derivative with respect to v (resp. r). This surface characterizes
the strength of the trapping of light rays inside the trapped region: on one side of the separatrix
the light rays are more and more trapped, whereas they are less and less so on the other side.
When this surface is a null outgoing geodesic in the trapped region, it is not possible for light
rays to cross it from inside to outside, and they are doomed to become evermore trapped. This is
the case with the Schwarzschild black hole, where F =1 —-2M/r and M is a constant. Then eq.
(6.26) yields r = 2M and the separatrix coincides with the apparent horizon which, in this case, is
also an event horizon (and of course also a quasi-horizon).

However, in general, the separatrix is not lightlike but can be timelike, and therefore null
outgoing geodesics may traverse it. This is visible in Fig. 6.6, where all the solutions to eq. (6.26)
have been plotted in red. In this case it cannot coincide with the D-geodesic (or “quasi-horizon”),
and we consider the latter notion to be the relevant one in the study of the region of non-escaping
matter and radiation.

In [54], closed trapping horizons are built, with the separatrix and D-geodesic taken as
synonymous, most certainly because the separatrix is close to being null in this particular case.

We nevertheless stress the fact that in general, the two notions are distinct.

3.3 Relevant null geodesics for closed trapping horizons

We defined above the D-geodesic, called quasi-horizon by Frolov, which enables us to divide all

particles located in the trapped region into two categories: those exiting this region through the
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3. BEHAVIOUR OF NULL GEODESICS IN MODELS WITH CLOSED TRAPPING HORIZONS

outer horizon, and those exiting by the inner one.

Other regions are relevant for the study of models of closed trapping horizons, and can be
defined by using radial null outgoing geodesics going through not only D but also points A, B,
and C of Fig. 6.1. The A-geodesic goes through the last point (in terms of v) at which the inner
horizon is null. This curve thus bounds from above the region of spacetime whose content is
causally prevented from going into the trapped region. The B-geodesic goes through the first
point (in terms of v) at which the outer horizon is null. It represents the first geodesic (in terms
of v) able to escape from the trapped region. Finally, it may also be interesting to define the
C-geodesic as the geodesic going through the point of formation of the two horizons. It divides
massless outgoing particles located in the trapped region into two categories: those which entered

via the outer horizon, and those entered via the inner horizon.

These geodesics allow to define (at least) two zones of the spacetime which have a physical
significance:
(i) all massless outgoing particles of the trapped region which do not exit by the outer horizon
must belong to a zone bounded by the A-geodesic and the D-geodesic.
(i1) all Hawking particles emitted from the outer horizon must belong to a zone bounded by the

B-geodesic and A-geodesic.

The A and D-geodesics are plotted below for the three different models. In each model
these two geodesics quickly tend towards those of Minkowski’s spacetime (slope 1/2) after the
disappearance of the trapped region. They delineate a corridor whose largest version is associated

with the Bardeen-like case.
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150 ; :
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Figure 6.7: Hayward-like model
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Figure 6.8: Frolov’s model. There is no point B since m(v) is not differentiable.
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Figure 6.9: Bardeen-like model

4 Towards a model for the formation and evaporation of a

non-singular trapped region

Until now we have provided a geometry describing the formation and evaporation of closed
trapping horizons without singularity, while requiring solely that we recover the appropriate
Vaidya limit on .#~ and the de Sitter limit at the center. It is now necessary to study the
associated energy content, given by the Einstein tensor via Einstein’s equations, in order to check

whether this content is physical.
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4. TOWARDS A MODEL FOR THE FORMATION AND EVAPORATION OF A NON-SINGULAR
TRAPPED REGION

4.1 A form of the metric constrained by the energy-momentum tensor

Let us start with the most general spherically symmetric metric in advanced Eddington-Finkelstein

coordinates, encoding a new degree of freedom through function v:
ds? = —F(v,r)e®¥®" dv? + 2e¥"" dvdr + r2dQ? . (6.27)

This form will prove to be useful later on, since we will show that no evaporation can occur
without a dynamical v, and that this v is also necessary not to violate the null energy condition

on . ~. By virtue of Einstein’s equations, the energy-momentum tensor can be written as
T=T,dvedv+ T, (dvedr+dreodv)+T,.dredr+Th(d0 ®d6 +sin0dp ®dy) ,  (6.28)
with

