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Abstract 
Recent progresses in microfluidics, synthetic biology, and microscopy automation now make 
it possible to control gene expression externally and in real time. Among the challenges facing 
the field of external real-time control of gene expression is the control of intricate, multistable 
gene regulation networks as well as the control of several target genes at the same time. To 
advance the domain in this direction we studied the controllability of a simple bistable two-
genes network, the so-called genetic toggle switch, in the vicinity of its unstable equilibrium 
point for extended periods of time. 

Throughout this document, we present the development of a custom control platform for 
external control of gene expression at the single-cell level as well as a bacterial cellular 
chassis and a library of toggle switch genetic circuits for us to control. We use the platform to 
drive and maintain our genetic system in its region of unstability with both closed-loop and 
open-loop strategies. Not only do we demonstrate that in silico control platforms can control 
genetic systems in out-of-equilibrium states, we also notably maintain a population of cells in 
their unstable area with open-loop periodic stimulations. These results suggest the possible 
emergence of different regimes of stability in gene regulation networks submitted to 
fluctuating environments, and can potential insights in the study of cellular decision making. 

We also introduce a new approach for microscopy image analysis which exploits information 
hidden in several focal planes around the specimen instead of using only a single-plane image. 
The objective of this method is to automatically label different parts of an image with 
machine learning techniques inspired by hyperspectral imaging. The method is then shown to 
facilitate segmentation and be easily adaptable to various different organisms. 

Keywords: Escherichia coli, Cybergenetics, Microfluidics, Control theory, Machine learning, 
Synthetic biology, Systems biology, Image analysis. 
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 Re sume  
Les progrès récents de la microfluidique, la biologie synthétique, la microscopie automatisée 
rendent aujourd'hui possible le contrôle externe de l'expression des gènes en temps réel. Parmi 
les défis que devra relever le domaine du contrôle externe et temps-réel de l'expression des 
gènes se trouve la possibilité de contrôler des réseaux de régulation génique aux dynamiques 
complexes et multi-stables, et le contrôle de multiple gènes en parallèle. Pour faire avancer le 
domaine dans cette direction nous avons étudié la contrôlabilité d'un réseau bistable composé 
de deux gènes, appelé genetic toggle switch, ou bascule génétique, autour de son point 
d'équilibre instable sur de longues périodes. 

Dans ce document, nous présentons la mise en place d'une plateforme de contrôle externe de 
l'expression des gènes en cellule unique, ainsi que le développement d'un châssis cellulaire 
bactérien et d'une librairie de circuits de bascules génétique à contrôler. Le travail de 
développement technologique est présenté dans un premier temps : Une nouvelle 
implémentation en parallèle du système de microfluidique connu sous le nom de „mother 
machine’ y est présenté ainsi que le développement d’une solution de mélange d’inducteurs 
chimiques basée sur des valves interconnectées commandées en modulation de largeur 
d’impulsion sont présenté ainsi que des tests de validation. Le développement technique de 
l’automatisation de la plateforme de microscopie-microfluidique, notamment informatique, 
ainsi qu’une brève présentation de la stratégie d’analyse d’image en temps réel impliquée, 
sont discutés. La construction d’une librairie de toggle switch bistables basés sur la double 
répression LacI-TetR et différents par leurs force de liaison ribosomales est également 
détaillée ainsi qu’un nombre d’innovations techniques, nécessaires à cette fin, de la technique 
de clonage „MoClo’. Enfin, la caractérisation du système ainsi que le développement d’un 
modèle quantitatif, à la fois déterministe et stochastique, sont présentés afin de pouvoir à la 
fois estimer la position du point d’équilibre instable de notre toggle switch, et prédire la 
faisabilité de notre objectif de contrôler le toggle switch génétique autour de son point 
d’équilibre instable. 
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Une fois opérationnelle, nous utilisons la plateforme pour diriger et maintenir notre système 
génétique dans sa région d'instabilité avec des techniques de stabilisation à la fois en boucle 
ouverte et en boucle fermée. Dans un premier temps, une seule cellule est contrôlée et est 
entraînée vers le point d’équilibre instable du toggle switch, grâce à l’utilisation d’un 
contrôleur proportionnel-intégral. En augmentant le gain proportionnel de ce contrôleur nous 
observons que le reste de la population peut être entraînée. Dans le cas extrême d’un 
contrôleur bang-bang, cas limite du contrôleur proportionnel-intégral où le gain est infini, 
toute la population est entraînée avec la cellule effectivement contrôlée. Nous démontrons 
donc non seulement que les plateformes de contrôle in silico peuvent être utilisées pour 
contrôler un système génétique dans un état hors-équilibre, nous démontrons aussi la 
possibilité de maintenir une population de cellules dans leurs région d'instabilité à l'aide de 
stimulation dynamiques en boucle fermée. En étudiant la dynamique sous-jacente de ce 
phénomène populationnel grâce aux modèles théoriques développés et calibrés sur nos 
données, nous suggérons la possibilité d’un phénomène de stabilisation dynamique semblable 
au phénomène du pendule de Kapitza. Cette étude indique, lorsque les cellules sont soumises 
à des stimulations périodiques de fortes concentrations d’inducteurs, un changement dans le 
régime de stabilité du système et  transforme la zone instable du toggle switch en attracteur 
global. Nous démontrons ensuite expérimentalement ce phénomène et l’observons pour une 
gamme de stimulations périodiques. Ces résultats suggèrent l'émergence de régimes de 
stabilité différents dans des réseaux de régulation génique lorsqu'ils sont soumis à des 
environnements fluctuants, et peuvent fournir de nouvelles perspectives dans l'étude de la 
prise de décision cellulaire. Notamment, de telles fluctuations périodiques sont observées dans 
des circuits de différentiations de précurseurs neuronaux en amont d’une prise décision 
cellulaire. 

Enfin nous présentons aussi une nouvelle approche pour l'analyse d'images de microscopie 
qui exploite l'information cachée dans plusieurs plans focaux autour du spécimen au lieu 
d'utiliser seulement un seul plan focal. En effet, lorsque plusieurs images de microscopie sont 
acquises, pour un même objet, dans plusieurs plan focaux différents, l’intensité d’un même 
pixel va varier de façon différente selon la nature de l’objet présent sur ce pixel, pour des 
raisons de propriétés liées à la matière de l’objet ainsi qu’à sa forme et à la diffraction qu’elle 
entraîne. Par conséquent, cette « signature » de l’objet observé permet de l’identifier. Il s’agît 
donc d’un problème de classification, et nous utilisons des techniques classiques 
d’apprentissage machine, les machines à support de vecteurs, pour classifier ces signatures en 
fonction de la nature de l’objet observé. Nous démontrons la possibilité d’ainsi identifier dans 
des images de microscopie différentes cellules, comme la bactérie E. coli, la levure S. 
cerevisiae, ou des cellules cancéreuse humaines de type HeLa. Nous pouvons aussi identifier 
les sous-parties de ces cellules comme le cytoplasme ou la membrane, mais aussi identifier 
des structures de microfluidique ou des contaminants. La méthode facilite ensuite la 
segmentation de l'image et peut être facilement adaptée à différents organismes. 

Mots-clés : Escherichia coli, Cybergénétique, Microfluidique, Automatique, Apprentissage 
machine, Biologie synthétique, Biologie des systèmes, Analyse d’images. 
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2002): It is generally accepted that the tensions in the many muscles implied in any 
movement, to grasp a pencil for example, are updated throughout the entire process according 
to sensory inputs (e.g. vision, touch, and proprioception) and advanced control algorithms 
taking place at all levels of the nervous system. Similarly, in physiology, following the 
seminal paper by Grodins (Grodins et al. 1954) on the subject, the study of body homeostasis 
including thermoregulation, blood pressure, blood pH, and the levels of calcium, potassium, 
sodium and glucose in the blood were all studied from the angle of control theory(Milhorn 
1966). 

The discovery of DNA, and more importantly, the identification of genetic regulation 
mechanisms in 1961(Jacob & Monod 1961) opened the way to the study of the inner 
workings of cells themselves. Refinements in protein sensing technology and in quantitative 
biology over the years unveiled the staggering complexity of the genetic-proteomic circuitry. 
Gene networks have since become one of the main subjects of study of systems biology, and 
the seminal works of Alon, Barkai and Leibler(Barkai & Leibler 1997; Alon et al. 1999) in 
the late 1990s first suggested and demonstrated that adaptation to constant stimuli by the 
bacterial chemotaxis system is a robust property of the network and not a result of fine-tuning 
of biochemical parameters. In the following years, control theoreticians looked into the 
interplay between network topologies and the robustness of their responses. A review on the 
subject can be found in (Stelling et al. 2004). 

The early 2000s also saw the appearance of another related field: synthetic biology. Synthetic 
biology stems from the progress made in genetic manipulation tools in the late 1980s and 
1990s (most notably in cloning techniques, PCR and DNA sequencing) and systems biology. 
It aims at integrating an exogenous genetic network in the cell that not only can provide the 
genetic information for synthesizing new proteins, as is routinely done in traditional genetic 
manipulations, but also incorporates a function or program encoded into the genetic material 
to respond to certain external or internal stimuli or to increase the robustness of the desired 
process. Potential applications include drug production and smart drug delivery, biofuel 
synthesis, bioremediation, biosensing, and waste processing (Collins & Khalil 2010; Cameron 
et al. 2014). Because synthetic biology draws a significant part of its goals from computer 
science and electrical engineering, control theory was rapidly incorporated into the 
fundamental concepts that drove its development. The difficulty of designing synthetic 
genetic modules to assemble into more elaborate systems became rapidly apparent, and soon 
engineered circuit modules involved feedback loops to increase robustness and reliability. For 
a detailed description of the co-evolution of synthetic biology and control theory see (Del 
Vecchio et al. 2016). 

Unfortunately the processing subtleties that can be involved in modern control algorithms can 
hardly ever be incorporated into genetic circuitry, and a new theoretical framework for in vivo 
internal stochastic control algorithms must be formulated to reach the long-term objectives of 
synthetic biology. But looking at the history of control theory, the trend over the post-war era 
has been to externalize the control process out of the electromechanical realm into the more 
computation-indulgent digital one. Key technological advances that made this shift possible 
were the development of reliable, precise, digital sensors on one hand, and efficient and 
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powerful electromechanical actuators on the other, with of course the exponentially increasing 
computational power of modern microprocessors. In the years to come, the expansion of in 
vivo external real-time control to new applications will be fostered by: a) renewed interest in 
fluorescent probe design following the recent breakthrough of super-resolution imaging; b) 
the actuation capacity provided by the sophistication of optogenetics over the last decade; and 
c) continued innovation in microfluidics both for observation and actuation through chemicals 
delivery. 

1.3 Externalizing Control 

Inducible promoters are now routinely used in systems and synthetic biology to understand 
and construct genetic regulatory networks. Because of the stochasticity of gene expression 
and its limited measurability in cells, such uses have long remained limited to short term, full 
induction of populations of cells. Fine-tuning of in vivo protein levels in bacteria remains a 
challenge. 

Before using drug-responsive promoters like the lac or tet systems(Lutz & Bujard 1997) to 
induce gene expression in living cells, the first technique to study the action of a gene in an 
organism was complete gene knockout. Not only is it a demanding task, but the process is not 
reversible, not quantitative, and one cannot observe the effect of the gene’s removal on the 
rest of the genetic network dynamically. A step towards quantifiable and dynamic studies of 
gene expression was made with the introduction of phage promoters in the cells, such as PL of 
phage lambda(Elvin et al. 1990) or the RNA polymerase and promoter of T7 phages(Studier 
& Moffatt 1986). Again, those techniques are not convenient and hardly quantitative: it 
required heavy cloning procedures where all the phage transcription machinery had to be 
expressed by the cell, and the induction level of the promoters could not be fine-tuned over 
time, as the PL promoter is activated by temperature shifts and T7 promoter activation 
necessitates the introduction of the T7 RNA polymerase in the cell via phage infection. 
Finally, during the 1990s, a lot of effort was put into the development and characterization of 
inducible promoters that could be quantitatively tuned, induced over wide ranges of 
expression, and would be orthogonal to most of the cells’ natural repressors(Guzman et al. 
1995; Skerra 1994). The most widely used systems are the lac and tet promoter-repressor 
couples(Lutz & Bujard 1997). These inducible systems opened the way for quantitative 
studies of gene regulatory networks and later, synthetic biology. However, although these 
newer inducible promoters allow for a more finely graded induction of gene expression levels 
than the original on/off phage-based systems, and refinements based on self-regulating 
feedback loops make this resolution even finer(Nevozhay et al. 2009; Rosenfeld et al. 2002), 
induced gene expression is still unpredictable, heterogeneous, and shows significant 
fluctuations in time. 
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2 Scientific problem: Long-term and real-time control of a bistable 

genetic system in single-cell bacteria 

The main objective of my PhD was to develop a single cell control platform to study the 
feasibility of control in single cell Escherichia Coli bacteria, and specifically control of  a 
bistable gene circuit, the toggle switch. It implied studying and integrating together the 
different domains that are necessary for a functional control platform: actuation through 
synthetic biology and microfluidics, sensing through microscopy and image analysis, and 
control theory.  

The genetic toggle switch consists in two genes mutually repressing each other, and features 
two stable states in which either of the two genes is expressed and completely represses the 
other. A third, unstable, equilibrium point in which the two genes expression levels are such 
that their equivalent repression strengths are balanced is predicted by deterministic models of 
the system. However in practice the cells are always in either of the two stable states and can 
sometimes switch between the two due to random fluctuations. My objective was to maintain 
Escherichia coli cells harboring this circuit in their unstable area by dynamically changing 
their environment. 

This genetic toggle switch control problem bears several similarities with the benchmark 
control problem of the inverted pendulum and allowed me to investigate the potential offered 
by external control theory on single-cell control. The genetic toggle switch is also a 
fundamental topology in core natural gene regulatory networks as well as one of the 
foundational results of synthetic biology and as such is frequently used in complex synthetic 
circuitry when bistability, memory or binary signal processing is desired. Hence, studying the 
dynamics of the toggle switch, especially in its unstable area, where it is rarely observed, was 
also one of the goals of this thesis. Combining a hands-on approach made possible by external 
cell control with a theoretical study of its dynamics made it possible to study the behavior of a 
multistable gene regulatory network out of equilibrium, as it is perturbed by time-varying 
perturbations that modify its phase portrait, thus allowing us to further the study of 
multistable genetic systems and raise new questions about their implications in stochastic cell 
fate determination, commitment and its reversibility, and the extent of dynamic or periodic 
stimulations in natural gene networks. 

3 Approach 

To make single-cell control of a multistable genetic system possible, I started by designing a 
control platform for single-cell bacteria. I developed several microfluidic chips to contain 
Escherichia coli cells and be able to both observe single cells for extended durations, and 
programmatically and rapidly change their environment. I also worked on image analysis to 
extract long-term single cell fluorescence levels, and experimented with state-of-the-art 
segmentation algorithms before developing my own image segmentation algorithm. I also 
developed a modular set of programs to integrate the different software parts of the control 
platform together and completely automate all hardware elements. 
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In parallel I developed Escherichia coli strains to minimize interferences between the host cell 
and the lac and tet systems I used to control gene expression. I iterated on the chassis strains 
while trying to control simple transcription units. I developed a library of 36 dual-reporter 
LacI-TetR toggle switches, and picked the best of them to conduct characterization 
experiments to identify the parameters of a model inspired by other works in the literature. I 
used both deterministic and stochastic simulations based on this model to assess its 
controllability and study different control strategies and implementations. 

Once platform development, biological implementation, and theoretical study reached 
maturity, I performed control experiments under various control strategies. The knowledge 
garnered from these successful control experiments on the behavior of toggle switch in its 
unstable area allowed me to identify a family of open-loop dynamic stimulations that would 
invert the stability map of the system. 

4 Contributions 

The first, practical, contribution of this thesis is the development of a platform combining 
hardware and software elements from different disciplines, to achieve long-term tracking, 
real-time actuation, and external control on single-cell bacteria. This platform combines 
microfluidics, microscopy automation, image analysis, and control. The platform offers the 
possibility to control the expression level of a specific gene with minor genetic manipulations 
and minimal knowledge of the underlying process. It is also highly modular: the 
implementation of the control platform consists of different processes that communicate with 
each other, so that parts of the control loop, like image analysis or control strategy 
computation, can be modified independently and adapted to different situations, and also be 
distributed over several machines if more computational power is needed. We believe this 
platform, in combination with other works in the field, will open the way to a new level of 
precision in the study of gene regulatory networks dynamics. 

Because the platform allows for single-cell measurements, we were able to use it on an in vivo 
stochastic bistable system: the genetic toggle switch. The genetic toggle switch can be viewed 
as the genetic equivalent to the benchmark problem in control theory that is the inverted 
pendulum problem. Multistable systems are widespread in all dynamical systems and their 
control and controllability has always been an important subject of study. Multistability can 
be undesirable: it can force discretization of responses, with a limited number of accessible 
states linked to the attractors of the system, when one might want to investigate its 
intermediate, graded responses. But it can also be advantageous in systems where mutually-
exclusive tasks are attached to specific states of the systems, like in differentiation. In all 
cases, controlling multistable systems is a generally more difficult problem than controlling 
linear or non-linear monostable systems. It is an important milestone in any control 
implementation, and demonstrates the potential of our control framework. 

Beyond the simple demonstration of the potential of control theory, multistability plays a 
central role in the genetic circuitry of all organisms, and is a core element of any advanced 
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synthetic biology circuit. The toggle switch in particular is present in many gene regulatory 
networks involved in cellular decision making, and has been used in a number of synthetic 
circuits where strong bistable filtering of genetic information was necessary (see State of the 
Art for a detailed analysis). The ability to control multistable systems opens the way to high 
precision setting of cellular state, even allowing for the study of intermediate states out of 
equilibrium before the system is fully committed. We also demonstrate the possibility of 
stabilizing the system in areas that are inaccessible with traditional induction techniques, thus 
expanding the area of investigation on gene regulatory networks. In particular, it allowed us to 
investigate the dynamics of the toggle switch in the vicinity of its unstable steady-state. 

Another contribution of this thesis is multiple inputs-multiple outputs (MIMO) gene control. 
MIMO systems are also a common subject of study in control theory, since most systems 
consist in intricate, multivariate interactions, where more than one input knob can help better 
steer the system, and one might want to control more than one of its outputs. The genetic 
toggle switch is a perfect example of a non-streamlined genetic circuit where MIMO control 
is necessary. In a more general sense, MIMO control of gene expression should improve the 
performance of GRNs (Gene Regulatory Network) control. 

This work is also the first theoretical and experimental study of dynamic stabilization in an 
externally-driven gene regulatory network. The study of cellular response to dynamic 
stimulations is still in its infancy, with studies of time-varying concentrations of morphogens 
inputs on embryo development and patterning booming in the late 2000s and early 2010s (see 
Kutejova et al. 2009 and Sorre et al. 2014 for discussions of those results). The results 
presented here illustrate the importance of out-of-equilibrium study of gene regulatory 
networks dynamics, which can lead to unexpected results, even from well-documented 
network topologies. The model developed to study the dynamic response of the toggle switch 
to external stimuli gave valuable insights into how multistable systems react to dynamic 
stimulations and as such can be used to further study the behavior of this fundamental 
network. 

One of the tools I developed, Stack-based image analysis, can be used beyond the scope of 
single-cell bacteria segmentation, and can be transparently applied to other organisms without 
any software modifications. This method proposes the use of machine learning methods on z-
stacks of images above and below focus to identify regions of the images for cell 
segmentation. Cell segmentation is one of the core difficulties of single-cell control, and 
although recent developments in the field of Convolutional Neural Networks (CNN) are 
promising, no cell segmentation algorithm has given satisfactory results for online, long-term 
cell tracking yet. The use of high-dimension information hidden in Z-stacks combined with 
traditional segmentation algorithms and newer deep learning techniques can lead to fast 
advances in online image analysis of microscopy images, with possible further developments 
in 3D segmentation. 

Finally, all the tools I developed, especially the control platform, will be released in open-
source and open-hardware formats, and my data will be made available, following a 
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movement in modern science of transparency and exchange that I believe will be beneficial to 
science in general and to the field of external control in particular. 

5 Outline 

My thesis document is organized as follows: 

Chapter 1 will present the state of the Art, detailing both the recent development of external 
real-time control of gene expression, and the central role of double negative feedback loops, 
or toggle switches, in both natural and synthetic gene regulatory networks. 

In chapter 2, I present the main techniques and implementation choices for controlling the 
genetic toggle switch. I discuss the development of Escherichia coli chassis strains to 
circumvent problems caused by cellular processes interfering with the control inputs. I report 
the various constructs I developed for obtaining a bistable switch and the changes in 
implementation that occurred throughout my work. I also present the implementation of the 
control platform, with various obstacles and solutions for microfluidic chip fabrication, inputs 
delivery, image analysis, cell containment and experiment automation. I close this chapter by 
discussing the modeling of the toggle switch and its simulation, both deterministic and 
stochastic, as well as the control implementation choices and the parameters identification 
approach.  

In chapter 3, I present the main results of this thesis, both numerical and experimental, and 
present their implications on our understanding of the toggle switch dynamics and on genetic 
multistability in general. 

In chapter 4, I present a novel image analysis and cell segmentation algorithm inspired by 
hyperspectral imaging. The results extend well beyond bacteria cell segmentation and holds 
great promises for online cell segmentation, and can be combined with other techniques in 
cell segmentation, especially recently developed deep neural network for cell segmentation. 

Chapter 5 concludes this thesis.  

The Appendix present additional data and development made during this thesis. 

  



Foreword 
 

12 
 

Alon, U. et al., 1999. Robustness in bacterial chemotaxis. Nature, 397(6715), pp.168–71. 

Barkai, N. & Leibler, S., 1997. Robustness in simple biochemical networks. Nature, 387, 
pp.913–917. 

Bennett, S., 1979. A history of contro engineering, 1800-1930, Institution of Electrical 
Engineers Stevenage, UK. 

Cameron, D.E., Bashor, C.J. & Collins, J.J., 2014. A brief history of synthetic biology. Nature 
reviews Microbiology, 12(5), pp.381–90. 

Collins, J.J. & Khalil, A.S., 2010. Synthetic biology: applications come of age. Nature 
reviews. Genetics, 11(5), pp.367–379. 

Darwin, C. & Wallace, A.R., 1858. On the Tendency of Species to form Varieties; and on the 
Perpetuation of Varieties and Species by Natural Means of Selection. 

Elvin, C.M. et al., 1990. Modified bacteriophage lambda promoter vectors for overproduction 
of proteins in Escherichia coli. Gene, 87(1), pp.123–126. 

Grodins, F.S. et al., 1954. Respiratory Responses to CO2 Inhalation. A Theoretical Study of a 
Nonlinear Biological Regulator. Journal of Applied Physiology, 7(3), pp.283–308. 

Guzman, L.M. et al., 1995. Tight regulation, modulation, and high-level expression by vectors 
containing the arabinose PBAD promoter. Journal of bacteriology, 177(14), pp.4121–30. 

Jacob, F. & Monod, J., 1961. Genetic regulatory mechanisms in the Synthesis of proteins. 
Journal of molecular biology, 3, pp.318–356. 

Kutejova, E., Briscoe, J. & Kicheva, A., 2009. Temporal dynamics of patterning by 
morphogen gradients. Current Opinion in Genetics and Development, 19(4), pp.315–
322. 

Lutz, R. & Bujard, H., 1997. Independent and tight regulation of transcriptional units in 
Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. 
Nucleic acids research, 25(6), pp.1203–10. 

Mead, T., 1787. A regulator for wind and other mills. 

Milhorn, H.T., 1966. Application of Control Theory to Physiological Systems, Saunders 
(W.B.) Co Ltd. 

Nevozhay, D. et al., 2009. Negative autoregulation linearizes the dose-response and 
suppresses the heterogeneity of gene expression. Proceedings of the National Academy 
of Sciences of the United States of America, 106(13), pp.5123–8. 

Rosenfeld, N., Elowitz, M.B. & Alon, U., 2002. Negative Autoregulation Speeds the 
Response Times of Transcription Networks. Journal of Molecular Biology, 323(5), 
pp.785–793. 

Routledge, R., 1881. Discoveries and inventions of the nineteenth century, London ; New 
York : G. Routledge. 

Skerra, A., 1994. Use of the tetracycline promoter for the tightly regulated production of a 
murine antibody fragment in Escherichia coli. Gene, 151(1–2), pp.131–135. 



Foreword 

13 
 

Sorre, B. et al., 2014. Encoding of Temporal Signals by the TGF-β Pathway and Implications 
for Embryonic Patterning. Developmental Cell, 30(3), pp.334–342. 

Stelling, J. et al., 2004. Robustness of Cellular Functions. Cell, 118(6), pp.675–685. 

