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Abstract

A recurring problem in surrogate modelling is the scarcity of available data which hinders
efforts to estimate model parameters. The Bayesian paradigm offers an elegant way to cir-
cumvent the problem by describing knowledge of the parameters by a posterior probability
distribution instead of a pointwise estimate. However, it involves defining a prior distribution
on the parameter. In the absence of expert opinion, finding an adequate prior can be a trying
exercise. The Objective Bayesian school proposes default priors for such situations, like the
Berger-Bernardo reference prior. Such a prior was derived by Berger et al. [2001] for the
Kriging surrogate model with isotropic covariance kernel. Directly extending it to anisotropic
kernels poses theoretical as well as practical problems because the reference prior framework
requires ordering the parameters. Any ordering would in this case be arbitrary. Instead,
we propose an Objective Bayesian solution for Kriging models with anisotropic covariance
kernels based on conditional reference posterior distributions. This solution is made possi-
ble by a theory of compromise between incompatible conditional distributions. The work
is then shown to be compatible with Trans-Gaussian Kriging. It is applied to an industrial
case with nonstationary data in order to derive Probability Of defect Detection (POD) by
non-destructive tests in steam generator tubes of nuclear power plants.

Keywords: Incompatibility, Conditional distribution, Markov kernel, Optimal compromise,
Kriging, Reference prior.

Résumé

Les métamodèles statistiques sont régulièrement confrontés au manque de données qui en-
gendre des difficultés à estimer les paramètres. Le paradigme bayésien fournit un moyen élé-
gant de contourner le problème en décrivant la connaissance que nous avons des paramètres
par une loi de probabilité a posteriori au lieu de la résumer par une estimation ponctuelle.
Cependant, ce paradigme nécessite de définir un loi a priori adéquate, ce qui est un exercice
difficile en l’absence de jugement d’expert. L’école bayésienne objective propose des priors par
défaut dans ce genre de situation tels que le prior de référence de Berger-Bernardo. Un tel prior
a été calculé par Berger et al. [2001] pour le modèle de krigeage avec noyau de covariance iso-
trope. Une extension directe au cas des noyaux anisotropes poserait des problèmes théoriques
aussi bien que pratiques car la théorie de Berger-Bernardo ne peut s’appliquer qu’à un jeu
de paramètres ordonnés. Or dans ce cas de figure, tout ordre serait nécessairement arbitraire.
Nous y substituons une solution bayésienne objective fondée sur les posteriors de référence
conditionnels. Cette solution est rendue possible par une théorie du compromis entre lois
conditionnelles incompatibles. Nous montrons en outre qu’elle est compatible avec le krigeage
trans-gaussien. Elle est appliquée à un cas industriel avec des données non-stationnaires afin
de calculer des Probabilités de Détection de défauts (POD de l’anglais Probability Of Detec-
tion) par tests non-destructifs dans les tubes de générateur de vapeur de centrales nucléaires.

Mots-clés : Incompatibilité, Loi conditionnelle, Noyau markovien, Compromis optimal,
Krigeage, Prior de référence.
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Introduction

Objective

This thesis was funded by EDF and the ANR in order to solve a specific problem of emulation
of a computer experiment in a situation with drastic budgetary constraints.

Emulation of computer codes has become in the last decades an object of considerable atten-
tion from the statistical community [Santner et al., 2003]. Surrogate models are statistical
models designed to represent uncertainty about the result of experiments when the compu-
tational budget is limited. Linear regression, neural networks, polynomial chaos and Kriging
are examples of surrogate models.

The problem EDF was facing was computing Probability Of defect Detection (POD) curves
for a non-destructive test based on eddy-currents. A computer code was available to simulate
such a procedure under various parameter choices. Because of the cost involved in making
this code run, it was desirable to design a surrogate model that could be used in its stead.
Because of the intrinsic Uncertainty Quantification capability of the Kriging model, which
can easily provide prediction intervals or – critically for this application – probabilities of
reaching a threshold, it was a natural choice. An apparent difficulty, however, was that the
data collected seemed to defy the traditional Kriging assumption that a stationary Gaussian
process could adequately represent them. There seemed to be a need to define non-Gaussian,
non-stationary Kriging procedures.

Contributions of the thesis

It turned out, however, that a simple transformation of the data could tackle these problems,
so there was no need to try any of the sophisticated procedures available in the literature.
The true issue, which was not so easily solved, was that the relative lack of data (100 points
dispersed in a 9-dimensional space) made estimating the Kriging hyperparameters difficult.
This might not have been significant if they had not had a tremendous impact on prediction.

In the absence of a convincing estimator, it seemed reasonable to try to embed hyperpa-
rameter uncertainty into the prediction. And in this regard, the Bayesian approach seemed
adequate. This framework treats the parameter as a random variable rather than as an un-
known quantity. The associated probability distribution does not express actual randomness
but is a quantification of an opinion about the value of the parameter.

Although philosophically coherent, this subjectivist view could not be used in this particular
instance because there was no prior opinion that could be encoded by a Bayesian prior dis-
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tribution. For the sake of convenience, it was necessary to find a generic, default approach
in the absence of relevant information. The Berger-Bernardo [Bernardo, 1979a, Berger and
Bernardo, 1992, Bernardo, 2005, Berger et al., 2009] “reference prior” theory provided a quasi-
systematic approach that was quite appealing. It relies on a formally defined criterion of
noninformativity aiming to “let the data speak for themselves”.

The reference prior was derived by Berger et al. [2001] for the Kriging model with isotropic
correlation kernels – which require only one correlation parameter. They provided a proof,
which we show is valid for a subset of all considered correlation kernels. Moreover, we con-
tribute a proof for the complementary subset.

Aside from this technical point, reference prior theory does leave some wiggle room for mod-
els with several parameters. The user is asked to provide an ordering from least to most
important. Such an ordering is not always easy to determine, especially when the ultimate
goal of the study is predictive rather than inferential. For the model at hand, a partial, but
not total, order on the parameters could be derived.

This situation led to the development of a new technique designed to bypass this requirement
and resulting in the “Gibbs reference posterior distribution” as a way to quantify parameter
uncertainty after having observed the available data in the absence of parameter ordering.

This technique relies on the novel notion of optimal compromise between potentially incom-
patible conditional distributions. Thus reference priors for every single parameter conditional
to all others can be computed. The “Gibbs reference posterior distribution” distribution
is defined as the optimal compromise between the resulting conditional reference posterior
distributions. We prove that it is proper and therefore usable for Bayesian inference and
prediction.

Combining the data transformation and the Gibbs reference posterior distribution produced
a full solution to the surrogate model problem by naturally including uncertainty about the
parameters of the model in the computation of Probability Of defect Detection curves.

Organization of the text

The dissertation is organized in three parts.

The first part, “Tools”, is a description of mathematical objects that were needed to solve the
problem. It contains the “state-of-the-art” chapters.

Chapter 1 presents Kriging. Gaussian processes are defined and characterized in terms of
mean function and correlation kernel. The crucial notion of stationarity is presented, and
the link between stationarity of Gaussian process and stationarity of its covariance kernel is
explained. The definition of mean square continuity and differentiability of Gaussian processes
is then provided. Special attention is devoted to the way stationarity grounds this theory in
standard differential calculus. The chapter ends with a presentation of standard covariance
kernels and a short discussion of their properties.

Chapter 2 is independent from Chapter 1 and can be read first if desired. It presents the parts
of reference analysis that are relevant to this thesis. It endeavors to make the formally difficult
definition of a reference prior as intuitive as possible. The chapter is mainly devoted to the
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one-parameter setting, because this is the setting where the theory is the most developed
and yields the most interesting results. Although mainly a review of previous results, a
small original contribution is added in the form of a nice uniqueness result. The final part
of the chapter deals with the murkier multi-parameter setting. The approach presented is a
departure from the theory established in Berger and Bernardo [1992], but it is nothing more
than a formalization of the concept of “exact marginalization” prescribed by Berger et al.
[2001] for Kriging models.

Chapter 3 combines notions from Chapters 1 and 2 insofar as it concerns reference analysis
of Kriging models with isotropic covariance kernels. With regard to its result, it is a state-
of-the-art chapter: it relates results from Berger et al. [2001]. However, it shows that Berger
et al. [2001]’s proof is adequate for rough Gaussian processes only and gives an original proof
for smoother processes.

The second part, “Compromise” is the shortest part – it contains a single chapter – but it
plays a crucial role in this thesis.

Chapter 4 proposes a theory of compromise between possibly incompatible conditional dis-
tributions. It could be read independently from the rest of the dissertation because it does
not specifically concern spatial or even Bayesian statistics. It tackles a problem that arises
from the popularity of Gibbs samplers: sometimes, there is no guarantee that the conditional
distributions truly define a joint distribution. However, the chapter shows that if it exists and
is unique, the stationary distribution of the Markov chain associated with the Gibbs sampler
can be viewed as the optimal compromise between the input conditional distributions.

The third part, “Application” details the consequences of the aforementioned theory of com-
promise for Objective Bayesian analysis of Kriging models with anisotropic covariance kernels.

Chapter 5 details how the theory of compromise makes it possible, in a Simple Kriging setting,
not to order correlation parameters and instead use the optimal compromise between the
posterior distributions derived from conditional reference priors. Numerical simulations show
that this optimal compromise, the Gibbs reference posterior distribution, has good frequentist
coverage properties.

Chapter 6 takes the results from Chapter 5 and extends them to the Universal Kriging setting,
where the mean function of the Gaussian process is unknown. Comparable simulations are
run in this setting, which is much wider than the Simple Kriging one.

Chapter 7 uses the Gibbs reference posterior distribution to tackle the industrial problem of
EDF. It provides a heuristic for integrating covariance parameters out of the model thanks to
the Gibbs reference posterior distribution. After a transformation family for the observation
data has been defined, it makes estimating the transformation parameter easier, since all
others have been integrated out. Finally, it shows how covariance parameter uncertainty can
be embedded in POD curves.
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Chapter 1

Kriging Overview

Abstract

The Kriging or Gaussian process regression model is introduced and its basic properties

highlighted. The chapter covers Gaussian random processes, stationarity, mean square

continuity and differentiability. Properties of Gaussian processes are linked to prop-

erties of their covariance kernels. Spectral analysis of Gaussian processes, beginning

with Bochner’s theorem, is introduced. Important examples of covariance kernels are

provided, along with their spectral representations.

Résumé

Le modèle de krigeage ou régression par processus gaussiens est introduit et ses propriétés

fondamentales mises en évidence. Le chapitre couvre les processus aléatoires gaussiens

et les notions de stationarité, continuité en moyenne quadratique et différentiabilité en

moyenne quadratique. Les propriétés des processus gaussiens sont reliées à celles de

leurs noyaux de covariance. Le chapitre introduit aussi l’analyse spectrale des processus

gaussiens, à commencer par le théorème de Bochner. Des exemples importants de noyaux

de covariance ainsi que leur représentation spectrale sont fournis.

1.1 Introduction

This chapter provides a short introduction to Kriging from a theoretical rather than practical
perspective. Its goal is to introduce tools necessary to understand the notions used in this
thesis. It draws heavily on Stein [1999], Rasmussen and Williams [2006] and Bachoc [2013a].
The only prerequisites are standard probability and statistical theory.

Gaussian Stochastic Processes offer a convenient way of expressing the uncertainty about
the value of some real-valued quantity on a given spatial domain D [Stein, 1999] when said
quantity is only observed on a finite set of points in D. This is why Gaussian Process
Regression is used as a supervised learning method [Rasmussen andWilliams, 2006, chapter 2],
although it originally appeared in the geostatistical literature [Matheron, 1960]. Throughout
the dissertation, we follow the geostatistical naming convention for this model: Kriging.

13
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1.2 Gaussian random processes

General random processes

Most random processes considered in this thesis are Gaussian. It is however useful to keep
in mind the more general framework for random processes. Detailed information about this
topic can be found in Billingsley [1995], Dudley [1989] or Bass [1995].

Let (Ω,F ,P) be a probability space. Let D be a spatial or temporal domain – typically
D ⊂ Rr for some positive integer r. Let S be a metric space – typically S = R – and let B(S)

be its Borel σ-algebra.

Definition 1.1. A random process or random field is a mapping from the domain D to the
set of all random variables (Ω,F)→ (S,B(S)).

No assumption is made as to whether the domain D or the metric space S is discrete or
continuous. Markov chains are random processes with discrete domain D and discrete or
continuous metric space S. Poisson processes have continuous domain D and discrete metric
space S. Wiener processes (Brownian motion) have continuous domain D and continuous
metric space S.

Figure 1.1 – A trajectory of a 2-dimensional Brownian motion. Approximation through a 3000-step
Markov chain where each step follows a Gaussian bi-variate distribution. Credit goes to Wikipedia
contribution “Ipipipourax” who put this work in the public domain.

An important property of Gaussian processes is that they can themselves be viewed as random
variables. To see this, a few additional notions need to be defined.

Definition 1.2. For all x ∈ D, define the mapping πx : RD → R; f 7→ f(x). Denote by
B(R)⊗D the σ-algebra of RD spanned by {π−1

x (B) : x ∈ D, B ∈ B(R)}.

Although a random process is defined as a collection of random variables, the following
proposition shows that it can also be represented as a random variable with functional value
[Billingsley, 1995, chapter 7].
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Proposition 1.3. Let Y be a random process. The mapping Ỹ : Ω → RD;ω 7→ [x 7→
Y (x)(ω)] is (F ,B(R)⊗D)-measurable.

Proof. Let B ∈ B(R). Then for all x ∈ D, Ỹ −1(π−1
x (B)) = (πx ◦ Ỹ )−1(B) = Y (x)−1(B) ∈

F .

The probability distribution of a random process is characterized by its finite-dimensional
distributions [Khoshnevisan, 2002, chapter 3]:

Proposition 1.4. Let Y1 and Y2 be two random processes and let Ỹ1 and Ỹ2 be the map-
pings Ω → RD defined by Ỹ1(ω)(x) = Y1(x)(ω) and Ỹ2(ω)(x) = Y2(x)(ω). If, for ev-
ery positive integer n and every family (x(i))i∈[[1,n]] of points in D, the Gaussian vectors
(Y1(x(1)), ..., Y1(x(n)))> and (Y2(x(1)), ..., Y2(x(n)))> have the same probability distribution,
then Ỹ1 and Ỹ2 have the same probability distribution.

Proof. For every positive integer n, for every family (x(i))i∈[[1,n]] of elements of D and every
family (Bi)i∈[[1,n]] of elements of B(R),

Ỹ −1
1

(
π−1
x(1)(B1) ∩ ... ∩ π−1

x(n)(Bn)
)

= Ỹ −1
1

(
π−1
x(1)(B1)

)
∩ ... ∩ Ỹ −1

1

(
π−1
x(n)(Bn)

)
= (πx(1) ◦ Ỹ1)−1(B1) ∩ ... ∩ (πx(n) ◦ Ỹ1)−1(Bn)

= Y1(x(1))−1(B1) ∩ ... ∩ Y1(x(n))−1(Bn). (1.1)

Similarly,

Ỹ −1
2

(
π−1
x(1)(B1) ∩ ... ∩ π−1

x(n)(Bn)
)

= Y2(x(1))−1(B1) ∩ ... ∩ Y2(x(n))−1(Bn). (1.2)

Using the assumption,

P
(
Y1(x(1))−1(B1) ∩ ... ∩ Y1(x(n))−1(Bn)

)
= P

(
Y2(x(1))−1(B1) ∩ ... ∩ Y2(x(n))−1(Bn)

)
.

(1.3)
Combining these equations, we obtain

P
(
Ỹ −1

1

(
π−1
x(1)(B1) ∩ ... ∩ π−1

x(n)(Bn)
))

= P
(
Ỹ −1

2

(
π−1
x(1)(B1) ∩ ... ∩ π−1

x(n)(Bn)
))
. (1.4)

Consider the following set:

{
π−1
x(1)(B1) ∩ ... ∩ π−1

x(n)(Bn) : n ∈ Z+, (x
(i))i∈[[1,n]] ∈ Dn, (Bi)i∈[[1,n]] ∈ B(R)n

}
.

It is a π-system which includes {π−1
x (B) : x ∈ D, B ∈ B(R)}, the set spanning B(R)⊗D. The

distributions of Ỹ1 and Ỹ2 agree on this π-system and can therefore only be equal.

From this point onwards, for any random process Y , we will abuse notations and also denote
by Y the mapping Ỹ defined in Proposition 1.3.
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Gaussian random processes

The theory of Gaussian vectors, i.e. of the multivariate Normal distribution, is a prerequisite
of the following. Please refer to Appendix B.1 of Santner et al. [2003] or to Appendix A.2 of
Rasmussen and Williams [2006].
Gaussian random processes or Gaussian processes for short are a particular type of random
processes. The most prominent members of this class are Wiener processes. For details, see
for example Khoshnevisan [2002, chapter 5].

Definition 1.5. A Gaussian process is a random process Y with metric space S = R such
that for every positive integer n and every family (x(i))i∈[[1,n]], (Y (x(1)), ..., Y (x(n)))> is a
Gaussian vector.

The class of Gaussian processes is, among all classes of random processes, the one that has
been most studied. Many nice properties are available, and we only use some of them. For a
larger view, please refer to Adler [1990] or Stein [1999].

Conditional Gaussian processes

Recall the following result from Gaussian vector theory:

Theorem 1.6. Let (V >1 ,V
>
2 )> be a Gaussian vector. Assume that V 1 is nondegenerate.

Then its covariance matrix Var[V 1] is nonsingular and the distribution of V 2 conditionnally
to V 1 is Gaussian with mean vector

E[V 2|V 1] = E[V 2]− Cov[V 2,V 1] Var[V 1]−1(V 1 − E[V 1]) (1.5)

and covariance matrix

Var[V 2|V 1] = Cov[V 2,V 1] Var[V 1]−1 Cov[V 1,V 2]. (1.6)

This theorem is of great practical importance in the study of Gaussian processes. It can be
generalized as follows:

Corollary 1.7. Let (V >1 ,V
>
2 )> be a Gaussian vector. If n is the size of V and w is the

rank of Var[V 1], let W be an n × w matrix representing an isometry from the subspace of
Rn spanned by Var[V 1] to Rw. Then the distribution of V 2 conditionnally to V 1 is Gaussian
with mean vector

E[V 2|V 1] = E[V 2]− Cov[V 2,V 1]W
(
W>Var[V 1]W

)−1

W>(V 1 − E[V 1]) (1.7)

and covariance matrix

Var[V 2|V 1] = Cov[V 2,V 1]W
(
W>Var[V 1]W

)−1

W>Cov[V 1,V 2]. (1.8)

Proof. The n × n matrix WW> represents an orthogonal projection on the subspace of
Rn spanned by Var[V 1]. So V 1 = WW>V 1, which implies that the distribution of V 2

conditionnally to V 1 is the distribution of V 2 conditionnally to W>V 1.
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Since (V >1 ,V
>
2 )> is a Gaussian vector, any linear transformation remains a Gaussian vector.

In particular, ((WV 1)>),V >2 )> is a Gaussian vector. Moreover,W>V 1 is nondegenerate so
Theorem 1.6 is applicable.

The distribution of V 2 conditionnally to V 1 (or equivalently of W>V 1) is Gaussian with
mean vector

E[V 2|V 1] = E[V 2]− Cov[V 2,WV 1] Var[W>V1W ]−1 Cov[WV 1,V 2]

= E[V 2]− Cov[V 2,V 1]W
(
W>Var[V 1]W

)−1

W>(V 1 − E[V 1]) (1.9)

and with covariance matrix

Var[V 2|V 1] = Cov[V 2,WV 1] Var[WV 1]−1W> Cov[WV 1,V 2]

= Cov[V 2,V 1]W
(
W>Var[V 1]W

)−1

W>Cov[V 1,V 2]. (1.10)

With this result, we can consider conditional Gaussian processes [Stein, 1999, chapter 1].

Definition 1.8. Let Y be a Gaussian process. Let n be a positive integer and (x(i))i∈[[1,n]] be
a family of n points in D. A Gaussian process Ycond such that for every positive integer n′ and
every family (x(i)′)i∈[[1,n′]] of points in D, the Gaussian vector (Ycond(x

(1)′), ..., Ycond(x
(n′)′))>

has the same distribution as the Gaussian vector (Y (x(1)′), ..., Y (x(n′)′))>conditionally to
Y (x(1)),...,Y (x(n)) is called a version of the conditional process Y knowing Y (x(1)), ... ,
Y (x(n)).

It is easy to see that all versions of the conditional process have the same distribution.
This notion of conditional Gaussian process is at the heart of the Kriging procedure.

Definition 1.9. Let f be an unknown mapping D → R. Assume that for some positive
integer n, there exists a family of n points in D (x(i))i∈[[1,n]] on which f was observed, so
f(x(1)), ..., f(x(n)) are known. A Kriging model is a version of the conditional Gaussian
process Y knowing Y (x(1)) = f(x(1)), ..., Y (x(n)) = f(x(n)).

Since all versions of the conditional Gaussian process have the same distribution, distinguish-
ing them makes no sense from a statistical perspective. In the following, we abuse denom-
inations by referring to any version of the conditional process as the conditional process.

In this construction, the distribution of the conditional Gaussian process Y is supposed to
represent the uncertainty on f . It does not mean that f is assumed to be a realization of a
Gaussian process, which would be a meaningless statement.

Characterizing a Gaussian process

Just like mean vector and covariance matrix characterize the distribution of a Gaussian vector,
mean function and covariance function (or kernel) characterize a Gaussian process [Bachoc,
2013a, chapter 2].
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Definition 1.10. Let Y be a Gaussian process. The mapping m : D → R defined by x 7→
E[Y (x)] is called the mean function of Y .

Definition 1.11. Let Y be a Gaussian process. The mapping K : D × D → R defined by
(x(1),x(2)) 7→ Cov[Y (x(1)), Y (x(2))] is called the covariance function or covariance kernel of
Y .

Proposition 1.12. Let Y1 and Y2 be Gaussian processes with the same mean function and
covariance kernel. Then they have the same distribution.

Proof. For any positive integer n and any family (x(i))i∈[[1,n]] of n points in D, the random
vectors (Y1(x(1)), ..., Y1(x(n)))> and (Y2(x(1)), ..., Y2(x(n)))> are Gaussian vectors with the
same mean vector and covariance matrix, so their distributions are equal. The result then
follows from Proposition 1.4.

If mean function and covariance kernel are enough to characterize the distribution of a Gaus-
sian process, it raises the question of which functions are admissible as mean function and
covariance kernel. That is, for which mean function and covariance kernel candidates is it
possible to construct a Gaussian process that admits them as mean function and covariance
kernel respectively?

Provided a Gaussian process with null mean function can be constructed, a Gaussian process
with any mean function can be obtained simply by adding said function. So there is no
condition on mean functions.

The picture is different for covariance kernels.

Definition 1.13. A mapping K : D × D → R is called positive definite if for every positive
integer n and any family (x(i))i∈[[1,n]] of n points in D, the n×n matrix with (i, j)-th element
K(x(i),x(j)) is positive semi-definite.

A positive definite mapping is sometimes called a kernel, hence the name “covariance kernel”
for “covariance function”. See the study of the positive-definiteness of bivariate mappings
conducted in Schölkopf and Smola [2012][chapter 13].

Proposition 1.14. For any mapping m : D → R and any mapping K : D × D → R, there
exists a Gaussian process Y with mean function m and covariance kernel K if and only if K
is positive definite.

In the context of the proposition above, the phrase “there exists a Gaussian process” means
that there exists a probability space (Ω,F ,P) and a corresponding random process Y : D 7→ R
which is a Gaussian process. In all preceding and folowing results, the existence of (Ω,F ,P)

is taken for granted. This is the only one in which this is not the case. Obviously, for K
to be the covariance kernel of some Gaussian process, it needs to be positive definite, so the
condition given in the proposition is necessary. It is its sufficiency – i.e. the existence of
(Ω,F ,P) and Y – that is difficult to show. It requires Kolmogorov’s existence theorem, of
which Billingsley [1995, chapter 7] provides two different proofs.
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Stationarity

General Gaussian processes can be hard to handle. Practically speaking, most Kriging models
used in the literature consider a particular class of Gaussian processes: stationary Gaussian
processes [Rasmussen and Williams, 2006, chapter 4]. To properly define them, we need to
assume that D is a subset of a real affine space. Let V be the corresponding real vector space.

Definition 1.15. A Gaussian process Y is said to be stationary if for any positive integer n,
any family (x(i))i∈[[1,n]] of n points in D and any vector h ∈ V, the following holds: if for every
integer i ∈ [|1, n]], x(i) + h ∈ D, then the Gaussian vectors (Y (x(1) + h), ..., Y (x(n) + h))>

and (Y (x(1)), ..., Y (x(n)))> share the same distribution.

Stationarity can be characterized in terms of mean function and covariance kernel [Rasmussen
and Williams, 2006, chapter 4].

Definition 1.16. A positive definite mapping K : D × D → R is said to be stationary if
there exists a mapping K̃ : V → R such that for every (x(1),x(2)) ∈ D2, K(x(1),x(2)) =

K̃(x(1) − x(2)).

Proposition 1.17. A Gaussian process is stationary if and only if its mean function is
constant and its covariance kernel stationary.

Proof. Let Y be a Gaussian process with mean function m and covariance kernel K.

Assume that m is constant and that K is stationary. Then there exists a mapping K̃ : V → R
such that for every (x(1),x(2)) ∈ D2, K(x(1),x(2)) = K̃(x(1) − x(2)).
Let n be a positive integer and let (x(i))i∈[[1,n]] be a family of n points in D. Let h be a
vector of V such that for every integer i ∈ [[1, n]], x(i) + h ∈ D. Then the Gaussian vector
(Y (x(1) +h), ..., Y (x(n) +h))> has constant mean vector of value m(x(1)) and its covariance
matrix has (i, j)-th element K(x(i) +h,x(j) +h) = K̃(x(i) +h−(x(j) +h)) = K̃(x(i)−x(j)) =

K(x(i),x(j)). So its mean vector and covariance matrix are respectively equal to the mean
vector and covariance matrix of the Gaussian vector (Y (x(1)), ..., Y (x(n)))>. Therefore Y is
stationary.

Now assume that Y is stationary. Let x(1) ∈ D. Then, for all x(2) ∈ D, Y (x(2)) = Y (x(1) +

(x(2) − x(1))) has the same distribution as Y (x(1)). In particular, it has the same mean.
Therefore the mean function m is constant.
Let (x(1),x(2)) ∈ D2 and (x(1)′,x(2)′) ∈ D2 such that x(1) − x(2) = x(1)′ − x(2)′. Then the
Gaussian vector (Y (x(1)′), Y (x(2)′))> = (Y (x(1) + (x(1)′ −x(1))), Y (x(2) + (x(2)′ −x(2)))> =

(Y (x(1) + (x(1)′ − x(1))), Y (x(2) + (x(1)′ − x(1)))> has the same distribution as the Gaussian
vector (Y (x(1)), Y (x(2)))>. In particular, the covariance K(x(1)′,x(2)′) between Y (x(1)′) and
Y (x(2)′) is equal to the covarianceK(x(1),x(2)) between Y (x(1)) and Y (x(2)). So the mapping
K̃ can be defined as follows: for every v ∈ V, if there exists a pair (x(1),x(2)) ∈ D2 such that
x(1) − x(2) = v, then K̃(v) := K(x(1),x(2)). Else K̃(v) := 0.

From this point onwards, we abuse denominations and call K̃ : V → R the covariance kernel
instead of K : D × D → R. This is a twofold abuse because K̃ is not necessarily unique, as
the proof above shows. It is of no matter, because K̃ is uniquely defined at all points that
can be written x(1) − x(2) with (x(1),x(2)) ∈ D2 and thus K can be computed from K̃.
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Since positive definite mappings are covariance kernels, this abuse leads to an extension of
the definition of positive definiteness to mappings Rr → R.

Definition 1.18. A mapping f : Rr → R is called positive definite if there exists a positive
definite mapping K : Rr × Rr → R such that for all (x(1),x(2)) ∈ Rr × Rr, f(x(1) − x(2)) =

K(x(1),x(2)).

1.3 Mean square continuity and differentiability of Gaussian

processes

The L2 norm allows a natural definition of continuity and differentiability for Gaussian pro-
cesses that is linked to the continuity and stationarity of its covariance kernel.
As before, we assume that D is a subset of a real affine space with corresponding vector space
V. Let us further assume that V = Rr for a given r ∈ N. We endow the affine space with the
metric induced by the Euclidean norm on Rr and assume that D is an open subset.

Mean square continuity and differentiability

Let us consider mean square properties of Gaussian processes [Stein, 1999, chapter 2].

Definition 1.19. A Gaussian process Y is mean square continuous on D if for any x(0) ∈ D
and for all ε > 0, there exists δ > 0 such that for every x ∈ D such that ‖x− x(0)‖ 6 δ,

E
[(
Y (x)− Y (x(0))

)2
]
6 ε2 (1.11)

Remark. For a stationary process, being mean square continuous is equivalent to being mean
square uniformly continuous. This means that in the above definition, δ does not depend on
x(0).

Definition 1.20. A Gaussian process Y is mean square continuously differentiable on D if
there exist r mean square continuous Gaussian processes ∂e1Y, ..., ∂erY such that, defining
(ek)k∈[[1,r]] as the canonical basis of Rr, for any integer k ∈ [[1, r]], the following property
holds. For any x(0) ∈ D and for all ε > 0, there exists δ > 0 such that for all 0 < h 6 δ,

E

[(
Y (x(0) + hek)− Y (x(0))

h
− ∂ekY (x(0))

)2
]
6 ε2 (1.12)

In the definition above, for every k ∈ [[1, r]], the “partial derivative” ∂ekY is unique in the sense
that any other Gaussian process fitting the requirement would necessarily be a modification
of ∂ekY .

Remark. If Y is a stationary Gaussian process that is continuously differentiable, then all
∂ekY are necessarily stationary Gaussian processes.

The following result provides an alternate view of continuous mean square differentiability
[Bachoc, 2013a, chapter 2].

Proposition 1.21. A stationary Gaussian process Y is mean square continuously differen-
tiable on D if, and only if, Y : D → L2(Ω) is continuously Fréchet differentiable on D.
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Proof. If a stationary Gaussian process Y is Fréchet continuously differentiable on D, then
for all x(0) ∈ D and every integer k ∈ [|1, r]], consider the value taken by the Fréchet derivative
DY (x(0)) at the vector ek.
Equation (1.12) holds with ∂ekY (x(0)) := DY (x(0))(ek) by definition ofDY (x(0))(ek). More-
over, the Fréchet derivative DY (x(0))(ek) is continuous. To prove that Y is mean square con-
tinuously differentiable, we only need to show that the mapping x(0) ∈ D 7→ DY (x(0))(ek) is
a Gaussian process. This follows from the fact that for any positive integer n and any points
x(1), ...,x(n) ∈ D, (DY (x(1))(ek), ..., DY (x(n))(ek))> is an L2 limit of Gaussian vectors and
is therefore a Gaussian vector.

Conversely, if Y is a stationary Gaussian process that is mean square differentiable, define
for every point x(0) ∈ D the linear application DY (x0) : Rr → L2(Ω) such that for every
k ∈ [[1, r]], DY (x0))(ek) = ∂ekY (x(0)).

For every x(0) ∈ D and every u ∈ Rr and v ∈ Rr such that x(0) +u ∈ D and x(0) +u+v ∈ D,
because DY (x(0)) is a linear mapping, we have

Y (x(0) + u+ v)− Y (x(0))−DY (x(0))(u+ v) (1.13)

= Y (x(0) + u+ v)− Y (x(0) + u)−DY (x(0) + u)(v)

+ Y (x(0) + u)− Y (x(0))−DY (x(0))(u)

+DY (x(0) + u)(v)−DY (x(0))(v). (1.14)

Because D is open, for every x(0) ∈ D, there exists t > 0 such that for every h ∈ Rr such that
‖h‖ < t, x(0) + h ∈ D. Let h1e1 + ...+ hrer (h1, ..., hr ∈ R) be the unique decomposition of
h in the canonical basis of Rr. Applying the result above, we have

Y (x(0) + h)− Y (x(0))−DY (x(0))(u)

=Y

(
x(0) +

r∑
k=1

hkek

)
− Y (x(0))−DY (x(0))

(
r∑

k=1

hkek

)

=

r∑
k=1

Y

(
x(0) +

k∑
l=1

hlel

)
− Y

(
x(0) +

k−1∑
l=1

hlel

)
−DY

(
x(0) +

k−1∑
l=1

hlel

)
(hkek)

+

r∑
k=1

DY

(
x(0) +

k−1∑
l=1

hlel

)
(hkek)−DY (x(0))(hkek)

=

r∑
k=1

Y

(
x(0) +

k∑
l=1

hlel

)
− Y

(
x(0) +

k−1∑
l=1

hlel

)
− hk∂ekY

(
x(0) +

k−1∑
l=1

hlel

)

+

r∑
k=1

hk∂ekY

(
x(0) +

k−1∑
l=1

hlel

)
− hk∂ekY (x(0)) (1.15)

In the following, ‖ · ‖ denotes the Euclidean norm if applied to a vector of Rr and the L2

norm if applied to a random variable.

For every k ∈ [[1, r]], due to stationarity,
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∥∥∥∥∥Y
(
x(0) +

k∑
l=1

hlel

)
− Y

(
x(0) +

k−1∑
l=1

hlel

)
− hk∂ekY

(
x(0) +

k−1∑
l=1

hlel

)∥∥∥∥∥
=
∥∥∥Y (x(0) + hkek

)
− Y

(
x(0)

)
− hk∂ekY

(
x(0)

)∥∥∥ . (1.16)

So combining both equations above yields

1

‖h‖

∥∥∥Y (x(0) + h)− Y (x(0))−DY (x(0))(u)
∥∥∥

6
r∑

k=1

|hk|
‖h‖

∥∥∥∥∥Y
(
x(0) + hkek

)
− Y

(
x(0)

)
hk

− ∂ekY
(
x(0)

)∥∥∥∥∥
+

r∑
k=1

|hk|
‖h‖

∥∥∥∥∥∂ekY
(
x(0) +

k−1∑
l=1

hlel

)
− ∂ekY (x(0))

∥∥∥∥∥ . (1.17)

This leads to

1

‖h‖

∥∥∥Y (x(0) + h)− Y (x(0))−DY (x(0))(u)
∥∥∥

6
r∑

k=1

∥∥∥∥∥Y
(
x(0) + hkek

)
− Y

(
x(0)

)
hk

− ∂ekY
(
x(0)

)∥∥∥∥∥
+

r∑
k=1

∥∥∥∥∥∂ekY
(
x(0) +

k−1∑
l=1

hlel

)
− ∂ekY (x(0))

∥∥∥∥∥ . (1.18)

Because Y is continuously mean square differentiable, when ‖h‖ → 0 (and therefore every
hk → 0), the right side of the inequality has null limit. The left side has therefore the same
limit and Y is Fréchet differentiable at x(0). Continuity of the Fréchet derivative follows once
again from stationarity.

This Proposition roots the notion of mean square continuous differentiability for stationary
Gaussian proceses in standard differential calculus. We may therefore write that a stationary
Gaussian process is of class C0 if it is mean square continuous and of class C1 if it is mean
square continuously differentiable. Moreover, the class Cn is well defined for every nonnegative
integer n.

In particular, standard differential calculus theory yields the following characterization of the
class Cn.

Proposition 1.22. A stationary Gaussian process Y is of class Cn on D (i.e. n times
mean square continuously differentiable) if, and only if, all partial derivatives ∂ek1∂ek2 ...∂eknY
(k1, k2, ..., kn ∈ [|1, r]]) exist and are mean square continuous on D.

Mean square continuity of stationary Gaussian processes can be characterized in terms of
their covariance kernel, as the two following results show [Bachoc, 2013a, chapter 2].

Proposition 1.23. A stationary Gaussian process Y is mean square continuous on D if, and
only if, its covariance kernel K : Rr → [0,+∞) is continuous at 0.
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Proof. Without loss of generality, we may assume the mean function of Y to be null. Then

E
[(
Y (x)− Y (x(0))

)2
]

= E
[
Y (x)2

]
+ E

[
Y (x(0))2

]
− 2E

[
Y (x)Y (x(0))

]
= 2K(0)− 2K(x− x(0)). (1.19)

This equality implies the result.

Continuity of the covariance kernel at 0 is determinant, because it actually implies continuity
everywhere (that matters). To make this notion precise, define RrD := {t ∈ Rr : (∃x(0) ∈
D) x(0) + t ∈ D}. RrD is a non-empty (0 ∈ RrD) open set because D is open.

Proposition 1.24. A stationary Gaussian process Y is mean square continuous on D if, and
only if, its covariance kernel K : Rr → [0,+∞) is continuous on RrD.

Proof. Because of Proposition 1.23, we only need to prove that if a stationary Gaussian
process Y is mean square continuous, then its covariance kernel is continuous on RrD.

Let t ∈ RrD. Then, because D is open, for all h ∈ Rr such that ‖h‖ is small enough, there
exists x(0) ∈ D such that x(0) + t+ h ∈ D and x(0) + h ∈ D.

2(K(t+ h)−K(t))

=2K(0)− 2K(t)− (2K(0)− 2K(t+ h))

=‖Y (x(0) + t)− Y (x(0))‖2 − ‖Y (x(0) + t+ h)− Y (x(0))‖2

=− ‖Y (x(0) + t+ h)− Y (x(0) + t)‖2

+ 2E
[(
Y (x(0) + t+ h)− Y (x(0) + t)

)(
Y (x(0) + t)− Y (x(0))

)]
=− ‖Y (x(0) + h)− Y (x(0))‖2

+ 2E
[(
Y (x(0) + t+ h)− Y (x(0) + t)

)(
Y (x(0) + t)− Y (x(0))

)]
. (1.20)

The last equality holds because of Y ’s stationarity.

The definition of mean square continuity yields the result.

Mean square continuous differentiability of stationary Gaussian processes can also be charac-
terized in terms of the covariance kernel [Bachoc, 2013a, chapter 2].

Proposition 1.25. A stationary Gaussian process Y is mean square continuously differen-
tiable if, and only if, its covariance kernel K is twice continuously differentiable on RrD. If
this is the case, for all vectors u ∈ Rr, ∂u∂uK is the covariance kernel of the stationary mean
square continuous Gaussian process ∂uY .

Proof. Assume the stationary process Y is mean square continuously differentiable. We prove
that for every couple of vectors (u,v) ∈ Rr × Rr, the partial derivative ∂u∂vK exists and is
continuous over RkD. This is enough to establish that K is twice continuously differentiable
on RrD.
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Equation (1.20) shows that for every t ∈ RrD

∂vK(t) := lim
h→0

K(t+ hv)−K(t)

h
= E

[
∂vY (x(0))

(
Y (x(0) + t)− Y (x(0))

)]
. (1.21)

So ∂vK exists and, because Y is mean square continuous on D, is continuous on RrD.

Now, for any t ∈ RrD, as long as h > 0 is small enough, t+ hu ∈ RrD. We have

∂vK(t+ hu)− ∂vK(t)

=E
[
∂vY (x(0))

(
Y (x(0) + t+ hu)− Y (x(0))

)]
− E

[
∂vY (x(0))

(
Y (x(0) + t)− Y (x(0))

)]
=E

[
∂vY (x(0))

(
Y (x(0) + t+ hu)− Y (x(0) + t)

)]
. (1.22)

∂u∂vK(t) := lim
h→0

∂vK(t+ hu)− ∂vK(t)

h
= E

[
∂uY (x(0) + t)∂vY (x(0))

]
. (1.23)

So ∂u∂vK exists and, because ∂vY is mean square continuous on D, is continuous on RrD.
Notice that Equation (1.23) implies ∂u∂uK is the covariance kernel of the stationary Gaussian
process with null mean function ∂uY .

We now prove the converse. Assume the covariance kernel K of the stationary Gaussian
process Y is twice continuously differentiable. Without loss of generality, we assume Y has
null mean function. Let u ∈ Rr. We prove that ∂uY exists and is continuous on D.

Let (hm)m∈N be a sequence of real numbers that converges to 0. First, we show that for all
x(0) ∈ D

(
h−1
m (Y (x(0) + hmu)− Y (x(0)))

)
m∈N is a Cauchy sequence in L2(Ω).

Let m,n ∈ N.

∥∥∥∥Y (x(0) + hmu)− Y (x(0))

hm
− Y (x(0) + hnu)− Y (x(0))

hn

∥∥∥∥2

=

∥∥∥∥Y (x(0) + hmu)− Y (x(0))

hm

∥∥∥∥2

+

∥∥∥∥Y (x(0) + hnu)− Y (x(0))

hn

∥∥∥∥2

− 2

hmhn
E
[(
Y (x(0) + hmu)− Y (x(0))

)(
Y (x(0) + hnu)− Y (x(0))

)]
=

2

h2
m

(K(0)−K(hmu)) +
2

h2
n

(K(0)−K(hnu))

− 2

hmhn
[K((hm − hn)u) +K(0)−K(hmu)−K(−hnu)] . (1.24)

When m,n → ∞, the third term converges to 2∂u∂uK(0). The first two terms must be
examined more closely.

Because K is an even mapping, we have for every v ∈ Rr K(−v) = K(v). So any partial
derivative at 0 is necessarily null. Given K is twice continuously differentiable along u, it
admits a Taylor expansion of order 2 in this direction. K(hmu)−K(0) ∼

m→∞
h2
m∂u∂uK(0)/2,

so each of the first two terms converges when m,n→∞ to −∂u∂uK(0). The sum therefore
converges to 0 and

(
h−1
m (Y (x(0) + hmu)− Y (x(0)))

)
m∈N is a Cauchy sequence in L2(Ω).

L2(Ω) is a Banach space so the sequence admits a limit. Let us denote this limit by ∂uY (x(0)).
It is Gaussian because it is an L2 limit of Gaussian random variables. Furthermore, the
mapping ∂uY : D → L2(Ω) x(0) 7→ ∂uY (x(0)) is a Gaussian process because for every
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positive integer n and any points x(1), ...,x(n) ∈ D, the vector
(
∂uY (x(1)), ..., ∂uY (x(n))

)>
is an L2 limit of Gaussian vectors and is therefore Gaussian. For the same reason, ∂uY is
stationary. All that remains is to show that it is mean square continuous. This follows from
Equation (1.23), which is still valid because it was obtained using nothing more than Y ’s
stationarity, Y ’s mean square continuity and the existence of partial derivatives of Y (but
not their continuity). Taking v = u, it shows that ∂u∂uK is the covariance kernel of ∂uY .
Since it is continuous at 0, ∂uY is mean square continuous on D.

Corollary 1.26. For every nonnegative integer n, a stationary Gaussian process Y is of class
Cn on D if, and only if, its covariance kernel K is of class C2n on RrD.

1.4 Spectral representation

Stein [1999] showed how fruitful the spectral representation of Gaussian processes could be
in order to understand its properties. In particular, it provides a useful characterization of
means square continuity and differentiability.

Bochner [1932]’s theorem is the cornerstone of all spectral results. A few preliminary results,
which are by themselves of interest because they provide methods for constructing covariance
kernels, are useful for showing it. These results are drawn from Rasmussen and Williams
[2006].

In all that follows, D = V = Rr for some positive integer r.
The set of positive definite mappings is stable for several operations listed below.

Proposition 1.27. The sum of two positive definite mappings Rr → R is positive definite.

Proof. This is the translation of the fact that the sum of two positive semi-definite matrices
is positive semi-definite.

Proposition 1.28. The product of two positive definite mappings Rr → R is positive definite.

Proof. Let K and K ′ be two positive definite mappings Rr → R. Let Y and Y ′ be indepen-
dent stationary Gaussian processes with null mean function and covariance kernel K and K ′

respectively. Let Z be the random process defined by Z(x) = Y (x)Y ′(x) (x ∈ Rr).

E[Z(x(1))Z(x(2))] = E[Y (x(1))Y (x(2))]E[Y ′(x(1))Y ′(x(2))] = K(x(1) − x(2))K ′(x(1) − x(2))

(1.25)
So the mapping x 7→ K(x)K ′(x) is a covariance kernel: it is positive definite.

Proposition 1.29. Let K1 : Rr → R be a continuous function that is integrable with respect
to the Lebesgue measure on Rr and let K2 be a continuous positive definite mapping Rr → R.
Then the “double-convolution” of K1 and K2 (defined hereafter) is a positive definite mapping
Rr → R.
For all x ∈ Rr,

K1 ∗K2 ∗K1(x) =

∫
Rr

∫
Rr
K1(x− z)K2(z − z′)K1(z′)dzdz′ (1.26)
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Proof. Let Y be a stationary Gaussian process with null mean function and covariance kernel
K2. First, we need to properly define Z(x) :=

∫
Rr K1(x−z)Y (z)dz. Since K2 is continuous,

Y is mean square continuous. Since it is stationary, ‖Y (x)‖ is constant as a function of x.
Moreover, K1 is integrable. This means that Z(x) :=

∫
Rr K1(x − z)Y (z)dz can be defined

in the Riemann sense as an L2 limit of Gaussian random variables and is therefore Gaussian.
Similarly, for any positive integer n and any x(1), ...,x(n), (Z(x(1), ..., Z(x(n)))> is an L2 limit
of Gaussian vectors and therefore a Gaussian vector, so Z : x 7→ Z(x) is a Gaussian process
with null mean function.
For all x(1),x(2) ∈ Rr,

E[Z(x(1))Z(x(2))] = E[

∫
Rr
K1(x(1) − z)Y (z)dz

∫
Rr
K1(x(2) − z′)Y (z′)dz′]

=

∫
Rr

∫
Rr
K1(x(1) − z)E[Y (z)Y (z′)]K1(x(2) − z′)dzdz′ (1.27)

=

∫
Rr

∫
Rr
K1(x(1) − z)K2(z − z′)K1(x(2) − z′)dzdz′

=

∫
Rr

∫
Rr
K1(x(1) − x(2) − z)K2(z − z′)K1(z′)dzdz′. (1.28)

In the above computation, Equation (1.27) holds because the scalar product of the limits is
the limit of the scalar products and Equation (1.28) is obtained by the changes of variable
z ← z − x(2) and z′ ← z′ − x(2) and because K1(−z′) = K1(z).

Equation (1.28) shows that K1 ∗ K2 ∗ K1 is the covariance kernel of a stationary Gaussian
process, so it is a positive definite mapping.

Bochner’s theorem is a characterization of positive definite mappings Rr → R in terms of
their spectrum.

Theorem 1.30 (Bochner’s theorem). A mapping K : Rr → R is continuous and positive
definite if, and only if, there exists a finite positive measure µ such that for all x ∈ Rr

K(x) =

∫
Rr
ei〈ω|x〉dµ(ω). (1.29)

Proof. Let µ be a finite positive measure. For all x ∈ Rr, define

K(x) =

∫
Rr

exp(i 〈ω|x〉)dµ(ω). (1.30)

K is, due to the Dominated Convergence theorem, a continuous mapping Rr → R. We now
show it is positive definite.

For every positive integer n and all ξ = (ξ1, ..., ξn)> ∈ Rn,

∑
i,j∈[[1,n]]

ξiξjK(x(i) − x(j)) =

∫
Rr

∑
i,j∈[[1,n]]

(
ξi exp(i〈ω|x(i)〉)ξj exp(i〈ω|x(j)〉)

)
dµ(ω)

=

∫
Rr

n∑
i=1

∣∣∣ξi exp(i〈ω|x(i)〉)
∣∣∣2 dµ(ω)

> 0. (1.31)
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To prove the converse result, a step-by-step approach is required. First, we prove the result
for positive definite functions that are 1) integrable with respect to the Lebesgue measure on
Rr and 2) whose Fourier transform is also integrable with respect to the Lebesgue measure
on Rr. We then successively relax 2) and 1).

Let K be a positive definite function that satisfies 1) and 2). Then define K̂ : Rr → R by

K̂(ω) = (2π)−r
∫
Rr
K(x)e−i〈ω|x〉dx. (1.32)

By assumption, K̂ is integrable. Notice that it is also continuous.

For all x ∈ Rk, denote by φx the mapping Rk → C defined by φx(ω) = exp(i〈ω|x〉).

For any x(1),x(2) ∈ Rk,

K(x(1) − x(2)) =

∫
Rr
K̂(ω)ei〈ω|x

(1)−x(2)〉dω =

∫
Rr
φx(1)φx(2)K̂(ω)dω. (1.33)

So, for any positive integer n, any ξ = (ξ1, ..., ξn)> ∈ Rn and any x(1), ...,x(n) ∈ Rk,

∫
Rr

∣∣∣∣∣
n∑
k=1

ξkφx(k)(ω)

∣∣∣∣∣
2

K̂(ω)dω =
∑

k,l∈[[1,n]]

ξkξl

∫
Rr
φx(k)(ω)φx(l)(ω)K̂(ω)dω

=
∑

k,l∈[[1,n]]

ξkξlK(x(k) − x(l))

> 0. (1.34)

Equation (1.34) shows that for any element f of the vector space spanned by {φx : x ∈ Rk},∫
Rr
|f(ω)|2dω ∈ [0,+∞). (1.35)

For all r-tuples a and b such that a 6 b (in the sense that for every i ∈ [[1, r]], ai 6 bi), define
the set Ia,b := [a1, b1]× ...× [ar, br].

For all r-tuples a, b, a′, b′ such that a′ 6 a 6 b 6 b′, define pa,b : Rk → Rk as the
orthogonal projection on Ia,b and pca′,b′ : Rk → Rk as the orthogonal projection on the
closure of Rk \ Ia′,b′ . Let fa,b,a′,b′ : Rk → R be the continuous mapping defined by

fa,b,a′,b′(ω) =
‖ω − pca′,b′(ω)‖

‖pa,b(ω)− pca′,b′(ω)‖
. (1.36)

For all r-tuples a, b, a′, b′, a′′, b′′ such that a′′ 6 a′ 6 a 6 b 6 b′ 6 b′′, define the continuous
periodic mapping fa,b,a′,b′,a′′,b′′ : Rk → R as follows. For every ω ∈ Rk, there exists an r-
tuple n = (n1, ..., nr) ∈ Zr such that ω ∈ Ia′′+n·(b′′−a′′),b′′+n·(b′′−a′′) (here · denotes the dot
product). Then

fa,b,a′,b′,a′′,b′′(ω) = fa+n·(b′′−a′′),b+n·(b′′−a′′),a′+n·(b′′−a′′),b′+n·(b′′−a′′)(ω). (1.37)

Because fa,b,a′,b′,a′′,b′′ is a continuous periodic function, there exists a sequence (fn)n∈N of
functions belonging to the vector space spanned by {φx : x ∈ Rk} that uniformly converges
to fa,b,a′,b′,a′′,b′′ . Because the convergence is uniform, there exists a constant C > 0 such
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that for all n ∈ N and all ω ∈ Rr, |fn(ω)| 6 C. This fact, along with pointwise convergence
makes the Dominated Convergence theorem applicable.

∫
Rr
|fa,b,a′,b′,a′′,b′′(ω)|2K̂(ω)dω =

∫
Rr

∣∣∣ lim
n→∞

fn(ω)
∣∣∣2 K̂(ω)dω

= lim
n→∞

∫
Rr
|fn(ω)|2K̂(ω)dω

> 0. (1.38)

Clearly, for every ω ∈ Rr, |fa,b,a′,b′,a′′,b′′(ω)| 6 1. Let us make the period b′′ − a′′ increase
to infinity and apply the Dominated Convergence theorem again.

∫
Rr
|fa,b,a′,b′(ω)|2K̂(ω)dω =

∫
Rr

∣∣∣∣∣∣∣ lim
a′′→(−∞)r

b′′→(+∞)r

fa,b,a′,b′,a′′,b′′(ω)

∣∣∣∣∣∣∣
2

K̂(ω)dω

= lim
a′′→(−∞)r

b′′→(+∞)r

∫
Rr
|fa,b,a′,b′,a′′,b′′(ω)|2K̂(ω)dω

> 0. (1.39)

Finally, let us make a′ → a (a′ 6 a) and b′ → b (b′ > b) and apply the Dominated
Convergence theorem one last time.

∫
Ia,b

K̂(ω)dω =

∫
Rr
|1Ia,b(ω)|2K̂(ω)dω =

∫
Rr

∣∣∣∣∣∣ lim
a′→a
b′→b

fa,b,a′,b′(ω)

∣∣∣∣∣∣
2

K̂(ω)dω

= lim
a′→a
b′→b

∫
Rr
|fa,b,a′,b′(ω)|2K̂(ω)dω

> 0. (1.40)

Because K̂ is continuous, this implies that K̂ is a nonnegative function. It is therefore the
density with respect to the Lebesgue measure of a positive measure. Moreover, K̂ is by
assumption integrable with respect to the Lebesgue measure, so it is the density of a finite
positive measure.

For all R > 0, define the mapping GR : Rr → R by GR(x) = (2πR2)−r/2 exp(−‖x‖2/(2R2)).
GR is continuous and integrable with respect to the Lebesgue measure on Rr. Its Fourier
transform is defined by

ĜR(ω) = (2π)−r
∫
Rr
GR(x)e−i〈ω|x〉dx = (2π)−re−

R2‖ω‖2
2 . (1.41)

ĜR is also integrable with respect to the Lebesgue measure on Rr. It is the density of a
positive finite measure, so applying the result shown above, GR is a positive definite function.
It is a “Squared Exponential” kernel.
Squared Exponential kernels are the main tools we will use to relax Assumptions 1) and 2).

First, let us relax Assumption 2). Let K be a continuous positive definite mapping that
satisfies Assumption 1): it is integrable with respect to the Lebesgue measure on Rr.
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Then, for all R > 0, GR ∗K ∗GR is also a continuous positive definite mapping. And for all
ω ∈ Rr,

̂GR ∗K ∗GR(ω) = (2π)−r
∫
Rr
GR ∗K ∗GR(x)e−i〈ω|x〉dx = K̂(ω)e−R

2‖ω‖2 (1.42)

̂GR ∗K ∗GR is integrable with respect to the Lebesgue measure on Rr. Therefore, GR∗K∗GR
is a continuous positive definite mapping that satisfies both Assumption 1) and 2). The
result established previously can be applied: ̂GR ∗K ∗GR is the density with respect to the
Lebesgue measure on Rr of a finite positive measure. Equation (1.42) then shows that K̂ is
a nonnegative mapping, so it is the density of a positive measure.

The Monotone Convergence theorem yields that

lim
R→0

∫
Rr
K̂(ω)e−R

2‖ω‖2dω =

∫
Rr
K̂(ω)dω. (1.43)

For all R > 0
∫
Rr K̂(ω)e−R

2‖ω‖2dω = GR ∗K ∗ GR(0). Moreover, because K is continuous
and GR is the probability density of the Normal distribution with null mean and standard
deviation R,

lim
R→0

GR ∗K ∗GR(0) = K(0). (1.44)

Equations (1.43) and (1.44) yield ∫
Rr
K̂(ω)dω = K(0), (1.45)

so K̂ is the density of a finite measure with total mass K(0).

All that remains to do is relax Assumption 1). Let K be a continuous positive definite
mapping Rr → R such that K(0) 6= 0 (because if K(0) = 0, then K is the null function and
there is nothing to prove). For all R > 0, the mappingKR : x 7→ (2πR)r/2K(x)GR(x)K(0)−1

is positive definite. Because K is necessarily bounded and GR is integrable with respect to
the Lebesgue measure on Rr, KR is integrable too. So, applying the previous result, it is
the characteristic function of a probability measure µR. When R → +∞, KR converges
pointwise to the function K0 : x 7→ K(x)K(0)−1. This implies that µR converges narrowly
to a probability measure µ0 and that K0 is the characteristic function of µ0. Therefore, for
all x ∈ Rr,

K(x) = K(0)

∫
Rr
ei〈ω|x〉dµ0(ω). (1.46)

An other proof can be found in Gihman and Skorohod [1974] page 208.

Sometimes, a more precise version of Bochner’s theorem is required. The usual terminology
is somewhat misleading. A positive definite kernel leads to positive semi-definite covariance
matrices. But when does it lead to positive definite covariance matrices?



CHAPTER 1. KRIGING OVERVIEW 30

Proposition 1.31. Let µ be a positive measure on Rr with finite non-null total mass that is
absolutely continuous with respect to the Lebesgue measure. Then the mapping K : Rr → R
defined by

K(x) =

∫
Rr
ei〈ω|x〉dµ(ω) (1.47)

is positive definite. Moreover, for any ξ ∈ Rn \ {0n},

∑
k,l∈[[1,n]]

ξkξlK(x(k) − x(l)) > 0. (1.48)

Proof. The first part results from Bochner’s theorem. Let us show the second.