8nT,, = —%2 (rF(v,r)em”(””')%—I: +F(v,r)?e2vwn 4 rew(””’)% —F(v,r)eZW(”’r)) ,

8nT,, = (rew(v,r)% +F(v,r) e ,r) _ ew(v,r)) ,

‘sle

) (6.29)

92 ) _
+2 rz—avg; + (37‘%"’“’?”% +2rF(v,r)ew(”’r))a—lf] e V)

In the following, we will attempt to compare our energy content to the one of a pure Vaidya
spacetime. Indeed, the collapse of an ingoing null shell described by an ingoing Vaidya metric is
a natural candidate for the formation phase of the trapped region written in (v,r) coordinates.
Moreover, the Hawking radiation associated with the evaporation phase can be described at first
order by a flux of outgoing photons, hence the use of an outgoing Vaidya metric. To that purpose,

let us write our energy-momentum tensor as follows
T=Tikok+Tylel+Ty kel +1ok)+Th(dd®dl +sin0dpedy) , (6.30)

where I and %k are two independent null covectors, respectively ingoing and outgoing. Notice that
it is always possible to write the energy-momentum tensor under this form under the assumption
of spherical symmetry; the coefficients T, T;; and T%; depend solely on the non-spherical

components of the metric.

To get to the form (6.30), one needs the expressions of the outgoing and ingoing radial null

covectors & and 1

k= —§e2"’dv +e¥dr,
(6.31)

l=-2dv,

where the normalization k-1 = —2 has been chosen.
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One then obtains

{ 21l ’ (6.32)
- eV .
dr=ecVk Fl l.

Plugging (6.32) into (6.28) finally leads to

—2y(v,r) 0¥
8Ty, = 8nType 20 =22 "o
kk rr r ’
2 29(v,r) 0% _o ,u(v,r) OF
_ & FeV F2e2w _ F(v,r) e ar 2e D)
87tTll—8n( wy ey, et = 5 ;
rF,r) % +r% +F(v,r)-1
2r2 '

(6.33)

87T hy =87 (5 Tor — § T = -

As we have already mentioned in Sec. 2, models of trapped region with closed horizons require

a violation of the null energy condition on the interval ADB of Fig. 6.1. When the NEC is violated,

so are all the energy conditions. It is thus of interest to verify that this violation occurs in a region

of finite size, i.e. that the violation is confined to a compact region of spacetime. Recall that the
NEC reads, for all null vector n*,

Tyntn' =0. (6.34)

Using the covectors I and % as long as equations (6.30) and (6.33), the NEC then reads

v 2672w(v,r>%l

Tk = Thp = ~—— =0,
F(v,r)2e2vn ¥ _g oy(.r) OF

MV — — 2 or v

T'm,l V=T, = 6anr =0.

(6.35)

Let us now focus on the cases of the models developed above, namely the Hayward, Frolov and

Bardeen-like models. In this case, y(v,r) = 0 and the conditions (6.35) boil down to

Tpr,=0=0,
1 oF (6.36)
T = -390 20

A necessary condition for the NEC to be satisfied is thus: 0,F < 0. Considering the form of F (see

2M ()

eq. (6.11)) and taking r — +oo, one recovers the standard ingoing Vaidya metric F' = 1 - ==

This means that the NEC is violated at infinity as soon as M becomes a decreasing function of
v. Using the previous calculations for various models, one sees in fact that there exists a line
dividing the whole spacetime into a NEC-satisfying and a NEC-violating region (see Fig. 6.10,
where the NEC line represents d,F = 0).

4.2 Explicit energy-momentum tensor
4.2.1 Conditions on the energy-momentum tensor

The requirements on the energy-momentum tensor for obtaining a transition from the collapse of
a null ingoing Vaidya shell to a Hayward-like non-singular trapped region, which then evaporates

forming a null outgoing Vaidya shell on .# ", are the following:
T1 > TresTri, Top on I,
T > T11,Thi, Tog on I .

(6.37)
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Figure 6.10: NEC violation in Bardeen-like model

We also demand that the null energy condition be satisfied up to infinity, thus:
Tllkak >0on .# and " . (6.38)

The #* and .#~ limits are characterized by v — +o0o and u — —oco, where u = v —2r. We can

define all functions in terms of © and v, which gives

_ e—2w(u,v)6uw
F(u,v)* eV, y+e¥®? S
Ty =— 39 —0) e (6.39)
T = F(u,0)0,y+0,F+ -1
kl = 8m(v—u) :

In order to obtain an explicit energy-momentum tensor describing the formation and evaporation
of a non-singular trapped region, we will have the freedom to choose v. Indeed, this function will

not affect the form of the horizons:

B F(v,r)e?®n)

0, = =0 F=0. (6.40)

r

We can thus look for a function ¢ to model the gravitational collapse and Hawking radiation
while keeping the horizons of the Hayward, Frolov or Bardeen cases; this is the purpose of the

next two subsections.