Studier, F.W. & Moffatt, B.A., 1986. Use of bacteriophage T7 RNA polymerase to direct 
selective high-level expression of cloned genes. Journal of molecular biology, 189(1), 
pp.113–30. 

Todorov, E. & Jordan, M.I., 2002. Optimal feedback control as a theory of motor 
coordination. Nature neuroscience, 5(11), pp.1226–35. 

Del Vecchio, D., Dy, A.J. & Qian, Y., 2016. Control theory meets synthetic biology. Journal 
of The Royal Society Interface, 13(120). 

  



 



Chapter I State of the art 
Table of Contents 

1 Genetic networks as dynamical systems. .......................................................................... 16 

2 External control ................................................................................................................. 17 

2.1 External control of gene expression – first results 2011-2012 .................................. 17 

2.2 External control of gene expression – 2014-2016 ..................................................... 21 

3 The genetic toggle switch .................................................................................................. 25 

3.1 Double repressive loops in natural gene regulatory networks ................................... 26 

3.2 The genetic toggle switch in synthetic biology.......................................................... 27 

3.3 Theoretical studies of the genetic toggle switch ........................................................ 29 

3.4 Theoretical control of the toggle switch .................................................................... 31 

 

  



 I – State of the Art  

16 
 

1 Genetic networks as dynamical systems. 

As the study of biological systems becomes increasingly quantitative, ecosystems, organisms 
and genetic circuits are studied more and more with tools from dynamical systems theory. 
This evolution was the result of improved measurement techniques over several decades. In 
the dynamic study of gene regulation networks, the shift occurred throughout the 1990s and 
led first to the establishment of the field of systems biology (Alon 2007; Kitano 2002), and 
then to the field of synthetic biology (Benner and Sismour 2005; Endy 2005). Although the 
two fields are connected and mutually benefit from one another, the former favors a top-down 
approach to the question and focuses on large-view studies of gene networks made of smaller, 
finer detailed subunits (or systems), while the latter, synthetic biology, favors a bottom-up 
approach in which hands-on studies of minimal synthetic genetic networks are used to gain 
understanding on gene expression by mimicking nature (Di Ventura et al. 2006). The quality 
of the dynamical data acquired on the evolution of genetic circuits increased thanks to 
developments in several fields I the 1980s and 1990s. First of all, as discussed in the 
introduction of this thesis, the development of new genetic manipulation techniques 
(Sambrook and Russell 2003), inducible genetic systems (Lutz and Bujard 1997) and 
intracellular fluorescent probes (Shaner, Steinbach, and Tsien 2005) in this period made the 
assembly, steering and observation of such systems possible. But the study of the dynamics of 
those systems was still rudimentary, and biological microfluidics, in combination with 
automated timelapse microscopy, was developed subsequently to facilitate the study of gene 
regulation networks in time and at the single cell level. Microfluidic chips are microfabricated 
devices in which low volumes of fluids are moved, mixed, separated or otherwise processed 
to miniaturize procedures with applications in various domains of physics, chemistry and 
biology. Microfluidic rapidly became a key element in the study of the dynamics of synthetic 
gene regulation networks because it could be used both to trap cells and hence monitor their 
fluorescence over many generations, possibly at the single cell level, but also because it could 
be used to change the environment of the cells dynamically (Bennett and Hasty 2009). With 
this type of setup, inducible synthetic systems could be steered and observed in real time, and 
the study of their dynamic response to time-varying perturbations was used to gain a deeper 
understanding of the temporal mechanics of genetic systems. (Bennett et al. 2008; Hersen et 
al. 2008; Mettetal et al. 2008) are seminal studies that used microfluidic devices to create 
temporal changes in the growth medium to study dynamic biological phenomena. In (Bennett 
et al. 2008; Hersen et al. 2008) the authors used periodic osmotic shocks to study the 
frequency response of the High Osmolarity Glycerol pathway in yeast and used those results 
to identify the mechanisms of the cellular response to shocks at different timescales. In 
(Bennett et al. 2008) the authors also studied the frequency response in yeast to periodic 
changes in the external carbon source by using a microfluidic platform. The galactose 
utilization network is shown to filter out fast fluctuations in the nutrients source, but to slowly 
adapt to long-term evolutions. In this paper the interplay between mathematical modeling, 
dynamic experiments and biology is elegantly illustrated by the discovery of a previously-
unknown post-transcriptional regulation loop in the network because of a discrepancy 
between the model-predicted dynamics of the system and experimental data. 
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function. Secondly, even though the different studies differ in their cell culture apparatus, 
measurement method and actuation, the feedback loop is implemented in silico and the level 
of refinement of the feedback function is much higher than any possible internal 
implementation of genetic regulation. Finally, those different studies achieve levels of control 
of their respective systems that open-loop stimulation based on models and predictions could 
not have achieved. 

 

Figure 2-1 From (Toettcher et al. 2011a). a) Schematic of the Phy-PIF recruitment optogenetic system. Under different light 
conditions, the Phy domain switches between a closed state and an open state that triggers recruitment of the PIF-tagged 
proteins. The feedback control loop senses membrane recruitment by image analysis, and applies the appropriate amount of 
light to control the amount of recruitment at the membrane. b) The schematic of the feedback control loop. The user specifies 
a target function, and the controller compares it to the observed cell level and corrects the light input accordingly. c) Setpoint 
control results for different feedback parameters. The blue curves represent the binding of the PIF-tagged protein to the 
membrane. The red curve is the amount of light input sent to the cells by the controller. The black dashed line represents the 
objective. d) Control experiments of time varying profiles. 

The first one (Toettcher et al. 2011b) to be published focused on controlling a signaling 
pathway  by first driving fluorescence recruitment at the membrane of HeLa cells, and then 
using the method to recruit the PI 3-kinase responsible for the synthesis of 
phosphatidylinositol-3-phosphate (PIP3) at the membrane and thus control the location of 
those lipids. The PI 3-kinase is attached to the Phy-PIF optogenetic2 system (Toettcher et al. 
2011a) for actuation and the production level and location of the lipids are monitored through 
an engineered fluorescent proxy: PHAkt-Cerulean, which binds to the produced lipids (see 
Figure 2-4b). Recruitment and fluorescence levels are monitored via epifluorescence 
microscopy. Optogenetic membrane recruitment is activated by shining light on cells 
observed. Because of the dynamics of the different systems involved, the time resolution of 
their acquisitions is in the order of seconds, and their experiments typically last about 10 
minutes. Because of this short timescale and the optogenetic actuation, the study did not 

                                                 
2 Optogenetics is a biological technique which involves the use of light-sensitive proteins to control intracellular 
processes, such as gene expression, protein recruitment, or enzymatic activity.  
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require a complex cell culture and input delivery platform and the experiments were 
performed in liquid cultures on a microscope. A proportional-integral controller connects the 
observation and actuation in silico. Proportional-integral (PI) controllers are controllers that 
correct an error between a measured output of the system of interest and a target level by 
changing the input to the system both proportionally, i.e. by a quantity that is proportional to 
the current error, and integrally, i.e. by a quantity that is proportional to the integral of the 
error over time. Several procedures exist to fine-tune PI controllers to minimize oscillations 
and overshooting (Åström and Hägglund 2006), but they all apply to linear systems. For the 
class of nonlinear systems we are interested in here, those techniques can be used as a starting 
point but their results usually need to be refined empirically. The authors show that not only 
are they able to control membrane recruitment and the synthesis of PIP3 with a PI controller, 
at setpoint levels and in time-varying profiles, they also reduce cell-to-cell variability in 
recruitment resulting from non-uniform expression of the optogenetic system.  

 

Figure 2-2 From (Milias-Argeitis et al. 2011). a) The in silico feedback control loop. A batch of cells are illuminated in red 
and far-red light to drive a synthetic genetic system. b-c) Regulation of the fluorescence level around the setpoint (black line). 
The controlled system, in orange, is compared to a numeric simulation of the cells, in gray, and to an open-loop dynamic 
stimulation. The red and black bars at the bottom represent the light pulses in red and far-red, respectively. d) Setpoint 
control from different random initial points. 

In the second study (Milias-Argeitis et al. 2011), the authors use a control platform to drive 
the expression of a synthetic system (see Figure 2-4a) in a population of Saccharomyces 
cerevisiae cells. The expression of a fluorescent protein downstream of an another Phy-PiF-
based optogenetic system (Tyszkiewicz and Muir 2008) is controlled around a setpoint by 
using pulses of light in a batch culture of yeast cells. In liquid batch apparatuses, cells grow in 
suspension in a liquid media, under constant shaking and temperature control. However since 
the cells are growing in large volumes in a flask, the sensing must be done on a sample of the 
cell culture because the traditional instruments used for fluorescence measurement are not 
adapted for in situ use in large volumes of cell culture. Here the state of the cells is measured 
periodically by flow cytometry and used by the control algorithm. A model-predictive control 
approach is chosen to implement the feedback loop between measurement and actuation. In 
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model predictive control, or MPC, a dynamic model of the system is used to predict how the 
process will react to series of possible inputs, and the best course of action is applied until the 
next acquisition. This type of approach thus requires a priori knowledge about the system to 
control, but typically yields better results than PI controllers. A state estimation algorithm is 
also used in combination with the model-predictive controller to estimate the state of the non-
observable variables that are used by the model-predictive controller. The authors 
demonstrate the possibility to control the gene expression level at various levels of expression 
for several hours, and also the possibility to drive the system after different random 
perturbations to the state of the cells. 

Finally, in (Uhlendorf et al. 2012) the authors use the natural high osmolarity glycerol (HOG) 
pathway in Saccharomyces cerevisiae to control gene expression downstream of it (see Figure 
2-4c). The HOG pathway is a phosphorylation cascade, and one of the genes that are activated 
downstream of it is STL1 (Rep et al. 2000). The authors used its native promoter to drive the 
expression of a fluorescent protein by submitting the cells to pulses of high-osmolarity media. 
The level of the fluorescent protein is observed in real time and at the single-cell level by 
time-lapse microscopy and automated image analysis, and the cells are grown in a 
microfluidic chip in which the osmolarity of the growth media flown through the chip can be 
changed in real time. In microfluidic chips the problem of cell sampling and measurement is 
greatly simplified, and the same population of cells, or even single cells, can be followed over 
extended periods of time. Again a model-predictive control approach is chosen to numerically 
close the loop. The authors use their platform to perform setpoint control experiments and 
also to force the cells fluorescence to follow time-varying profiles for up to 17 hours. They 
demonstrate that pre-computed open-loop dynamic stimulation cannot control the system as 
accurately. The microfluidic and time-lapse components of the platform allowed for both 
population and single-cell control. The individual cells were segmented through a circular 
Hough transformation. The authors use their platform to demonstrate the feasibility of control 
at the single cell level, but they also use the single-cell data acquired study the effect of 
population and single-cell control on noise levels. 

Together, these studies demonstrate that real-time control can be used to robustly drive 
intracellular processes in real-time, dynamically limit the effects of gene expression 
stochasticity, or counter the effects of endogenous feedback loops. Different types of 
intracellular processes are controlled, in different organisms and with different actuation and 
sensing method, demonstrating the versatility of external control of gene expression. 
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use galactose and glucose to turn on or off the expression of the GAL1 promoter to control the 
fluorescence level of GFP. On top of the previously-used control algorithms, the authors 
propose zero average dynamics control. Zero average dynamics (ZAD) is a type of sliding-
mode control algorithm. It produced results comparable to model-predictive control. In 
(Fracassi et al. 2016) the same team developed a microfluidic platform for long term control 
of gene expression in mammalian cells. A fluorescent protein under a synthetic tetracycline-
inducible system is controlled over extended periods of time (up to 58 hours). 

In (Melendez et al. 2014) the authors use an approach similar to (Milias-Argeitis et al. 2011) 
but improve the automation of the platform and add a turbidostat to the cell culture apparatus, 
i.e. they control the density of cells in the flask. They also use a bang-bang control approach: 
It is similar to the PI control approach, but does not apply intermediary inputs to the system it 
tries to control. Instead the system is fully activated or inhibited when it is respectively below 
or above its objective. With this setup the authors are able to drive protein expression for up 
to 45 hours. 

Finally, in (Milias-Argeitis et al. 2016) the authors expand on the approach described in 
(Milias-Argeitis et al. 2011) and develop a similar platform for bacteria. Additional effort is 
put on the automation of the platform and the authors can precisely control gene expression 
but are also able to control the growth rate of the cells by actuating on the vital synthesis of 
methionine (see Figure 2-4d). The sensing of the population density is done by optical density 
directly in the flask and the growth rate is derived from it. This result demonstrates the 
possibility offered by in silico control of gene expression to manipulate fundamental functions 
with minimal modifications to the cell. 

All of these improvements on the principle of in silico control platforms show on one hand 
how much potential the field has. Control theory is a broad discipline and all the knowledge 
gathered over the decades of existence of the field can be used to drive the development of 
those control platforms. On the other hand, it also shows how recent this field is. So far, all 
applications of the approach remain limited to proofs of concepts on the feasibility of the 
method on new toy systems or organisms or on the comparison of performance between 
different control strategies. Although the ultimate goal is to use control to induce precise 
intracellular perturbations to study the response of the rest of the cell, the field is still being 
explored. The knowledge necessary to apply this methodology to biological question still 
needs to be acquired and open questions on the potential of the field remain. During this PhD 
I worked on the question of external control of multistability in bacteria, by studying 
stabilization of a bistable genetic system in its unstable area. 

Closely related to the dynamical study of gene expression, recent advances in iterative 
experiment design (Ruess et al. 2015) could be combined with control platforms to further 
automate the study of intracellular processes: Instead of having the experimenter run control 
experiments and then decide on what perturbations to run next, the data could be analyzed on-
the-fly by iterative experiment design algorithms which would, as a higher-level layer, dictate 
control profiles to the control platform to maximize the quantity of information acquired, thus 
completely automating the process. 
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Apart from the dynamic study of genetic systems, external control of gene expression could 
also be applied to other domains of study. Being able to drive intracellular processes of 
interest can also of course find applications in biotechnology. In this domain, external 
feedback control has already been suggested to improve productivity, robustness and batch-
to-batch reproducibility (Polizzi and Kontoravdi 2015). In (Milias-Argeitis et al. 2016) the 
authors already discuss the scalability of their approach to industrial bioreactors. Although 
some of the studies presented here were performed in batch cultures (Melendez et al. 2014; 
Milias-Argeitis et al. 2011, 2016) of yeast or bacteria and are therefore closer in their 
implementation to bioreactors, scaling up the size of the batch culture raises a number of 
issues, one of them being the difficulty to stimulate cells with optogenetic tools in the dense, 
opaque molasses that can typically be found this kind of apparatus.  
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portion of chains of optimal length exist in the colony. This constitutes a prime example of 
cellular decision making and bet-hedging3 in bacteria driven by a toggle switch. 

3.2 The genetic toggle switch in synthetic biology 

Gardner and Collins published the first synthetic genetic toggle switch in bacteria (Gardner, 
Cantor, and Collins 2000). They implemented two versions, a temperature-IPTG sensitive 
one, and the aTC-IPTG sensitive toggle switch I worked on in my thesis. They show that after 
the toggle has been induced into one state or another, it remains in that state until the opposite 
inducer is added to the growth medium. It is worth noting that only one of the two branches is 
monitored directly with a fluorescent reporter. Later implementations will use a reporter on 
both branches to monitor the state of the system, making model fitting and parameters 
identification more difficult. The system was soon adapted to mammalian cells with an 
antibiotic-regulated switch that showed bistability even after encapsulation and implantation 
in mice (Kramer et al. 2004). The toggle switch was then given its pivotal role in synthetic 
biology as a building block by being interfaced with other synthetic and endogenous elements 
to drive biosensing, biofilm formation, cell-density-dependent gene activation (Kobayashi et 
al. 2004), improvement of metabolic biosynthetic productivity of biofuels (Anesiadis, Cluett, 
and Mahadevan 2008), or to monitor changes in the mammalian gut environment (Kotula et 
al. 2014). Advances in modeling and prediction of synthetic circuits behavior eventually led 
to automated design of toggle switches in silico and accurate prediction of their stability 
(Chen et al. 2012; Ellis, Wang, and Collins 2009). The study by Chen and colleagues in 2012 
constitutes, to my knowledge, the only example of a dual-reporter toggle switch in the 
literature, however the authors did not use it to fit a dynamic model of the toggle switch. 

The toggle switch has since gone through major implementation modifications. A major 
change in bistability implementation in synthetic circuits occurred in the 2000s when (Ham et 
al. 2006) designed a recombinase switch which, while not exactly equivalent to a toggle 
switch in its topology, leads to strong bistability and low leakage. It does not rely on 
transcription factors to inhibit the expression of a gene, but instead uses invertases that will 
flip a promoter’s orientation to stably turn two gene’s expression fully on or off. The principle 
can even be generalized to an n-states switch by using orthogonal invertases since the number 
of possible states evolves exponentially with the number of recombinases (Ham et al. 2008). 
This type of system has been used in synthetic biology since then as an advanced, robust and 
reversible memory module (Bonnet, Subsoontorn, and Endy 2012) and to perform 
computational tasks within the cells (Moon et al. 2011; Yang et al. 2014). However such 
systems have an all-or-none nature to them and are not well-suited to the control problem we 
are interested in. Another exotic implementation of the genetic toggle switch is based on RNA 
interference in mammalian cells (Deans, Cantor, and Collins 2007), which allows for specific 
gene targeting and is used to control various biological processes. 

But the most important change in gene regulatory network design and construction in the last 
few years was brought by the recent revolutions in transcriptional regulator design with the 

                                                 
3  Bet-hedging is the process by which, in some species, a variety of different phenotypes exist within a 
population of to ensure that a subpopulation is well prepared for environmental changes. The phenomenon is 
well documented in antibiotic resistance and biofilms formation in bacteria (Lewis 2007). 
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stochastic cell fate determination in naïve cells. They develop a deterministic coupled ODE 
model with nested Hill functions to account for the double repression in the inducer-TF-
promoter interaction. They fit experimental results and use it to predict the stability of their 
designs. They also then run stochastic simulations of their model to study stochastic cell fate 
determination. This study is of particular interest for this work since it is the only one that has 
been fitted to real data. I use the model and parameters in this study as a starting point for my 
own model (See Chapter 2). 

3.4 Theoretical control of the toggle switch 

External control of genetic systems is still in its infancy, and although no experimental 
attempts have been made so far to control a genetic toggle switch externally, there are a few 
theoretical studies on the subject. I the first theoretical studies on controllability and control of 
the genetic toggle switch (Farcot and Gouzé 2007a, 2007b, 2008) the authors report a 
piecewise affine differential model of the toggle switch and make it follow a transition graph 
between the different regions of their model by inferring piecewise constant feedback control 
laws. Another study on the subject of toggle switch control can be found in (Wang et al. 
2016). A control framework for nonlinear differential models is developed for controlling 
multistable networks, including an “enhanced” version of the genetic toggle switch. Their 
control framework is based on bifurcation analysis and focuses on control and controllability 
of the system from one attractor, or stable state, to another. A small discussion of the possibly 
beneficial effects of noise on controllability is also included, where the authors argue that an 
appropriate amount of noise can help destabilize attractors that would otherwise be too strong 
for the control strategy to successfully drive the system around. 

We can also cite the series of papers by Sootla and colleagues (Sootla et al. 2013; Sootla, 
Oyarzún, et al. 2016; Sootla, Mauroy, and Goncalves 2016) where the authors focus on robust 
switching pulse strategies between the two stable states of a LacI-TetR toggle switch. Their 
proposed solutions are based on either reinforcement learning, which they conclude can be 
impractical due to the large amount of measurement data it necessitates, or on monotone 
systems theory, which relies on a model but is robust to parametric uncertainty. They go on to 
identify the so-called “switching separatrix” in the space of the two parameters of the input 
pulses (duration and intensity) and, interestingly, use their framework to investigate forced 
oscillations in a generalized eight species repressilator. They do not however investigate 
periodic switching between the states of the toggle switch or the out-of-equilibrium behavior 
of their eight species model. 

Two focus on the specific question of controlling the genetic toggle switch towards its 
unstable equilibrium point or towards the unstable area. In the first one the authors use a 
piecewise affine model to describe the toggle switch and use the piecewise constant control 
framework previously described to drive the system towards the unstable steady state (Chaves 
and Gouzé 2011). They suggest approximate solutions to drive the system in the 
neighborhood of the state, or by passing through an unstable state cyclically. The second 
paper (Mohajerin Esfahani, Milias-argeitis, and Chatterjee 2013) uses the toggle switch 
system as an example to demonstrate the possibilities offered by the recently developed 
stochastic motion planning framework (Mohajerin Esfahani, Chatterjee, and Lygeros 2015) or 
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external cell control. The authors develop a stochastic differential equation model of the 
toggle switch by deriving the Langevin equation of the system, and then infer optimal input 
policies that maximize the probability of staying in the neighborhood of the deterministic 
unstable equilibrium point. They also investigate the possibility of controlling the toggle 
switch with only one input inducer and observe a dramatic decrease in performance. 

In this thesis we will explore the possibility to control externally the bistable genetic toggle 
switch around its unstable equilibrium point. This thesis provides the first control results on 
bacteria at the single-cell level. New tools are created for this particular task, and others are 
improved, thus expanding the domains of applicability of in silico cybergenetics. The toggle 
switch is a fundamental topology encountered in both synthetic and natural gene regulation 
networks, and being able to control toggle switches and to maintain them in their unstable 
area opens the door to the study of intricate multi-stable networks, but it also opens a new 
range of possible usage for this topology in synthetic genetic circuits. In this thesis we 
demonstrate for example that it is possible to “reset” a population of toggle-switch-bearing 
bacteria by stabilizing them in the unstable area and then releasing the stabilization to let them 
separate in the two basins of attraction. It is also a difficult control problem, which would 
have required tedious trial-and-errors to implement in vivo, and solving it demonstrates the 
possibility offered by single-cell external control approaches. Finally, observing the dynamics 
of the genetic toggle switch in the vicinity of its unstable equilibrium point helped us expand 
the knowledge on its dynamics. 
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1 Introduction 

The development of an external single-cell control platform involves a number of different 
methods and scientific fields: genetic engineering, signal processing, microfabrication, 
microscopy, electrical engineering, control theory, and programming were all required to 
achieve real-time control of gene expression in bacteria. Specifically, the possibility of 
controlling gene expression through an in silico feedback loop at the single cell level was 
made possible by recent developments in time-lapse microscopy, cell segmentation, and 
microfluidics, but a number of open problems still remain to be solved by the experimenter 
for each different application. The necessity of automated and on-line imaging, data analysis 
and actuation required by real-time control increased the difficulty of creating such a 
platform. In this chapter, I discuss the obstacles I had to cope with and the implementation 
choices I made. 

The first section focuses on the biological aspects of my work. I start by describing how I 
modified the host cell strains to prevent endogenous cellular processes from interfering with 
the synthetic toggle switch. Then, I review the different iterations for the design of the toggle 
switch itself. The design and construction methods were chosen to maximize the chances that 
at least one designed circuit would be bistable. I finish the section by describing the 
characteristics of the selected circuit. 

In the second section, I discuss the hardware and software choices that were made to develop 
the platform. In order to control a multistable system and be able to accurately measure its 
state, I needed to be able to track single cells for extended periods of time and to extract their 
level of fluorescence periodically, which necessitated a microfluidic-based platform rather 
than a batch-culture type of platform. The platform described in this section is comprised of: a 
custom-made microfluidic chip for long-term tracking of bacteria as well as automated 
chemical actuation; an entirely automated epifluorescence microscope; various pieces of 
software to link the different interfaces together, extract data, and run the control algorithms; 
and finally a custom-made electronic valve actuator for precise, real-time modification of the 
chemical environment of the cells. 

Finally, the last section of this chapter details the mathematical model derived from a 
simplified chemical description of our toggle switch, and the simulation algorithms that were 
used to study the feasibility of real-time control of the toggle switch. The control algorithms 
used to control toggle switches in real-time (namely the PI and bang-bang strategies) are also 
discussed. The last part of the section describes the procedure for parameters identification 
that was applied to characterization data.  
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2.1 Chassis development 

The cellular chassis1 is an integral part of the platform, as the genome of the organism needs 
to be modified in such a way that the toggle switch can be implemented, observed, and 
controlled. In the case of this toggle switch based on the action of the tet and lac repression 
systems, some cellular mechanisms, described in the following paragraphs, can interfere with 
the action of the inducible promoters and impede the controllability of the system, and had to 
be removed. Furthermore, E. coli possess flagella and can usually swim around in their 
growth media, which presents a problem for long-term observation and tracking in the 
microfluidic device. In Figure 2-1, a hierarchical representation of the main strains presented 
in this study is given. After several rounds of experimental characterization, the final chassis 
strain, bPH_127, is selected as the best host for synthetic circuits to control. 