∑
k,l∈[[1,n]]

ξkξlK(x(k) − x(l)) =
∑

k,l∈[[1,n]]

ξkξl

∫
Rr
ei〈ω|x

(k)−x(l)〉dµ(ω)

=

∫
Rr

∣∣∣∣∣
n∑
k=1

ξke
i〈ω|x(k)〉

∣∣∣∣∣
2

dµ(ω). (1.49)

Given x(1), ...,x(n) are all distinct, for almost all unitary vector u in the sense of the Lebesgue
measure on the unit sphere Sr−1, the real numbers 〈u|x(1)〉, ..., 〈u|x(n)〉 are distinct. Indeed,
if two of these numbers, say 〈u|x(1)〉 and 〈u|x(2)〉, were equal, then u would be orthogonal
to x(1) − x(2). But the set of all vectors of Rr orthogonal to x(1) − x(2) is a hyperplane. So
there exists a finite number of hyperplanes of Rr such that, if u does not belong to any of
them, the real numbers 〈u|x(1)〉, ..., 〈u|x(n)〉 are distinct.

Now, notice that the mapping C → C; z 7→
∑n
k=1 ξke

iz〈u|x(k)〉 is holomorphic. So either it
is the null function or all its zeros are isolated. Given it clearly is not the null function, its
zeros are isolated. So the set of all zeros that belong to R is countable and therefore of null
Lebesgue measure.

Let f : Rr → {0, 1} be the measurable mapping such that f(ω) = 1 if
∑n
k=1 ξke

i〈ω|x(k)〉 = 0

and f(ω) = 0 if not.∫
Rr
f(ω)dω =

2π
r
2

Γ
(
r
2

) ∫
Sr−1

∫
(0,+∞)

f(tu)tr−1dtdu =
2π

r
2

Γ
(
r
2

) ∫
Sr−1

0 du = 0. (1.50)

Therefore the mapping Rr → C; ω 7→
∑n
k=1 ξke

i〈ω|x(k)〉 takes null values on a Borel set that
is negligible with respect to the Lebesgue measure. This set is therefore also negligible with
respect to µ, which yields the conclusion.

The following results give the link between the existence of moments of the spectral measure
and the smoothness of any associated Gaussian process [Stein, 1999, chapter 2].

Proposition 1.32. For every nonnegative integer n, a positive definite mapping Rr → R is
of class Cn if, and only if, its Fourier transform µ verifies∫

Rr
‖ω‖ndµ(ω) < +∞. (1.51)
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Corollary 1.33. For every nonnegative integer n, a stationary Gaussian process Y : D ⊂
Rk → L2(Ω) whose covariance kernel K is positive definite on Rk is of class Cn on D if, and
only if, K’s Fourier transform µ verifies∫

Rr
‖ω‖2ndµ(ω) < +∞. (1.52)

To illustrate this, we provide in Figure 1.2 Kriging examples for differently smooth processes.

0 2 4 6 8 10

−
2

−
1

0
1

2

Matérn nu=1/2

●

●

●

●

●

●
●

●

●
●

0 2 4 6 8 10

−
2

−
1

0
1

2

Matérn nu=3/2

●

●

●

●

●

●
●

●

●
●

0 2 4 6 8 10

−
2

−
1

0
1

2

Matérn nu=5/2

x

●

●

●

●

●

●
●

●

●
●

Figure 1.2 – Kriging with differently smooth Gaussian processes. Top left: mean square continuous.
Top right: mean square continuously differentiable. Bottom: twice mean squre continuously differen-
tiable. Solid lines represent conditional means and dotted lines add or substract conditional standard
deviations.

1.5 Examples of correlation kernels

In this thesis, four families of correlation kernels are discussed (cf. Table 1.1). All correspond-
ing spectral probability measures are absolutely continuous with respect to the Lebesgue
measure.
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Kernel Kθ(|x|) parameter range

Spherical (r = 1, 2, 3)
(

1− 3
2

(
|x|
θ

)
+ 1

2

(
|x|
θ

)3
)

1{|x|6θ} ∅

Power Exponential exp
{
−
(
|x|
θ

)q}
q ∈ (0, 2]

Rational Quadratic
(

1 +
(
|x|
θ

)2
)−ν

ν ∈ (0,+∞)

Matérn Γ(ν)−121−ν
(

2
√
ν |x|θ

)ν
Kν
(

2
√
ν |x|θ

)
ν ∈ (0,+∞)

Table 1.1 – Formulas for several correlation kernel families. The Squared Exponential kernel is
the Power Exponential kernel with q = 2. Kν is the modified Bessel function of second kind with
parameter ν [Abramowitz and Stegun, 1964](9.6.).

The spherical kernel is only used in geostatistics ([Journel and Huijbregts, 1978], p.116, [Isaaks
and Srivastava, 1989], p.374, [Bras and Rodriguez-Iturbe, 1985], p.418, [Christakos, 1992],
p.71, [Wackernagel, 1995], p.42, [Kitadinis, 1997], p.56, [Goovaerts, 1997], p.88) mainly be-
cause it is limited to 1, 2 and 3-dimensional settings: Bochner’s theorem can be used to show
that its Fourier transform in 4 or higher-dimensional settings is no positive measure. Its main
advantage is its simplicity. It is continuous, so Gaussian processes using it are mean square
continuous. It is not differentiable at 0, so corresponding Gaussian processes are not mean
square continuously differentiable. Moreover, the values of the Gaussian process at points
with distance greater or equal to θ are independent. This is a peculiar assumption that is
generally hard to justify, but can lead to sparsity in correlation matrices.

Spectral density depends on the dimension. In the following, J0 and J1 are respectively the
Bessel function of first kind with parameter 0 and 1. H0 and H1 are respectively the Struve
functions with parameter 0 and 1.

K̂(ω) =


θ 3(‖θω‖2−2‖θω‖ sin(‖θω‖)−2 cos(‖θω‖)+2)

2πθ‖θω‖4 for r = 1.

θ2
[
H0(‖θω‖)J1(‖θω‖)

4 + (2−πH1(‖θω‖))J0(‖θω‖)
4π − J1(‖θω‖)

‖θω‖ − J2(‖θω‖)
‖θω‖2

]
for r = 2.

θ3 ‖θω‖3−3 sin(‖θω‖)+3‖θω‖ cos(‖θω‖)
π2‖θω‖5 for r = 3.

Power Exponential kernels, and especially the Exponential (q = 1) and Squared Exponential
(q = 2) kernels are probably the most widely used family. They are as simple as the Spherical
kernel and have the advantage of extending to dimensions greater than 3. They provide some
flexibility with respect the smoothness of the associated Gaussian processes, although it is
of the all-or-nothing kind. For q < 2, Gaussian processes are mean square continuous but
not mean square differentiable. For q = 2, Gaussian processes are infinitely mean square
continuously differentiable. In fact, Stein [1999] points out that in a 1-dimensional setting,
letting Y (i)(0) be the i-th derivative of the Gaussian process at 0,

∑n
i=0 Y

(i)(0)ti/i! converges
to Y (t) in L2. So observing Y on any neighborhood of 0 (and therefore of any point) is enough
to almost surely know the value of Y at any other point! This behavior is usually considered
physically unrealistic.

The Squared Exponential kernel has an other remarkable feature: it is left invariant (up to a
multiplicative constant) by the Fourier transform:

K̂(ω) = (2π)−r(πθ2)r/2 exp(−θ2‖ω‖2/4). (1.53)



33 1.6. CURRENT KRIGING-RELATED RESEARCH

Rational Quadratic kernels provide no flexibility with respect to smoothness: all lead to
infinitely mean square continuously differentiable Gaussian processes. They share the Squared
Exponential kernel’s defect, but on a smaller scale:

∑n
i=0 Y

(i)(0)ti/i! converges to Y (t) in L2

only if t < θ.

Rational Quadratic kernels have the following spectral density, with Kν being the modified
Bessel function of second kind with parameter ν:

K̂(ω) = θr
(2π)−r/2‖ω‖ν−r/2Kν−r/2(‖ω‖)

2ν−1Γ(ν)
. (1.54)

Matérn kernels are recommended by Stein [1999] because they offer great flexibility regarding
smoothness of the Gaussian process. The density with respect to the Lebesgue measure of the
associated spectral probability measure is proportional to

(
4ν + ‖ω‖2/θ2

)− r2−ν [Rasmussen
and Williams, 2006]. In fact, this kernel is specifically constructed in order to have a nice
spectral density. The study of this measure is straightforward and leads to the conclusion
that the associated Gaussian process is bνc times mean square continuously differentiable if
ν is not an integer and ν − 1 continuously differentiable if it is. Moreover, it is mean square
continuous for any ν > 0. The Matérn family admits comfortable expressions when ν is a
half-integer (ν = 1/2, 3/2, 5/2, ...). Notably, it includes the Exponential kernel (ν = 1/2) and
admits the Squared Exponential kernel as its limit when ν → +∞. Notice that Matérn and
Rational Quadratic kernels are the Fourier transform of one another.
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1
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Figure 1.3 illustrates several kernels from all four families.
Estimating kernel parameters is often no simple task, and is one of the motivations of this
thesis. Here, the matter is tackled from an Objective Bayesian standpoint. For a frequentist
perspective, see Bachoc [2013b].

1.6 Current Kriging-related research

Although the aim of this chapter was only to provide an understanding of the Kriging tools
used in this thesis, let us briefly mention several recent developments in the field. See also
Bachoc et al. [2017a].

Apart from geostatistical applications, one of the main uses for Kriging methods is emulation
of computer codes. Kriging is therefore used for both calibration and prediction purposes
[Bachoc et al., 2014]. Gaussian processes can be used to perform uncertainty quantification
when optimizing under constraints [Binois et al., 2015]. The Bayesian framework allows
additional flexibility by considering several different covariance kernels at once [Pronzato and
Rendas, 2017] – the present thesis makes such an approach more systematic.

An important issue for all spatial statistics is the design of experiments. One can for example
wish for a “space-filling” design set. Although the concept is simple, practical implementation
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Figure 1.3 – Correlation kernels with parameter θ = 1.

in higher-dimensional spaces is a difficult problem [Damblin et al., 2013, Pronzato, 2017].
Other approaches rely on the statistical properties of Gaussian processes in order to minimize
global uncertainty [Chevalier et al., 2014, Bect et al., 2016]. In some applications, a spherical
symmetry may be observed and Kriging methods would need to take this information into
account [Padonou and Roustant, 2016].

Because of its versatility, Kriging can be used in varied industrial problems. The one which
motivated this thesis is the computation of Functional Risk Curves. Although by no means the
only possible solution, the Kriging framework is particularly well suited because it provides
ready-to-use uncertainty quantifying objects like prediction intervals [Iooss and Le Gratiet,
2017, Le Gratiet et al., 2017].

Despite its original geostatistical purpose of quantifying quantities in 3-dimensional spaces,
it is part of the solution to ever more complex problems. Co-Kriging, i.e. Kriging with
multidimensional output, has been successfully used [Le Gratiet and Garnier, 2014] to emulate
hierarchical multi-fidelity codes [Le Gratiet, 2013]. In a different context, methods have been
developed to deal with nested codes, where the output of one is the input of the next [Perrin
et al., 2017]. And when the number of data is large, small Kriging models can be aggregated
[Rullière et al., 2018].

Qualitative limits of Kriging are also being pushed. Roustant et al. [2018] consider Kriging-
based methods for categorical inputs, and Bachoc et al. [2017b] propose a theory for Kriging
of distributional rather than numerical inputs.



Chapter 2

Reference Prior Theory

Abstract

Reference analysis is presented with inferential and predictive goals in mind (hypothesis

testing is not considered). Formal definitions of reference priors are given for single-

parameter and multi-parameter models. Reference priors are linked to both Laplace’s

insufficient reason argument and Jeffrey’s rule for prior elicitation. Fundamental prop-

erties of reference priors – independence of sample size, compatibility with sufficient

statistics, invariance under reparametrization – are highlighted. Although primarily a

review on reference analysis in the vein of Bernardo [2005] and Berger et al. [2009], the

chapter contributes a uniqueness result under some assumptions for single-parameter ref-

erence priors. Examples of single-parameter and multi-parameter models and associated

reference priors are given.

Résumé

L’analyse bayésienne fondée sur les priors de référence est présentée dans une optique

inférentielle et prédictive (le test d’hypothèses n’est pas traité). Les priors de référence

pour modèles à un ou plusieurs paramètres sont formellement définis. La théorie est re-

liée à la fois au principe de raison insuffisante de Laplace et à la règle de Jeffreys pour

éliciter des priors. Les propriétés fondamentales des priors de référence – indépendance

vis-à-vis de la taille d’échantillon, compatibilité avec les statistiques exhaustives, inva-

riance par reparamétrisation – sont mises en relief. Quoique se voulant avant tout un

résumé de la théorie dans les pas de Bernardo [2005] et Berger et al. [2009], ce chapitre

apporte une contribution sous la forme d’un résultat d’unicité sous conditions du prior

de référence pour les modèles à un seul paramètre. Des exemples de modèles à un ou

plusieurs paramètres sont fournis avec les priors de référence qui y sont associés.

2.1 Introduction

This chapter aims to provide the basics necessary to gain a working understanding of reference
prior theory. It draws mainly on Bernardo [2005] and Berger et al. [2009]. Reference prior
theory is an attempt to create “objective” priors. Such priors should be sensible defaults in
cases where no prior information is available.

The original noninformative prior was the uniform prior. For finite states problems, it derives
from the insufficient reason principle ascribed to Laplace [Gelman et al., 2013]. Its extension

35
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to continuous state spaces in not defendable, however, because it leads to widely different
posterior distributions for different parametrizations. Subsequent approaches to the prob-
lems have relied on invariance arguments (see Hartigan [1964], Jaynes [1968], Dawid [1983]),
resulting in left and right Haar measures [Nachbin, 1965]. Jaynes based the notion of non-
informativity on Shannon entropy [Jaynes, 1982]. Despite great successes in many problems
like spectral analysis and image processing, this approach was shown to lead to paradoxical
results [Seidenfeld, 1986]. There have also been efforts to find priors that make Bayesian
credible intervals fit frequentist confidence intervals, starting with Lindley [1958] and Welch
and Peers [1963]. For a review of efforts to find noninformative priors, see Kass and Wasser-
man [1996] or [Ghosh, 2011]. The most fruitful approach however was the Jeffreys-rule prior
[Jeffreys, 1961], and many methods end up justifying its use in several cases. As we will see,
the reference prior method is one of them.

Because of the vague nature of the notion of noninformative prior – each method is a formal-
ization of this idea – it is the subject of an ongoing controversy. We do not discuss it in this
chapter, but the interested reader may for example read Fienberg [2006] and Berger [2006],
or more recently Seaman III et al. [2012] and Kamary and Robert [2014].

Apart from inference and prediction, hypothesis testing is yet another statistical problem
where noninformative priors are desired. Although no such problem is considered in this
thesis, it is a very active research field. See Bernardo [2011] for solutions based on reference
prior theory, and Kamary et al. [2014] for a general modern perspective.
This chapter details the intuition behind the formal definition of the reference prior in order to
explain both its strengths and shortcomings. The formal definition is not given straight away,
because it is quite complex and is of little help if the ideas behind it are not well understood.
Instead, it is presented as the end result of a development process where “naive” conceptions
are put forward, criticized, and then corrected.

Even though intuition is emphasized, formal proofs are provided for all results except Theorem
2.16, for which heuristic arguments are provided. The reader is referred to Clarke and Barron
[1994] for formal arguments in this instance.

2.2 Basic idea

Our main tool for defining the reference prior is the Kullback-Leibler divergence.

Definition 2.1 (Kullback-Leibler divergence). Let P and Q be two probability measures
absolutely continuous with respect to a measure µ. Let p and q be their respective Radon-
Nikodym derivatives with respect to µ. The Kullback-Leibler divergence D(P ||Q) of Q with
respect to P is defined by

D(P ||Q) =

∫
p log

(
p

q

)
dµ. (2.1)

The Kullback-Leibler divergence has several useful properties [Lindley, 1956]. Among them:
— It does not depend on the dominating measure µ.
— Jensen’s inequality can be used to show that it is nonnegative.
— It is equal to 0 if, and only if, Q = P .
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—
∫
p
∣∣∣log

(
p
q

)∣∣∣ dµ 6 D(P ||Q) + 1.
The Kullback-Leibler divergence is usually interpreted as a way to quantify how different
Q is from P . The smaller D(P ||Q) is, the better Q approximates P . In the discrete case,
it is axiomatically justified in the context of Shannon’s information theory [Shannon, 1948,
Lee, 1964]. Good [1966] gives a probabilistic interpretation of information. Bernardo [1979b]
discusses it from a decision-theoretic standpoint.

The Kullback-Leibler divergence is not symmetric, so it does not qualify as a distance between
probability distributions.

This interpretation can be used to determine what an objective prior distribution should be.
Let Y be the observation space and endow it with a σ-algebra Y. Let Θ be the parameter
space. A model is a collection of probability distributions (Pθ)θ∈Θ. In a Bayesian setting, it is
coupled with a prior distribution Π on the parameter space Θ. For ease of use, we assume that
Θ is a metric space (its distance is denoted by dist) endowed with its Borel σ-algebra. Every
prior distribution Π is a probability distribution on this measurable space. The predictive
distribution based on prior knowledge [Robert, 2007] is

PΠ :=

∫
Θ

PθdΠ(θ). (2.2)

This is to say that for any measurable subset T of Y,

PΠ(T ) =

∫
Θ

Pθ(T )dΠ(θ). (2.3)

Naturally, this definition assumes that for any measurable set A ∈ Y, the mapping Θ →
[0, 1]; θ 7→ Pθ(A) is measurable. In other words, the mapping Θ × Y; (θ,A) 7→ Pθ(A) is
assumed to be a Markov kernel. This assumption is technical and has no practical relevance.
Typically, Pθ(A) is continuous as a function of θ, or else Θ is a countable set, or some other
reason makes this requirement hold.

If an observation y ∈ Y from the model (Pθ)θ∈Θ (with unknown θ) has been made, let Π(·|y)

be the posterior distribution resulting from the prior Π.
The posterior distribution [Robert, 2007] is defined as a Markov kernel Y × B(Θ) : (y,B) 7→
Π(B|y) such that for any measurable set A ⊂ Y and any measurable set B ⊂ Θ∫

A

Π(B|y)dPΠ(y) =

∫
B

Pθ(A)dΠ(θ). (2.4)

Remark. If the model (Pθ)θ∈Θ is dominated by some measure µY (i.e. if for any θ ∈ Θ, Pθ is
absolutely continuous with respect to µY – in other words, if the model admits a likelihood
function), then let pθ be the density of Pθ and pΠ be the density of PΠ (for µY -almost any
y, pΠ(y) =

∫
θ∈Θ

pθ(y)dΠ(θ)). Then, for µY -almost any y, the posterior distribution Π(·|y) is
defined as having density θ 7→ pθ(y)/pΠ(y) with respect to the prior Π.

Intuitively, a prior Π is noninformative if it plays a small role in the formation the posterior
Π(·|y). This way, the amount of information conveyed by the data will be maximized. In
practice, we use the Kullback-Leibler divergence D(Π(·|y) ||Π), which says how badly Π

approximates Π(·|y) to measure this [Berger et al., 2009]. Given that y is actually unknown
at the time the prior is defined, D(Π(·|y) ||Π) should be maximized on average over y ∈ Y.
We therefore want to maximize over all priors Π the quantity

∫
Y dPΠ(y)D(Π(·|y)||Π).
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If the model is dominated (cf. previous remark), then

∫
Y
dPΠ(y)D(Π(·|y)||Π) =

∫
Y
dPΠ(y)

∫
Θ

dΠ(θ|y) log

(
dΠ(·|y)

dΠ
(θ)

)
=

∫
Y
dPΠ(y)

∫
Θ

dΠ(θ|y) log
pθ(y)

pΠ(y)
. (2.5)

If this quantity is finite, then the Fubini-Lebesgue theorem is applicable, because∫
Y
dPΠ(y)

∫
Θ

dΠ(θ|y)

∣∣∣∣log
pθ(y)

pΠ(y)

∣∣∣∣ 6 ∫
Y
dPΠ(y)

∫
Θ

dΠ(θ|y) log
pθ(y)

pΠ(y)
+ 1. (2.6)

Therefore, if
∫
Y dPΠ(y)D(Π(·|y)||Π) < +∞, then the two integral signs can be switched.

∫
Y
dPΠ(y)D(Π(·|y)||Π) =

∫
Θ

dΠ(θ)

∫
Y
pθ(y) log

pθ(y)

pΠ(y)
dµY(y) =

∫
Θ

dΠ(θ)D(Pθ||PΠ). (2.7)

The same reasoning could be applied in reverse. So either both
∫
Y dPΠ(y)D(Π(·|y)||Π) and∫

Θ
dΠ(θ)D(Pθ||PΠ) are finite, in which case they are equal, or both are infinite. In all cases,

they are equal.

This identity, which holds for all dominated models (Pθ)θ∈Θ, leads to a new intuition. A prior
Π is noninformative if there is a great difference between knowing it and knowing the true
value θ, that is, if PΠ is generally a poor substitute to Pθ. So D(Pθ||PΠ) should be large on
average over Θ.

Of course, “on average over Θ” means in practice “on average over the prior distribution”.
Averaging over the prior whose noninformativity is being evaluated makes the noninformativ-
ity criterion somewhat self-referential. One would perhaps wish to average over some other
measure, but which one? Note that the original idea of maximizing

∫
Y dPΠ(y)D(Π(·|y)||Π)

runs into the same problem. In that formulation, the average is being made over the predic-
tive distribution, but this distribution still depends on the prior! The formulation (2.7) can
however be defended from a game-theoretic standpoint [Clarke and Barron, 1994]. Imagine
a game between two players, Nature and the Statistician. Nature first picks the parameter θ
randomly using a prior distribution Π. Then, using the picked θ, Nature draws y randomly
using the distribution Pθ. Then, knowing only the prior distribution Π, the Statistician at-
tempts to guess y. For Nature, the optimal play is to maximize (2.7), because on average,
this is what makes the Statistician’s job most difficult.

Example 1. Let Θ = {1, 2}, P1 be the uniform distribution on [0, 1] and P2 be the uniform
distribution on [0, 2]. Let Π be a prior distribution and let x := Π(1) (so that Π(2) = 1− x).
Then ∫

Θ

D(Pθ||PΠ)dΠ(θ) = x log

(
2

1 + x

)
+

1− x
2

log

(
1

1− x2

)
, (2.8)

which reaches its maximum at x = 3/5.

A problem with this definition is that Pθ can be changed simply by taking several independent
observations instead of just one. Such a change cannot be said to alter the model, so one
would expect the optimum not to change. Unfortunately, it does.
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For any distribution Q, let Q⊗n (n ∈ N) be the distribution of a sample of n independent
draws from Q. And let PΠ,n be the distribution on Yn (with σ-algebra Y⊗n) such that for
all T1, ..., Tn ∈ Y,

PΠ,n(×ni=1Ti) =

∫
Θ

n∏
i=1

Pθ(Ti)dΠ(θ). (2.9)

Example 2 (Previous example–continued).∫
Θ

D(P⊗2
θ ||PΠ,2)dΠ(θ) = x log

(
4

1 + 3x

)
+ (1− x)

[
1

4
log

(
1

1 + 3x

)
+

3

4
log

(
1

1− x

)]
,

(2.10)
which reaches its maximum at x = 1/283(247− 128 21/3 + 48 22/3) ≈ 0.57 < 3/5.

A solution to this problem is to consider the asymptotic case (n→ +∞).

Let P(Θ) be the set all proper prior distributions supported on Θ, that is all probability
distributions supported on Θ for which a posterior distribution is well defined. In the case of
dominated models, all probability distributions supported on Θ fit this requirement.

We give a first definition of a reference prior, that is a prior which maximizes a noninforma-
tivity criterion and can therefore be used as a default prior when little prior information is
available.

Definition 2.2 (Naive definition of a reference prior). A reference prior Π? is an element of
P(Θ) such that

lim
n→+∞

∫
Θ

D(P⊗nθ ||PΠ?,n)dΠ?(θ) = lim
n→+∞

sup
Π∈P(Θ)

∫
Θ

D(P⊗nθ ||PΠ,n)dΠ(θ) < +∞. (2.11)

Remark. The definition assumes that both limits exist and are finite. As will be seen, this
assumption is too strong for practical purposes [Berger et al., 2009]. Nevertheless, there are
cases where this definition works [Bernardo, 2005].

Proposition 2.3. If Θ is a finite set and its topology is the set of all its parts, and if for all
θ1, θ2 ∈ Θ, Pθ1 6= Pθ2 , then the reference prior is given by

∀θ ∈ Θ, Π?(θ) =
1

#Θ
. (2.12)

Proof. For any prior Π and any θ ∈ Θ such that Π(θ) > 0,

D(P⊗nθ ||PΠ,n) =

∫
Yn

log

(
dP⊗nθ (y)∑

θ′∈Θ Π(θ′)dP⊗nθ′ (y)

)
dP⊗nθ (y)

= −
∫
Yn

log

Π(θ) +
∑
θ′ 6=θ

Π(θ′)
dP⊗nθ′

dP⊗nθ
(y)

 dP⊗nθ (y)

= − log(Π(θ))−
∫
Yn

log

1 +
∑
θ′ 6=θ

Π(θ′)

Π(θ)

dP⊗nθ′

dP⊗nθ
(y)

 dP⊗nθ (y). (2.13)

Now, since Θ is finite and for all θ1, θ2 ∈ Θ, Pθ1 6= Pθ2 , there exists a weakly consistent
estimator θ̂n for the model.
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∫
Yn

log

1 +
∑
θ′ 6=θ

Π(θ′)

Π(θ)

dP⊗nθ′

dP⊗nθ
(y)

 dP⊗nθ (y)

=

∫
θ̂n=θ

log

1 +
∑
θ′ 6=θ

Π(θ′)

Π(θ)

dP⊗nθ′

dP⊗nθ
(y)

 dP⊗nθ (y)

+
P⊗nθ (θ̂n 6= θ)

P⊗nθ (θ̂n 6= θ)

∫
θ̂n 6=θ

log

1 +
∑
θ′ 6=θ

Π(θ′)

Π(θ)

dP⊗nθ′

dP⊗nθ
(y)

 dP⊗nθ (y)

6
∫
θ̂n=θ

∑
θ′ 6=θ

Π(θ′)

Π(θ)

dP⊗nθ′

dP⊗nθ
(y)

 dP⊗nθ (y)

+ P⊗nθ (θ̂n 6= θ) log

1 +
1

P⊗nθ (θ̂n 6= θ)

∫
θ̂n 6=θ

∑
θ′ 6=θ

Π(θ′)

Π(θ)

dP⊗nθ′

dP⊗nθ
(y)dP⊗nθ (y)


=
∑
θ′ 6=θ

Π(θ′)

Π(θ)
P⊗nθ′ (θ̂n = θ) + P⊗nθ (θ̂n 6= θ) log

1 +
∑
θ′ 6=θ

Π(θ′)

Π(θ)

P⊗nθ′ (θ̂n 6= θ)

P⊗nθ (θ̂n 6= θ)


6
∑
θ′ 6=θ

Π(θ′)

Π(θ)
P⊗nθ′ (θ̂n = θ) + P⊗nθ (θ̂n 6= θ) log

1 +
∑
θ′ 6=θ

Π(θ′)

Π(θ)

1

P⊗nθ (θ̂n 6= θ)

 (2.14)

The first equality holds unless P⊗nθ (θ̂n 6= θ) = 0, but Equation (2.14) trivially holds in that
case. The first inequality results from applying the Jensen inequality to the convex mapping
log(1 + x) and from the inequality log(1 + x) 6 x, which holds for all x > 0.

Since θ̂n is weakly consistent, we have both limn→+∞ P⊗nθ′ (θ̂n = θ) = 0 for all θ′ 6= θ and
limn→+∞ P⊗nθ (θ̂n 6= θ) = 0. Therefore

lim
n→+∞

D(P⊗nθ ||PΠ,n) = − log(Π(θ)) (2.15)

and

lim
n→+∞

∑
θ∈Θ

D(P⊗nθ ||PΠ,n)Π(θ) = −
∑
θ∈Θ

log(Π(θ))Π(θ). (2.16)

Because the logarithm is convex, for any prior Π,

∑
θ∈Θ

log

(
1

Π(θ)

)
Π(θ) 6 log

(∑
θ∈Θ

1

Π(θ)
Π(θ)

)
= log(#Θ). (2.17)

This inequality becomes an equality if, and only if, Π(θ) = 1/#Θ for every θ ∈ Θ.

Remark. The right member of (2.16) is the Shannon entropy of Π.

Interestingly, the reference prior here fits the Laplace [1814] insufficient reason principle,
which consists in assuming all elementary events to be equiprobable. This is the first example
of the reference prior naturally fitting earlier conceptions of noninformativity.

Although Definition 2.2 intuitively makes sense, it is too restrictive. The limit in (2.11) is
often infinite, which means no reference prior exists. Nevertheless, it is sufficient for cases
where Y is a finite set.
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2.3 Full definition of the reference prior

The definition of a reference prior below is a more restrictive version of the definition given
by Bernardo [2005], because it requires such a prior to be proper.

Definition 2.4 (Reference prior: proper case). A reference prior Π? is an element of P(Θ)

such that for any other element Π of P(Θ),

lim inf
n→+∞

[∫
Θ

D(P⊗nθ ||PΠ?,n)dΠ?(θ)−
∫

Θ

D(P⊗nθ ||PΠ,n)dΠ(θ)

]
> 0. (2.18)

Definition 2.4 is an extension of Definition 2.2. Any reference prior in the sense of Definition
2.2 is one in the sense of Definition 2.4.

Remark. If (Pθ)θ∈Θ is a dominated model, the following alternate definition is equivalent: a
reference prior Π? is an element of P(Θ) such that for any other element Π of P(Θ),

lim inf
n→+∞

[∫
Yn
D(Π?(·|y)||Π?)dPΠ?,n(y)−

∫
Yn
D(Π(·|y)||Π)dPΠ,n(y)

]
> 0. (2.19)

This definition is more in line with the first intuition presented in this chapter, which can
now be refined. When n → +∞, the posterior distribution approaches perfect knowledge of
the parameter. The Kullback-Leibler divergence between the posterior and prior can thus be
seen as the difference between (almost) perfect knowledge and knowledge due to the prior. It
is the knowledge “missing” from the prior [Berger et al., 2009].

One question that naturally arises is whether the reference prior, in case it exists, is unique.
This part of the discussion is to our knowledge new, in the sense that uniqueness does not
seem to have been studied in a general setting before. Bernardo [2005] and Berger et al. [2009]
do not care about it, which is understandable, since two reference priors would necessarily be
equally noninformative, so any of them could be chosen.

Lemma 2.5. Let t ∈ (0, 1) and let Πt, Π0 and Π1 be proper priors such that Πt = (1− t)Π0 +

tΠ1. For every positive integer n,

∫
Θ

dΠ1(θ)D(P⊗nθ ||PΠt,n)−
∫

Θ

dΠ1(θ)D(P⊗nθ ||PΠ1,n) = D(PΠ1,n||PΠt,n) 6 − log(t). (2.20)

Proof. The inequality is due to the fact that PΠt,n = (1 − t)PΠ0,n + tPΠ1,n. So Π1-almost
surely, dPΠ1,n/dPΠt,n 6 1/t, so

D(PΠ1,n||PΠt,n) =

∫
Yn
dPΠ1,n(y) log

(
dPΠ1,n

dPΠt,n
(y)

)
6 log

(
1

t

)
. (2.21)

To obtain the equality, notice that

∫
Θ

dΠ1(θ)D(P⊗nθ ||PΠt,n)

=

∫
Θ

dΠ1(θ)

∫
Yn
dP⊗nθ (y) log

(
dP⊗nθ
dPΠt,n

(y)

)
=

∫
Θ

dΠ1(θ)

∫
Yn
dP⊗nθ (y) log

(
dP⊗nθ
dPΠ1,n

(y)

)
+

∫
Θ

dΠ1(θ)

∫
Yn
dP⊗nθ (y) log

(
dPΠ1,n

dPΠt,n
(y)

)
=

∫
Θ

dΠ1(θ)D(P⊗nθ ||PΠ1,n) +D(PΠ1,n||PΠt,n). (2.22)
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The last step holds due to the Fubini-Lebesgue theorem, which can be used because

∫
Θ

dΠ1(θ)

∫
Yn
dP⊗nθ (y)

∣∣∣∣log

(
dPΠ1,n

dPΠt,n
(y)

)∣∣∣∣ 6 ∫
Θ

dΠ1(θ)

∫
Yn
dP⊗nθ (y) log

(
dPΠ1,n

dPΠt,n
(y)

)
+ 1

6
∫

Θ

dΠ1(θ)

∫
Yn
dP⊗nθ (y) log

(
1

t

)
+ 1

= − log(t) + 1 < +∞. (2.23)

Lemma 2.6. For any t ∈ (0, 1), for any proper priors Πt, Π0 and Π1 such that Πt =

(1− t)Π0 + tΠ1,

∫
Θ

dΠt(θ)D(P⊗nθ ||PΠt,n) = (1− t)
∫

Θ

dΠ0(θ)D(P⊗nθ ||PΠ0,n) + t

∫
Θ

dΠ1(θ)D(P⊗nθ ||PΠ1,n)

+ (1− t)D(PΠ0,n||PΠt,n) + tD(PΠ1,n||PΠt,n). (2.24)

Proof. The result follows from this decomposition:

∫
Θ

dΠ(θ)D(P⊗nθ ||PΠt,n) = (1− t)
∫

Θ

dΠ0(θ)D(P⊗nθ ||PΠt,n) + t

∫
Θ

dΠ1(θ)D(P⊗nθ ||PΠt,n).

(2.25)

Applying Lemma 2.5 to both Π0 and Π1 yields the result.

Lemma 2.7. For any t ∈ (0, 1), for any proper priors Πt, Π0 and Π1 such that Πt =

(1− t)Π0 + tΠ1, the sequences (D(PΠ0,n||PΠt,n))n∈Z+
and (D(PΠ1,n||PΠt,n))n∈Z+

are nonde-
creasing.

Proof. We only prove that (D(PΠ1,n||PΠt,n))n∈Z+
is nondecreasing because the proof that

(D(PΠ0,n||PΠt,n))n∈Z+
is nondecreasing is similar.

Recall that for every positive integer n, PΠt,n = (1 − t)PΠ0,n + tPΠ1,n and therefore PΠ0,n-
almost surely, dPΠ1,n/dPΠt,n 6 1/t.

D(PΠ1,n||PΠt,n) =

∫
Yn
dPΠ1,n(y) log

(
dPΠ1,n

dPΠt,n
(y)

)
6
∫
Yn
dPΠ1,n(y) log

(
1

1− t

)
= − log(t) < +∞. (2.26)

Therefore ∫
Yn
dPΠ1,n(y)

∣∣∣∣log

(
dPΠ1,n

dPΠt,n
(y)

)∣∣∣∣ 6 − log(t) + 1 < +∞. (2.27)

Now, define Π0,n(·|y) (resp. Π1,n(·|y), Πt,n(·|y) ) as the posterior distribution resulting
from the prior Π1 (resp. Π0, Πt) after having made n independent observations (y). Then
define the “conditional” predictive distribution PyΠ1|n =

∫
Θ
dΠ1,n(θ|y)Pθ (resp. PyΠ0|n =∫

Θ
dΠ0,n(θ|y)Pθ, P

y
Πt|n =

∫
Θ
dΠt,n(θ|y)Pθ). Applying the Fubini-Lebesgue theorem,
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D(PΠ1,n+1||PΠt,n+1) =

∫
Yn
dPΠ1,n(y)

∫
Y
dPyΠ1|n(y′) log

(
dPΠ1,n+1

dPΠt,n+1
(y, y′)

)
=

∫
Yn
dPΠ1,n(y)

∫
Y
dPyΠ1|n(y′) log

(
dPΠ1,n

dPΠt,n
(y)

dPyΠ1|n

dPyΠt|n
(y′)

)

=

∫
Yn
dPΠ1,n(y) log

(
dPΠ1,n

dPΠt,n
(y)

)
+

∫
Yn
dPΠ1,n(y)

∫
Y
dPyΠ1|n(y′) log

(
dPyΠ1|n

dPyΠt|n
(y′)

)

= D(PΠ1,n||PΠt,n) +

∫
Yn
dPΠ1,n(y)D(PyΠ1|n||P

y
Πt|n)

> D(PΠ1,n||PΠt,n). (2.28)

The second equality holds because PΠt,n+1 = (1− t)PΠ1,n+1 + tPΠ1,n+1 and therefore
— PΠ1,n-almost surely, dPΠ1,n/dPΠt,n 6 1/t;
— for Π1,n-almost any y ∈ Yn, PyΠ1|n-almost surely, dPyΠ1|n/dP

y
Πt|n 6 1/t.

Lemma 2.8. For any proper prior Π, the mapping iΠ : P(Θ)→ [0,+∞] defined by

iΠ(Π′) := lim inf
n→+∞

[∫
Θ

D(P⊗nθ ||PΠ′,n)dΠ′(θ)−
∫

Θ

D(P⊗nθ ||PΠ,n)dΠ(θ)

]
(2.29)

is essentially strictly convex in the following sense. For all Π0,Π1 ∈ P(Θ) such that iΠ(Π0)

and iΠ(Π1) are finite,
— either for all t ∈ (0, 1), iΠ((1− t)Π0 + tΠ1) > (1− t)iΠ(Π0) + tiΠ(Π1);
— or for all n ∈ Z+, PΠ0,n = PΠ1,n.

Proof. Define Πt := (1− t)Π0 + tΠ1. Lemmas 2.6 and 2.7 imply that for all m ∈ Z+,

lim inf
n→∞

[∫
Θ

dΠt(θ)D(P⊗nθ ||PΠt,n)

−(1− t)
∫

Θ

dΠ0(θ)D(P⊗nθ ||PΠ0,n)− t
∫

Θ

dΠ1(θ)D(P⊗nθ ||PΠ1,n)

]
>(1− t)D(PΠ0,m||PΠt,m) + tD(PΠ1,m||PΠt,m). (2.30)

For any proper prior Π such that iΠ(Π0) and iΠ(Π1) are finite,

lim inf
n→∞

∫
Θ

dΠt(θ)D(P⊗nθ ||PΠt,n)

− (1− t)
∫

Θ

dΠ0(θ)D(P⊗nθ ||PΠ0,n)− t
∫

Θ

dΠ1(θ)D(P⊗nθ ||PΠ1,n)

= lim inf
n→∞

[∫
Θ

dΠt(θ)D(P⊗nθ ||PΠt,n)−
∫

Θ

dΠ(θ)D(P⊗nθ ||PΠ,n)

−(1− t)
(∫

Θ

dΠ0(θ)D(P⊗nθ ||PΠ0,n)−
∫

Θ

dΠ(θ)D(P⊗nθ ||PΠ,n)

)
−t
(∫

Θ

dΠ1(θ)D(P⊗nθ ||PΠ1,n)−
∫

Θ

dΠ(θ)D(P⊗nθ ||PΠ,n)

)]
(2.31)
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lim inf
n→∞

∫
Θ

dΠt(θ)D(P⊗nθ ||PΠt,n)

− (1− t)
∫

Θ

dΠ0(θ)D(P⊗nθ ||PΠ0,n)− t
∫

Θ

dΠ1(θ)D(P⊗nθ ||PΠ1,n)

6 lim inf
n→∞

[∫
Θ

dΠt(θ)D(P⊗nθ ||PΠt,n)−
∫

Θ

dΠ(θ)D(P⊗nθ ||PΠ,n)

]
+ lim sup

n→+∞

[
−(1− t)

(∫
Θ

dΠ0(θ)D(P⊗nθ ||PΠ0,n)−
∫

Θ

dΠ(θ)D(P⊗nθ ||PΠ,n)

)]
+ lim sup

n→+∞

[
−t
(∫

Θ

dΠ1(θ)D(P⊗nθ ||PΠ1,n)−
∫

Θ

dΠ(θ)D(P⊗nθ ||PΠ,n)

)]]
= lim inf

n→∞

[∫
Θ

dΠt(θ)D(P⊗nθ ||PΠt,n)−
∫

Θ

dΠ(θ)D(P⊗nθ ||PΠ,n)

]
−(1− t) lim inf

n→∞

[∫
Θ

dΠ0(θ)D(P⊗nθ ||PΠ0,n)−
∫

Θ

dΠ(θ)D(P⊗nθ ||PΠ,n)

]
−t lim inf

n→∞

[∫
Θ

dΠ1(θ)D(P⊗nθ ||PΠ1,n)−
∫

Θ

dΠ(θ)D(P⊗nθ ||PΠ,n)

]
= iΠ(Πt)− (1− t)iΠ(Π0)− tiΠ(Π1). (2.32)

Combining Equations (2.30) and (2.32), we obtain that for all proper priors Π, Π0 and Π1

such that both iΠ(Π0) and iΠ(Π1) are finite and for every positive integer n,

iΠ(Πt)− (1− t)iΠ(Π0)− tiΠ(Π1) > (1− t)D(PΠ0,n||PΠt,n) + tD(PΠ1,n||PΠt,n). (2.33)

Unless PΠ0,n = PΠ1,n for every positive integer n, there exists a positive integer m such that

(1− t)D(PΠ0,m||PΠt,m) + tD(PΠ1,m||PΠt,m) > 0. (2.34)

Therefore

iΠ(Πt)− (1− t)iΠ(Π0)− tiΠ(Π1) > 0. (2.35)

Let us make the following assumption:

Assumption 1. For every pair of distinct proper priors Π0 and Π1 on Θ, there exists a
positive integer n such that PΠ0,n 6= PΠ1,n.

Proposition 2.9. Under Assumption 1, if there exists a reference prior in the sense of
Definition 2.4, then it is unique.

Proof. Let Π?
0 and Π?

1 be reference priors. Then iΠ?0 (Π?
1) = 0. Besides, we also trivially have

iΠ?0 (Π?
0) = 0. By Lemma 2.8,

— either for all t ∈ (0, 1), iΠ?0 ((1 − t)Π?
0 + tΠ?

1) > 0, which is impossible since it would
contradict Definition 2.4;

— or for every positive integer n, PΠ?0 ,n
= PΠ?1 ,n

.
By Assumption 1, this implies that Π?

0 = Π?
1.
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If the model (Pθ)θ∈Θ is identifiable (Pθ = Pθ′ ⇒ θ = θ′) and under some topological condi-
tions, a de Finetti-type theorem may apply and make Assumption 1 hold (see Ressel [1985]).
Sometimes more elementary arguments apply:

Proposition 2.10. If there exists a weakly consistent estimator of θ, then Assumption 1
holds.

Proof. For any subset Θ′ ⊂ Θ and any θ ∈ Θ, define dist(θ,Θ′) := inf{dist(θ, θ′) : θ′ ∈ Θ′}.

Let the sequence of mappings θ̂n : Yn → Θ (n ∈ N) be a weakly consistent estimator. This
means that for any θ ∈ Θ, for any ε > 0, limn→+∞ P⊗nθ (dist(θ̂n, θ) < ε) = 1. It implies that
for any open set U , for any θ ∈ U , limn→+∞ P⊗nθ (θ̂n ∈ U) = 1 and that for any θ ∈ Θ such
that dist(θ, U) > 0, limn→+∞ P⊗nθ (θ̂n ∈ U) = 0.

Let U be an open subset of Θ. For all ε > 0, define Uε := {θ ∈ U : B(θ, ε) ⊂ U}, where B(θ, ε)

is the open ball centered around θ and with radius ε: B(θ, ε) := {θ′ ∈ Θ : dist(θ, θ′) < ε}. Uε
is an open, possibly empty, set.

Now, let Π0 and Π1 be two proper prior distributions on Θ. Applying the dominated conver-
gence theorem,

Π0(Uε) =

∫
Uε

dΠ0(θ) lim
n→+∞

P⊗nθ (θ̂n ∈ Uε) = lim
n→∞

∫
Uε

dΠ0(θ)P⊗nθ (θ̂n ∈ Uε). (2.36)

For any n ∈ N,∫
Θ

dΠ0(θ)P⊗nθ (θ̂n ∈ Uε) 6 Π0(U) +

∫
Θ\U

dΠ0(θ)P⊗nθ (θ̂n ∈ Uε). (2.37)

Again, applying the dominated convergence theorem,

lim
n→+∞

∫
Θ\U

dΠ0(θ)P⊗nθ (θ̂n ∈ Uε) =

∫
Θ\U

dΠ0(θ) lim
n→+∞

P⊗nθ (θ̂n ∈ Uε) = 0. (2.38)

Gathering the two equations above,

lim sup
n→+∞

∫
Θ

dΠ0(θ)P⊗nθ (θ̂n ∈ Uε) 6 Π0(U). (2.39)

Combining this with Equation (2.36),

Π0(Uε) 6 lim sup
n→+∞

PΠ0,n(θ̂n ∈ Uε) 6 Π0(U). (2.40)

Let (εm)m∈Z+
be a decreasing sequence of positive real numbers with null limit. For example,

εm = 1/m. Then U =
⋃
m∈Z+

Uεm . Since (Uεm)m∈Z+
is an increasing sequence of open (hence

measurable) sets, Π0(U) = limm→+∞Π0(Uεm).

In the end,

Π0(U) = lim
m→+∞

lim sup
n→∞

PΠ0,n(θ̂n ∈ Uεm). (2.41)

Similarly, we have

Π1(U) = lim
m→+∞

lim sup
n→∞

PΠ1,n(θ̂n ∈ Uεm). (2.42)
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So, if for every positive integer n PΠ0,n = PΠ1,n, then for every open set U , Π0(U) = Π1(U).
Given a topology is a π-system that generates its Borel σ-algebra, this implies that Π0 = Π1.

As an aside, notice that a similar argument yields

Π0(U) = lim
m→+∞

lim inf
n→∞

PΠ0,n(θ̂n ∈ Uεm) (2.43)

and

Π1(U) = lim
m→+∞

lim inf
n→∞

PΠ1,n(θ̂n ∈ Uεm). (2.44)

The above served to prove that under a reasonable assumption – Assumption 1 – a proper
reference prior is unique. Definition 2.13 below extends the definition of a reference prior in
order to allow for improper reference priors. To ensure a similar uniqueness result holds with
this extended definition, some preparatory work is needed.

First, a new assumption is needed.

Assumption 2. If Π0 and Π1 are proper priors on Θ such that there exists an open subset
U ⊂ Θ with Π0(U) = 0 and Π1(U) = 1, then there exists a sequence of sets (Tn)n∈Z+

with
the following properties:

1. For every positive integer n, Tn ∈ Y⊗n.

2. limn→∞ PΠ0,n(Tn) = 0 and limn→∞ PΠ1,n(Tn) = 1.

We later show that the existence of a weakly consistent estimator for the model (Pθ)θ∈Θ

implies Assumption 2.

Proposition 2.11. Under Assumption 2, if a proper prior Π? is a reference prior in the sense
of Definition 2.4, then for any open subset U of Θ such that Π?(U) > 0, the renormalized
restriction of Π? to U is a reference prior on U in the sense of Definition 2.4.

Proof. Let Π? be a proper reference prior in the sense of Definition 2.4. Let U be an open
subset of Θ such that Π?(U) > 0. Define t := Π?(U).

If t = 1, then there is nothing to prove, so assume t < 1.

Define Π?
0 as the normalized restriction of Π? to Θ \ U and Π?

1 as the normalized restriction
of Π? to U . Therefore Π? = (1− t)Π?

0 + tΠ?
1.

Now let Π0 be any proper prior with support on Θ \ U and Π1 be any proper prior with
support on U . Define Πt := (1− t)Π0 + tΠ1.

Using Assumption 2, there exists a sequence (Tn)n∈Z+ that has the properties 1. and 2.

For every positive integer n,
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D(PΠ1,n||PΠt,n) = −
∫
Yn
dPΠ1,n(y) log

(
dPΠt,n

dPΠ1,n
(y)

)
= −

∫
Yn
dPΠ1,n(y) log

(
(1− t)dPΠ0,n

dPΠ1,n
(y) + t

)
= − log(t)−

∫
Yn
dPΠ1,n(y) log

(
1 +

1− t
t

dPΠ0,n

dPΠ1,n
(y)

)
. (2.45)

∫
Yn
dPΠ1,n(y) log

(
1 +

1− t
t

dPΠ0,n

dPΠ1,n
(y)

)
=

∫
Tn

dPΠ1,n(y) log

(
1 +

1− t
t

dPΠ0,n

dPΠ1,n
(y)

)
+

∫
Yn\Tn

dPΠ1,n(y) log

(
1 +

1− t
t

dPΠ0,n

dPΠ1,n
(y)

)
6
∫
Tn

dPΠ1,n(y)
1− t
t

dPΠ0,n

dPΠ1,n
(y) +

∫
Yn\Tn

dPΠ1,n(y) log

(
1 +

1− t
t

dPΠ0,n

dPΠ1,n
(y)

)
=

1− t
t

PΠ0,n(Tn) +
PΠ1,n(Yn \ Tn)

PΠ1,n(Yn \ Tn)

∫
Yn\Tn

dPΠ1,n(y) log

(
1 +

1− t
t

dPΠ0,n

dPΠ1,n
(y)

)
6

1− t
t

PΠ0,n(Tn) + PΠ1,n(Yn \ Tn) log

(
1 +

1− t
t

PΠ0,n(Yn \ Tn)

PΠ1,n(Yn \ Tn)

)
6

1− t
t

PΠ0,n(Tn) + PΠ1,n(Yn \ Tn) log

(
1 +

1− t
t

1

PΠ1,n(Yn \ Tn)

)
. (2.46)

In the computation above, the first inequality holds because for any nonnegative real number
x, log(1 + x) 6 x. The second equality only makes sense if PΠ1,n(Yn \ Tn) 6= 0, but in
case PΠ1,n(Yn \ Tn) = 0, Equation 2.46 holds a fortiori. The second inequality results from
Jensen’s inequality applied to the concave logarithm function.

Due to Assumption 2, limn→+∞ PΠ0,n(Tn) = limn→+∞ PΠ1,n(Yn \ Tn) = 0. Therefore, com-
bining Equations (2.45) and (2.46) yields

lim
n→+∞

D(PΠ1,n||PΠt,n) = − log(t). (2.47)

A similar reasoning yields

lim
n→+∞

D(PΠ0,n||PΠt,n) = − log(1− t). (2.48)

These two results do not actually depend on Π0 and Π1 but only on the fact that Π0(U) = 0

and Π1(U) = 1. Therefore they also hold for Π?
0 and Π?

1.

Let us take Π0 = Π?
0.

Lemma 2.6, applied to Π? and Πt, implies that

iΠt(Π
?) = t iΠ1

(Π?
1). (2.49)

Because Π? is a reference prior, this implies that iΠ1
(Π?

1) > 0. Given this holds for any proper
prior Π1 such that Π1(U) = 1, Π?

1 is a reference prior on U .

Intuitively, Assumption 2 states that for radically different proper priors (that do not even
have the same support), prediction should tend to become radically different too when the
number of observations increases. We only require this for “reasonable” supports, that is
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supports that can be expressed in terms of open and closed sets. This is consistent with the
general idea that the topology of Θ is important: Pθ and Pθ′ should be close if dist(θ, θ′) is
small.

Proposition 2.12. If there exists a weakly consistent estimator of θ, then Assumption 2
holds.

Proof. Let the sequence of mappings θ̂n : Yn → Θ (n ∈ N) be a weakly consistent estimator.
This means that for any θ ∈ Θ, for any ε > 0, limn→+∞ P⊗nθ (dist(θ̂n, θ) < ε) = 1.

Let Π0 and Π1 be two proper priors on Θ such that there exists an open subset U ⊂ Θ with
Π0(U) = 0 and Π1(U) = 1. Notations are the same as in the proof of Proposition 2.10.

Define N(0) := 0.
For every integer m = 1, 2, ..., do the following:

1. Choose an integer N0(m) > N(m−1) such that for every integer n > N0(m), PΠ0,n(θ̂n ∈
Uεm) < lim supn′→∞ PΠ0,n′(θ̂n′ ∈ U1/m) + 1/m.

2. Choose an integer N1(m) > N(m−1) such that for every integer n > N1(m), PΠ1,n(θ̂n ∈
Uεm) > lim infn′→∞ PΠ1,n′(θ̂n′ ∈ U1/m)− 1/m.

3. Define N(m) := max(N0(m), N1(m)) and TN(m) as the event {θ̂N(m) ∈ U1/m} ∈
Y⊗N(m).

For every positive integer n, there exists a nonnegative integer m such that N(m) 6 n <

N(m+ 1). Define Tn := TN(m) × Yn−N(m). We have:

PΠ0,n(Tn) = PΠ0,N(m)(TN(m)) < lim sup
n′→∞

PΠ0,n′(θ̂n′ ∈ U1/m) + 1/m; (2.50)

PΠ1,n(Tn) = PΠ1,N(m)(TN(m)) > lim inf
n′→∞

PΠ1,n′(θ̂n′ ∈ U1/m)− 1/m. (2.51)

Following Equations (2.41) and (2.44),

0 = Π0(U) = lim
m→+∞

lim sup
n→∞

PΠ0,n(θ̂n ∈ U1/m); (2.52)

1 = Π1(U) = lim
m→+∞

lim inf
n→∞

PΠ1,n(θ̂n ∈ U1/m). (2.53)

Therefore limn→+∞ PΠ0,n(Tn) = 0 and limn→+∞ PΠ1,n(Tn) = 1.

The requirement that a reference prior should be proper (that is belong to P(Θ)) is counter-
intuitive. On the contrary, one would rather expect it to be improper in some cases since it is
supposed to have the least influence possible on inference [Berger and Bernardo, 1992]. The
propriety requirement can be lifted in the following way:

Definition 2.13 (Reference prior: final definition). A reference prior Π? is a measure such
that there exists an increasing sequence of open subsets (Un)n∈N (U0 ⊂ U1 ⊂ U2 ⊂ ...)
such that

⋃
n∈N Un = Θ and for every nonnegative integer n, Π?(Un) < +∞ and which has

the following property. For every nonnegative integer n, the probability distribution Π?
n with

support on Un defined by Π?
n(A) = Π?(A)/Π?(Un) for every measurable set A ⊂ Un is a

reference prior on Un in the sense of Definition 2.4).



49 2.4. REGULAR CONTINUOUS CASE

Remark. This definition is slightly different from Definition 6 in Bernardo [2005] in that
Bernardo only requires the increasing sequence to consist of measurable sets and not nec-
essarily open sets. This restriction, which is of little practical relevance, is used to obtain
uniqueness results.

Proposition 2.14. Under Assumptions 1 and 2, if a reference prior in the sense of Definition
2.13 exists, it is unique up to a multiplicative constant.

Proof. Let Π?
0 and Π?

1 be two reference priors in the sense of Definition 2.13. So there exists
an increasing sequence of open subsets (U0

m)m∈N such that for each nonnegative integer m,
the renormalized restriction of Π?

0 to U0
m is a reference prior on U0

m. There also exists an
increasing sequence of open subsets (U1

m)m∈N which plays the same role with respect to Π?
1.

Let us define for every nonnegative integer m the open subset of Θ Vm := U0
m ∩ U1

m. Then
(Vm)m∈N is an increasing sequence of open subsets of Θ. Moreover, Assumption 2 and Propo-
sition 2.11 imply that for every nonnegative integer m, both the renormalized restriction of
Π?

0 to Vm and the renormalized restriction of Π?
1 to Vm are reference priors on Vm in the sense

of Definition 2.4. So Assumption 1 and Proposition 2.9 imply that both renormalized restric-
tions to Vm are equal. Given this holds for every Vm (m ∈ N), Π?

0 and Π?
1 are proportional

to one another.

This ends the original discussion about uniqueness.

2.4 Regular continuous case

In this section, we consider a particular case of great theoretical and practical importance.
Everything here apart from Lemma 2.17 and Theorem 2.18 is taken from Clarke and Barron
[1994].

Consider the following conditions.