4.2.2 Generating a Hawking flux on .7+

Let us start by describing the phase of evaporation of the trapped region, mimicking the Hawking
radiation by the energy-momentum tensor of an outgoing Vaidya metric. The component that
must dominate all others is
e—21//(u,v)auw
Typ=———"""1. (6.41)
(v —u)

It is thus clear that ¥ must not be a constant in order to obtain a flux of Hawking radiation on

Z*. For simplicity we can choose ¥ of the form v = y(u). This allows us to avoid a violation of
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Figure 6.11: Plots of Ty, as a function of v for u = 500,700,900,1100,1300,1500.

the NEC on .#*, as well as to recover Minkowski’s metric there (up to a rescaling of the advanced
time v). Furthermore, with the intensity of the Hawking flux being driven by Tz, hence by 0, v,
we are looking for a function y with an important slope for a given interval of u (the phase of
Hawking radiation) and that tends towards a constant value for large u. The following function

meets all the above criteria:

w(u)=arctan (1000 —u) . (6.42)

This leads to

B exp(—2arctan(1000 — u))

T, =
e T A+ - ) —u) 6.43)
exp(arctan(1000 — u)) exp(arctan(1000 — w))F? ’
Ty=- 0, F -
32n(v —u) 1+ (1000 — u)?

On #*, v — +0c0 and we immediately have T}, — 0*. As concerns T};, 3,F — 0 and the second

term thus dominates in the bracket. Hence, T;; — 0" on .# " as well.

In Fig. 6.11, one can see that for large positive values of v, the biggest values of T}, are
centered around u = 1000.

Finally, it can be seen in Fig. 6.12 that abruptly after u = 1000 and at large v, T';, dominates
the other components of the energy-momentum tensor. This outgoing Vaidya-like behaviour

mimics the beginning of Hawking’s radiation.

4.2.3 Avoiding the NEC violation on .~

We will now focus on the choice of ¥ on .7, giving three necessary conditions that must be
fulfilled in order to recover Vaidya’s metric without a NEC violation on .~ (eq. (6.47)). As
explained in Sec. 4.1, choosing 1y = 0 leads to a violation of the NEC on all v = cst slices as soon
as m begins to decrease (v > 1000 in the Hayward-like model). In order to avoid this violation

of the NEC on .# 7, one has to carefully study the sign of the following components of the
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Figure 6.12: Plots of ;—éi (left) and g—; (right) as a function of v for u = 999,1000,1001.

energy-momentum tensor:

_ e—2u/(u,v)auw
{ S (6.44)
Ty = _32e7r(v—u) [F2ew(u’v)au1// +0,F] .

First of all, choosing a function ¢ such that d, 9 < 0 for u — —oco ensures that T, is non negative
on .~ (this translates into condition ii) in eq. (6.47)). As concerns T7;, the term inside the
brackets must be negative for u — —oo. Let us study the sign of 0, F, assuming a form for F

boiling down to an ingoing Vaidya metric near .% ~:

F(v,r)=1- 240

lim M(v,r)=m(v). (6.45)
v=cst
r—+o0
Since r = (v — u)/2, the leading term of 6,F on .#~ is
40
o = 2. (6.46)
u

Therefore, as long as m(v) is increasing, T;; — 0% on .#~ assuming that we keep the value of ¢
such that 0, ¥ < 0.

However, as soon as m(v) begins to decrease, this leads to ,F — 0* on .# . Since 9, <0, we
have to study carefully the sign of Tj;. On .# ~, F — 1 and we require that e?¥®) — cst so that
we recover Vaidya’s metric there: this is our condition i) in eq. (6.47) below. Hence, the study of
the sign of T;; comes down to the comparison of the dominant terms of 6,y and 0,F = %
(condition iii) below). Ultimately, finding w(u,v) boils down to satisfying simultaneously the three
following conditions:

i)ugglww(u,v) =a,acR.
ii)ul_i>r_nooau1//(u,v) =b,beR™ . (6.47)