As a starting point for my chassis, I used the JW1907 strain from the Keio collection (Baba et 
al. 2006). The Keio mutants collection features all possible E. coli K-12 BW25113 strains 
with  all non-lethal single-gene knockouts in the genome. In JW1907 the fliA gene is knocked 
out. fliA encodes for the specialized flagellar sigma factor σ28 (McCarter 2006; Wilkinson et 
al. 2011; Ikebe et al. 1999; Dailey & Berg 1993), and is traditionally removed to prevent the 
cells from swimming around in microfluidic chips. Keio strains feature a resistance cassette, 
which I removed to obtain the first chassis strain bPH_103.  

From this strain, I developed the strain bPH_104 by deleting the lacY gene. Gene lacY 
expresses a lactose permease that is responsible for bi-stability in the lac operon (Santillán et 
al. 2007; Ozbudak et al. 2004). The expression of LacY is activated when lactose (or 
analogues such as Isopropyl β-D-1-thiogalactopyranoside2) is present in the growth media, 
and this increase in expression of the permease causes more lactose to be transported into the 
cytoplasm, further increasing permease expression (see strain BW25113 in Figure 2-2). This 
type of self-activating network makes the expression of genes downstream of the promoter 
bistable: LacY would interfere with our constructions based on the lac promoter and with 
lactose/IPTG induction. I removed the lacY gene using standard P1 phage transductions 
(Miller 1992). Interestingly, once the LacY permease is removed, lactose or its equivalent 
IPTG can still diffuse through the membrane, although at much lower rates (Marbach & 
Bettenbrock 2012). Thus we could drive the internal concentration of inducer but without the 
bistable effects of the lac operon. 

Finally, I implemented a variant of this strain by integrating the regulator genes tetR and lacI 
in tandem to the chromosomes of bPH_104 to produce two more strains, bPH_121 and 
bPH_122, respectively. The constitutive expression of TetR and LacI allowed me to control 
the expression of any gene placed under a lac or tet promoter. The cassette containing lacI 
and tetR was transferred from the E.coli strain DH5αZ1(Lutz & Bujard 1997), again by 
standard P1 phage transduction (Miller 1992). I did not remove the antibiotic resistance 
                                                 

1 The engineered Escherichia coli strains in which the genetic circuits to control will be transformed are referred 
to as “chassis” strains. We refer to the original BW25113 strain as “wild-type”. 
2 Isopropyl β-D-1-thiogalactopyranoside, or IPTG, is a molecular mimic of allolactose that cannot be 
metabolized by the cell. Allolactose is an isomer of lactose and is the actual inhibitor of the LacI protein. Lactose 
is converted to allolactose by the β-galactosidase enzyme of the lac operon. 
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cassette used for selection, therefore the bPH_121 and bPH_122 strains are spectinomycin 
resistant. These two strains are the chassis strains I used to conduct my first series of control 
experiments and gather knowledge on the different systems I was working with.  

Early in my exploratory experiments I observed adaptation to anhydrotetracycline (aTC) 
induction of the tet system, i.e. the response of the tet system to successive inductions would 
weaken over time. aTC is part of the tetracylines family of antibiotics and it is the inducer of 
choice for the tet induction system in bacteria because it is less toxic to cells than tetracycline 
itself or its readily-available variants (Rasmussen et al. 1991). The tet induction system is 
derived from the Tn10 operon system, which is activated in presence of tetracycline and 
expresses an efflux pump for evacuating tetracyclines out of the cytoplasm. The original wild-
type BW25113 strain does not have the tetA gene responsible for the expression of the 
tetracyclines-specialized pump. However, it is suspected that Escherichia coli uses another 
efflux pump for adapting to high concentrations of tetracycline: the acriflavine pump encoded 
by the acrA and acrB genes (Ma et al. 1995; Zgurskaya & Nikaido 1999; Le et al. 2006), 
which are present in the genome of BW25113. No clear connection has been identified 
between the tetracyclines and the two genes, but it would not be surprising that the expression 
of AcrA and AcrB is directly or indirectly activated by tetracyclines levels, thus leading to 
slowly decreasing activation of the tet promoter’s expression by aTC. See strain BW25113 in 
Figure 2-2 for a visual representation of the mechanism. 

In order to make control of gene expression with the tet system possible for extended periods 
of time, I designed another strain in which the acrA and acrB genes were deleted. To do this, I 
removed the two genes, which are next to each other, in a one-step deletion from the “wild-
type” BW25113 genome. Then I transferred the double deletion through P1 phage 
transduction into strain bPH_104 to obtain strain bPH_127, as is the classical procedure to 
avoid off-target mutations. Double acrAB deletion was performed by a modified Wanner 
chromosomal deletion/integration protocol (Datsenko & Wanner 2000). This protocol uses 
lambda-red homologous recombination to replace the target genes in the chromosome with a 
selection cassette. Because the technique requires short homology regions flanking the acrAB 
genes, I could easily obtain them via oligo annealing. I transferred the regions into standard 
modular cloning (MoClo) plasmids3 to rapidly construct the replacement cassettes and to offer 
the possibility of fast chromosomal integration of MoClo circuits. Once the acrA and acrB 
genes were removed, we observed a higher sensitivity to light, especially during fluorescence 
imaging, and antibiotics, as well as a lower growth rate in presence of antibiotics. It is 
believed that the acriflavine pump that those two genes encode for is actually a multi-drug 
efflux pump transporting a wide range of toxic elements out of the cell (Zgurskaya & Nikaido 
1999). However, the absence of this efflux pump may lead to the accumulation of other toxic 
chemicals, leading to the hypersusceptible phenotype observed in the new bPH_127 strain. 

                                                 

3 Modular cloning, or MoClo, is a standardized cloning method based on the Golden gate protocol. This 
methodology was used extensively during my PhD because it offers a number of advantages for synthetic 
circuits construction. The method and its usage are described in section 2.2. 
The MoClo plasmids bearing the homology regions are described in appendix A as level 1 plasmids 1.25 to 1.27. 
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Because this strain was going to be transformed with toggle switch plasmids in order to 
control them, I constructed it from the bPH_104 strain instead of bPH_122. This way the 
strain did not express LacI and TetR constitutively, which would interfere with the 
functioning of the toggle switch. 

To summarize, the final chassis strain bPH_127 is a quadruple mutant of Escherichia coli 
K12 BW25113 strain with genes fliA, lacY, acrA and acrB knocked out. The cells do not self-
propel, their response to IPTG or other lactose derivatives is not bistable and they do not flush 
out tetracyclines. 

Now that it has been developed, the chassis strains I developed and present here can be used 
for controlling other systems as they are adapted to the control framework. A list of the strains 
I developed during my PhD can be found in appendix A. 

2.2 LacI-TetR toggle switch 

I chose to develop a toggle switch based on the lac and tet systems, both because these 
systems have been extensively used and studied in synthetic biology, and because inducer 
chemicals can be delivered into the growth media to the expression downstream of each 
system. To be able to observe the state of the toggle switch in real time, I also ensured that 
two different fluorescent reporter proteins would be co-expressed with the toggle switch. I 
chose to combine LacI with the mKate2 fluorescent protein and TetR with the mEGFP 
protein. The two opposite parts of the toggle switch consisting of, on one hand, the tet 
promoter (pTet), the lacI gene and the mKate2 fluorescent protein, and, on the other hand, the 
lac promoter (pLac), the tetR gene and the mEGFP fluorescent protein, are referred to as 
“branches” here. Also, in order to maximize the chances of having at least one bistable toggle 
switch, I constructed a library of circuits with different expression strengths for the two 
branches. I eventually picked the circuit in the library that seemed the most promising, circuit 
2.31 (see appendix A). 

The final toggle switch design is illustrated in Figure 2-3. This 2.31 plasmid was eventually 
transformed into bPH_142 strain and used to perform the control experiments described in the 
next chapter. In the rest of the section I will present the design choices that were made to 
construct this circuit, the protocols I used and developed to construct the library and some of 
the problems I ran into. 

2.3 Modular Cloning (MoClo) and toxicity issue 

To build a bistable toggle switch it is important that both TetR and LacI are expressed in 
proportions such that their mutual repressive strengths are comparable. Also, tagging both 
genes with a different fluorescent protein allows for the monitoring of the state of the toggle 
switch by microscopy. Thus, developed a library of toggle switch circuits to ensure I would 
obtain at least one bistable toggle switch with appropriate properties (dynamics, bistability, 
symmetry). I took advantage of recent technical progresses in the field of molecular cloning 
and developed a few techniques of my own to accelerate the process. 
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It also allows an easy combinatorial assembly: because parts are standardized, several 
assembly pots can be easily set up with a single variation between them (e.g a different 
5’UTR, various promoters…), and each would produce a different transcription unit. Golden 
Gate / MoClo even offers the possibility of assembling families of construct variants in one 
pot (Engler et al. 2009), although the task of screening for the better constructs then becomes 
the bottleneck (Engler et al. 2009; Engler & Marillonnet 2011). See Figure 2-4 for a 
description of the MoClo protocol as well as illustrations and appendix A for a list of the 
MoClo vectors used and developed in this thesis. 

To summarize, the Modular Cloning technique offers a number of valuable advantages for 
circuit library assembly, and I used this method to assemble my library of toggle switches. To 
maximize the chances of obtaining a bistable switch, a simple solution was to design and 
implement circuits with a wide range of protein translation rates. These different circuits 
would only differ in their ribosome binding sites, so the only part that would change in my 
assemblies would be the 5’UTR parts of each branch (“U” part of MoClo assemblies). Once I 
transferred the ribosome binding site (RBS) libraries to the MoClo Level 0 plasmids (pL0-U), 
the possibility to rapidly produce all the variants of each branch used in the circuits greatly 
sped up the process. It would also permit rapid reconstruction of the branches if necessary, 
since I could re-use the same parts. With the knowledge gathered on the branches during this 
work on the toggle switch to model circuit behavior, I can also construct new circuits with 
those same branches without much effort or time. 

I had to cope with several complications during the assembly of the toggle switches.  At the 
transcriptional unit level, the promoter or RBS region of the level 1 transcriptional units were 
mutated. The fact that these specific parts of the branches were mutated suggested that the 
proteins expressed from the plasmids caused significant burden to cells.  This intuition was 
also supported by the fact that the pUC replicon (Yanisch-Perron et al. 1985) used in the 
backbone plasmids of the MoClo system create a high number of plasmid copies, from 500 to 
700 copies per cell (Lin-Chao et al. 1992). 

Todecrease the burden caused to cells, I developed a library of MoClo backbone plasmids 
based on low copy origins of replication (see Figure 2-5A). I mainly used the ACYC family 
of plasmids, which are based on a p15A replicon (Chang & Cohen 1978) producing about 10-
12 plasmids per cell (Sambrook & Russell 2003), and a chloramphenicol resistance gene for 
selection. I also developed MoClo variants from the CDF plasmids family, based on the 
CloDF13 replicon (Veltkamp et al. 1979) which produces about 20 to 40 copies per cell 
(Sambrook & Russell 2003), and with either Kanamycin or Spectinomycin resistance genes 
(see appendix A for a list of all the low-copy MoClo plasmids). The use of these novel 
backbone plasmids does not change the procedure for Modular Cloning, except for differing 
antibiotics used at the selection step. 
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more than two parts at once. In the MoClo version of this Golden gate technique, the overhangs are standardized so that they 
always ligate in a specific order. The MoClo procedure illustrated in this panel is level 0 promoter integration into the library, 
i.e. the introduction of a new promoter into a level 0 pL0-P backbone. The bpiI restriction enzyme is used for level 0 
assemblies. B) Level 1 assembly. In level 1 assembly a transcription unit is created from level 0 parts on level 0 plasmids 
(pL0). In this study the level 0 plasmids that will be used are promoters (pL0-P), RBSs (pL0-U), coding sequences (pL0-SC), 
and terminators (pL0-T). These 4 elements constitute the basic parts of transcription units in bacteria. In this illustration 4 of 
those parts are assembled together and into a level 1 backbone plasmid (pL1) to form a transcription unit. The bsaI restriction 
enzyme is used for level 1 assembly. C) Level 2 assembly. In level 2 assembly, transcription units from previous level 1 
assemblies are ligated together and into a level 2 backbone to form a genetic circuit. Level 2 assembly is performed with bpiI 
restriction enzymes. 

This change in the copy number of plasmids per cell solved the mutation problem for almost 
all variants of the toggle switch branches. An interesting outcome is that although the copy 
numbers of plasmids in each cell with this new library were between 10 and 70 times lower 
than the original MoClo plasmids, the plasmid yields out of the plasmid preparation steps that 
were performed at the end of each MoClo step were only 2 to 5 times lower than the typical 
yields with pUC origins. This result illustrates a tradeoff between yield and the burden on the 
amplifying cells. Higher copy plasmids may not always be the best choice for MoClo, and for 
plasmid preparation in general, especially in the case of Golden Gate cloning, which does not 
require high concentrations of plasmids. A remarkable result of the original MoClo paper is 
that the authors are able to seemingly easily construct 11 different transcription units and 
assemble them into a 33 kb plasmid, without burden problems. It is important to note however 
that the circuits developed are to be expressed in plants, with plant promoters and plant virus 
RBSs used in the transcription units. So, even though the plasmid preparations are performed 
in bacteria at each MoClo step, the encoded proteins are not expressed, and the burden is 
therefore much lower.  

Unfortunately, in a few cases I still had problems assembling the plasmids, even with low 
copy plasmids. I did not know whether expression burden during plasmid preparation was the 
problem or if it was happening earlier, during DNA assembly. To circumvent the issue 
without having to pinpoint the source of the problem, I incorporated a new part into my 
library of RBSs in MoClo level 0 format (see Figure 2-5B and parts 32 and 33 in appendix 
A). This part consists of type IIS identification sites instead of an actual RBS sequence: this 
way, non-functional transcription units can be constructed and assembled into circuits, and the 
real RBSs can be incorporated into the circuit at the last moment (see Figure 2-5C). This 
solved several problems: firstly, there was no protein expression burden from the level 1 
plasmids during plasmid preparation of the toggle switch branches, in which the lac and tet 
promoters are completely unrepressed. Secondly, the assembly of multiple parts at once, 
although an advantage of the MoClo technique, is of course less efficient than a one part-one 
backbone assembly with the same procedure. Therefore, the fact that RBS integration was 
done at the end of the whole assembly, with only one part inserted at a time, would 
compensate the ligation difficulties that could be associated to that specific part. Finally, even 
though this method required one extra step to start from single parts to obtain a final working 
switch, once I got the version of the toggle switch circuit with the “wildcard” restriction-site 
parts inserted where the RBSs should be, it took only one extra step to produce a new, 
different toggle switch. With this circuit now, inserting completely new RBSs only requires 
one robust and efficient golden gate step. Or two in the case of a “double-wildcard” toggle 
switch. 
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Operons are omnipresent in bacteria and are its main method of transcriptional coupling in 
cases where different proteins must be expressed at comparable levels. RNA polymerases 
transcribe the coding sequences of all genes in an operon on a single strand of messenger 
RNA, and ribosomes translate it into proteins from the same strand. Although coupling can be 
even stronger with fusion protein designs, an operon induces a strong correlation between 
fluorescence intensity and transcription factor concentration in the cell since most of intrinsic 
noise seems to happen at the transcription level (Ozbudak et al. 2002). 

In an operon, the ribosomes read each coding sequence and release the unfolded protein 
strand at the end of each CDS when they reach a stop codon. Normal ribosome behavior when 
they reach a stop codon is to unbind from the RNA strand. However, two mechanisms exist in 
operons to ensure that the ribosome continues translating after each gene. The first, more 
common one is the presence of another ribosome binding site in the intercistronic region 
(Maizels 1974; Schaefer et al. 1989). This allows for different translation rates between the 
different CDS in the case of operons where proteins need to be expressed in non-equal 
stoichiometry but still have linear co-expression levels. In those cases ribosomes that just 
unbound the previous coding sequence immediately rebinds the next ribosomal binding site 
and continues translation, but other ribosomes can also bind to the second coding sequence 
directly. A second, more complex mechanism induces translational coupling and co-
expression in a 1:1 stoichiometry. In this mechanism, the stop codon of the first CDS is next 
to, or sometimes overlaps with, the start codon of the next coding sequence, and the end of the 
CDS of the first gene features a statistically weak Shine-Delgarno sequence4 (Oppenheim & 
Yanofsky 1980; Torgov et al. 1998; Govantes et al. 1998). 

I developed both types of operon by PCR amplification and re-assembly into a MoClo pL0-
SC plasmid similar to that of fusion proteins described in section 2.5. I only developed the 
versions where the fluorescent reporter genes were placed after the tetR and lacI genes, so that 
I could infer whether co-expression of both proteins in the operon was happening from simple 
fluorescence measurements. I then assembled these new CDS level 0 parts into level 1 
transcription units for the branches of my toggle switch (see appendix A, level 1 TUs 1.40 to 
1.51). I could not get the overlapping stop-start codon strategy to work, and continued 
working with only the multiple RBS operon designs.  

2.5 Fusion protein branches design 

Before designing operon-based toggle switches, I tried to design fusion proteins to observe 
the state of the toggle switch. I designed circuits with the LacI and TetR transcription factors 
fused to the monomeric fluorescent proteins mKate2 (red fluorescent protein) and mEGFP 
(green fluorescent protein). I initially went through the trouble of making fusion proteins 
because measuring their associated fluorescence would give me the state of the toggle switch 
directly, whereas other methods such as co-expression, in an operon or another transcription 

                                                 

4 The Shine-Dalgarno (SD) sequence is a part of ribosomal binding sites in prokaryotic messenger RNA. The 
RNA sequence helps recruit the ribosome to the messenger RNA to initiate protein synthesis by aligning the 
ribosome with the start codon. The six-base consensus sequence is AGGAGG. Variants of this sequence have 
more or less chances of recruiting the ribosome. 
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unit under the same promoter, would not have a 1:1 transcription factor to fluorescent report 
ratio, as the co-expressed protein levels would be subject to independent noise and 
independent degradation times.  

There are examples in the literature of fusions between the TetR and LacI proteins with 
fluorescent reporters (Rosenfeld et al. 2002; Webb et al. 1997; Dewar et al. 2004; Marshall et 
al. 1997; Kato & Lam 2003). For TetR-GFP fusions it has been demonstrated that the TetR 
transcription factor keeps its DNA-binding property, represses expression downstream of the 
tet promoter, and is still inhibited by tetracyclines (Rosenfeld et al. 2002). The LacI-FP 
fusions, on the other hand, were proven to bind the DNA domains, but the expression 
downstream of the lac promoter as well as the effect of lactose equivalents have not been 
reported in the literature. Due to the tetrameric nature of both LacI and TetR binding to DNA, 
it was unclear whether DNA binding of fusion proteins could take place, but the 
aforementioned studies proved otherwise. The question of IPTG-LacI binding was still open. 

I developed the fusion proteins, each with the fluorescent reporter on either the N-terminus or 
the C-terminus of the transcription factor protein, to obtain the following assemblies: 
LacI::mKate2, mKate2::LacI, TetR::mEGFP and mEGFP::TetR. I amplified the coding 
sequences by PCR and inserted type IIS enzymes restriction site at the 5’ and 3’ tail ends of 
the amplicons to introduce a standard flexible Serine-Glycine protein linker(Chen et al. 2013) 
between the two  coding sequences (see appendix A). I then transferred them back into 
standard pL0-SC MoClo vectors to be able to use them in my assemblies. Unfortunately 
Level 1 cloning was problematic for most of the branches, and I would sometimes get 
mutations in the linker region in addition to the more usual mutations in the RBS and 
promoter regions. I did not assemble them into toggle switches right away, but instead 
assembled them into simpler one-gene-one-feedback circuits (see circuits 2.4 and 2.5) to 
rapidly find out whether the circuits would respond to inducer inputs and to see if I was able 
to measure the fluorescence levels. 

Although the cells were fluorescent, large foci would appear in the cells indicating toxicity, as 
well as a remarkable increase in photosensitivity resulting in cell death during the first few 
hours of time-lapse experiments, and those cells that did not die right away would often 
elongate or stop growing altogether. This could be a sign of misfolding of the transcription 
factors, leading to toxic aggregates. It seems however that not all of the transcription factors 
would misfold, since, in survivor cells, the levels of each fluorescence level could be swayed 
with IPTG or aTC induction. Still, it became rapidly evident that the catastrophic cellular 
death rate during observation would make it almost impossible to try to control individual 
cells on any practical time horizon. 
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RBS reference pTetO-lacI-mKate2 
branch 

Translation 
Initiation Rate (au) 

pLacO-tetR-
mEGFP branch 

Translation 
Initiation Rate (au) 

B0030 3440 7734 

B0031 53 458 

B0032 12 8788 

B0033 27 301 

B0034 1035 1624 

B0035 251 520 

Table 2.6-1 RBS strengths as calculated by the Salis RBS Calculator v2.0. Note the importance of the context of the RBS. 

 

pTet-mKate2-LacI 

pL
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FP
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et

R
 

RBS 
B003x 

30 (3400) 34 (1000) 35 (251) 31 (53) 33 (27) 32 (12) 

32 (8800) 
Switches 
Not bistable 

Not tested GFP locked Not tested Not tested 
GFP 
locked 

30 (7700) 
Switches  
Not bistable 

Not tested GFP locked Not tested GFP locked Not tested 

34 (1600) Not tested GFP locked Not tested Not tested 
Switches 
Not bistable 

Not tested 

35 (520) Not tested Not tested Switches 
Not bistable 

Not tested 
Switches + 
bistable 

Not tested 

31 (458) RFP locked Not tested Not tested GFP locked Not tested 
GFP 
locked 

33 (301) GFP locked Not tested Not tested Not tested 
Switches + 
bistable 

Not tested 

Table 2.6-2 Summary of early characterization results. A corresponding table listing the circuit numbers can be found in  
appendix A. 
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for input delivery. Finally, I wrote software for microscope control, basic image analysis, 
control and communication with the valves controller, thus closing the loop and allowing for 
cellular control. 

3.1 Microfluidics 

I had the opportunity to access a clean room facility at Paris-Diderot University where I could 
experiment with lithography and microfabrication techniques, and design my own wafers for 
microfluidic devices. Our team has a history of developing its own microfluidic wafers for S. 
cerevisiae (Uhlendorf et al. 2012; Vulin 2014; Llamosi et al. 2016) and I took advantage of 
the expertise in the team to develop my own devices for bacteria. 

3.1.1 Molded PDMS devices 

The dominant approach for making microfluidic devices is based on soft lithography and 
PDMS molding. A silicium wafer is covered in a layer of epoxy-based resin of known 
thickness. The resin is insulated to obtain a desired pattern on the wafer. The insulation 
techniques used in this thesis are described in the following two sections. Once the desired 
pattern has been drawn, the so-called master wafer is used as a reusable negative for replica-
molding of the pattern with Polydimethylsiloxane. 

Polydimethylsiloxane (PDMS) is a transparent silicon that is a viscous fluid in its monomeric 
form, and an elastic solid when homopolymerized. Liquid PDMS supplemented with a curing 
agent to catalyze polymerization is poured onto the wafer mold. The liquid PDMS will 
perfectly follow the mold’s shape and then cure into its solid polymerized form. To form a 
working microfluidic device, the solidified silicon is peeled off the master wafer and stuck 
onto a glass slide. The glass slide floors the circuit and the device can then be used to load 
cells, flow media and various chemical, and the chambers and channels can be observed 
through the glass slide on a microscope. Transmitted light can be shone through the device 
since PDMS is transparent. 

3.1.2 Microfluidic wafers fabrication methods 

Various methods exist for developing microfluidics devices for in vivo cell cultures and 
observation, such as wafer engraving, 3D printing, or CNC milling. The most common 
technique is so-called „soft’ lithography, in which layers of epoxy-based resins are insulated 
locally to create patterns on a silicium wafer. This method is described in this section and was 
used to develop the microfluidic devices presented here.  

3.1.2.1 Photolithography 

The most common way of designing microfluidic devices is by coating a wafer with an 
epoxy-based resin, the SU-8 resin developed in the 1980s by IBM, and then illuminating this 
resin with high intensity UV light. The light goes through a custom made negative mask and 
only the desired parts are exposed to the high-energy photons. The resin is photosensitive and 
will solidify when exposed to high-energy particles. A solvent bath will dissolve all parts that 
were not exposed to the UV light, and only the exposed part will remain. Coating of the wafer 
is performed with a spin coater, and rotational speed is adjusted to obtain precise layer 
thickness. Several variants of the resin exist, of different viscosities, to allow for a wide range  
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of possible layer thickness (from about 500nm to 100μm). Several objects of different heights 
can be obtained on the same device by sequentially applying different layers of SU-8 and 
insulating them with UV light one by one through patterned chrome masks (see step 2a in 
Figure 3-1). A review of the type of devices that can be obtained with this procedure is given 
in (Ng et al. 2002). 