Condition 0. Θ is a nonempty open subset of Rd (relative to the Euclidean norm ‖ · ‖)
whose boundary has null d-dimensional Lebesgue measure. For any θ ∈ Θ, Pθ be absolutely
continuous with respect to a measure µ. Let pθ be the Radon-Nykodym derivative; for µ-
almost any y, the mapping θ 7→ pθ(y) is twice continuously differentiable over Θ.
Condition 1. There exists ε > 0 such that for all θ ∈ Θ, there exists δ(θ) > 0 such that for
any integers j, k ∈ [[1, d]], both

f(θ) :=

∫
Y

sup
θ′∈Θ:‖θ′−θ‖<δ(θ)

∣∣∣∣∣ ∂2

∂θ′j∂θ
′
k

log pθ′(y)

∣∣∣∣∣
2

pθ(y)dµ(y)

and gε(θ) :=

∫
Y

∣∣∣∣ ∂∂θj log pθ(y)

∣∣∣∣2+ε

pθ(y)dµ(y)

are finite. Moreover, f and gε are continuous functions of θ ∈ Θ.

Condition 2. For all θ ∈ Θ, for any integers j, k ∈ [[1, d]],∫
Y

∂2

∂θj∂θk
pθ(y)dµ(y) = 0.
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Condition 3. For all θ, θ′ ∈ Θ, Pθ 6= Pθ′ .
Under these conditions, the Jeffreys-rule prior is well defined on Θ.

Definition 2.15. The Jeffreys-rule prior is the prior with density with respect to the Lebesgue
measure proportional to the square root of the determinant of the Fisher information matrix:
|I(θ)|1/2.

Remark. The Jeffreys-rule prior is traditionally viewed as noninformative because of its in-
variance by reparametrization and its reliance on Fisher information [Robert, 2007]. The
Fisher information matrix, which is the variance of the score function and is linked to the
curvature of the likelihood can be seen as representing the local discriminating power of the
data [Robert et al., 2009].

The following theorem by Clarke and Barron [1994] concerns the asymptotic behavior of the
noninformativity criterion and suggests that the Jeffreys-rule prior is a prime candidate for
being a reference prior in this setting. This is the second case where asymptotic optimization
of the criterion yields a prior that fits an earlier conception of noninformativity.

Theorem 2.16. Under Conditions 0, 1, 2 and 3, for any compact set K ⊂ Θ, we have

lim
n→+∞

[
sup

Π∈P(K)

∫
K

dΠ(θ)D(P⊗nθ ||PΠ,n)− d

2
log
( n

2πe

)]
=

∫
K

|I(θ)| 12 dθ. (2.54)

Moreover, if Π? is the Jeffreys-rule prior renormalized so that Π?(K) = 1, then

lim
n→+∞

[∫
K

dΠ?(θ)D(P⊗nθ ||PΠ,n)− d

2
log
( n

2πe

)]
=

∫
K

|I(θ)| 12 dθ. (2.55)

Some additional work is needed to show that the Jeffreys-rule prior is, indeed, a reference
prior. For now, let us detail Clarke and Barron [1994]’s heuristic arguments supporting the
above theorem. For a proof, please refer to their paper.

Heuristic arguments in support of Theorem 2.16

To simplify matters, assume Θ = Rd. For all θ and θ′ ∈ Rd, and for all y1, ..., yn ∈ Y, there
exists a point θn on the segment [θ, θ′] such that

log

(∏n
i=1 pθ′(yi)∏n
i=1 pθ(yi)

)
= (θ′ − θ)>

n∑
i=1

∇θ log pθ(yi)−
1

2
n(θ′ − θ)>In(θn)(θ′ − θ), (2.56)

where for every θ′′, In(θ′′) is the matrix with (j, k)-th entry 1
n

∑n
i=1

∂2

∂θj∂θk
log(pθ′′(yi)). The

above is a Taylor series expansion of log(
∏n
i=1 pθ(yi)).

Now, assume that the y1, ..., yn are independent realizations of Pθ.
Then, for all θ′′, In(θ′′) converges almost surely as n → ∞ to the matrix with (j, k)-the
entry −

∫
∂2

∂θj∂θk
log pθ′′(y)pθ(y)dµ(y). If θ′′ is in the neighborhood of θ, provided continuity

theorems are usable, this is an approximation of the quantity −
∫

∂2

∂θj∂θk
log pθ(y)pθ(y)dµ(y),

which is the (j, k)-the entry of the Fisher information matrix.

Let us neglect the error resulting from replacing In(θn) by I(θ), the Fisher information matrix
at θ.
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Now let Π be a prior distribution. Let π be its Radon-Nykodym derivative with respect to
the Lebesgue measure. Let us assume that π is continuous. Let p⊗nΠ be defined by

pΠ(y1, ..., yn) =

∫
Rd

n∏
i=1

pθ′(yi)π(θ′)dθ′. (2.57)

pΠ is the Radon-Nydkodym derivative with respect to µ of PΠ.

pΠ(y1, ..., yn)∏n
i=1 pθ(yi)

=

∫
Rd

∏n
i=1 pθ′(yi)∏n
i=1 pθ(yi)

π(θ′)dθ′

=

∫
Rd

exp

(
(θ′ − θ)>

n∑
i=1

∇θ log pθ(yi)

)
exp

(
−1

2
n(θ′ − θ)>In(θn)(θ′ − θ)

)
π(θ′)dθ′

≈
∫
Rd

exp

(
(θ′ − θ)>

n∑
i=1

∇θ log pθ(yi)

)
exp

(
−1

2
n(θ′ − θ)>I(θ)(θ′ − θ)

)
π(θ′)dθ′. (2.58)

Now, (2π)−d/2|nI(θ)|1/2 exp
(
− 1

2n(θ′ − θ)>I(θ)(θ′ − θ)
)
is the density of the Normal distri-

bution with mean θ and variance n−1 I(θ)−1.

Let us define Sn(θ) = 1/
√
n
∑n
i=1∇θ log pθ(yi). By the Central Limit theorem, if y1, ..., yn

are sampled according to Pθ, then the distribution of Sn(θ) is asymptotically Normal with
mean 0 and variance I(θ). So when n → ∞, (2.58) can be approximated by averaging
exp

(√
n(θ′ − θ)>Sn(θ)

)
π(θ′) over smaller and smaller neighborhoods of θ′. Due to π being

continuous, we approximate further:

∫
Rd

exp
(√
n(θ′ − θ)>Sn(θ)

)
exp

(
−1

2
n(θ′ − θ)>I(θ)(θ′ − θ)

)
π(θ′)dθ′

≈π(θ)

∫
Rd

exp
(√
n(θ′ − θ)>Sn(θ)

)
exp

(
−1

2
n(θ′ − θ)>I(θ)(θ′ − θ)

)
dθ′. (2.59)

Gathering all this,

pΠ(y1, ..., yn)∏n
i=1 pθ(yi)

≈ π(θ)(2π)d/2|nI(θ)|−1/2 exp

(
1

2
Sn(θ)>I(θ)−1Sn(θ)

)
, (2.60)

so

log

( ∏n
i=1 pθ(yi)

pΠ(y1, ..., yn)

)
≈ − log(π(θ))+

d

2
log
( n

2π

)
+

1

2
log |I(θ)|− 1

2
Sn(θ)>I(θ)−1Sn(θ). (2.61)

Given the distribution of Sn(θ) is asymptotically Normal with mean 0 and variance I(θ)

(provided y1, ..., yn are independently sampled from Pθ), we have

∫
Y
...

∫
Y︸ ︷︷ ︸

n
∫
Y

Sn(θ)>I(θ)−1Sn(θ)

n∏
i=1

pθ(yi)dµ(yi) = d. (2.62)

Therefore,
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D(P⊗nθ ||PΠ,n) =

∫
Y
...

∫
Y︸ ︷︷ ︸

n
∫
Y

log

( ∏n
i=1 pθ(yi)

pΠ(y1, ..., yn)

) n∏
i=1

pθ(yi)dµ(yi)

≈ − log(π(θ)) +
d

2
log
( n

2πe

)
+

1

2
log |I(θ)|. (2.63)

Define c =
∫
Rd |I(θ)| 12 dθ and assume c is finite. Then

∫
Θ

D(P⊗nθ ||PΠ,n)π(θ)dθ ≈ d

2
log
( n

2πe

)
+ log(c)−

∫
Θ

log

(
π(θ)

|I(θ)| 12 /c

)
π(θ)dθ. (2.64)

Remark. The Jeffreys-rule prior can be proper or not, and is in fact usually improper. Here,
though, by requiring c to be finite, we are assuming it to be proper.

The last term is the opposite of the Kullback-Leibler divergence between Π and the Jeffreys-
rule prior, which is proper. To maximize this quantity, Π must be the Jeffreys-rule prior.

Equation (2.64) suggests that all priors Π that have continuous density π with respect to the
Lebesgue measure make

∫
Θ
D(P⊗nθ ||PΠ,n)π(θ)dθ go to infinity as n → +∞. Notice that the

speed of increase is the same for all continuous priors: log(n).

The Jeffreys-rule prior as reference prior

Although the Jeffreys-rule prior being a reference prior is well-known [Bernardo, 2005, Berger
et al., 2009], because of our unusual definition of a reference prior, we need to make sure that
the Jeffreys-rule prior satisfies this definition. The discussion in this part of the section is
therefore, to the best of our knowledge, original.

Lemma 2.17 (Corollary of Clarke and Barron’s theorem). Under Conditions 0, 1, 2 and 3,
let U be an open set and K a compact set such that U ⊂ K ⊂ Θ ⊂ Rd. Then for any proper
prior Π with support on U ,

lim sup
n→+∞

[∫
U

dΠ(θ)D(P⊗nθ ||PΠ,n)− d

2
log
( n

2πe

)]
6
∫
U

|I(θ)| 12 dθ < +∞. (2.65)

Moreover, if Π? is the renormalized restriction of the Jeffreys-rule prior to U , then

lim
n→+∞

[∫
U

dΠ?(θ)D(P⊗nθ ||PΠ,n)− d

2
log
( n

2πe

)]
=

∫
U

|I(θ)| 12 dθ < +∞. (2.66)

Proof. Let Π be a proper prior with support on U .

If there exists a compact set KU ⊂ U such that Π(KU ) = 1, then Theorem 2.16 is applicable:

lim sup
n→+∞

[∫
U

dΠ(θ)D(P⊗nθ ||PΠ,n)− d

2
log
( n

2πe

)]
= lim sup

n→+∞

[∫
KU

dΠ(θ)D(P⊗nθ ||PΠ,n)− d

2
log
( n

2πe

)]
6
∫
KU

|I(θ)| 12 dθ 6
∫
U

|I(θ)| 12 dθ. (2.67)
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Else, let K0 be a compact subset of U such that Π(K0) > 0.
Let Π0 be the renormalized restriction of Π to K0 (i.e., for any measurable subset A of K0,
Π0(A) = Π(A)/Π(K0) and let Π1 be the renormalized restriction of Π to U \K0.

Lemma 2.6 yields that for every positive integer n,

∫
U

dΠ(θ)D(P⊗nθ ||PΠ,n)

=Π(K0)

∫
K0

dΠ0(θ)D(P⊗nθ ||PΠ0,n) + (1−Π(K0))

∫
U\K0

dΠ1(θ)D(P⊗nθ ||PΠ1,n)

+ Π(K0)D(PΠ0,n||PΠ,n) + (1−Π(K0))D(PΠ1,n||PΠ,n). (2.68)

By Lemma 2.5,

∫
U

dΠ(θ)D(P⊗nθ ||PΠ,n)

6Π(K0)

∫
K0

dΠ0(θ)D(P⊗nθ ||PΠ0,n) + (1−Π(K0))

∫
U\K0

dΠ1(θ)D(P⊗nθ ||PΠ1,n)

−Π(K0) log(Π(K0))− (1−Π(K0)) log(1−Π(K0)). (2.69)

Therefore, defining fΠ(K0) := Π(K0) log(Π(K0)) + (1−Π(K0)) log(1−Π(K0)),

∫
U

dΠ(θ)D(P⊗nθ ||PΠ,n) + fΠ(K0)

6Π(K0)

∫
K0

dΠ0(θ)D(P⊗nθ ||PΠ0,n) + (1−Π(K0)) sup
Π′∈P(K)

∫
K

dΠ′((θ)D(P⊗nθ ||PΠ′,n)

(2.70)

From this we obtain

∫
U

dΠ(θ)D(P⊗nθ ||PΠ,n)− d

2
log
( n

2πe

)
+ fΠ(K0)

6Π(K0)

[∫
K0

dΠ0(θ)D(P⊗nθ ||PΠ0,n)− d

2
log
( n

2πe

)]
+ (1−Π(K0))

[
sup

Π′∈P(K)

∫
K

dΠ′((θ)D(P⊗nθ ||PΠ′,n)− d

2
log
( n

2πe

)]
(2.71)

Theorem 2.16 implies that

lim sup
n→+∞

[∫
U

dΠ(θ)D(P⊗nθ ||PΠ,n)− d

2
log
( n

2πe

)]
+ fΠ(K0)

6Π(K0) lim sup
n→+∞

[∫
K0

dΠ0(θ)D(P⊗nθ ||PΠ0,n)− d

2
log
( n

2πe

)]
+ (1−Π(K0)) lim

n→+∞

[
sup

Π′∈P(K)

∫
K

dΠ′((θ)D(P⊗nθ ||PΠ′,n)− d

2
log
( n

2πe

)]

6Π(K0)

∫
K0

|I(θ)| 12 dθ + (1−Π(K0))

∫
K

|I(θ)| 12 dθ. (2.72)
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Now, let (Km)m∈Z+ be an increasing sequence of compact subsets of U with limit U .
For any positive integer m,

lim sup
n→+∞

[∫
U

dΠ(θ)D(P⊗nθ ||PΠ,n)− d

2
log
( n

2πe

)]
+ fΠ(Km)

6Π(Km)

∫
Km

|I(θ)| 12 dθ + (1−Π(Km))

∫
K

|I(θ)| 12 dθ. (2.73)

Because limm→+∞Π(Km) = 1, we have limm→+∞ fΠ(Km) = 0 and thus

lim sup
n→+∞

[∫
U

dΠ(θ)D(P⊗nθ ||PΠ,n)− d

2
log
( n

2πe

)]
6 lim
m→+∞

∫
Km

|I(θ)| 12 dθ =

∫
U

|I(θ)| 12 dθ.

(2.74)

So the first part of the lemma is proved.

Now, let Π? be the Jeffreys-rule prior normalized so that Π?(U) = 1. If there exists a compact
subset K?

U of U such that Π?(K?
U ) = 1, then by Theorem 2.16

lim
n→+∞

[∫
U

dΠ?(θ)D(P⊗nθ ||PΠ?,n)− d

2
log
( n

2πe

)]
= lim
n→+∞

[∫
KU

dΠ?(θ)D(P⊗nθ ||PΠ,n)− d

2
log
( n

2πe

)]
=

∫
KU

|I(θ)| 12 dθ =

∫
U

|I(θ)| 12 dθ. (2.75)

Else, for any compact subset K0 ⊂ U such that Π?(K0) > 0, let Π?
0 be the renormalized

restriction of Π? to K0 Equation (2.68) implies

∫
U

dΠ?(θ)D(P⊗nθ ||PΠ?,n) > Π?(K0)

∫
K0

dΠ0(θ)D(P⊗nθ ||PΠ0,n). (2.76)

This yields

lim inf
n→+∞

[∫
U

dΠ?(θ)D(P⊗nθ ||PΠ?,n)− d

2
log
( n

2πe

)]
>Π?(K0) lim

n→+∞

[∫
K0

dΠ0(θ)D(P⊗nθ ||PΠ0,n)− d

2
log
( n

2πe

)]
=Π?(K0)

∫
K0

|I(θ)| 12 dθ. (2.77)

And from there

lim inf
n→+∞

[∫
U

dΠ?(θ)D(P⊗nθ ||PΠ?,n)− d

2
log
( n

2πe

)]
> lim
m→+∞

Π?(Km)

∫
Km

|I(θ)| 12 dθ

=

∫
U

|I(θ)| 12 dθ. (2.78)

So the liminf is greater or equal to the limsup: this means that liminf and limsup are equal
and yields the second part of the lemma.
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Theorem 2.18. Under Conditions 0, 1, 2 and 3, the Jeffreys-rule prior is a reference prior
in the sense of Definition 2.13. If it is proper, then it is unique. If it is improper, then it is
unique up to a multiplicative constant.

Proof. Let (Um)m∈N be an increasing sequence of bounded open subsets of Θ with limit Θ.
Therefore, for any nonnegative integer m, the closure of Um is a compact set. This makes
Lemma 2.17 applicable and proves that the Jeffreys-rule prior is a reference prior in the sense
of Definition 2.13.

Both uniqueness results follow from the existence of a consistent estimator (the Maximum
Likelihood estimator), which implies that Assumptions 1 and 2 hold and make Proposition
2.14 applicable.

2.5 Properties of reference priors

Reference priors have several interesting properties which cement their status as sensible
default priors [Bernardo, 2005, Berger et al., 2009].

Theorem 2.19 (Independence from sample size). A reference prior for a model (Pθ)θ∈Θ

remains the same for the model (P⊗nθ )θ∈Θ regardless of n ∈ Z+.

Proof. This is because the definition of a reference prior relies on asymptotics.

Theorem 2.20 (Compatibility with sufficient statistics). If the observed data are restricted
to a sufficient statistic, reference priors remain unchanged.

Proof. Let S be a sufficient statistic. This means that there exists a family of probability
distributions (Qs)s∈S(Y) on (Y,Y) such that for all θ ∈ Θ, dPθ(y) = d(Pθ ∗S)(S(y))dQS(y)(y),
where Pθ ∗ S is the push-forward measure of Pθ by S (if Y is a random variable that follows
the distribution Pθ, then S(Y ) follows Pθ ∗ S).
For every positive integer n,

D(P⊗nθ ||PΠn) =

∫
Yn
dP⊗nθ (y1, ..., yn) log

( ∏n
i=1 dPθ(yi)∫

Θ
dΠ(θ)

∏n
i=1 dPθ(yi)

)
=

∫
Yn
dP⊗nθ (y1, ..., yn) log

( ∏n
i=1 d(Pθ ∗ S)(S(yi))dQS(yi)(yi)∫

Θ
dΠ(θ)

∏n
i=1 d(Pθ ∗ S)(S(yi))dQS(yi)(yi)

)
=

∫
Yn
dP⊗nθ (y1, ..., yn) log

(
d(Pθ ∗ S)⊗n(S(y1), ..., S(yn))∫

Θ
dΠ(θ)d(Pθ ∗ S)⊗n(S(y1), ..., S(yn))

)
=

∫
S(Y)n

d(Pθ ∗ S)⊗n(s1, ..., sn) log

(
d(Pθ ∗ S)⊗n(s1, ..., sn)∫

Θ
dΠ(θ)d(Pθ ∗ S)⊗n(s1, ..., sn)

)
.

(2.79)

Theorem 2.21 (Consistency under reparametrization). If Θ′ is a metric space and f : Θ→
Θ′ is a measurable bijection whose inverse f−1 is also measurable, and if Π? is a reference
prior for the model (Pθ)θ∈Θ, then the push-forward measure Π? ∗ f is a reference prior for
the model (Pf−1(θ′))θ′∈Θ′ .
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Proof. This follows from the change-of-variable formula. For any measurable function g :

Θ→ [0,+∞), ∫
Θ

dΠ(θ)g(θ) =

∫
Θ′
d(Π ∗ f)(θ′) g(f−1(θ′)). (2.80)

In particular, for any positive integer n and any measurable set A ∈ Y⊗n,

PΠ,n(A) =

∫
Θ

dΠ(θ)P⊗nθ (A) =

∫
Θ′
d(Π ∗ f)(θ′)P⊗nf−1(θ′)(A). (2.81)

The latter two properties can be interpreted this way: if it exists, a reference prior only
cares about the model as a family of probability distributions. The parameter is only an
index with no intrinsic meaning (consistency under reparametrization). What matters is how
the probability distributions in the model differ from each other and any common parts are
disregarded (compatibility with sufficient statistics).

2.6 Examples

The first two examples – location and scale models – are drawn from Bernardo [2005] and
Berger et al. [2009].

Proposition 2.22 (Location models). If Θ = Y = Rd (d ∈ Z+), with Rd endowed with the
Borel σ-algebre B(Rd), if for any θ, θ′ ∈ Rd and any measurable subset A of Rd, Pθ′(A) =

Pθ(A + θ − θ′), and if Assumption 2 holds, then any reference prior is proportional to the
Lebesgue measure.

Proof. Let Π? be a reference prior for such a model. For any θ0 ∈ Rd, define the statistic
Sθ0 : Rd → Rd; y 7→ y + θ0. Sθ0 is a sufficient statistic, so compatibility with sufficient
statistics implies Π? stays reference prior for the model (Pθ∗Sθ0)θ∈Rd . However, for all θ ∈ Rd,
Pθ ∗Sθ0 = Pθ+θ0 . In other words, S defines a reparametrization. Therefore consistency under
reparametrization implies the reference prior for (Pθ+θ0)θ∈Rd corresponding to Π? is the prior
Π?
θ0

defined for every measurable set A by Π?
θ0

(A) = Π?(A− θ0).

Gathering this, we obtain Π?
θ0

= Π?, and this holds for any θ0 ∈ Rd. This implies that Π? is
proportional to the Lebesgue measure.

Proposition 2.23 (Scale models). Assume Y = Rd (d ∈ Z+) and Θ = (0,+∞) are both
endowed with the Euclidean or any equivalent distance. If for any θ, θ′ ∈ (0,+∞) and any
measurable subset A of Rd, Pθ′(A) = Pθ(

θ
θ′A), and if Assumption 2 holds, then any reference

prior is proportional to θ−1dθ.

Proof. In such a model, there must exist a sufficient statistic with value on (0,+∞) for
which θ works as a scale parameter (to build it, first construct a statistic whose distribution
under any value of θ is isotropic and then take its Euclidean norm). Reference priors are
compatible with sufficient statistics, so let us replace the model with this one. This allows us
to apply the logarithm to the observation space, mapping it to R. Taking log(θ) as the new
parametrization, the model becomes a location model and any reference prior is proportional
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to the Lebesgue measure. Given reference priors are consistent under reparametrization, any
reference prior on θ is proportional to the push-forward of the Lebesgue measure by the
exponential function, that is the measure θ−1dθ.

Location and scale models are remarkable because invariance properties yield the reference
prior. We now study an example where no such property is available. This example appears
in Ren et al. [2012], but the reference prior is derived differently.

Example 3. Consider a model (Pθ)θ∈(0,+∞) where each Pθ is absolutely continuous with
respect to the Lebesgue measure on the unit sphere Sn−1 := {y ∈ Rn : y>y = 1}. The
Radon-Nykodym derivative pθ of Pθ (i.e. the likelihood function) is given by:

pθ(y) =

(
2π

n
2

Γ
(
n
2

))−1

|Σθ|−
1
2

(
y>Σ−1

θ y
)−n2 , (2.82)

where Σθ is a symmetric positive definite matrix and is twice continuously differentiable as
a function of θ ∈ (0,+∞). Therefore Condition 0 of the regular case holds. Further, let
us assume that Σθ = Σθ′ ⇒ θ = θ′, which means that Condition 3 holds. Since the sphere
Sn−1 is a compact set, Conditions 1 and 2 hold as well, so Theorem 2.18 is applicable. The
reference prior is the Jeffreys-rule prior.

Define a matrix
√

Σθ such that Σθ =
√

Σθ
√

Σθ
> (use for instance the Cholesky decomposi-

tion). Now let Y be a random variable following Pθ. Then fθ(Y ) :=
√

Σθ
−1
Y /

∥∥∥√Σθ
−1
Y
∥∥∥

follows the Uniform distribution on the sphere Sn−1.

Besides,
∂θ (log pθ(y)) = −n

2
fθ(y)>MΣ

θ fθ(y) + Cθ, (2.83)

where

Cθ := − log

(
2π

n
2

Γ
(
n
2

))− 1

2
∂θ|Σθ|−

1
2 and MΣ

θ :=
(√

Σθ

)>
∂θ
(
Σ−1
θ

)√
Σθ. (2.84)

Therefore

Var [∂θ (log pθ(Y ))] =
n2

4
Var

[
fθ(Y )>MΣ

θ fθ(Y )
]
. (2.85)

As MΣ
θ is a symmetric matrix, the spectral theorem guarantees the existence of a diagonal

matrix ΛΣ
θ and an orthogonal matrix OΣ

θ such that MΣ
θ = (OΣ

θ )>ΛΣ
θ (OΣ

θ ), with the diagonal
coefficients of ΛΣ

θ being the eigenvalues of MΣ
θ . Setting U0 := (OΣ

θ )U , we can now compute
Var[U>0 ΛΣ

θU0] = Var[U>MΣ
θU ], U0 following the uniform distribution on Sn−1.

Let (λi)16i6n be the eigenvalues of MΣ
θ . We can write Var[U>0 ΛΣ

θU0] = Var[
∑

16i6n λiXi],

where Xi (1 6 i 6 n) are nonnegative identically distributed random variables such that∑
16i6nXi = 1.

Var

[
n∑
i=1

λiXi

]
= Var[X1]

n∑
i=1

λ2
i + 2 Cov(X1, X2)

∑
16i<j6n

λiλj . (2.86)

Because E[X1] = 1
n , Cov(X1, X2) = −1/(n− 1) Var[X1].
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Var [
∑n
i=1 λiXi]

Var[X1]
=

n∑
i=1

λ2
i −

1

n− 1

n∑
i=1

λi
∑
j 6=i

λj

=

(
1 +

1

n− 1

)(
Tr
[
(MΣ

θ )2
]
− 1

n
Tr
[
MΣ

θ

]2)
=

(
1 +

1

n− 1

)(
Tr

[((
∂

∂θ
Σθ

)
Σ−1
θ

)2
]
− 1

n
Tr

[(
∂

∂θ
Σθ

)
Σ−1
θ

]2
)
.

(2.87)

The reference prior therefore has density π with respect to the Lebesgue measure on (0,+∞),
where π is defined by:

π(θ) ∝

√√√√Tr

[((
∂

∂θ
Σθ

)
Σ−1
θ

)2
]
− 1

n
Tr

[(
∂

∂θ
Σθ

)
Σ−1
θ

]2

. (2.88)

Remark. Consider the case where θ ∈ (0,+∞)r, r being a greater than 1 integer. To emphasize
that θ is multidimensional, let us denote it by θ. The reference prior is still the Jeffreys rule
prior: it is the square root of the determinant of the Fisher information matrix I(θ) whose
(i, j)-th element is

Tr

[(
∂

∂θi
(Σθ) Σ−1

θ

)(
∂

∂θj
(Σθ) Σ−1

θ

)]
− 1

n
Tr

[
∂

∂θi
(Σθ) Σ−1

θ

]
Tr

[
∂

∂θj
(Σθ) Σ−1

θ

]
. (2.89)

This results from polarization formula Cov(A,B) = 1/4(Var(A+B)−Var(A−B)).

Let us now consider a particular example that is a hybrid between location and scale models.
It is often referenced in the literature. See for instance Robert [2007, section 3.5].

Example 4. Take θ = (β, σ) and let Pβ,σ = N (β, σ2) be the one-dimensional Normal model.
This is the sort of regular case where the reference prior is the Jeffreys-rule prior. The Fisher
information matrix is diagonal with both diagonal elements equal to σ−2. The Jeffreys-rule
prior has therefore density σ−2. Let us examine this a little further. If σ were known, then
this would be a location model and the reference prior on β would have density ∝ 1. If β were
known, then this would be a scalar model and the reference prior would have density ∝ σ−1.

Consider n independent real-valued observations y1, ..., yn of the model.
If β were known but not σ, then the posterior distribution of

∑n
y=1(yi − β)2/σ2 (i.e. its

distribution knowing all yi (1 6 i 6 n) and β) would be the chi-squared distribution with n
degrees of freedom.
In our case, both β and σ2 are unknown. Let us define ȳ = 1

n

∑n
i=1 yi. Then the posterior

distribution of
∑n
y=1(yi − ȳ)2/σ2 (i.e. its distribution knowing all yi (1 6 i 6 n) but not

β) is also the chi-squared distribution with n degrees of freedom. In other words, using the
reference prior in both situations implies that by simply substituting the empirical mean ȳ to
the actual mean β, we are able to reach the same state of knowledge about σ as if we actually
knew β.

Jeffreys [1961] suggested using what is now called the independence Jeffreys prior distribution,
which is the joint prior distribution on β and σ obtained by taking the product of the Jeffreys-
rule (reference) prior on β when σ is known and of the Jeffreys-rule (reference) prior on σ
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when β is known, thus yielding the joint prior distribution σ−1. Then the posterior distribution
of
∑n
y=1(yi − ȳ)2/σ2 is the chi-squared distribution with n − 1 degrees of freedom, which

acknowledges the loss of information on σ2 when β is unknown.

This example suggests that reference priors, as they are currently defined, are not necessarily
adequate for dealing with multiparametric settings. It also suggests a method for solving the
problem.

2.7 Reference priors for multiparametric models

Previously, we dealt with the case of one-parameter models. Naturally, in the case of multi-
parameter models, it is always possible to view the list of parameters as one big multi-
dimensional parameter, so as to reduce the problem to the one already tackled. Such a choice
often leads to unfortunate results however, in the sense that the obtained reference prior
seems intuitively unsatisfactory. More precisely, there exist several multi-parameter models
in the literature in which the reference prior, as defined above, has undesirable statistical
properties. See Berger et al. [2015] for a large review of such situations. In fact, the authors
state: “ We actually know of no multivariable example in which we would recommend the
Jeffreys-rule prior. In higher dimensions, the prior always seems to be either ‘too diffuse’ [...]
or ‘too concentrated’ ”. And, as mentioned before, the reference prior is the Jeffreys-rule prior
in regular cases.
Let Θ1 × ... × Θr (r ∈ Z+) be the parametric space. The “reference prior algorithm”, which
was first developed by Bernardo [1979a], first requires an ordering of the parameters. Let us
consider them ordered in the following way:

θ1 ∈ Θ1 ≺ ... ≺ θr ∈ Θr

We denote by θ[j] the collection (θj , θj+1, ..., θr). Define Y1 := Y.

Before delving into the details, let us explain the heuristic behind the algorithm. The idea is
quite simple.

The reference prior is only defined in one-parameter settings. Let us therefore fix all pa-
rameters except one. Then we can compute the reference prior on the remaining parameter
conditionally to all fixed parameters. Then, having defined a probability distribution on one
of the parameters, we can integrate it out of the model.

We now find ourselves with a model with one less parameter. The same procedure can be
applied again and again until none is left. The reference prior is then defined to be the
product of the priors derived at every stage.

Proper reference prior

If possible, follow this algorithm: for every integer j ∈ [[1, r]],

1. For all θ[j+1] ∈ Θj+1× ...×Θr, compute Πj(·|θ[j+1]). It is defined as the reference prior
on θj with respect to the model (Pθ[j]

)θ[j+1]∈Θj+1×...×Θr when θ[j+1] is assumed known.
If, for some θ[j+1] ∈ Θj+1 × ...×Θr, it does not exist, abort.

2. If there exists θ[j+1] ∈ Θj+1 × ...×Θr such that Πj(·|θ[j+1]) is improper, abort.
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3. For all θ[j+1] ∈ Θj+1 × ...×Θr, compute Pθ[j+1]
:=
∫

Θj
Pθ[j]

dΠj(θj |θ[j+1]).

If Assumption 1 holds at every stage, no choice is required from the user aside from the initial
ordering of the parameters.
The reference prior based on the chosen ordering is then defined as the product dΠ(θ[1]) =∏r
j=1 dΠj(θj |θ[j+1]).

The general idea behind this algorithm is to emulate the success of the one-dimensional
reference prior by creating such a situation for the parameter that is of “greatest interest”. To
achieve this, “nuisance” parameters are integrated out of the model. To simplify, consider the
2-parameter case, in which there is only one nuisance parameter. In order to create a one-
parameter model for the parameter of interest, the nuisance parameter must be integrated
out of the original model. But to achieve this, a prior distribution on the nuisance parameter
conditional to the parameter of interest must be defined. Hence the idea to define it as the
reference prior for the model where the parameter of interest is known.

It must be stressed that this reference prior for multiparametric models is not a further
extension of the concept of reference prior like Definition 2.13 was to Definition 2.4 and
Definition 2.4 to Definition 2.2. It is an altogether different notion because it introduces
structure in the model in the form or parameter ordering. Yang and Berger [1996] list different
reference priors obtained with different parameter orderings for a large number of statistical
models.

Applying this “reference prior algorithm” results in a “marginal reference prior” on the param-
eter of interest that is in fact the reference prior (in the sense of Definition 2.13) of a specific
mixture model [Marin et al., 2005, Mengersen et al., 2011]. So the reference prior resulting
from application of the reference prior algorithm is the solution of a very different optimiza-
tion problem than the one that is solved by the reference prior in the sense of Definition 2.13.

Notice that the algorithm contains two abortive checks per step. The first is intrinsically
linked to reference prior theory, which does not provide guarantees of existence. The second
is due to the fact that a valid statistical model can only contain probability distributions:
it does not tolerate infinite measures! In other words, a prior can well be improper, but a
likelihood function cannot.

Note however that aborting at stage 2 is not a problem if j = r, because the last step has
been reached. So all “conditional” reference priors must be proper, but the last, “marginal”
one can be improper. As will be seen in the next subsection, this propriety requirement on
the conditionals can be removed, making stage 2 of the algorithm irrelevant.

Improper reference prior

The algorithm above can be altered to remove one of the two abortive checks. Changes are
written in bold font. First, define Y1 := Y. Then, for every integer j ∈ [[1, r]],

1. For all θ[j+1] ∈ Θj+1× ...×Θr, compute Πj(·|θ[j+1]). It is defined as the reference prior
on θj with respect to the model (Pθ[j]

)θ[j+1]∈Θj+1×...×Θr when θ[j+1] is assumed known.
If, for some θ[j+1] ∈ Θj+1 × ...×Θr, it does not exist, abort.
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2. If there exists θ[j+1] ∈ Θj+1×...×Θr such that Πj(·|θ[j+1]) is improper, do the follow-
ing. Choose a sub-σ-algebra Yj+1 ⊂ Yj such that for every A ∈ Yj+1, Pθ[j]

(A)

only depends on θ[j+1]. Define Pθ[j+1]
on Yj+1 ⊂ Yj as the restriction of Pθ[j]

to
Yj+1. Else, for all θ[j+1] ∈ Θj+1 × ...×Θr, compute Pθ[j+1]

:=
∫

Θj
Pθ[j]

dΠj(θj |θ[j+1]).

As written above, this altered algorithm – henceforth called “reference prior algorithm” – has
the advantage of removing one aborting check. In cases where the first algorithm works, this
one is functionally identical and produces the same result. In cases where improper priors
are encountered before the last stage (j = r) however, it requires a choice. Therefore, even
if Assumption 1 holds at every stage, the reference prior is only defined with reference to a
given filtering Y = Y1 ⊃ ... ⊃ Yr.

Remark. The main problem of this algorithm, besides the lack of uniqueness of the reference
prior, is the risk that at some stage, the only possible choice for Yj might be the trivial
σ-algebra. One possible solution is to consider the model with n independent observations
instead of one, in order to manipulate richer σ-algebras. An example is shown below.

The altered algorithm does not fit the approach that is most often used to deal with impro-
priety. The idea recommended by Berger and Bernardo [1992] is to choose for every j ∈ [[1, r]]

an increasing sequence of compact subspaces (Θ
(k)
j )k∈N such that

⋃
k∈N Θ

(k)
j = Θj with the

understanding that the reference prior on each compact is proper. This happens when the
reference prior is the Jeffreys-rule prior, for example. Then, it is possible to use the first algo-
rithm on each Θ

(k)
1 ×...×Θ

(k)
r , compute the associated reference posterior, take the limit of the

posterior when k → +∞ and then define the reference prior as the prior which, using Bayes’
rule, would yield the reference posterior. This increasing-compact-sequence approach is what
Berger et al. [2001] call asymptotic marginalization, whereas the independent-sub-σ-algebra
approach detailed above is a formalization of the exact marginalization they recommend for
Kriging models.

Unfortunately, asymptotic marginalization does not guarantee uniqueness of the reference
prior (even for a given parameter ordering) any more than exact marginalization does. The
choice of sequences of compact subspaces can influence the result. Because this thesis deals
with Kriging and Kriging-derived models, all reference priors discussed in the dissertation are
obtained through exact marginalization.

Example 5. Let us come back to the earlier Normal N (β, σ2) example. To apply the reference
prior algorithm, we need to define an ordering on the parameters β and σ. Let us choose the
ordering β ≺ σ.

At the first stage of the algorithm, the reference prior on β (knowing σ) is, up to a multi-
plicative constant, the Lebesgue measure (cf. earlier example). This is an improper prior, so
we need to find a sub-σ-algebra of B(R) on which the model does not depend on β. To do
this, let us consider the model with n > 2 observations. We are looking for a sub-σ-algebra of
B(R)⊗n = B(Rn).

Let us consider the statistic Sn : Rn → Rn−1 defined by Sn((y1, ..., yn)>) = (y2 − y1, ..., yn −
y1)>. If Y is a random variable following N (β, σ2)⊗n, Sn(Y ) follows the (n − 1)-variate
Normal distribution N

(
0n−1, σ

2(11> + In−1)
)
, with 1 = (1, 1, ..., 1)> and with In−1 being

the identity matrix. Therefore the sub-σ-algebra of B(Rn) spanned by Sn does not depend
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on β. Moreover, the restriction of the model to this sub-σ-algebra is a simple scale model.
Therefore the reference prior on σ has density proportional 1/σ with respect to the Lebesgue
measure on (0,+∞).

Gathering this, the reference prior associated to the decomposition we chose is 1/σ dβ dσ.
Interestingly, this is the “independence Jeffreys prior” that was recommended by Jeffreys [1961]
for this situation.

Finally, note that the same reference prior could have been obtained by choosing the other
ordering: σ ≺ β. At the first stage of the algorithm, when β is taken to be known, the model
is a scale model so the reference prior on σ knowing β has density proportional to 1/σ with
respect to the Lebesgue measure. This is an improper prior, so we need to find a sub-σ-algebra
on which the model does not depend on σ. The statistic Tn : (y1, ..., yn)> 7→

√
nȳn/σ̂n (with

ȳn = n−1
∑n
i=1 yi and σ̂

2
n = n−1

∑n
i=1(yi − ȳn)2) spans such a sub-σ-algebra. If Y follows

N (β, σ2), then Tn(y) follows a noncentral Student t-distribution with n−1 degrees of freedom
and noncentrality parameter β. The resulting model is a location model, so the reference prior
on β is proportional to the Lebesgue measure.

This example is important, but it should be noted that cases where the same reference prior
is obtained regardless of the ordering of the parameters are the exception rather than the
norm. Berger et al. [2015] explores several methods to find an “overall reference priors” which
would be adequate regardless of the ordering of the parameters.

Some final thoughts

In the Normal example, the Jeffreys-rule prior is considered inadequate because it has un-
desirable inferential properties. It is, though, the reference prior for the model if (β, σ)>

is viewed as a single multidimensional parameter. So why does the reference prior behave
“badly” in this instance? First, let us observe that it does not differ from the independence
Jeffreys prior regarding the mean parameter β. The difference between the two concerns the
standard deviation σ. The Jeffreys-rule prior favors small standard deviations, which lead to
concentrated samples. Recalling the game-theoretic interpretation from Clarke and Barron
[1994], Nature is giving a hint to the Statistician – the standard deviation is likely to be
small. Why is it in Nature’s interest to do so? Because this forces the Statistician to predict
a concentrated sample, even though the Statistician does not know around which value it
should concentrate. If Nature’s prior favored greater standard deviations, the Statistician
could “spread the prediction” around and would be more likely to cover the true mean. The
Jeffreys-rule prior is truly noninformative in the sense that it makes prediction most difficult
before viewing the data, even though the Statistician would have less trouble inferring σ after.

The Jeffreys independence prior is better not because it is less but because it is more infor-
mative than the Jeffreys-rule prior. It contains information about the structure of the model
by clearly separating mean from standard deviation. It turns out that being invariant under
reparametrization is not necessarily an advantage, because it can take away useful information
that is contained in the structure of the parametrization.

Instead of being invariant under any reparametrization, a reference prior obtained by appli-
cation of the reference prior algorithm is invarariant under “sensible” reparametrizations, i.e.
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reparametrizations that respect the structure. Consider a reference prior for θ1 ≺ ... ≺ θr

(with associated parameter space Θ1× ...×Θr). If for every integer i ∈ [[1, r]], fi is a measur-
able bijection Θi → Θ′i with measurable inverse, then this reference prior is invariant under
the reparametrization (θ1, ..., θr) 7→ (f1(θ1), ..., fr(θr)).

The claim in the introduction to this chapter that a reference prior should be used when
no prior information is available is therefore not wholly correct. If the user can define a
parametrization, it implies that some information is available and should be used.

Deriving a reference prior is not about producing the least informative prior, but rather about
controlling the information contained in the prior. From this point onward, following Berger
and Bernardo, we call it “objective” rather than noninformative.

However, this word should not lead to the conclusion that a reference prior is “better” than
another because of its objectivity. Depending on whether the goal is prediction or inference,
and on what is being inferred, other priors may produce better results. Tuyl et al. [2016]
show reference (or Jeffreys-rule) priors are not adequate for the study of rare events. Indeed,
this is not what they were designed for: by definition, rare events play a small role in the
optimization criterion of reference priors.

Currently, research focuses on choosing the prior in order to obtain a specific, desired, effect
on the posterior. Xueou et al. [2018] propose an elicitation mechanism for the prior Π based
on history matching in order to make relevant summary statistics [Marin et al., 2014] of data
produced by PΠ fit an expected behavior. Computation complexity is dealt with by using
Approximate Bayesian Computation [Marin et al., 2012]. Simpson et al. [2017] introduce a
new framework called “Penalized Complexity” priors as an attempt to formalize the principle
of Occam’s razor for prior elicitation – again with reference to PΠ; Robert and Rousseau
[2017] note that the authors attempt to circumvent the subjectivity inherent to the ordering
of parameters by dividing them into independent components. The original developers of the
reference prior paradigm are also concerned with this issue and attempt to address it through
the notion of “overall reference priors” [Berger et al., 2015]. Another direction for research of
reasonable default priors is the Robust Bayesian framework; for a recent review of this field,
see Watson and Holmes [2016].





Chapter 3

Propriety of the reference posterior

distribution in Gaussian Process

regression

This chapter draws on the article Muré [2018a].

Abstract

In a seminal article, Berger et al. [2001] compare several objective prior distributions for

the parameters of Gaussian Process regression models with isotropic correlation kernel.

The reference prior distribution stands out among them insofar as it always leads to

a proper posterior. They prove this result for rough correlation kernels - Spherical,

Exponential with power q < 2, Matérn with smoothness ν < 1. This chapter provides

a proof for smooth correlation kernels - Exponential with power q = 2, Matérn with

smoothness ν > 1, Rational Quadratic.

Résumé

Dans un article fondamental, Berger et al. [2001] comparent plusieurs lois a priori ob-

jectives sur les paramètres de modèles de régression par processus gaussiens avec noyau

de corrélation isotrope. Le prior de référence se distingue parmi eux en cela qu’il mène

systématiquement à un posterior propre. Ils démontrent ce résultat pour des noyaux de

corrélation rugueux – noyau sphérique, exponentiel avec puissance q < 2, Matérn de

régularité ν < 1. Ce chapitre fournit une preuve valable pour des noyaux de corréla-

tion réguliers – exponentiel de puissance q = 2, Matérn de régularité ν > 1, rationnel

quadratique.

3.1 Introduction

In a very influential paper, Berger et al. [2001] pioneered the field of Objective Bayesian
analysis of spatial models. Previous works [De Oliveira et al., 1997, Stein, 1999] had noted
that commonly used noninformative priors sometimes failed to yield proper posteriors, but
Berger et al. [2001] were the first to thoroughly investigate the issue. Among several prior
distributions – truncated priors, vague priors, Jeffreys-rule and independence Jeffreys prior
– they showed that the reference prior (i.e., the reference prior with the parameter ordering

65
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they chose) is the most satisfying choice for a default prior distribution. This is due in no
small part to the fact that, in the wide variety of cases studied by Berger et al. [2001], it
systematically yields a proper posterior distribution. In this article, we complete their proof
of this property.

Interestingly, Berger et al. [2001] found that the corresponding reference prior obtained
through asymptotic marginalization does not share this property. In this chapter and in the
rest of this dissertation, all reference priors discussed are obtained through exact marginal-
ization.

Section 3.2 describes the Gaussian Process models studied by Berger et al. [2001]. Section
3.3 shows that the proof of reference posterior propriety provided by Berger et al. [2001] only
applies to those with rough correlation kernels – Spherical, Exponential with power q < 2,
Matérn with smoothness ν < 1. Section 3.4 contains the core of this chapter: a proof of
Theorem 3.9 which asserts that the reference prior leads to a proper posterior for models
with smoother correlation kernels – Exponential with power q = 2, Matérn with smoothness
ν > 1, Rational Quadratic.

Because it is difficult to obtain a satisfying default prior distribution which consistently yields
a proper posterior, it is important to ascertain that the reference prior actually does. Indeed,
a vast literature [Paulo, 2005, Ren et al., 2012, Kazianka and Pilz, 2012, Ren et al., 2013, Gu
et al., 2018] builds upon Berger et al. [2001]’s result and depends on it.

3.2 Setting

Berger et al. [2001] consider models of Gaussian Process regression, also known as Universal
Kriging, with isotropic autocorrelation kernels. Because isotropy is key, define ‖ · ‖ as the
usual Euclidean norm if applied to a vector and as the Frobenius norm if applied to a matrix.
In Universal Kriging, an unknown mapping from a spatial domain D ⊂ Rr (r ∈ Z+) to R is
assumed to be a realization of a Gaussian process Y . The mean function f of the Gaussian
process is assumed to belong to some known vector space Fp of dimension p ∈ N. If p is non-
zero, once a basis (fj)j∈[[1,p]] of Fp has been set, f can be parametrized by β = (β1, ..., βp)

> ∈
Rp such that f =

∑p
j=1 βjfj .

Y −f is assumed in the model to be an isotropic Gaussian process based on an autocorrelation
kernel K. K is a mapping [0,+∞)→ R such that for any positive integer n and any collection
of n distinct points (x(i))i∈[[1,n]] within D, the symmetric n×n matrix Σ with (i, i′)-th element
K(‖x(i) − x(i′)‖) is a positive definite correlation matrix. Necessarily, K(0) = 1.

The autocovariance function of the Gaussian process Y is σ2Kθ, where Kθ is the auto-
correlation kernel parametrized by θ ∈ (0,+∞) and defined by Kθ(d) = K(d/θ), making
σ2 ∈ (0,+∞) the variance of Y (x) for all x ∈ D.

Fix n ∈ Z+ and a collection of n distinct points (x(i))i∈[[1,n]]. Let this collection be the design
set, i.e. the set of points where Y is observed.

(
Y (x(1)), ..., Y (x(n))

)>
is a Gaussian vector

with mean vector
(
f(x(1)), ..., f(x(n))

)>
and covariance matrix σ2Σθ, where Σθ denotes the

n × n matrix with (i, i′)-th element Kθ(‖x(i) − x(i′)‖). Table 3.1 recalls Table 1.1, which
provided the definition of several correlation kernels.
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Kernel Kθ(|x|) parameter range

Spherical (r = 1, 2, 3)
(

1− 3
2

(
|x|
θ

)
+ 1

2

(
|x|
θ

)3
)

1{|x|6θ} ∅

Power Exponential exp
{
−
(
|x|
θ

)q}
q ∈ (0, 2]

Rational Quadratic
(

1 +
(
|x|
θ

)2
)−ν

ν ∈ (0,+∞)

Matérn Γ(ν)−121−ν
(

2
√
ν |x|θ

)ν
Kν
(

2
√
ν |x|θ

)
ν ∈ (0,+∞)

Table 3.1 – Formulas for several correlation kernel families. The Squared Exponential kernel is
the Power Exponential kernel with q = 2. Kν is the modified Bessel function of second kind with
parameter ν [Abramowitz and Stegun, 1964](9.6.). This parametrization of the Matérn family is
recommended by Handcock and Wallis [1994]. To recover the one used by Berger et al. [2001], simply
replace 2

√
ν|x| by |x|.

If p is non-zero, let H denote the n × p matrix with (i, j)-th element fj(x(i)). [Note: if
p = 0, then we adopt the convention that any term involving H can be ignored.] Then
(f(x(1), ..., f(x(n)))> = Hβ. Denote by y = (y1, ...yn)> the observed value of the random
vector

(
Y (x(1)), ..., Y (x(n))

)>
. The likelihood function of the parameter triplet (β, σ2, θ) has

the following expression:

L(y | β, σ2,θ) =

(
1

2πσ2

)n
2

|Σθ|−
1
2 exp

{
− 1

2σ2
(y −Hβ)>Σ−1

θ (y −Hβ)

}
. (3.1)

In order for the model to be identifiable, assume that p < n and that H has rank p.
Berger et al. [2001] derive the reference prior corresponding to the parameter ordering β ≺
(σ2, θ) [if p = 0, β is meaningless, so the ordering is (σ2, θ)]. One can see [Ren et al., 2012]
that the reference prior corresponding to the ordering β ≺ σ2 ≺ θ [if p = 0, σ2 ≺ θ] is the
same.
To express it conveniently, denote byQθ the matrix In−H

(
H>Σ−1

θ H
)−1

H>Σ−1
θ [if p = 0,

Qθ = In]. Also fix W , an n × (n − p) matrix such that W>W = In−p and H>W is the
p×(n−p) null matrix. W ’s columns form an orthonormal basis of the orthogonal complement
of the subspace of Rn spanned by the columns ofH [if p = 0, fixW as an orthogonal matrix,
for instance In].

β is a location parameter and σ :=
√
σ2 a scale parameter. Therefore, conditional on θ,

the reference prior with ordering β ≺ σ is proportional to dβσ−1dσ . Because the multi-
parameter reference prior is invariant under parameter-by-parameter reparametrizations and
dσ2/dσ = 2σ, the reference prior with ordering β ≺ σ2 is proportional to dβ(σ2)−1d(σ2).

Proposition 3.1. If p > 1, after marginalizing β and σ2 out, we have

L(y|θ) =

∫∫
L(y|β, σ2, θ)/σ2dβdσ2

=

(
2π

n−p
2

Γ
(
n−p

2

))−1 ∣∣Σ−1
θ

∣∣ 12 | ∣∣∣H>Σ−1
θ H

∣∣∣− 1
2 (
y>Σ−1

θ Qθy
)n−p

2 . (3.2)

Alternatively, the integrated likelihood with p > 1 can also be written

L(y|θ) =

(
2π

n−p
2

Γ
(
n−p

2

))−1 ∣∣∣H>H∣∣∣ 12 ∣∣∣W>ΣθW
∣∣∣− 1

2

(
y>W

(
W>ΣθW

)−1

W>y

)n−p
2

. (3.3)
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If p = 0, the integrated likelihood is simply

L(y|θ) =

∫
L(y|σ2, θ)/σ2dσ2 =

(
2π

n
2

Γ
(
n
2

))−1 ∣∣Σ−1
θ

∣∣ 12 | (y>Σ−1
θ y

)n
2 . (3.4)

Proof. The result for p = 0 and the first result for p > 1 are from Berger et al. [2001]. Lemma
3.10 yields that

W
(
W>ΣθW

)−1

W> = Σ−1
θ Qθ. (3.5)

So all that remains to be proved is that |Σθ| =
∣∣∣W>ΣθW

∣∣∣ ∣∣∣H>H∣∣∣−1 ∣∣∣H>Σ−1
θ H

∣∣∣−1

. Choose
an n × p matrix P with columns forming an orthonormal basis of the subspace of Rn

spanned by the columns of H. (WP ) is therefore an n × n orthogonal matrix, so |Σθ| =∣∣(WP )>Σθ(WP )
∣∣. Using Schur’s complement, we have

|Σθ| =
∣∣∣W>ΣθW

∣∣∣ ∣∣∣∣P>Σθ

(
In −W

(
W>ΣθW

)−1

W>Σθ

)
P

∣∣∣∣ . (3.6)

Lemma 3.10 again yields the result.

In the following proposition, the first assertion is from Ren et al. [2012].

Proposition 3.2. The reference prior with ordering β ≺ σ2 ≺ θ is π(β, σ2, θ) ∝
(
σ2
)−1

π(θ),
where

π(θ) ∝

√√√√Tr

[{(
d

dθ
Σθ

)
Σ−1
θ Qθ

}2
]
− 1

n− p

[
Tr

{(
d

dθ
Σθ

)
Σ−1
θ Qθ

}]2

. (3.7)

Denoting W>ΣθW by ΣWθ , π(θ) can also be written as:

π(θ) ∝

√√√√Tr

[{(
d

dθ
ΣWθ

)(
ΣWθ

)−1
}2
]
− 1

n− p

[
Tr

{(
d

dθ
ΣWθ

)(
ΣWθ

)−1
}]2

. (3.8)

Proof. To obtain the second assertion, all we need to do is recognize Example 3 from Chapter
2. This can be done after noticing that W>y plays the role of y and W>ΣθW the role of
Σθ. Because W>y ∈ Rn−p, n− p plays the role of n.

The first assertion is then a consequence of Lemma 3.10.

3.3 Smoothness of the correlation kernel

Lemma 2 of Berger et al. [2001] requires that correlation kernel and design set should be
such that Σθ = 11> + g0(θ)D + R0(θ), where 1 is the vector with n entries all equal to
1, g0(θ) is a real-valued function such that limθ→+∞ g0(θ) = 0, D is a fixed nonsingular
matrix and R0 is a mapping from (0,+∞) to the set of n × n real matrices Mn such that
limθ→+∞ ‖ 1

g0(θ)R0(θ)‖ = 0.

What makes this assumption restrictive is the condition that D should be nonsingular, be-
cause it holds for rough correlation kernels only. For instance, as was noted by Paulo [2005],
it does not hold for the Squared Exponential correlation kernel.
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For a given correlation kernel K, D is typically a matrix proportional to the matrix with
entries

∥∥x(i) − x(j)
∥∥q, where q depends on the smoothness of the correlation kernel but should

in any case belong to the interval (0, 2]. This is becauseK(s)−K(0) is equivalent to a constant
times sq when s→ 0+.

Schoenberg [1937] gives the following result (Theorem 4 in the original paper):

Theorem 3.3. If q ∈ (0, 2), the quadratic form ξ ∈ Rn 7→
∑n
i,j=0

∥∥x(i) − x(j)
∥∥q ξiξj is

nonsingular and its canonical representation contains one positive and n negative squares.

This means that if the correlation kernel is rough enough to have q ∈ (0, 2), the assumption
that D is nonsingular is reasonable.

Corollary 3.4. The n × n matrix with entries
∥∥x(i) − x(j)

∥∥q with q ∈ (0, 2) is nonsingular
and has one positive eigenvalue and n negative eigenvalues.

The picture is dramatically different when the correlation kernel K is smooth enough to
have q = 2. This happens as soon as K is twice continuously differentiable. Gower [1985]’s
Theorem 6 implies the following results:

Theorem 3.5. If d is the dimension of Ed, the smallest Euclidean subspace containing all
points in the design set, then the n× n matrix with entries

∥∥x(i) − x(j)
∥∥2

has rank:

(a) d + 1 (one positive eigenvalue, d negative eigenvalues, any other eigenvalue null) if all
points in the design set lie on the surface of a hypersphere of Ed ;

(b) d + 2 (one positive eigenvalue, d + 1 negative eigenvalues, any other eigenvalue null)
otherwise.

Corollary 3.6. The n×n matrix with entries
∥∥x(i) − x(j)

∥∥2
has rank lower or equal to r+2.

For all practical purposes, n is much greater than r, so the matrix D is singular when q = 2.

Let us review the values of q for correlation kernels listed in Table 3.1. Matérn correlation
kernels [Matérn, 1986] [Handcock and Stein, 1993] with smoothness parameter ν have q =

2 min(1, ν), thus for 0 < ν < 1, 0 < q < 2 but for ν > 1, q = 2. Spherical correlation kernels
[Wackernagel, 1995] have q = 1. Power Exponential kernels [De Oliveira et al., 1997] have
q equal to their power. This means that all Power Exponential kernels except the Squared
Exponential correlation kernel have 0 < q < 2. In particular, the Exponential kernel (which
is also the Matérn kernel with smoothness ν = 1/2) has q = 1, but the Squared Exponential
kernel has q = 2. Rational Quadratic kernels [Yaglom, 1987] have q = 2. For easy reference,
the review is summarized in Table 3.2.