1
iii)0,y < — for large enough |u|, with u <0 .
u
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It appears that conditions i) and iii) are incompatible. Indeed, after integrating iii) we get:
co—v(u,v) <ci—log(-u), (6.48)
where cg and c; are integration constants. Hence,
w(u,v) =log(—u)+co—c1 o +00 . (6.49)

w(u,v) can thus be made arbitrarily large in absolute value, in contradiction with i).
Finally, we have shown that every spacetime equipped with a metric of the ingoing Vaidya
form (6.45) near .# ~, hence satisfying i), will violate condition iii) and thus the NEC in a non-

compact region as soon as m(v) decreases. This applies, in particular, to the models of Hayward,

Frolov and Bardeen, which mimic the Hawking evaporation through a decreasing function m(v).
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CONCLUSION

his dissertion aimed at presenting the various projects I conducted during my thesis,
which all fall under the scope of non-singular black holes. From static to dynamical
models, from theoretical to observational aspects, numerous dimensions of non-singular

black holes have been covered.

The project on rotating regular black holes is certainly the one which best illustrates this
variety of approaches. We began by proposing the so-called regular rotating Hayward model,
which is in some regime the first model of a fully regular rotating black hole and reduces to
Hayward’s metric in the absence of rotation. We then showed that its matter content could not be
matched to a non-linear electrodynamics source, contrarily to the static Hayward black hole. We
nonetheless kept studying the phenomenological aspects of this model, in particular by computing
the images it would produce if it were at the center of the galaxy, surrounded by an accretion
structure similar to the one of Sgr A*. We obtained with GYOTO some images in the regular
rotating Hayward black hole regime (where an outer trapping horizon is present), which are
extremely close to images of a Kerr black hole in the same configuration: the size of the two
shadows differs by only a few percents. In this case, distinguishing a non-singular black hole
from a Kerr one is for now out of reach of observations.

Some images in the horizonless regime of this model have also been computed. They emphasize
the results already obtained with other horizonless ultra-compact objects, namely that the central
faint region appearing in the images can be confused with the standard shadow structure of
Kerr black holes observed at low resolution. They should thus encourage us to take the claims
of observation of black hole shadows and horizons with caution, all the more so as we currently

await the forthcoming results of the Event Horizon Telescope.

The same phenomenological approach was employed to study the formation and evaporation
of a non-singular trapped region. In this dynamical case as in the previous rotating one, we
imposed a form of the metric, defined on the whole spacetime without any junctions, and then
looked at the corresponding energy-momentum tensor. As regards the dynamical non-singular
trapped region, we managed to match the energy-momentum tensor with an outgoing Vaidya
one on .#* and an ingoing Vaidya one on .# ~, but showed that with such limits the null energy

condition was doomed to be violated on a non-compact region of spacetime.

The last results obtained in this thesis follow the other, complementary approach which
consists in considering modifications of gravity to reproduce the known Hayward and Bardeen

static non-singular black holes. Generalizing the tensor-scalar theory of mimetic gravity, we
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wrote down the field equations for a static spherically symmetric metric encompassing Hayward’s
and Bardeen’s ones. They are in principle solvable, but we did not manage to find solutions
yet. Finally, we used the Hamiltonian formulation of General Relativity to implement quantum
corrections to the constraint algebra, following the spirit of loop quantum gravity. We managed
to solve Einstein’s equations for a general class of deformations depending on a single func-
tion parametrized by one phase space variable. The deformation parametrizing Hayward and

Bardeen black holes can then be defined implicitly by an integral, which we evaluated numerically.

Ultimately this thesis opens up some new perspectives, that further research shall try to
address. First of all, the striking similarities shared by ray-traced images of horizonless ultra-
compact objects, such as the naked rotating wormhole presented in this thesis, are to be examined
further. Computing ray-traced images from other ultra-compact objects, such as Bardeen’s metric
in the horizonless regime, could confirm this behaviour. If so, it will then have to be properly
understood. The study of the features of photon regions, and of their link with the lensing rings

appearing on the ray-traced images, might be a key to this understanding.

As regards the formation and evaporation of a non-singular trapped region, it is now clear
that a Vaidya collapse without junctions is not enough to describe a physically relevant model.
One should then reproduce our analysis for more general collapses, trying to limit the violation
of the null energy condition to a compact region of spacetime and describing again Hawking

evaporation with an outgoing Vaidya metric on .#*.