Although photolithography is a relatively simple and fast process, it is limited in its resolution 
by the diffraction of light on the insulation mask. Details under 5 µm start getting difficult to 
obtain and require the use of vacuum chambers and optical filters. The closer the dimensions 
get to the wavelength of UV light, the more imprecise the details get. 

3.1.2.2 Electron-Beam lithography 

For smaller details, typically around 1 micron or less, I had to use electron-beam lithography, 
or EBL: Since using a lithography mask causes diffraction that limits the resolution of the 
insulation, the solution is to direct the high-energy particles beam directly towards the wafer 
and scan it through the parts to be polymerized. However, mechanical orientation of the beam 
is very imprecise, and a light beam cannot be bent easily towards a specific location on the 
wafer. Electron trajectories, on the other hand, can be very precisely oriented with an 
electromagnetic field, as is routinely done in a scanning electron microscope. In practice, 
electron-beam lithography actually uses slightly modified scanning electron microscopes to 
guide an electron beam over a resin layer, following an insulation path predetermined 
numerically by the experimenter (see step 2b in Figure 3-1). Similarly to photolithography, 
the high-energy electrons create Lewis acids in the resin and catalyze the homo-
polymerization reaction. 

EBL allows for nanometer-precise details, and since no physical mask is used, the variety of 
shapes, sizes, details and structures of the microfluidic circuits obtained is not limited by the 
price and delays linked to the manufacturing of a photolithography mask. It cannot be used on 
thick layers of resin however, since electrons scatter in matter as they lose energy penetrating 
into SU-8. Increasing the energy of the electrons allows for deeper penetration, but the 
penetration depth increases only logarithmically with the electrons’ energy (Suñé 2008). The 
working surface on our apparatus is also limited to, at best, 1mm. One can insulate several 
working surfaces, but the details may not be perfectly aligned from one working area to the 
next since the displacement between scanning surfaces is performed mechanically. 

Although this method has been used extensively in other domains of micro- and nano-
fabrication (Tseng et al. 2003; Suñé 2008), and has been demonstrated to be a versatile micro- 
and nano-fabrication method in SU8 resin (Kudryashov et al. 2003), its usage in microfluidic 
devices fabrication is still anecdotal (Mali et al. 2006). I started working on this technique 
after discussing my light diffraction problems with quantum physicists at the clean room who 
used this method routinely on other resins. Although the production of a complete device with 
EBL and photolithography is more tedious than with photolithography only, iterations on the 
EBL part of the designs can occur at a much faster time scale because the technique does not 
require the edition of a new insulation mask after each modification to the desired pattern. I 
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them. Two methods exist: 1) let cells grow everywhere in the microfluidic chip. The cells end 
up colonizing the chambers and at this point the cells in the flow channel are flushed away. 
This method has various limitations: first of all, it requires setting up the experiment a long 
time in advance to let the cells grow into the chambers. The second problem is that flushing 
will not be 100% efficient, and some cells will remain in the channel flow after flushing and 
grow in the flow channel. 2) Centrifuge cells into the chambers. I designed a microfluidic chip 
centrifugation arm that can be used with a spin coater to ease cell loading. Once the cells were 
loaded I would set up the chip in the input delivery and flow apparatus and on the microscope 
for single cell observation. 

3.1.4 Early device designs: Population chambers 

I based my first wafers on the device developed by Jannis Uhlendorf in our team for his 
control platform for yeast (Uhlendorf et al. 2012). I adapted it to get the right height for the 
chambers to make sure that my bacteria would not grow in several layers in the chambers or 
be able to move at all once in there, but of course the chambers also had to be high enough to 
allow the cells to enter in the first place. I found that the optimal height for the growth 
chambers was 0.7µm. Because the chambers were wide compared to their height of 0.7µm, 
the ceiling of the chambers would often collapse. 

 
Figure 3-3 – Adapted from Uhlendorf et al.(Uhlendorf et al. 2012) The first device that I used was based on this design. (left) 
the general microfluidic setup, the device is connected to a valve that selects between two media. The media are flown 
through the channels and end up in the waste (purple tubing). The chambers are between the two channels and nutrients and 
drugs are  transmitted to the bacteria by diffusion. Epifluorescence microscopes are used to image the cells from below, 
inside the chambers. (middle and right) The chambers are 0.4mm in length, and about 0.7 µm in height. The channels are 40 
µm in height. 

To work around this issue I then adapted another device developed for yeast by Clément 
Vulin, another Ph.D. student on the team, to my organism. This second device was similar to 
the previous one, except that it featured chambers of various widths, which solved the 
collapsing ceiling problem. I was able to obtain good images of my bacteria where they would 
grow as a single layer. Those two devices did not feature details smaller than 5 microns, and I 
used only photolithography (section 3.1.2.1) to create their molds. 
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Figure 3-4 – Images obtained with the second device. The cells do not move in the device or grow as multiple layers and the 
quality is good enough to try single cell segmentation. (left) Phase contrast 100X imaging of E.coli cells. (right) 100X 
composite image of red fluorescence imaging and transmitted light imaging of E.coli cells. 

I could not use those devices for single-cell control experiments. I did use them at the 
beginning of my PhD for population control, but the lack of robust segmentation algorithms 
for single-cell tracking and the rapid and free movement of cells in and out the field of view 
made them not adapted to online single-cell tracking. However the number of cells in the field 
of view is 10 to 100 times higher than in mother machine devices, and population effects can 
also be observed in this type of devices. Recent progresses made in cell segmentation might 
make it possible to monitor the fluorescence level of thousands of single-cells in a 2D layer 
on-the-fly (see chapter 4 for a short review of the state of the art in cell segmentation). 

3.1.5 Surface passivation, clogging, and flushing 

Bacteria tend to grow everywhere in microfluidic devices, both on PDMS and glass. This can 
cause several problems: First of all the accumulation of cells in the channels just outside of 
the growth chambers can exert pressure on the cells inside the chambers and have an impact 
on their growth rate. Secondly, the number of cells growing in the delivery channels would 
keep on increasing, possibly up to a point where nutrients and input chemicals are segregated 
or consumed by those cells, hindering the controllability of the cells inside the growth 
chambers. Finally, bacteria tend to aggregate and form biofilms, and an uncontrolled growth 
in the main flow channel would rapidly lead to clogging of the channel, possibly with 
biofilms forming in the entire apparatus. 

I have faced all the above scenarios, both in mother machine devices and in monolayer 
devices, and the necessity of good control of bacterial growth outside of the dedicated 
chambers rapidly became evident. Surface passivation was a first step to help reduce the 
spread of bacteria in main channel. I started using bovine serum albumine (BSA) with the 
population device described in section 3.1.4, and the results were promising. I followed the 
same procedure with the mother machine device but two problems arose: first of all, BSA is a 
fragile and somewhat expensive protein. Its passivation effect degrades with time and new 
stocks must be prepared periodically. It also degrades throughout the experiment and after 12 
to 16 hours bacteria start growing in the channels again. The second, more inconvenient 
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problem was that cell loading in the mother machine chambers was harder after BSA 
passivation. Whether it was caused by accumulation of BSA in the chambers, a higher fluid 
viscosity or other effects is unknown, but I had to passivate the surface after cell loading, 
which was both more complicated and less efficient since some cells were already stuck to the 
surfaces of the device. 

I switched to a cheaper and more robust alternative with Pluronic F-127. Surface passivation 
with pluronic prior to cell loading did not pose the same problem as BSA. Pluronic is a 
cheaper and more stable molecule, so not only was storage not a problem, I could also mix 
Pluronic into the growth media that would later be flown through the microfluidic device and 
autoclave it, which meant that surfaces would not be depleted of Pluronic over time. 

To further reduce cell growth outside of the dedicated chambers I would also periodically 
flush them by running the peristaltic pump at full speed for a short period of time (usually for 
30 seconds every 30 minutes). The custom program interfacing with the pump would also 
communicate with the acquisition session, to ensure that the pump was not flushed during 
acquisitions: With the pump running at full speed, the minor change in pressure in the chip 
would suffice to slightly distort the shape of the chambers, thus reducing the performance of 
the autofocus, drift correction, and image analysis. See section 0 for more details. 

3.1.6 Input delivery 

Characterizing the library of putative toggle switches and carrying out PI control experiments 
required the possibility of injecting variable levels of the two inducers in the microfluidic 
chip, so I had to develop some sort of mixing apparatus. While a variety of microfluidic 
mixers exist in the literature (Lee et al. 2011), none of them was suited to our approach. 
Passive mixers introduce delays in the time between mixing and delivery or require complex 
microfabrication techniques, and active methods require even more complex assembly 
methods, sometimes alongside the integration of bulky and obstructive hardware close to the 
chip. Moreover, those systems require some form of pressure control system, which is itself a 
costly and finicky piece of equipment. 

In our implementation of microfluidic mixing, we assumed that the process of delivery 
through the microfluidic tubing and channels via peristaltic pumping, and the diffusion 
through the cellular membrane, acts as a low pass filter for chemical signals between the 
environment and the cytoplasm, and therefore would tend to average out fast oscillatory 
changes in the environment. Such an assumption makes it possible to use pulse-width 
modulation in our drug delivery method. To get a certain “sensed” concentration of inducers 
for the cell, we switch between three inputs: one with a high concentration of IPTG (1mM), 
one with a high concentration of aTC (100ng/mL), and one without inducers for dilution. For 
a certain concentration of inducer, the duty cycle is adapted and diffusion in the tubing and 
the device and through the membrane does the rest (see Figure 3-5). To ensure that the 
average concentration sent to the cells was the one indicated by our choice of duty cycle, we 
calibrated the duty-cycle to concentration ratio by running the valve controller for extended 
periods of time at different duty-cycle values and measured volume depletion. We then used 
this 3-way PWM valves setup to mix solutions of fluoresceine and rhodamine and measured  
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fluorescence levels in a microfluidic chip to double check our result and also to verify that 
cells received a mixed level of both inducers (see Figure 3-5). 

To be able to alternate fast enough between media and also to resist high flow rates and high 
pressures, we used valves from the Lee Company. These valves operate on 12 V and can draw 
up to 100 mA. For those reasons they could not be operated with a simple Arduino and a 
power adaptation circuit was necessary, especially to drive more than one valve. We designed 
a custom arduino-based circuit board to host all electronic components and act as an interface 
between the computer and the solenoid valves. The board can drive up to 36 different valves. 
To optimize space, adaptability and ease of use, the card is built around an Arduino nano 
board that drives two MCP23017 chips5 over i2c serial, which themselves drive power 
MOSFETs that drive the valves. The entire design and code for Matlab and the Arduino Nano 
can be found on github6. I have since developed new, more compact implementations of this 
board to drive up to 40 solenoid valves for other projects that can be found on the same page. 

3.1.7 Reference crosses 

In the next section (3.2) I am going to present some of the image analysis and data extraction 
algorithms I used to monitor cells fluorescence. But an important step prior to that is the 
optimization of the acquired images. The image analysis is greatly simplified if the images are 
of good quality and their acquisition conditions are consistent with eachother. Good focussing 
is an important aspect of this process. A microscope does not stay in focus on the observed 
specimen over time if its position is not corrected periodically. Images are acquired 
automatically and in real time, without user supervision and usually at several different 
positions on the chip. All these issues further complicate the task of acquiring good quality, 
consistent data. 

Autofocussing is a non-trivial problem in time-lapse microscopy, and online image analysis 
requires a precise and robust autofocus for optimal quality data. A number of autofocussing 
algorithms exist, and can be separated in two groups: hardware based autofocus and image-
based autofocus. The hardware based ones measure the distance between the objective and the 
specimen observed, usually using laser triangulation, and try to maintain this distance 
constant. Although this approach is usually more robust, it does not measure image properties 
directly, and uses the proxy of the measured distance instead. Unfortunately, the measure can 
drift over time, especially in the case of immersion oil objective. The changes in focus are 
usually small, but in the case of bacteria, minor variations in focus can have dramatic effects 
on the quality of the extracted data. The second approach measures some property of the 
images acquired (usually average image gradient) and tries to minimize or maximize it. 
Although this can produce satisfactory results, the robustness of such a method is often 
inadequate for time-lapse microscopy of live cells. Because the cells are growing in the field 
of view, the measured properties of the image change over time, which can lead to focus drift 

                                                 

5 MCP23017 are port expansion chips, made specifically for increasing the number of I/O ports on a 
microcontroller, like an arduino. Up to 8 chips can be connected on a 2-wires i2c serial bus, which means a 
single arduino could drive up to 128 valves. 
6 github.com/Lab513/ValveControllerNano 

https://github.com/Lab513/ValveControllerNano
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microfluidic devices or even different organisms. We have used it to perform robust real-time 
segmentation of our cells on this platform, but not on closed loop experiments. This algorithm 
has been designed in my last year of PhD and has evolved continuously during that time 
period. To keep data consistent between experiments as well as to avoid the delays that a full 
integration into the platform might cause, we decided not to use it in our control experiments. 
Prior to the development of this technique however, we developed several cell segmentation 
techniques. The first, most robust one, simply extracts the fluorescence from the end of the 
mother machine chamber. This simple method was used for online image analysis for 
fluorescence extraction because it would perform robustly throughout the experiment. Other 
methods were also developed for a posteriori image analysis. 

3.2.1 Robust algorithm for online measurement of fluorescence levels 

Cell segmentation is performed a posteriori because it usually requires tinkering and often 
trials-and-errors to work robustly on an entire dataset, and its performance can vary from one 
dataset to another to another. Most cell segmentation approaches still require a significant 
amount of manual corrections by the user to reach satisfactory tracking performance. Because 
of this, traditional segmentation approaches based on morphology or active contours could 
not be used on online experiments. A much simpler image analysis technique was used for the 
majority of the toggle switch analysis.  

In time-lapse acquisitions of the mother machine device, the mother cells at the end of the 
mother machine chambers stay in the same position in the image throughout the entire 
experiment. Bacteria reproduce by dividing in the middle, so some part of the image always 
included a significant portion of the mother cell. The algorithm used for online image analysis 
simply extracts the mean fluorescence from that part of the image.  

 

Figure 3-7 The simplest, and most robust method, relies on the shape of the mother machine device, where mother cells are 
trapped at the end of the growth chambers, to extract fluorescence from a pre-arranged ROI. Motion compensation 
algorithms are used to ensure that the same part of the chamber is sampled at every timepoint. 

At the beginning of the experiment, the user selects the chambers to observe throughout the 
experiment and draws a rectangular region of interest (ROI) of 20 by 10 pixels where the 
mother cell is. During the time-lapse acquisition, lateral drift is corrected, and the 
fluorescence in GFP and RFP is measured and sent to the control algorithm. 
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3.2.2 Image gradient and ellipsis fitting on mother machine images 

With the mother machine microfluidic device, the segmentation problem was greatly 
simplified, and the algorithm described above was sufficient to extract fluorescence levels for 
the mother cells, but could not identify daughter cells and extract their fluorescence. Here I 
describe a simple segmentation algorithm to identify single cells in the chambers and measure 
their fluorescence. 

Identifying growth chambers is a simple task, since they are well separated and of known size 
and shape. With the chambers identified, the complexity of segmenting cells in each chamber 
decreased significantly. The cells cannot grow side-by-side, which is a major problem for 
morphology or active contour methods (see Figure 3-10 and chapter 4), and also grow in a 
well-aligned strand of cells. One of the disadvantages of the narrow chambers though is the 
proximity of the cells borders with the chamber walls, which can interfere with morphology 
operations such as range filtering or with active contour methods. 

I developed a custom segmentation program that circumvents the problem of the PDMS walls 
and identifies the separations between cells robustly. To avoid dealing with the walls 
altogether, only the image gradient along the chambers axis was considered and not the 2D 
image gradient commonly used for edge detection. In combination with morphology 
operations and thresholding the identification of cells separation would be easily and robustly 
obtained throughout an entire image sequence. Ellipses were then fitted to the identified cell 
regions to identify elliptic ROIs for fluorescence extraction. Although ellipses are not the best 
model for describing the shape of Escherichia coli bacteria, the minimal number of their 
parameters allowed for fast and robust identification with known algorithm. More complex 
descriptions of the shape of the cells would have taken more time to fit and be more prone to 
errors. Moreover, it became rapidly apparent that even in the simplified setting of the mother 
machine, considerable user oversight was still necessary for the segmentation to run smoothly 
in online experiments. 

The main problem emerged from the fact that between experiments lighting and focusing 
conditions are never exactly the same. Even throughout an experiment and even with state-of-
the art autofocussing, focus might drift slightly over time. Aging cells also present visible 
differences from young cells. All those changes require fine-tuning of the few parameters of 
the algorithm before each experiment, with the hope that the images will not change too much 
throughout the experiment. So even though the algorithm I developed can segment an entire 
time-lapse automatically with almost no segmentation errors a posteriori, it could not be used 
for online segmentation since in this case the optimal segmentation parameters must be 
guessed prior to the experiment. 
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active contour or feature extraction techniques like the generalized Hough transform, 
sometimes in combination with a model of the expected cell shape and various cost 
minimization schemes. I tried most of the available cell segmentation programs I could find in 
the literature(Kamentsky et al. 2011; Chowdhury et al. 2013; Hilsenbeck et al. 2016; Q. Wang 
et al. 2010; Young et al. 2012; Delgado-Gonzalo & Unser 2013; Huth et al. 2011; Klein et al. 
2012; Hand et al. 2009). Unfortunately, although they can perform well for offline cell 
segmentation, and near perfectly with a user’s supervision, none of them gave satisfactory 
results for online segmentation and tracking. 

The core problem with those methods is that they rely on a long sequence of minor operations 
that, though efficient and relatively robust when taken separately, amass into a complex 
segmentation procedure with a lot of independent tuning parameters. Each sequence in the 
whole operation is optimized by the user to give the best results for a reduced collection of 
images, and then the algorithm is applied to entire time-lapse sequences. Unfortunately the 
optimization of the parameters of a list of operations by the user is a very rigid approach, 
which doesn’t generalize well to new situations and is especially detrimental to online 
segmentation. The thresholds, structuring elements sizes or other parameters will not be 
optimal for all images or even all cells in a single image, leading to segmentation 
inaccuracies, and accumulating tracking errors. The user/developer can try to set up rules for 
the program to adapt and tune its parameters to different situations, but very quickly the 
algorithm turns into an ever-increasing collection of exceptions and caveats and special cases, 
and it ends up being even less applicable to other experiments. See Figure 3-10 for an 
illustration of the problems faced by those algorithms. 

 

Figure 3-10 Mathematical morphology and active contour methods are often not robust enough for online segmentation. In 
this example, obtained with MAMLE(Chowdhury et al. 2013) but characteristic of other similar programs, 4 cells are not 
segmented properly. The details of the borders between cells are below the optical resolution of normal microscopes, and 
finding segmentation parameters that work for all cells in the image is often impossible, thus requiring user supervision. 
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3.3 Experiments automation 

Experiment automation, although not as obviously demanding as other technical components 
of the real time control platform, required a substantial amount of work. While numerous 
microscope management software exist, few allow interfacing with custom programs. We also 
wanted to be able to implement complex image acquisition routines, and this dictated our 
implementation of our own acquisition engine from low-level microscope management 
function. Following the same logic, we developed the other parts in the control loop in a 
modular structure: Each part of the algorithm would consist of objects with standardized 
inputs and outputs to make the replacement of any algorithm in the loop seamless, such as a 
switch between control strategies (e.g. PI, Bang-bang) or between image analysis algorithms. 
To make the entire experimental automation robust we also divided the automation into four 
main independent blocks: 1) Microscope management, 2) image analysis, 3) control 
algorithms, and 4) microfluidic actuator supervision. These four blocks were implemented in 
Matlab and run separately in four different Matlab sessions that would communicate through 
TCP/IP. Beyond making the software more robust because the four blocks work 
independently and asynchronously, it also facilitates parallelization or even distribution of the 
entire control feedback loop over different machines: i.e. to run the image analysis or control 
strategy block on a separate machine for computational reasons. 

All traditional microscopy brands implement their own in-house version of microscopy 
platform control software. However, our application requires some interfacing with the 
microscope software, and the microscopy brands develop closed, proprietary software that 
will not interface with all other brands. To access this level of flexibility we used the open-
source microscope management suite Micromanager (Edelstein et al. 2014). Micromanager is 
an open-source, cross-platform desktop application, to control a wide variety of motorized 
microscopes, scientific cameras, stages, illuminators, and other microscope accessories. It 
supports a wide range of microscopy hardware and can also be interfaced with custom 
hardware, with native support for Arduino-based devices. Although it features a graphical 
user interface and scripting abilities, the standalone version of Micromanager was not flexible 
enough for our usage and could not easily be interfaced with our Matlab analysis functions. 
But a convenient feature of the program is the possibility to access the Core API of 
Micromanager, as well as some of its graphical functions, through Matlab. We developed a 
functional Graphical User Interface to control our microscope via Matlab, and at the same 
time implemented an advanced time-lapse acquisition engine, with easy interfacing with our 
custom scripts. It gave us the liberty to call our homemade Matlab scripts in the middle of 
microscopy acquisitions, and to send information to other Matlab sessions easily. We also 
implemented custom scripts for autofocussing or lateral drift stabilization. 

The other three modules of experiment automation are mainly servers that communicate with 
each other to close the feedback loop. Each one of them would instantiate object 
implementations of the image analysis, control and actuators supervision algorithms and 
forward it the data received. The inputs and outputs of the object methods are standardized so 
that different algorithms can be used without requiring any re-writing of the main structure of 
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the code. For example, the image analysis algorithm described in chapter 2 was integrated to 
the platform with little effort once the algorithm implementation was standardized. 

Although still a work in progress, this general code architecture and corresponding user 
interfaces are proposed as a generic implementation of any gene expression control platform, 
in which different core algorithms can be used interchangeably on a variety of hardware 
equipment. All source code as well as documentation can be found on our github page for the 
project7. 

With the platform assembled and automated, the cell chassis constructed and toggle switch 
circuits assembled, I could start to acquire characterization data and, with the knowledge 
gathered from it, develop a mathematical model of my system to simulate control in silico and 
study its response to dynamic perturbations. 

                                                 

7 In progress 
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4 Modeling 

To understand the dynamics of our system and analyze the results of the control experiments 
on genetic toggle switches, we developed an in silico model of toggle switch behavior. The 
mathematical model of the system was fitted to experimental data and used to study 
theoretically the controllability of the toggle switch with various control strategies. It was then 
used to analyze the behavior of the toggle switch after surprising control experiments results 
and helped us understand its response to dynamic perturbations. We developed both 
deterministic and stochastic simulation approaches to study the effects of noisy gene 
expression on control performance. 

Although models of the toggle switch exist in the literature, none of them have been fitted to 
data, except for the one described in Wu et al. (2013). But, their LacI-TetR toggle switch was 
implemented in Saccharomyces cerevisiae, and based on a completely different family of 
promoters. I used their study of the genetic toggle switch as a starting point for developing a 
model of the toggle switch. The model is presented here in its final version. 

The reaction network of the genetic toggle switch and our modeling choices are described in 
the following paragraphs. Any gene regulatory network cannot be entirely independent from 
its host cell, and of course some of the modeling choices are going to appear as over-
simplifications of the intricate network surrounding even this simple 2-gene synthetic circuit. 
Nonetheless, we believe they are sufficient to understand the main dynamics of the toggle 
switch and study its response to dynamic perturbations and control. We could have reduced 
the complexity of our model even further, as in early studies of the toggle switch (Gardner et 
al. 2000; Cherry & Adler 2000), but we are especially interested in the dynamics of our 
system, and those early models do not account for the inertial nature of the evolution of our 
toggle switch state, which is a key element in the evaluation of the performance of the 
different possible control approaches. 

4.1 The reaction network 

In this section I present a model of the pseudo-reactions describing the functioning of the 
genetic toggle switch that was used as a basis for developing our model. 

4.1.1 LacI-DNA and LacI-IPTG interactions 

The lac repressor LacI forms a tetramer of four identical subunits that normally binds tightly 
to the promoter. However, the repressor can also be only partially bound and not fully inhibit 
the expression of the genes downstream of the promoter. When IPTG binds to LacI, the 
protein changes shape and no longer can bind to the DNA. A detailed description of the DNA-
LacI-IPTG interactions can be found in (Lewis et al. 1996). A list of the corresponding 
interactions is then8: 

                                                 

8 Dimer versions of the lac repressor can also bind the operator site on the promoter and can also be bound by 
IPTG. However, for simplicity here we consider only the binding of the tetrameric version. The binding events 
linked to the other versions are taken into account (among other things) later on in the associated Hill 
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With         and         describing the dimeric and tetrameric versions of LacI 

respectively, while         and      represent the repressed states of the LacI tetramer and 
lac promoter respectively.  