This review justifies the claim in the abstract that the Squared Exponential kernel, Matérn
kernels with smoothness ν > 1 and Rational Quadratic kernels require a proof of the reference
posterior’s propriety.
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Kernel g0(θ) ‖R0(θ)‖ q D nonsingular*
Spherical (r = 1, 2, 3) −3/2θ−1 O(θ−3) 1 yes
Power Expon. (q < 2) −θ−q O(θ−2q) q yes
Squared Exponential −θ−2 O(θ−4) 2 no
Rational Quadratic −νθ−2 O(θ−4) 2 no
Matérn (ν < 1) Γ(−ν)ννΓ(ν)−1θ−2ν O(θ−2) 2ν yes
Matérn (ν = 1) −2θ−2 log(θ) O(θ−2) 2 no

Matérn (1 < ν < 2) −Γ(ν − 1)νΓ(ν)−1θ2 O(θ−2ν) 2 no
Matérn (ν = 2) −2θ2 O(θ−4 log(θ)) 2 no
Matérn (ν > 2) −Γ(ν − 1)νΓ(ν)−1θ2 O(θ−4) 2 no

Table 3.2 – Summary of the results of Section 3.3. *Answer given assuming n > r + 2.

3.4 Propriety of the reference posterior distribution

Berger et al. [2001] show that the reference posterior distribution on β and σ2 conditionally
to θ is proper.
In this section, we prove that the joint reference posterior distribution is proper for Matérn
kernels with smoothness ν > 1, Rational Quadratic kernels and the Squared Exponential
kernel.

Proposition 3.7. For Matérn kernels with smoothness ν > 1, for Rational Quadratic kernels
with parameter ν > 0 and for the Squared Exponential kernel, the “marginal” reference prior
distribution π(θ) defined by Proposition 3.2 has the following behavior.

1. When θ → 0,

π(θ) =

{
o(1) for Matérn kernels and the Squared Exponential kernel;
O(θ2ν−1) for Rational Quadratic kernels .

(3.9)

2. When θ → +∞,

π(θ) =


O(θ−1) for Matérn kernels;
o(1) for Rational Quadratic kernels ;

O(θ) for the Squared Exponential kernel .

(3.10)

Proof. Denoting any of these kernels by K, K is continuously differentiable.

If K is Squared Exponential, limθ→0
d
dθK(1/θ) = 0. This also holds if K is Matérn with

smoothness ν > 1 (see Abramowitz and Stegun [1964] 9.6.28. and 9.7.2.). If K is Rational
Quadratic with parameter ν > 0, d

dθK(1/θ) ∼
θ→0

2νθ2ν−1. Moreover, Σθ converges to In
when θ → 0, so its inverse does too. The first assertion follows from these facts.

The second assertion is proved by combining Lemma 3.12 with Lemma 3.20/3.21/3.22 for
Matérn, Rational Quadratic and Squared Exponential kernels respectively.

Let v1(θ) > ... > vn−p(θ) > 0 be the ordered eigenvalues of W>ΣθW .

Lemma 3.8. For Rational Quadratic and Squared Exponential kernels and for Matérn kernels
with smoothness ν > 1, there exists a hyperplane H of Rn such that for every y ∈ Rn \ H,
when θ → +∞:

(
y>W

(
W>ΣθW

)−1

W>y

)−1

= O(vn−p(θ)). (3.11)
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The proof of this lemma can be found in Appendix 3.D. Combined with Equation (3.3), it
implies that if the observation vector y belongs to Rn \ H, then

L(y|θ)2 =

n−p∏
i=1

O(vn−p(θ))

vi(θ)
= O(1) when θ → +∞. (3.12)

In the following, when y belongs to Rn \ H, we write that “y looks nondegenerate”. This
terminology relies on the intuition that if the observation were to take some values within
H, it would be better explained by a degenerate Gaussian model. The most compelling
example is that of a constant observation vector, for which the Kriging model would be
grossly inappropriate.

Theorem 3.9. For Matérn kernels with noninteger smoothness ν > 1, for Rational Quadratic
kernels and for the Squared Exponential kernel, regardless of the design set and of the mean
function space, if y looks nondegenerate, then the reference posterior distribution π(θ|y) is
proper.

Proof. The first assertion of Proposition 3.7 implies the reference prior π(θ) is integrable in
the neighborhood of 0. Furthermore, when θ → 0, Σθ → In so the reference posterior π(θ|y)

is integrable in the neighborhood of 0 as well.

All that remains to be proved is therefore that the reference posterior is integrable in the
neighborhood of +∞. In the following θ → +∞, so we rely on the asymptotic expansion of
Σθ, which is detailed in Appendix 3.D.

The proof is somewhat trickier for Matérn kernels with integer smoothness, so we tackle
this case at the end. Until further notice, assume the kernel is Rational Quadratic, Squared
Exponential or Matérn with noninteger smoothness ν > 1.

For Rational Quadratic and Squared Exponential (resp. Matérn with noninteger smoothness
parameter ν > 1) kernels, Appendix 3.D (resp. Appendix 3.D) shows how W>ΣθW can be
decomposed as

W>ΣθW = g(θ)
(
W>DW + g?(θ)W>D?W +Rg(θ)

)
, (3.13)

where
— g is a differentiable function;
— g?(θ) = θ−2l with l ∈ (0,+∞) (actually, if the kernel is Rational Quadratic or Squared

Exponential, l ∈ Z+);
— Rg is a differentiable mapping from (0,+∞) toMn such that ‖Rg(θ)‖ = o(θ−2l);
— D and D? are both fixed symmetric matrices;
— W>DW is non-null;
— either W>D?W is non-null or W>DW is nonsingular.

Lemma 3.15 implies that one of the following is true:

1. When θ is large enough, W>DW + g?(θ)W>D?W is nonsingular. This case can be
further decomposed in the following subcases:

a) W>DW is nonsingular;

b) W>DW is singular, but W>DW + g?(θ)W>D?W is nonsingular when θ is
large enough.
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2. The vector space Ker
(
W>D?W

)
∩Ker

(
W>DW

)
is non-trivial.

Let us differentiate W>ΣθW :

d

dθ
W>ΣθW =

g′(θ)

g(θ)
W>ΣθW + g(θ)

(
g?′(θ)W>D?W +

d

dθ
Rg(θ)

)
. (3.14)

We can show that
∥∥ d
dθRg(θ)

∥∥ = o(g?′(θ)). This is due to Equation (3.72) for Rational
Quadratic and Squared Exponential kernels, and to Equation (3.75) for Matérn kernels with
noninteger smoothness.

Lemma 3.11 shows that d
dθW

>ΣθW can be replaced by g(θ)
(
g?′(θ)W>D?W + d

dθRg(θ)
)

in Equation (3.8): π(θ) ∝ w(θ), where

w(θ)2 := Tr

[{
g(θ)

(
g?′(θ)W>D?W +

d

dθ
Rg(θ)

)(
W>ΣθW

)−1
}2
]

− 1

n− p

[
Tr

{
g(θ)

(
g?′(θ)W>D?W +

d

dθ
Rg(θ)

)(
W>ΣθW

)−1
}]2

.

(3.15)

We have w(θ) 6 w̃(θ), where

w̃(θ) :=

√√√√Tr

[{
g(θ)

(
g?′(θ)W>D?W +

d

dθ
Rg(θ)

)(
W>ΣθW

)−1
}2
]
. (3.16)

A specific asymptotic analysis is required in each case. This study is conducted in Appendix
3.E. We summarize the results in Table 3.3.

Case Kernels π(θ) L(y|θ)
1.(a) Matérn (ν ∈ [1,+∞) \ Z+), RQ, SE O

(
θ−2l−1

)
O(1)

1.(b) Matérn (ν ∈ [1,+∞) \ Z+), RQ, SE O
(
θ−1
)

O
(
θ−l
)

2. Matérn (ν ∈ [1,+∞) \ Z+) O
(
θ−1
)

O
(
θ−l
)

2. RQ, SE (usual case) O(θ) O
(
θ−3
)

2. RQ, SE (special case) O
(
θ−1
)

O
(
θ−1
)

Table 3.3 – Asymptotic upper bounds for reference prior π(θ) and likelihood L(y|θ) for Rational
Quadratic (RQ) and Squared Exponential (SE) kernels and Matérn kernels with noninteger smooth-
ness ν > 1 in all three cases. The proof in Appendix 3.E shows that for Rational Quadratic and
Squared Exponential kernels, case 2. can be split in two subcases (“usual” and “special”).

The posterior distribution resulting from the reference prior is proper in all cases.

Matérn kernels with integer smoothness are dealt with in Appendix 3.E.

3.5 Conclusion

The main result of this chapter is Theorem 3.9, which ensures that the reference prior leads
to a proper posterior distribution for a large class of smooth kernels. This class contains
the Squared Exponential correlation kernel as well as the important Matérn family [Stein,
1999] with smoothness parameter ν > 1. Rational Quadratic kernels, whose usage is less
widespread are also included within this class.
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Berger et al. [2001] proved this result for a class of rough correlation kernels. This class
includes the complementary set of the Matérn family – kernels with smoothness parameter
ν < 1 – as well as all other Power Exponential kernels. Spherical kernels, which are mostly
used in the field of geostatistics also belong to this class.

Combining Theorem 3.9 with the results from Berger et al. [2001], one can appreciate how
polyvalent the reference prior is, insofar as it is able to adapt to very different correlation
kernels and always leads to a proper posterior. No ad-hoc technique is required to derive
useable inference, so this approach seems to be flawless from a Bayesian point of view when
no explicit prior information is available. Even when explicit prior information is available,
following Druilhet and Marin [2007], it can be used to derive Maximum A Posteriori (MAP)
estimates or High Probability Density (HPD) sets that are invariant under reparametrization.
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Appendix 3.A Algebraic facts

Lemma 3.10. Let a and b be positive integers and let Σ be a nonsingular symmetric (a +

b)× (a+ b) matrix. Then, for any (a+ b)×a matrix A with rank a and any (a+ b)× b matrix
B with rank b such that A>B is the null a× b matrix,

B
(
B>ΣB

)−1

B> = Σ−1

(
Ia+b −A

(
A>Σ−1A

)−1

A>Σ−1

)
. (3.17)

Proof. Notice that both matrices have the same kernel, namely the subspace of Ra+b spanned
byA. Indeed, becauseB has full column rank and

(
B>ΣB

)−1

is nonsingular, the left matrix

has the same kernel as B>. Besides, the a-dimensional subspace of Ra+b spanned by A in
included in this kernel. So because the rank of B> is b, its kernel has dimension a and the
inclusion is an equality.
Similarly, because Σ−1 is nonsingular, the right matrix has the same kernel as Ia+b −
A
(
A>Σ−1A

)−1

A>Σ−1. Moreover, because the image of A
(
A>Σ−1A

)−1

A>Σ−1 is in-
cluded within the image of A, its dimension is lower or equal to a. The image of Ia+b on

the other hand has dimension a + b, so the image of Ia+b − A
(
A>Σ−1A

)−1

A>Σ−1 has
dimension greater or equal to b and therefore its kernel has dimension lower or equal to a.
Now, a simple computation shows that the a-dimensional subspace of Ra+b spanned by A in
included in the kernel, so it is in fact equal to the kernel.
Besides, for any z ∈ Rb,

B
(
B>ΣB

)−1

B> (ΣBz) = Bz; (3.18)

Σ−1

(
Ia+b −A

(
A>Σ−1A

)−1

A>Σ−1

)
(ΣBz) = Bz. (3.19)

So both matrices act the same way on the subspace spanned by ΣB, which is supplementary
to their common kernel, hence the equality.

Lemma 3.11. Let m be a positive integer, Σ be a nonsingular m×m matrix, and A and B
be m×m matrices. If there exists a real number t such that

A = tΣ +B, (3.20)

then

Tr
[{
AΣ−1

}2
]
− 1

m

[
Tr
{
AΣ−1

}]2
= Tr

[{
BΣ−1

}2
]
− 1

m

[
Tr
{
BΣ−1

}]2
. (3.21)

Proof. The lemma follows from a direct calculation:

Tr
[
AΣ−1

]
= Tr

[
BΣ−1

]
+ tm (3.22)

Tr
[{
AΣ−1

}2
]

= Tr
[{
BΣ−1

}2
]

+ 2tTr
[
BΣ−1

]
+ t2m (3.23)
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Lemma 3.12. Let m > a be positive integers, Σ be an m ×m symmetric positive definite
matrix, Σ′ be an m×m symmetric matrix and A be an m×a matrix with rank a. Denote by Q
the matrix Im−A

(
A>Σ−1A

)−1

A>Σ−1. Then, if there exist t1 ∈ R and t2 ∈ [0,+∞) such

that the matrix F := t1Σ−Σ′ is positive semi-definite and verifies ∀ξ ∈ Rm ξ>Fξ 6 t2ξ
>Σξ,

then √
Tr
[
(Σ′Σ−1Q)2

]
− 1

m− a
Tr
[
Σ′Σ−1Q

]2
6 (m− a)t2 (3.24)

Proof. Let B be an m×(m−a) matrix with rank m−a such that A>B is the null a×(m−a)

matrix. Such a matrix B can for instance be constructed by computing a Singular Value
Decomposition (SVD) of A: A = USV >. In this decomposition, U and V are orthogonal
matrices of size m×m and a× a respectively, and S is an m× a matrix whose only non-null
entries are on the main diagonal. Therefore the last m− a rows of S are filled with zeros. So
define B as the m× (m− a) matrix formed by the last m− a columns of U .

By applying Lemma 3.10, we obtain that Σ−1Q = B
(
B>ΣB

)−1

B>.

Because of the properties of the trace, this implies

Tr
[
Σ′Σ−1Q

]
= Tr

[
B>Σ′B

(
B>ΣB

)−1
]

(3.25)

Tr
[
(Σ′Σ−1Q)2

]
= Tr

[{
B>Σ′B

(
B>ΣB

)−1
}2
]
. (3.26)

Similarly, we have

Tr
[
FΣ−1Q

]
= Tr

[
B>FB

(
B>ΣB

)−1
]

(3.27)

Tr
[
(FΣ−1Q)2

]
= Tr

[{
B>FB

(
B>ΣB

)−1
}2
]
. (3.28)

Because B>FB = t1B
>ΣB −B>Σ′B, Lemma 3.11 implies

Tr

[{
B>Σ′B

(
B>ΣB

)−1
}2
]
− 1

m− a
Tr

[
B>Σ′B

(
B>ΣB

)−1
]2

= Tr

[{
B>FB

(
B>ΣB

)−1
}2
]
− 1

m− a
Tr

[
B>FB

(
B>ΣB

)−1
]2

.

(3.29)

Combining the 5 equations above yields

Tr
[
(Σ′Σ−1Q)2

]
− 1

m− a
Tr
[
Σ′Σ−1Q

]2
= Tr

[(
FΣ−1Q

)2]− 1

m− a
Tr
[
FΣ−1Q

]2
. (3.30)

An elementary computation shows that Σ−1Q = Q>Σ−1Q.
Consider the Cholesky decomposition Σ =: LL>.
Then Σ−1Q = Q>Σ−1Q = Q>

(
L−1

)>
L−1Q.
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Tr
[(
FΣ−1Q

)2]
= Tr

[(
FQ>

(
L−1

)>
L−1Q

)2
]

= Tr

[(
L−1QFQ>

(
L−1

)>)2
]

6 Tr
[
L−1QFQ>

(
L−1

)>]2
= Tr

[
FΣ−1Q

]2
. (3.31)

The inequality holds because L−1QFQ>
(
L−1

)>
is a symmetric positive semi-definite matrix.

Let (ξi)16i6m be a basis of unit eigenvectors of Σ−1Q such that for every integer i ∈ [[1,m]] \

[[1,m− a]], ξi belongs to the kernel of Σ−1Q. Indeed, because Σ−1Q = B
(
B>ΣB

)−1

B>,

this kernel has the same dimension as the kernel of B>: a.
Denoting by (si)16i6m the family of the eigenvalues corresponding to the family of eigenvec-
tors (ξi)16i6m, we have for every integer i ∈ [[1,m− a]] si 6= 0 and

(ξi)>Σξi = s−2
i

{
(ξi)>Q>Σ−1

}
Σ
{
Σ−1Qξi

}
= s−2

i (ξi)>Q>Σ−1Qξi

= s−2
i (ξi)>Σ−1Qξi

= s−1
i . (3.32)

This implies the third equality below:

Tr
[
FΣ−1Q

]
=

m∑
i=1

(
ξi
)>
FΣ−1Qξi =

m−a∑
i=1

si
(
ξi
)>
Fξi =

m−a∑
i=1

(
ξi
)>
Fξi(

ξi
)>

Σξi
6 (m− a)t2.

(3.33)
Equations (3.30) and (3.31) yield the result.

Entire series

Lemma 3.13. Let (Dk)k∈N be a sequence of matrices of the same size. If
∑
k∈NDk exists

and its kernel is the trivial vector space, then there exists a nonnegative integer N such that
∩Nk=0 KerDk is the trivial vector space.

Proof. Assume the sum
∑
k∈NDk exists and its kernel is the trivial vector space. Con-

sider the sequence (d(n))n∈N where for every nonnegative integer n, d(n) is the dimension of
∩nk=0 KerD(k). (d(n))n∈N is a nonincreasing sequence of nonegative integers, so it is conver-
gent. If its limit is strictly greater than 0, then for every nonnegative integer n, there exists
a unit vector vn that belongs to ∩nk=0 KerD(k). Because the unit sphere is compact, there
exists an increasing mapping φ : N → N such that the subsequence (vφ(n))n∈N converges
to a limit v such that ‖v‖ = 1. Besides, for every pair of nonnegative integers n 6 n′,
vφ(n′) ∈ ∩

φ(n)
k=0 KerD(k). Given this set is closed, the limit v also belongs to ∩φ(n)

k=0 KerD(k).
So for every nonnegative integer k, v ∈ KerD(k) and therefore v ∈ ∩∞k=0 KerD(k). So v can
only be the null vector, which is absurd since ‖v‖ = 1. We deduce from this contradiction
that the limit of the sequence of integers (d(n))n∈N is 0. Therefore there exists a nonnegative
integer N such that d(N) = 0.
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Appendix 3.B Maclaurin series

The lemmas in this subsection deal with the following setting.

Let m be a positive integer and let M be a continuous mapping from R to Mm, the set of
m×m matrices. Assume M admits the following Maclaurin series:

M(t) =

N∑
k=0

ak(t)Ak +B(t). (3.34)

In the above expression, N is a nonnegative integer and for every k ∈ [[0, N ]]:

(a) ak is a continuous mapping R→ R such that for all t 6= 0, ak(t) 6= 0;

(b) for every nonnegative integer l < k, ak(t) = o(|al(t)|) when t→ 0;

(c) Ak is a non-null symmetric m×m matrix.

B is a continuous mapping R→Mm such that for every t ∈ R, B(t) is a symmetric matrix
and when t→ 0, ‖B(t)‖ = o(|aN (t)|).

Lemma 3.14. Consider (3.34). If ∩Nk=0 KerAk is the trivial vector space and if there exists
T > 0 such that for all t ∈ (−T, T ) M(t) is nonsingular, then when t → 0,

∥∥M(t)−1
∥∥ =

O
(
|aN (t)|−1

)
.

Proof. Assume that ∩Nk=0 KerAk is the trivial vector space and that there exists T > 0 such
that for all t ∈ (−T, T ), M(t) is a nonsingular matrix.

If N = 0, then A0 is nonsingular and the conclusion is trivial.

If N > 1, we may assume without loss of generality that ∩N−1
k=0 KerAk is a nontrivial vector

space, otherwise we could replace N by N − 1 and B(t) by {aN (t)AN +B(t)} for all t ∈ R.

Let dN be the codimension of ∩N−1
k=0 KerAk. Let WN be an m × (m − dN ) matrix whose

columns form an orthonormal basis of ∩N−1
k=0 KerAk, and let PN be an m × dN matrix

whose columns form an orthonormal basis of its orthogonal complement. Then (PNWN )

is an orthogonal matrix. For all t ∈ R, let us replace M(t) by (PNWN )>M(t)(PNWN ).
Because (PNWN ) is an orthogonal matrix, the Frobenius norm of M(t)−1 is unchanged.
Naturally, for all k ∈ [[0, N ]], Ak is replaced by (PNWN )>Ak(PNWN ) and for every t ∈ R,
B(t) is replaced by (PNWN )>B(t)(PNWN ).

Now, for every k ∈ [[1, N ]], Ak can be decomposed into blocks – a dN × dN block A′k, an
(m− dN )× (m− dN ) block A′′k and a dN × (m− dN ) block A′′′k :

Ak =

(
A′k A′′′k

(A′′′k )> A′′k

)
(3.35)

For all t ∈ R, B(t) can be decomposed in a similar manner (here the ′ notation is used to
distinguish the blocks, not to express some derivative with respect to t):

B(t) =

(
B(t)′ B(t)′′′

(B(t)′′′)> B(t)′′

)
(3.36)

Now, for any symmetric nonsingular matrix

C =

(
C ′ C ′′′

(C ′′′)> C ′′

)
, (3.37)
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denoting by S :=
{
C ′ −C ′′′

(
C ′′
)−1 (

C ′′′
)>} the Schur complement of C ′′, the inverse of C

is

C−1 =

(
I 0

−
(
C ′′
)−1 (

C ′′′
)>

I

)(
S−1 0

0
(
C ′′
)−1

)(
I −C ′′′

(
C ′′
)−1

0 I

)
. (3.38)

For every k ∈ [[0, N − 1]], A′′k and A′′′k are null. For all t ∈ (−T, T ), M(t) is nonsingular. Its
lower (m− dN )× (m− dN ) block is

{
aN (t)A′′N +B(t)′′

}
and its Schur complement SN (t) is

SN (t) := −
{
aN (t)A′′′N +B(t)′′′

}{
aN (t)A′′N +B(t)′′

}−1 {
aN (t)A′′′N +B(t)′′′

}>
+

{
N∑
k=0

ak(t)A′k +B(t)′

}
. (3.39)

Because we are dealing with the finite dimensional vector space of matrices of size m×m, all
norms are equivalent. In particular, the Frobenius norm is equivalent to the algebra norm

A 7→ sup

{√
ξ>A>Aξ/ξ>ξ : ξ ∈ Rm \ {0m}

}
.

So there exists a constant Cm ∈ (0,+∞) such that for every t ∈ (−T, T ),

∥∥M(t)−1
∥∥ 6 Cm

(
‖Im‖+

∥∥∥{aN (t)A′′′N +B(t)′′′
}{

aN (t)A′′N +B(t)′′
}−1

∥∥∥)2

(∥∥SN (t)−1
∥∥+

∥∥∥{aN (t)A′′N +B(t)′′
}−1

∥∥∥) . (3.40)

A′′N is nonsingular, otherwise ∩Nk=0 KerAk would be nontrivial. This means that the norm
of the matrix

{
aN (t)A′′′N +B(t)′′′

}{
aN (t)A′′N +B(t)′′

}−1 is bounded when t→ 0. Because
of Equation (3.40), this implies that there exists TN > 0 and λN > 0 such that for all
t ∈ (−TN , TN ),

λN
∥∥M(t)−1

∥∥ 6 |aN (t)|−1 +
∥∥SN (t)−1

∥∥ . (3.41)

Our goal is to use Equation (3.41) recursively, by having SN (t) take the place of M(t). To
achieve this, a new expression of SN (t) is required.

SN (t) =

N−1∑
k=0

ak(t)A′k +BN (t), (3.42)

where

BN (t) := −
{
aN (t)A′′′N +B(t)′′′

}{
aN (t)A′′N +B(t)′′

}−1 {
aN (t)A′′′N +B(t)′′′

}>
+ aN (t)A′N +B(t)′. (3.43)

It turns out that when t → 0, the norm of BN (t) is O(|aN (t)|). This is due to the fact
mentioned above that

{
aN (t)A′′′N +B(t)′′′

}{
aN (t)A′′N +B(t)′′

}−1 is bounded when t→ 0.

Furthermore, ∩N−1
k=0 KerA′k is the trivial vector space. Indeed, let v1 ∈ ∩N−1

k=0 KerA′k. Then
for any vector v2 ∈ Rm−dN , (v1,v2)> ∩N−1

k=0 KerAk. Independently from this, for any vec-
tor v3 ∈ RdN , (v3,0m−dN )> belongs to the orthogonal complement of ∩N−1

k=0 KerAk. So
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(v1,0m−dN )> belongs both to ∩N−1
k=0 KerAk and its orthogonal complement: it is the null

vector. Therefore v1 = 0dN .

The two paragraphs above show that Equation (3.42) is formally similar to Equation (3.34):
the role of M(t) is held by SN (t), the role of N by N − 1, the role of the Aks by the A′ks
and the role of B(t) by BN (t).

Therefore an equation similar to (3.41) can be derived: there exist TN−1 > 0 and λN−1 > 0

such that for all t ∈ (−TN−1, TN−1),

λN−1

∥∥SN (t)−1
∥∥ 6 |aN−1(t)|−1 +

∥∥SN−1(t)−1
∥∥ . (3.44)

Here, SN−1(t) is defined with respect to SN (t) the same way SN (t) was defined with respect
to M(t).

Recursive application of this reasoning until 0 is reached yields the result.

Lemma 3.15. Consider (3.34) with N = 1. If KerA0 ∩ KerA1 is the trivial vector space,
then there exists T > 0 such that for all t ∈ (−T, T ), M(t) is nonsingular.

Proof. We use the same notations as in the proof of Lemma 3.14 and redefine matrices
the same way: M(t) := (P 1W 1)>M(t)(P 1W 1), B(t) := (P 1W 1)>B(t)(P 1W 1), A0 :=

(P 1W 1)>A0(P 1W 1), A1 := (P 1W 1)>A1(P 1W 1). For all t ∈ R, the determinant of
M(t) is the product of the determinants of S1(t) and of

{
a1(t)A′′1 +B(t)′′

}
. Because

KerA0 ∩ KerA1 is the trivial vector space, A′′1 is nonsingular. When |t| is small enough
therefore,

{
a1(t)A′′1 +B(t)′′

}
is nonsingular too. Moreover, limt→0 a

−1
0 (t)S1(t) = A′0 is also

nonsingular. These two facts imply that when |t| is small enough, the determinant of M(t)

is non-null and M(t) is nonsingular.

Lemma 3.16. Consider (3.34). If ∩Nk=0 KerAk is the trivial vector space, if the vector space
∩N−1
k=0 KerAk is non-trivial, and if there exists T > 0 such that for all t ∈ (−T, T ), M(t) is

positive definite, then there exists a hyperplane H of Rm such that for all v ∈ Rm \ H,

lim inf
t→0

vM(t)−1v/
∥∥M(t)−1

∥∥ > 0. (3.45)

Proof. This result is trivial if N = 0 (∩−1
k=0 KerAk is an intersection over an empty set,

so we take it by convention to be Rm). If N > 1, it follows from the proof of Lemma
3.14. Indeed, the requirements of this lemma are stronger than those of Lemma 3.14, so
all intermediate results of its proof are valid. Consider Equation (3.38) while assuming C
is positive definite. In the right member, the matrices on the left and on the right are the
transpose of one another, so the middle matrix is necessarily positive definite. In particular,
both S−1 and

(
C ′′
)−1 are positive definite. Any vector v ∈ Rm can be decomposed as

v = (v′,v′′)> with v′ ∈ RdN and v′′ ∈ Rm−dN . This decomposition yields a lower bound:
v>C−1v > (v′′)

> (
C ′′
)−1

v′′. Here, C isM(t), S is SN (t) and C ′′ is aN (t)A′′N +B′′(t). Let
us recall that A′′N is nonsingular and ‖B′′(t)‖ = o(|aN (t)|) when t → 0. So as long as v is
not orthogonal to ∩N−1

k=0 KerAk, v′′ is non-zero and there exists λ̃N (v) > 0 such that when
|t| is small enough, v>M(t)−1v > λ̃N (v)|aN (t)|−1. Then Lemma 3.14 yields the result for
any hyperplane H of Rm that contains the orthogonal complement of ∩N−1

k=0 KerAk.



CHAPTER 3. PROPRIETY OF THE REFERENCE POSTERIOR DISTRIBUTION 80

Lemma 3.17. If ∩Nk=0 KerAk 6= KerA0, if ∩N−1
k=0 KerAk = KerA0, and if there exists T > 0

such that for all t ∈ (−T, T ), M(t) is positive definite, then the largest eigenvalue v1(t) and
the second largest eigenvalue v2(t) of M(t) have the following behavior when t→ 0:

(a) v1(t)−1 = O(|a0(t)|−1);

(b) v2(t)−1 = O(|aN (t)|−1).

Proof. It is equivalent to prove that in this situation, there exists λ > 0 such that when |t| is
sufficiently small v1(t) > λ|a0(t)[ and v2(t) > λ|aN (t)|.

When t→ 0, we have a0(t)−1M(t)→ A0, so A0 is either positive or negative semi-definite.
Since a0 is continuous and non-null everywhere except possibly at 0, its sign is therefore
constant: nonnegative if A0 is positive semi-definite and nonpositive if A0 is negative semi-
definite. Without loss of generality, let us assume that A0 is positive semi-definite and that
a0 is nonnegative. a0(t)−1M(t) → A0 implies that a0(t)−1v1(t) converges to A0’s greatest
eigenvalue, which is strictly greater than 0 because A0 is non-null. This implies the first
result.

Now, since A0 is non-null, its rank is greater or equal to 1. If it is greater or equal to 2, then
a0(t)−1v2(t) converges to the second greatest eigenvalue of A0, so v−1

2 (t) = O(a0(t)−1) and
the second result holds a fortiori.

Assume from now on that A0 has rank 1. For every nonnegative integer k < N , Ak shares
A0’s kernel, so Ak is proportional to A0. We may therefore assume without loss of generality
that N = 1. Since A0 is a symmetric positive semi-definite matrix with rank 1, there exists
a vector a0 such that A0 = a0a

>
0 .

Choose for all t ∈ (−T, T ) a unit eigenvector V 1(t) corresponding to the eigenvalue v1(t)

of M(t). Then choose a unit eigenvector V 2(t) corresponding to the eigenvalue v2(t) such
that V 1(t)>V 2(t) = 0 (it is always possible to choose V 2(t) that way because M(t) is
symmetric). When t→ 0, V 1(t)→ a0/‖a0‖. Since V 1(t)>V 2(t) = 0 for all t ∈ (−T, T ), we
have limt→0 a

>
0 V 2(t) = 0.

v2(t) = a0(t)
(
a>0 V 2(t)

)2
+ a1(t)V 2(t)>A1V 2(t) + V 2(t)>B(t)V 2(t)

> a1(t)
{
V 2(t)>A1V 2(t) + o(1)

}
. (3.46)

Because M(t) is positive definite for all t ∈ (−T, T ), the restriction of A1 to KerA0 is
either positive semi-definite (making a1 nonnegative) or negative semi-definite (making a1

nonpositive). Moreover, it is non-null.

Since v2(t) = max{ξM(t)ξ | ξ ∈ Rm and ‖ξ‖ = 1 and ξ>v1(t) = 0}, the above implies the
following: lim inft→0 |a1(t)|−1v2(t) > 0. So the second result also holds when the rank of A0

is 1.
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Appendix 3.C Spectral decomposition

For the following lemmas, we need to set up a few notations. First, denote by K̂r the r-
dimensional Fourier transform of the isotropic correlation kernel K:

K̂r(ω) = (2π)−r
∫
Rr
K(‖x‖)e−i〈ω|x 〉dx and K(‖x‖) =

∫
Rr
K̂r(ω)ei〈ω|x 〉dω. (3.47)

For all θ ∈ (0,+∞), using the correlation kernel Kθ(·) = K(·/θ), the correlation matrix Σθ

is such that ∀ξ ∈ Rn:

ξ>Σθξ =

n∑
j,k=1

ξjξkK

(∥∥x(j) − x(k)
∥∥

θ

)
=

∫
Rr
K̂r(ω)

∣∣∣∣∣∣
n∑
j=1

ξje
i
〈
ω
∣∣∣x(j)θ 〉∣∣∣∣∣∣

2

dω = Mrθ
rIθ(ξ).

(3.48)
The factors in the last equality depend on the kernel and are given in Table 3.4.

Kernel Mr Iθ(ξ)

Matérn Γ(ν+ r
2 )(2
√
ν)2ν

π
r
2 Γ(ν)

∫
Rr
(
4ν + θ2‖s‖2

)− r2−ν ∣∣∣∑n
j=1 ξje

i〈s|x(j)〉
∣∣∣2 ds

Rational Quadratic 21−ν

(2π)
r
2 Γ(ν)

∫
Rr (θ‖s‖)ν−

r
2 Kν− r2 (θ‖s‖)

∣∣∣∑n
j=1 ξje

i〈s|x(j)〉
∣∣∣2 ds

Squared Exponential (2
√
π)−r

∫
Rr exp

(
− θ

2‖s‖2
4

) ∣∣∣∑n
j=1 ξje

i〈s|x(j)〉
∣∣∣2 ds

Table 3.4 – Mr and Iθ(ξ) for the three considered correlation kernel families. Kν is the modified
Bessel function of second kind with parameter ν [Abramowitz and Stegun, 1964] (9.6.)

The spectral decomposition of correlation kernels is a powerful tool.
To use it, recall Proposition 1.31:

Lemma 3.18. Let µ be a positive measure on Rr with finite non-null total mass that is
absolutely continuous with respect to the Lebesgue measure. Then the mapping K : Rr → R
defined by

K(x) =

∫
Rr
ei〈ω|x〉dµ(ω) (3.49)

is positive definite. Moreover, for any ξ ∈ Rn \ {0n},

∑
k,l∈[[1,n]]

ξkξlK(x(k) − x(l)) > 0. (3.50)

Let us use spectral decomposition to show this useful fact about Matérn kernels:

Lemma 3.19. For Matérn kernels, when θ → +∞
∥∥Σ−1

θ

∥∥ = O(θ2ν).

Proof. When θ > 2
√
ν, for any ξ ∈ Rn,

Iθ(ξ) > 2−
r
2−νθ−r−2ν

∫
‖s‖>1

‖s‖−r−2ν

∣∣∣∣∣∣
n∑
j=1

ξje
i〈s|x(j)〉

∣∣∣∣∣∣
2

ds. (3.51)
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Define the mapping Kaux : Rr → R by

Kaux(x) =

∫
Rr
ei〈ω|x〉‖s‖−r−2ν1‖s‖>1ds. (3.52)

By Lemma 3.18, the n× n matrix M with (i, i′)-th element Kaux
(

(x(i) − x(i′))
)
is positive

definite. For any ξ ∈ Rn,
∫
‖s‖>1

‖s‖−r−2ν
∣∣∣∑n

j=1 ξje
i〈s|x(j)〉

∣∣∣2 ds = ξ>Mξ. Denote by M the
smallest eigenvalue of M . For any ξ ∈ Rn, when θ > 2

√
ν, Iθ(ξ) > 2−

r
2−νM‖ξ‖2θ−r−2ν .

Equation (3.48) implies the result.

More generally, it can be used to study the behavior of the reference prior. From Equation
(3.48), we obtain that ∀θ ∈ (0,+∞), ∀ξ ∈ Rn:

ξ>
(
d

dθ
Σθ

)
ξ = Mrrθ

r−1Iθ(ξ) +Mrθ
r d

dθ
Iθ(ξ). (3.53)

The next three lemmas are used to prove the second assertion of Proposition 3.7. Since the
proof varies for each of the three different kernel families considered, Iθ is written IMθ for
Matérn kernels, IRQθ for Rational Quadratic kernels and ISEθ for the Squared Exponential
kernel.

Lemma 3.20. For Matérn kernels, F θ := rθ−1Σθ − d
dθΣθ is a symmetric positive definite

matrix. Furthermore, for any ξ ∈ Rn, ξ>F θξ 6 (2ν + r)θ−1ξ>Σθξ.

Proof. For any θ ∈ (0,+∞) and any ξ = (ξ1, ..., ξn)> ∈ Rn,

d

dθ
IMθ (ξ) = (−2)

(r
2

+ ν
)
θ

∫
Rr
‖s‖2

(
4ν + θ2‖s‖2

)− r2−ν−1

∣∣∣∣∣∣
n∑
j=1

ξje
i〈s|x(j)〉

∣∣∣∣∣∣
2

ds

= −(2ν + r)θ−1

∫
Rr

θ2‖s‖2

4ν + θ2‖s‖2
(
4ν + θ2‖s‖2

)− r2−ν ∣∣∣∣∣∣
n∑
j=1

ξje
i〈s|x(j)〉

∣∣∣∣∣∣
2

ds

(3.54)

Since the ratio in the integrand is smaller than 1, for any θ ∈ (0,+∞) and any non-null vector
ξ ∈ Rn,

0 < − d

dθ
IMθ (ξ) 6 (2ν + r)θ−1IMθ (ξ) (3.55)

Combining Equations (3.48), (3.53) and (3.55) yields the result.

Lemma 3.21. For Rational Quadratic isotropic correlation kernels, F θ := rθ−1Σθ − d
dθΣθ

is a symmetric positive definite matrix. If θ is large enough, it verifies ∀ξ ∈ Rn, ξ>F θξ 6

(r + 2)ξ>Σθξ.

Proof. In the following, denote by Kν the modified Bessel function of second kind with pa-
rameter ν. [Abramowitz and Stegun, 1964](9.6.)
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For any θ ∈ (0,+∞) and any ξ ∈ Rn,

d

dθ
IRQθ (ξ) =

∫
Rr
‖s‖ d

dz

{
zν−

r
2Kν− r2 (z)

}
z=θ‖s‖

∣∣∣∣∣∣
n∑
j=1

ξje
i〈s|x(j)〉

∣∣∣∣∣∣
2

ds. (3.56)

We now compute d
dz

{
zν−

r
2Kν− r2 z

}
. Following Abramowitz and Stegun [1964] (9.6.28.),

d

dz

{
zν−

r
2Kν− r2 z

}
=

{
−zν− r2Kν− r2−1(z) if ν − r

2 > 0.

−zν− r2K r
2−ν−1(z) + (2ν − r)zν− r2−1K r

2−ν(z) if ν − r
2 < 0.

(3.57)
Combining this with Equations (3.48) and (3.53) proves that F θ is positive definite.

We now have to deal with the behavior of K|ν− r2 |−1(z) when z → 0 and when z → +∞.
Let us start with z → 0. Using Abramowitz and Stegun [1964] (9.6.9.), we obtain:

K|ν− r2 |−1(z) ∼



z
2(|ν− r2 |−1)Kν− r2 (z) if

∣∣ν − r
2

∣∣ > 1.

−z log(z)Kν− r2 (z) if
∣∣ν − r

2

∣∣ = 1.
Γ(1−|ν− r2 |)

2|2ν−r|−1Γ(|ν− r2 |)
z|2ν−r|−1Kν− r2 (z) if 0 <

∣∣ν − r
2

∣∣ < 1.

− 1
z log(z)Kν− r2 (z) if

∣∣ν − r
2

∣∣ = 0.

(3.58)

So, for any ν > 0, there exists ar,ν > 0 such that, as long as z is small enough, K|ν− r2 |−1(z) 6

ar,νz
−1Kν− r2 (z).

Moreover, Abramowitz and Stegun [1964] (9.7.2.) states that when z → +∞, K|ν− r2 |−1(z) ∼
Kν− r2 (z) ∼ exp(−z)

√
π/
√

2z.
Because K|ν− r2 |−1 is a continuous function on (0,+∞), the two results above imply that

∀λ > 1 ∃a′r,ν > 0 ∀z > 0 zK|ν− r2 |−1 6 max(a′r,ν , λz)Kν− r2 (z). (3.59)

Now, d
dθ I

RQ
θ (ξ) = J1

θ (ξ) + J2
θ (ξ), with

J1
θ (ξ) :=

∫
‖s‖61

‖s‖ d
dz

{
zν−

r
2Kν− r2 (z)

}
z=θ‖s‖

∣∣∣∣∣∣
n∑
j=1

ξje
i〈s|x(j)〉

∣∣∣∣∣∣
2

ds;

J2
θ (ξ) :=

∫
‖s‖>1

‖s‖ d
dz

{
zν−

r
2Kν− r2 (z)

}
z=θ‖s‖

∣∣∣∣∣∣
n∑
j=1

ξje
i〈s|x(j)〉

∣∣∣∣∣∣
2

ds.

(3.60)

Set 0 < ε < 1. When z ∈ [ε, 1], d
dz

{
zν−

r
2Kν− r2 (z)

}
is bounded away from 0, so there exists

mε such that

θ|J1
θ (ξ)| > mε

∫
ε
θ<‖s‖<

1
θ

∣∣∣∣∣∣
n∑
j=1

ξje
i〈s|x(j) 〉

∣∣∣∣∣∣
2

ds = mεθ
−r
∫

1ε<‖ω‖<1

∣∣∣∣∣∣
n∑
j=1

ξje
i
〈
ω
∣∣∣x(j)θ 〉∣∣∣∣∣∣

2

dω.

(3.61)
The Lebesgue measure on {ω ∈ Rr : ε < ‖ω‖ < 1} is a finite positive measure. Lemma 3.18
asserts that the mapping Kε : Rr → R defined by

Kε(x) =

∫
ε<‖ω‖<1

ei〈ω|x 〉dω (3.62)
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is positive definite. It is an isotropic covariance kernel: Kε only depends on x through its
norm ‖x‖. Let Σε

θ be the correlation matrix corresponding with Kε: its (i, i′)-th element
is Kε

(
(x(i) − x(i′))/θ

)
. The Lebesgue measure on {ω ∈ Rr : ε < ‖ω‖ < 1} is absolutely

continuous with respect to the Lebesgue measure on Rr, so Lemma 3.18 also asserts that Σε
θ

is positive definite.

Moreover, for every nonnegative integer k,
∫
‖ω‖k1ε<‖ω‖<1dω is smaller than the mass of

the Lebesgue measure on {ω ∈ Rr : ε < ‖ω‖ < 1}. The Maclaurin series of Kε has therefore
infinite radius of convergence. For any nonnegative integer k, denote byD(k) the n×n matrix

with (i, i′)-th element
∥∥∥x(i) − x(i′)

∥∥∥2k

. Because the Maclaurin series has infinite radius of
convergence, Σε

θ is equal to its asymptotic expansion regardless of the value of θ. There exist
real numbers ak (k ∈ N) such that for all θ ∈ (0,+∞), Σε

θ =
∑∞
k=0 akθ

−2kD(k). Because Σε
θ

is positive definite, Lemma 3.13 ensures there exists a nonnegative integer N such that the
vector space ∩Nk=0 Ker akD

(k) is trivial.

Applying Lemma 3.14 then yields that when θ → +∞
∥∥∥(Σε

θ)
−1
∥∥∥ = O(θ2N ). Because the

greatest eigenvalue of a positive definite matrix is the smallest eigenvalue of its inverse, this
implies the existence of a constant cε > 0 such that when θ is large enough

min
ξ∈Rn,‖ξ‖=1

ξ>Σε
θξ > cεθ

−2N . (3.63)

So when θ is large enough, for every ξ ∈ Rn,

∫
1ε<‖ω‖<1

∣∣∣∣∣∣
n∑
j=1

ξje
i
〈
ω
∣∣∣x(j)θ 〉∣∣∣∣∣∣

2

dω > cε‖ξ‖2θ−2N . (3.64)

This provides a lower bound for |J1
θ (ξ)|:

θ|J1
θ (ξ)| > m̃εcε‖ξ‖2θ−r−2N . (3.65)

Besides, we have when θ is large enough, for every ξ ∈ Rn,

θ|J2
θ (ξ)| 6 n2‖ξ‖2

∫
‖s‖>1

(θ‖s‖)ν− r2− 1
2 exp(−θ‖s‖)ds

= n2‖ξ‖2 2π
r−1
2

Γ
(
r−1

2

) ∫ +∞

1

(θt)ν−
r
2−

1
2 exp(−θt)tr−1dt

6 n2‖ξ‖2 2π
r−1
2

Γ
(
r−1

2

)Γ

(
ν +

r − 1

2

)
θν−

r
2−

1
2 exp(−(θ − 1)). (3.66)

From Equations (3.65) and (3.66), we gather that when θ → +∞, sup‖ξ‖=1 |J2
θ (ξ)| =

o
(
inf‖ξ‖=1 |J1

θ (ξ)|
)
, so for any λ > 1, when θ is large enough, − d

dθ I
RQ
θ (ξ) 6 −λJ1

θ (ξ).
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Denote by (r − 2ν)+ the quantity max(0, r − 2ν). Then, combining Equations (3.57) and
(3.59), there exists a′r,ν > 0 such that

− θ d
dθ
IRQθ (ξ)

6λ
∫
‖s‖61

max
(
a′r,ν , (λ+ (r − 2ν)+)θ‖s‖

)
(θ‖s‖)ν− r2Kν− r2 (θ‖s‖)

∣∣∣∣∣∣
n∑
j=1

ξje
i〈s|x(j)〉

∣∣∣∣∣∣
2

ds

6λmax
(
a′r,ν , (λ+ (r − 2ν)+)θ

) ∫
‖s‖61

(θ‖s‖)ν− r2Kν− r2 (θ‖s‖)

∣∣∣∣∣∣
n∑
j=1

ξje
i〈s|x(j)〉

∣∣∣∣∣∣
2

ds.

(3.67)

When θ is large enough, a′r,ν 6 λθ so

−θ d
dθ
IRQθ (ξ) 6 λ(λ+ (r − 2ν)+)θIRQθ (ξ). (3.68)

From this, we obtain that for any non-null vector ξ ∈ Rn, for any λ > 1, provided θ is large
enough,

0 < − d

dθ
IRQθ (ξ) 6 λ(λ+ (r − 2ν)+)IRQθ (ξ). (3.69)

Combining Equations (3.48), (3.53) and (3.69) yields the result.

Lemma 3.22. For the Squared Exponential kernel, F θ := rθ−1Σθ − d
dθΣθ is a symmetric

positive definite matrix. If θ is large enough, it verifies ∀ξ ∈ Rn, ξ>F θξ 6 θξ>Σθξ.

Proof. For any θ ∈ (0,+∞) and any ξ ∈ Rn,

d

dθ
ISEθ (ξ) =

∫
Rr
−θ‖s‖

2

2
exp

(
−θ

2‖s‖2

4

) ∣∣∣∣∣∣
n∑
j=1

ξje
i〈s|x(j)〉

∣∣∣∣∣∣
2

ds (3.70)

So F θ is positive definite.

Similarly to the Rational Quadratic case (cf. proof of Lemma 3.21), one can show that for
any λ > 1, for large enough θ and for any non-null vector ξ ∈ Rn,

0 < − d

dθ
ISEθ (ξ) 6 λ

∫
‖s‖61

θ‖s‖2

2
exp

(
−θ

2‖s‖2

4

) ∣∣∣∣∣∣
n∑
j=1

ξje
i〈s|x(j)〉

∣∣∣∣∣∣
2

ds 6
λ

2
θISEθ (ξ). (3.71)

Combining Equations (3.48), (3.53) and (3.71) yields the result.

Appendix 3.D Asymptotic study of the correlation matrix Σθ

Rational Quadratic and Squared Exponential kernels

For all ν > 0, the series expansion of the mapping x 7→ (1 + x)−ν at x = 0 has radius of
convergence 1. Moreover, the series expansion of the exponential function has infinite radius
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of convergence. From these facts follows that when θ is large enough, if a Rational Quadratic
kernel or a Squared Exponential kernel is used,

Σθ =

∞∑
k=0

ak
θ2k
D(k). (3.72)

In the above expression, for every k, D(k) is the n× n matrix with (i, i′)-th element ‖x(i) −
x(i′)‖2k and ak is a non-null real number. To be precise, ak = (−1)k

(∏k
l=0(ν + l)

)
/k! for

Rational Quadratic kernels and ak = (−1)k/k! for the Squared Exponential kernel.

Equation (3.72) implies

W>ΣθW =

∞∑
k=0

ak
θ2k
W>D(k)W . (3.73)

Σθ is positive definite and the kernel of W is trivial so W>ΣθW is positive definite. Let k1

be the smallest nonnegative integer such thatW>D(k1)W is non-null. DefineD := ak1D
(k1).

If W>D(k1)W is nonsingular, then define k2 := k1 + 1 and D? := ak2D
(k2). If W>D(k1)W

is singular, then because W>ΣθW is nonsingular, there must exist an integer k > k1 such
thatW>D(k)W is non-null. Then let k2 be the smallest of them and define D? := ak2D

(k2).
Now, define the mappings g(θ) = θ−2k1 and g?(θ) = θ−2(k2−k1).
Finally, define

Rg(θ) = g(θ)−1
∞∑

k=k2+1

ak
θ2k
W>D(k)W . (3.74)

Notice that ‖Rg(θ)‖ = o(g?(θ)) and that ‖ ddθRg(θ)‖ = o(g?′(θ)).

Matérn kernels with noninteger smoothness ν

If a Matérn kernel with noninteger smoothness ν > 0 (whether greater or smaller than 1) is
used, we can write Σθ as [Abramowitz and Stegun, 1964] (9.6.2. and 9.6.10.):

Σθ =

bνc∑
k=0

ak
θ2k
D(k) +

aν
θ2ν
D(ν) +R(θ). (3.75)

Like in the case of Rational Quadratic and Squared Exponential kernels, for every k, D(k)

is the n× n matrix with (i, i′)-th element ‖x(i) − x(i′)‖2k. The ak’s, of course, are different:
ak = (−1)kΓ(ν − k)νk/ (k!Γ(ν)). Moreover, D(ν) is the n × n matrix with (i, i′)-th element
‖x(i) − x(i′)‖2ν , aν = Γ(−ν)νν/Γ(ν) and R is a differentiable mapping from (0,+∞) to
the set of real n × n matrices Mn such that ‖R(θ)‖ = O(θ−2(bνc+1)) and ‖ ddθR(θ)‖ =

O(θ−2(bνc+1)−1). Lemma (3.19) implies that when θ is large enough Σθ − R(θ) is positive
definite.

Equation (3.75) implies

W>ΣθW =

bνc∑
k=0

ak
θ2k
W>D(k)W +

aν
θ2ν
W>D(ν)W +W>R(θ)W . (3.76)

When θ is large enough, Σθ − R(θ) is positive definite. Since the kernel of W is trivial,
when θ is large enough, W>ΣθW −W>R(θ)W is positive definite. If it exists, let k1 be
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the smallest nonnegative integer smaller than ν such thatW>D(k1)W is non-null and define
D := ak1D

(k1) and g(θ) := θ−2k1 . If not, then define D := aνD
(ν) and g(θ) := θ−2ν . Either

way W>DW is non-null.

If k1 exists and W>D(k1)W is nonsingular, then define k2 := k1 + 1 if k1 < bνc and k2 = ν

if k1 = bνc. Then define D? := ak2D
(k2) and g?(θ) := g(θ)−1θ−2k2 .

If k1 exists and W>D(k1)W is singular, then there must exist k ∈ [[k1 + 1, bνc]] ∪ {ν} such
that W>D(k)W is non-null. Let k2 be the smallest number among all such k. Define
D? := ak2D

(k2) and g?(θ) := g(θ)−1θ−2k2 .

If k1 does not exist, thenW>D(ν)W is necessarily nonsingular. Define D? as the null n×n
matrix and g?(θ) = g(θ)−1θ−2ν−(bνc+1−ν).

Finally, define

Rg(θ) := g(θ)−1
(
W>ΣθW − g(θ)W>DW − g(θ)g?(θ)W>D?W

)
. (3.77)

In all situations, ‖Rg(θ)‖ = o(g?(θ)) and ‖ ddθRg(θ)‖ = o(g?′(θ)).

Matérn kernels with integer smoothness ν

Finally, if a Matérn kernel with integer smoothness ν is used, we can write Σθ as [Abramowitz
and Stegun, 1964] (9.6.11.):

Σθ =

ν−1∑
k=0

ak
θ2k
D(k) + ãν

(
log(θ)

θ2ν
D(ν) +

1

θ2ν
D̃

(ν)
)

+R(θ). (3.78)

ak and D(k) (k ∈ [[0, ν − 1]]) and D(ν) have the same definitions as for Matérn kernels with
noninteger smoothness ν > 1.
ãν = (−1)ν2νν/(ν− 1)! and D̃

(ν)
is the n×n matrix with null diagonal and (i, i′)-th element

(i 6= i′) given by ‖x(i) − x(i′)‖2ν
{
−0.5 log

(
‖x(i) − x(i′)‖2

)
− 0.5 log(ν)− 2γ +

∑ν
l=1 l

−1
}
,

where γ is Euler’s constant.
Finally, R is a differentiable mapping from (0,+∞) to the set of real n×n matricesMn such
that ‖R(θ)‖ = O(log(θ)θ−2(ν+1)) and ‖ ddθR(θ)‖ = O(log(θ)θ−2(ν+1)−1) .

Equation (3.78) implies

W>ΣθW =

ν−1∑
k=0

ak
θ2k
W>D(k)W +

log(θ)

θ2ν
ãνW

>D(ν)W +
ãν
θ2ν
W>D̃

(ν)
W +W>R(θ)W .

(3.79)
When θ is large enough, Σθ − R(θ) is positive definite. Since the kernel of W is trivial,
when θ is large enough, W>ΣθW −W>R(θ)W is positive definite. If it exists, let k1 be
the smallest nonnegative integer smaller or equal to ν such thatW>D(k1)W is non-null and
define D := ak1D

(k1) and g(θ) = θ−2k1 (k1 < ν) or D := ãνD
(ν) and g(θ) := log(θ)θ−2ν

(k1 = ν). If not, then defineD := ãνD̃
(ν)

and g(θ) := θ−2ν . Either wayW>DW is non-null.

If W>DW is nonsingular, then
— either k1 exists and k1 < ν− 1, in which case define D? := ak1+1D

(k1+1) and g?(θ) :=

θ−2;
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— or k1 exists and k1 = ν−1, in which case defineD? := ãνD
(ν) and g?(θ) := log(θ)θ−2;

— or k1 exists and k1 = ν, in which case define D? := ãνD̃
ν
and g?(θ) := log(θ)−1;

— or k1 does not exist, in which case defineD? as the null n×n matrix and g?(θ) := θ−1.
If W>DW is singular, then k1 necessarily exists:

— either k1 < ν. Then there are two possibilities. The first is that there exists a
smallest integer k2 ∈ [[k1 + 1, ν]] such that W>D(k2)W is non-null, in which case
define D? := ak2D

(k2) and g?(θ) := θ−2(k2−k1) (k2 < ν) or D? := ãνD
(ν) and

g?(θ) := log(θ)θ−2(ν−k1) (k2 = ν). The second is that no such k2 exists, but then
W>D̃

(ν)
W is necessarily non-null, so define D? := ãνD̃

(ν)
and g?(θ) := θ−2(ν−k1).

— or k1 = ν. Then W>D̃
(ν)
W is necessarily non-null, so define D? := ãνD̃

(ν)
and

g?(θ) := log(θ)−1.
Finally, define

Rg(θ) := g(θ)−1
(
W>ΣθW − g(θ)W>DW − g(θ)g?(θ)W>D?W

)
. (3.80)

In all situations, ‖Rg(θ)‖ = o(g?(θ)) and ‖ ddθRg(θ)‖ = o(g?′(θ)).

Proof of Lemma 3.8

For Rational Quadratic and Squared Exponential kernels, Equation (3.72) implies thanks to
Lemma 3.13 that there exists k′ ∈ N such that ∩k′k=0 Ker

(
W>D(k)W

)
is the trivial vector

space and ∩06k<k′ Ker
(
W>D(k)W

)
is a non-trivial vector space (if k′ = 0, the intersection

is done over an empty index set, so we take it to be Rn−p by convention).

Lemma 3.14 implies that there exists a constant ck′ > 0 such that for large enough θ,
vn−p(θ) > ck′θ

−2k′ . Thanks to Lemma 3.16, there exists a hyperplane Hn−p of Rn−p such
that for every y′ ∈ Rn−p \ Hn−p, there exists cy′ > 0 such that for large enough θ,

(y′)
>
(
W>ΣθW

)−1

y′ > cy′

∥∥∥∥(W>ΣθW
)−1

∥∥∥∥ . (3.81)

So for every y ∈ Rn such that W>y ∈ Rn−p \ Hn−p, there exists cy > 0 such that for large
enough θ

y>W
(
W>ΣθW

)−1

W>y > cy

∥∥∥∥(W>ΣθW
)−1

∥∥∥∥ . (3.82)

Because the matrix W> has full row rank, the vector space of all v ∈ Rn such that W>v ∈
Hn−p is included within a hyperplane Hn of Rn, so for every y ∈ Rn \Hn, there exists cy > 0

such that for large θ the above equation holds.