The starting point of this thesis was to consider that, in lack of a quantum theory of gravity
supposed to cure singularities, one was led to study non-singular black holes from an effective
viewpoint. It should be stressed that this fruitful approach might be two-way: investigating
the common features of quantum-inspired deformations of the constraint algebra that lead to
non-singular black holes could for instance give us some hints about the properties of a quantum

theory of gravity.
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APPENDIX

TYPOLOGY OF HORIZONS

1 Killing horizon
A Killing vector £ is defined by the following Killing equation:
Valp+Vpéa =0 (A.1)
This equation is actually tantamount to
Ze8ab =0, (A.2)

where .Z denotes the Lie differentiation. The Lie derivative of a vector A along a vector u is
defined as

LAY =VpA uP —VsuT AP (A.3)

The Lie differentiation satisfies a very nice property (see [96] for details): in a given coordinate
system, the Lie derivative of a tensor along a vector u® = § vanishes if the components of this
tensor do not depend on the coordinate x°. Hence, by eq. (A.2), Killing vectors characterize the
symmetries of the metric tensor: if its components do not depend on a coordinate %0, the vector

with components {* = 6§ will be a Killing vector.

Killing vectors are of great use when searching for constants of motions along a geodesic.
Taking a geodesic parametrized by A with u as a tangent vector, one can indeed show that u® ¢,

is constant along this geodesic:

d
77 (4" ¢a) = Vp (1" Eo)
:Vﬁu“uﬁ€a+vﬁ€au“uﬁ (A4)
=0

A Killing horizon associated with a Killing vector & can then simply be defined as a null hypersur-

face to which € is normal, and hence on which its norm vanishes.
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2 Event horizon

The event horizon 7€ of a black hole is a null hypersurface separating, in a given spacetime, what

will fall into the black hole from what will reach future and null infinity.

Technically, given a manifold .# with future null infinity .#*, it is defined as a boundary:
S =0% , (A.5)
where the black hole region % represents the part of a .4 causally disconnected from .#*:
B =M\ (I)NM). (A.6)

The event horizon is teleological: it requires the knowledge of the whole spacetime to be

drawn on a Penrose diagram. Hence, it is a global concept which is not relevant astrophysically.

3 Trapping and apparent horizons

The trapping horizons are particularly well suited to astrophysical contexts, since they provide,

as stated in [69], an operational definition of a black hole allowing observers to detect it.

3.1 Definition

The notion of (future) trapped surface was the object of Def. 1.26 in Sec. 4.2.1 of Chap. 1:itis a
2-surface X on which the expansion of the congruence of both outgoing (+) and ingoing () null
geodesics, orthogonal to Z, is negative: 6, < 0 and 6_ < 0. Put another way, any particle belonging
to such a surface will go towards decreasing values of the radial coordinate r in the future.

On the contrary, on a normal surface outgoing particles evolve towards increasing values of r
and ingoing ones towards decreasing values of r. A marginally trapped surface is the limit case
between normal and trapped surfaces: one of the expansions vanishes, here 6.,. This marginal
surface is called an apparent horizon. The trapping horizons are merely 3-surfaces foliated by the

two-dimensional apparent horizons.

Let us define the trapped (resp. normal) region of spacetime as the set of points belonging to
a trapped (resp. normal) surface. There are two types of trapping horizons associated with the
future trapped surface defined above: one for which the normal region surrounds the trapped
region, and the other for which it is the trapped region that surrounds the normal region.
The former corresponds to the familiar black hole situation, with a central trapped region delim-
ited by a future outer trapping horizon (FOTH). Following an ingoing null geodesic, one goes from
a trapped region (6 > 0) to (61 < 0). Hence, the Lie derivative of 6, along the ingoing direction is:
Z_0,<0.
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The latter corresponds to a contracting cosmology, with a central observer whose normal region is

delimited by a future inner trapping horizon (FITH). In this case, £-0. > 0.

Then, one can also define past trapped surfaces. These are 2-surfaces on which the expansion
of the congruence of both outgoing and ingoing null geodesics is positive: 8. >0 and 6_ > 0. The
associated apparent horizons are such that 6_ = 0. In this case, any particle belonging to such a
surface will go towards increasing values of r in the future and decreasing values in the past. As
before, let us consider two configurations of the trapped and normal regions.

When the trapped region is surrounded by the normal region, one is faced to a past outer trapping
horizon. It is associated with a white hole spacetime, and one has £, 0_ <0

Finally, when the trapped region surrounds the normal region, this describes an expanding
cosmology. The associated horizon is a past inner trapping horizon, on which £, 6_ > 0.