4.1.2 TetR-DNA and TetR-aTC interactions 

In a similar fashion, TetR dimers assemble to bind to DNA. Although they do not twist DNA 
into a loop, the TetR family of repressors strongly binds to DNA through a Helix-Turn-Helix 
motif. Access to DNA is thus blocked for RNA polymerase binding. However, the TetR 
protein features a cavity in which tetracyclines can bind. In the presence of tetracyclines the 
TetR protein changes conformation and can no longer bind DNA. It is not clear whether two 
dimers can bind a tet operator. For a detailed description of those interactions see (Ramos et 
al. 2005). The list of interactions is9:                                                             
With         describing the dimeric state of TetR.         and      representing the 
repressed states of the TetR dimer and tet promoter respectively.  

4.1.3 Transcription and translation 

Transcription happens downstream of the unrepressed promoters, and proteins are then 
translated from the transcribed mRNAs. We do not consider here leaky expression connected 
to partial binding of the repressor to the toggle switch and consider that a bound 
dimeric/tetrameric repressor completely represses the expression of the promoter.                                                                                           
                                                                                                                                                         

coefficients, which are not fixed to 4 as a strict mechanistic interpretation would have it, and are given a wide 
fitting range instead. 
9 Again, monomer binding to DNA and aTC is not represented. Monomer interaction as well as the potential 
double binding of TetR dimers to DNA is taken into account in the non-preset hill coefficient in the fitting 
section. 
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4.1.4 Dilution and degradation 

Finally we model the decrease in protein and mRNA levels caused by growth dilution and 
degradation. In the case of protein dilution we do not model cell volume specifically, we 
model it instead as a normal degradation reaction for simplicity:                                                 

With the symbol   representing nothing, or null. 

4.2 ODE model 

To reduce the dimensionality of our model and to reduce the number of parameters involved 
we model the binding-unbinding event using Hill functions. With this assumption, the ODE 
model was narrowed down to a 5-dimensional set of coupled ODEs: 

Transcription                         ቌ             ቀ       ⁄ ቁ    ቍ                       

                        ቌ             ቀ         ⁄ ቁ     ቍ                       

The transcription rate consists in two main terms: The “basal rate”       describing leaky 

expression from completely repressed promoters, and the modulated expression rate 
describing the expression from the proportion of unrepressed promoters consisting in two 
nested Hill functions. The rate of unrepressed transcription is represented by the       

parameters, and the   and   terms represent respectively the half occupation level and Hill 
coefficient for each of the binding-unbinding mechanisms. This structure causes the rate of 
transcription of each mRNA species to be a decreasing function of the opposing free protein, 
and the fraction of the free protein is also a decreasing Hill function of the associated inducer. 
The degradation of the two mRNAs is a simple linear function. The LacI and TetR variables 
in the model represent all forms of the repressors, monomers, dimers and tetramers, with and 
without bound inducers.  

Translation 
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Here the degradation of LacI and TetR is a linear function of the protein. But because it is 
generally accepted that decrease in protein concentration is mostly due to dilution (Larance et 
al. 2013), the degradation rate is the same for both proteins. 

IPTG delay                                     

We observed significant delay in the action of IPTG molecules, which we connected to the 
removal of the LacY permease that transported it through the membrane (see section 2.1). We 
added a first order equation for a simplified model of diffusion through the membrane with a 
constant diffusion term      . To keep the model simple, diffusion time of aTC through the 

membrane was considered negligible. The      and       variables are input signals 
provided by the experimenter or the control algorithm. 

Matlab code implementing those equations can be found on our modeling github repository10. 

Because the mRNA dynamics and the protein dynamics evolve different timescales, we used 
a stiff ODE solver (ode23s in Matlab) to integrate the equations in between changes in the 
driving      and       variables. In in silico control experiements, the control algorithm is 
ran outside of the model evaluation algorithm for the sake of implementation simplicity and 
modularity. Therefore our general implementation considers the ODE set to be a switched 
nonlinear system and features a custom solver for such systems built around the ode23s 
solver11. 

4.3 Gillespie’s stochastic simulation algorithm 

Because noise can greatly affect the quality of control, I also developed a stochastic model 
based on the pseudo-reactions described in section 4.112. This interpretation is based on a 
continuous-time Markov chain model of the process and can be solved using Gillespie’s 
Stochastic Simulation Algorithm (SSA)(Gillespie 1977). The Gillespie algorithm is an exact 
simulation of the stochastic behavior of a process. However, because it was designed to 
simulate random encounters between relevant molecules due to Brownian motion, it requires 
simulating every single reaction between two or less molecules/complexes. In our case, we 

                                                 

10 github.com/Lab513/ToggleSwitch/blob/reOrg/CoreFunctions/CoreModel/toggle_derivative_sim.m 
11 github.com/Lab513/ToggleSwitch/blob/reOrg/CoreFunctions/generate_data.m 
12 Because the ODEs of the deterministic model and the propensities of this model are based on the same 
network of pseudo-reactions, and because they use the same rates and assumptions, I could use the same 
parameter values in both approaches. 

https://github.com/Lab513/ToggleSwitch/blob/reOrg/CoreFunctions/CoreModel/toggle_derivative_sim.m
https://github.com/Lab513/ToggleSwitch/blob/reOrg/CoreFunctions/generate_data.m
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kept the assumption on the Hill functions done in the ODE model of the reactions network for 
two reasons. Firstly, parameters were fitted to the Hill-based ODE model, and it would not 
have been possible to deconstruct the model back into equations where all binding and 
unbinding events are simulated. Even if a deconstructed model had been fitted to the 
characterization data, some of the parameters could not have been identified because of 
current limits on protein data resolution, and to my knowledge state-of-the-art in vivo proteins 
levels measurement is still a long way from reaching the necessary precision level. The 
second reason is that binding-unbinding events happen orders of magnitude more often than 
other events, which led us to the Hill functions in the first place, and simulating those events 
with Gillespie’s SSA would severely increase computational time. Applying this 
approximation to the SSA in the case of chemical kinetic systems with disparate rates is a 
common workaround to this issue, and in most cases does not have a major impact on the 
simulated levels of noise (Rao & Arkin 2003). The pseudo-reactions modeled by our SSA 
implementation and their propensities are described in Table 4.3-1. The implementation of the 
stochastic model can be found in our github repository13. 
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13 github.com/Lab513/ToggleSwitch/blob/reOrg/CoreFunctions/CoreModel/toggle_props_stoich.m 

https://github.com/Lab513/ToggleSwitch/blob/reOrg/CoreFunctions/CoreModel/toggle_props_stoich.m
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Table 4.3-1  Pseudo-reactions and propensities used in the Stochastic Simulation Algorithm 

IPTG diffusion was considered deterministic and the IPTG concentration dynamics were 
integrated outside of the SSA function through Matlab’s ode23s solver. 

4.4 Parameter identification 

To obtain calibration data, we performed 6 experiments differing by the initial state of the cell 
population and by the temporal profiles of the inducers and probing in various ways the 
dynamics of the system (see section 3.1 of chapter 3). Model fitting was made using the 
global optimization tool CMA-ES (Hansen & Ostermeier 1996). We used the measured 
fluorescence values for RFP and GFP directly as proxies for measured molecule numbers per 
cell, which means that the transcription, translation, degradation and dilution rates as well as 
Hill half occupation levels are fitted to fluorescence levels. As a first approximation, we 
assume the measured fluorescence levels per cell to be proportional to molecule numbers. The 
objective for CMA-ES was to minimize the mean squared relative deviations between model 
predictions and averaged measured fluorescence.  

The optimization was repeated 8 times. Despite the use of a simple model not all parameters 
were fully constrained by the data, however all estimations produced similar dynamics and 
similar equilibrium points could be inferred from the different sets of parameters. We picked 
the set of parameter that produced the unstable equilibrium point with the highest levels of 
LacI and TetR to maximize the signal-to-noise ratio during our control experiments.  

The final parameter values obtained were: 

Transcription 
rates 

    1.607 

m
olec./m

in 

 

Hill 
coefficients 

      2.093 

     1.009       2.000     0.0238      2.000     0.1715       2.000 

Translation 
rates 

    7.268 
Half 
occupation 
levels 

      123.0 molec. 

     1.906       226.8 molec. 
Degradation 
rates 

       0.1477      38.9 ng/mL        0.1386       0.300 mM 
Dilution rate   0.0199 

Table 4.4-1 Parameter values after CMA-ES identification after fitting the model to characterization data. 
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4.5 Controllers 

The main controllers used in this study are fairly simple although we did use model predictive 
control algorithms in early theoretical studies of toggle switch controllability. We used the 
same algorithms for in vivo control and in silico simulations.  

4.5.1 Bang-bang control 

The so-called bang-bang controller, also known as a hysteresis controller, is a feedback 
controller that switches abruptly between two states. Although bang–bang controllers can 
produce optimal control strategies in some cases, they are often implemented because of 
simplicity or convenience. The input delivery technique can also restrict actuation to a binary 
all-or-nothing choice in some microfluidic devices. However in our case, the use of a bang-
bang controller was dictated by early theoretical results that indicated that PI controllers with 
a strong proportional term would perform better on a population of cells (see chapter 3). This 
incited us to try the extreme case of bang-bang control: 

      {                                                    ,   and          {                                                      

With       and       being the setpoint objectives chosen for control, and              and              as parameters indicating the minimum and maximum values reachable by the input 

device (Here the maximally closed/open states of the valves). 

Code implementation of this control algorithm that was used both in silico and on real control 
experiments can be found in our github repository14. 

4.5.2 Proportional-integral control 

A Proportional-Integral (PI) controller continuously calculates an error value that is the 
difference between a desired setpoint and the measured level of fluorescence. The controller 
attempts to minimize the error over time by adjusting the level of inducer. But contrary to the 
bang-bang controller, the PI controller does not completely open or close the valves, but it can 
take advantage of the pulse-width modulation implemented with the 3-way valves (see section 
3.1.6) and provide intermediary concentrations of inducers to the cells. It also takes into 
account past errors in an integral term to correct offset errors over time. 

      {                                                                                                                              

With          {    (             )                    (             )     ∫ (             )                        
                                                 

14 github.com/Lab513/ToggleSwitch/blob/reOrg/CoreFunctions/Control/BBcontrollerNew.m 

https://github.com/Lab513/ToggleSwitch/blob/reOrg/CoreFunctions/Control/BBcontrollerNew.m
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       {                                                                                                                                            

With           {    (             )                    (             )     ∫ (             )                        
With the       and      as the proportional and integral parameters respectively,            

the reference levels of aTC or IPTG obtained experimentally (20 ng/mL of aTC and 0.25 mM 
of IPTG for all toggle switch control experiments), and    the time delay before the integral 
term is applied. The last element, the time delay, was added later in the experimental process 
to avoid overshoot effects caused by the error just after the objective is applied before the 
system can be in the vicinity of the objective, which typically takes about two hours. 

Code implementing this control algorithm and that was used both in silico and on real control 
experiments can be found in our github repository15. 

5 Conclusion 

In this chapter we presented the materials and methods used in this thesis to control a genetic 
toggle switch. In the first part of this chapter, the biological side of the problem was 
presented, with details on possible implementation choices that did not work to expose the 
limits of the approach as well as some of the possible ways of improvements over the current 
implementation. For example, while the fusion protein design was not adapted to our 
problem, in other problems it should be possible to use this type of design for sensing the 
level of a protein of interest. Another important contribution is the development of a chassis 
strain for IPTG- and aTC- based induction that can be used for other control applications. To 
the best of my knowledge, no bacterial strain was ever optimized for simultaneous induction 
of the lac and tet systems. Finally, as a general remark on biological systems development, 
the construction of a chassis and circuit is a time-consuming process in the workflow of 
external cell control that should not be overlooked when undertaking such a task. 

In the second part of the chapter, hardware and software choices are discussed. In particular, a 
3-way pulse-width-modulation mixing apparatus is described in what is, to the best of my 
knowledge, the first attempt at double chemical induction in microfluidic devices. Variants of 
the mother-machine microfluidic device are also presented to facilitate long-term acquisition 
and image analysis. This setup allows us to robustly extract single-cell fluorescence data and 
control single-cells over extended periods of time. The efforts put into the development, 
automation and integration of the different parts of the platform can be re-invested in single 
cell control of other genetic circuits, with the possibility to rapidly modify different parts of 
the platform thanks to its modular nature. One important aspect of the methodology of 

                                                 

15 github.com/Lab513/ToggleSwitch/blob/reOrg/CoreFunctions/Control/PIcontrollerNew.m 

https://github.com/Lab513/ToggleSwitch/blob/reOrg/CoreFunctions/Control/PIcontrollerNew.m
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external control of gene expression that will make reproducibility possible is opening the 
design of different elements of the platform, and I have already released parts of the designs 
presented here, and will release the rest of the platform under open-source and open-hardware 
licenses. 

In the third part of this chapter, we discussed the elaboration of an ODE model and an SSA 
model of the genetic toggle switch to perform deterministic and stochastic simulations of the 
genetic toggle switch. In the next chapter we use this model to evaluate the possibility to 
control the toggle switch with different control strategies. Throughout the process of 
characterization we observed delays in the system that we incorporated into the model. We 
also discuss fitting of the model to characterization data, and our choices in implementation of 
the control strategies. A number of improvements could be added to the control strategies, as 
the two control strategies presented here have been studied extensively and a number of 
improvements on those techniques as well as other techniques have been presented in the 
literature. 

One of the main domains of application of this in silico feedback platform would be 
automated characterization of genetic circuits in bacteria, synthetic or endogenous. The 
control algorithm and the induction techniques presented here are generic enough that the 
method could be applied to various genetic networks with minor modifications. 
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1 Introduction 

With the 2-inputs-2-outputs feedback platform presented in the previous chapter, we 
investigated the possibility of controlling the genetic toggle switch. The toggle switch system 
is a fundamental element in numerous natural and synthetic gene regulation networks. In this 
chapter I am going to present dynamical control attempts, and successes, at stabilizing single 
toggle-switch-bearing cells in the unstable area of this double-negative feedback system. I 
start by presenting the characterization experiments used for fitting the model of our system, 
and then present a study of the stability of the fitted model for different values of the inducer 
concentrations. The main in silico and in vivo results of this thesis are then presented, 
demonstrating the possibility to control the bistable toggle switch in real-time in the vicinity 
of the unstable point. Finally, surprising results for population control of toggle-switch-
bearing cells are analyzed and a new regime of stability for the genetic toggle switch is 
demonstrated. 

2 Characterization experiments 

In order to gather some knowledge on the system as well as identify parameters for the toggle 
switch model, the selected toggle switch circuit (see section 1 of chapter 2) was submitted to a 
series of characterization experiments. In the first series of experiments the cells were 
submitted to long-term exposure to either of the two inducers IPTG or aTC to observe basic 
dynamic switch responses. A surprising result contrasting with the overnight experiments in 
batch cultures was that the toggle switch, in absence of inducers, would not remain in its 
LacI-RFP-dominant state, and would instead drift towards a TetR-GFP-dominant state, even 
when switched in the opposite state initially. Less surprisingly, this TetR-GFP-dominant state 
would produce a lower level of green fluorescence than fully activated. Although models 
predict that this monostable behavior in the absence of inducers is possible, it is relatively 
surprising that microfluidics experiments provoke a behavior that differs from the batch 
culture ones. It should be noted however that cells in mother machine devices are submitted to 
a constant flow of nutrients, which both washes the inducers away continuously and 
efficiently after they are removed, and puts the cells in a continuous exponential growth phase 
since they never lack nutrients. Microfluidic device culture conditions and batch culture 
conditions differ significantly. 

Theory suggests that, when a toggle switch can be switched between its too stable states, there 
exists a concentration of base levels of aTC and IPTG that should transform the landscape of 
the toggle switch into a so-called “balanced” landscape where the system is bistable and the 
basins of attraction are symmetrically separated. We empirically obtained concentrations of 
aTC and IPTG, subsequently called reference concentrations, for which both states were 
stable in microfluidic experiments. If, when „releasing’ the system, we switched to those 
reference concentrations of aTC and IPTG instead of no inducers, the system would stay in 
whichever state (LacI-RFP-high/TetR-GFP-low or LacI-RFP-low/TetR-GFP-high) it was 
before the release. These concentrations for which our cells are bistable are aTC = 20 ng/mL 
and IPTG = 0.25 mM. 
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behavior from the others, and from any predicted behavior. Our stochastic simulations are 
based on the Gillespie algorithm (see chapter 2), which can produce an exact simulation of 
noise in biochemical reactions, but is limited to intrinsic noise. The study of noise and cell-to-
cell variability in gene expression is a well-studied problem but has remained largely limited 
to simulations of stochasticity in gene expression. Only recently were models fitted to high-
quality single-cell datasets to represent the variability of gene expression between cells as a 
consequence of phenotypic differences in the population (Llamosi et al. 2016). Although, for 
the purpose of our study the Gillespie-based simulation framework allowed us to test the 
behavior of our control algorithms when exposed to noisy gene expression, it does not 
accurately simulate the extrinsic variability of gene expression in a population of different 
cells. With the quality of the data acquired for this study, an interesting development of our 
modeling approach would be to apply the aforementioned population models, known as 
mixed-effect models, to the study of noise and cell-to-cell variability in a populations of 
toggle-switch-bearing bacteria. 

3.2 State space analysis  

To better understand the behavior of our toggle switch and be able to intuitively investigate its 
response to external stimuli, we computed the vector field, nullclines and equilibrium points 
of our ODE system. The graphical representation helped us visualize the underlying rules that 
govern the dynamics of our system. 

The vector field consists of computing the derivative of our system in its state space (or, in 
our case, the protein space). It is then typically represented by a so-called “quiver” plot in 
which arrows represent the gradient vectors for each of the evaluated elements of the state 
space. Because it is impossible to represent the vector field in the five dimensions that counts 
our ODE model, and because we are primarily interested in the evolution of the protein level, 
we did a quasi-steady-state approximation on the mRNA and IPTG levels and used this 
reduced model to compute the vector field presented in Figure 3-2. The quasi-steady-state 
approximation of our system can be performed because of the timescale separation of the 
transcription and translation processes: The time constants for mRNA expression differ from 
the protein expression time constants by at least one order of magnitude. The pahse portrait is 
a powerful representation to illustrate key concepts in the dynamics of the genetic toggle 
switch. In a similar spirit we also represented the nullclines of the toggle switch, which are the 
curves representing the steady state values for each of the two proteins as a function of other 
variables of the system. Again, to be able to represent the nullclines in 2 dimensions, the 
additional approximation of quasi-steady-state  mRNA levels was made, i.e. the represented 

curves are solutions to the ODE model such that: 
           and  

                    , for 

all values of TetR, and 
           and  

                    , for all values of LacI. 
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for the PI control algorithms (see parameter            in section 4.3.2 of chapter 2). However 

in Figure 3-6A we present all the possible levels of aTC and IPTG concentrations that could 
make the toggle switch bistable. An interesting combination of Figure 3-5 and Figure 3-6A is 
Figure 3-6C where the TetR to LacI ratio of equilibrium points vs inducer levels is presented. 
The surface created by all the equilibrium points is similar to a cusp catastrophe curve 
(Strogatz 1994). The hysteresis behavior that is typically associated with toggle switches can 
be seen as a trajectory over this landscape. Although catastrophe theory has been applied early 
on to biological problems (Poston & Stewart 1979), to my knowledge the parallel between the 
toggle switch and catastrophe theory has not been drawn before. 
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scale separation: subjected to fast periodic stimulations, the comparatively slower genetic 
circuit approximately follows a dynamics corresponding to the time-averaging of two 
opposing vector fields that presents a globally-stable equilibrium point at intermediate 
concentrations for LacI and TetR proteins. 

As a contribution to in silico cybergenetics, we demonstrated that single-cell control of a 
bistable system can be achieved with relatively simple control frameworks and very little a 
priori knowledge of the system. This result opens the door to the study of gene regulation 
networks of increased complexity and in operating domains unreachable or unsustainable thus 
far. The architecture of our control framework demonstrates the possibility for two controllers 
to steer two connected processes without communicating with each other. It illustrates the 
possibility to perform multiple-input-multiple-output control studies of genetic networks, 
which would facilitate and accelerate the examination of internal network dynamics, but it 
also demonstrates that control can be performed on networks where, due to only partial 
knowledge of the regulatory linkage, the controllers might compete against each other. 

The quality of the single-cell data obtained with our platform and the prolonged observations 
of the toggle switch system in its domain of unstability also allowed us to expand the general 
knowledge on this fundamental circuit. Toggle switches, and multistable systems in general, 
are known to play a central role in cell fate determination. Indeed, decision processes are 
understood as the continuous transformation of a stable equilibrium in which cells reside into 
an unstable one, separating the state space in several basins of attractions of novel equilibria, 
corresponding to the different possible futures of the cells (Waddington & Kacser 1957; 
Balázsi et al. 2011; Wang et al. 2011). The toggle switch is also a fundamental component of 
synthetic biology circuits. Therefore, in addition to its importance as a test assay for control of 
complex circuits in living organisms, the control methods we outlined in this article are 
relevant to drive and understand cell decisions, cell fate, differentiation and dedifferentiation 
dynamics, but also analyze the input-output functions of core elements of synthetic biology 
circuits. 

Finally, the stabilization of an entire population of toggle switch cells in the unstable area of 
the system in open-loop experiments is a new observation that was suggested by closed-loop 
control experiments and new knowledge acquired on the dynamics of the system. This 
dynamic stabilization phenomenon, similar to the inversion of stability in the Kapitza 
pendulum (Kapitza 1951), could be used both as a control approach for multistable systems, 
possibly to reset the state of cellular decision making circuits, but also in general dynamic 
stabilization could be studied as a possible range of operation for multistable networks. 
Oscillating morphogen stimulations have already been shown to trigger differentiation 
processes in embryos (Kirst et al. 2016; Sorre et al. 2014; Aulehla & Pourquié 2010). The 
study of dynamic stability in cellular decision networks in fluctuating concentrations of 
inducers can expand our understanding of those processes and create a new framework of 
analysis for those systems. 
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Chapter IV Stack segmentation 

“Many facets of [cell segmentation] appear to be well within the grasp of present-day 
technology.” 

Prewitt & Mendelsohn 1966 
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1 Introduction:  Automated cell segmentation, a core problem for 

single-cell control 

The amount of data available to biologists dramatically increased at the turn of the century. 
With the democratization of next generation sequencing techniques, microarrays, RNA-Seq, 
and imaging techniques, the field has definitively entered the era of high throughput 
acquisitions and big data analysis. A new field, quantitative biology, emerged out of these 
innovations and draws upon a multitude of approaches from the physical sciences and 
engineering to make biology quantitative and predictive. However, even though progresses 
were made in the field of multi-channel time-lapse microscopy imaging, the analysis of the 
formidable amount of data generated by such methods still often requires manual input from 
the experimenter. Such a procedure typically requires a lot of work from the experimenter and 
not only limits the throughput of the approach, but also makes on-the-fly segmentation 
impossible, which is crucial in the case of single-cell control.  

1.1 Cell segmentation: Filtering, mathematical morphology and active 

contours 

Before the changes brought about by microscope automation and microfluidics on one hand, 
and the advent of digital image processing on the other, cell segmentation and data extraction 
used to be performed manually. Since then a number of image analysis and segmentation 
tools have been developed to help the experimenters in their task. So far, the tools proposed 
can be considered semi-automatic as they require a significant amount of post-processing to 
achieve satisfactory segmentation results and make cell tracking possible. 

The first, simplest form of automatic image segmentation is filtering and thresholding. In 
cases where the cells are well separated and their pixel intensity is homogeneous and different 
from the background (for example, in phase contrast microscopy images or in fluorescence 
imaging), a simple histogram threshold can segment cells at minimal computational cost. It 
can also be quite robust: Automatic threshold selection (Otsu 1979; Glasbey 1993) is usually 
preferred to hard-set thresholds, which has the double advantage of finding an optimal 
threshold value without the need for heuristics and allows the algorithm to adapt to changes in 
illumination between images. Another improvement is the use of adaptive thresholding 
(Yanowitz & Bruckstein 1988), which partitions an N x M image in overlapping windows of 
n x m pixels and finds local thresholds for each. A thresholding map is then interpolated for 
the entire image. This partitioning approach is especially useful in images where, due to 
uneven illumination, the luminosity and contrast between the cells and the background varies 
within the image. However these thresholding methods become insufficient as soon as the 
cells in the image are not well separated, which is almost always the case in time-lapse 
movies of growing populations of cells. 