For Matérn kernels with noninteger smoothness ν > 0 (resp. with integer smoothness ν >
0), Equation (3.75) (resp. Equation (3.78)) allows a similar argument. Indeed, Lemma
3.19 asserts that

∥∥Σ−1
θ

∥∥ = O(θ2ν), so ∩bνck=0 Ker
(
W>D(k)W

)
∩ Ker

(
W>D(ν)W

)
(resp.

∩νk=0 Ker
(
W>D(k)W

)
∩Ker

(
W>D̃

(ν)
W
)
) is necessarily the trivial vector space.

Appendix 3.E Details of the proof of Theorem 3.9

Here the last part of the proof of Theorem 3.9 is given in detail.
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Rational Quadratic, Squared Exponential and Matérn (ν ∈ [1,+∞) \ Z+)

kernels

Let us first tackle the case of Rational Quadratic and Squared Exponential kernels and of
Matérn kernels with noninteger smoothness ν > 1.

In case 1. (a), Lemma 3.14 yields w̃(θ) = O(g?′(θ)).
This implies π(θ) = O(g?′(θ)) = O(θ−2l−1), so the reference prior is proper. Given the
likelihood function is bounded (cf. Equation 3.12), the reference posterior is proper as well.

In case 1. (b), Lemma 3.14 yields w̃(θ) = O(g?′(θ)g?(θ)−1).
This implies π(θ) = O(g?′(θ)g?(θ)−1) = O(θ−1). Moreover, vn−p(θ) = O(g(θ)g?(θ)). As the
rank of W>DW is at least one, v1(θ)−1 = O(g(θ)−1). Gathering all this, vn−p(θ)/v1(θ) =

O(g?(θ)), so Equation (3.12) implies L(y|θ) = O(g?(θ))1/2) = O(θ−l). The reference posterior
is then proportional to L(y|θ)π(θ) = O(θ−l−1) and is proper.

In case 2., we must distinguish between Matérn kernels and the others. For Matérn kernels
with noninteger smoothness ν > 1, Propostion 3.7 asserts that the reference prior is O(θ−1) so
the argument used in case 1.(b) still holds. For Rational Quadratic and Squared Exponential
kernels, Equation (3.72) implies

W>ΣθW =

∞∑
k=0

ak
θ2k
W>D(k)W . (3.83)

Let k1 be the smallest nonnegative integer such thatW>D(k)W is not the null matrix. Then

g(θ)W>DW = ak1θ
−2k1W>D(k1)W . (3.84)

and for some integer k2 > k1,

g(θ)g?(θ)W>D?W = ak2θ
−2k2W>D(k2)W . (3.85)

Things are easiest ifW>D(k1+1)W is null, because then k2 > k1+1. Since we are dealing with
case 2., Ker

(
W>D?W

)
∩ Ker

(
W>D(k1)W

)
is not the trivial vector space so Equation

(3.83) yields vn−p(θ) = O(θ−2(k2+1)) = O(θ−2(k1+3)). Besides, the smallest eigenvalue of(
W>ΣθW

)−1

verifies v1(θ)−1 = O(θ−2k1) so vn−p(θ)/v1(θ) = O(θ−6). Recall Proposition
3.7 asserts that π(θ) = O(θ). The reference posterior is proportional to L(y|θ)π(θ) = O(θ−2)

and thus proper.

In the following, assume W>D(k1+1)W is not null. Then k2 = k1 + 1.

If we assume that W>D(k1)W has rank greater or equal to 2, then a similar reasoning
can be applied. The two smallest eigenvalues of

(
W>ΣθW

)−1

verify v1(θ)−1 = O(θ−2k1)

and v2(θ)−1 = O(θ−2k1). vn−p(θ) = O(θ−2(k2+1)) = O(θ−2(k1+2)). From this we obtain
vn−p(θ)/v1(θ) = O(θ−4) and vn−p(θ)/v2(θ) = O(θ−4). Equation (3.12) then implies L(y|θ) =

O(θ−2−2). The reference posterior is proportional to L(y|θ)π(θ) = O(θ−3) and thus proper.

Now, assume that W>D(k1)W has rank 1. We need to distinguish between two possibilites:
either Ker

(
W>D(k1+2)W

)
∩Ker

(
W>D(k1+1)W

)
∩Ker

(
W>D(k1)W

)
is the trivial vector

space, or it is not. If it is not, Equation (3.83) yields vn−p(θ) = O(θ−2(k1+3)) and the
conclusion is the same as in the case where W>D(k1)W is null.
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Let us now deal with the situation where Ker
(
W>D(k1+2)W

)
∩ Ker

(
W>D(k1+1)W

)
∩

Ker
(
W>D(k1)W

)
is the trivial vector space. Two further subcases must be distinguished

here: either Ker
(
W>D(k1+1)W

)
∩ Ker

(
W>D(k1)W

)
is equal to Ker

(
W>D(k1)W

)
, or

it is strictly included within Ker
(
W>D(k1)W

)
.

If it is strictly included, then Lemma 3.17 is applicable and v1(θ)−1 = O(θ−2k1) and v2(θ)−1 =

O(θ−2(k1+1)). Because this is case 2., Ker
(
W>D(k1+1)W

)
∩ Ker

(
W>D(k1)W

)
is not

the trivial vector space, so Equation (3.83) yields vn−p(θ) = O(θ−2(k1+2)). From there we
obtain vn−p(θ)/v1(θ) = O(θ−4) and vn−p(θ)/v2(θ) = O(θ−2). Equation (3.12) then implies
L(y|θ) = O(θ−3), so the reference posterior is proper.

In the second subcase, Ker
(
W>D(k1+1)W

)
∩ Ker

(
W>D(k1)W

)
= Ker

(
W>D(k1)W

)
.

Since Ker
(
W>D(k1)W

)
is a hyperplane of Rn−p, this implies that Ker

(
W>D(k1+1)W

)
is

the same hyperplane: W>D(k1+1)W andW>D(k1)W are symmetric matrices of rank 1 with
the same kernel. So there exists b ∈ R \ {0} such thatW>D(k1+1)W = bW>D(k1)W . If we
redefine g(θ) := ak1θ

−2k1 + ak1+1bθ
−2(k1+1), g?(θ) := ak1+2θ

−2(k1+2)g(θ)−1, D? := D(k1+2)

and Rg(θ) := g(θ)−1
∑∞
k=k1+3 akθ

−2k, the situation is similar to case 1.(b), except that g?(θ)
is not necessarily of the form θ−2l.
However, g?′(θ) = g?(θ)(−2(k1 + 2)θ−1 − g′(θ)g(θ)−1) and g′(θ)g(θ)−1 = O(θ−1), which
implies g?′(θ)g?(θ)−1 = O(θ−1). In addition, g?(θ) = O(θ−2). Therefore the arguments of
the study of case 1.(b) apply: π(θ) = O(θ−1) and L(y|θ) = O(g?(θ)1/2) = O(θ−1). The
reference posterior is proportional to L(y|θ)π(θ) = O(θ−2): it is proper. This particular
subcase, because it is analoguous to case 1.(b) is called “special”. All other subcases of case
2. collectively form the “usual” case.

Matérn (ν ∈ Z+) kernels

We now address the case where the correlation kernel is Matérn with integer smoothness ν.
The proof strategy remains the same as for the other kernels, but the execution is a little
trickier.

It still relies on the asymptotic expansion of Σθ. For Matérn kernels with integer smoothness
ν, the decomposition is detailed in Appendix 3.D.

First, assume eitherD is not proportional toD(ν) orD? is not proportional to D̃
(ν)

. In Equa-
tion (3.13), g?(θ) may be θ−2l log(θ) instead of θ−2l. Then its derivative is g?′(θ) = θ−2l−1(1−
2l log(θ)). In case 1.(a), the reference prior (and posterior) is O(g?′(θ)) = O(θ−2l−1 log(θ))

and thus proper. It is useless to distinguish cases 1.(b) and 2. because thanks to Proposition
3.7, the reference prior is O(θ−1). In either case, the rank of W>DW is at least one, so
vn−p(θ)/v1(θ) = O(g?(θ)). Equation (3.12) implies L(y|θ) = O(g?(θ)1/2) = O(θ−l log(θ)1/2),
so the reference posterior is proportional to L(y|θ)π(θ) = O(θ−l−1 log(θ)1/2) and thus proper.

Now, assume D is proportional to D(ν) and D? is proportional to D̃
(ν)

. In Equation (3.13),
g?(θ) = log(θ)−1. Its derivative is g?′(θ) = −θ−1 log(θ)−2. In case 1.(a), the reference
prior (resp. posterior) is O(g?′(θ)) = O(θ−1 log(θ)−2) and is thus proper. In case 1.(b), the
reference prior is O(g?′(θ)g?(θ)−1) = O(θ−1 log(θ)−1). Besides, as the rank ofW>DW is at
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least one, Lemma 3.17 yields vn−p(θ)/v1(θ) = O(g?(θ)), so Equation (3.12) implies L(y|θ) =

O(g?(θ)1/2) = O(log(θ)−1/2). The reference posterior is then proportional to L(y|θ)π(θ) =

O(θ−1 log(θ)−3/2): it is proper. Case 2. cannot occur because Lemma 3.19 asserts that∥∥Σ−1
θ

∥∥ = O(θ2ν).
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Chapter 4

Optimal compromise between

incompatible conditional probability

distributions

This chapter covers Section 2 of the article Muré [2017].

Abstract

Models are often defined through conditional rather than joint distributions, but it can

be difficult to check whether the conditional distributions are compatible. When they

are not, we give meaning to the intuition that the stationary probability distribution of

the associated Pseudo-Gibbs sampler is the optimal compromise between the conditional

distributions.

Résumé

Les modèles statistiques sont souvent définis par lois conditionnelles plutôt que jointes.

Il peut cependant être difficile de contrôler la compatibilité des lois conditionnelles. Dans

le cas où elles ne seraient pas compatibles, nous donnons sens à l’intuition selon laquelle

la distribution stationnaire du pseudo-échantillonneur de Gibbs correspondant est le

compromis optimal entre les lois conditionnelles.

4.1 Introduction

Generally speaking, there are two ways to create statistical models for multiple random vari-
ables. One can either consider them simultaneously and directly define their joint distribution,
or one can define a system of conditional distributions. The first approach is conceptually
easier and often (but not always) leads to models with well understood properties. The sec-
ond one allows for more flexibility in modeling but makes theoretical analysis more difficult.

The main problem with the second approach is that conditional distributions may not be
compatible. In this context, it means that there exists no joint distribution from which the
conditional distributions can all be derived. Other definitions of compatibility exist in the
literature. For example, in the context of a model with a given prior distribution, Dawid
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and Lauritzen [2001] examine the problem of eliciting a compatible prior distribution for a
submodel. In the domain of Bayesian Networks, a probability distribution can be compatible
or not with a given Directed Acyclic Graph (DAG) [Roverato, 2004]. Moreover, an abstraction
(simplification) of a DAG can be compatible or not [Yet and Marsh, 2014]. In this dissertation
however, the notion of compatibility concerns families of conditional distributions. A family
of conditional distributions is called compatible if there exists a joint distribution that agrees
with them all.

Accordingly, the problem of efficiently determining whether a given system of conditionals is
compatible has received considerable attention over the years. Kuo et al. [2017], after listing
previous attempts, provide probably the best solution to date. Their idea relies on the Struc-
tural Ratio Matrix which contains ratios between conditional distributions. Obviously, this
solution, like its predecessors deals only with discrete conditional probability distributions.

However, even if a system contains incompatible conditional probability distributions, it does
not follow that it is useless. Since Heckerman et al. [2000], practitioners have been using
systems of conditional probability distributions without reference to compatibility. Gelman
and Raghunathan [2001] state that “in general, reasonable-seeming conditional models will
not be compatible with any single joint distribution”. It is, indeed, always possible to fire
up Gibbs samplers to deal with a system of conditional distributions. Some authors use
the colorful acronym PIGS for “Potentially Incompatible Gibbs Sampler” to describe such a
procedure. When the conditionals are definitely known to be incompatible, the most widely
used term seems to be “Pseudo-Gibbs Sampler” (PGS).

Behind the practice of PIGS is the intuition that the Gibbs sampler should converge to the
joint distribution that best represents the system of conditionals. Kuo and Wang [2017]
provide a detailed analysis and geometrical interpretation of the behavior of Pseudo-Gibbs
Samplers for discrete conditional distributions. In particular, they show how the scanning
order determines its stationary distribution. In Section 4.2 of the present chapter, we provide
some theoretical foundation for the intuition that the stationary distribution of a PGS with
random scanning order is, in case of existence and uniqueness, the best “compromise” between
incompatible conditionals.

4.2 Optimal compromise: a general theory

Definitions and notations

In this section we introduce the concepts necessary to define the optimal compromise between
potentially incompatible conditional distributions.

First, note that in this context, “conditional distribution” is really an informal way of referring
to a Markov kernel.

Definition 4.1. Let (A,A) and (B,B) be measurable sets. A mapping π : A× B → [0, 1] is
called a Markov kernel if:

1. for all x ∈ A, π(x, ·) : B → [0, 1] is a probability distribution and

2. for all S ∈ B, π(·, S) : A→ [0, 1] is A-measurable.
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We use the following notation: for every (x, S) ∈ A× B, π(S|x) := π(x, S).

Let r be a positive integer and let (Ω1,A1),...,(Ωr,Ar) be measurable sets. Define Ω =

×ri=1 Ωi = Ω1 × ...× Ωr and A :=
⊗r

i=1Ar = A1 ⊗ ...⊗Ar.
For every i ∈ [|1, r]], let πi be a Markov kernel

(
×j 6=i Ωj

)
×Ai → [0, 1].

Intuitively (we formalize this below), every πi should be assembled with a distribution mi on⊗
j 6=iAj to create a “joint” distribution, that is a probability distribution on A. We refer to

every mi (i ∈ [[1, r]]) as an (r− 1)-dimensional distribution. If the mi can be chosen in such a
way as to make all joint distributions equal, then the Markov kernels in the sequence (πi)i∈[[1,r]]

are called compatible. And if no choice of (mi)i∈[[1,r]] can make all joint distributions equal,
we have to look for a “compromise” between the Markov kernels.

Remark (Producing incompatibility is easy). Take r = 2 and Ω1 = Ω2 = R and endow R
with the Borel sigma-algebra. Assume that for every t ∈ R, π1(·|t) and π2(·|t) are absolutely
continuous with respect to the Lebesgue measure and denote by f1(·|t) and f2(·|t) their
respective density functions. A necessary condition [Arnold et al., 2001] for the compatibility
of π1 and π2 is the existence of two mappings u and v defined on R such that for almost every
real numbers x and t (in the sense of the Lebesgue measure),

f1(x|t)
f2(t|x)

= u(t)v(x). (4.1)

Definition 4.2. Let φ be a probability distribution on A. For every i ∈ [[1, r]], denote by
φ−i the probability distribution on

⊗
j 6=iAj defined as follows. For every set S−i that can be

decomposed as S−i =×j 6=i Sj (with Sj ∈ Aj for every j 6= i),

φ−i(S−i) = φ(×
j<i

Sj × Ωi ××
k>i

Sk). (4.2)

φ−i is called the i-th (r − 1)-marginal distribution of φ.

Remark. The above definition is valid because any probability distribution on A can be
characterized by its values on “rectangles”×ri=1 Si (where for every i ∈ [[1, r]], Si ∈ Ai).

For every i ∈ [[1, r]] and every probability distribution mi on
⊗

j 6=iAj , denote by πimi the
distribution on A defined as follows. For every i ∈ [[1, r]], for every set S<i ∈

⊗
j<iAj , every

set S>i ∈
⊗

k>iAk and every set Si ∈ Ai,

πim
i(S<i × Si × S>i) =

∫
S<i×S>i

πi(Si|ω−i)dmi(ω−i). (4.3)

Naturally, for i = 1 (resp. i = r), remove S<i (resp. S>i) from the formula above. In the
following, do this kind of operation when i = 1 or i = r.

Notice that for for every i ∈ [[1, r]], mi is the i-th (r − 1)-marginal distribution of πimi:

(
πim

i
)
−i = mi. (4.4)

If there exists a sequence of (r−1)-dimensional distributions (mi)i∈[[1,r]] such that all distribu-
tions πimi are equal, then the Markov kernels (πi)i∈[[1,r]] are compatible. If no such sequence
(mi)i∈[[1,r]] exists, then we wish to find a sequence (mi)i∈[[1,r]] that makes the πimi share some
“common ground”. The following definition expresses this constraint formally.
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Definition 4.3. A sequence of (r − 1)-dimensional distributions (mi)i∈[[1,r]] (each mi being
a probability distribution on

⊗
j 6=iAj) is said to be compatible with the sequence of Markov

kernels (πi)i∈[[1,r]] if for every i ∈ [[1, r]]

mi =
1

r

r∑
j=1

(πjm
j)−i. (4.5)

So the “common ground” we require for the sequence of distributions (πim
i)i∈[[1,r]!] is that

their (r − 1)-marginal distributions should be the same on average. Other constraints would
have been possible, and we discuss some of them in Section 4.3 below.

The definition of a compromise follows from this new definition of compatibility.

Definition 4.4. A probability distribution P on A is called a compromise between the Markov
kernels (πi)i∈[[1,r]] if these two conditions are verified:

1. for every i ∈ [[1, r]], πiP−i is absolutely continuous with respect to P ;

2. the sequence (P−i)i∈[[1,r]] of P ’s (r − 1)-marginal distributions is compatible with the
sequence of Markov kernels (πi)i∈[[1,r]].

In the definition of a compromise, the first condition exists to give meaning to the definition
of an optimal compromise below. It is reasonable on its own though: a compromise should
not deem events impossible if they are considered possible by the Markov kernels.

Definition 4.5. Let λ be a positive measure on A. Let P be a compromise between the
sequence of Markov kernels (πi)i∈[[1,r]] that is absolutely continuous with respect to λ. P

is called an optimal compromise with respect to λ between the sequence of Markov kernels
(πi)i∈[[1,r]] if it minimizes the functional Eλ over all compromises between (πi)i∈[[1,r]] that are
absolutely continuous with respect to λ. Eλ is defined by:

Eλ(P ) =

r∑
i=1

∫
A

[
d(πiP−i)

dλ
(ω)− dP

dλ
(ω)

]2

dλ(ω). (4.6)

Remark. The set of all compromises between (πi)i∈[[1,r]] is convex, as is the subset of all
compromises absolutely continuous with respect to λ.

If the Markov kernels (πi)i∈[[1,r]] are compatible and there exists a joint distribution π on A
that agrees with them all, then for every positive measure λ on A such that π is absolutely
continuous with respect to λ, Eλ(π) = 0 and π is an optimal compromise with respect to λ.

Even though Definition 4.5 makes it seem like the notion of optimal compromise is tied to a
reference measure λ, it turns out that in many situations there exists a compromise that is
optimal with respect to all possible reference measures.

Deriving the optimal compromise

The notion of Gibbs compromise is central to this theory of compromises between incompatible
Markov kernels.
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Definition 4.6. A probability distribution PG on A is called a Gibbs compromise between
the sequence of Markov kernels (πi)i∈[[1,r]] if it satisfies:

PG =
1

r

r∑
i=1

πi(PG)−i. (4.7)

Proposition 4.7. A Gibbs compromise between the sequence of Markov kernels (πi)i∈[[1,r]] is
also a compromise between this sequence of Markov kernels in the sense of Definition 4.4.

Proof. Let PG be a Gibbs compromise between the sequence of Markov kernels (πi)i∈[[1,r]].
Then, for any measurable set A such that PG(A) = 0,

PG =
1

r

r∑
i=1

πi(PG)−i(A) = 0. (4.8)

So for every integer i ∈ [[1, r]], πi(PG)−i(A) = 0. This fulfills the first condition of Definition
4.4.

Its second condition is also fulfilled because for every integer i ∈ [[1, r]],

(PG)−i =

1

r

r∑
j=1

πj(PG)−j


−i

=
1

r

r∑
j=1

(πj(PG)−j)−i . (4.9)

The denomination “Gibbs compromise” is justified because it is a stationary distribution for
the Gibbs sampler with random equiprobable scanning order.

The proposition below shows that all compromises are tied to Gibbs compromises.

Proposition 4.8. If a sequence of (r − 1)-dimensional probability distributions (mi)i∈[[1,r]]

(each mi being a probability distribution on
⊗

j 6=iAj) is compatible with the sequence of
Markov kernels (πi)i∈[[1,r]], then it is the sequence of (r − 1)-dimensional distributions of a
Gibbs compromise between the Markov kernels (πi)i∈[[1,r]].

Proof. Define the probability distribution P on A as follows:

P =
1

r

r∑
i=1

πim
i. (4.10)

Then for every i ∈ [[1, r]] the i-th (r − 1)-marginal distribution P−i of P is given by

P−i =
1

r

r∑
j=1

(
πjm

j
)
−i = mi, (4.11)

where the last equality is due to (mi)i∈[[1,r]] being compatible with (πi)i∈[[1,r]]. Plugging this
into Equation (4.10), we obtain that P is a Gibbs compromise. Equation(4.11) then yields
the result.

Remark (Equivalence relationship and convexity). Let us say that two compromises are equiv-
alent if they share the same sequence of (r − 1)-marginal distributions. This is obviously an
equivalence relationship and every class of equivalence can be represented by a single Gibbs
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compromise. Moreover, each class of equivalence is a convex subset of the set of all compro-
mises. And for any positive measure λ on A, its intersection with the set of all compromises
absolutely continuous with respect to λ is also convex. Finally, the functional Eλ is convex
over this intersection.

The main result follows from Proposition 4.8:

Theorem 4.9. If there exists a unique Gibbs compromise PG between the sequence of Markov
kernels (πi)i∈[[1,r]], then the following statements holds:

1. PG is absolutely continuous with respect to any compromise between the sequence of
Markov kernels (πi)i∈[[1,r]];

2. for any positive measure λ on A such that PG is absolutely continuous with respect to
λ, PG is the unique optimal compromise with respect to λ.

Because of these two properties, we call PG the optimal compromise.

Proof. If the distribution PG is the unique Gibbs compromise between the sequence of Markov
kernels (πi)i∈[[1,r]], then Proposition 4.8 asserts that ((PG)−i)i∈[[1,r]] is the only compatible
sequence of (r − 1)-dimensional distributions. So any compromise has the same sequence of
(r − 1)-marginal distributions. Let P be such a compromise.

For every i ∈ [[1, r]], πi(PG)−i = πiP−i is absolutely continuous with respect to P . So the
average PG is also absolutely continuous with respect to P .

Let λ be a positive measure on A such that P is absolutely continuous with respect to λ.
Because PG and P share the same sequence of (r − 1)-marginal distributions, for λ-almost
any ω ∈ Ω,

d(πiP−i)

dλ
(ω) =

d(πi(PG)−i)

dλ
(ω). (4.12)

Moreover, Equation (4.10) implies that for λ-almost any ω ∈ Ω, dPG
dλ (ω) is the arithmetic

average between the d(πi(PG)−i)
dλ (ω) (i ∈ [[1, r]]), so it minimizes the mean squared error.

Together with Equation (4.12), this implies that for λ-almost any ω ∈ Ω,

r∑
i=1

[
d(πi(PG)−i)

dλ
(ω)− dPG

dλ
(ω)

]2

6
r∑
i=1

[
d(πiP−i)

dλ
(ω)− dP

dλ
(ω)

]2

. (4.13)

Consequently, Eλ(PG) 6 Eλ(P ). Moreover, if P 6= PG, then there exists S ∈ A such that
λ(S) > 0 and for every ω ∈ S,

∀i ∈ [[1, r]]
d(πiP−i)

dλ
(ω) =

d(πi(PG)−i)

dλ
(ω) and

dP

dλ
(ω) 6= d(PG)

dλ
(ω). (4.14)

So for every ω ∈ S, Equation (4.13) is a strict inequality and thus Eλ(PG) < Eλ(P ). PG is
therefore the unique optimal compromise with respect to λ.

Remark (Equivalence class and convexity – continued). A similar proof can be used to show
the following results. In cases where there are several different Gibbs compromises, each Gibbs
compromise is absolutely continuous with respect to any equivalent compromise. Now let C be
an equivalence class and let πC be the unique Gibbs compromise in this class of equivalence.
Let λ be a positive measure on A such that πC is absolutely continuous with respect to λ. πC
(uniquely) minimizes Eλ over the intersection of C and the set of all compromises absolutely
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continuous with respect to λ. This implies that for any positive measure λ on A, any optimal
compromise with respect to λ is a Gibbs compromise. Finally, note that the set of all Gibbs
compromises is convex (however there is no reason Eλ should be convex over this set!).

Theorem 4.9 has important practical implications. It opens the possibility of using Gibbs
sampling to find the optimal compromise between incompatible Markov kernels and justifies
using PIGS.

The next result shows that, under the conditions of Theorem 4.9, the optimal compromise
remains the same for a fairly large class of reparametrizations. This result is key to the
application of PIGS in an Objective Bayesian framework, where some degree of invariance by
reparametrization of priors and posteriors is usually expected.

For every i ∈ [[1, r]], let (Ω̃i, Ãi) be a measurable space and let fi be bijective measurable
mapping Ωi → Ω̃i whose inverse f−1

i is also measurable. Define f = (f1, ..., fr) :×i∈[[1,r]] Ωi →
×i∈[[1,r]] Ω̃i and for every i ∈ [[1, r]] f−i = (f1, .., fi−1, fi+1, ..., fr) :×j 6=i Ωi →×j 6=i Ω̃i.

Also let π̃i be the Markov kernel
(
×j 6=i Ω̃j

)
× Ãi → [0, 1] such that for every ω−i ∈×j 6=i Ωj

and every Si ∈ Ai, π̃i(fi(Si)|f−i(ω−i)) = πi(Si|ω−i).

Proposition 4.10. Assume there exists a unique Gibbs compromise PG between the sequence
of Markov kernels (πi)i∈[[1,r]]. Then the push-forward measure of PG by f P̃G := PG ∗ f is the
unique Gibbs compromise between the sequence of Markov kernels (π̃i)i∈[[1,r]].

Proof. For every i ∈ [[1, r]], for every S̃i ∈ Ãi,

P̃G

(
×

i∈[[1,r]]

S̃i

)
= PG

(
f−1

(
×

i∈[[1,r]]

S̃i

))

= PG

(
×

i∈[[1,r]]

f−1
i (S̃i)

)

=
1

r

r∑
i=1

∫
×j 6=i f−1

j (S̃j)

πi(f
−1
i (S̃i)|ω−i)d {(PG)−i} (ω−i)

=
1

r

r∑
i=1

∫
×j 6=i f−1

j (S̃j)

π̃i(S̃i|f−i(ω−i))d {(PG)−i} (ω−i)

=
1

r

r∑
i=1

∫
×j 6=i S̃j

π̃i(S̃i|ω̃−i)d {(PG)−i ∗ f−i} (ω̃−i). (4.15)

Now, for every i ∈ [[1, r]], for every T̃i ∈ Ãi,

(PG)−i ∗ f−i

(
×
j 6=i

T̃−i

)
= (PG)−i

(
×
j 6=i

f−1
j (T̃j)

)

= PG

(
×
j<i

f−1
j (T̃j)× f−1

i (Ω̃i)××
k>i

f−1
k (T̃k)

)

= PG ∗ f

(
×
j<i

T̃j × Ω̃i×
k>i

T̃k

)

= (PG ∗ f)−i

(
×
j 6=i

T̃j

)
. (4.16)
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So (PG)−i ∗ f−i = (PG ∗ f)−i = (P̃G)−i. Then, returning to Equation 4.15,

P̃G

(
×

i∈[[1,r]]

S̃i

)
=

1

r

r∑
i=1

∫
×j 6=i S̃j

π̃i(S̃i|ω̃−i)d
{

(P̃G)−i

}
(ω̃−i). (4.17)

Finally, we obtain

P̃G =
1

r

r∑
i=1

π̃i(P̃G)−i. (4.18)

P̃G is therefore a Gibbs compromise between the sequence of Markov kernels (π̃i)i∈[[1,r]]. We
now prove its uniqueness. For every i ∈ [[1, r]], fi is bijective and f−1

i is measurable. So for
any Gibbs compromise Q̃G between the sequence of Markov kernels (π̃i)i∈[[1,r]], Q̃G ∗ f−1 is
a Gibbs compromise between the sequence of Markov kernels (πi)i∈[[1,r]]. Given PG is the
unique Gibbs compromise between the Markov kernels in this sequence, Q̃G ∗ f−1 = PG, so
Q̃G = Q̃G ∗ f−1 ∗ f = PG ∗ f = P̃G.

4.3 Discussion of the notion of compromise

This section is devoted to discussing the merits, in our opinion, of Definitions 4.3 and 4.4. The
first subsection shows that strengthening their requirements often makes the set of all com-
promises empty. Conversely, the second subsection provides examples showing that relaxing
their requirements leads to undesirable behavior in compromises.

Stronger definitions of compromises are not possible

While the definition of the optimal compromise is straightforward, as it involves minimizing
some measure of distance between the “targeted” conditionals and the conditionals of the
compromise, the definition of a compromise may seem arbitrary. To motivate this definition,
let us focus on the two-dimensional case.

Suppose that r = 2 and that π1 and π2 are incompatible. This means there exists no joint
distribution π which agrees with both Markov kernels. This being the case, it seems sensible
to weaken the definition of compatibility by applying it to the “marginals” instead of the
“joint” distribution. The following definition makes this idea precise.

Definition 4.11. A pair of probability distributions m1 (resp. m2) on A2 (resp. A1) is
compatible with the pair of Markov kernels π1 and π2 if the distributions π1m

1 and π2m
2

verify (
π1m

1
)
−2

= m2 and
(
π2m

2
)
−1

= m1. (4.19)

While this definition may seem more restrictive at first glance than Definition 4.3, both
definitions are in fact equivalent when applied to a pair of Markov kernels, because (r − 1)-
dimensional distributions are simply 1-dimensional distributions in this case. Indeed, follow-
ing directly from Definition 4.3, we have this result which holds for any r:

Proposition 4.12. If a sequence of (r − 1)-dimensional probability distributions (mi)i∈[[1,r]]

(each mi being a probability distribution on
⊗

j 6=iAj) is compatible (in the sense of Definition
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4.3) with the sequence of Markov kernels (πi)i∈[[1,r]], then all joint distributions in the sequence
(πim

i)i∈[[1,r]] share the same marginals, that is ∀i, j, k ∈ [[1, r]],

∀Sk ∈ Ak, πim
i

(
×
k′<k

Ωk′ × Sk × ×
k′′>k

Ωk′′

)
= πjm

j

(
×
k′<k

Ωk′ × Sk × ×
k′′>k

Ωk′′

)
.

(4.20)

Now let us consider the three-dimensional case (r = 3). Because the aim of this section is
merely to motivate the definitions of compromises and optimal compromises, there is no need
for the discussion to be fully general. Let us therefore restrict the discussion to an important
particular case. Assume that Ω1, Ω2 and Ω3 are finite sets and that A1, A2 and A3 are
respectively the sets of all their subsets. This has an important consequence: any mapping
from a subset of Ω to a subset of Ω is measurable.
Also assume that the Markov kernels π1, π2 and π3 are positive mappings. For π1, this means
that for every (ω1, ω2, ω3) ∈ Ω1 × Ω2 × Ω3, π1({ω1}|ω2, ω3) > 0.
If we consider ω3 known, then the situation is reduced to the two-dimensional case. Because
π1 and π2 are positive mappings and both Ω1 and Ω2 are finite sets, Markov chain theory
ensures there exists a unique Gibbs compromise P (·|ω3). For every (ω1, ω2) ∈ Ω1 × Ω2,

P ({ω1} × {ω2}|ω3) =
1

2
π1({ω1}|ω2, ω3)P (Ω1 × {ω2}|ω3) +

1

2
π1(ω2|ω1, ω3)P ({ω1} × Ω2|ω3).

(4.21)
Thanks to Theorem 4.9, P (·|ω3) is the optimal compromise. Moreover, notice that Equation
(4.21) defines a Markov kernel on Ω3 × (A1 ⊗A2).

We may similarly derive Markov kernels Q : Ω1 × (A2 ⊗A3) and R : Ω2 × (A1 ⊗A3).

Once again, because π1, π2 and π3 are positive mappings, it follows from Markov chain
theory that P , Q and R are also positive mappings. We now show it using only elementary
arguments, because these arguments will be useful again later.

Assume P is not a positive mapping. Then there exists (ω
(0)
1 , ω

(0)
2 , ω

(0)
3 ) ∈ Ω1×Ω2×Ω2 such

that P ({ω(0)
1 }×{ω

(0)
2 }|ω

(0)
3 ) = 0. Equation (4.21) then implies that P (Ω1×{ω(0)

2 }|ω
(0)
3 ) = 0.

So for every ω1 ∈ Ω1, P ({ω1} × {ω(0)
2 }|ω

(0)
3 ) = 0. But then Equation (4.21) implies that

P ({ω1} × Ω2|ω(0)
3 ) = 0. Since this holds for every ω1 ∈ Ω1, P (Ω1 × Ω2|ω(0)

3 ) = 0, which
is absurd since P (·|ω(0)

3 ) is supposed to be a probability distribution. So P is a positive
mapping.

Ideally, we would wish to define the optimal compromise between π1, π2 and π3 as the joint
distribution φ such that for every (ω1, ω2, ω3) ∈ Ω1 × Ω2 × Ω3,

φ({ω1} × {ω2} × {ω3}) = P ({ω1} × {ω2}|ω3)φ(Ω1 × Ω2 × {ω3}) (4.22)

= Q({ω2} × {ω3}|ω1)φ({ω1} × Ω2 × Ω3) (4.23)

= R({ω1} × {ω3}|ω2)φ(Ω2 × {ω2} × Ω3). (4.24)

Unfortunately, the existence of such an “optimal compromise” φ implies that π1, π2 and π3

are compatible. First, one can show that for every (ω1, ω2, ω3) ∈ Ω1 × Ω2 × Ω3, φ({ω1} ×
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{ω2}×{ω3}) > 0. The arguments are similar to those used above to show that P is a positive
mapping. Rewriting Equations (4.22) and (4.24) yields

φ({ω1} × {ω2} × {ω3})
φ(Ω1 × {ω2} × {ω3})

=
P ({ω1} × {ω2}|ω3)

P (Ω1 × {ω2}|ω3)
=

1

2
π1({ω1}|ω2, ω3) +

1

2
π2({ω2}|ω1, ω3)

P ({ω1} × Ω2|ω3)

P (Ω1 × {ω2}|ω3)
(4.25)

=
R({ω1} × {ω3}|ω2)

R(Ω1 × {ω2}|ω3)
=

1

2
π1({ω1}|ω2, ω3) +

1

2
π3({ω3}|ω1, ω2)

R({ω1} × Ω3|ω2)

R(Ω1 × {ω3}|ω2)
. (4.26)

Now combine Equations (4.25) and (4.26):

1

2
π2({ω2}|ω1, ω3)

φ({ω1} × Ω2 × {ω3})
φ(Ω1 × {ω2} × {ω3})

=
1

2
π3({ω3}|ω1, ω2)

φ({ω1} × {ω2} × Ω3)

φ(Ω1 × {ω2} × {ω3})
. (4.27)

As this holds for every (ω1, ω2, ω3) ∈ Ω1×Ω2×Ω3, it implies that π2φ−2 = π3φ−3. A similar
proof then shows that π3φ−3 = π1φ−1. This means that if an “optimal compromise” φ exists,
then π1, π2 and π3 are compatible and no compromise was needed.

Similarly to what was done in the two-dimensional case, we avoid this difficulty by weakening
the compatibility requirements: we no longer require P (·|ω3) to be the optimal compromise
between π1 and π2 for every ω3 ∈ Ω3 (as expressed by Equation (4.21)), but only on average
over ω3 ∈ Ω3. So a compromise φ should still verify Equation (4.22), but it would only need
to verify this weakened version of Equation (4.21) for every (ω1, ω2) ∈ Ω1 × Ω2:

∑
ω3∈Ω3

P ({ω1} × {ω2}|ω3)φ(Ω1 × Ω2 × {ω3})

=
∑
ω3∈Ω3

[
1

2
π1({ω1}|ω2, ω3)P (Ω1 × {ω2}|ω3) +

1

2
π2({ω2}|ω1, ω3)P ({ω1} × Ω2|ω3)

]
×

φ(Ω1 × Ω2 × {ω3}). (4.28)

Because Equation (4.22) is still expected to hold, Equation (4.28) is equivalent to

φ−3({ω1} × {ω2})

=
1

2

∑
ω3∈Ω3

π1({ω1}|ω2, ω3)φ−1({ω2} × {ω3}) +
1

2

∑
ω3∈Ω3

π2({ω2}|ω1, ω3)φ−2({ω1} × {ω3}).

(4.29)

So the requirement boils down to 2φ−3 = (π1φ−1)−3+(π2φ−2)−3. Of course, we symmetrically
require 2φ−1 = (π2φ−2)−1 + (π3φ−3)−3 and 2φ−2 = (π1φ−1)−2 + (π3φ−3)−2 as well.

To sum this part of the discussion up, the necessity of weakening our “ideal” requirements for
“optimal compatibility” made us downgrade from a requirement about a “joint” 3-dimensional
distribution φ to requirements about its (3 − 1)-marginal distributions φ−1, φ−2 and φ−3.
Definition 4.3 is just another formulation of these requirements, which are taken to define a
compatible sequence of (r − 1)-dimensional distributions.

Proposition 4.8 shows that in cases where there exists a unique Gibbs compromise, even with
this weakened set of requirements for compatibility, there exists only one compatible sequence
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of (r−1)-dimensional distributions, so we may not strenghten it if there is to be any solution.
Indeed, in cases where no Gibbs compromise exists, no compatible set of (r− 1)-dimensional
distributions exists either!

Weaker definitions of compromises are inconvenient

As was shown in the previous subsection, the requirements given by Definition 4.3 for the
compatibility of a sequence of (r − 1)-dimensional distributions with a given sequence of
Markov kernels cannot be strengthened. The following shows they cannot be weakened either.

Why we need some notion of compatibility: example in 2 dimensions.

Why bother with the compatibility of (r − 1)-dimensional distributions and not simply min-
imize the functional Eλ of Definition 4.5 over all distributions absolutely continuous with
respect to λ? The following 2-dimensional example shows that doing so yields unsatisfactory
results.

Consider the following situation: Ω1 = Ω2 = {0, 1} and A1 = A2 = {∅, {0}, {1}, {0, 1}}. Let
X1 (resp. X2) be the identity function on Ω1 (resp. Ω2). Both X1 and X2 are measurable
functions (and thus random variables when A1⊗A2 is endowed with a probability measure).
Define the following Markov kernels:

π1(X1 = 1|ω2) = 1{ω2=0} + 1/2 1{ω2=1}; (4.30)

π2(X2 = 1|ω1) = 1/2 1{ω1=0} + 1{ω1=1}. (4.31)

In this situation, let us define the reference measure λ as the counting measure.

Denote by πC the optimal compromise (maximizing Eλ over all compromises) and πE the
distribution on A1 ⊗ A2 that minimizes Eλ over all distributions on A1 ⊗ A2. We have
E(πC) = 2/25 > E(πE) = 1/15 and

πC({ω1} × {ω2}) = 1/10
(
1{(ω1,ω2)=(0,0)} + 1{(ω1,ω2)=(1,0)}

+3 1{(ω1,ω2)=(0,1)} + 5 1{(ω1,ω2)=(1,1)}
)

; (4.32)

πE({ω1} × {ω2}) = 1/30
(
3 1{(ω1,ω2)=(0,0)} + 1{(ω1,ω2)=(1,0)}

+11 1{(ω1,ω2)=(0,1)} + 15 1{(ω1,ω2)=(1,1)}
)
. (4.33)

As πC is the unique Gibbs compromise between π1 and π2, its marginals are the only com-
patible marginals: (πC)−1(X2 = 1) = 4/5 and (πC)−2(X1 = 1) = 3/5. The marginals of πE
are noticeably different: (πE)−1(X2 = 1) = 13/15 and (πE)−2(X1 = 1) = 8/15.
Observe that according to π1, X2 = 0 implies X1 = 1 but that according to π2, X1 = 1

implies that X2 = 1 6= 0. This discrepancy is a major source of incompatibility between the
two Markov kernels. So, as πE makes both X1 = 1 and X2 = 0 less likely than πC , it “ignores
the inconsistent parts” of π1 and π2 to some extent. Therefore, if the marginals are not set in
advance (say, by imposing compatibility with the conditionals in the sense of Definition 4.3),
one may “cheat” by having the marginals disadvantage inconvenient values for the parameters.
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Why the compatibility requirements cannot be weakened: example in 3
dimensions.

In the two-dimensional case, because of Proposition 4.12, Definitions 4.11 and 4.3 give the
same meaning to the concept of compatibility of marginals, so Definition 4.3 may be thought
of as a generalization of Definition 4.11 to cases with more than two dimensions. However,
another generalization of 4.11 is possible. To avoid confusion, this other generalization will
be called weak compatibility. In the following, the sequence of Markov kernels (πi)i∈[[1,r]] is
defined as in Section 4.2.

Definition 4.13. A sequence of (r− 1)-dimensional distributions (mi)i∈[[1,r]] is weakly com-
patible with a sequence of Markov kernels (πi)i∈[[1,r]] if Equation (4.20) holds.

Proposition 4.12 means compatibility in the sense of Definition 4.3 implies weak compatibility
in the sense of Definition 4.13, hence its denomination as “weak”.
Using the concept of weak compatibility of a sequence of (r − 1)-marginal distributions, we
define weak compromises and the optimal weak compromise as analogues to compromises and
optimal compromises respectively.

Definition 4.14. A probability distribution P on
⊗

i∈[[1,r]]Ai is called a weak compromise
between the Markov kernels (πi)i∈[[1,r]] if these two conditions are verified:

1. for every i ∈ [[1, r]], πiP−i is absolutely continuous with respect to P ;

2. the sequence (P−i)i∈[[1,r]] of P ’s (r− 1)-marginal distributions is weakly compatible with
(πi)i∈[[1,r]].

Definition 4.15. Let λ be a positive measure on A. Let P be a weak compromise between
the sequence of Markov kernels (πi)i∈[[1,r]] that is absolutely continuous with respect to λ. P is
called an optimal weak compromise with respect to λ between the sequence of Markov kernels
(πi)i∈[[1,r]] if it minimizes the functional Eλ over all compromises between (πi)i∈[[1,r]] that are
absolutely continuous with respect to λ. Eλ is defined by Equation (4.6).

Because, for any positive measure λ on A, the set of all weak compromises absolutely contin-
uous with respect to λ includes the set of all compromises absolutely continuous with respect
to λ, an optimal weak compromise with respect to λ makes the functional Eλ no greater than
an optimal compromise with respect to λ. However, as shown in the following example with
r = 3, optimal weak compromises may have undesirable behavior.

Assume Ω1 = Ω2 = Ω3 = {0, 1} and A1 = A2 = A3 = {∅, {0}, {1}, {0, 1}}. Let X1 (resp. X2,
X3) be the identity function on Ω1 (resp. Ω2, Ω3).
Consider the following Markov kernels. For every (ω1, ω2, ω3) ∈ Ω1 × Ω2 × Ω3

π1(X1 = 1|ω2, ω3) = 1/2; (4.34)

π2(X2 = 1|ω1, ω3) = 1/2; (4.35)

π3(X3 = 1|ω1, ω2) = 1{ω1=ω2} + 1/2 1{ω1 6=ω2}. (4.36)
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Notice that, provided ω3 is known, π1 and π2 are compatible Markov kernels. The unique
probability distribution on A1 ⊗ A2 that fits both π1 and π2 (conditional to ω3) verifies for
every (ω1, ω2) ∈ Ω1 × Ω2

P ({ω1} × {ω2}|ω3) = 1/4. (4.37)

Thus, any joint distribution fitting the Markov kernel P would make X1, X2 and X3 mutually
independent. Unfortunately, no such joint distribution could fit π3, but we may expect
compromises between π1, π2 and π3 to retain the independence of X1 and X2.

Let λ be the counting measure on A.

Denote by πC the (unique) optimal compromise between π1, π2 and π3 with respect to λ: we
have Eλ(πC) = 1/48 ≈ 0.021. For every (ω1, ω2, ω3) ∈ Ω1 × Ω2 × Ω3

πC({ω1} × {ω2} × {ω3}) =
1

24
1{ω1=ω2,ω3=0} +

1

12
1{ω1 6=ω2,ω3=0}

+
5

24
1{ω1=ω2,ω3=1} +

1

6
1{ω1 6=ω2,ω3=1}. (4.38)

Notably, its third 2-marginal distribution (πC)−3 verifies for every (ω1, ω2) ∈ Ω1 × Ω2

(πC)−3({ω1} × {ω2}) = 1/4. (4.39)

So, as expected, πC retains the independence of X1 and X2. Because πC is the unique Gibbs
compromise between π1, π2 and π3, Proposition 4.8 implies any other compromise between
π1, π2 and π3 also retains this property.
Let us now consider an optimal weak compromise πW between π1, π2 and π3 with respect to
λ. Numerical computation gives us the following approximation, with Eλ(πW ) ≈ 0.019. For
every (ω1, ω2, ω3) ∈ Ω1 × Ω2 × Ω3,

πW ({ω1} × {ω2} × {ω3}) ≈ 0.04 1{ω1=ω2,ω3=0} + 0.10 1{ω1 6=ω2,ω3=0}

+ 0.19 1{ω1=ω2,ω3=1} + 0.17 1{ω1 6=ω2,ω3=1}. (4.40)

Its third 2-marginal distribution (πW )−3 is approximately

(πW )−3({ω1} × {ω2}) ≈ 0.23 1{ω1=ω2} + 0.27 1{ω1 6=ω2}. (4.41)

Thus the independence of X1 and X2 is lost. Therefore, weak compatibility is no adequate
notion of compatibility. What happened is that although (πW )−3 and (πC)−3 share the same
marginals, that is

(πW )−3({ω1} × Ω2) = 1/2, (4.42)

(πW )−3(Ω1 × {ω2}) = 1/2, (4.43)

(πW )−3 slightly disadvantages the eventX1 = X2, which is where the incompatibility between
π3 and the pair (π1, π2) is most obvious: according to π3, X1 = X2 implies X3 = 1, so
conversely, X3 = 0 should imply X1 6= X2, when in fact π1 and π2 state that even given
ω3 = 0, {X1 6= X2} only happens with probability 1/2. On the other hand, according to π3,
if X1 6= X2, then X3 can with equal probability be 0 or 1, which matches π1 and π2 better.
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4.4 Conclusion

In this chapter, we proposed a theory defining the notions of compromise and espectially
optimal compromise between potentially incompatible conditional distributions, i.e. Markov
kernels. This theory is mainly derived from intuitive conceptions of what a compromise should
be. In places where such conceptions were inconclusive, we relied on concrete examples to
precisely determine what was acceptable and what was not in a compromise and used it to
complete the definition.

One strength of this theory is that it can be applied to continuous as well as discrete prob-
ability distributions, whereas previous studies focused on the discrete, or even finite, case.

In the rest of this thesis, we focus on one particular application of this theory: deriving Objec-
tive Bayesian inference for correlation lenghts in Kriging models with anisotropic correlation
kernels. However, the field of potential applications is much larger. It encompasses all models
that rely on conditional rather than joint probability distributions.
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Chapter 5

Application of the Optimal Compromise

to Simple Kriging models with Matérn

correlation kernels

This chapter covers the article Muré [2017], with the exception of its second section.

Abstract

The notion of optimal compromise between possibly incompatible conditional distribu-

tions allows us to perform Objective Bayesian analysis of correlation parameters in Krig-

ing models by using univariate conditional Jeffreys-rule posterior distributions instead

of the widely used multivariate Jeffreys-rule posterior. This strategy makes the full-

Bayesian procedure tractable. Numerical examples show it has near-optimal frequentist

performance in terms of prediction interval coverage.

Résumé

La notion de compromis optimal entre lois conditionnelles potentiellement incompatibles

permet une analyse bayésienne objective des paramètres de corrélation de modèles de

krigeage : nous utilisons des lois a posteriori de Jeffreys univariées conditionnelles plu-

tôt que la très usitée loi a posteriori de Jeffreys multivariée. Cette stratégie rend la

procédure pleinement bayésienne abordable. Des exemples numériques montrent que ses

performances fréquentistes en termes de taux de couverture des intervalles prédictifs sont

quasi-optimales.

5.1 Introduction

The present chapter is the point where all previous chapters come together.

Recalling Chapter 1, Kriging is a surrogate model used to emulate a real-valued function on
a spatial domain D when said function can only be evaluated on a finite subset of D called
“design set”. The “Kriging prediction” is the mean function of the process taken conditionally
to all known values of the emulated function, i.e. the values at the points in the design set.
The main advantage of the framework is its natural way of representing uncertainty about
the value of the function at unobserved points [Santner et al., 2003]. Prediction does not

111
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consist of a single value but of a complete Normal distribution. “Kriging” is the name given
to the framework in the geostatistical literature [Journel and Huijbregts, 1978], but is also
frequently used in the context of computer experiments and machine learning under the label
“Gaussian Process regression” [Rasmussen and Williams, 2006]. In this chapter, we focus on
Simple Kriging, where the Gaussian Process is assumed to be stationary with known mean,
as opposed to Universal Kriging, which incorporates an unknown mean function and will be
tackled in Chapter 6.

The probability distribution of a stationary Gaussian Process is characterized by a variance
parameter and a correlation function (also known as “correlation kernel”) which itself depends
on parameters. So one should deal with uncertainty about model parameters. The problem is
“notoriously difficult”, as highlighted by Kennedy and O’Hagan [2001], because the likelihood
function may often be quite flat [Li and Sudjianto, 2005]. In a Bayesian framework, this
uncertainty is represented by a prior distribution on the parameters.

Recalling Chapter 2, the Objective Bayesian paradigm as explained by Berger [2006] consists
in eliciting for every model a “default”, reasonable prior distribution that could be used when
no explicit prior information is available. In particular, the Berger-Bernardo reference prior
[Bernardo, 2005] can be algorithmically computed with minimal user intervention.

For models with a single scalar parameter, the reference prior rewards parameter values that
are easily discriminated by the likelihood function. Its definition is related to the Kullback-
Leibler divergence between posterior and prior [Bernardo, 2005]. For usual continuous models
– essentially models where the Fisher information matrix is equal to the opposite of the
expectancy of the second derivative of the log-likelihood – it coincides with the Jeffreys-rule
prior.

For models with multiple parameters, the reference prior algorithm requires the user to specify
an ordering on the parameters and then iteratively compute the reference prior on each
parameter conditionally to all subsequent parameters. The only user input is therefore this
ordering, and common sense arguments often make one more sensible than others. Of course,
one could also group several parameters and treat them as one single multi-dimensional
parameter, but doing so tends to produce less satisfactory inference [Berger and Bernardo,
1992].

Berger et al. [2001] were the first to derive a reference prior for the parameters of a Gaussian
Process regression model –cf. Chapter 3. This model contained only one correlation param-
eter, however. When several correlation parameters are involved, there is no reasonable way
to order them. Even if one were arbitrarily picked, computation of the prior would be ana-
lytically intractable. Several authors [Paulo, 2005, Ren et al., 2012, Kazianka and Pilz, 2012,
Ren et al., 2013, Gu et al., 2018] have therefore resolved to treat all correlation parameters as
a single multidimensional parameter. It is in order to avoid having to do this that we make
use of Potentially Incompatible Gibbs Samplers as defined in Chapter 4.

The idea is simple: for every correlation parameter, it is possible to analytically derive the
reference prior for this parameter conditionally to all others. Each of the corresponding
posterior distributions can be seen as a conditional probability distribution on one correlation
parameter when all others are known. These conditional distributions then serve as input to
a PIGS (Potentially Incompatible Gibbs Sampler, cf. previous chapter).
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5.2. OPTIMAL COMPROMISE BETWEEN OBJECTIVE POSTERIOR CONDITIONAL

DISTRIBUTIONS IN GAUSSIAN PROCESS REGRESSION

Theorem 5.2 is the main result with respect to the application. First, under reasonable
assumptions, the PIGS admits one single stationary probability distribution, which is the
optimal compromise in the sense of the theory of Chapter 4. Second, the Markov kernel defined
by the PIGS is uniformly ergodic. Since this Markov kernel is defined over an uncountable
state space, the latter fact is significant. The stationary distribution, which we call the Gibbs
reference posterior distribution, can be used to improve prediction of the value taken by the
Gaussian process at unobserved points. Sections 5.3 and 5.4 illustrate the inferential and
predictive performance of the stationary distribution respectively.

5.2 Optimal compromise between Objective Posterior conditional

distributions in Gaussian Process regression

Issues raised by objective prior elicitation for Gaussian processes

Let Y (x), x ∈ D be a real-valued random field on a bounded subset D of Rr. We as-
sume Y is Gaussian with zero mean (or known mean) and with covariance of the form
Cov(Y (x), Y (x′)) = σ2Kθ(x − x′). σ2 thus denotes the variance of the Gaussian Process
and θ ∈ (0,+∞)r, hereafter named the “vector of correlation lengths”, is the vector of scaling
parameters used by the chosen class of correlation kernels Kθ.
Consider a set of n ∈ N points (x(i))i∈[[1,n]] belonging to the domain D. This set is called
the design set and Y is observed at all points of this set. Let Y be the Gaussian vec-
tor (Y (x(i)))i∈[[1,n]] and let Σθ be its correlation matrix: the distribution of Y is therefore
N (0n, σ

2Σθ).

Let y be the vector of observations. When applied to a matrix, | · | refers to its determinant.

With these notations, the likelihood of the parameters σ2 and θ is

L(y | σ2,θ) =

(
1

2πσ2

)n
2

|Σθ|−
1
2 exp

{
− 1

2σ2
y>Σ−1

θ y

}
. (5.1)

Conditional on θ, this is a scale model. The reference prior with parameter ordering σ2 ≺ θ
is therefore given by:

π(σ2,θ) = π(σ2|θ)π(θ) with π(σ2|θ) ∝ 1/σ2. (5.2)

The distribution π(σ2|θ) has infinite mass: it is an improper prior.

Let us integrate σ2 out of the likelihood (5.1):

L1(y | θ) ∝
∫ ∞

0

L(y | σ2,θ)π(σ2| θ) d(σ2)

∝
∫ ∞

0

L(y | σ2,θ)(σ2)−1 d(σ2) =

(
2π

n
2

Γ
(
n
2

))−1

|Σθ|−
1
2

(
y>Σ−1

θ y
)−n2 . (5.3)

This model is the one from the remark under Example 3 in Chapter 2. The “marginal”
reference prior on θ is proportional to the square root of the determinant of the r× r matrix
with (i, j)-th entry

Tr

[(
∂

∂θi
(Σθ) Σ−1

θ

)(
∂

∂θj
(Σθ) Σ−1

θ

)]
− 1

n
Tr

[
∂

∂θi
(Σθ) Σ−1

θ

]
Tr

[
∂

∂θj
(Σθ) Σ−1

θ

]
. (5.4)
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See also Ren et al. [2012] for an other way of reaching this conclusion. Their solution is based
on astute algebraic considerations.

Viewing θ as a single parameter has the disadvantage of requiring the use of a multidi-
mensional Jeffreys-rule prior distribution, which may show the sort of undesirable behavior
mentioned in the introduction, of which Example 4 from Chapter 2 is an illustration.

Alternatively, we could draw inspiration from the one-dimensional case in the following way.
Suppose that we knew every entry of θ except one, θi. Then, according to Equation (5.4),
the prior density on θi knowing all entries θj (j 6= i) would be

πi(θi | θj ∀j 6= i) ∝

√√√√Tr

[(
∂

∂θi
(Σθ)Σ−1

θ

)2
]
− 1

n
Tr

[
∂

∂θi
(Σθ)Σ−1

θ

]2

. (5.5)

The density functions πi(θi | θj ∀j 6= i) (i ∈ [[1, r]]) define Markov kernels. Indeed, they
are continuous with respect to the θj (j 6= i) and are probability densities with respect to
the Lebesgue measure. They are unfortunately likely to violate the necessary condition for
compatibility given by Equation (4.1).