We can thus summarize the properties of the future/past outer/inner horizons as follows:
e FOTH: 6, =0and £-0, <0

e FITH: 60, =0and £-60,>0

e POTH: 6_=0and ¥,0_<0

e PITH:0_=0and £.60_>0

More details can be found in [69, 72].

3.2 Dynamical spherically symmetric metric

As a first exemple, let us compute the ingoing and outgoing expansions for a spherically symmetric

metric written in the ingoing Eddington-Finkelstein form
ds? = —F(v,r)e2¥ " av2 + 26V dvdr + r2dQ2 . (A7)

The null outgoing (I) and ingoing vectors (k) read

{ [14] = (1,1”79””,0,0)

(A.8)
[k”] = (09 _e_w, Oa 0) s
with &, = —1. The outgoing and ingoing expansions finally read

0_ = hﬂvvukv - _2eV ) (A9)

r

{ 0. =hV, 1, =E

This result will be extensively used in the following. Let us state another results, for the
outgoing version of the metric (A.10)

ds® = —F(u,r)e?? " dp? - 2e¥ %N dudr + r2dQ2 . (A.10)
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The expansions then read

_ _Fe’
6. =—Ee'

0 :2671"
{ T (A.11)

3.3 Stationary axisymmetric metric

As a second and last example, let us compute the ingoing and outgoing expansions for a general-

ized Kerr metric, where M = M(r). The original metric reads

orM 4arM(r)sin®0 s 2a2rM(r) sin?0
dszz—(l— rz(r))dtZ——ar (r) sin dtdg+ dr+Zdo*+sin®0(r* +a’ + ar g)sm
(A.12)
And in its ingoing version:
2arM 4arM(r)sin?6
dszz—(l— r (r))dv2+2dvdr—Mdvdw—mgn%mdrdwmde?
(A.13)
2a2rM(r)sin?6
tsin?0[r? 4 o2 + 22 rM(Dsin70 dy?,
)
where Y
=t+ [T5%d
{” / a0 (A.14)
y=@+ [%dr.

The curves of (v,0,1) = cst. represent null ingoing geodesics, with decreasing r as time increases.
The null ingoing vector field (k) tangent to these curves, as well as the null outgoing one orthogonal

to them () can be written

(A.15)

k=-25C0,,
1=0,+(3-2D) o, + 2250, ,

a+r? a2+r?

where the normalization of 2 has been chosen so that 2-1 = —1.

We can then define as follows an induced metric A on the hypersurfaces r = cst., to which &
and [ are orthogonal:
h=g+lok+kl. (A.16)

The outgoing and ingoing expansions finally read

T (@+r2)x (A.17)

2 2 2
0=k, = -2 FT)

{ 0, =h*"V,l, = 25
z

Similarly, one can consider the outgoing version of metric (A.12):

2rM 4arM(r)sin?6
ds2=—(1— A (r))duz—Zdudr—wdudw’—&zsin2(0)drd1,(/'+2d02
5
, . (A.18)
+sin%0 (r2 +a?+ W)dw'2 ,

182

do?,



4. CAUCHY HORIZON

where Y
— ¢ [+a’yq
u=t-[=Edr, (A.19)
y'=¢-[2dr.
Taking the following null ingoing and outgoing vectors:
k=2@?+r?d,- N0, +2ad,, ,
{ a7+ 77004~ A0 + 20, (A.20)
l= ﬁar ’
the outgoing and ingoing expansions finally read
0. =h*"V,l, =%
i SN (A.21)
0-=ht"V,ky=-5 .

4 Cauchy horizon

Let us illustrate the Cauchy horizon defined in Sec. 2.4 of Chap. 1 with the exemple of Reissner-

Nordstrom’s spacetime.

On Fig. A.1, we show a section of the maximal extension of this spacetime as well as a (partial)
Cauchy surface X. Let us recall that the future domain of dependence of X is the set of all points
p € Z such that every past inextendible causal curve through p intersects X. This domain is
shown in blue on Fig. A.1: it has a future boundary since, for instance, any point p € .4y lies on

some causal curves emerging from r = 0. This boundary is the future Cauchy horizon €.
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Figure A.1: Section of the maximal extension of Reissner-Nordstrém’s spacetime, drawn in the compactified Kruskal
coordinates of Chap. 2. The domain of dependence of the partial Cauchy surface ¥ is shown in blue. It possesses a
boundary, which is the future Cauchy horizon €.
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APPENDIX