The next level of cell segmentation is feature extraction. A more robust approach is to identify 
cell features, usually cell boundaries. Instead of identifying the cell region entirely, the 
boundaries are identified and cell region is inferred from it. This type of approach uses a 
variety of linear image filters that transform the image into a map of the features of the image 
first and then applies a threshold to the result to identify the borders. One of the advantages of 
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The number of parameters in this type of networks increases exponentially with the number of 
neurons in each layer, and one might fear that training a model with such a high number of 
parameters would require impractically long computational times. While this is mostly true, 
and one of the reasons why it took about 50 years for large-scale artificial neural networks to 
emerge, two things must be noted: First, ANNs require a surprisingly low number of training 
inputs compared to the number of parameters they use to produce satisfactory 
classification/identification results. This is probably related to the yet-unknown reason why 
they are better than other learning algorithms at generalizing their results to completely new 
observations (Nielsen 2015). For that reason, even small networks were able to perform 
reasonably well compared to other image classification/segmentation algorithm, if only a bit 
slower. The second, more remarkable thing is that developments on ANN training since the 
1950s have greatly sped up the training process by a) an optimization of error gradient 
computation for each neurons layer, called the backpropagation algorithm(Rumelhart et al. 
1986), b) a drastic reduction of total computation time by randomly subsampling training 
data, called stochastic gradient descent (Bottou & Bousquet 2007), and c) improvements in 
the implementation of the algorithms that made massive parallelization on GPUs possible 
(Raina et al. 2009). All these improvements ultimately led to the multi-record-breaking deep 
learning revolution: The development and training of large-scale networks was possible at 
last, and the large number of neurons layers made it possible to estimate intricate recognition 
functions. For a review of the history of deep learning as well as a discussion on recent 
advances in the field see (LeCun et al. 2015). 

1.2.2 Convolutional Neural Networks 

The CNN class of network architectures has proven especially efficient in image analysis and 
segmentation (LeCun et al. 2015). Convolution is a fundamental operation in image analysis 
and signal processing. In image processing it consists in evaluating for each pixel a weighted 
sum between the pixel and its neighborhood, with a mask, or kernel matrix, of weights 
applied to each pixel. This approach is used to implement image filters, including average, 
Gaussian, or gradient-type filters, amongst others. But the same principle can be applied to 
layers of neurons: Instead of fully connecting layers of neurons, i.e. using all the outputs of a 
layer as inputs for each neuron of the next layer and fitting the weights, the convolutional 
approach connects a small local set of neurons on one layer to one corresponding neuron on 
the next layer. Another property of CNNs is that the parameters for all neurons on a 
convolutional layer are shared, which means that different sets of weights are not fitted per 
neuron, but instead one “global” set of weights is fitted for each convolutional layer, and the 
same local operation is applied to the whole image. We can immediately see how this 
approach drastically reduces the number of parameters to fit. From an image processing point 
of view, convolutional layers also make sense since they can also mimic the actions of 
traditional image processing operators such as de-noising filters, gradient estimation and 
feature extraction, or even thresholding. Finally Convolutional Neural Networks usually 
consist of a number of different convolutional layers that are then used as an input to more 
inter-connected layers as one goes deeper in the network, up to the point where the layers 
become fully interconnected like in a perceptron type of architecture. These more fully 
connected layers usually perform more advanced, or “high-level” functions, while the less 
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the choice of this reduced view of the entire image deprives the network of some of the 
context in the entire image that could have improved its performance. It is fairly easy to 
understand though why the authors chose to implement their network this way: Historically 
deep learning algorithms have been developed to classify images, not to segment them. The 
networks had been structured to take an image as an input, and identify what type of food or 
dog breed was in the image, but not delimitate where it was. The most straightforward way to 
apply these structures to segment images was then to use it on sliding windows and classify 
each of them as “image-with-a-neuron-membrane-in-the-center” or not. 

The necessary tradeoff between localization and context remained a central problem in deep 
learning until very recently, when a team proposed a new network architecture that contracts 
from convolutional layers to a fully connected network, and then expands progressively back 
into convolutional layers until its output layer produces a segmented mask of the original 
image (Long et al. 2015). This architecture was soon applied to cell segmentation, breaking 
preceeding records in a number of segmentation challenges by large margins (Ronneberger et 
al. 2015). Another interesting aspect of their work is the procedure devised for data 
augmentation, namely random elastic deformations, which is important in deep learning since 
those networks require a large number of training samples to be able to fit the millions of 
parameters they are using. With this procedure they were able to train their relatively large 
network with only 20 original training images. Although the segmentation results are still not 
perfect, the U-Net architecture is a leap in cell segmentation with 77.5% correct segmentation, 
to be compared to the previous record of 46% for the same image set. 
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exceeding the performance of the more traditional support vector machines (SVMs) only 
recently (Chen et al. 2014; see Zhang et al. 2016 for a review). 

1.3.1 Support Vector Machines 

Spectral signature identification is a classification problem: Whether some region of the 
image represents a type of soil, buildings or cellular organelles boils down to a classification 
choice. Out of the myriad of classification algorithms developed for different statistical 
problems, SVMs have long offered the best results for hyperspectral data analysis, and are 
today second only to recently developed Deep Neural Networks.  

SVMs, Support Vector Machines, have been around since the 1960s (Vapnik 1963) and rely, 
in their simplest form, on identifying a hyperplane that can separate (with a maximal margin) 
all n-dimensional observations in a provided training set of m observations. In less obscure 
terms, SVMs (or, more precisely, linear SVMs) identify and optimize linear boundaries 
between classes of training points. To reduce computational cost, instead of estimating the 
coordinates of the optimal hyperplane by using all datapoints, support vector machines use a 
subset of the datapoints that lie at the boundary between classes, which are called support 
vectors. It has been demonstrated that the optimal hyperplane for separating the two classes 
and maximizing generalization performance is the one maximizing the margin between the 
itself and the support vectors of the two classes (Vapnik & Kotz 1982). 

Once the optimal hyperplane has been estimated, when new data is acquired and needs to be 
classified the algorithm evaluates whether a new observation is situated on one side or the 
other of this boundary. The result, usually called a prediction, determines whether this new 
observation is part of one class or another, but it also provides an estimate of how “certain” 
that classification is: The Euclidean distance from the estimated boundary is usually extracted 
from the algorithm as a classification score, which can be useful a posteriori to assert the 
validity of segmentation results. 

Of course, linear classifiers like linear SVMs are often not adapted to real-life data, in which 
the different classes are often spread in complex intertwined regions of their feature space. A 
workaround for this problem was developed in the early 1990s (Boser et al. 1992) and made 
SVMs the go-to classifiers for almost 20 years. The idea was not only to transform the feature 
space of the observations into another, where the differences could be separated linearly, but 
also creating new dimensions from the ones existing if necessary. This method is called the 
kernel trick, because the new dimensions are created through so-called kernel functions, 
which allow the SVM classifier to operate in a high-dimensional, implicit feature space 
without ever computing the coordinates of the data in that space. Instead, the dot products that 
are normally used on the data to compute their classification score in linear SVMs are 
replaced by the kernel functions. This operation is computationally cheaper than the explicit 
computation of the coordinates, and makes the separation of nonlinear data possible. A lot of 
kernel functions have been used in the literature, but in the field of hyperspectral imaging 
Gaussian radial basis functions typically yield higher performance with respect to speed and 
accuracy (Mountrakis et al. 2011): 
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are given a misclassification weight depending on some mislabeling score2. A tradeoff 
parameter between the sum of weighed misclassifications and the size of the feature space is 
set by the experimenter, and is typically determined empirically (Steinwart & Christmann 
2008). 

Finally, the curse of high-dimensionality is a problem in SVMs too, and the number of 
features, or wavelengths, in hyperspectral data reduces the performance of the classifiers (this 
behavior is known as the Hughes phenomenon (Hughes 1968)). The common procedure is 
therefore to reduce the dimensionality of the feature space while minimizing information loss 
via  so-called feature extraction procedures. Although a number of algorithms for feature 
extraction has been used for specific applications, one of the first and most straightforward 
algorithms to be used and that dominated the field in the early years of hyperspectral imaging 
is principal component analysis (Hotelling 1933) and a number of its variants(Mountrakis et 
al. 2011). 

The analysis of hyperspectral data with SVMs was first suggested in the late 1990s (Gualtieri 
& Cromp 1999) but the first paper to compile all the improvements on SVM performance 
mentioned above and to establish SVMs as the undisputed hyperspectral data classifiers for 
more than a decade appeared only five years later (Melgani & Bruzzone 2004). For an in-
depth technical discussion on SVMs see (Steinwart & Christmann 2008). For an extensive 
review of SVMs and their ameliorations in hyperspectral data analysis, see (Mountrakis et al. 
2011). 

As a side note, SVMs have also been used for microscopy image analysis, and cell 
segmentation in particular. But because SVMs are primarily classifiers that must be wrapped 
in several layers of image analysis and feature extraction to transform input images into a 
myriad of observations to classify, their usage remained largely confined to niche 
applications, like white blood cell identification (Ramoser et al. 2005; Osowski et al. 2009). 

1.3.2 The framework of hyperspectral imaging 

To summarize, the typical workflow of hyperspectral data analysis with support vector 
machines is as follows: 

1. Training 
1.1. Hyperspectral training and evaluation datasets are acquired, and experts label the 

different classes in it. 
1.2. A feature reduction step is applied, thus drastically reducing the number of 

dimensions while preserving a maximum of the original information in the data. 
1.3. A number of SVM are fitted to the labeled training set after feature extraction, each 

with different sets of parameters (kernel function, misclassification/dimensions 
tradeoff, maximum number of support vectors…) 

                                                 

2 This family of methods is called loss functions. The most common one used with SVMs is the hinge loss 
function (Gentile & Warmuth 1998; Steinwart & Christmann 2008) 
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1.4. The classification performance of each SVM is then assessed on the evaluation set, 
and the best result is used for identification, or the experimenter can go back to step 3 
to try to improve performance based on those results. 

2. Prediction/Production 
2.1. Acquire new unlabeled hyperspectral data. 
2.2. Transform data into the new feature space from training step 1.2. 
2.3. Classify the signatures of each pixel into the classes from step 1.1. 

3. (Optional) Use classified images for target recognition/detection (Vehicles, 
infrastructures, forests…) with traditional image segmentation techniques. 

 

This procedure inspired the segmentation algorithm I am going to present in this chapter, 
which replaces the spectral signatures from hyperspectral imaging with so-called “focal 
signatures” that are acquired by imaging focal plans above and below the cells’ imaging 
plane. The focal signatures are the pixel illumination levels acquired at each focal plane, 
which vary depending on the element of the in-focus image. Basic optics suggests that these 
changes in signature between the different elements depend on the shape and composition of 
the object being observed, thus making object class identification possible in theory. 

2 Z-stacks and focal signatures 

While working on autofocussing techniques to try to obtain stable time-lapse movies and 
minimize measurement noise, I had to acquire a number of Z-stacks to use as inputs for the 
algorithms I was developing (see section 3.1.7 of chapter 2). So-called Z-stacks are stacks of 
images acquired at different focal planes, usually around the focal plane of interest where the 
cells are most discernable. If we adopt the usual convention of naming the 2 dimensions along 
which the images are taken x and y, the axis along which the focal-plane stack is acquired is 
logically labeled z, hence the name Z-stack. The development of autofocussing techniques 
was an ongoing task throughout my PhD, but I rapidly realized that, instead of trying to 
simply identify the best frame in the stack according to some criterion (image sharpness, 
histogram levels…), results that were both more precise and accurate would be achieved by 
measuring the same feature in all stacks in the image and then comparing it to some reference 
“signature” acquired at the beginning of the experiment.  

Around the same time, I was also trying machine learning algorithms for cell segmentation. I 
did not know then of the results acquired with DNNs on neurons membranes (Ciresan et al. 
2012), and was trying to use methods typically used for pedestrian identification in images 
based on SVMs and HOG transforms3 (Dalal & Triggs 2005). While this method gave 
satisfactory results on another project I was collaborating on for ant segmentation, it became 
rapidly clear that the method was not adapted to bacterial cell detection. Somewhat 

                                                 

3 Histogram of oriented gradients, or HOG, is a feature extractor for 2D images that splits an image into 
overlapping windows and computes for each of them a histogram of the gradient for different orientations. 
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paradoxically, the complex shapes humans or ants can adopt made them more easily 
discernable from other objects or between themselves, while the simple shape of bacteria 
coupled with the quality of the images at this level of magnification made the approach 
irrelevant. 

But eventually one day, in a perfect illustration of the Eureka phenomenon (Asimov 1971), 
while precariously riding home on my bicycle after one too many beers and a frustrating 
number of desperate attempts at segmenting cells with dubious combinations of SVMs and 
feature extractors, I finally thought of using the information that I knew could be found in Z-
stacks to identify cells. 

After acquiring new Z-stacks with hundreds of frames4 and analyzing what would later be 
called the focal signature of specific objects in the stack, it became evident that not only did 
the “signature” of some criterion along the Z-axis was specific to the object that was being 
observed and hence identifiable (see autofocussing method in section XX of chapter 2), but 
also that the signature of each z-pixel5 in the stack was closely related to the class of object 
they were part of. The acquisition process as well as the typical shape of the signatures is 
detailed in Figure 2-1. 

The Z-stacks were acquired on a number of different automated microscopes, two of which, 
referenced here and amongst labmates as Mustard and Marple, are in our lab and are based on 
the IX71 and IX81 Olympus chassis and feature a variety of different equipment. The most 
notable piece of equipment on the IX71-based microscope Mustard is the piezo-driven 
motorization of the objective nosepiece along the Z axis, which allows for precision 
positioning with a resolution in the tens of nanometers. For that reason, and also that Mustard 
was the microscope on which I implemented the control platform and was the most familiar 
with, the majority of acquisitions were performed on this microscope. Unless otherwise 
specified, the Z-stacks were acquired on it. Two other microscopes were used by collaborators 
to acquire Z-stacks for evaluating the performance of the algorithm, one located in the lab of 
the Biologie et Dynamique des Chromosomes group of CNRS UMR 7212 at Hôpital Saint-
Louis in Paris, and another located in the lab of the Molecular Microbial Ecology group at the 
Department of Environmental Systems Science of ETH Zurich. These two microscopes will 
be referred to here as St-Louis and Zurich.  

The stacks were acquired with varying distance steps (z-steps) between each frame, from 
100nm to 1μm. The original number of frames per stack was 100, with 100nm steps between 
all stacks, but eventually it became clear that much lower numbers of frames were sufficient 
to achieve satisfactory signature classification performance for robust segmentation, although 
higher frame numbers increased the performance marginally (see section 4.2.1). I also 

                                                 

4 I will refer to single images acquired at specific focal plans in a Z-stack as frames. 
5 I call a z-pixel the vector of intensity values along the Z axis that are acquired in each frame of the Z-stack for a 
specific set of pixel coordinates (x, y) along the X and Y axis. The term might  be used interchangeably with 
focal signature, but is generally preferred here when referring specifically to raw data, while the term signature 
will be used in a more conceptual way and regardless of the feature space it is represented in. 
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the histograms of all the training stacks and, once the SVM were trained, on all new Z-stacks 
as well, to ensure that all data were spread over the same intensity scale. 

The second problem, shifting, does not happen in hyperspectral data. It consists in a shift of 
the signatures along the Z axis caused by autofocussing error. Because the training Z-stacks 
are acquired around the focal plan at which the cells are precisely in focus, the frames are 
taken always at the same distance from the central in-focus frame. That means that the 
features of the training signatures are acquired at specific points in Z around the in-focus 
point. However autofocussing is not always perfect, or the specimen observed can be tilted, 
and this can lead to a shift of the signature in Z. In this case, the shape of all signatures in the 
stack will appear drastically different to the SVM. 

The physics of hyperspectral sensors make such a shift impossible in this type of data, so 
unsurprisingly there were no solutions to be found in the literature. For a time we 
experimented with pre-processing methods to re-shift the data in such cases or iterative 
prediction steps to select the best result. But in the end, a more elegant solution was to simply 
train the SVM on shifted data: The stacks for training at a high resolution in z were acquired, 
and then subsampled for the frames we needed in the stack to train for in-focus data. Then,  an 
artificial shift in Z would be applied by re-subsampling for the frames with a shift in Z. 
Subsamples were acquired for an arbitrary shift range and the SVM were trained on all those 
data: the in-focus data, but out-of-focus data as well. This procedure not only made the z-pixel 
classification more robust to autofocussing errors, up to the point where the autofocus could 
be so wrong that cells could not be identified anymore in the supposedly in-focus frame and 
still the z-pixels could be identified properly, but it also made the results more accurate when 
there were no autofocussing errors. We think that the latter is because the shifting procedure 
works as a sort of data-augmentation method that made the SVMs better at generalizing to 
new observations. Another advantage of this method is that, except for the shifting range that 
is decided at the beginning and that can be seen as the “range of robustness to autofocussing 
error”, the algorithm does not require any arbitrary parameter to be decided upon by the user 
or any knowledge of signal or image processing for correcting focusing errors. 

A third problem, which we are currently working on but that only arises when lamp alignment 
was not performed properly prior to the acquisition, can be referred to as „skewing’. It 
consists in a shift of the objects in the image along the X and Y axes when the frames are 
acquired along the Z axis. In other terms, images are not well-aligned between focal plans. 
The shift appears to be linear, i.e. the image is shifted by a constant vector (     ) every fixed 
z-step. We still have not found a way to robustly and automatically identify the shift to correct 
it. 
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4 Classification 

4.1 Class prediction and confidence map 

Once a set of SVMs has been trained, it is used for „production’, or to identify new stacks for 
cell identification and segmentation. 

When a new stack is acquired, it is first scaled to the same dynamic range as the training 
stacks (basically the histogram of the entire stack is equalized over the maximum range of the 
training data type, which is usually uint16) 

It is then transformed into the principal components base by multiplying the z-pixels by the 
principal coefficients from the feature extraction step described in section 3.3. 

The SVM is used on the transformed data, and for each z-pixel a set of classification scores 
that correspond to each of the classes the SVMs were trained for is produced. Because all z-
pixels are independent from each other and their classification does not depend on the 
classification of other pixels, parallelization of the prediction process is trivial. Unfortunately 
Matlab does not feature a GPU-accelerated SVM library, which can decrease processing time 
by two orders of magnitude (Catanzaro et al. 2008). Parallelization can still be performed at 
the CPU level. We used a Dell Precision T7910 with a 20-core Xeon ES-2650v3 processor, 
that allowed us to significantly decrease processing time, down to a bit more than a minute for 
an entire stack of 100 frames and 1392x1040 pixels per frames. Processing time can of course 
be reduced by defining regions of interest in the image and not classifying the rest of the 
image. 

The SVMs raw scores are also used to establish a confidence map of the classification in the 
image. To produce this so-called confidence map, we apply the softmax function to the SVM 
classification results for each result, and pick the score of the best class as the classification 
“confidence”. The softmax function is commonly used in deep neural networks and is used to 
normalize classification scores. It is defined as: 

           ∑       , 
With    being the vector of the SVM classifications scores (         ) of the m SVMs for 
each of the m classes in the training set, for a z-pixel p of coordinates (x,y).          is the 
softmax function evaluated for class i on the classifications scores of z-pixel p. We call    (                ) the vector containing the m softmax evaluations of each class for 
a z-pixel p. The softmax function restricts the scores to the interval [0, 1], where the initial 
SVM classification scores could be any element of  . The second interesting property of the 
softmax vector is that the sum of its elements ∑         equals one. For those reasons the    

vector can be interpreted as a probability distribution, and        as the probability that pixel 
p is of class i. The    vector can also be seen as a sort of composition of the signature of z-
pixel p in terms of the archetypal signatures for each of the classes. The confidence map   is 
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constructed for any of its pixel of coordinates (x,y) from the softmax vectors of the 
corresponding z-pixel p as the highest softmax score for that z-pixel:         ‖  ‖  

The confidence maps can be seen in the results in section 4.2 and inform the experimenter or 
a downstream algorithm on the reliability of different parts the classified image. The class 
map    defined as         =        of a specific class i can be used to improve 
segmentation as we will see in section 5.3. 

4.2 Results 

The results presented here are classification results obtained on different organisms. In section 
5 I present how these results can be used to segment cells. Unless otherwise specified, the 
results were obtained on different stacks than the ones used for training the SVMs 

4.2.1 Escherichia coli – Mother Machine 

The mother machine type of Z-stacks are the ones I worked on the most since I did most of 
my work on the toggle switch in this microfluidic device. The SVMs were trained to identify 
6 classes: 

 Inside: The inner part of the cells. 
 Membrane: The outer part of the cell.  

While the distinction between those two parts of the cells is not strictly necessary and 
a single class for the entire cell gives equivalent results, this partition  of the cell 
simplifies segmentation, and can be used for simple watershedding as demonstrated in 
section 5.1. 

 Halo: The region of the mother machine chambers that is in between the cells and the 
PDMS wall. 

 PDMS wall: The PDMS wall of the chambers. 
 Chamber: Empty mother machine chambers. 
 Empty: Empty parts of the image. 

The training set was constructed with regions in the vicinity of the chambers because it was 
the only part of the images we were interested in. The classification is therefore not as good or 
relevant in other parts of the image. In section 5.1 we reduce the classified image to a region 
of interest (ROI) to avoid dealing with misclassified parts of the region. 

In the results presented on Figure 4-1, we can see that different regions in the image are 
correctly labeled, except for a few mistakes that are caused by glitches in the image. Such 
minor errors can be ignored altogether or can be corrected a posteriori with morphological 
rules. 





 IV -  Stack segmentation  
 

143 
 

The effect of the number of frames per stack on performance was also studied. From the same 
stack and labeled z-pixels, different subsets of frames in the 100 that counted the stack were 
used, with different subsampling methods. We used between 3 and 99 frames per stack and 
performed feature extraction, training, and mislabeling evaluation on those subsets (see 
section 3). Once the SVMs were trained, we classified entire frames and recorded the total 
classification time. We discovered that, while higher numbers of frames would tend to 
increase performance, the gains were marginal after 10-20 frames per stack (see Figure 4-3A). 
We were able to obtain segmentable results with only 7 frames per stack (see Figure 4-3B), 
which could also be brought down by identifying the most informative frames in the stacks 
from feature extraction. This result can be particularly interesting in cases where time is an 
issue (for example in multi-position time-lapse acquisitions) or in cases where cells are 
sensitive to long exposure times. 
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Figure 4-7 Identification results on HeLa cells. Stacks of 150 frames with 0.3um z-steps were acquired on Marple with a 60X 
oil objective, in transmitted light. Here the quality of segmentation is a bit lower, especially around the empty part of the 
image. In section 5.3 I discuss a method that uses the confidence maps for closing the contours of the cells and segmenting 
them. 

5 Segmentation 

I do not consider cell segmentation to be part of this algorithm, because almost all types of 
cell segmentation techniques can be used downstream of this classification/identification step. 
Traditional methods like watershedding or active contours can be used, or even deep learning 
approaches, although if one is to go through the trouble of implementing a deep learning 
algorithm, with a little extra effort the performance should be greatly improved by fusing the 
identification and segmentation step as I discuss in section 7. 

However, here I will present simple implementations of cell segmentation to illustrate how 
easy cell segmentation becomes once the different parts of a microscopy image are identified, 
but also to illustrate how confidence maps and classification scores can be used to improve 
segmentation. 

It should be noted that none of the segmentation procedures presented here use active 
contours or deformable models. Hence no assumption on the shape of the cells is made by the 
experimenter, which should improve the segmentation performance if chosen properly. 

5.1 Escherichia coli – Mother Machine 

This example illustrates the simplest form of segmentation that can be used to identify single 
cells in classified images. I will apply this procedure to the results described in section 4.2.1 
because it is the most relevant to this thesis, although a similar approach can be used on the 
results presented in section 4.2.2.  

A simplified form of 2-step watershedding is applied to the classified image as follows: The 
different watershedding objects/regions are seeded as the “cytoplasm” regions of the bacteria 
and are then spread into the membrane regions until they connect, thus delimiting the borders 
of each cell. The procedure as well as the results are described in Figure 5-1. 
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6 Towards 3D segmentation 

To my knowledge, there have been no algorithms proposed for 3D segmentation of cells in Z-
stacks of transmitted light images. While this problem is even more difficult than cell 
segmentation in a single focal plane, the possibility to segment colonies of cells freely 
growing in 3 dimensions would make the study of complex ecosystems of cells possible, or 
the evolution and growth of tissues, biofilms or embryo without requiring complex, and 
sometimes impossible, cloning procedures. 

In this section I present a slight modification of the procedure described in previous sections 
that gave encouraging results in this direction. I used stacks of Staphylococcus aureus and 
mammalian red blood cells in solution. One particularity of those stacks is that cells are not 
all in the same focal plane, with red blood cells being in-focus about 7 microns above the 
bacteria. Because of this wide variety in focus I decided to try to segment the cells in 3D. 
Instead of using the entire stack to train and segment the cells, I used only 20 frames around 
the focal plan of the different parts of the training set and trained the SVMs on those local 
signatures. I then ran the classification on all possible moving stack of 20 frames along the Z 
axis through the entire 300-frame stack. For each center frame the local stack would be 
classified and the classification scores were kept. 