Let us now consider the corresponding posterior conditional densities πi(θi | y, θj ∀j 6= i)

(i ∈ [[1, r]]). Just like their prior counterparts, they are likely to violate the necessary condition
for compatibility. However, each of them represents our opinion about one parameter if all
others were known. This is a setting where the results of Section 4.2 can be applied in
order to find the optimal compromise between the Markov kernels Rr−1 × B(R) they define.
This optimal compromise will then be taken as posterior probability of the vector θ. In
the following, we describe settings in which there exists a single Gibbs compromise between
these Markov kernels. Theorem 4.9 then asserts it is the optimal compromise. We call this
compromise the Gibbs reference posterior distribution because of its link to the reference
posterior distribution in settings with a one-dimensional parameter θ.

However, even though we call it a “posterior” distribution, it is unclear whether there exists
a prior distribution from which it could be derived using Bayes’ rule. Denote by πG(θ|y) the
probability density with respect to the Lebesgue measure of the Gibbs reference posterior
distribution. Bayes’ rule requires that in case a (proper or improper) prior density πG(θ)

exists, there should also exist a function L̃(y) such that, for almost every θ ∈ Rr in the sense
of the Lebesgue measure,

πG(θ|y)

L1(y|θ)
=
πG(θ)

L̃(y)
. (5.6)

As we have no explicit expression of πG(θ|y), we have no way to check whether Equation
(5.6) holds or not.

In this section, we establish that, whenever Matérn anisotropic geometric or tensorized kernels
with known smoothness parameter ν are used, under certain conditions to be detailed later,
there exists a unique Gibbs compromise between the reference posterior conditionals, which
thanks to Theorem 4.9 is the optimal compromise. Henceforth, it will be called “Gibbs
reference posterior distribution”, even though this “posterior” has not been derived from a
prior distribution using the Bayes rule.
All proofs for this section can be found in Appendix 5.A.
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5.2. OPTIMAL COMPROMISE BETWEEN OBJECTIVE POSTERIOR CONDITIONAL

DISTRIBUTIONS IN GAUSSIAN PROCESS REGRESSION

Definitions

In this chapter, we use the following convention for the Fourier transform: the Fourier trans-
form ĝ of a smooth function g : Rr → R verifies g(x) =

∫
Rr ĝ(ω)ei〈ω|x〉dω and ĝ(ω) =

(2π)−r
∫
Rr g(x)e−i〈ω|x〉dx.

Let us set up a few notations.

(a) Kν is the modified Bessel function of second kind with parameter ν ;

(b) Kr,ν is the r-dimensional Matérn isotropic covariance kernel with variance 1, correlation
length 1 and smoothness ν ∈ (0,+∞) and K̂r,ν is its Fourier transform:

(i) ∀x ∈ Rr,
Kr,ν(x) =

1

Γ(ν)2ν−1

(
2
√
ν‖x‖

)ν Kν (2√ν‖x‖) ; (5.7)

(ii) ∀ω ∈ Rr,

K̂r,ν(ω) =
Mr(ν)

(‖ω‖2 + 4ν)ν+ r
2
with Mr(ν) =

Γ(ν + r
2 )(2
√
ν)2ν

π
r
2 Γ(ν)

. (5.8)

(c) Ktens
r,ν is the r-dimensional Matérn tensorized covariance kernel with variance 1, correla-

tion length 1 and smoothness ν ∈ R+ and K̂tens
r,ν is its Fourier transform:

(i) ∀x ∈ Rr,

Ktens
r,ν (x) =

r∏
j=1

K1,ν(xj) ; (5.9)

(ii) ∀ω ∈ Rr,

K̂tens
r,ν (ω) =

r∏
j=1

K̂1,ν(ωj). (5.10)

(d) if t ∈ Rr, tθ =
(
t1
θ1
, ..., trθr

)
and tµ = (t1µ1, ..., trµr).

We define the Matérn geometric anisotropic covariance kernel with variance parameter σ2,
correlation lengths θ (resp. inverse correlation lengths µ) and smoothness ν as the function
x 7→ σ2Kr,ν

(
x
θ

)
(resp. x 7→ σ2Kr,ν (xµ)).

Similarly, we define the Matérn tensorized covariance kernel with variance parameter σ2,
correlation lengths θ (resp. inverse correlation lengths µ) and smoothness ν as the function
x 7→ σ2Ktens

r,ν

(
x
θ

)
(resp. x 7→ σ2Ktens

r,ν (xµ)).

Thanks to Proposition 4.10, we may choose any parametrization we wish for the Matérn
correlation kernels. We have found that the parametrization involving inverse correlation
lengths makes proofs easier.

Several key passages in the proofs (to be found in Appendix 5.A) involve a technical assump-
tion on the design set:

Definition 5.1. A design set is said to have coordinate-distinct points, or simply to be
coordinate-distinct, if for any distinct points in the set x and x′, every component of the
vector x− x′ differs from 0.

Randomly sampled design sets almost surely have coordinate-distinct points – for instance
Latin Hypercube Sampling. Cartesian product design sets, however, do not.
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Main result

The result is valid for Simple Kriging models with the following characteristics:

(a) the design set contains n coordinate-distinct points in Rr (n and r are positive integers);

(b) the covariance function is Matérn anisostropic geometric or tensorized with variance pa-
rameter σ2 > 0, smoothness parameter ν and vector of correlation lengths (resp. inverse
correlation lengths) θ ∈ (0,+∞)r (resp. µ ∈ (0,+∞)r) ;

(c) one of the following conditions is verified:

(i) ν ∈ (0, 1) and n > 1 and the Matérn kernel is tensorized ;

(ii) ν ∈ (1, 2) and n > r + 2 ;

(iii) ν ∈ (2, 3) and n > r(r + 1)/2 + 2r + 3.

Theorem 5.2. In a Simple Kriging model with the characteristics described above, there
exists a hyperplane H of Rn such that, for any y ∈ Rn \ H, there exists a unique Gibbs com-
promise πG(θ|y) (resp. πG(µ|y)) between the reference posterior conditionals πi(θi|y,θ−i)
(resp. πi(µi|y,µ−i)). It is the unique stationary distribution of the Markov kernel Py :

(0,+∞)r × B ((0,+∞)r)→ [0, 1] defined by

Py(θ(0), dθ) =
1

r

r∑
i=1

πi(θi|y,θ(0)
−i )dθi δθ(0)

−i
(dθ−i)

(resp. Py(µ(0), dµ) =
1

r

r∑
i=1

πi(µi|y,µ(0)
−i )dµi δµ(0)

−i
(dµ−i)).

The Markov kernel Py is uniformly ergodic. This means that, denoting by ‖ · ‖TV the total
variation norm,

lim
n→∞

sup
θ(0)∈(0,+∞)r

‖Pny (θ(0), ·)− πG(·|y)‖TV = 0

(resp. lim
n→∞

sup
µ(0)∈(0,+∞)r

‖Pny (µ(0), ·)− πG(·|y)‖TV = 0). (5.11)

Remark. The reference posterior conditionals are invariant by reparametrization, so the
Markov kernel Py does not depend on whether the chosen parametrization uses correlation
lengths θ or inverse correlation lengths µ. Due to Propostion 4.10, the Gibbs compromise
does not either. The parametrization using inverse correlation lenghts µ is more convenient
for proving this theorem, however, so we use it exclusively in the rest of this section.

Notice that in such a Kriging model, the vector of observations y almost surely belongs to
Rn \H, so this assumption is of no practical consequence. Theorem 5.2 therefore asserts that
the Gibbs compromise between the incompatible conditionals πi(µi|y,µ−i) exists, is unique,
and can be sampled from using Potentially Incompatible Gibbs Sampling (PIGS). In the
following, it is called “Gibbs reference posterior distribution”.

Using the Gibbs reference posterior distribution

Let x0 be a point in the domain D that does not belong to the design set. Denote by Σθ,0,· the
correlation matrix between Y (x0) and Y , and by Σθ,·,0 its transpose the correlation matrix
between Y and Y (x0).
Theorem 4.1.2. (case 4) of Santner et al. [2003] provides this useful result for prediction:
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Proposition 5.3. Conditionally to Y = y and assuming θ is known, the random variable
Z0 defined below follows the Student t-distribution with n degrees of freedom.

Z0 :=

√
n

y>Σ−1
θ y

Y (x0)−Σθ,0,·Σ
−1
θ y√

1−Σθ,0,·Σ
−1
θ Σθ,·,0

.

Remark. If n exceeds 30, it is usually accepted that the Student t-distribution with n degrees
of freedom can be approximated by the standard Normal distribution. As this threshold
should be exceeded in practical cases, we would recommend performing all computations as
though the Student t-distribution were Normal.

In practice, the distribution of Y (x0) conditionally to Y = y when θ is unknown can be
obtained once from the Gibbs reference posterior distribution on θ has been sampled. Its cdf
can be approximated by averaging the cdfs of the Student t-distributions (or their Normal
approximations) corresponding to every point in the sample.

5.3 Comparisons between the MLE and MAP estimators

To illustrate the inferential performance of the Gibbs reference posterior distribution, let us
introduce the Maximum A Posteriori estimator (MAP). It takes the value of θ where the
density with respect to the Lebesgue measure of the Gibbs reference posterior distribution is
largest. We contrast it with the Maximum Likeilhood Estimator (MLE) which does the same
with the likelihood function.

Methodology

In this section, we compare the MLE and MAP estimators for accuracy and robustness.

Our test cases are 3-dimensional Gaussian Processes with Matérn anisotropic geometric cor-
relation kernels with smoothness 5/2. Their mean is the null function, which only leaves us
with the matter of estimating their correlation length for each dimension.

We use uniform designs: our observation points are randomly generated according to the
uniform distribution on a cube with side length 1.
In order to measure the performance of our estimators, we define a suitable distance between
two vectors of correlation lengths. Then the error of an estimator is defined as its distance to
the “true” vector of correlation lengths.
Let g be the function such that for any t in (−1, 1), g(t) = argtanh(t) and g(−1) = g(1) = 0.
We use the convention that, for any matrix M with elements in [0, 1], g(M) is the matrix
resulting from applying g to every element of M .

Definition 5.4. For a given design set, the distance between two vectors of correlation lengths
θ1 and θ2 is ‖g(Σθ1)− g(Σθ2)‖, where ‖ · ‖ denotes the Frobenius norm.

This distance involves applying the Fisher transformation [Hotelling, 1953] (that is, the in-
verse hyperbolic tangent function) to every (non-1) correlation coefficient in both associated
correlation matrices. This is a variance-stabilizing transformation. For any random variables
U and V following the normal distribution with mean 0 and variance 1, let ρ denote the
correlation coefficient between U and V (−1 < ρ < 1). If (Ui, Vi) (1 6 i 6 N) are inde-
pendent copies of (U, V ), then ρ̂ =

∑N
i=1 UiVi/n is a random variable and argtanh(ρ̂) follows
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the normal distribution with mean argtanh(ρ) and variance 1/(N − 3). So the variance of
argtanh(ρ̂) does not depend on ρ, whereas the variance of ρ̂ does and goes to zero for |ρ| → 1.
Involving the Fisher transformation in the definition of the distance between two vectors of
correlation lengths is therefore a way to assert that vectors of correlation lengths can be far
apart even if they both lead to highly correlated observations.
This allows us to make sure errors made when estimating near-1 correlation coefficients are
no less taken into account than errors made when estimating near-0 correlation coefficients.

Let us choose a “true” vector of correlation lengths (and also a variance parameter, but this
parameter has no effect on either the MLE or the MAP). Then we need to:

1. Sample n points randomly according to the uniform distribution on the unit cube (in
the following, n = 30).

2. Generate the observations of the Gaussian Process at the sampled points according to
the selected “true” variance and correlation lengths.

3. Sample the vector of correlation lengths according to the Gibbs reference posterior
distribution πG(θ|y) through PIGS.

4. Compute the MLE and the MAP of the vector of correlation lengths and their errors.

5. Repeat steps 1 to 4 m− 1 times (in the following, m = 500).

This method allows us to derive an approximate distribution of the errors of both estimators
when both the realization of the Gaussian Process and the design set vary. Thus we get to
test the robustness of both estimators versus the variability of both the Gaussian Process and
the choice of design set.

Results

This subsection provides results obtained on 3-dimensional Gaussian Processes with null
mean function and Matérn anisotropic geometric correlation kernels with smoothness 5/2.
The results are divided by “true” vectors of correlation lengths. In each case, we give in Table
5.1 the empirical Root Mean Square Errors (RMSEs) of both MLE and MAP estimators as
functions of varying instances of the Gaussian Process and uniform design sets on the unit
cube.

Most of the “true” vectors of correlation lengths featured in Table 5.1 were selected in a way
to showcase the behavior of both estimators in strongly anisotropic cases, but one (0.5 - 0.5
- 0.5) also showcases their behavior if the true kernel is actually isotropic. And the final one
(0.8 - 1 - 0.9) is used to illustrate the performance in the case of a strongly correlated Gaussian
Process: this case is fundamentally different from all others, because the Matérn anisotropic
geometric family of correlation kernels is designed in such a way that the correlation length
with greatest influence is the lowest. Informally speaking, it is enough for one correlation
length to be near zero to make the whole process very uncorrelated, even should all other
correlation lengths be very high.

In all studied cases, the MAP estimator was more robust than the MLE estimator: its RMSE
(Root Mean Square Error) was between 9 and 15% lower, as showcased in Table 5.1.
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Corr. lengths MLE MAP – (%)
0.4 – 0.8 – 0.2 3.49 2.97 15
0.5 – 0.5 – 0.5 4.00 3.46 13
0.7 – 1.3 – 0.4 4.02 3.64 9
0.8 – 0.3 – 0.6 3.75 3.26 13
0.8 – 1.0 – 0.9 4.65 4.18 10

Table 5.1 – RMSE (where the error is measured in terms of the distance in Definition 5.4 ) of the
MLE and MAP estimators for several “true” vectors of correlation lengths. The last column displays
in percents the decrease of the RMSE of the MAP estimator with respect to the MLE.

To get a better sense of the distribution of the error when the design set and the realization
of the Gaussian Process vary, we give in Figure 5.1 violin plots of the errors in the two most
extreme case: very low correlation (0.4 – 0.8 – 0.2) and very high correlation (0.8 – 1.0 – 0.9)
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Figure 5.1 – Violin plots of the error of the MLE and MAP estimators with respect to a design set
following the uniform distribution and a Gaussian Process with correlation lengths 0.4 – 0.8 – 0.2
(left) and 0.8 – 1.0 – 0.9 (right).
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5.4 Comparison of the predictive distributions associated with the

estimators (MLE and MAP) and the full posterior distribution

Methodology

We use the same test cases as before. In this section, our goal is to assess the accuracy of
prediction intervals associated with both estimators and with the full posterior distribution.
We consider 95% intervals: the lower bound is the 2.5% quantile and the upper bound the
97.5% quantile of predictive distribution P̂MLE(y0 | y), P̂MAP (y0 | y) and P (y0 | y). For
the sake of comprehensiveness, we also consider predictive intervals associated with the “true”
predictive distribution L(y0 | y, σ2,θ), which is the predictive distribution we would use if
we knew the correct values of the parameters σ2 and θ.

Let us choose a “true” vector of correlation lengths θ (and also a variance parameter σ2, but
this parameter has no effect on predictive accuracy). Then we do the following:

1. Sample n observation points randomly according to the uniform distribution on the unit
cube (in the following, n = 30).

2. Generate the observations of the Gaussian Process at the sampled points according to
the selected “true” variance and correlation lengths.

3. Sample the vector of correlation lengths according to the Gibbs reference posterior
distribution πG(θ|y) through PIGS.

4. Compute the MLE and the MAP of the vector of correlation lengths.

5. Sample n0 test points randomly according to the uniform distribution on the unit cube
(in the following, n0 = 100).

6. At each point, determine the 95% prediction intervals derived from L(y0 | y, σ2,θ) (σ2

and θ being the “true” parameters), P̂MLE(y0 | y), P̂MAP (y0 | y) and P (y0 | y).

7. Generate the values of the Gaussian Process at the newly sampled points (naturally, do
this conditionally to the previously generated observations).

8. Count the number of points within the prediction intervals derived of each of the four
predictive distributions. Divide the counts by n0: this yields four coverages correspond-
ing to each type of predictive intervals. Also compute the mean length of every type of
prediction interval.

9. Repeat steps 1 to 8 m− 1 times (in the following, m = 500).

Results

There is no reason for individual coverages of 95% predictive intervals given by the predictive
distribution to be equal to 95%. Recall that any coverage is given for a unique realization of
the Gaussian Process, and that the values of this process at different points are correlated.
If the predictive interval at some point fails to cover the true value at this point, it is likely
that predictive intervals at neighboring points will also fail to cover the true values at those
points, even though the nominal value is 95% everywhere. Conversely, if it actually covers
the true value, then prediction intervals at neighboring points are more than 95% likely to
cover their true values.
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In short, prediction intervals give information that is only valid if understood to refer to what
can be guessed on the sole basis of the observations made at the design points, which is why
coverages for individual realizations of the Gaussian Process are not necessarily 95% even if
the predictive distribution is perfectly accurate (i.e. based on the true values of σ2 and θ).
However, if the predictive distribution is perfectly accurate, then the average of the coverages
is the nominal value: 95%. It is thus interesting to compute the average of the coverages for
all predictive distributions, whether they are based on the MLE or MAP estimator, or on
the full posterior distribution (hereafter noted FPD). In the above described methodology,
the average was taken over the realizations of the Gaussian Process with the chosen true
parameters and over all design sets with n design points. The results below are obtained in
this way.

The results given in Table 5.2 show that using the full posterior distribution (FPD) to derive
the predictive distribution is the best possible choice from a frequentist point of view as the
nominal value is nearly matched by the average coverage. Predictive intervals derived from
the MAP estimator do not perform as well, and predictive intervals derived from the MLE
perform even worse.

Corr. lengths True MLE MAP FPD
0.4 – 0.8 – 0.2 0.95 0.88 0.91 0.95
0.5 – 0.5 – 0.5 0.95 0.89 0.90 0.94
0.7 – 1.3 – 0.4 0.95 0.90 0.92 0.95
0.8 – 0.3 – 0.6 0.95 0.89 0.91 0.95
0.8 – 1.0 – 0.9 0.95 0.90 0.92 0.94

Table 5.2 – Average with respect to randomly sampled design sets and realizations of the Gaussian
Process (with variance parameter 1 and smoothness parameter 5/2) of the coverage of 95% Prediction
Intervals across the sample space. “True” stands for the prediction based on the knowledge of the true
variance parameter and the true vector of correlation lengths.

Let us now focus on the average (with respect to the uniform design sets and realizations of
the Gaussian Process) of the mean (over the test set for a given realization of the Gaussian
Process and a given uniform design set) length of prediction intervals. The results are given
in Table 5.3, where the figures between parentheses give the increase or decrease (in percents)
of the average mean length when compared to the average mean length of prediction intervals
obtained using the true values of the parameters.

Corr. lengths True MLE MAP FPD
0.4 – 0.8 – 0.2 2.23 2.05 (-8) 2.13 (-4) 2.59 (+16)
0.5 – 0.5 – 0.5 1.69 1.55 (-8) 1.58 (-6) 1.84 (+9)
0.7 – 1.3 – 0.4 1.09 1.02 (-6) 1.07 (-2) 1.21 (+11)
0.8 – 0.3 – 0.6 1.63 1.51 (-7) 1.56 (-4) 1.82 (+12)
0.8 – 1.0 – 0.9 0.71 0.66 (-7) 0.69 (-3) 0.76 (+8)

Table 5.3 – Average with respect to randomly sampled design sets and realizations of the Gaussian
Process (with variance parameter 1 and smoothness parameter 5/2) of the mean length of 95% Predic-
tion Intervals across the sample space. The numbers in parentheses represent in percents the increase
when using the MLE/MAP/FPD instead of the “true” vector of correlation lengths and variance
parameter.
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Predictive intervals derived from the full posterior distribution (FPD) are on average the
largest, but not much larger than predictive intervals derived using the true parameters. In
the tests we conducted, they seemed on average to be larger by about one fifth at worst.
Predictive intervals derived from the MLE and MAP estimators are on average shorter than
those derived from the true parameters. This can be interpreted as an under-estimation of the
uncertainty of the prediction when fixing the vector of correlation lengths to the most likely
value given the observations, and this can explain the low observed coverage in Table 5.2.

In Figure 5.2, we give violin plots of coverage and mean length of Prediction Intervals in the
two most extreme cases: correlation lengths 0.4 – 0.8 – 0.2 (very low correlation) and 0.8 –
1.0 – 0.9 (very high correlation). The results are similar and illustrate the fact that the FPD
gives larger intervals in order to reach the derived coverage value.
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(c) Coverage for 0.8 – 1.0 – 0.9
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Figure 5.2 – Violin plots of the coverage (left) and mean length (right) of Prediction Intervals with
respect to a design set following the uniform distribution and a Gaussian Process with correlation
lengths 0.4 – 0.8 – 0.2 (top) and 0.8 – 1.0 – 0.9 (bottom).
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A higher-dimensional case

In this subsection, we emulate using Simple Kriging the 10-dimensional Ackley function:

A(x) = 20 + exp(1)− 20 exp

−0.2

√√√√ 1

10

10∑
i=1

x2
i

− exp

(
1

10

10∑
i=1

cos(2πxi)

)
. (5.12)

The goal in this section is to emulate the Ackley function on the unit hypercube [0, 1]10 using
design sets with 100 observation points. Although the impact of the design set type is not
the focus of this study, we present the results with a randomly chosen design according to
the Uniform distribution on the domain [0, 1]10, a design obtained through Latin Hypercube
Sampling (LHS), and a design obtained through LHS and subsequently optimized to maximize
the minimum distance between two points. The Simple Kriging model uses the null function as
mean function and the Matérn anisotropic geometric covariance kernel family with smoothness
parameter 5/2. The Gibbs reference posterior distribution is accessed through a sample of
1000 points. The conditional densities are sampled using the Metropolis algorithm with
normal instrumental density with standard deviation 0.4 and a 100-step burn-in period.

To evaluate the performance of prediction intervals, we follow steps 3, 4, 5, 6 and 8 of the
method presented in this section (step 7 is skipped as the “values of the Gaussian process”
are naturally the values of the Ackley function) with n0 = 1000. The results are presented in
Tables 5.4 and 5.5.

Design set type MLE MAP FPD
Unoptimized LHS 0.89 0.92 0.93
Optimized LHS 0.74 0.76 0.80
Random design 0.87 0.88 0.91

Table 5.4 – Coverage of 95 % prediction intervals when emulating the Ackley function on the unit
hypercube using a Gaussian Process with null mean function and a Matérn anisotropic geometric co-
variance kernel with smoothness 5/2, unknown variance parameter and unknown vector of correlation
lengths. The design sets contain 100 points.

As is shown in Table 5.4, prediction intervals derived using the Full Posterior Distribution
perform better than those derived from the MAP, which themselves perform better than
those derived from the MLE. This order of performance is the same regardless of the type of
design set, although the optimized design set leads to much worse performances on average
for prediction intervals than unoptimized designs. The latter fact is not surprising since
space-filling designs ensure than no two points can be very close to each other, which makes
it harder to determine the correlation lengths.

Design set type MLE MAP FPD
Unoptimized LHS 0.31 0.33 0.35
Optimized LHS 0.24 0.24 0.28
Random design 0.28 0.29 0.32

Table 5.5 – Mean length of 95 % prediction intervals when emulating the Ackley function on the unit
hypercube using a Gaussian Process with null mean function and a Matérn anisotropic geometric co-
variance kernel with smoothness 5/2, unknown variance parameter and unknown vector of correlation
lengths. The design sets contain 100 points.
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As expected, prediction intervals derived from the Full Posterior Distribution are on average
longer than those derived from the MAP and a fortiori the MLE. Notice that prediction
intervals are on average shorter with the optimized design set, which explains the poorer
performances in terms of coverage.

5.5 Conclusion and Perspectives

We provided theoretical foundation to the claim that the stationary distribution of the Markov
chain underlying PIGS with random scanning order is the optimal compromise between the
potentially incompatible conditional distributions.
Although further investigation is needed to fully understand the properties of the optimal
compromise, its invariance by reparametrization and its respect of pairwise independence
show that it preserves important features of the conditional distributions.

This construction suggests a framework for deriving a new objective posterior distribution
based on the conditionals yielded by the reference prior theory on Simple Kriging parameters.
Applying this framework to Matérn anisotropic kernels, we showed prediction to have good
frequentist properties.

The next step, which is taken in Chapter 6, is to extend this framework to Universal Kriging,
where instead of being known, the mean function is only assumed to be a linear combination
of known functions f1, ..., fp. The linear coefficients β1, ..., βp are then considered parameters
of the model. This extension is of practical relevance, because the mean function can rarely
be considered known. It can be done in the same way Berger et al. [2001] extended the
reference prior from the Simple Kriging to the Universal Kriging framework: they used the
flat improper prior as joint prior on β1, ..., βp conditional to σ2 and θ and used it to integrate
β1, ..., βp out of the likelihood function, and then proceeded to derive the reference prior on
σ2 and θ with respect to the integrated likelihood.

A further extension would involve deriving an objective prior on the smoothness parameter
ν. In this endeavor, one should take into account the relationship between correlation length
θ and smoothness ν. Unfortunately, asymptotic theory is not of much help in this regard,
as Anderes [2010] shows that provided the spatial domain D is of dimension at least 5, then
all parameters of the Matérn anisotropic geometric kernel are microergodic (Zhang [2004]
shows this to be untrue for spatial domains of dimension 1, 2 or 3, but the non-microergodic
parameters are σ2 and θ, not ν). This means that the Gaussian measures on D correspond-
ing to Gaussian Processes with two different smoothness parameters are orthogonal, which
suggests that there exists a consistent estimator (the MLE possibly). Stein [1999] (section
6.6) considers the Fisher information on θ and ν, and gives examples (with a one-dimensional
sample space D) showing that the Fisher information on these parameters depends a lot on
the design set. Fisher information relative to the smoothness parameter ν increases when
design points are chosen to be close to one another (relative to the "true" correlation length
θ), whereas Fisher information relative to correlation length θ is maximized for design points
that are farther apart. This, according to him, is coherent with the fact that θ has greater
influence on the low frequency behavior of the Matérn kernel while ν has greater influence on
its high frequency behavior. This also suggests to us that the smoothness parameter ν, like
the variance parameter σ2, can only be meaningfully estimated if the vector of correlation
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lengths θ is known. Otherwise, the estimator could hardly tell which design points are close
to each other, which intuitively seems a prerequisite to evaluating the smoothness of the pro-
cess. If we wish to apply the reference prior algorithm to the case where ν is unknown, we
should thus probably derive the reference prior on ν conditional to θ.
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Appendix 5.A Proofs of Section 5.2

The following holds where there is no mention of the contrary. When applied to a vector,
‖ · ‖ denotes the Euclidean norm and when applied to a matrix, it denotes the Frobenius
norm. The choice of norm does not matter much because in finite-dimensional vector spaces,
all norms are equivalent.

Differentiating the Matérn correlation kernel

Lemma 5.5. The partial derivative with respect to µi of the Matérn tensorized kernel of
variance σ2, smoothness ν and inverse correlation length vector µ is:

∂

∂µi

(
σ2Ktens

r,ν (xµ)
)

= −σ
2(2
√
ν)2

Γ(ν)2ν−1
|xi|2µi

(
2
√
ν|xi|µi

)ν−1Kν−1

(
2
√
ν|xi|µi

)∏
j 6=i

K1,ν (|xj |µj) .

(5.13)
This can be rewritten as:

∂

∂µi

(
σ2Ktens

r,ν (xµ)
)

=


σ2 2ν

ν−1 |xi|
2µiK1,ν−1 (|xi|µi)

∏
j 6=iK1,ν (|xj |µj) if ν > 1

σ24|xi|2µiK0 (2|xi|µi)
∏
j 6=iK1,ν (|xj |µj) if ν = 1

σ2 2ννΓ(1−ν)
Γ(ν) |xi|2νµ2ν−1

i K1,1−ν (|xi|µi)
∏
j 6=iK1,ν (|xj |µj) if ν < 1.

(5.14)

Proof. The first assertion is a simple matter of differentiating Equation (5.9). In the following
calculation, the fourth line is given by formula 9.6.28 (page 376) in Abramowitz and Stegun
[1964].

∂

∂µi

(
σ2Ktens

r,ν (xµ)
)

= σ2 ∂

∂µi
(K1,ν (xiµi))

∏
j 6=i

K1,ν (|xj |µj)

= σ2xi
(
K ′1,ν (xiµi)

)∏
j 6=i

K1,ν (|xj |µj)

= σ2xi

(
2
√
ν

Γ(ν)2ν−1

d

dy

∣∣∣∣
y=2
√
νxiµi

[yνKν(y)]

)∏
j 6=i

K1,ν (|xj |µj)

= σ2xi

(
2
√
ν

Γ(ν)2ν−1
[−y · yν−1Kν−1(y)]y=2

√
νxiµi

)∏
j 6=i

K1,ν (|xj |µj) .

(5.15)

From there, Equation (5.13) follows immediately. Rewriting it in the form given in (5.14)
only requires us to recall Γ(ν) = (ν − 1)Γ(ν − 1) (case ν > 1), Γ(1) = 1 (case ν = 1) and
Kν−1 = K1−ν (case ν < 1).

Lemma 5.6. The partial derivative with respect to µi of the Matérn geometric anisotropic
kernel of variance σ2, smoothness ν and inverse correlation length vector µ is:

∂

∂µi

(
σ2Kr,ν (xµ)

)
=
σ2(2
√
ν)2

Γ(ν)2ν−1
|xi|2µi

(
2
√
ν ‖xµ‖

)ν−1Kν−1

(
2
√
ν ‖xµ‖

)
. (5.16)

This can be rewritten as:

∂

∂µi

(
σ2Kr,ν (xµ)

)
=


σ2 2ν

ν−1 |xi|
2µiK1,ν−1 (‖xµ‖) if ν > 1

σ24|xi|2µiK0 (2 ‖xµ‖) if ν = 1

σ22νν Γ(1−ν)
Γ(ν)

1
µi

(
|xi|µi
‖xµ‖1−ν

)2

K1,1−ν (‖xµ‖) if ν < 1.

(5.17)



127 5.A. PROOFS OF SECTION 5.2

Proof. The first assertion is a simple matter of differentiating Equation (5.7). In the following
calculation, the fourth line is given by formula 9.6.28 (page 376) in Abramowitz and Stegun
[1964].

∂

∂µi

(
σ2Kr,ν (xµ)

)
= σ2 ∂

∂µi
(K1,ν (‖xµ‖))

= σ2x2
iµi ‖xµ‖

−1
K ′1,ν (‖xµ‖)

= σ2x2
iµi ‖xµ‖

−1

(
2
√
ν

Γ(ν)2ν−1

d

dy

∣∣∣∣
y=2
√
ν‖xµ‖

[yνKν(y)]

)

= σ2x2
iµi ‖xµ‖

−1

(
2
√
ν

Γ(ν)2ν−1
[−y · yν−1Kν−1(y)]y=2

√
ν‖xµ‖

)
.

(5.18)

From there, Equation (5.16) follows immediately. Rewriting it in the form given in (5.17)
only requires us to recall Γ(ν) = (ν − 1)Γ(ν − 1) (case ν > 1), Γ(1) = 1 (case ν = 1) and
Kν−1 = K1−ν (case ν < 1).

Accounting for low correlation: ‖µ‖ → ∞

In this subsection, we consider a fixed design set of n coordinate-distinct points x(k) (k ∈
[[1, n]]) in Rr.

Lemma 5.7. For any Matérn anisotropic geometric or tensorized correlation kernel with
smoothness ν > 0, for all b < 2 min(1, ν)−1 and c > 1 (and if ν 6= 1, for all b 6 2 min(1, ν)−
1),

(a) ∀µ ∈ (R+)r, ‖ ∂
∂µi

Σµ‖ 6Mi,1 µ
−c
i .

(b) ∀µ ∈ (R+)r, ‖ ∂
∂µi

Σµ‖ 6Mi,2 µ
b
i .

Proof. This can be gathered from Lemma 5.5 or 5.6 after recalling that 1) a Matérn kernel
is a bounded function, 2) ∀ν > 0, as z → +∞, Kν(z) ∼

√
π exp(−z)/

√
2z (Abramowitz

and Stegun [1964] 9.7.2) and 3) as z → 0, K0(z) ∼ − log(z) (Abramowitz and Stegun [1964]
9.6.8).

Let us define

fi(µi | µ−i) :=
√

[I(µ)]ii ; (5.19)

πi(µi | µ−i) := fi(µi | µ−i)/
∫ ∞

0

fi(µi = t | µ−i)dt. (5.20)

Proposition 5.8. For any Matérn anisotropic geometric or tensorized correlation kernel with
smoothness ν > 0, for all µi ∈ (0,+∞), π(µi|µ−i), seen as a function of µ, is well defined
and continuous over {µ ∈ [0,+∞)r : µi 6= 0, µ−i 6= 0r−1}.

Proof. For any given µ̃ ∈ [0,+∞)r such that µ̃i 6= 0 and µ̃−i 6= 0r−1, we prove that π(µi|µ−i),
seen as a function of µ, is well defined and continuous at µ = µ̃.
For a start, notice that if µ is confined to a sufficiently small neighborhood of µ̃, then ‖Σ−1

µ ‖
remains bounded. Therefore, Lemma 5.7 implies that

∫∞
0
fi(µi = t | µ−i)dt is finite and,

thanks to the dominated convergence theorem, that it is continuous at µ−i = µ̃−i.
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Definition 5.9. An anisotropic geometric or tensorized correlation kernel is said to be “well-
behaved” if its one-dimensional version is, for any set of parameters, a positive decreasing
function on [0,+∞) that vanishes in the neighborhood of +∞.

Lemma 5.10. Provided a coordinate-distinct design set is used, a well-behaved anisotropic
geometric or tensorized correlation kernel parametrized by µ has the following properties:

(a) for any fixed µ−i ∈ [0,+∞)
r−1, it is a decreasing function of µi ;

(b) as ‖µ‖ → ∞, ‖Σµ − In‖ → 0.

Lemma 5.11. For any well-behaved correlation kernel, as ‖µ‖ → ∞, Tr
[
∂
∂µi

ΣµΣ−1
µ

]
=

o
(∥∥∥ ∂

∂µi
Σµ

∥∥∥).
Proof. This result is due to the fact that all ∂

∂µi
Σµ’s diagonal coefficients are null and Σµ

goes to the identity matrix as ‖µ‖ → ∞.

Let us now define

hi(µi | µ−i) :=

√√√√Tr

[(
∂

∂µi
Σµ

)2
]

=

∥∥∥∥ ∂

∂µi
Σµ

∥∥∥∥ . (5.21)

Lemma 5.12. For any well-behaved correlation kernel, as ‖µ‖ → ∞, fi(µi | µ−i) ∼
hi(µi | µ−i).

Proof. Because Σµ goes to the identity matrix, this is a direct consequence of Lemma 5.11.

Corollary 5.13. For any well-behaved correlation kernel, there exist S > 0, and 0 < a < b

such that, whenever ‖µ‖ > S,

a hi(µi | µ−i) 6 fi(µi | µ−i) 6 b hi(µi | µ−i). (5.22)

In the following, Σµ−i is the correlation matrix that would be obtained if µi were replaced
by 0. Moreover, if M is a matrix, M (kl) is its element in the k-th row and l-th column.

Lemma 5.14. If a well-behaved correlation kernel is used, there exist real constants S > 0

and c > 0 such that, for all µi ∈ (0,+∞) and whenever ‖µ−i‖ > S,

πi(µi|µ−i) > c
‖ ∂
∂µi

Σµ‖∑
k 6=l Σ

(kl)
µ−i

. (5.23)

Proof. If a well-behaved correlation kernel is used, then for any for any ε > 0, Corollary 5.13
implies that∫ +∞

0

fi(µi = t|µ−i)dt 6 b

∫ +∞

0

hi(µi = t|µ−i)dt 6 −b
∑
k 6=l

∫ +∞

0

∂

∂µi
Σ(kl)
µ dt. (5.24)

The last inequality holds because the Frobenius norm of any matrix is smaller than or equal
to the sum of the absolute values of its elements and the correlation kernel is a decreasing
function of µi. Now, for all k 6= l, when µi → +∞, Σ(kl)

µ → 0 and when µi = 0, Σ(kl)
µ = Σ(kl)

µ−i
.

From this, we gather that ∫ +∞

0

fi(µi = t|µ−i)dt 6 b
∑
k 6=l

Σ(kl)
µ−i

. (5.25)
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From this, we deduce that

πi(µi|µ−i) =
fi(µi|µ−i)∫ +∞

0
fi(µi = t|µ−i)dt

>
a

b

‖ ∂
∂µi

Σµ‖∑
k 6=l Σ

(kl)
µ−i

. (5.26)

This Lemma has the following immediate consequence:

Proposition 5.15. If a well-behaved tensorized kernel is used, there exists S > 0 and for
every i ∈ [[1, r]], there exists a function Mi : (0,+∞)→ (0,+∞) such that for all ‖µ−i‖ > S,
πi(µi|µ−i) >Mi(µi).

Proof. If a tensorized correlation kernel is used, for every pair of integers (k, l) ∈ [[1, r]]2 such
that k 6= l, define the function M (kl)

i : (0,+∞)→ (0,+∞) ; t 7→
∣∣∣ ddtΣ(kl)

µi=t,µ−i=0r−1

∣∣∣.∥∥∥∥ ∂

∂µi
Σµ

∥∥∥∥ >
1

n

∑
k 6=l

∣∣∣∣ ∂∂µiΣ(kl)
µ

∣∣∣∣ =
1

n

∑
k 6=l

M
(kl)
i (µi)Σ

(kl)
µ−i

>
1

n
min
k 6=l

M
(kl)
i (µi)

∑
k 6=l

Σ(kl)
µ−i

. (5.27)

This fact, joined with Lemma 5.14, yields the result.

Proposition 5.16. Assume a well-behaved anisotropic geometric correlation kernel is used.
If the corresponding one-dimensional kernel K has the properties (P1) and (P2), then for
every i ∈ [[1, r]], there exist positive functions si and mi defined on (0,+∞) such that, for all
‖µ−i‖ > si(µi), πi(µi|µ−i) > mi(µi).

(P1) : There exist S1 > 0 and M1 > 0 such that, for all t > S1, |K ′(t)| >M1tK(t).

(P2) : For any a > 0, there exist S2(a) > 0 and M2(a) > 0 such that, whenever t > S2(a),
K(t+ a) >M2(a)K(t).

Proof. From (P1), we gather that for all a > 0 and for all t > S1, |K ′(
√
t2 + a2)| >

M1

√
t2 + a2K(

√
t2 + a2). Now, because the correlation kernel is well-behaved, K is a de-

creasing function. As
√
t2 + a2 6 t+ a, K(

√
t2 + a2) > K(t+ a).

Plugging this into the previous inequality, we get |K ′(
√
t2 + a2)| >M1

√
t2 + a2K(t+ a).

If t > max(S1, S2(a)), we can then use (P2) to obtain

|K ′(
√
t2 + a2)| >M1M2(a)

√
t2 + a2K(t). (5.28)

Independently from this, we have the following algebraic fact:∥∥∥∥ ∂

∂µi
Σµ

∥∥∥∥ >
1

n

∑
k 6=l

∣∣∣∣ ∂∂µiΣ(kl)
µ

∣∣∣∣ . (5.29)

Because we use a well-behaved anisotropic geometric kernel, defining the function M
(kl)
i :

(0,+∞)→ (0,+∞) ; t 7→
(
x

(k)
j − x

(l)
j

)2

, we can write:∣∣∣∣ ∂∂µiΣ(kl)
µ

∣∣∣∣ = − ∂

∂µi
Σ(kl)
µ =

(
x

(k)
i − x

(l)
i

)2

µi
K ′
(
‖(x(k) − x(l))µ‖

)
‖(x(k) − x(l))µ‖

. (5.30)

Setting akl := |x(k)
i − x

(l)
i |µi and tkl := ‖(x(k)

−i −x
(l)
−i)µ−i‖ (and thus, naturally,

√
t2kl + a2

kl =

‖(x(k)−x(l))µ‖), and provided ‖µ−i‖ is sufficiently large to make all tkls meet the conditions
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necessary to apply (P1) and (P2) (that depend in the case of (P2) on the akls), Equation
(5.28) yields the existence of some number m(kl)

i (µi) > 0 such that

K ′
(
‖(x(k) − x(l))µ‖

)
‖(x(k) − x(l))µ‖

> m
(kl)
i (µi)K(‖(x(k)

−i − x
(l)
−i)µ−i‖) = m

(kl)
i (µi)Σ

(kl)
µ−i

. (5.31)

Finally, setting mi(µi) := µi mink 6=l

[(
x

(k)
i − x

(l)
i

)2

m
(kl)
i (µi)

]
, we get∥∥∥∥ ∂

∂µi
Σµ

∥∥∥∥ >
mi(µi)

n

∑
k 6=l

Σ(kl)
µ−i

. (5.32)

Then, applying Lemma 5.14 yields the result.

Proposition 5.17. Matérn one-dimensional kernels with smoothness parameter ν > 1 have
the properties (P1) and (P2) of Proposition 5.16.

Proof. (P1) is given by Lemma 5.6, after noticing that, denoting by Kν the Matérn one-
dimensional kernel of smoothness ν > 1, provided t is sufficiently large, Kν(t) 6 Kν−1(t).
This inequality ensues from the fact that ∀ν > 0, as t → +∞, Kν(t) ∼

√
π exp(−t)/

√
2t

(Abramowitz and Stegun [1964] 9.7.2), hence Kν(t) ∼ 2/Γ(ν)(
√
νt)ν

√
π/(4
√
νt) exp(−2

√
νt).

Moreover, this last equivalence relation also implies (P2).

Proposition 5.18. For Matérn anisotropic geometric kernels with smoothness ν > 1 and
Matérn tensorized correlation kernels with smoothness ν > 0, for any δ > 0, i ∈ [[1, r]] and
µi ∈ (0,+∞), there exists bi,δ(µi) > 0 such that, if ‖µ−i‖ > δ, then πi(µi|µ−i) > bi,δ(µi).

Proof. Matérn correlation kernels with such smoothness parameters make Proposition 5.15 or
5.16 applicable. Therefore, there exist si(µi) > 0 and mi(µi) > 0 such that, if ‖µ−i‖ > si(µi),
πi(µi|µ−i) > mi(µi). Besides, we know from Proposition 5.8 that πi(µi|µ−i), seen as a
function of µ−i, is continuous and positive over the compact set {µ−i : δ 6 ‖µ−i‖ 6 si(µi)}.
Thus its minimum m̃i,δ(µi) on this set is positive and we obtain the result by setting bi,δ(µi) :=

min(mi(µi), m̃i,δ(µi)).

Proposition 5.19. For Matérn anisotropic geometric correlation kernels with smoothness
ν > 1 and for Matérn tensorized correlation kernels with smoothness ν > 0, for any y ∈
Rn\{0}n, any δ > 0 and any µi ∈ (0,+∞), there exists bi,δ,y(µi) > 0 such that, if ‖µ−i‖ > δ,
then πi(µi|y,µ−i) > bi,δ,y(µi).

Proof. Set δ > 0 and y ∈ Rn \ {0}n. There exist mδ > 0 and Mδ > 0 s.t. ∀µ ∈ (0,+∞)r,
‖µ−i‖ > δ ⇒ mδ 6 ‖Σ−1

µ ‖ 6 Mδ, so there also exist mδ,y > 0 and Mδ,y > 0 s.t. mδ,y 6

L(y|µ) 6Mδ,y. This, combined with Proposition 5.18, yields the result.

Accounting for high correlation: ‖µ‖ → 0

This part of the proof relies on the combination of some spectral study of the Matérn kernels
and on the study of the matrices that are part of the series expansion of the correlation matrix
Σµ when ‖µ‖ → 0 for three types of Matérn kernels: isotropic, tensorized and anisotropic
geometric.
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Lemma 5.20. There exists a covariance kernel K̃r,ν such that for any design set x(1), ...,x(n),
for all µ ∈ (R+)r and ξ = (ξ1, ..., ξn) ∈ Rn,

n∑
j,k=1

ξjξkKr,ν

((
x(j) − x(k)

)
µ
)

>2−
r
2−νMr(ν)fr,ν(‖µ‖∞)

n∑
j,k=1

ξjξkK̃r,ν

(
µ

‖µ‖∞

(
x(j) − x(k)

))
, (5.33)

where fr,ν(t) = (2
√
ν)−r−2νt−r if t > (2

√
ν)
−1 and fr,ν(t) = t2ν if t 6 (2

√
ν)
−1.

Proof. For all x,y ∈ Rr, Kr,ν(x− y) =
∫
Rr K̂r,ν(ω)ei〈ω|x−y〉dω.

n∑
j,k=1

ξjξkKr,ν

((
x(j) − x(k)

)
µ
)

=

∫
Rr
K̂r,ν(ω)

∣∣∣∣∣∣
n∑
j=1

ξje
i〈ω|x(j)µ 〉

∣∣∣∣∣∣
2

dω

=Mr(ν)‖µ‖−r∞
∫
Rr

(
4ν + ‖µ‖−2

∞ ‖s‖2
)− r2−ν ∣∣∣∣∣∣

n∑
j=1

ξje
i〈 µ
‖µ‖∞

s|x(j)〉

∣∣∣∣∣∣
2

ds

>2−
r
2−νMr(ν)fr,ν(‖µ‖∞)

∫
Rr\B(0,1)

‖s‖−r−2ν

∣∣∣∣∣∣
n∑
j=1

ξje
i〈s| µ

‖µ‖∞
x(j) 〉

∣∣∣∣∣∣
2

ds.

(5.34)

Now, let K̃r,ν be the function with Fourier transform ̂̃
Kr,ν(ω) = 1{‖ω‖>1}‖ω‖−r−2ν . Accord-

ing to Bochner’s theorem, K̃r,ν is a correlation kernel, which leads to the conclusion.

Lemma 5.21. For every design set with coordinate-distinct points x(1), ...,x(n), there exists
a constant cx > 0 such that for all µ ∈ (R+)r,

∀ξ = (ξ1, ..., ξn) ∈ Rn,
n∑

j,k=1

ξjξkKr,ν

((
x(j) − x(k)

)
µ
)
> cx‖ξ‖22−

r
2−νMr(ν)fr,ν(‖µ‖∞)

(5.35)
where fr,ν(t) = (2

√
ν)−r−2νt−r if t > (2

√
ν)
−1 and fr,ν(t) = t2ν if t 6 (2

√
ν)
−1.

Proof. For every design set x(1), ...,x(n), the set of all design sets that can be written
µ
‖µ‖∞x

(1), ..., µ
‖µ‖∞x

(n) (µ ∈ (R+)r) is compact. If the design set x(1), ...,x(n) has coordinate-
distinct points, then every design set in the aforementioned compact set has no overlapping
points. Thus the conclusion follows from Lemma 5.20.

Proposition 5.22. With Matérn anisotropic geometric or tensorized kernels, for every design
set with coordinate-distinct points x(1), ...,x(n), as ‖µ‖ → 0,

∥∥Σ−1
µ

∥∥ = O(‖µ‖−2ν).

Proof. For Matérn anisotropic geometric kernels, we need only apply Lemma 5.21. In the
case of tensorized Matérn kernels, analoguous results to Lemma 5.20 and then Lemma 5.21
may be used.

Abramowitz and Stegun [1964] give the following results on the modified Bessel function of
second kind (usually noted Kν and which we note Kν in order to avoid confusion with the
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Matérn correlation kernel). If Iν is the modified Bessel function of first kind and ψ is the
function defined in (6.3.2) by ψ : N \ {0} → R ; k 7→ −γ +

∑k−1
i=1 i

−1 :

Iν(z) =

(
1

2
z

)ν ∞∑
k=0

(
1
4z

2
)k

k!Γ(ν + k + 1)
(9.6.10)

Kν(z) =
1

2
π
I−ν(z)− Iν(z)

sin(νz)
if ν /∈ Z. (9.6.2)

This gives us the series expansion of K1,ν(z) (ν ∈ [0,+∞) \ N) when z → 0:

K1,ν(z)

=
π

Γ(ν) sin(νπ)

 ∑
06k<ν

νkz2k

k!Γ(−ν + k + 1)
− ννz2ν

Γ(ν + 1)
+ o

(
z2ν
)

=
π

Γ(ν) sin(νπ)Γ(−ν + 1)

 ∑
06k<ν

Γ(−ν + 1)

k!Γ(−ν + k + 1)
νkz2k − Γ(−ν + 1)

Γ(ν + 1)
ννz2ν + o

(
z2ν
)

=
∑

06k<ν

Γ(−ν + 1)

k!Γ(−ν + k + 1)
νkz2k +

Γ(−ν)

Γ(ν)
ννz2ν + o

(
z2ν
)

=
∑

06k<ν

(−1)k
Γ(ν − k)

k!Γ(ν)
νkz2k +

Γ(−ν)

Γ(ν)
ννz2ν + o

(
z2ν
)
. (5.36)

In the remainder of this subsection, we consider a fixed design set with n coordinate-distinct
points x(k) (k ∈ [[1, n]]) in Rr. Moreover, all Matérn kernels we consider are assumed to have
non-integer smoothness parameter ν.

Let us now define, for every nonnegative integer k < ν the matrix Dk whose (i, j) element is

Dk(i, j) := (−1)k
Γ(ν − k)

k!Γ(ν)
νk
∥∥∥x(j) − x(k)

∥∥∥2k

. (5.37)

Let us also define the matrix Dν whose (i, j) element is

Dν(i, j) :=
Γ(−ν)

Γ(ν)
νν
∥∥∥x(j) − x(k)

∥∥∥2ν

if ν ∈ [0,+∞) \ N. (5.38)

If the correlation kernel is Matérn isotropic, Σµ has the following series expansion if ν is not
an integer when µ→ 0+:

Σµ =
∑

06k<ν

µ2kDk + µ2νDν +Rµ. (5.39)

In this expansion, µ−2ν‖Rµ‖ → 0.
For any integer i ∈ [[1, r]] and any nonnegative integer k < ν define the matrix Dk

i whose
(m, p) element is

Dk
i (m, p) := (−1)k

Γ(ν − k)

k!Γ(ν)
νk
∣∣∣x(m)
i − x(p)

i

∣∣∣2k (5.40)

and also the matrix Dν
i whose (m, p) element is

Dν
i (m, p) :=

Γ(−ν)

Γ(ν)
νν
∣∣∣x(m)
i − x(p)

i

∣∣∣2ν . (5.41)
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For every i ∈ [[1, r]], if the points in the design set differed only through their i-th coordi-
nate, the series expansion of the correlation matrix (using a Matérn anisotropic geometric or
tensorized kernel) when ‖µ‖ → 0 (and thus when µi → 0) would be

Σµi =
∑

06k<ν

µ2k
i D

k
i + µ2ν

i D
ν
i +Rµi (5.42)

where µ−2ν
i ‖Rµi‖ → 0 as µi → 0.

Note the following identities:

D0
i = 11>; (5.43)

D1
i = −Γ(ν − 1)

Γ(ν)
ν
{

1
(
X◦2i

)>
+
(
X◦2i

)
1> − 2XiX

>
i

}
; (5.44)

D2
i =

Γ(ν − 2)

Γ(ν)
ν2
{

1
(
X◦4i

)>
+
(
X◦4i

)
1> − 4Xi

(
X◦3i

)>
−4
(
X◦3i

)
X>i + 6

(
X◦2i

) (
X◦2i

)>}
. (5.45)

If a tensorized correlation kernel is used, the correlation matrix Σtens
µ may be written

Σtens
µ =

◦∏
i∈[[1,r]]

Σµi (5.46)

where the subscript ◦ above the symbol
∏

serves to denote the Hadamard product of matrices.

In case a Matérn anisotropic geometric kernel is used, then define for any nonnegative interger
k < ν the matrix Dk(µ) whose (m, p) element is

Dk(µ)(m, p) := (−1)k
Γ(ν − k)

k!Γ(ν)
νkdm,p(µ)2k (5.47)

where dm,p(µ) =
∥∥(x(m) − x(p)

)
µ
∥∥.

And, similarly, we may define the matrix Dν(µ) whose (m, p) element is

Dν(µ)(m, p) :=
Γ(−ν)

Γ(ν)
ννdm,p(µ)2ν if ν ∈ [0,+∞) \ N. (5.48)

We thus have (if ν ∈ [0,+∞) \ N)

Σgeom
µ =

∑
06k<ν

Dk(µ) +Dν(µ) +Rgeom
µ (5.49)

where ‖µ‖−2ν ‖Rgeom
µ ‖ → 0 as ‖µ‖ → 0.

Similar identities to those of Equation (5.43) can be derived to make Equation (5.49) more
explicit for small values of ν.
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D0(µ) = 11>; (5.50)

D1(µ) = − ν

ν − 1

{
r∑
i=1

µ2
i

(
1
(
X◦2i

)>
+
(
X◦2i

)
1> − 2XiX

>
i

)}
; (5.51)

D2(µ) =
ν2

(ν − 1)(ν − 2)

 ∑
i,j∈[[1,r]]

µ2
iµ

2
j

(
1
(
X◦2i ◦X

◦2
j

)>
+
(
X◦2i ◦X

◦2
j

)
1>

− 2Xi

(
Xi ◦X◦2j

)> − 2
(
Xi ◦X◦2j

)
X>i − 2Xj

(
Xj ◦X◦2i

)> − 2
(
Xj ◦X◦2i

)
X>j

+
(
X◦2i

) (
X◦2j

)>
+
(
X◦2j

) (
X◦2i

)>
+ 4 (Xi ◦Xj) (Xi ◦Xj)

>
) . (5.52)

Fortunately, for small values of ν, Σtens
µ can also be simply written.

For ν ∈ (0, 1) : Σtens
µ = 11> +

r∑
i=1

µ2ν
i D

ν
i +Rtens

µ . (5.53)

For ν ∈ (1, 2) : Σtens
µ = 11> +D1(µ) +

r∑
i=1

µ2ν
i D

ν
i +Rtens

µ . (5.54)

For ν ∈ (2, 3) : Σtens
µ = 11> +D1(µ) +

ν − 2

ν − 1
D2(µ) +

r∑
i=1

µ4
iD

2
i +

r∑
i=1

µ2ν
i D

ν
i +Rtens

µ .

(5.55)

In the three expressions above, ‖µ‖−2ν ‖Rtens
µ ‖ → 0 as ‖µ‖ → 0.

Define kν as the orthogonal complement in Rn of the vector space spanned by:

1. if ν ∈ (0, 1): 1;

2. if ν ∈ (1, 2): 1 and Xi (i ∈ [[1, r]]);

3. if ν ∈ (2, 3): 1 and Xi (i ∈ [[1, r]]) and Xi ◦Xj (i, j ∈ [[1, r]]).

Clearly, for any ν ∈ (0, 1) ∪ (1, 2) ∪ (2, 3), for any vector v ∈ kν ,

v>Σgeom
µ v = v>Dν(µ)v + v>Rgeom

µ v, (5.56)

v>Σtens
µ v =

r∑
i=1

µ2ν
i vD

ν
i v + v>Rtens

µ v. (5.57)

Since when µ → 0 ‖Dν(µ)‖ = O(‖µ‖2ν), ‖Rgeom
µ ‖ = o(‖µ‖2ν) and ‖Rtens

µ ‖ = o(‖µ‖2ν), for
any µ ∈ (0,+∞)r such that ‖µ‖ is small enough, there exists c > 0 such that for any v ∈ kν ,

max(v>Σgeom
µ v,v>Σtens

µ v) 6 c‖µ‖2νv>v. (5.58)

Proposition 5.23. For a Matérn anisotropic geometric or tensorized correlation kernel with
smoothness parameter ν ∈ (0, 1) ∪ (1, 2) ∪ (2, 3), for any vector y ∈ Rn not orthogonal to kν ,
when ‖µ‖ → 0, ‖µ‖−2ν = O

(
y>Σ−1

µ y
)
.
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Proof. Let dν be the dimension of kν and let Oν be an orthogonal n × n matrix whose
first n − dν columns form an orthonormal basis of k⊥ν and whose last dν columns form an
orthonormal basis of kν .
Then Σµ = OνO

>
ν ΣµOνO

>
ν . Consider the following decomposition of O>ν ΣµOν :

O>ν ΣµOν =

(
Aµ Bµ

B>µ Cµ

)
(5.59)

where the blocks Aµ, Bµ and Cµ are respectively (n − dν) × (n − dµ), (n − dµ) × dµ and
dµ×dµ matrices. Note that Aµ and Cµ represent the restriction of the scalar product defined
by Σµ to k⊥ν and kν respectively. When ‖µ‖ is small enough, defining c > 0 as in Equation
(5.58), ‖Cµ‖ 6 c‖µ‖2ν .