TENSORIAL COMPUTATIONS

1 General spherically symmetric metric

Any spherically symmetric metric can be cast in the form

g:-fkmwh¢®dp+%dr®dr+#d9®d9+r2gnwﬁd¢®d¢, (B.1)

where F' = F(¢,r) and v = y(¢,r). The Christoffel symbols computed out of this metric are

oy | 9F
2Fﬁ+ﬁ

2F

oy | oF
2F5_7‘ + or

2F
e(_2u/)ﬂ
ot

2F3

72,200 1o (29)0F

or 2

oF
_ ot
2F
oF
_or
2F
—-rF

—rFsin(0)?
1

-
—cos(8)sin(6)
1

r
cos(0)

sin(0)
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The Ricci tensor then reads

2 2 2
R-__1 {2rp4e(2w)("_”’) +2,-F4e(21!/)6_w+rp3e(2w)a F o opsendF _ poFoy , OF
2rF3 r or? or? or ot Ot ot
?2F OF ow ) (20 4 & 5
FIE | (3,p30enoLE | 4 g <2w>)_} 209 gqp &0t 9 gq, 009 g,
r ot2 +( reee or * ¢ or ¢ ot * rF2 ot - or

2rFs3 r or or? r r

2
OF oy OF? 0’F ) rFSE+rE v F-1(4 d
~2r— +rF <ZW>— (— 0+— )
ot ot "ot T 6t2)} edr- 2 69®d +a¢®d¢’ ’

2 2 2
| (271 (SL) +arpteCr Tt o o rpte@n Tl BT gt e
r

—-rF—

r

and the Ricci scalar is

- 2r2F4e @) 9 2,r2F%e @v)_9 r2F3e v 9" SF+4 F3e w9 F+2F42v)
R r2F3{( r 1// +2r (ar)2w 2 +4r o +
2,0 .0 5 @u) o020 9 o 0 23(2) 1,20)) 9 ) o(-2v)
—r*F—F —y—2F°e\*Y) - 2r* —F*+r°F——F + |3r°F°e\*¥ F+4rF v AL
ot ot ot (0t)? ar?

Finally, the Einstein tensor reads

0
el - ot _ 0t
2 ot edi+ rF2 ot P r or

rlf1F-1) 0 (20 Ik,
o[+ 2

(sz0W+r +F - l)a
odt +

r r

2 2 2
{(er4e(zw)(5_w) +2rF4e(2w)a e CE o OF? o (24)9F
or or? or2 ot or

) (-2v) , FE}
0

N
2rF3

ot ot

r

_rFEa_U/ (3,4?39(21//)‘33 +9F%e (2'#))
r

2 Regular rotating black hole

Let us consider the following axisymmetric and stationary metric:

. 2
_ 1)dt®dt— 2“rM(rz)SIH(0) dtedg+ %dr@dr+2d9®d0

_(2rM(r)

(B.3)
2|sin(0)?d¢p @d¢ ,

: 2 2 . 2
B 2arM(rz)s1n(9) d(p®dt+(2a rM(;)sm(B) tg?

where

2

E=r?+a%cos?0, A=r?-2M@)r+a’. (B.4)

Eq. (B.3) reduces to the metric of our regular rotating Hayward model for

M(r) I (B.5)
rN=m———, .
7|3 +2mb2
and to the metric a regular rotating Bardeen model (still under investigation) for
2
Mry=m————: . (B.6)

3
2

(r?+g2?)
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Denoting the derivatives with respect to r (resp. 0) as primes (resp. dots), the Christoffel symbols
used to write the Hayward.C extension of GYOTO read
(@®+72)ZM(r) - (@®r + )M (X' + (ar + r3) =M (r)
2a2rZcos(0)2M(r)+2r3XM(r) — (a?+r2)x2
ot 4a?r?cos()M(r)?sin(0) + (a®r + r®)M(r)Z
0 9a2r%cos(0)2 M(r)+2r3XM(r) — (a? +r2)x2
(( 3_ arQ)ZM(r) - (a3r + ar3)M(r)Z’ + (a3r + ar3)ZM’(r)) sin(0)2