In Figure 6-1, the in-focus frame, as well as the corresponding classification map, are 
represented for different local Z-stacks. The different parts of the image are correctly 
classified when they are in focus, but are incorrectly classified when out of focus. This error 
can probably be blamed on bad dataset construction, which is a tedious task in 3 dimensions, 
and also on the long computation times: The software has not been developed, and therefore 
not optimized, for this 3-dimensional approach, and the classification time for an entire stack 
is counted in hours. This puts a hard limit on the speed of development of this aspect of the 
algorithm. Furthermore, 3D convolutional neural networks might be more adapted to this type 
of application, as discussed in section 7. 

The classes used in this training set were the following ones: 

 Staph_inside: Inner part of Staphylococcus aureus. 
 Staph_membrane: Outer part of Staphylococcus aureus. 
 Red_blood_cell: Entire red blood cells. 
 Empty: Empty parts of the image. 
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generally for quantitative biology the possibility to generate single-cell data robustly and with 
minimal human inputs would allow for a finer level of analysis of gene expression in gene 
regulation networks at the population level but also, with sufficiently good data, at the lineage 
level. 
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1 Contributions 

In this dissertation, I presented several tools for implementing a platform for single-cell 
control of gene expression in bacteria. I propose this platform to control a bistable, 2-inputs 2-
outputs genetic circuit, the genetic toggle switch, to illustrate the possibilities offered by 
external control of gene expression, but also to study the dynamics of this fundamental 
network. A seducing aspect of the control results presented here is that a diffcult task like 
stabilizing the genetic toggle switch in its unstable area was performed with a simple control 
framework and minimal a priori knowledge of the controlled system. In general, the shift of 
the implementation of the regulatory process from in vivo to in silico allows for faster 
implementation-experimentation cycles, and more importantly allows for the development of 
control strategies that are significantly more complex than what can currently be designed for 
in vivo regulation. 

The online single-cell aspect of the platform and acquired data presented here is also 
important. Single-cell data measures gene regulation networks dynamics at a finer level of 
details than population or flow cytometry measurements, and is crucial for the study of some 
aspects of gene expression. For example distinguishing intrinsic and extrinsic noise in the 
dynamic study of stochastic gene expression would be impossible without long-term single-
cell definition. The study of inheritance in populations of cells would also be impossible 
without single-cell data, tracking, and lineage reconstruction in timelapse microscopy images. 
In this study, controlling a multistable system like the toggle switch would not have been 
possible without single-cell timelapse data: On one hand, if fluorescence had been extracted 
from timelapse data at the population level, like in (Fracassi et al. 2016; Fiore et al. 2013) , 
and not at the single-cell level, it would have been impossible to distinguish cells in the 
unstable area from a mixed population of cells in either of the two basins of attraction, since 
the fluorescence in those states would have been averaged. On the other hand, flow cytometry 
or similar methods used in other control platforms (Melendez et al. 2014; Milias-Argeitis et 
al. 2011; Milias-Argeitis et al. 2016) would not have provided the history of the measured 
cells and it would have been impossible to know whether cells were really maintained in the 
unstable area or simply transiting through it. 

With this platform, we studied the possibility of real-time control on a synthetic bistable gene 
regulation network, the LacI-TetR genetic toggle switch. As illustrated in the state-of-the-art 
of this thesis, toggle switches, and multistable systems in general, are known to play a central 
role in cellular decision-making, and to be a key component of synthetic biology circuits. We 
showed two approaches to maintain this bistable genetic circuit close to its unstable 
equilibrium state: closed-loop control and periodic stimulation. We demonstrated that single-
cell control of a bistable system can be achieved with relatively simple control frameworks 
and very little a priori knowledge of the system. We also demonstrate the possibility to 
perform multiple-input-multiple-output control studies of genetic networks, which would 
facilitate and accelerate the examination of internal network dynamics. Finally, the dynamic 
stabilization of an entire population of toggle switch cells in the unstable area of the system in 
open-loop experiments is a new observation that suggests that multistable genetic networks 
could be extracted from, and maintained outside of, their stable states without observing their 
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state in real-time. Another implication is that gene regulation networks can feature hidden 
stable states that could occur because of dynamic stabilization phenomena. Therefore, with 
the advent of the dynamic study of gene regulation networks, it should be possible to look for 
such effects that could not be discovered throughout the simple study of static connections 
between different elements of a gene regulation network. 

One of the important aspects of single-cell control of gene expression is the ability to segment 
and track single cells. In the previous chapter of thesis I presented a new concept for 
automated cell segmentation. An untapped amount of optical information about the objects 
observed through a microscope is hidden in focal planes above and below the focal plane of 
the specimen. I developed a machine-learning algorithm that exploits this information to 
accurately identify regions of the image as part of different classes of objects. The procedure 
can be applied to mixtures of various types of objects like yeast cells, bacteria, mammalian 
cells, but also microfluidic structures. I also demonstrate that with this identification of the 
different regions of the image cell segmentation is facilitated and can be achieved with 
rudimentary image analysis tools. The development of machine learning-based tools for 
robust image analysis should lower the necessary efforts to control and investigate new gene 
regulation networks at the single-cell level in new organisms. 

2 Limitations 

The approach, of course, has its limitations. The use of chemical inducers like IPTG and aTC 
forced us to modify the host strain to ensure it would not interfere with the concentrations of 
inducers applied to the cells. The modifications increased delays in our system which limited 
the control performance. It also made the cells less more sensitive to environmental stresses, 
which also made control experiments more challenging since the cells had a tendency to 
filament during experiments. The use of chemical inducers should not be abandoned however, 
but used in conjunction with optogenetic induction mechanisms to expand the number of 
possible input knobs. Optogenetics and chemical inducers can also be used to examine the 
interplay between environmental changes and intracellular phenomena. 

Also, the platform as it is implemented now only controls fluorescence level, and not actual 
proteins levels or the level of some biologically relevant element. It appears that in all 
applications of external control platforms so far, the state variable that is actually controlled is 
the one that is directly measurable, i.e. fluorescence. It is possible to estimate the levels of the 
system variables that are not directly measurable though, through state estimation techniques 
that have been part of control theory for a long time. In (Uhlendorf et al. 2012; Milias-
Argeitis et al. 2011; Fiore et al. 2015; Milias-Argeitis et al. 2016) such state estimation filters 
were used, to not only estimate the state of the observed fluorescent probes that were being 
controlled, but also estimate the state of internal variables of their models. Those internal 
variables could also be controlled. In biological systems, most often the variable/process to 
control is not directly measurable and its observation is hidden behind intricate dynamics and 
noise. The ability to control hidden state variables in gene regulatory networks would be a 
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remarkable development in external cell control and would expand the area of its possible 
applications. 

The application of model-predictive control has not been performed on our control problem. 
Although plugging this new controller into the platform would be facilitated by its modular 
structure, and we now have the knowledge necessary to establish a new model of the 
dynamics for controlling our toggle switch (since models used for model-predictive control 
are usually simpler than the one we have described here) we have not experimented with this 
approach yet, except in preliminary in silico studies. One of the possible extensions of the 
work presented here would be the analysis of control performance of the genetic toggle switch 
with this type of approach. 

Several limitations are also inherent to the various elements of the platform. In the next 
section I discuss recent developments in various related domains that might trigger other 
progresses in the field of external control of gene expression. 

3 Developments of the control platform 

The field of in silico cybergenetics has emerged from recent developments in microfluiduics, 
molecular biology, systems biology, image analysis and in vivo measurement automation that 
made the assembly of external control platforms possible. Naturally, the range of applications 
of the field is going to expand with progresses made in those areas over the years to come. 
Some recent progresses have not been integrated to the platforms yet, or only partially, and 
here I am going to discuss some of those recent advances that could benefit our domain. 

3.1 Active microfluidics 

In our platform, and in all microfluidics-based platforms used for control so far, the valves 
and mixing apparatus were not fully integrated to the chip. It is possible however to integrate 
various valves and pumps to the microfluidic device (Unger et al. 2000; Li et al. 2005; 
Sundararajan et al. 2005). Those mechanisms have since been used to develop high-
throughput labs-on-a-chip for chemistry and molecular biology, but they have also been used 
successfully for high-throughput studies of gene expression in live cells (Sorre et al. 2014; 
Dénervaud et al. 2013). Such systems could be used in control platforms to parallelize the 
study over different gene networks, different strains, or different independent stimulations. 

3.2 Optogenetics 

Optogenetics is a biological technique which involves the use of light-sensitive proteins to 
control intracellular processes, such as gene expression, protein recruitment, or enzymatic 
activity. The field is relatively recent, with the first system for controlling gene expression in 
yeast (Shimizu-Sato et al. 2002) appearing in the early 2000s. Over the following decade 
other optogenetic systems were developed in bacteria (Levskaya et al. 2005; Tabor et al. 
2011; Kaberniuk et al. 2016) and mammalian cells (Strickland et al. 2008; Gunaydin et al. 
2010; Toettcher et al. 2011a) to control either gene expression, signaling, or enzymatic 
activity.  
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Although optogenetic has been used in some control platforms (Milias-Argeitis et al. 2011; 
Melendez et al. 2014; Milias-Argeitis et al. 2016) its integration into microfluidic platforms is 
more difficult, although not impossible (Renault et al. 2015). Integrating optogenetic 
actuation into the light path of the microscope makes it even possible to illuminate the cells 
with chosen patterns (Levskaya et al. 2009; Yang et al. 2013), which would open the door to 
independent single-cell actuation of all cells within a population. 

3.3 Fluorescence  

Fluorescent probes design has gone through a rebirth in the last few years with the advent of 
super-resolution imaging (Mishin et al. 2015). One of the interesting developments for 
external control of gene expression is that new fluorescent probes have been developed that 
span new regions of the visible spectrum, therefore making it possible to observe higher 
numbers of fluorescent proteins at once. A promising result in this regard is the expansion of 
the space of discrimination between proteins into a new dimension: Time-modulation of light 
inputs, in addition to the traditional discrimination through the wavelengths of excitation and 
emission of the proteins, should make it possible in the near future to discriminate between a 
number of fluorescent proteins never reached before (Querard et al. 2015). Other remarkable 
advances in this direction are made to expand the usable spectrum for illumination and 
observation into the infra-red (Filonov et al. 2011). But infrared fluorescent proteins do not 
only expand the range of usable wavelength, they also permit deeper penetration of the light 
input into biological materials, and could be used in the future to image and control cells or 
cell populations inside colonies, biofilms or even tissues. The development of photoacoustic 
probe proteins goes even further in this direction, recently making the observation of gene 
expression up to 10 millimeters deep within tissues possible in live mice at high spatial 
resolution and in 3 dimensions (Yao et al. 2015). 

The problems of fluorescent protein maturation delays and photobleaching limit the resolution 
of discernable dynamics in timelapse fluorescent imaging, and this can reduce the control 
performance. Fast-maturing fluorescent proteins have been developed over the years (Bevis & 
Glick 2002; Fisher & DeLisa 2008) but a recent shift in the field of fluorescent probe design 
that solves both maturation delays and bleaching issues uses so-called fluorogen-activating 
proteins (Schwartz et al. 2015; Plamont et al. 2016): Instead of waiting for the protein to fold 
completely for the chromophore to be activated, a synthetic chromophore is provided in the 
growth media. Fluorescence is activated by the genetically-encoded protein, which is simpler 
and smaller than fluorescent proteins and does not require chromophore maturation. 

3.4 Image analysis 

Image analysis was discussed extensively in chapter 4. New techniques for cell segmentation 
and tracking were developed in recent years, and the emergence of machine learning methods 
is a game-changer in the field, not only in cell segmentation but also in other sub-domains of 
image analysis (LeCun et al. 2015). Beyond the cell segmentation methods proposed in this 
thesis and in the U-net architecture (Ronneberger et al. 2015), machine learning could be used 
for robust tracking and lineage reconstruction, as such methods have been applied to similar 
problems in other areas of image analysis (Wang & Yeung 2013; Shen & Liu 2008). Robust 
cell segmentation, tracking and lineage reconstruction combined with the single-cell 
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optogenetic control procedure described earlier, would open the door to the study of 
epigenetic and transmission phenomena in gene regulation networks within populations of 
cells. 

3.5 Cloning and genome engineering 

In our study, the cellular chassis is considered part of the study. Indeed, now that a cellular 
chassis has been developed for long-term control in Escherichia coli with the lac and tet 
systems, other circuits can be constructed and transformed in this host cell for control 
experiments. The development of such chassis strains is a tedious process and can be 
accelerated by recently developed techniques in DNA manipulation and cloning. This also 
applies to the development of synthetic circuits for control, or to the integration of actuation 
and observation elements in the gene regulation networks to study. Although external control 
platforms require much less modifications of the genome or less complex synthetic networks, 
cloning and genome engineering are still necessary, and any progress made in this direction 
would benefit the study of those systems. 

The recent revolutions of the ZFN, TALE and CRISPR/Cas9 systems (Gaj et al. 2013) are of 
course possible ways to speed up the control workflow. But not only can those systems be 
used for genome engineering, they can also be used as custom recombinases, transposases, 
and more importantly transcription factors (Kabadi & Gersbach 2014). The possibility to 
design custom-target transcription factors would make it possible to control the dynamics of 
arbitrary genes in gene regulation networks. Recently, a photoactivable version of the 
CRISPR/Cas9 system was developed for optogenetic genome editing (Nihongaki et al. 2015), 
and one can expect the design of custom optogenetic transcription factors to become possible 
in the near future. 

New cloning techniques developed over the past decade, like the Golden Gate technique 
(Engler et al. 2008) and its standardized version the Modular Cloning technique (Weber et al. 
2011), or the Gibson assembly (Gibson et al. 2009) made it faster and easier to assemble long 
circuits into plasmids, which in turn can speed up the workflow of control-based analysis of 
genetic networks. De novo synthesis also became one of the preferred method for developing 
new circuits (Kahl & Endy 2013) thanks to a drop in price over the past few years, and we can 
hope that these methods will eventually replace the tedious process of parts assembly in the 
long run.  

4 Perspectives 

In silico feedback control of biological processes in vivo has just emerged recently as I have 
detailed in the state-of-the-art of this dissertation, but it already sparked interest in the 
community (Del Vecchio et al. 2016) with possible applications speculated in medicine 
(Menolascina et al. 2012), optimal experimental design (Ruess et al. 2015; Ruess et al. 2013), 
metabolic engineering (Shiue & Prather 2012), or even space exploration (Menezes et al. 
2015). It has to be noted though, that the work I presented here should be seen as a proof-of-
concept implementation of a feedback control system for gene expression of multistable 
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systems in bacteria, and significant work remains to be done to actually apply feedback 
control systems for the generation of precise perturbations of any chosen biological system. In 
this final section however, I will detail possible long-term applications of in silico 
cybergenetics. 

The recent success of systems biology illustrates the importance of investigating not only the 
structure and function, but also the dynamics of biological systems. In this respect, recent 
progresses in cloning, genome engineering and custom transcription factors fabrication should 
make it possible to control arbitrary genes in endogenous gene regulation networks to dissect 
their dynamics. Another interesting domain progressing quickly is the field of iterative, 
optimal experimental design. Given some initial information on a biological system, along 
with a defined objective (e.g. estimating the parameters of a model of the system, being able 
to perform the best predictions of a given situation etc.), it is possible to optimize the choice 
of experiments to be conducted to reach that objective. This method is particularly relevant to 
reverse-engineer complex genetic networks for which intuition is not sufficient to estimate the 
best course of action to extract a maximum of information out of all the expectable 
consequences of given perturbations. Control platforms could be used as automated tools for 
optimal experimental design to achieve on-the-fly, optimal, and possibly high-throughput 
scrutiny of endogenous networks. 

Another closely related area of research that could benefit from external control of gene 
expression is circuit testing and characterization. By automating the process and parallelizing 
the platforms, library of circuits could be tested in different settings, with different dynamic 
perturbations. A significant obstacle for the construction of novel functions in synthetic 
biology is the integration of low-level modules together to obtain high-level signal processing 
functions in the biochemical network. Because the dynamics of the different modules are 
often poorly characterized, as we saw with the genetic toggle switch in this thesis, assembling 
them together to produce a desired function is often a difficult task. Parallelized control 
platforms could be used to characterize precisely those modules, and the inferred models 
could be used to predict the behavior of assembled circuits. 

In a different domain, bioreactors used for industrial production of chemicals of interest are 
notoriously difficult to calibrate and batch-to-batch reproducibility and yield maximization 
are often imperfect (Polizzi & Kontoravdi 2015). External control of gene expression could 
help solve these problems (Milias-Argeitis et al. 2016) and lower the costs of production of 
the chemicals by minimizing chemical inducers and culture costs. Several problems remain to 
scale up the processes described in batch culture control of gene expression, especially input 
delivery, but this should be one of the most direct contributions of current gene expression 
control platforms to the industry. 

One related domain where control platforms could also be applied in the near future is 
metabolic engineering. It has been shown that the yield of synthetic metabolic pathways can 
be optimized by integrating control loops between the metabolic layer and the genetic layer of 
the patway (Zhang et al. 2012; Oyarzùn & Stan 2012). Optogenetic tools for driving 
enzymatic activity already exist (Beyer et al. 2015) and a plethora of biosensors for various 
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metabolites have been developed over the years (Okumoto et al. 2012; Su et al. 2011; Polizzi 
& Kontoravdi 2015). The seminal work of (Toettcher et al. 2011b) in this regard proves that 
similar intracellular processes can be controlled over short timescales, and it should be 
possible to adapt control platforms to the synthesis of chemicals of interest like biofuels. 

Finally the recent development of infrared fluorescent proteins (Filonov et al. 2011) and 
photoacoustic tomography (Yao et al. 2015) makes it possible to observe gene expression in 
live mammalians, and with the development of those techniques, one of the possible future 
domains of applications for external gene expression control platforms is real-time control of 
gene expression in live animals, with possible biomedical applications. 

To summarize, in silico control of intracellular processes is still in its infancy, and we are still 
a long way from routine utilization of those methods to dissect genetic network dynamics, or 
to optimally produce chemicals of interest in bulk. On the other hand, this is the closest we 
have ever been to reaching those goals, and the field of in silico cybergenetics should play a 
major role in the years to come in the broader domains of synthetic biology and systems 
biology. Developing a platform for single-cell control of gene expression in bacteria, 
controlling a landmark bistable genetic network like the genetic toggle switch, and the 
surprising result of dynamic stabilization in a gene regulation network it entailed, will 
hopefully contribute to the development of the field into an established discipline.  



 V- Conclusion  
 

169 
 

Bevis, B.J. & Glick, B.S., 2002. Rapidly maturing variants of the Discosoma red fluorescent 
protein (DsRed). Nature biotechnology, 20(1), pp.83–7. 

Beyer, H.M. et al., 2015. Optogenetic control of signaling in mammalian cells. Biotechnology 

Journal, 10(2), pp.273–283. 

Dénervaud, N. et al., 2013. A chemostat array enables the spatio-temporal analysis of the 
yeast proteome. Proceedings of the National Academy of Sciences of the United States 

of America, 110(39), pp.15842–7. 

Engler, C., Kandzia, R. & Marillonnet, S., 2008. A one pot, one step, precision cloning method 
with high throughput capability. PLoS ONE, 3(11). 

Filonov, G.S. et al., 2011. Bright and stable near-infrared fluorescent protein for in vivo 
imaging. Nature Biotechnology, 29(8), pp.757–761. 

Fiore, G. et al., 2013. An experimental approach to identify dynamical models of 
transcriptional regulation in living cells. Chaos, 23(2). 

Fiore, G., Perrino, G. & Bernardo, M., 2015. In-vivo real-tiŵe control of gene expression : a 
comparative analysis of feedback control strategies in yeast - Supporting Informations 

Appendix - GAL1 promoter mathematical model derivation, 

Fisher, A.C. & DeLisa, M.P., 2008. Laboratory evolution of fast-folding green fluorescent 
protein using secretory pathway quality control. PLoS ONE, 3(6), pp.1–7. 

Fracassi, C. et al., 2016. Automatic Control of Gene Expression in Mammalian Cells. ACS 

synthetic biology, 5(4), pp.296–302. 

Gaj, T., Gersbach, C.A. & Barbas, C.F., 2013. ZFN, TALEN, and CRISPR/Cas-based methods for 
genome engineering. Trends in Biotechnology, 31(7), pp.397–405. 

Gibson, D.G. et al., 2009. Enzymatic assembly of DNA molecules up to several hundred 
kilobases. Nature methods, 6(5), pp.343–5. 

Gunaydin, L. a et al., 2010. Ultrafast optogenetic control. Nature Neuroscience, 13(3), 
pp.387–392. 

Kabadi, A.M. & Gersbach, C.A., 2014. Engineering synthetic TALE and CRISPR/Cas9 
transcription factors for regulating gene expression. Methods, 69(2), pp.188–197. 

Kaberniuk, A.A., Shemetov, A.A. & Verkhusha, V. V, 2016. A bacterial phytochrome-based 
optogenetic system controllable with near-infrared light. Nature Methods, 13(7), 
pp.591–597. 

Kahl, L.J. & Endy, D., 2013. A survey of enabling technologies in synthetic biology. Journal of 

Biological Engineering, 7(1), p.13. 

LeCun, Y., Bengio, Y. & Hinton, G., 2015. Deep learning. Nature, 521(7553), pp.436–444. 

Levskaya, A. et al., 2009. Spatiotemporal control of cell signalling using a light-switchable 
protein interaction. Nature, 461(7266), pp.997–1001. 



 V- Conclusion  

170 
 

Levskaya, A. et al., 2005. Synthetic biology: Engineering Escherichia coli to see light. Nature, 
438(7067), pp.441–442. 

Li, N., Hsu, C.-H. & Folch, A., 2005. Parallel mixing of photolithographically defined nanoliter 
volumes using elastomeric microvalve arrays. Electrophoresis, 26(19), pp.3758–64. 

Melendez, J. et al., 2014. Real-time optogenetic control of intracellular protein concentration 
in microbial cell cultures. Integrative biology, 6(3), pp.366–72. 

Menezes, A.A. et al., 2015. Grand challenges in space synthetic biology. Journal of The Royal 

Society Interface, 12(113), p.20150803. 

Menolascina, F., Siciliano, V. & Di Bernardo, D., 2012. Engineering and control of biological 
systems: A new way to tackle complex diseases. FEBS Letters, 586(15), pp.2122–2128. 

Milias-Argeitis, A. et al., 2016. Automated optogenetic feedback control for precise and 
robust regulation of gene expression and cell growth. Nature communications, 7(May), 
p.12546. 

Milias-Argeitis, A. et al., 2011. In silico feedback for in vivo regulation of a gene expression 
circuit. Nature biotechnology, 29(12), pp.1114–6. 

Mishin, A.S. et al., 2015. Novel uses of fluorescent proteins. Current Opinion in Chemical 

Biology, 27, pp.1–9. 

Nihongaki, Y. et al., 2015. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat 

Biotechnol, 33(7), pp.755–760. 

Okumoto, S., Jones, A. & Frommer, W.B., 2012. Quantitative imaging with fluorescent 
biosensors. Annual review of plant biology, 63, pp.663–706. 

Oyarzùn, D.A. & Stan, G.-B., 2012. Synthetic gene circuits for metabolic control: design trade-
offs and constraints. Journal of The Royal Society Interface, 1400. 

Plamont, M.-A. et al., 2016. Small fluorescence-activating and absorption-shifting tag for 
tunable protein imaging in vivo. Proceedings of the National Academy of Sciences, 
113(3), pp.497–502. 

Polizzi, K.M. & Kontoravdi, C., 2015. Genetically-encoded biosensors for monitoring cellular 
stress in bioprocessing. Current Opinion in Biotechnology, 31, pp.50–56. 

Querard, J. et al., 2015. Photoswitching Kinetics and Phase-Sensitive Detection Add 
Discriminative Dimensions for Selective Fluorescence Imaging. Angewandte Chemie 

International Edition, 54(9), pp.2633–2637. 

Renault, R. et al., 2015. Combining Microfluidics, Optogenetics and Calcium Imaging to Study 
Neuronal Communication In Vitro S. Martinoia, ed. PLOS ONE, 10(4), p.e0120680. 

Ronneberger, O., Fischer, P. & Brox, T., 2015. U-Net: Convolutional Networks for Biomedical 
Image Segmentation. ArXiv. 

Ruess, J. et al., 2015. Iterative experiment design guides the characterization of a light-



 V- Conclusion  
 

171 
 

inducible gene expression circuit. Proceedings of the National Academy of Sciences of 

the United States of America, 112(26), pp.8148–8153. 