O>ν Σ−1
µ Oν =

(
In−dν 0

−BµC−1
µ Idν

)(A−BµC−1
µ B

>
µ

)−1

0

0 C−1
µ

(In−dν −C−1
µ B

>
µ

0 Idν

)
.

(5.60)
For any vector y ∈ Rn, there exist y1 ∈ Rn−dν and y2 ∈ Rdν such that

O>ν y =

(
y1

y2

)
, (5.61)

y>Σ−1
µ y =

(
y1 −C

−1
µ Bµy2

y2

)>(A−BµC−1
µ B

>
µ

)−1

0

0 C−1
µ

(y1 −C
−1
µ Bµy2

y2

)
.

(5.62)

Given Σ−1
µ is positive definite, the diagonal block

(
A−BµC−1

µ B
>
µ

)−1

is positive defi-
nite too. This implies y>Σ−1

µ y > y>2 C
−1
µ y2. When ‖µ‖ is small enough, y>2 C

−1
µ y2 >

c−1‖µ‖−2ν‖y2‖2.

If y is not orthogonal to kν , then ‖y2‖ 6= 0 and thus ‖µ‖−2ν = O(y>Σ−1
µ y).

Proposition 5.24. Assume ν ∈ (1, 2) ∪ (2, 3). For every y ∈ Rn that is not orthogonal to
the vector subspace kν , L(y|µ)fi(µi|µ−i) is a bounded function of µ.

Proof. Let v1(µ) > v2(µ) > ... > vn(µ) be the ordered eigenvalues of Σµ. We can now
rewrite L(y|µ) as

L(y|µ)2 ∝
n∏
k=1

[
vk(µ)−1

(
y>Σ−1

µ y
)−1
]
. (5.63)

Proposition 5.23 asserts that for any y ∈ Rn that is not orthogonal to kν ,
(
y>Σ−1

µ y
)−1

=

O(‖µ‖2ν) for ‖µ‖ → 0. Besides, Proposition 5.22 asserts that
∥∥Σ−1

µ

∥∥ = O(‖µ‖−2ν), so(
y>Σ−1

µ y
)−1

= O
(∥∥Σ−1

µ

∥∥−1
)
.

This implies that for every integer i ∈ [[1, r]], vk(µ)−1
(
y>Σ−1

µ y
)−1

= O(1).

Clearly, lim‖µ‖→0 |1>v1(µ)| = ‖1‖ and lim‖µ‖→0 v1(µ) = n.
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The latter implies lim‖µ‖→0 v1(µ)−1 = n−1 and v1(µ)−1
(
y>Σ−1

µ y
)−1

= O
(
‖µ‖2ν

)
. Now,

for every µ ∈ (0,+∞)r, we may (thanks to the axiom of choice) choose a unit eigenvector
v1(µ) corresponding to the largest eigenvalue v1(µ) and v2(µ) corresponding to the second
largest eigenvalue v2(µ). Because Σµ is symmetric, v1(µ)>v2(µ) = 0 for all µ ∈ (0,+∞)r,
so lim‖µ‖→0 1>v2(µ) = 0.

v2(µ)

=(1>v2(µ))2 + 2ν(ν − 1)−1
r∑
i=1

µ2
i

(
X>i v2(µ)

)2

− 2µ2
i

(
1>v2(µ)

) (
X◦2>i v2(µ)

)
+O

(
‖µ‖4

)
>2ν(ν − 1)−1

r∑
i=1

µ2
i (X

>
i v2(µ))2 + o

(
‖µ‖2

)
. (5.64)

For all µ ∈ (0,+∞)r, let i(µ) be the smallest integer i ∈ [[1, r]] such that µi = maxrj=1 µj .
Now for every integer i ∈ [[1, r]] let wi(µ) be the unit vector that belongs to the space spanned
by v1(µ) and Xi that verifies v1(µ)>wi(µ) = 0 and X>i wi(µ) > 0.

wi(µ)(µ)Σµwi(µ)(µ) > 2ν(ν − 1)−1r−1‖µ‖2(X>i(µ)wi(µ)(µ))2 + o
(
‖µ‖2

)
. (5.65)

As lim‖µ‖→0 |1>v1(µ)| = ‖1‖, lim inf‖µ‖→0X
>
i(µ)wi(µ)(µ) > minri=1 lim‖µ‖→0X

>
i wi(µ) >

0, so there exists a constant c2 > 0 such that when ‖µ‖ is small enough

wi(µ)(µ)Σµwi(µ)(µ) > c2‖µ‖2. (5.66)

Recall v2(µ) = max{ξ>Σµξ|ξ ∈ Sn−1 and ξ>v1(µ)}, so a fortiori v2(µ) > c2‖µ‖2.

This implies v2(µ)−1 = O(‖µ‖−2) and therefore v2(µ)−1
(
y>Σ−1

µ y
)−1

= O(‖µ‖2(ν−1)) .

Finally, L(y|µ) = O (‖µ‖ν)O
(
‖µ‖ν−1

)
= O

(
‖µ‖2ν−1

)
.

Given that fi(µi|µ−i) = O(‖µ‖1−2ν), L(y|µ)fi(µi|µ−i) is bounded when ‖µ‖ → 0.

Proposition 5.25. Assume ν ∈ (0, 1). For every y ∈ Rn that is not collinear to 1, when
‖µ‖ → 0, L(y|µ)fi(µi|µ−i) = O(µ−1+ν

i ).

Proof. This proof is similar to the previous one, so we use the same notations. v1(µ)−1 =

O(1), so v1(µ)−1
(
y>Σ−1

µ y
)−1

= O(‖µ‖2ν), which yields that L(y|µ) = O(‖µ‖ν). This
implies that L(y|µ)

∥∥Σ−1
µ

∥∥ = O(‖µ‖−ν) = O(µ−νi ).
By Lemma 5.7,

∥∥∥ ∂
∂µi

Σµ

∥∥∥ = O(µ−1+2ν
i ). Putting all this together, L(y|µ)fi(µi|µ−i) =

O(µ−1+ν
i ).

Proposition 5.26. For Matérn anisotropic geometric or tensorized kernels with smooth-
ness parameter ν ∈ (0, 1) ∪ (1, 2) ∪ (2, 3), if y ∈ Rn is not orthogonal to kν , then the
conditional posterior distribution πi(µi|y,µ−i), seen as a function of µ, is continuous over
{µ ∈ [0,+∞)r : µi 6= 0}.
Moreover,

∀µi > 0, πi(µi|y,µ−i = 0r−1) =
L(y|µi,µ−i = 0r−1)fi(µi|µ−i = 0r−1)∫∞

0
L(y|µi = t,µ−i = 0r−1)fi(µi = t|µ−i = 0r−1)dt

> 0.
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Proof. Given Proposition 5.8 and the fact that ∀y ∈ Rn, ∀i ∈ [[1, r]] and ∀µi ∈ (0,+∞), as
‖µ−i‖ → 0, L(y|µ)fi(µi|µ−i) converges pointwise to L(y|µi,µ−1 = 0r−1)fi(µi|µ−i = 0r−1),
we only need to show that

∫ ∞
0

L(y|µi = t,µ−i)fi(µi = t|µ−i)dt −→
‖µ−i‖→0∫ ∞

0

L(y|µi = t,µ−i = 0r−1)fi(µi = t|µ−i = 0r−1)dt < +∞.
(5.67)

Lemma 5.7 implies that there exists Mi > 0 such that

L(y|µ)fi(µi|µ−i) = L(y|µ)
∥∥Σ−1

µ

∥∥∥∥Σ−1
µ

∥∥−1
fi(µi|µ−i)

6 L(y|µ)
∥∥Σ−1

µ

∥∥Miµ
−2
i .

(5.68)

Lemma 5.10 then ensures
∥∥Σ−1

µ − In
∥∥→ 0 as µi → +∞, so the right member of the inequality

is integrable in the neighborhood of +∞. Let us now focus on the neighborhood of 0.

If ν > 1, Proposition 5.24 asserts that L(y|µ)fi(µi|µ−i) is bounded in the neighborhood of
0.
If ν < 1, Proposition 5.25 asserts that L(y|µ)fi(µi|µ−i)µ1−ν

i is bounded in the neighborhood
of 0.
Therefore, there exists a function independent of µ−i that is both greater than the product
L(y|µ)fi(µi|µ−i) and integrable over µi ∈ (0,+∞), so the dominated convergence theorem
is applicable.

Lower bound for conditional reference posterior densities

The following Lemma provides the key to proving Theorem 5.2:

Lemma 5.27. In a Simple Kriging model with the characteristics described above, there
exists a hyperplane H of Rn such that, for any y ∈ Rn \ H and any i ∈ [[1, r]], there exists
a measurable function mi,y : (0,+∞) → (0,+∞) such that, for all µ−i ∈ (0,+∞)r−1, the
conditional reference posterior density verifies:

πi(µi|y,µ−i) > mi,y(µi) > 0. (5.69)

Proof. This proof consists in combining Proposition 5.19 and Proposition 5.26, which respec-
tively deal with large and small values of ‖µ−i‖.

Proposition 5.19 implies that for any y ∈ Rn \ {0}n, for any i ∈ [[1, r]] and any µi ∈ (0,+∞),
there exists a compact neighborhood Ni(µi) of 0r−1 within [0,+∞)r such that

inf{π(µi|y,µ−i) : µ−i ∈ [0,+∞)r−1 \Ni(µi)} > 0. (5.70)

The vector space kν ⊂ Rn has dimension greater or equal to

(a) n− 1 if ν ∈ (0, 1);

(b) n− (r + 1) if ν ∈ (1, 2);
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(c) n− (r + 1)(r + 2)/2 if ν ∈ (2, 3).

For all Simple Kriging models tackled by this lemma, the dimension of kν is therefore greater
or equal to 1. Its orthogonal complement k⊥ν is then included within a hyperplane H of Rn.
Assuming y ∈ Rn \H, Proposition 5.26 ensures that π(µi|y,µ−i) is a continuous and positive
function of µ on {µ ∈ [0,+∞)r : µi 6= 0}. In particular, this implies that for any µi ∈ (0,+∞)

and any compact neighborhood Ni(µi) of 0r−1 within [0,+∞)r,

inf{π(µi|y,µ−i) : µ−i ∈ Ni(µi)} > 0. (5.71)

Putting this together, if y ∈ Rn \ H, for any i ∈ [[1, r]] and any µi ∈ (0,+∞),

inf{π(µi|y,µ−i) : µ−i ∈ [0,+∞)r−1} > 0. (5.72)

The mapping mi,y : µi 7→ inf{π(µi|y,µ−i) : µ−i ∈ [0,+∞)r−1}, which is measurable on
(0,+∞) is therefore also positive on (0,+∞).

Proof of Theorem 5.2. Lemma 5.27 implies that ∀µ(0) ∈ (0,+∞)r,

Py(µ(0), dµ) >
1

r

r∑
i=1

mi,y(µi)dµi δµ(0)
−i

(dµ−i),

and thus ∀µ(0) ∈ (0,+∞)r, ∀n > r,

Pny (µ(0), dµ) >
1

rr

r∏
i=1

mi,y(µi)dµi.

Defining fy(µ) := r−r
∏r
i=1mi,y(µi), fy is a measurable positive function. Therefore fy is

the density with respect to the Lebesgue measure of a positive measure with mass εy > 0. So
ε−1
y fy is a probability density with respect to the Lebesgue measure and the Markov kernel
Py thus satisfies the uniform (n, εy) Doeblin condition:

∀µ(0) ∈ (0,+∞)r Pny (µ(0), dµ) > εy

(
1

εy
fy(µ)

)
dµ. (5.73)

This implies that Py is uniformly ergodic: it has a unique invariant probability distribution
πG(·|y) and limn→∞ supµ(0)∈(0,+∞)r ‖Pny (µ(0), ·)− πG(·|y)‖TV = 0, where ‖ · ‖TV is the total
variation norm. By definition, πG(·|y) is the Gibbs compromise between the incompatible
posterior conditionals πi(µi|y,µ−i).



Chapter 6

A Comprehensive Bayesian Treatment of

the Universal Kriging model with Matérn

correlation kernels

This chapter mostly adheres to the article Muré [2018].

Abstract

The Gibbs reference posterior distribution provides an objective full-Bayesian solution

to the problem of prediction of a stationary Gaussian process with Matérn anisotropic

kernel. A full-Bayesian approach is possible, because the posterior distribution is ex-

pressed as the invariant distribution of a uniformly ergodic Markovian kernel for which

we give an explicit expression. In this chapter, we show that it is appropriate for the

Universal Kriging framework, that is when an unknown function is added to the station-

ary Gaussian process. We give sufficient conditions for the existence and propriety of the

Gibbs reference posterior that apply to a wide variety of practical cases and illustrate

the method with several examples. Finally, simulations of Gaussian processes suggest

that the Gibbs reference posterior has good frequentist properties in terms of coverage

of prediction intervals.

Résumé

Le posterior de référence de Gibbs fournit une solution pleinement bayésienne au pro-

blème de la prédiction des valeurs prises par un processus gaussien stationnaire avec

noyau de Matérn anisotrope. Une approche pleinement bayésienne est possible parce que

la loi a posteriori est exprimée comme loi invariante d’un noyau markovien uniformément

ergodique dont nous donnons une expression explicite. Dans ce chapitre, nous montrons

que cette approche est indiquée dans le cadre du krigeage universel, c’est-à-dire quand

une fonction inconnue est ajoutée à un processus gaussien stationnaire. Nous donnons

des conditions suffisantes à l’existence et la propreté du posterior de référence de Gibbs

qui s’appliquent à une large collection de cas pratiques et illustrons la méthode par plu-

sieurs exemples. Enfin, des simulation des processus gaussien suggèrent que le posterior

de référence de Gibbs a de bonnes propriétés fréquentistes en termes de couverture et

d’intervalles prédictifs.

139
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6.1 Introduction

In Simple Kriging models, the Gaussian Process is assumed to have zero mean and be station-
ary on the domain D, so its distribution can be characterized by a positive variance parameter
σ2 and by an autocorrelation function K. The Universal Kriging framework adds another
parameter : a mean function f . If f is known, then subtracting it from the process returns us
to the Simple Kriging framework. Allowing for an unknown mean function provides greater
flexibility in the modeling by enabling some degree of non-stationarity [Santner et al., 2003,
section 2.3.2].

In practice, the mean function f is assumed to belong to a p-dimensional (p ∈ N) vector space
Fp, which is specified by means of a basis (f1, ..., fp). Being a linear combination of f1, ..., fp,
the mean function f is then encoded by the vector of linear coefficients β = (β1, ..., βp)

> :
f = β1f1 + ...+ βpfp.
Therefore, what separates the Universal Kriging framework from its Simple counterpart is
the addition of the p-dimensional parameter β.

Assuming the autocorrelation function to be characterized by a vector of correlation lengths
θ, we are faced with the inference problem of estimating (β, σ2,θ). In the previous chapter, an
objective posterior distribution on (σ2,θ) was proposed in the context of Simple Kriging. In
this chapter we address the more general framework of Universal Kriging in order to obtain
a distribution on (β, σ2,θ). The developments in both chapters are based on Bernardo’s
reference prior theory. The idea to use this theory in the context of Kriging first appeared in
Berger et al. [2001], and then was successively extended by Paulo [2005], Kazianka and Pilz
[2012], Ren et al. [2012], Ren et al. [2013] and Gu [2016].

To use it we first need to order the parameters [Bernardo, 2005]. Because our main goal is to
maximize the predictive capacity of the model, we are unable to outright say which parameter
we care about most. However, a few common sense observations help: first, in order to profit
from the work done in the Simple Kriging case, we separate β, which refers to the mean
function, from (σ2,θ), which yields the covariance structure. Within the latter, θ should
have the priority over σ2, because while σ2 can very easily be accurately estimated once θ is
known, the reverse is not true. The same consideration will make us prioritize (σ2,θ) over
β, because while knowing β reduces the problem to the Simple Kriging case, knowing (σ2,θ)

reduces it to a much simpler regression problem.

In Section 6.2 we derive the reference posterior distribution on (β, σ2) and the corresponding
predictive distribution at unobserved points, both conditional to the observed data and the
correlation parameter θ.
In Section 6.3, we derive analytical formulas for the reference prior on (β, σ2,θ) in the case
where θ is a one-dimensional parameter.
In Section 6.4, we prove the main result of the chapter: in the context of a Matérn anisotropic
correlation kernel [Matérn, 1986, Handcock and Stein, 1993] – see Appendix 6.A for precise
definitions – under a few conditions, the Gibbs reference posterior on a multidimensional θ
exists. Combined with the “partial” reference posterior distribution on (β, σ2) conditional
to θ, it provides a proper objective posterior distribution on all parameters (β, σ2,θ) given
the observed data. It is significant that this proper objective posterior distribution is well
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defined for Matérn anisotropic correlation kernels, because this class of correlation kernels
has remarkable properties (see Stein [1999] or Bachoc [2013a, chapter 2]). Notably, it allows
the user to specify the smoothness of the realizations of the Gaussian Process.
In Section 6.5, we evaluate the predictive performance of the Universal Kriging model with
the Gibbs reference posterior distribution both in the context of a well-specified model and
when emulating deterministic functions. We compare the full-Bayesian approach relying on
the Gibbs reference posterior with plug-in approaches, where the parameters are assumed to
be equal to either the Maximum Likelihood Estimator (MLE) or the Maximum A Posteriori
(MAP) estimator.

6.2 Analytical treatment of the location-scale parameters

Suppose our design set contains n observation points. n must be greater than p, otherwise
the model is not identifiable. Let H be the n × p matrix whose columns contain the values
of the p basis functions at the n observation points. Let us assume that the rank of H is p,
because if it were not, the model would also not be identifiable.
Let y be the vector of the n observations. Then y is a Gaussian vector and its distribution is

y|β, σ2,θ ∼ N (Hβ, σ2Σθ), (6.1)

where Σθ is a correlation matrix that only depends on the design set and on the vector of
correlation lengths θ.

In terms of likelihood, we have

L(y | β, σ2,θ) =

(
1

2πσ2

)n
2

|Σθ|−
1
2 exp

{
− 1

2σ2
(y −Hβ)

>
Σ−1
θ (y −Hβ)

}
. (6.2)

The aim of this section is to get the parameters β and σ2 out of the way in order to focus on
the more interesting parameter θ. For now, assume that θ is known, which is to say that the
correlation function is completely known.

Reference prior and integrated likelihood when θ is known.

Clearly, β is a location parameter and σ :=
√
σ2 is a scale parameter for this model. Therefore,

the joint reference prior is π(β, σ2|θ) ∝ 1/σ2 regardless of the order of the parameters (β, σ2).

We now derive the posterior distributions π(β|y, σ2,θ) and π(σ2|y,θ) as well as the integrated
likelihoods L0(y|σ2,θ) :=

∫
L(y|β, σ2,θ)dβ and L1(y|θ) :=

∫∫
L(y|β, σ2,θ)/σ2dβdσ2.

Gaussian theory makes it convenient to split y into two components: one that belongs to the
subspace of Rn spanned by H, and one that is orthogonal to the subspace spanned by H.
In order not to have to deal with degenerate Gaussian vectors, we define an n× p matrix P
with full rank which spans the same subspace as H (Actually, for the time being, we may as
well set P = H.) and an n × (n − p) matrix W with full rank which spans its orthogonal
space. Thus W>H = W>P = 0n−p,p and
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W>y|σ2,θ ∼ N (0n−p, σ
2W>ΣθW ) ; (6.3)

P>y|β, σ2,θ,W>y ∼ N (P>Hβ + P>ΣθW
(
W>ΣθW

)−1

W>y, (6.4)

σ2P>ΣθP − σ2P>ΣθW
(
W>ΣθW

)−1

W>ΣθP ).

β having flat prior density, P>y − P>Hβ has the same distribution whether β, σ2 and θ
or whether P>y, σ2 and θ are known. Therefore, the posterior distribution of P>Hβ if σ2

and θ are known is:

P>Hβ|σ2,θ,W>y,P>y ∼ N (P>y − P>ΣθW
(
W>ΣθW

)−1

W>y,

σ2P>ΣθP − σ2P>ΣθW
(
W>ΣθW

)−1

W>ΣθP ).

(6.5)

From there, we get the posterior distribution of β if σ2 and θ are known:

β|σ2,θ,y ∼N ((P>H)−1P>y − (P>H)−1P>ΣθW
(
W>ΣθW

)−1

W>y,

σ2
(

(P>H)−1P>ΣθP (H>P )−1

−(P>H)−1P>ΣθW
(
W>ΣθW

)−1

W>ΣθP (H>P )−1)

) (6.6)

Moreover, (6.4) implies that the integrated likelihood of P>y, i.e. its likelihood averaged
over the Lebesgue measure (the prior distribution on β), is |P>H|−1, where | · | denotes the
absolute value of the determinant.

P>y|σ2,θ,W>y ∼ Improper “uniform” distribution on Rp. (6.7)

This means that if β is unknown, then P>y can yield no information about σ2 and θ. When
β is unknown, all information about σ2 and θ is carried by W>y, because as is shown by
(6.3), the predictive distribution on W>y knowing σ2 and θ does not depend on β.

A straightforward calculation yields that the posterior distribution of σ2 is Inverse-Gamma:

σ2|θ,y ∼ IG(shape = (n− p)/2, rate = y>W
(
W>ΣθW

)−1

W>y/2). (6.8)

The posterior distribution on σ2 (knowing θ) does not take into account P>y, because all
information contained in P>y is given in the posterior distribution of β conditional to σ2

and θ.
We conclude this subsection with the formulas for the likelihoods with the parameters β and
σ2 successively integrated out.
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L0(y|σ2,θ) =

∫
L(y|β, σ2,θ)dβ

=
∣∣∣P>H∣∣∣−1

(
1

2πσ2

)n−p
2

|W>ΣθW |−
1
2 exp

−
y>W

(
W>ΣθW

)−1

W>y

2σ2

 ;

(6.9)

L1(y|θ) =

∫
L0(y|σ2,θ)/σ2dσ2

=
∣∣∣P>H∣∣∣−1

(
2π

n−p
2

Γ
(
n−p

2

))−1

|W>ΣθW |−
1
2

(
y>W

(
W>ΣθW

)−1

W>y

)−n−p2

.

(6.10)

Posterior predictive distribution when θ is known.

Following Santner et al. [2003] (Theorem 4.1.2., case (4)), we derive conditionally to θ the
posterior predictive distribution of the values taken by the process at unobserved points.
In order to simplify notations in this subsection, all the distributions we consider are, until
further notice, conditional to σ2 and θ even with no explicit mention. Equation (6.1) can be
usefully restated in the following way:(

P>y − P>Hβ
W>y

)∣∣∣∣∣P>Hβ ∼ N
(

0n, σ
2

(
P>

W>

)
Σθ

(
P W

))
. (6.11)

Because the prior distribution on β is flat,

(
P>y − P>Hβ

W>y

)
and its opposite have the same

distribution when conditional respectively to P>Hβ and P>y.(
P>Hβ − P>y
−W>y

)∣∣∣∣∣P>y ∼ N
(

0n, σ
2

(
P>

W>

)
Σθ

(
P W

))
(6.12)

Let y0 be the values of the Gaussian Process at the n0 unobserved points. We denote byH0,0

the n0×p matrix whose columns contain the values of the p basis functions at the unobserved
points, by Σθ,0,0 the n0×n0 correlation matrix of y0, by Σθ,0,· the n0×n correlation matrix
between y0 and y and by Σθ,·,0 its transpose. It is also convenient to define the n0×n matrix

H0,· = H0,0

(
P>H

)−1

and its transpose H ·,0. With these notations, the distribution of y0

when y and β are known is

y0|β,y ∼ N
(
H0,0β + Σθ,0,·Σ

−1
θ (y −Hβ),Σθ,0,0 −Σθ,0,·Σ

−1
θ Σθ,·,0

)
(6.13)

Now, the distribution of y0 when both y and β are known, together with the distribution of(
P>Hβ − P>y
−W>y

)
when P>y is known, jointly define some probability distribution on the

vector


y0

P>Hβ − P>y
−W>y

 .

This distribution is given in the following proposition. In order to give it a concise expression,
it is convenient to require that PP> +WW> = In, which simply means that the columns
of P and W form an orthonormal basis of <H > and its orthogonal space respectively.
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Proposition 6.1. Assume that PP> + WW> = In. Then the probability distribution
on the vector of Rn0+n (y0,P

>Hβ − P>y,−W>y)> conditional to P>y is the following
multivariate normal distribution:

N


(
E0

0n

)
, σ2


Sθ,0,0 Sθ,0,·

Sθ,·,0

(
P>

W>

)
Σθ

(
P W

)

 . (6.14)

We use the following notations:

E0 : = H0,·P
>y

Sθ,0,0 : = Σθ,0,0 +H0,·P
>ΣθPH ·,0 −H0,·P

>Σθ,·,0 −Σθ,0,·PH ·,0

Sθ,0,·

(
P>

W>

)
: = H0,·P

>Σθ −Σθ,0,·

Sθ,·,0 : = S>θ,0,·

Proof. First, notice that the mean vector of the Normal distribution given by Equation 6.13
can be rewritten as

(H0,· −Σθ,0,·Σ
−1
θ P )P>Hβ + Σθ,0,·Σ

−1
θ WW>y + Σθ,0,·Σ

−1
θ PP

>y, (6.15)

which is a linear mapping of the vector (P>Hβ,W>y,P>y)>. Now, Equation 6.12 tells
us that conditional to P>y, (P>Hβ,W>y,P>y)> is a (degenerate) Gaussian vector, so
Gaussian theory implies that conditional to P>y, (y0,P

>Hβ,W>y,P>y)> is a Gaussian
vector and therefore (y0,P

>Hβ − P>y,−W>y)> is one as well. So all that remains to be
shown is that its mean and covariance are those given by Proposition 6.1.
To do this, we compute Ey,βθ and σ2Sy,βθ , the conditional mean and variance of y0 given
W>y, P>y and P>Hβ and check that they fit the parameters of (6.13).

Ey,βθ = E0 + Sθ,0,·

(
P>

W>

)
Σ−1
θ

(
P W

)(P>Hβ − P>y
−W>y

)
= H0,0β + Σθ,0,·Σ

−1
θ (y −Hβ); (6.16)

Sy,βθ = Sθ,0,0 − Sθ,0,·

(
P>

W>

)
Σ−1
θ

(
P W

)
Sθ,·,0

= Σθ,0,0 −Σθ,0,·Σ
−1
θ Σθ,·,0. (6.17)

From this point onwards, distributions are no longer implicitly conditional to σ2 and θ.

Corollary 6.2. Assume that PP> + WW> = In. The predictive distribution when β is
unknown – i.e. the distribution of y0 conditional to y, σ2 and θ – is Normal. With the

notations of Proposition 6.1, it has mean vector E0 − Sθ,·,0W
(
W>ΣθW

)−1

W>y and
covariance matrix

σ2

{
Sθ,0,0 − Sθ,·,0W

(
W>ΣθW

)−1

W>Sθ,0,·

}
.
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Corollary 6.3. Assume that PP> + WW> = In. The predictive distribution when both
β and σ2 are unknown – i.e. the distribution of y0 conditional to y and θ – is multivariate
Student with n− p degrees of freedom. With the notations of Proposition 6.1, it has location
vector E0 − Sθ,·,0W

(
W>ΣθW

)−1

W>y and scale matrix

y>W
(
W>ΣθW

)−1

W>y

n− p

{
Sθ,0,0 − Sθ,·,0W

(
W>ΣθW

)−1

W>Sθ,0,·

}
.

6.3 Reference prior on a one-dimensional θ

In this section, θ is assumed to be a scalar parameter, which we emphasize by writing it θ.
This is the easy case: Propositions 6.4 and 6.5 recall Proposition 3.2.

Proposition 6.4. The reference prior on θ is π(θ) ∝√√√√Tr

[{
W> ∂

∂θ
(Σθ)W

(
W>ΣθW

)−1
}2
]
− 1

n− p
Tr

{
W> ∂

∂θ
(Σθ)W

(
W>ΣθW

)−1
}2

.

(6.18)

This result is in keeping with the previous work of [Berger et al., 2001]:

Proposition 6.5. The reference prior on θ can also be written as:

π(θ) ∝

√√√√Tr

[{
∂

∂θ
(Σθ)Σ

−1
θ Qθ

}2
]
− 1

n− p

[
Tr

{
∂

∂θ
(Σθ)Σ

−1
θ Qθ

}]2

, (6.19)

where Qθ := In −H
(
H>Σ−1

θ H
)−1

H>Σ−1
θ .

6.4 The Gibbs reference posterior on a multi-dimensional θ

Definition

In the case of a multidimensional θ, reference prior theory gives a choice between 1) consid-
ering θ as a single parameter or 2) defining an ordering on the scalar parameters θ1, ..., θr.
Both possibilities are unsatisfactory, albeit in different ways. Concerning 1), Jeffreys’ prior is
unsuited to dealing with multidimensional parameters [Robert et al., 2009] and besides, the
posterior may be improper. Concerning 2), further integration of the likelihood (6.10) would
be analytically intractable, even if it were possible to define a non-arbitrary ordering of the
coordinates of θ.

We propose a quasi-posterior distribution based on the reference posterior of models where
only one coordinate of θ is unknown. For any integer i ∈ [|1, r]], we collectively denote by θ−i
all coordinates of θ except the i-th: θ−i = (θj)j∈[[1,r]]\{i}.
Consider now πi(θi|θ−i), the reference prior distribution on θi conditional to θ−i and the
associated reference posterior distribution πi(θi|y,θ−i) ∝ L1(y|θ)πi(θi|θ−i),.
The conditional reference prior πi(θi|θ−i) is given by πi(θi|θ−i) ∝√√√√Tr

[{
W>∂θiΣθW

(
W>ΣθW

)−1
}2
]
− 1

n− p
Tr

{
W>∂θiΣθW

(
W>ΣθW

)−1
}2

.

(6.20)
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Now consider the sequence of conditional posterior distributions (πi(θi|y,θ−i))i∈[[1,r]]. These
conditional distributions are incompatible in the sense that there exists no joint probability
distribution π(θ|y) which agrees with all of them. We may however define the Gibbs reference
posterior as a compromise between the conditionals in this sequence. In Chapter 4 we provided
theoretical foundation for what such a compromise could be. In the end, we showed it to be
the stationary probability distribution of a Markovian kernel Py : (0,+∞)r × B ((0,+∞)r),
where B ((0,+∞)r) denotes the Borel algebra on ((0,+∞)r). Py is defined by the following
expression, where θ(0) ∈ (0, 1)r and δt denotes the shifted Dirac measure δ(· − t):

Py(θ(0), dθ) =
1

r

r∑
i=1

πi(θi|y,θ(0)
−i )dθi δθ(0)

−i
(dθ−i). (6.21)

The goal of this section is to provide sufficient conditions for the existence (and thus, propri-
ety) of this stationary probability distribution πG(θ|y) and to show that the Markov Chain
Monte-Carlo (MCMC) algorithm based on the Markovian kernel Py converges to it, that is,
Py is uniformly ergodic. This means that denoting by Pny the Markov kernel produced by n
successive applications of Py and by ‖ · ‖TV the total variation norm,

lim
n→∞

sup
θ(0)∈(0,+∞)r

‖Pny (θ(0), ·)− πG(·|y)‖TV = 0. (6.22)

In the following results, when we write that “Py is uniformly ergodic”, we mean that Equation
(6.22) holds.

Existence

The results in this subsection deal with the following setting:
— The spatial domain is the unit cube (0, 1)r (r > 0).
— The mean function space Fp has dimension p > 0.
— The Universal Kriging model uses a Matérn anisotropic geometric or tensorized corre-

lation kernel with smoothness parameter ν > 0.
— Design sets contain n > 0 points, so we identify (0, 1)rn with the set of all design sets

in the spatial domain (0, 1)r. Let Q(r, n) be the Lebesgue measure on (0, 1)rn.
In the following, we change parametrization for the sake of convenience: define µ such that
∀i ∈ [[1, r]], µi = 1/θi. The conditionals are invariant to such a change, and therefore both the
Markovian kernel Py and, if it exists, its stationary probability remain the same. Abusing no-
tations, the likelihood L1(y|θ) is denoted by L(y|µ) when expressed in the µ-parametrization.
Define the functions fi by fi(µi|µ−i) :=

√√√√Tr

[(
W> ∂

∂µi
ΣµW

(
W>ΣµW

)−1
)2
]
− 1

n− p
Tr

[
W> ∂

∂µi
ΣµW

(
W>ΣµW

)−1
]2

.

(6.23)
Then, following Equation (6.20), the conditional density πi is in the µ-parametrization given
by:

πi(µi|µ−i) ∝ fi(µi|µ−i). (6.24)
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We need to make some assumptions which are detailed below.

Assumption 3. Any vector in the subspace of Rn spanned by H is either null or has strictly
more than 2r non-null elements when expressed in the canonical base.

Remark. It is not apparent, but the purpose of Assumption 3 is to control the behavior of
the fi(µi|µ−i) (i ∈ [[1, r]]) when ‖µ‖ → ∞. See the proofs in Appendix 6.B for details.

This assumption is not very restrictive, as the two following results show.

Proposition 6.6. In Ordinary Kriging – that is with p = 1 and Fp being the space of constant
functions – if n > 2r, Assumption 3 is automatically verified.

Proof. In this setting, H is a non-null constant n × 1 matrix, so Assumption 3 is trivially
verified.

Proposition 6.7. Assume that the design set is such that any subset with cardinal r+1 forms
a simplex. Then in Universal Kriging, if the mean function space Fp is included within the
vector space of polynomials of degree 0 and 1, and if n > 3r, Assumption 3 is automatically
verified.

Proof. Let y∗ belong to the subspace of Rn spanned by H. Assume that it has 2r or fewer
non-null elements when expressed in the canonical base. Conversely, it has at least n−2r null
elements. If n > 3r, then this means that there exists a function f∗ ∈ Fp (the one represented
by y∗) which admits at least r + 1 zeros on the design set. However, given the premise of
Proposition 6.7, these r + 1 points form a simplex, so they span an affine space of dimension
r. As f∗ is a polynomial with r unknowns of degree 0 or 1, this implies that f∗ = 0.

Remark. Q(r, n)-almost all design sets fit the premise of Proposition 6.7.

In some cases, Assumption 3 is sufficient for our purposes. Define 1 as the vector of Rn with
all components in the canonical basis equal to 1.

Proposition 6.8. In the setting described above, if 0 < ν < 1 and n > p + 1, then for
Q(r, n)-almost all design sets, if 1 does not belong to the vector space spanned by H, then
Assumption 3 implies that there exists a hyperplane H of Rn such that ∀y ∈ Rn \ H, Py is
uniformly ergodic.

The proof of this Proposition can be found in Appendix 6.B.
Naturally, the above result is somewhat unsatisfactory since most users will want to include
non-null constant functions in Fp.
Consider now the following assumption.

Assumption 4. There exists εy > 0 such that L(y|µ) = O(‖µ‖εy ) when ‖µ‖ → 0.

Remark. Assumption 4 essentially means that the model should find perfect correlation un-
likely.

The following theorem, which is proved in Appendix 6.B, is our essential tool for dealing with
the case where non-null constant functions are included in Fp.

Theorem 6.9. In the setting described above, if ν > 1 and n > p+ 2r + 2, then for Q(r, n)-
almost all design sets, Assumptions 3 and 4 imply that Py is uniformly ergodic.
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The next two results, which are proved in Appendix 6.B, concern particular settings where
Assumptions 3 and 4 are both verified and therefore Theorem 6.9 yields the uniform ergodicity
of Py.

Proposition 6.10. Consider the particular case of the above described setting where p = 1

and Fp is the space of all constant functions (Ordinary Kriging), and assume that one of the
following conditions is satisfied:

1. 1 < ν < 2 and n > 2r + 3;

2. 2 < ν < 3 and n > (r + 1)(r/2 + 2).

Then, for Q(r, n)-almost all design sets, there exists a hyperplane H of Rn such that ∀y ∈
Rn \ H, Py is uniformly ergodic.

Proposition 6.11. Consider the particular case of the above described setting where Fp is
included within the space of all polynomials of degree 0 and 1 (so p 6 r+ 1) and assume that
the following condition is satisfied:

— 2 < ν < 3 and n > r(r + 1)/2 + 2r + 3.
Then, for Q(r, n)-almost all design sets, there exists a hyperplane H of Rn such that ∀y ∈
Rn \ H, Py is uniformly ergodic.

Remark. In Propositions 6.8, 6.10 and 6.11, the condition that the observation y should not
belong to a given negligible (for the Lebesgue measure) subset of Rn is fairly natural: for the
Kriging model to be adequate, y must not look like a realization of a degenerate Gaussian
vector. Theorem 6.9 does not really dispense with it, as it is implied by Assumption 4.

To sum up the results of this section, to ensure that the Gibbs reference posterior exists and
can be accessed through Gibbs sampling, one should check that one of the following assertions
is true:

— ν > 1, n > r + p+ 2 and both Assumptions 3 and 4 are verified;
— Fp contains only constant functions and 1 < ν < 2 and n > r + 3;
— Fp contains only polynomials of degree 0 and 1, 2 < ν < 3 and n > r(r+1)/2+2r+3;
— 0 < ν < 1, n > p+ 1, no non-null constant function belongs to Fp and Assumption 3

is verified.

6.5 Comparison of the predictive performance of the full-Bayesian

approach versus MLE and MAP plug-in approaches

In this section, we evaluate the predictive performance resulting from the Gibbs reference
posterior distribution πG(θ|y) in the context of a well-specified model, and then when em-
ulating some deterministic real functions. We contrast the full-Bayesian approach, in which
the Full Gibbs reference Posterior Distribution (FPD) is used, with two plug-in approaches:
one where the Maximum Likelihood Estimator (MLE) and the other where the Maximum A
Posteriori (MAP) estimator is assumed to be the true value of θ. All approaches make use
of the reference posterior π(β, σ2|y,θ).

We use the following terminology. We call Simple Kriging the Kriging model where the mean
function is assumed to be known, whether this assumption is correct or known. We call
Ordinary Kriging any Universal Kriging model where the mean function space is the space
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of constant functions. We call Affine Kriging any Universal Kriging model where the mean
function space is the space of affine functions.

Well-specified model

We first consider well-specified models, specifically Kriging models with unknown parameters
(β, σ2,θ) emulating actual Gaussian processes with variance σ2 = 1 and Matérn anisotropic
geometric autocorrelation kernel with smoothness ν = 5/2. Moreover, the true mean function
of the Gaussian process belongs to the assumed mean function space Fp.

The spatial domain is the unit cube (0, 1)r and the considered design sets all contain n points
independently chosen according to the Lebesgue measure on the domain (0, 1)r.

The following tables give the average coverage and average mean length of prediction intervals.
To define these notions, we introduce the following notations:

— Y is the Gaussian process, and Y (x) is the vector of the values taken by said process
at the points in the design set x;

— T is a random variable which follows the Uniform distribution on the unit cube (0, 1)r.
It represents the “test” point;

— X is the random design set following the Uniform distribution on ((0, 1)r)
n.

— Y , T and X are mutually independent;
— f is a function defined on ((0, 1)r)

n × Rn × (0, 1)r which associates to (x,y, t) the
prediction interval at t of the Gaussian process, based on the knowledge of its value y
on the design set x.

Definition 6.12. The average coverage is the probability (with respect to the distributions of
X, Y and T ) that Y (T ) ∈ f(X,Y (X), T ).

Definition 6.13. The average mean length is the expectation (with respect to the distributions
of X, Y and T ) of the length of f(X,Y (X), T ).

The average coverage P[Y (T ) ∈ f(X,Y (X), T )] is numerically computed as

P[Y (T ) ∈ f(X,Y (X), T )] = E[P[Y (T ) ∈ f(X,Y (X), T )|X,Y (X)]]

over 500 random design sets and for each design set 1000 random test points. The average
mean length is computed in a similar fashion.

In this subsection and the following one, we take n = 30 and r = 3.

In the first set of simulations, we use a well-specified Ordinary Kriging model, with the
unknown mean 5. As r = 3 and n = 30, Proposition 6.10 is applicable.

The results given in Table 6.1 show that using the full posterior distribution (FPD) to derive
the predictive distribution is the best possible choice from a frequentist point of view as the
nominal value is nearly matched by the average coverage. Predictive Intervals derived from
the MAP estimator do not perform as well, and Predictive Intervals derived from the MLE
perform even worse.

The results given in Table 6.2 show that Predictive Intervals arising from the full Gibbs
reference posterior distribution (FPD) are on average somewhat larger than those resulting
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Average Coverage
Corr. lengths True MLE MAP FPD
0.4 – 0.8 – 0.2 0.95 0.88 0.91 0.95
0.5 – 0.5 – 0.5 0.95 0.88 0.90 0.94
0.7 – 1.3 – 0.4 0.95 0.90 0.92 0.95
0.8 – 0.3 – 0.6 0.95 0.89 0.91 0.94
0.8 – 1.0 – 0.9 0.95 0.90 0.92 0.94

Table 6.1 – For a Gaussian Process with constant mean function equal to 5, variance parameter 1
and smoothness parameter 5/2, average coverage of 95% Prediction Intervals produced by an Ordinary
Kriging model. “True” stands for the Simple Kriging prediction based on the knowledge of the true
mean parameter, variance parameter and vector of correlation lengths.

from knowledge of the true parameters, while intervals arising from both types of parameter
estimation (MLE and MAP) are too short.

Average Mean Length
Corr. lengths True MLE MAP FPD
0.4 – 0.8 – 0.2 2.23 2.06 2.14 2.58
0.5 – 0.5 – 0.5 1.69 1.55 1.59 1.83
0.7 – 1.3 – 0.4 1.09 1.02 1.07 1.20
0.8 – 0.3 – 0.6 1.63 1.51 1.57 1.81
0.8 – 1.0 – 0.9 0.71 0.66 0.69 0.76

Table 6.2 – For a Gaussian Process with constant mean function equal to 5, variance parameter
1 and smoothness parameter 5/2, average mean length of 95% Prediction Intervals produced by an
Ordinary Kriging model. “True” stands for the Simple Kriging prediction based on the knowledge of
the true mean parameter, variance parameter and vector of correlation lengths.

Consider now Universal Kriging models where the true mean function is the polynomial
(x1, x2, x3) 7→ 5 + 4x1 + 3x2 + 2x3, and the model (correctly) assumes that it belongs to the
4-dimensional space (p = 4) spanned by the functions mapping (x1, x2, x3) to 1, x1, x2 and
x3 respectively. For such Affine Kriging models, Proposition 6.11 is applicable.

As shown in Table 6.3, Predictive Intervals resulting from both plug-in approaches (MLE,
MAP) and from the full posterior distribution perform a little worse than in the Ordinary
Kriging setting, but their relative performances stay the same.

Table 6.4 shows that the average mean lengths of Predictive Intervals are not very different
in Affine Kriging than in Ordinary Kriging when it comes to the FPD. However, they are

Average Coverage
Corr. lengths True MLE MAP FPD
0.4 – 0.8 – 0.2 0.95 0.87 0.90 0.94
0.5 – 0.5 – 0.5 0.95 0.87 0.89 0.92
0.7 – 1.3 – 0.4 0.95 0.89 0.92 0.94
0.8 – 0.3 – 0.6 0.95 0.87 0.90 0.93
0.8 – 1.0 – 0.9 0.95 0.89 0.92 0.93

Table 6.3 – For a Gaussian Process with mean function (x1, x2, x3) 7→ 5+4x1+3x2+2x3, variance
parameter 1 and smoothness parameter 5/2, average coverage of 95% Prediction Intervals produced
by an Affine Kriging model. “True” stands for the Simple Kriging prediction based on the knowledge
of the true mean function, variance parameter and vector of correlation lengths.
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larger in Affine Kriging than in Ordinary Kriging when it comes to the MLE and the MAP.
Interestingly, Predictive Intervals resulting from the MAP have about the same size as Pre-
dictive Intervals derived when all parameters are known. Those derived using the MLE are
shorter, and those derived from the FPD are larger.

Average Mean Length
Corr. lengths True MLE MAP FPD
0.4 – 0.8 – 0.2 2.23 2.14 2.23 2.59
0.5 – 0.5 – 0.5 1.69 1.57 1.66 1.83
0.7 – 1.3 – 0.4 1.09 1.04 1.10 1.20
0.8 – 0.3 – 0.6 1.63 1.54 1.61 1.80
0.8 – 1.0 – 0.9 0.71 0.67 0.71 0.75

Table 6.4 – For a Gaussian Process with mean function (x1, x2, x3) 7→ 5+4x1+3x2+2x3, variance
parameter 1 and smoothness parameter 5/2, average mean length of 95% Prediction Intervals produced
by an Affine Kriging model. “True” stands for the Simple Kriging prediction based on the knowledge
of the true mean function, variance parameter and vector of correlation lengths.

For reference, we give the tables obtained in the Simple Kriging case, that is the case where the
Gaussian Process is known to have null mean function. Table 6.5 gives the average coverages
and Table 6.6 the average mean lengths.

Average Coverage
Corr. lengths True MLE MAP FPD
0.4 – 0.8 – 0.2 0.95 0.88 0.91 0.95
0.5 – 0.5 – 0.5 0.95 0.89 0.90 0.94
0.7 – 1.3 – 0.4 0.95 0.90 0.92 0.95
0.8 – 0.3 – 0.6 0.95 0.89 0.91 0.95
0.8 – 1.0 – 0.9 0.95 0.90 0.92 0.94

Table 6.5 – For a Gaussian Process with null mean function, variance parameter 1 and smoothness
parameter 5/2, average coverage of 95% Prediction Intervals produced by a Simple Kriging model.
“True” stands for the prediction based on the knowledge of the true variance parameter and the true
vector of correlation lengths.

Average Mean Length
Corr. lengths True MLE MAP FPD
0.4 – 0.8 – 0.2 2.23 2.05 2.13 2.59
0.5 – 0.5 – 0.5 1.69 1.55 1.58 1.84
0.7 – 1.3 – 0.4 1.09 1.02 1.07 1.21
0.8 – 0.3 – 0.6 1.63 1.51 1.56 1.82
0.8 – 1.0 – 0.9 0.71 0.66 0.69 0.76

Table 6.6 – For a Gaussian Process with null mean function, variance parameter 1 and smoothness
parameter 5/2, average mean length of 95% Prediction Intervals produced by a Simple Kriging model.
“True” stands for the prediction based on the knowledge of the true variance parameter and the true
vector of correlation lengths.

The performance of Ordinary Kriging when the mean function is constant is nearly the same
as that of Simple Kriging when the mean function is known.
The performance of Affine Kriging when the mean function is affine, however, is noticeably
poorer than the performance of Simple Kriging when the mean function is known: its average
coverage is lower. This is not too surprising, since the prediction problem is more difficult.
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Average Coverage
Corr. lengths True MLE MAP FPD
0.4 – 0.8 – 0.2 0.95 0.77 0.81 0.88
0.5 – 0.5 – 0.5 0.95 0.80 0.82 0.89
0.7 – 1.3 – 0.4 0.95 0.82 0.86 0.91
0.8 – 0.3 – 0.6 0.95 0.79 0.83 0.89
0.8 – 1.0 – 0.9 0.95 0.82 0.86 0.91

Table 6.7 – For a Gaussian Process with mean function (x1, x2, x3) 7→ 5+4x1+3x2+2x3, variance
parameter 1 and smoothness parameter 5/2, average coverage of 95% Prediction Intervals resulting
from Simple Kriging (assuming the mean function is null for MLE/MAP/FPD and knowing it is
(x1, x2, x3) 7→ 5+4x1+3x2+2x3 for “True”). “True” stands for the prediction based on the knowledge
of the true mean function, variance parameter and vector of correlation lengths.

Misspecified models

In this subsection, we deal with the performance of Kriging in cases where the Gaussian
Process does not fit all assumptions.

First, we evaluate the performance of Universal Kriging in a context where the true mean
function does not belong to the assumed mean function space Fp. Precisely, we consider a
Gaussian process with mean function (x1, x2, x3) 7→ 5 + 4x1 + 3x2 + 2x3 and evaluate the
performance of Simple Kriging (assuming the mean function to be null) with respect to that
of Affine Kriging, which is the correct model in this situation.
Tables 6.7 and 6.8 show that Simple Kriging performs significantly worse than Affine Kriging
when the mean function is (x1, x2, x3) 7→ 5+4x1+3x2+2x3, both in terms of average coverage
and average mean length of Predictive Intervals. Relative performances of MLE, MAP and
FPD once again stay the same, though.

Average Mean Length
Corr. lengths True MLE MAP FPD
0.4 – 0.8 – 0.2 2.23 2.23 2.36 2.78
0.5 – 0.5 – 0.5 1.69 1.61 1.66 1.92
0.7 – 1.3 – 0.4 1.09 1.03 1.13 1.28
0.8 – 0.3 – 0.6 1.63 1.54 1.63 1.87
0.8 – 1.0 – 0.9 0.71 0.64 0.68 0.77

Table 6.8 – For a Gaussian Process with mean function (x1, x2, x3) 7→ 5+4x1+3x2+2x3, variance
parameter 1 and smoothness parameter 5/2, average mean length of 95% Prediction Intervals resulting
from Simple Kriging (assuming the mean function is null for MLE/MAP/FPD and knowing it is
(x1, x2, x3) 7→ 5+4x1+3x2+2x3 for “True”). “True” stands for the prediction based on the knowledge
of the true mean function, variance parameter and vector of correlation lengths.

This observation may lead us to investigate how Simple Kriging behaves with respect to
Affine Kriging when the Gaussian Process is smoother than expected. Table 6.9 gives the
average coverage and average mean length of Prediction Intervals resulting from the same
procedure as before – that is, the correlation kernel is assumed to be Matérn with smoothness
5/2 – but the Gaussian Process actually has a Squared Exponential correlation kernel (with
correlation lengths 0.4, 0.8 and 0.2). These results can be compared with those from Table
6.10, which gives the results obtained when both the actual and the assumed correlation
kernel are Matérn with smoothness 5/2 (and the true correlation lengths are also 0.4, 0.8 and
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0.2). It is apparent that performance is better when the actual kernel is Squared Exponential,
both in terms of average coverage and average mean length. Recalling that this kernel can
be seen as the limit of the Matérn kernel when the smoothness parameter goes to infinity, we
conclude that a smoother process leads to an increase in performance for Simple, Ordinary
and Affine Kriging. For Affine Kriging, the smoother process makes Prediction Intervals on
average shorter, while the average coverage remains about the same. For Simple Kriging
and to a lesser degree Ordinary Kriging, the smoother process makes Prediction Intervals on
average shorter, while also increasing average coverage.

Squared Exponential Kernel Average coverage Average mean length
Kriging model MLE MAP FPD MLE MAP FPD
Simple Kriging* 0.83 0.86 0.92 1.63 1.76 2.02
Ordinary Kriging 0.88 0.90 0.93 1.70 1.79 2.01
Affine Kriging 0.89 0.91 0.93 1.63 1.70 1.88

Table 6.9 – For a Gaussian Process with mean function (x1, x2, x3) 7→ 5+4x1+3x2+2x3, variance
parameter 1, and squared exponential correlation kernel with correlation lengths 0.4 - 0.8 - 0.2,
average coverage and average mean length of 95% Prediction Intervals resulting from different types
of Kriging (assuming the smoothness parameter to be 5/2). *With Simple Kriging, the mean function
is (wrongly here) assumed to be constant with null value.

Matérn kernel ν = 5/2 Average coverage Average mean length
Kriging model MLE MAP FPD MLE MAP FPD
Simple Kriging* 0.77 0.81 0.88 2.23 2.36 2.77
Ordinary Kriging 0.84 0.86 0.91 2.30 2.37 2.71
Affine Kriging 0.87 0.90 0.94 2.14 2.23 2.59

Table 6.10 – For a Gaussian Process with mean function (x1, x2, x3) 7→ 5+4x1+3x2+2x3, variance
parameter 1 and Matérn kernel with correlation lengths 0.4 - 0.8 - 0.2 and smoothness parameter 5/2,
average coverage and average mean length of 95% Prediction Intervals resulting from different types
of Kriging. *With Simple Kriging, the mean function is (wrongly here) assumed to be constant with
null value.

All else being equal, smoother processes result in a better quality of prediction for Simple,
Ordinary and Affine Kriging, because the observed values of the process yield more informa-
tion about the value of the process in the neighborhoods of the observation points. This even
makes up to some degree for the misspecification of the mean function, so the improvement
is greater in the case of Simple Kriging.

Emulating deterministic functions

In this subsection, we test the ability of the model to predict deterministic functions, namely
the 7-dimensional Ackley and Rastrigin functions. The Ackley and the Rastrigin functions
have the following expressions:
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A(x) = 20 + exp(1)− 20 exp

−0.2

√√√√1

7

7∑
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x2
i

− exp

(
1

7

7∑
i=1

cos(2πxi)

)
; (6.25)

R(x) = 70 +

7∑
i=1

(
x2
i − 10 cos(2πxi)

)
. (6.26)

Naturally, the notions of average coverage and average mean length for Prediction intervals
make no sense in this setting, since we can no longer average our results over the distribution
of a Gaussian process. Denoting d the deterministic function, and using previous notations,
we may define:

Definition 6.14. The coverage is the probability (with respect to the distribution of X and
T ) that d(T ) ∈ f(X, d(X), T ).

Definition 6.15. The mean length is the expectation (with respect to the distribution of X
and T ) of the length of f(X, d(X), T ).

The coverage P[Y (T ) ∈ f(X, d(X), T )] is numerically computed as

P[Y (T ) ∈ f(X,Y (X), T )] = E[P[Y (T ) ∈ f(X, d(X), T )|X]]

over 500 design sets and for each design set 1000 test points. The mean length is computed
in a similar fashion.

When emulating the Ackley or the Rastrigin function, we take r = 7 and n = 100.

We must stress that there is no reason that the coverage of 95% Prediction Intervals, whether
produced by MLE or MAP plug-in methods or by the full Gibbs reference posterior distri-
bution should be 95%, but depending on whether or not Kriging can be considered a good
surrogate model for the Ackley or Rastrigin function, the coverage of 95% Prediction Intervals
may be more or less close to the 95% target figure.

First, we consider an Ordinary Kriging model with anisotropic geometric Matérn kernel of
smoothness ν = 5/2. Because r = 7 and n = 100, Proposition 6.10 is applicable.

When emulating the Ackley function (cf. Table 6.11), regardless of the Kriging method
used, the full posterior distribution significantly improves the average coverage of Prediction
Intervals when compared to the MLE or the MAP, with a comparatively small trade-off
regarding the mean length of these intervals. This result is consistent with results obtained
with actual realizations of Gaussian processes.

When we emulate the Rastrigin function (cf. Table 6.12), coverages come closer to the average
coverages given in Tables 6.1, 6.3 and 5.2. But the more significant fact of the improvement
of the coverage by the full posterior distribution is as true here as in the Ackley case. We may
simply infer from this that the Rastrigin function can more plausibly be seen as a realization
of a Gaussian Process than the Ackley function.

Let us now compare the performance of different Kriging models: Simple (mean function
assumed null), Ordinary and Affine. When emulating the Ackley function, Ordinary and
Affine Kriging models yield slightly higher Prediction Interval coverages than Simple Kriging,
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Emulated function: Ackley Coverage Mean length
Kriging model MLE MAP FPD MLE MAP FPD
Simple Kriging 0.84 0.87 0.90 0.35 0.36 0.39

Ordinary Kriging 0.87 0.88 0.91 0.37 0.38 0.41
Affine Kriging 0.87 0.90 0.91 0.37 0.39 0.41

Table 6.11 – Coverage and mean length of 95% Prediction Intervals when emulating the 7-
dimensional Ackley function (Matérn anisotropic geometric correlation kernel with smoothness ν =
5/2).