t —
1—‘t‘r‘_

r‘ =-
ro 2a2rcos(0)2Mr)+2r3ZM(r) - (a? +7r2)x2
oo 4a3r?cos(0) M(r)?sin(0)2 + (a3r + ar®)M(r)sin ()2 £
0 — 2a2r2c0s(9)2M(r)+2r3ZM(r)—(a2+r2)22
- rAM(r)Y —rAIM'(r)— AZM(r)
Iy = 33
- (arAM(r)Z’ —arAZM’(r)—aAZM(r)) sin(0)?
r tp ~ 3
. IA - AY
r o S —
2A%
)
rrrH = ﬁ
oo AY
66 — 23
»_ rAZ%sin(0)’ - (a®’rAM ()X - a*rAZM'(r) - a® AZM(r)) sin (6)*
r oo T >3
o TM()Z
I = 53
o _ 2arZcos(0)M(r)sin(0)—arM(r)sin(0)>2
r tp >3
b)
rf =--—=
T 2AX
ZI
0
r ro — E
)
rf, = —
66 23
o 4a?rZcos(@)M(r)sin(0)® - a2rM(r)sin(0)* £ + (a? + r2) 22 cos (0)sin(0)
oo >3
¢ - arM(MX —arZM'(r)—aXM(r)

T 2a2rZcos(0)2 M(r) + 2r3EM(r) — (a? +r2) 32
o arM(r)sin(0) 2 +2(2ar?M(r)? — ar=ZM(r)) cos (0)

10 (2a2rZcos()? M(r)+2r3ZM(r) - (a2 + r2)22)sin(9)
o 2r2XM(r) - r22 + (a?2rM(r)z' — a?rIM'(r) - a2ZM(r)) sin (0)

re 2a2rcos(0)2M(r)+2r3EM(r) - (a?+7r2)x2

1
r¢>9¢ = et ORM0) + ZPM) % T Ten®) [4a®r? cos(0) M(r)*sin(0)* — a®2% cos(0)
~4a®rXcos () M(r)sin(0)® +a®rM(r)sin(0)® 2 + 2arZ cos (0) M(r) + 2r3Z cos (0) M(r) — r2Z2 cos (0)]

187




APPENDIX B. TENSORIAL COMPUTATIONS

188



APPENDIX

SAGEMATH WORKSHEETS

1 Rotating non-singular black holes

Computation of geometric quantities relative to the metric (4.34)-(4.35) have been performed
by means of the free computer algebra system SageMath [2], thanks to its tensor calculus part

(SageManifolds [1]). The corresponding worksheets are available at the following url’s.

1.1 Curvature

¢ Curvature of the naively extended rotating Hayward metric [Eq. (4.32)]:
https://cocalc.com/projects/09367c7f-3a39-4079-9d4d-cd59ebdca289/files/Rotating Hayward_metric_curvature.

ipynb

e Curvature of the regular rotating Hayward metric (4.34) extended to the region r <0
[Fig. 4.2(a) & 4.2(b)]:

https://cocalc.com/projects/09367c7f-3a39-4079-9d4d-cd59ebdca289/files/rotating Hayward_metric_ext.ipynb

1.2 Null energy condition

* Null energy condition in the regular rotating Hayward metric (4.34) extended to the region
r <0 [Fig. 4.6]:
https://cocalc.com/share/09367c7f-3a39-4079-9d4d-cd59ebdca289/Locally_nonrotating_frames_and_NEC.ipynb?

viewer=share

1.3 Geodesics

¢ Expressions of the energy, angular momentum and angular velocity of a test particle in
the regular rotating Hayward metric (4.34) extended to the region r < 0; comparison with
Toshmatov et al. [113] and Bardeen et al. [14]:
https://cocalc.com/share/09367c7£-3a39-4079-9d4d- cd59ebdca289/Comparison_of_E_L_and_Omega.ipynb?viewer=

share
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¢ Stable circular orbits in the regular rotating Hayward metric (4.34) extended to the region
r <0 [Table 4.1]:

https://cocalc.com/projects/09367c7f-3a39-4079-9d4d-cd59ebdca289/files/Stable_circular_orbits.ipynb

1.4 Energy-momentum tensor from nonlinear electrodynamics

* Inconsistencies in the solution to Maxwell’s and Einstein’s equations proposed by Toshma-
tov et al. [113]

https://cocalc.com/projects/09367c7f-3a39-4079-9d4d-cd59ebdca289/files/Inconsistencies_EMT_Toshmatov_

et_al.ipynb

¢ Exact solution of nonlinear Maxwell’s equations as well as Einstein’s equations with the
electromagnetic field proposed by Toshmatov et al. [113]
https://cocalc.com/projects/09367c7f-3a39-4079-9d4d-cd59ebdca289/files/EMT_Toshmatov_et_al_Kerr_Newman.

ipynb
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