Ruess, J., Milias-Argeitis, A. & Lygeros, J., 2013. Designing experiments to understand the 
variability in biochemical reaction networks. Journal of the Royal Society, Interface / the 

Royal Society, 10(88), p.20130588. 

Schwartz, S.L. et al., 2015. Fluorogen-activating proteins provide tunable labeling densities 
for tracking Fc??RI independent of IgE. ACS Chemical Biology, 10(2), pp.539–546. 

Shen, S. & Liu, Y., 2008. Efficient multiple faces tracking based on Relevance Vector Machine 
and Boosting learning. Journal of Visual Communication and Image Representation, 
19(6), pp.382–391. 

Shimizu-Sato, S. et al., 2002. A light-switchable gene promoter system. Nature 

biotechnology, 20(10), pp.1041–4. 

Shiue, E. & Prather, K.L.J., 2012. Synthetic biology devices as tools for metabolic engineering. 
Biochemical Engineering Journal, 65, pp.82–89. 

Sorre, B. et al., 2014. Encoding of Temporal Signals by the TGF-β Pathway and Implications 
for Embryonic Patterning. Developmental Cell, 30(3), pp.334–342. 

Strickland, D., Moffat, K. & Sosnick, T.R., 2008. Light-activated DNA binding in a designed 
allosteric protein. Proceedings of the National Academy of Sciences, 105(31), pp.10709–
10714. 

Su, L. et al., 2011. Microbial biosensors: A review. Biosensors and Bioelectronics, 26(5), 
pp.1788–1799. 

Sundararajan, N., Kim, D. & Berlin, A. a, 2005. Microfluidic operations using deformable 
polymer membranes fabricated by single layer soft lithography. Lab on a chip, 5(3), 
pp.350–4. 

Tabor, J.J., Levskaya, A. & Voigt, C. a, 2011. Multichromatic control of gene expression in 
Escherichia coli. Journal of molecular biology, 405(2), pp.315–24. 

Toettcher, J.E. et al., 2011a. Light Control of Plasma Membrane Recruitment Using the Phy–
PIF System, 

Toettcher, J.E. et al., 2011b. Light-based feedback for controlling intracellular signaling 
dynamics. Nature methods, 8(10), pp.837–9. 

Uhlendorf, J. et al., 2012. Long-term model predictive control of gene expression at the 
population and single-cell levels. Proceedings of the National Academy of Sciences of 

the United States of America, 109(35), pp.14271–6. 

Unger, M.A. et al., 2000. Monolithic Microfabricated Valves and Pumps by Multilayer Soft 
Lithography. Science, 288(5463), pp.113–116. 

Del Vecchio, D., Dy, A.J. & Qian, Y., 2016. Control theory meets synthetic biology. Journal of 

The Royal Society Interface, 13(120). 



 V- Conclusion  

172 
 

Wang, N. & Yeung, D.-Y., 2013. Learning a Deep Compact Image Representation for Visual 
Tracking. In C. J. C. Burges et al., eds. Advances in Neural Information Processing 

Systems 26. Curran Associates, Inc., pp. 809–817. 

Weber, E. et al., 2011. A modular cloning system for standardized assembly of multigene 
constructs. PloS one, 6(2), p.e16765. 

Yang, X. et al., 2013. A light-inducible organelle-targeting system for dynamically activating 
and inactivating signaling in budding yeast. Molecular Biology of the Cell, 24(15), 
pp.2419–2430. 

Yao, J. et al., 2015. Multiscale photoacoustic tomography using reversibly switchable 
bacterial phytochrome as a near-infrared photochromic probe. Nature Methods, 
13(November), pp.1–9. 

Zhang, F., Carothers, J.M. & Keasling, J.D., 2012. Design of a dynamic sensor-regulator 
system for production of chemicals and fuels derived from fatty acids. Nature 

Biotechnology, (February), pp.1–7. 



 



 



Appendix A List of plasmids and strains 

Table of Contents 

1 Plasmids .............................................................................................................................. 2 

1.1 Backbones .................................................................................................................... 2 

1.2 Level 0 – Parts ............................................................................................................. 3 

1.3 Level 1 – Transcription units ....................................................................................... 4 

1.4 Level 2 – Circuits ......................................................................................................... 6 

2 Strains .................................................................................................................................. 7 

 

  



 Appendix A  

2 
 

The MoClo backbones, parts, transcription units and cricuits are presented here, as well as the 
chassis strains that were developed in this PhD as well as those that were transformed with 
synthetic circuit plasmids for control. Not all strains were used in this PhD nor were all Level 
2 MoClo plasmids transformed into specific strains. 

1 Plasmids 

1.1 Backbones 

The backbones are used to assemble the different levels of the MoClo process into. They are 
organized such that they always assemble in the same order. 

Name Level Short description Res Origin 
copy 
nb. 

pL0-P 0 
Level 0 standard promoter 
backbone Spec pUC 500-700 

pL0-U 0 Level 0 standard RBS backbone Spec pUC 500-700 
pL0-SC 0 Level 0 standard CDS backbone Spec pUC 500-700 

pL0-T 0 
Level 0 standard terminator 
backbone Spec pUC 500-700 

pL1-F1 1 
Level 1 standard #1 transcription 
unit Amp pUC 500-700 

pL1-F2 1 
Level 1 standard #2 transcription 
unit Amp pUC 500-700 

pL1-F3 1 
Level 1 standard #3 transcription 
unit Amp pUC 500-700 

pL1-F4 1 
Level 1 standard #4 transcription 
unit Amp pUC 500-700 

pL1-F5 1 
Level 1 standard #5 transcription 
unit Amp pUC 500-700 

pL1-F6 1 
Level 1 standard #6 transcription 
unit Amp pUC 500-700 

pL1-F7 1 
Level 1 standard #7 transcription 
unit Amp pUC 500-700 

pL1-F1a 1 
Level 1 low-copy #1 transcription 
unit Cm ACYC 10-12 

pL1-F2a 1 
Level 1  low-copy #2 transcription 
unit Cm ACYC 10-12 

pL1-F3a 1 
Level 1  low-copy #3 transcription 
unit Cm ACYC 10-12 

pL1-F4a 1 
Level 1  low-copy #4 transcription 
unit Cm ACYC 10-12 

pL1-F1c 1 
Level 1 low-copy #1 transcription 
unit Cm CDF 15-20 

pL1-F2c 1 
Level 1  low-copy #2 transcription 
unit Cm CDF 15-20 

pL1-F3c 1 Level 1  low-copy #3 transcription Cm CDF 15-20 
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unit 

pL1-F4c 1 
Level 1  low-copy #4 transcription 
unit Cm CDF 15-20 

pL2-1 2 Level 2 standard circuit backbone Kan pUC 500-700 
pL2-1a 2 Level 2 low-copy circuit backbone Cm ACYC 10-12 
pL2-1cc 2 Level 2 low-copy circuit backbone Cm CDF 15-20 
pL2-1cs 2 Level 2 low-copy circuit backbone Spec CDF 15-20 
 

Orange backbones were developed in-house to circumvent burden problems. 

1.2 Level 0 – Parts 

Level 0 parts are the basic building blocks of MoClo circuits. In our case a MoClo 
transcription unit is composed of 4 level 0 parts: Promoter (pL0-P plasmids), RBS/5’ UTR 
(pL0-U plasmids), Gene/coding sequence (pL0-SC plasmids), and Terminator (pL0-T). The 
overhangs of each of those parts are organized such that they assemble in the right order. 

Part no. Designation (Geneious) Designation (short) Description 

1 pL0-P LacO pLac lac promoter 

2 pL0-P TetO pTet tet promoter 

3 pL0-P J23119 j23119 consitutive promoter 

4 pL0-T pFAB801 FAB801 Terminator 

5 pL0-T pFAB822 FAB822 Terminator 

6 pL0-T pFAB816 FAB816 Terminator 

7 pL0-T pFAB815 FAB815 Terminator 

8 pL0-SC mKate2  mKate2 mKate2 fluorescent protein 

9 pL0-SC mEGFP mEGFP mEGFP fluorescent protein 

10 pL0-SC EYFP EYFP EYFP fluorescent protein 

11 pL0-SC LacI LacI LacI transcription factor 
12 pL0-SC TetR TetR TetR transcription factor 
13 pL0-U B0030 B0030 Ribosome binding site 

14 pL0-U B0031 B0031 Ribosome binding site 

15 pL0-U B0032 B0032 Ribosome binding site 

16 pL0-U B0034 B0033 Ribosome binding site 

17 pl0-SC mKate2::LacI SL mKate2::LacI mKate2-LacI fusion protein 

18 pl0-SC mKate2::LacI LL 
 

mKate2-LacI fusion protein 

19 pl0-SC LacI::mKate2 SL 
 

mKate2-LacI fusion protein 

20 pl0-SC LacI::mKate2 LL 
 

mKate2-LacI fusion protein 

21 pl0-SC mEGFP::tetR SL mEGFP::TetR mEGFP-TetR fusion protein 

22 pl0-SC mEGFP::tetR LL 
 

mEGFP-TetR fusion protein 

23 pl0-SC TetR::mEGFP SL 
 

mEGFP-TetR fusion protein 

24 pl0-SC TetR::mEGFP LL 
 

mEGFP-TetR fusion protein 

25 pl0-P J23110 j23110 consitutive promoter 

26 pl0-P J23111 j23111 consitutive promoter 

27 pl0-P J23112 j23112 consitutive promoter 

28 pl0-P J23113 j23113 consitutive promoter 

29 pl0-P J23114 j23114 consitutive promoter 
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30 pL0-U B0033 B0034 Ribosome binding site 

31 pL0-U B0035 B0035 Ribosome binding site 

32 pL0-U RBSswapAarI RBS swapper AarI RBS swapper 

33 pL0-U RBSswapEsp3I RBS swapper Esp3I RBS swapper 
34 pL0-SC_LacI-mKate2-OPE34 LacI_mKate2 mKate2-LacI operon 

35 pL0-SC_TetR-mEGFP-OPE34 TetR_mEGFP mEGFP-TetR operon 

36 
pL0-SC_LacI-mKate2-
STPSTRT 

 
mKate2-LacI operon 

37 
pL0-SC_LacI-mKate2-
STPSTRT 

 
mEGFP-TetR operon 

38 
pL0-LacI-
mKate2_opeRBSswap 

 
mKate2-LacI operon 

39 
pL0-TetR-
mEGFP_opeRBSswap 

 
mEGFP-TetR operon 

 

1.3 Level 1 – Transcription units 

Transcription units, made of different level 0 parts, express one or, in the case of operons, 
several genes downstream of a promoter. They are assembled together into level 2 circuits to 
form synthetic genetic networks. The level 1 assemblies are made into different backbones 
that are designed to assemble into a specific order: The overhangs on the backbones are 
organized such that a pL1-F1 transcription units will ligate to level 2 backbone on one end, 
and to a pL1-F2 unit on the other. A pL1-F2 unit assembles with a pL1-F1 and a pL1-F3 unit 
and so on until pL1-F7, which ligates back with the level 2 backbone, thus closing the 
assembly. Of course not all 7 level 1 units are necessary to construct a level 2 circuits, and 
one can assemble only one transcription unit into a level 2 backbone if they wish. 

Name Prom RBS CDS Term bckbn Res Ori Description 

  pL0-P pL0-U pL0-SC pL0-T 
pL1-
FX       

1.1 pLac B0034 mKate2 FAB801 pL1-F2 Amp pUC Single FP transcription unit 

1.2 pTet B0034 mKate2 FAB801 pL1-F2 Amp pUC Single FP transcription unit 

1.3 j23119 B0034 mKate2 FAB801 pL1-F2 Amp pUC Single FP transcription unit 

1.4 pLac B0034 mEGFP FAB822 pL1-F2 Amp pUC Single FP transcription unit 

1.5 pTet B0034 mEGFP FAB822 pL1-F2 Amp pUC Single FP transcription unit 

1.6 j23119 B0034 mEGFP FAB822 pL1-F2 Amp pUC Single FP transcription unit 

1.7 pLac B0034 EYFP FAB822 pL1-F2 Amp pUC Single FP transcription unit 

1.8 pTet B0034 EYFP FAB822 pL1-F2 Amp pUC Single FP transcription unit 

1.9 j23119 B0034 EYFP FAB822 pL1-F2 Amp pUC Single FP transcription unit 

1.10 pLac B0034 mEGFP::TetR FAB815 pL1-F2 Cm ACYC Single FP transcription unit 

1.11 pTet B0034 mKate2::LacI FAB816 
pL1-
F2a Cm ACYC Single FP transcription unit 

1.12 j23114 B0034 mKate2::LacI FAB816 
pL1-
F3a Cm ACYC Single FP transcription unit 

1.13 CmR resistance cassette flanked by FRT sites pL1-F1 Amp pUC 
Resistance cassette for chromosomal 
integration 

1.14 CmR resistance cassette flanked by FRT sites pL1-F2 Amp pUC 
Resistance cassette for chromosomal 
integration 
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1.15 CmR resistance cassette flanked by FRT sites pL1-F5 Amp pUC 
Resistance cassette for chromosomal 
integration 

1.16 KanR resistance cassette flanked by FRT sites pL1-F4 Amp pUC 
Resistance cassette for chromosomal 
integration 

1.17 KanR resistance cassette flanked by FRT sites pL1-F2 Amp pUC 
Resistance cassette for chromosomal 
integration 

1.19 KanR resistance cassette flanked by FRT sites pL1-F5 Amp pUC 
Resistance cassette for chromosomal 
integration 

1.20 pLac B0034 mEGFP::TetR FAB815 
pL1-
F4a Cm ACYC pLac-tetRToggle switch branch - Fusion proteins 

1.21 pTet B0034 mKate2::LacI FAB816 
pL1-
F3a Cm ACYC pTet-lacIToggle switch branch - Fusion proteins 

1.22 intS 5' Homology region pL1-F1 Amp pUC 
homology region for intS chromosomal 
integration 

1.23 intS 3' Homology region #1 pL1-F3 Amp pUC 
homology region for intS chromosomal 
integration 

1.24 intS 3' Homology region #2 pL1-F6 Amp pUC 
homology region for intS chromosomal 
integration 

1.25 acrB 5' Homology region pL1-F1 Amp pUC homology region for acrA-B knockout 

1.26 acrA 3' Homology region #1 pL1-F3 Amp pUC homology region for acrA-B knockout 

1.27 acrA 3' Homology region #2 pL1-F6 Amp pUC homology region for acrA-B knockout 

1.28 pLac B0030 mEGFP::TetR FAB815 
pL1-
F4a Cm ACYC pLac-tetRToggle switch branch - Fusion proteins 

1.29 pLac B0031 mEGFP::TetR FAB815 
pL1-
F4a Cm ACYC pLac-tetRToggle switch branch - Fusion proteins 

1.30 pLac B0032 mEGFP::TetR FAB815 
pL1-
F4a Cm ACYC pLac-tetRToggle switch branch - Fusion proteins 

1.31 pLac B0033 mEGFP::TetR FAB815 
pL1-
F4a Cm ACYC pLac-tetRToggle switch branch - Fusion proteins 

1.32 pLac B0035 mEGFP::TetR FAB815 
pL1-
F4a Cm ACYC pLac-tetRToggle switch branch - Fusion proteins 

1.33 pTet B0030 mKate2::LacI FAB816 pL1-F3 Cm ACYC pTet-lacIToggle switch branch - Fusion proteins 

1.34 pTet B0031 mKate2::LacI FAB816 
pL1-
F3a Cm ACYC pTet-lacIToggle switch branch - Fusion proteins 

1.35 pTet B0032 mKate2::LacI FAB816 
pL1-
F3a Cm ACYC pTet-lacIToggle switch branch - Fusion proteins 

1.36 pTet B0033 mKate2::LacI FAB816 
pL1-
F3a Cm ACYC pTet-lacIToggle switch branch - Fusion proteins 

1.37 pTet B0035 mKate2::LacI FAB816 
pL1-
F3a Cm ACYC pTet-lacIToggle switch branch - Fusion proteins 

1.38 pLac RBS swapper AarI mEGFP::TetR FAB815 
pL1-
F3a Cm ACYC 

plac-tetR "wildcard"Toggle switch branch - 
Fusion 

1.39 pTet 
RBS swapper 
Esp3I mKate2::LacI FAB816 

pL1-
F4a Cm ACYC 

pTet-lacI "wildcard"Toggle switch branch - 
Fusion 

1.40 pLac B0030 TetR_mEGFP FAB815 
pL1-
F1a Cm ACYC pLac-tetRToggle switch branch - operon 

1.41 pLac B0031 TetR_mEGFP FAB815 
pL1-
F1a Cm ACYC pLac-tetRToggle switch branch - operon 

1.42 pLac B0032 TetR_mEGFP FAB815 
pL1-
F1a Cm ACYC pLac-tetRToggle switch branch - operon 

1.43 pLac B0033 TetR_mEGFP FAB815 
pL1-
F1a Cm ACYC pLac-tetRToggle switch branch - operon 

1.44 pLac B0034 TetR_mEGFP FAB815 
pL1-
F1a Cm ACYC pLac-tetRToggle switch branch - operon 

1.45 pLac B0035 TetR_mEGFP FAB815 
pL1-
F1a Cm ACYC pLac-tetRToggle switch branch - operon 

1.46 pTet B0030 LacI_mKate2 FAB816 pL1- Cm ACYC pTet-lacIToggle switch branch - operon 
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F2a 

1.47 pTet B0031 LacI_mKate2 FAB816 
pL1-
F2a Cm ACYC pTet-lacIToggle switch branch - operon 

1.48 pTet B0032 LacI_mKate2 FAB816 
pL1-
F2a Cm ACYC pTet-lacIToggle switch branch - operon 

1.49 pTet B0033 LacI_mKate2 FAB816 
pL1-
F2a Cm ACYC pTet-lacIToggle switch branch - operon 

1.50 pTet B0034 LacI_mKate2 FAB816 
pL1-
F2a Cm ACYC pTet-lacIToggle switch branch - operon 

1.51 pTet B0035 LacI_mKate2 FAB816 
pL1-
F2a Cm ACYC pTet-lacIToggle switch branch - operon 

1.52 pLac RBS swapper AarI TetR_mEGFP FAB815 
pL1-
F1a Cm ACYC 

plac-tetR "wildcard"Toggle switch branch - 
operon 

1.53 pTet 
RBS swapper 
Esp3I LacI_mKate2 FAB816 

pL1-
F2a Cm ACYC 

pTet-lacI "wildcard"Toggle switch branch - 
operon 

 

1.4 Level 2 – Circuits 

Level 2 circuits are assembled from level 1 transcription units are the final product of 
Modular Cloning. Some of the plasmids presented here were then transformed into the chassis 
strains. The orange element represents toggle switches. 

Name Pos. 1 Pos. 2 3 4 5 6 7 
Re
s 

Origi
n Description 

2.1   1.1           Cm ACYC 
Single transcription 
unit 

2.2   1.2           Cm ACYC 
Single transcription 
unit 

2.3 1.22   
1.2
1 

1.2
0 

1.1
9 

1.2
4   Cm ACYC 

Toggle switch - fusion 
proteins 

2.4 1.22 1.4   
1.2
0 

1.1
9 

1.2
4   Cm ACYC 

Fusion proteins 
testing 

2.5 1.22 1.2 
1.2
1   

1.1
9 

1.2
4   Cm ACYC 

Fusion proteins 
testing 

2.6 1.22 1.1     
1.1
9 

1.2
4   Cm ACYC 

Single transcription 
unit 

2.7 1.22 1.2     
1.1
9 

1.2
4   Cm ACYC 

Single transcription 
unit 

2.8 1.25 1.17 
1.2
6         Cm ACYC acrA-B knockout 

2.9 1.22 1.4     
1.1
9 

1.2
4   Cm ACYC 

Single transcription 
unit 

2.10 to 
2.45 

1.40 to 
1.45 

1.46 to 
1.51           Cm ACYC Toggle switches - operons 

2.46 1.52 1.53           Cm ACYC Toggle switch - "wildcard" 
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The numbering of the circuits of the library of toggle switches is as follows: 

  pTet-mKate2-LacI branches 

p
La

c-
m

EG
FP

-T
et

R
 b

ra
n

ch
es

 

 
1.46 1.47 1.48 1.49 1.50 1.51 

1.40 2.10 2.11 2.12 2.13 2.14 2.15 

1.41 2.16 2.17 2.18 2.19 2.20 2.21 

1.42 2.22 2.23 2.24 2.25 2.26 2.27 

1.43 2.28 2.29 2.30 2.31 2.32 2.33 

1.44 2.34 2.35 2.36 2.37 2.38 2.39 

1.45 2.40 2.41 2.42 2.43 2.45 2.46 

The greyed-out circuits could not be constructed. The orange circuit 2.31 is the selected 
circuit for the control experiments. 

2 Strains 

Name From Plasmid 
Chromosome 
integr. Gene deletions Description 

bPH_103 BW25113 
  

fliA fliA- strain from the Keio collection

bPH_104 bPH_103 
  

fliA, lacY fliA- lacY- chassis strain 

bPH_121 bPH_103 
 

Z1: LacI+, TetR+ fliA fliA- lacI+ tetR+ chassis strain 

bPH_122 bPH_104 
 

Z1: LacI+, TetR+ fliA, lacY fliA- lacY- lacI+ tetR+ chassis strain

bPH_123 bPH_121 2.1 Z1: LacI+, TetR+ fliA Population control strain 

bPH_124 bPH_121 2.2 Z1: LacI+, TetR+ fliA Population control strain 

bPH_125 bPH_122 2.1 Z1: LacI+, TetR+ fliA, lacY Population control strain 

bPH_126 bPH_122 2.2 Z1: LacI+, TetR+ fliA, lacY Population control strain 

bPH_127 bPH_104 
  

fliA, lacY, acrA, 
acrB 

fliA- lacY- acrAB- chassis strain 

bPH_128 bPH_122 
 

Z1 
fliA, lacY, acrA, 

acrB 
fliA- lacY- acrAB- lacI+ tetR+ chass

strain 

bPH_130 bPH_128 2.2 Z1 
fliA, lacY, acrA, 

acrB 
Population control strain 

bPH_129 bPH_127 2.3 
 

fliA, lacY, acrA, 
acrB 

Fusion toggle switch strain 

bPH_131 bPH_127 2.4 
 

fliA, lacY, acrA, 
acrB 

Fusion tests strain 

bPH_132 bPH_127 2.5 
 

fliA, lacY, acrA, 
acrB 

Fusion tests strain 
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bPH_133 bPH_128 
 

Z1, 2.6 
fliA, lacY, acrA, 

acrB 
Chromomal integration - single TU 

bPH_134 bPH_128 
 

Z1, 2.7 
fliA, lacY, acrA, 

acrB 
Chromomal integration - single TU 

bPH_135 bPH_127 
 

2.9 
fliA, lacY, acrA, 

acrB 
Chromomal integration - single TU 

bPH_136 bPH_127 
 

2.3 
fliA, lacY, acrA, 

acrB 
Chromomal integration - Fusion toggle 

bPH_137 bPH_127 2.38 
 

fliA, lacY, acrA, 
acrB 

Toggle switch strain 

bPH_138 bPH_127 2.10 
 

fliA, lacY, acrA, 
acrB 

Toggle switch strain 

bPH_139 bPH_127 2.17 
 

fliA, lacY, acrA, 
acrB 

Toggle switch strain 

bPH_140 bPH_127 2.46 
 

fliA, lacY, acrA, 
acrB 

Toggle switch strain 

bPH_141 bPH_127 2.24 
 

fliA, lacY, acrA, 
acrB 

Toggle switch strain 

bPH_142 bPH_127 2.31   
fliA, lacY, acrA, 

acrB 
Toggle switch strain 

bPH_143 bPH_127 2.15 
 

fliA, lacY, acrA, 
acrB 

Toggle switch strain 

bPH_144 bPH_127 2.16 
 

fliA, lacY, acrA, 
acrB 

Toggle switch strain 

bPH_145 bPH_127 2.22 
 

fliA, lacY, acrA, 
acrB 

Toggle switch strain 

bPH_146 bPH_127 2.27 
 

fliA, lacY, acrA, 
acrB 

Toggle switch strain 

bPH_147 bPH_127 2.13 
 

fliA, lacY, acrA, 
acrB 

Toggle switch strain 

bPH_148 bPH_127 2.18 
 

fliA, lacY, acrA, 
acrB 

Toggle switch strain 

bPH_149 bPH_127 2.28 
 

fliA, lacY, acrA, 
acrB 

Toggle switch strain 

bPH_150 bPH_127 2.37 
 

fliA, lacY, acrA, 
acrB 

Toggle switch strain 

bPH_151 bPH_127 2.43 
 

fliA, lacY, acrA, 
acrB 

Toggle switch strain 

 



 



 