Emulated function: Rastrigin Coverage Mean length
Kriging model MLE MAP FPD MLE MAP FPD
Simple Kriging 0.94 0.94 0.96 28.3 28.3 30.2

Ordinary Kriging 0.91 0.92 0.94 26.2 26.7 28.3
Affine Kriging 0.90 0.91 0.92 25.9 26.5 27.2

Table 6.12 – Coverage and mean length of 95% Prediction Intervals when emulating the 7-
dimensional Rastrigin function (Matérn anisotropic geometric correlation kernel with smoothness
ν = 5/2).

at the cost of slightly higher mean lengths. When emulating the Rastrigin function, we
actually observe the reverse phenomenon.

From this study, we cannot conclusively ascertain whether Universal Kriging, at least in the
form of Ordinary or Affine Kriging, yields better results than Simple Kriging. All that can
be said is that these Kriging methods are more or less conservative, but even this depends on
the emulated function.

In the following example (cf. Table 6.13), we add the linear function (x1, x2, x3, x4, x5, x6, x7)

7→ 100
∑7
i=1 xi to the 7-dimensional Rastrigin function. We may expect this modification

of the Rastrigin function to be more accurately emulated by Affine Kriging than by Simple
Kriging.

Rastrigin + 100
∑7
i=1 xi Coverage Mean length

Kriging model MLE MAP FPD MLE MAP FPD
Simple Kriging 0.88 0.92 0.94 25.9 29.3 31.1

Ordinary Kriging 0.87 0.91 0.93 25.7 28.5 30.4
Affine Kriging 0.90 0.91 0.92 26.0 26.6 27.3

Table 6.13 – Coverage and mean length of 95% Prediction Intervals when emulating the 7-
dimensional Rastrigin function augmented by a linear function (Matérn anisotropic geometric corre-
lation kernel with smoothness ν = 5/2).

The addition of the linear function causes a decrease in performance for Prediction Intervals
of both Simple and Ordinary Kriging, in the sense that coverage decreases while mean length
increases for MAP and FPD. And the coverage of MLE sinks so much – from 94% to 88% for
Simple Kriging and from 91% to 87% for Ordinary Kriging – that its performance may also
be said to decrease, even though its mean length is slightly lower.

The performance of Affine Kriging is unchanged, however, whether one considers the MLE
or MAP plug-in methods or the method using the full posterior distribution. This suggests
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that with a stronger linear component, Affine Kriging would be clearly preferable to Simple
or Ordinary Kriging.

To test this, we emulate the 7-dimensional Rastrigin function, to which we add a stronger
linear term: (x1, x2, x3, x4, x5, x6, x7) 7→ 120

∑7
i=1 xi.

Rastrigin + 120
∑7
i=1 xi Coverage Mean length

Kriging model MLE MAP FPD MLE MAP FPD
Simple Kriging 0.90 0.94 0.96 27.6 33.0 37.6

Ordinary Kriging 0.88 0.92 0.94 26.9 30.5 32.3
Affine Kriging 0.90 0.92 0.92 26.0 26.9 27.3

Table 6.14 – Coverage and mean length of 95% Prediction Intervals when emulating the 7-
dimensional Rastrigin function augmented by a linear function (Matérn anisotropic geometric corre-
lation kernel with smoothness ν = 5/2).

For Simple Kriging, Prediction Intervals coverage and mean length are both higher when
120

∑7
i=1 xi is added to the Rastrigin function (Table 6.14) rather than 100

∑7
i=1 xi (Table

6.13). This is also true, though to a lesser extent, of Ordinary Kriging. The performance of
Affine Kriging, on the other hand, still remains the same because it can account for any linear
term by seeing it as part of the mean function. Simple Kriging (assuming the mean function
to be null) and Ordinary Kriging do not have this luxury and must assume a greater variance
for the Gaussian process, which results in more conservative Predictive Intervals.

Gathering the results obtained above, we conclude that Universal Kriging only significantly
improves performance if the trend belongs to the assumed mean function space Fp and if it
stands out. In other words, the signal/noise ratio must be high, where the signal is here the
“true” mean function and the noise is the stationary Gaussian Process added to it. When
no trend of the expected form can be discerned, like when emulating the Ackley or Rastrigin
function through Affine Kriging, then there is no significant benefit to using Universal instead
of Simple Kriging. When the ratio is high, as in the case of the Rastrigin function with the
addition of the greater linear term 120

∑7
i=1 xi, Universal Kriging (if the mean function space

Fp is adequately defined) improves upon Simple Kriging, which becomes overly conservative.
Further, when the emulated function is particularly smooth, Simple Kriging becomes capable
of capturing the trend to some extent even if the mean function is misspecified, thanks to the
mechanics of Gaussian conditioning.

6.6 Conclusion

In this chapter, we provided an Objective Bayesian solution to the problem of taking into
account parameter uncertainty when performing prediction based on a Universal Kriging
model with anisotropic Matérn autocorrelation kernel. The reference posterior on the location
parameter β and the variance parameter σ2 is coupled with the Gibbs reference posterior on
the vector of correlation lengths θ. By using the Gibbs reference posterior, which is the
optimal compromise between the conditional reference posteriors on one correlation length
θi based on the knowledge of all other correlation length θj (j 6= i), we bypass the problem
of determining an ordering on the correlation lengths. Moreover, this solution allows for
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Gibbs sampling of the posterior distribution, which makes full-Bayesian inference or prediction
tractable.

We proved that the Gibbs reference posterior exists and is proper in several Universal Kriging
settings, depending on the number of available observation points and on the smoothness
parameter of the Matérn kernel.

Numerical simulations show that Prediction Intervals produced by the full-Bayesian procedure
based on the Gibbs reference posterior have better coverage than those produced by the
Maximum Likelihood Estimator or even the Maximum A Posteriori estimator, and that their
mean length is only moderately greater.

In addition, these simulations showed that when emulating deterministic functions, there is no
obvious advantage to using Universal Kriging over Simple Kriging, unless the trend strongly
stands out and belongs to the assumed mean function space.

From a theoretical standpoint, the Universal Kriging setting poses specific problems when
compared to the Simple Kriging setting. As was shown (to our knowledge for the first time) by
Berger et al. [2001], the behavior of the integrated likelihood changes significantly depending
on whether functions that take a non-null constant value on the design set are included in the
mean function space Fp. The integrated likelihood often fails to vanish in the neighborhood
of perfect correlation in Ordinary Kriging models and a fortiori in more complex Universal
Kriging models where the constant term of the mean function is unknown. Berger et al.
[2001] show in the isotropic framework that the reference prior adapts to this situation by
being proper (at least for sufficiently rough correlation kernels – we provided a proof for
smoother kernels in Chapter 3). In the anisotropic framework however, we were not able
to prove the existence of the Gibbs reference posterior in such a situation, which is why we
require Assumption 4. Although it is possible that closer analysis may allow us to relax
this requirement, we find it more likely that Assumption 4 is the price we pay for defining
the Gibbs reference posterior as a compromise between incompatible conditional reference
posterior distributions. Indeed, each conditional maximizes the expected information of the
model when all but one correlation length are fixed at finite values, i.e. in a context where
perfect correlation is impossible, whatever may be the value of the unfixed correlation length.
Therefore, it is conceivable that in the absence of penalization by the integrated likelihood of
the kind given by Assumption 4, the conditionals may place too much weight on high values
of the unfixed correlation length for the Gibbs reference posterior to be well defined.

Taking this restriction into account in Theorem 6.9, we proved that the Gibbs reference pos-
terior exists and is the limit of a uniformly converging Markov Chain Monte-Carlo (MCMC)
algorithm for commonly used Matérn anisotropic geometric and tensorized correlation kernels
when the design set has enough points (cf. Propositions 6.10 and 6.11). More generally, we
would conjecture that for any noninteger smoothness ν ∈ (1,+∞), and if the mean function
space Fp does not contain polynomials of degree higher than [ν]− 1, there exists some lower
bound on the cardinal of the design set over which the Gibbs reference posterior exists and
the MCMC algorithm uniformly converges to it. However, this lower bound may be too high
for practical purposes.

Future work may involve gaining a better understanding of the significance of the Gibbs refer-
ence posterior as a compromise between the incompatible reference conditionals on correlation
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lengths. This method was primarily intended as a practical means of solving the problem of
giving an objective posterior distribution on correlation lengths in the case of anisotropic
correlation kernels, where the reference posterior is intractable and may not be proper. But
its theoretical properties beyond its propriety, its invariance under reparametrizations of the
type f((θ1, ..., θr)

>) = (f1(θ1), ..., fr(θr))
> and its apparent good frequentist performances

remain unknown.
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Appendix 6.A Matérn kernels

We use the following convention for the Fourier transform: the Fourier transform ĝ of a smooth
function g : Rr → R verifies g(x) =

∫
Rr ĝ(ω)ei〈ω|x〉dω and ĝ(ω) = (2π)−r

∫
Rr g(x)e−i〈ω|x〉dx.

Let us set up a few notations.

(a) Kν is the modified Bessel function of second kind with parameter ν ;

(b) Kr,ν is the r-dimensional Matérn isotropic covariance kernel with variance 1, correlation
length 1 and smoothness ν ∈ (0,+∞) and K̂r,ν is its Fourier transform:

(i) ∀x ∈ Rr,
Kr,ν(x) =

1

Γ(ν)2ν−1

(
2
√
ν‖x‖

)ν Kν (2√ν‖x‖) ; (6.27)

(ii) ∀ω ∈ Rr,

K̂r,ν(ω) =
Mr(ν)

(‖ω‖2 + 4ν)ν+ r
2
with Mr(ν) =

Γ(ν + r
2 )(2
√
ν)2ν

π
r
2 Γ(ν)

. (6.28)

(c) Ktens
r,ν is the r-dimensional Matérn tensorized covariance kernel with variance 1, correla-

tion length 1 and smoothness ν ∈ R+ and K̂tens
r,ν is its Fourier transform:

(i) ∀x ∈ Rr,

Ktens
r,ν (x) =

r∏
j=1

K1,ν(xj) ; (6.29)

(ii) ∀ω ∈ Rr,

K̂tens
r,ν (ω) =

r∏
j=1

K̂1,ν(ωj). (6.30)

(d) let us adopt the following convention: if t ∈ Rr, tθ =
(
t1
θ1
, ..., trθr

)
and tµ = (t1µ1, ..., trµr).

We define the Matérn geometric anisotropic covariance kernel with variance parameter σ2,
correlation lengths θ (resp. inverse correlation lengths µ) and smoothness ν as the function
x 7→ σ2Kr,ν

(
x
θ

)
(resp. x 7→ σ2Kr,ν (xµ)).

Similarly, we define the Matérn tensorized covariance kernel with variance parameter σ2,
correlation lengths θ (resp. inverse correlation lengths µ) and smoothness ν as the function
x 7→ σ2Ktens

r,ν

(
x
θ

)
(resp. x 7→ σ2Ktens

r,ν (xµ)).

Appendix 6.B Proofs of the existence of the Gibbs reference

posterior

The proof of the existence and uniqueness of the Gibbs reference posterior that was used
in Chapter 5 to deal with the Simple Kriging setting is inadequate in the Universal Kriging
setting because the projection W> may make key facts used in that chapter untrue. In the
following, we provide replacements for the parts of the proof in Appendix 6.A that are invalid
in the Universal Kriging setting.
The proof contained two parts, one dealing with “low correlations”, that is ‖µ‖ → +∞ and
one with “high correlation”, that is ‖µ‖ → 0.
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Accounting for low correlation: ‖µ‖ → ∞

Concerning the part about ‖µ‖ → +∞, we need to make sure that Corollary 5.13 remains
true.
Define the functions hi by

hi(µi | µ−i) :=

√√√√Tr

[(
∂

∂µi
Σµ

)2
]

=

∥∥∥∥ ∂

∂µi
Σµ

∥∥∥∥ . (6.31)

The conclusion of Corollary 5.13 is that that there exist S > 0 and 0 < a < b such that,
whenever ‖µ‖ > S,

a hi(µi | µ−i) 6 fi(µi | µ−i) 6 b hi(µi | µ−i). (6.32)

We need to find conditions under which this is true. While the right inequality is obvious,
the left inequality is harder to show.

Fix α = µ/‖µ‖∞. Then define Li,α = lim
‖µ‖→∞

∂
∂µi

Σµ/
∥∥∥ ∂
∂µi

Σµ

∥∥∥
∞
.

We now give an explicit form for Li,α. Let X be the n × r matrix representing the design
set, and let Xα be the matrix XDiag(α), where Diag(α) is the r× r diagonal matrix whose
diagonal is the vector α.

Proposition 6.16. If the Matérn kernel is anisotropic geometric, then Li,α is the symmetric
n×n matrix with null diagonal whose nondiagonal coefficients are given by the following rule:
its (a, b) coefficient (a, b ∈ [[1, n]] and a 6= b) is −1 if the a-th and b-th point in the design set
Xα achieve minimal Euclidean distance within this design set, and 0 otherwise.

Proof. We only prove the result when ν > 1, but the proof is very similar in the case where
0 < ν 6 1.
Abramowitz and Stegun [1964] (formula 9.7.2.) yields an equivalent for the one-dimensional
Matérn kernel when t→ +∞:

K1,ν(t) ∼
√
π/2

Γ(ν)2ν−1
(2
√
νt)ν−1/2 exp(−2

√
νt) (6.33)

From Abramowitz and Stegun [1964] (formula 9.6.28.), we obtain that:

K ′1,ν(t) = − 2νt

ν − 1
K1,ν−1

(√
ν

ν − 1
t

)
∼ −2

√
ν

√
π/2

Γ(ν)2ν−1
(2
√
νt)ν−1/2 exp(−2

√
νt)

∼ −2
√
νK1,ν(t) (6.34)

The result follows after recalling that ∂
∂µi

Kr,ν(µx) = µix
2
i ‖µx‖−1K ′1,ν(‖µx‖). When ‖µ‖ →

∞,

∂

∂µi
Kr,ν(µx) ∼ −2

√
νµix

2
i ‖µx‖−1

√
π/2

Γ(ν)2ν−1
(2
√
ν‖µx‖)ν−1/2 exp(−2

√
ν‖µx‖). (6.35)

In the case where 0 < ν 6 1, ∂
∂µi

Kr,ν(µx) also has an equivalent when ‖µ‖ → ∞ whose
prominent factor is exp(−2

√
ν‖µx‖), so the end result is the same.
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Proposition 6.17. If the Matérn kernel is tensorized with smoothness ν > 1, then Li,α is
the matrix with nonpositive coefficients such that ‖Li,α‖∞ = 1 which is proportional to the
symmetric matrix described hereafter: it has null diagonal and its nondiagonal coefficients
are given by the following rule: its (a, b) coefficient (a, b ∈ [[1, n]] and a 6= b) is 0 if the a-th
and b-th point in the design set Xα do not achieve minimal 1-distance within this design set,

and αν−1/2
i

∣∣∣x(a)
i − x

(b)
i

∣∣∣ν+1/2∏
j 6=i α

ν−1/2
j

∣∣∣x(a)
j − x

(b)
j

∣∣∣ν−1/2

if they do.

Remark. If the Matérn kernel is tensorized with smoothness 0 < ν 6 1, then the same rule
applies but with different formula when minimal 1-distance is achieved.

Proof. The proof is similar to that of Proposition 6.16.

Corollary 6.18. For Matérn anisotropic geometric and tensorized kernels, if the design set
X is randomly chosen according to the Uniform probability distribution on (0, 1)rn, then
almost surely, whatever i ∈ [[1, n]] and α in Rr such that ‖α‖∞ = 1, Li,α has rank lower or
equal to 2r.

Proof. Almost surely, whatever α in Rr such that ‖α‖∞ = 1, the design set Xα has at
most r couples of distinct points achieving equal distance (whether that distance be the 1-
or 2-distance). A fortiori, it has at most r couples of distinct points achieving minimal
distance.

With fixed α, as ‖µ‖ → ∞, we have

fi(µi | µ−i) ∼
∥∥∥∥ ∂

∂µi
Σµ

∥∥∥∥
∞

√
Tr

[(
W>Li,αW

)2
]
− 1

n− p
Tr
[
W>Li,αW

]2
(6.36)

We may recognize the factor under the square root as the variance (multiplied by n − p)
of the eigenvalues (accounting for multiplicity) of the matrix W>Li,αW . If the premise of
Corollary 6.18 holds, and if 2r < n − p, then it is null if and only if W>Li,αW is the null
matrix. Assumption 3 is designed to prevent this from happening.

Proposition 6.19. Assume 2r < n−p. For Matérn anisotropic geometric or tensorized cor-
relation kernels, if the design set X is randomly chosen according to the Uniform probability
distribution on (0, 1)rn, then almost surely, Assumption 3 implies that

min
i∈[[1,n]],‖α‖∞=1

√
Tr

[(
W>Li,αW

)2
]
− 1

n− p
Tr
[
W>Li,αW

]2
> 0. (6.37)

Proof. First, set i ∈ [[1, n]] and α in Rr such that ‖α‖∞ = 1. We prove that W>Li,αW is
not the null matrix.

Assume that it is and that Assumption 3 holds. Assumption 3 implies that the intersection of
the vector space spanned by P and the image of Li,α is {0n}. Therefore, for any z ∈ Rn−p, if
Li,αW z 6= 0n, thenW>Li,αW z 6= 0n−p, which contradicts the assumption thatW>Li,αW

is the null matrix. So Li,αW is the null n×(n−p) matrix, and thus the vector space spanned
by W is included in the kernel of Li,α. This implies that Li,αPP> = Li,α, and then that
PP>Li,α = Li,α. However, per Propositions 6.16 and 6.17, all vectors in the image of Li,α
have at most 2r non-null elements when expressed in the canonical base of Rn, so Assumption
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3 implies that P>Li,α is the null p× n matrix, and thus that Li,α is the null n× n matrix,
which is untrue.

So, under Assumption 3, whatever i ∈ [[1, n]] and α in Rr such that ‖α‖∞ = 1, W>Li,αW

is not the null matrix and thus has a non-null eigenvalue. Moreover, 2r < n − p implies,
according to Corollary 6.18, that it also almost surely has a null eigenvalue, so the standard
deviation of its eigenvalues is positive. As the number of possible matrices Li,α (with i ∈ [[1, n]]

and α in Rr such that ‖α‖∞ = 1) is almost surely finite, this yields the result.

Corollary 6.20. Assume 2r < n − p. For Matérn anisotropic geometric or tensorized cor-
relation kernels, if the design set X is randomly chosen according to the Uniform probability
distribution on (0, 1)rn, then almost surely, Assumption 3 implies that there exist S > 0 and
0 < a < b such that whenever ‖µ‖ > S, Equation (6.32) holds.

Accounting for high correlation: ‖µ‖ → 0

In the part of the proof in Appendix 5.A concerning ‖µ‖ → 0, we used a the series ex-
pansion of Σµ. This expansion may be heavily modified by premultiplication by W> and
postmultiplication by W .

In the case where ν < 1, there is no material change unless the vector 1 belongs to the vector
space spanned by H.

Proof of Proposition 6.8 . Because 1 does not belong to the vector space spanned by H,
W>11>W has rank 1 and so the proof of this result is the same as in the Simple Kriging
case.

If 1 does belong to the vector space spanned by H, further study would be needed to assess
whether or not the above theorem still applies, essentially because we cannot count on L(y|µ)

vanishing as ‖µ‖ → 0.

Let us now focus on the case where ν > 1. We reproduce in Lemma 6.21 key facts given by
Lemma 5.7 and Proposition 5.22:

Lemma 6.21. For any Matérn anisotropic geometric or tensorized correlation kernel with
smoothness parameter ν > 1, if a coordinate-distinct design set is used, there exists a > 0

such that when ‖µ‖ → 0:

1.
∥∥∥ ∂
∂µi

Σµ

∥∥∥ = O(µi);

2.
∥∥Σ−1

µ

∥∥ = O(‖µ‖−a).

The newt result follows immediately.

Corollary 6.22. For any Matérn anisotropic geometric or tensorized correlation kernel with
smoothness parameter ν > 1, if a coordinate-distinct design set is used, there exist a > 0,
m > 0 and S > 0 such that, for any µ ∈ (0,+∞)r such that ‖µ‖ 6 S and µi 6 ‖µ‖a,
fi(µi|µ−i) 6 m.

We combine the previous fact with a useful universal majoration of fi(µi|µ−i).
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Proposition 6.23. For an r-dimensional anisotropic geometric or tensorized Matérn corre-
lation kernel with smoothness parameter ν pertaining to a design set containing n coordinate-
distinct points, ∀µ ∈ [0,+∞)r such that µi > 0,

fi(µi|µ−i) 6 (n− p)(2ν + r)µ−1
i (6.38)

Proof. Whatever x, y ∈ R, K1,ν(x− y) =
∫
R K̂1,ν(ω)eiω(x−y)dω.

For the sake of concision, we only consider the case where the Matérn kernel is anisotropic
geometric, as the changes in the case of a tensorized kernel are straightforward.

Moreover, we start by proving the result in the case where W is the identity matrix In
(Simple Kriging case).

n∑
j,k=1

ξjξkKr,ν

((
x(j) − x(k)

)
µ
)

=

∫
Rr
K̂r,ν(ω)

∣∣∣∣∣∣
n∑
j=1

ξje
iωiµix

(j)
i +i

〈
ω−i

∣∣∣µ−ix(j)
−i

〉∣∣∣∣∣∣
2

dω

= Mr(ν)µ−1
i Iµ(ξ), (6.39)

where

Mr(ν) =
Γ(ν + r

2 )(2
√
ν)2ν

π
r
2 Γ(ν)

; (6.40)

Iµ(ξ) =

∫
Rr

(
4ν + µ−2

i s2
i +

∥∥∥∥ s−iµ−i

∥∥∥∥2
)− r2−ν ∣∣∣∣∣∣

n∑
j=1

ξje
i〈s|x(j)〉

∣∣∣∣∣∣
2

ds. (6.41)

We also have

d

dµi

n∑
j,k=1

ξjξkKr,ν

((
x(j) − x(k)

)
µ
)

= −Mr(ν)µ−1
i Iµ(ξ) +Mr(ν)µ−1

i

d

dµi
Iµ(ξ) (6.42)

d

dµi
Iµ(ξ)

=2
(r

2
+ ν
)
µ−3
i

∫
Rr
s2
i

(
4ν + µ−2

i s2
i +

∥∥∥∥ s−iµ−i

∥∥∥∥2
)− r2−ν−1

∣∣∣∣∣∣
n∑
j=1

ξje
i〈s|x(j)〉

∣∣∣∣∣∣
2

ds

=(2ν + r)µ−3
i

∫
Rr

s2
i

4ν + µ−2
i s2

i +
∥∥∥ s−iµ−i

∥∥∥2

(
4ν + µ−2

i s2
i +

∥∥∥∥ s−iµ−i

∥∥∥∥2
)− r2−ν ∣∣∣∣∣∣

n∑
j=1

ξje
i〈s|x(j)〉

∣∣∣∣∣∣
2

ds

(6.43)

From this, we obtain that for any non-null vector ξ ∈ Rn,

0 <
d

dµi
Iµ(ξ) 6 (2ν + r)µ−1

i Iµ(ξ) (6.44)

Now let us define the matrix Fµ as the matrix representing in the canonical base of Rn the
positive definite quadratic form ξ 7→Mr(ν)µ−1

i
d
dµi

Iµ(ξ). From the previous calculations, we
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gather that d
dµi

Σµ = −µ−1
i Σµ+Fµ. This in turn yields

(
∂
∂µi

Σµ

)
Σ−1
µ = −µ−1

i In+FµΣ−1
µ

and
((

∂
∂µi

Σµ

)
Σ−1
µ

)2

= µ−2
i In +

(
FµΣ−1

µ

)2 − 2µ−1
i FµΣ−1

µ .

Tr

[(
∂

∂µi
Σµ

)
Σ−1
µ

]
= −nµ−1

i + Tr
[
FµΣ−1

µ

]
. (6.45)

Tr

[((
∂

∂µi
Σµ

)
Σ−1
µ

)2
]

= nµ−2
i + Tr

[(
FµΣ−1

µ

)2]− 2µ−1
i Tr

[
FµΣ−1

µ

]
. (6.46)

Tr

[((
∂

∂µi
Σµ

)
Σ−1
µ

)2
]
− 1

n
Tr

[(
∂

∂µi
Σµ

)
Σ−1
µ

]2

= Tr
[(
FµΣ−1

µ

)2]− 1

n
Tr
[
FµΣ−1

µ

]2
.

(6.47)

Fµ and Σ−1
µ being two symmetric positive definite matrices, their product FµΣ−1

µ is diago-
nalizable and all its eigenvalues are positive. Thus Tr

[(
FµΣ−1

µ

)2]
6 Tr

[
FµΣ−1

µ

]2
.

Let (ξjµ)16j6n be a basis of unit eigenvectors of Σ−1
µ . Then

Tr
[
FµΣ−1

µ

]
=

n∑
j=1

(
ξjµ
)>
FµΣ−1

µ ξ
j
µ =

n∑
j=1

(
ξjµ
)>
Fµξ

j
µ(

ξjµ
)>

Σµξ
j
µ

6 n(2ν + r)µ−1
i . (6.48)

This implies that

Tr

[((
∂

∂µi
Σµ

)
Σ−1
µ

)2
]
− 1

n
Tr

[(
∂

∂µi
Σµ

)
Σ−1
µ

]2

6 n(n− 1)(2ν + r)2µ−2
i (6.49)√√√√Tr

[((
∂

∂µi
Σµ

)
Σ−1
µ

)2
]
− 1

n
Tr

[(
∂

∂µi
Σµ

)
Σ−1
µ

]2

6 n(2ν + r)µ−1
i (6.50)

Now, ifW is not the identity matrix, then the previous proof still holds, albeit with some al-
terations. Instead of considering all non-null vectors ξ ∈ Rn, we consider only those which can
be expressed asWξW , with ξW belonging to Rn−p. In the same vein, once it comes to com-

puting Tr

[
W>FµW

(
W>ΣµW

)−1
]
, we use a basis (ξjW,µ)16j6n−p of unit eigenvectors of(

W>ΣµW
)−1

.

Proposition 6.24. With a Matérn anisotropic geometric or tensorized correlation kernel with
smoothness ν > 1, if a design set with coordinate-distinct points is used, then Assumption 4
implies that there exists ε′ > 0 such that L(y|µ)fi(µi|µ−i) = O(µ−1+ε′

i ) when ‖µ‖ → 0.

Proof. Assumption 4 ensures that L(y|µ) is bounded as a function of µ. Because of Corollary
6.22, and using said Corollary’s notations, we know that there exists M > 0 such that, for
any µ ∈ (0,+∞)r such that µi 6 ‖µ‖a, L(y|µ)fi(µi|µ−i) 6M .

Let us now focus on the µ ∈ (0,+∞)r such that µi > ‖µ‖a. Then ‖µ‖ε 6 µ
ε/a
i . Choosing

ε′ = ε/a, combining Assumption 4 and Proposition 6.23 yields the result.

With the help of Proposition 6.24, using essentially the proof of Proposition 5.26, we obtain
the following result.
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Proposition 6.25. In a Universal Kriging model with a Matérn anisotropic geometric or ten-
sorized correlation kernel with smoothness ν > 1, if a design set with coordinate-distinct points
is used, then Assumption 4 implies that the conditional posterior distribution πi(µi|y,µ−i),
seen as a function of µ, is continuous over {µ ∈ [0,+∞)r : µi 6= 0}.

Proofs of the main results

Proof of Theorem 6.9. With the help of Proposition 6.25 and Corollary 6.20, a similar result
to Lemma 5.27 can be proved. Then the proof of Theorem 6.9 works like the proof of Theorem
5.2.

In order to be able to state the remaining results in a concise manner, we implicitely as-
sume from this point onwards that the correlation kernel is Matérn anisotropic geometric or
tensorized. Consider the following set of conditions:

1. 1 < ν < 2 and n > r + 1;

2. 2 < ν < 3 and n > (r + 1)(r/2 + 2).

Now define kν as in the previous chapter: as the orthogonal complement in Rn of the vector
space spanned by:

1. if ν ∈ (1, 2): 1 and Xi (i ∈ [[1, r]]);

2. if ν ∈ (2, 3): 1 and Xi (i ∈ [[1, r]]) and Xi ◦Xj (i, j ∈ [[1, r]]).

Proposition 6.26. In the case of Universal Kriging where the mean function space is included
within the space of polynomials of degree 0 or 1, if one of the previous conditions is satisfied,
for any vector y ∈ Rn not orthogonal to kν , when ‖µ‖ → 0,

‖µ‖−2ν = O

(
y>W

(
W>ΣµW

)−1

W>y

)
. (6.51)

Proof. The proof is similar to that of Proposition 5.23 after noticing thatWW> is a projec-
tion on a vector space that contains kν .

Proposition 6.27. In the case of Ordinary Kriging, under the conditions of Theorem 6.9, if
one of the previous conditions is satisfied, then there exists a hyperplane H of Rn such that,
provided y ∈ Rn \ H, Assumption 4 is true.

Proposition 6.28. In the case of Universal Kriging where the mean function space is included
within the space of polynomials of degree 0 or 1, if 2 < ν < 3 and n > r(r + 1)/2 + 2r + 3,
then there exists a hyperplane H of Rn such that, provided y ∈ Rn \H, Assumption 4 is true.

Proof of Propositions 6.27 and 6.28. Let v1(µ) > v2(µ) > ... > vn−p(µ) be the ordered
eigenvalues of W>ΣµW . We can now rewrite L(y|µ) as

L(y|µ)2 ∝
n−p∏
k=1

[
vk(µ)−1

(
y>W

(
W>ΣµW

)−1

W>y

)−1
]
. (6.52)

Proposition 6.26 asserts that for any y ∈ Rn that is not orthogonal to kν , the following holds:(
y>W

(
W>ΣµW

)−1

W>y

)−1

= O(‖µ‖2ν) for ‖µ‖ → 0.



CHAPTER 6. BAYESIAN TREATMENT OF UNIVERSAL KRIGING 166

Besides, Proposition 5.22 asserts that
∥∥Σ−1

µ

∥∥ = O(‖µ‖−2ν), so a fortiori
∥∥∥∥(W>ΣµW

)−1
∥∥∥∥ =

O(‖µ‖−2ν) and therefore
(
y>W

(
W>ΣµW

)−1

W>y

)−1

= O

(∥∥∥∥(W>ΣµW
)−1

∥∥∥∥−1
)
.

This implies that for every integer i ∈ [[1, r]], vk(µ)−1

(
y>W

(
W>ΣµW

)−1

W>y

)−1

=

O(1).

Moreover,
∥∥∥W>ΣµW

∥∥∥ = O(v1(µ)) so v1(µ)−1 = O

(∥∥∥W>ΣµW
∥∥∥−1

)
. In all cases consid-

ered, ‖µ‖2bνc = O
(∥∥∥W>ΣµW

∥∥∥), which implies that the following asymptotic upper bound

holds: v1(µ)−1

(
y>W

(
W>ΣµW

)−1

W>y

)−1

= O
(
‖µ‖2ν−2bνc).

In the end,

L(y|µ)2 = O
(
‖µ‖2ν−2bνc

)
. (6.53)

Proof of Propositions 6.10 and 6.11. Propositions 6.10 and 6.11 are obtained by combining
Theorem 6.9 with Propositions 6.27 and 6.28 respectively.



Chapter 7

Trans-Gaussian Kriging in a Bayesian

framework: a case study

This chapter corresponds to the article Muré [2018b].

Abstract

In the context of Gaussian Process Regression or Kriging, we propose a full-Bayesian

solution to deal with hyperparameters of the covariance function. This solution can be

extended to the Trans-Gaussian Kriging framework, which makes it possible to deal with

spatial data sets that violate assumptions required for Kriging. It is shown to be both

elegant and efficient. We propose an application to computer experiments in the field of

nuclear safety, where it is necessary to model non-destructive testing procedures based

on eddy currents to detect possible wear in steam generator tubes.

Résumé

Dans le but de faciliter la régression par processus gaussiens ou krigeage, nous proposons

une solution pleinement bayésienne pour traiter les hyperparamètres de la fonction de

covariance. Cette solution peut être étendue au krigeage trans-gaussien, ce qui permet

d’utiliser des jeux de données qui violent les hypothèses du krigeage. La méthode se révèle

à la fois élégante et efficace. Nous proposons une application aux simulations numériques

dans le domaine de la sûreté nucléaire, domaine dans lequel il est nécessaire de modéliser

les tests non destructifs fondés sur les courants de Foucault visant à détecter de possibles

usures dans les tubes de générateurs de vapeur.

7.1 Introduction

Non-destructive testing (NDT) is a group of techniques used in industry to evaluate the
properties of components or systems without destroying them. Numerical simulations can
be used to calibrate NDT techniques and determine adequate threshold levels for defect
detection. These simulations can be computationally expensive. As a result, we may want to
replace them by a cheaper surrogate model.

The NDT problem that motivates this chapter is the following one. In order to improve nuclear
safety, Électricité de France (EDF) has developed a Non-Destructive Evaluation for testing
the presence of a defect in Steam Generator Tubes. In nuclear power plants, steam generators

167
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are the interface between primary and secondary water circuits. High-pressured water from
the primary circuit flows into the steam generator tubes. To prevent the tubes from vibrating
under this solicitation, they are held in place by anti-vibration bars (AVB). Rubbing may
in time leave defects in the tubes, however. To detect them, a SAX (axial) probe is moved
down the tube. This Non-Destructive Exam was modeled in C3D, a computer code which can
accurately represent any possible defect geometry [Maurice et al., 2013]. As this code uses the
finite element method, a wide range of parameters may be taken into account. Furthermore,
any degree of accuracy can be reached as long as the mesh is fine enough [Thomas et al.,
2015]. Non-destructive inspections based on eddy currents exploit the way the induction flux
changes as the probe approaches a defect. If the tube were a perfect cylinder, the coils of the
probe would get the same flux by cylindrical symmetry. A large enough difference between
both fluxes therefore signals a defect. This differential flux is a complex quantity, but in
the presented application only its imaginary part is used for defect detection, or rather the
difference between maximum and minimum imaginary part as the probe moves through the
tube. It is then converted to a tension by Lenz’s law.

Following both expert reports and data simulations, eight geometrical parameters (see Figure
7.1) and one non-geometrical parameter were identified as having the greatest influence on
the output of C3D. In order to be able to define POD curves, they were given probability
distributions reflecting expert opinion.

1. a ∼ U [aa, ba]: defect depth (mm);

2. E ∼ N(ae, be): pipe thickness (mm) based on measurements of 5000 pipes;

3. h1 ∼ U [ah1
, bh1

]: distance between the AVB and the top of the defect (mm);

4. h2 ∼ U [ah2 , bh2 ]: distance between the AVB and the bottom of the defect (mm);

5. eBAV 1 ∼ U [−a+aeBAV 1
, beBAV 1

]: length of the gap between the AVB on the side of the
defect and the tube (mm);

6. eBAV 2 ∼ U [aeBAV 2
, beBAV 2

]: length of the gap between the AVB on the other side and
the tube (mm);

7. hBAV ∼ U [ahBAV , bHBAV ]: shift between both AVBs (mm);

8. inc ∼ Ntrunc,0(inca, incb): inclination of the AVB on the side of the defect.

Ntrunc,0(inca, incb) denotes a Normal distribution with mean inca and variance incb
truncated at 0: its support is [0,+∞) (mm);

9. cond ∼ N (conda, condb): conductivity of the tube (MS/m).

The parameter of interest being a, all other parameters are collectively denoted by the eight-
dimensional vector x = (E, h1, h2, eBAV 1, eBAV 2, hBAV , inc, cond)>. X is the corresponding
random variable: its joint distribution is the product of the distributions described above. For
ease of manipulation,X is reparametrized in such a way as to follow the Uniform distribution
on the 8-dimensional cube (0, 1)8. We also reparametrize a in the same way. The whole input
space becomes the unit cube (0, 1)r with r = 9.

Our ultimate goal is to compute the Probability Of Detection (POD) of a defect as a function
of its depth a. We formalize this notion in Section 7.2. Practical computation of the POD
requires the use of surrogate models. Section 7.3 provides the mathematical framework for
dealing with surrogate model uncertainty. Finally, Section 7.4 presents the resulting POD
curves in the case of steam generator defect detection.
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Figure 7.1 – Geometrical parameters of the computer model C3D. Left: Profile view of a steam
generator tube where the left AVB caused wear. Right: View of the side with the defect.

7.2 Probability Of Detection (POD)

Industrial practice often uses Functional Risk Curves (FRC) as a means of expressing the
“probability” of some (un)desirable event based on the value of some critical parameter.
Probability Of Detection (POD) curves are a particular kind of FRC. They represent the
probability that a given testing procedure has of detecting a defect as a function of some
parameter of interest. Two factors can justify the probabilistic framework:

1. the testing procedure may incorporate some randomness;

2. the result may depend not only on the parameter of interest but also on unknown
nuisance parameters.

We denote by a the parameter of interest and by x the nuisance parameters. The set of all
values possibly taken by x is endowed with a probability distribution which should reflect
their frequency in real life. LetX be a random variable following this probability distribution.
For given a and x, z(a,x) denotes the output of the testing procedure. Depending on the
specific testing procedure used, it may or may not be random. In any case, it falls to the
modeler to specify the probability distribution of X and/or the probability distributions of
z(a,x) for all a and x. In this chapter, we only deal with deterministic testing procedures so
POD curves are entirely determined by the distribution of X.

Typically, the output z is a scalar quantity. When this quantity lies beyond a predetermined
threshold s, it signals the presence of a defect, so the POD curve is the function defined by

POD(a) = P(z(a,X) > s). (7.1)

Being a deterministic mapping does not make z easy to determine, however. Computing the
POD curve would in theory require conducting physical tests on a wide sample of objects
with a wide variety of defects – i.e. a wide variety of parameters a and x. Because of the
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prohibitive costs involved, phenomenological numerical simulations are used to simulate the
testing procedure. Throughout this chapter, such simulations – collectively called a “computer
experiment” – are assumed to be perfectly accurate.

Unfortunately, even these numerical simulations are too costly to allow a Monte-Carlo ap-
proach. Therefore, z needs to be approximated by some less costly model. In order to control
the ensuing error, statistical surrogate models are used – linear regression or polynomial chaos
for example. In this chapter, we focus on Kriging, otherwise known as Gaussian Process re-
gression, and on Trans-Gaussian Kriging, where a transformation step is performed on the
output space before Kriging is performed. When a surrogate model is used, z must be re-
placed by Z, a random mapping whose probability distribution represents the uncertainty
about z.

Surrogate models introduce some ambiguity in the definition of the POD curve. Should it
be approximated by POD(a) ≈ P(Z(a,X) > s) ? Although natural, this approximation
conflates the uncertainty about X and about Z, although the two are different in nature.
The distribution of X is understood in frequentist terms: over the year, an experimenter
conducting tests on multiple pieces of equipment will encounter varied values of X. The
distribution of Z represents epistemic uncertainty, which is irrelevant to the actual tests
conducted in real life and could be mitigated if more computational resources were available.
This point is illustrated in the description of a concrete application below.

Kriging and Trans-Gaussian Kriging surrogate models depend on parameters, which will
henceforth be named “hyperparameters” to differentiate them from the “physical” parameters
a and X. Hyperparameters are tricky, because they have tremendous influence so careful
surrogate model calibration is normally required. The Bayesian paradigm, being a complete
inferential approach (Robert et al. [2011] provides a review of its range from a practical stand-
point) can be used to avoid this step. In this chapter, we propose eliminating hyperparameters
from the model by means of Bayesian averaging out. Prior elicitation is done with the help
of Bernardo’s reference prior theory [Bernardo, 2005].

7.3 An Objective Bayesian outlook to Trans-Gaussian Kriging

Kriging Likelihood

For the sake of simplicity, we assume that the parameter of interest a belongs to [0, 1] and
that x, which represents all nuisance parameters belongs to [0, 1]r−1 for some positive integer
r. The scalar output of interest is y(a,x).
Kriging is a very flexible surrogate model for computer experiments [Santner et al., 2003]. To
use it, the computer experiment must first be conducted for n ∈ N values (a(i),x(i)) (called
observations points) of the parameters. The set of observation points

(
(a(i),x(i))

)
i∈[[1,n]]

is
called the design set. The vector of outputs y = (y(a(1),x(1)), ..., y(a(n),x(n)))> ∈ Rn is
called the observation vector.

Kriging models the uncertainty about y by defining Y as a Gaussian process subjected to the
condition that for every integer i ∈ [[1, n]], Y (a,xi) = y(a,xi). Because this conditioning is
critical, we need a way to differentiate the conditioned from the unconditioned process, so let
Y be the unconditioned Gaussian process.
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In the literature, Y is often assumed to be stationary. That is, the distribution of the un-
conditioned Gaussian Process (before knowing the observed values) should be invariant by
translation. This simplifying assumption is often reasonable, because should the emulated
function be non-stationary, the distribution of the Gaussian Process conditional to the obser-
vations would reflect this non-stationarity, provided the number of observations is sufficient.
Moreover, assuming non-stationarity would require some sort of prior knowledge of the kind
of non-stationarity that is expected. For example, warped Gaussian processes [Snelson et al.,
2004] use the knowledge of the presence of a discontinuity.

In some contexts, an additional assumption can be made: that the distribution of the Gaussian
Process before observing the data is isotropic. When it is possible to make this assumption,
the correlation kernel of the Gaussian Process is usually parametrized by two positive hyper-
parameters: variance σ2 and correlation length θ. Seeing the Gaussian Process as a response
surface, one may think of σ :=

√
σ2 as the scale of variation of the output and of θ as the

scale of variation of the input.

While isotropy is a natural assumption in geostatistics – the original application of Kriging
[Matheron, 1960] – it is rarely adequate when dealing with computer experiments. Each of the
r dimensions in the input space [0, 1]r corresponds to one parameter, and the parameters can
be heterogeneous. In such contexts, a correlation length θi is necessary for every parameter
(i ∈ [[1, r]]). The covariance kernel is then anisotropic and we denote by θ the vector (θi)

r
i=1.

The best kind of anisotropic kernel for interpretation is anisotropic geometric, but tensorized
kernels are often used for simplicity [Stein, 1999, page 54].

The easiest way to introduce non-stationarity is through the addition of some non-constant
deterministic function. In the Universal Kriging framework, this function is assumed to belong
to a given small-dimensional vectorial space Fp. One assumes therefore that there exists in Fp
a function f that adequately approximates the deterministic function one seeks to emulate,
and the stationary Gaussian process then merely models our perception of the error made
when using such an approximation.

Let (fj)
p
j=1 be a basis of Fp and let β = (βj)

p
j=1 ∈ Rp be the vector such that f =

∑p
j=1 βjfj .

Naturally, p should be smaller than the number of observation points n or the model would
not be identifiable. Denote by H the n× p matrix whose (i, j)-th element is fj

(
x(i)

)
. Again

for the sake of identifiability, assume that H is of full rank. Let then y be the vector of
length n whose i-th element is the observation of the Gaussian process made at x(i). It is a
Gaussian vector with mean vector Hβ. Let Σθ be its correlation matrix.
The likelihood of the parameters β, σ2 and θ when observing y is then:

L(y | β, σ2,θ) =

(
1

2πσ2

)n
2

|Σθ|−
1
2 exp

{
− 1

2σ2
(y −Hβ)

>
Σ−1
θ (y −Hβ)

}
. (7.2)

Transformation

If even more flexibility is needed, like in some cases arising naturally from examples in the
natural sciences – see the example below – one can relax the stationarity assumption and
even the assumption that the random process is Gaussian through Trans-Gaussian Kriging
[De Oliveira et al., 1997]. The idea is to assume that a random field Z(a,x) would be Gaussian
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and stationary if the output space O (which is assumed to be an interval of R) were trans-
formed in an adequate fashion. Practically speaking, one must choose a parametric family
of nondecreasing differentiable transformations gα : O → R. For some α, Y := gα(Z) is a
stationary Gaussian random field.

The detection of defects on Steam Generator tubes is most importantly impacted by the
depth of the defect. As a first approximation, one may say that the greater the defect depth,
the greater the chances of detecting it.

Figure 7.2 (left) illustrates the importance of the length of the defect a. It represents the mea-
sured tensions for 100 defective tubes with various defect depths. The depths are normalized
so that 1 represents the thickness of a tube coating. Using the parametrization presented at
the end of the introduction, the 100 points form a space-filling design set for the 9-dimensional
cube (0, 1)9.

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
20

00
30

00
40

00
50

00

defect depth

ob
se

rv
ed

 te
ns

io
n 

(m
V

)

0.0 0.2 0.4 0.6 0.8 1.0

5
10

15
20

defect depth

op
tim

al
ly

 tr
an

sf
or

m
ed

 d
at

a 
(a

lp
ha

=
0.

32
)

0.0 0.2 0.4 0.6 0.8 1.0

3
4

5
6

7
8

defect depth

lo
g 

of
 te

ns
io

n 
(m

V
)

Figure 7.2 – Left: Measured tension as a mapping of defect depth for 100 defective tubes. The other
“nuisance” geometrical parameters are representative of possible geometries. Right: Same data after
applying the logarithm function (Bα or Cα with α = 0) to all measured tensions. Center: Same data
after applying the optimal transformation (Cα with α = 0.32) to all measured tensions.

Because the measured tension is necessarily nonnegative, the Gaussian assumption of the
Kriging surrogate model is inadequate. Moreover, the spread becomes greater and greater as
the defect depth increases, which contradicts the assumption of stationarity. Because Figure
7.2 (left) gives the impression of being based on the graph of some exponential mapping, our
first instinct was to apply the logarithm to the observations. The result is given by Figure
7.2 (right).

Although this transformation seems fruitful, it is clearly too strong for our purpose. While
the original data yielded what looked like a strongly convex mapping of defect depth, the log-
transformed data yield a somewhat concave mapping of defect depth. Moreover, the spread
which was originally increasing with depth seems now to be decreasing with depth. Some
intermediate transformation between the identity mapping and the logarithm mapping was
needed. A possible choice could have been the Box-Cox power transform family:

Bα(t) =

{
tα−1
α if α > 0

log(t) if α = 0
(7.3)

The Box-Cox power transformation fits our requirements since all mappings Bα for α ∈ (0, 1)

are intermediate transformations between the logarithm (α = 0) and the identity mapping
(α = 1, although the data are uniformly decremented by 1, which is of no consequence).
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However, for any α > 0, Bα is a bijection from (0,+∞) to (−1/α,+∞), whereas we would
like a bijection from (0,+∞) to (−∞,+∞). How can the Gaussian assumption be credible
otherwise? In the Box-Cox family, only the logarithm mapping (α = 0) fits this requirement.

The following alteration to the Box-Cox family is suitable:

Cα(t) =

{
1
α sinh(α log(t)) if α > 0

log(t) if α = 0
(7.4)

Every mapping Cα is a bijection from (0,+∞) to (−∞,+∞). Moreover, C1 is equivalent to
the linear mapping t 7→ 0.5t when t → ∞, so this family too can be considered to contain
intermediate mappings between the logarithm (α = 0) and the identity mapping (α = 1).
Figure 7.3 illustrates both Box-Cox and alternative transformation families.
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Figure 7.3 – Box-Cox and alternative transformation families for small values of α (left) and greater
values of α (right).

We use this transformation family (i.e. gα = Cα for all α ∈ [0,+∞)) to apply the Bayesian
framework for Trans-Gaussian Kriging described in the previous section. Our mean function
space F2 is the space of affine functions of the parameter of interest a. This choice reflects
the fact that a is the main influence on the output of the computer code. Our basis functions
are the constant function of value 1 and the coordinate function (a,x) 7→ a. Our correlation
kernel is the Matérn anisotropic geometric kernel of smoothness ν = 5/2. The transformation
family is Cα, α ∈ [0,+∞).

Trans-Gaussian Kriging Likelihood

In Trans-Gaussian Kriging, Z is a random field whose distribution is that of Z conditioned
by Z(a(i),x(i)) = z(a(i),x(i)) for every i ∈ [[1, n]], and z is the vector

(
z(a(1),x(1)), ...,

z(a(n),x(n))
)>

.
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Denoting by gα(z) the vector (gα(z1), ..., gα(zn))>, the likelihood of hyperparameters β, σ2,
θ and α is:

L(z | β, σ2,θ, α)

=

(
1

2πσ2

)n
2

|Σθ|−
1
2 exp

{
− 1

2σ2
(gα(z)−Hβ)

>
Σ−1
θ (gα(z)−Hβ)

} n∏
i=1

g′α(zi).
(7.5)

With Trans-Gaussian Kriging, the “Gaussian” parameters β, σ2 and θ can no longer be
interpreted as pertaining to mean function, variance and correlation respectively. They can
only be interpreted in relation to the transformation parameter α.

[Box and Cox, 1964] propose estimating the “Gaussian” parameters conditionally to the trans-
formation parameter, and to treat the value of the transformation parameter with maximum
likelihood as the true value. This point of view was criticized by Bickel and Doksum [1981],
who showed that when using the Box-Cox transformation family, the estimators for the trans-
formation parameter and for β are highly correlated, and they argued for taking this effect
into account when performing inference on the parameters. Unfortunately, when the compu-
tational budget is too low to be able to make many observations, the Kriging likelihood can be
rather flat even without adding a transformation parameter into the mix [Li and Sudjianto,
2005].

These difficulties are the reason why we propose in this chapter using an Objective Bayesian
framework to integrate β, σ2 and θ out of the model – conditionally to α, in keeping with
Box and Cox [1964]’s insight. This way, we only need to estimate the parameter α, with
the likely consequence that the “integrated” one-dimensional likelihood is not as flat as the
regular multi-dimensional likelihood.

Objective Bayesian treatment of the Gaussian parameters

In this subsection, we operate again under the framework of Subsection 7.3. This framework
is the standard Kriging setting, which is parametrized by β, σ2 and θ. The likelihood is given
by Equation (7.2).

Following Berger et al. [2001], we make use of the reference prior on the parameters (β, σ2)

conditional to θ: πR(β, σ2|θ) ∝ 1/σ2. The integrated likelihood L1(y|θ) is given by suc-
cessively integrating β and σ2 out. To do this, we introduce W as an n × (n − p) matrix
such that W>H is the null (n− p)× p matrix and W>W is the (n− p)× (n− p) identity
matrix. W can be computed by performing Standard Value Decomposition (SVD) on H.
The singular vectors corresponding to the null singular values form the columns of W . We
find

L1(y|θ) =

∫
L(y|β, σ2,θ)/σ2dβdσ2

=

(
2π

n−p
2

Γ
(
n−p

2

))−1

|W>ΣθW |−
1
2

(
y>W

(
W>ΣθW

)−1

W>y

)−n−p2

. (7.6)

We briefly explain how prediction can be performed in our Bayesian Kriging model.
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First, assume that all hyperparameters – β, σ2 and θ – are known. We wish to predict the
value taken by the Gaussian process Y at an unobserved point (a0,x0).

Let P be the n×p matrix whose columns are obtained by applying the Gram-Schmidt process
to the columns of H.

Denote by H0,0 the transpose of the vector of length p containing the values of the p basis
functions at(a0,x0), by Σθ,0,· the 1× n correlation matrix between the Gaussian process at
(a0,x0) and the Gaussian process at the design set, and finally by Σθ,·,0 its transpose.

Define the 1×p matrixH0,· = H0,0

(
P>H

)−1

and its transposeH ·,0. The following matrix
definitions are necessary to express the predictive distribution:

E0 : = H0,·P
>y

Sθ,0,0 : = 1 +H0,·P
>ΣθPH ·,0 −H0,·P

>Σθ,·,0 −Σθ,0,·PH ·,0

Sθ,0,· : =
(
H0,·P

>Σθ −Σθ,0,·

)
(PW )

Sθ,·,0 : = S>θ,0,·

We recall here Corollary 6.3:

Proposition 7.1. The predictive distribution of Y (a0,x0) averaged over both β and σ2 is
the non-standardized Student’s t-distribution with n−p degrees of freedom, location parameter
E0 − Sθ,0,·W

(
W>ΣθW

)−1

W>y and scale parameter√√√√y>W
(
W>ΣθW

)−1

W>y

n− p

{
Sθ,0,0 − Sθ,0,·W

(
W>ΣθW

)−1

W>Sθ,·,0

}
.

Practically speaking, if n − p is large the Student t-distribution can be approximated by a
Normal distribution with mean equal to the location parameter and standard deviation equal
to the scale parameter.

Further integrating the predictive distribution requires averaging over the Gibbs reference
posterior distribution on θ. The Gibbs reference posterior distribution is derived through
Objective Bayesian techniques and has nice theoretical as well as practical properties, like
invariance by reparametrization and good frequentist performance for prediction intervals, as
was seen in Sections 5.4 and 6.5. This integration can be done numerically, by using a sample
from the Gibbs reference posterior that can be obtained easily from a Gibbs sampler.

The Likelihood problem

Let us go back to Trans-Gaussian Kriging. In this framework, it is desirable to integrate θ
out of the model in order to derive an integrated likelihood of the transformation parameter
α only.

The problem with the Gibbs reference posterior approach is that, given there is no actual
prior distribution yielding the Gibbs reference posterior, it is not possible to integrate θ out
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of the model with likelihood L1(y|θ). This is a major hurdle since the actual model (taking
into account that y is the result of a transformation) is:

L1(z|θ, α)

=

(
2π

n−p
2

Γ
(
n−p

2

))−1

|W>ΣθW |−
1
2

(
gα(z)>W

(
W>ΣθW

)−1

W>gα(z)

)−n−p2
n∏
i=1

g′α(zi).

(7.7)

Because we cannot integrate θ out, we need to compute some other aggregate of all possible
L1(z|θ, α) when θ varies. The most obvious solution is to average L1(z|θ, α) over the Gibbs
reference posterior distribution πG(θ|z, α) := πG(θ|gα(z)), but this solution gives too much
weight to the likelihood: if a prior πG(θ|α) existed, then this would be equivalent to computing∫
L1(z|θ, α)2πG(θ|α)dθ/

∫
L1(z|θ, α)πG(θ|α)dθ.

A second possibility is to compute the Maximum A Posteriori estimator θ̂MAP for θ and
then proceed with LMAP (z|α) := L1(z|θ = θ̂MAP , α). The idea is that θ̂MAP should be a
“typical” value of θ, but this approach unfortunately makes the aggregate dependent on the
parametrization chosen for the correlation lengths, which is a bad property for a quantity
treated as a likelihood.

A third possibility is

LLOG(z|α) := exp

[∫
log{L1(z|θ, α)}πG(θ|z, α)dθ

]
(7.8)

Compared to LMAP , LLOG has the advantage that it does not depend on the parametrization,
insofar as θ could be replaced by any vector (h1(θ1), ..., hr(θr))

> as long as all hi (i ∈ [[1, r]])
are bijections. Moreover, it does not rely on a particular estimate of the “true” θ, which
makes LLOG more robust that LMAP .

Fundamentally though, LMAP and LLOG are justified by a simple heuristic. This heuristic is
based on two approximations.

1. Asymptotic: the Gibbs reference posterior distribution is approximated by the proba-
bility distribution N (θ̂MAP ; I(θ̂MAP )−1) where I(θ) is the Fisher information matrix.
This means that we assume that the conclusion of ,the Bernstein - von Misès theorem
applies as though we were in an asymptotic framework.

2. Jeffreys: the Gibbs reference posterior is the posterior distribution of θ corresponding
to the Jeffreys-rule prior on θ denoted by π(θ|α). In order to have simple notations, we
do not normalize it – it is possibly not proper anyway – so, denoting by | · | the matrix
determinant, π(θ|α) = |I(θ)|1/2.

Define Kz(α) ∈ R such that Kz(α)
∫
L1(z|θ, α)π(θ|α)dθ =

∏n
i=1 g

′
α(zi). This is equivalent

to asserting that πG(θ|z, α)
∏n
i=1 g

′
α(zi) = Kz(α)L1(z|θ, α)π(θ|α). In the following, we show

that the two approximations imply that
∏n
i=1 g

′
α(zi)/Kz(α) is related to both LMAP (z|α)

and LLOG(z|α).



177 7.4. INDUSTRIAL APPLICATION

First, we have

Kz(α)L1(z|θ, α)π(θ|α)

=(2π)−r/2|I(θ)|1/2 exp

{
− (θ − θ̂MAP )>I(θ̂MAP )(θ − θ̂MAP )

2

}
n∏
i=1

g′α(zi).
(7.9)

In particular,

Kz(α)L1(z|θ̂MAP , α) = (2π)−r/2
n∏
i=1

g′α(zi). (7.10)

So the integrated likelihood
∫
L1(z|θ, α)π(θ|α)dθ is proportional to LMAP (z|α):∫

L1(z|θ, α)π(θ|α)dθ = (2π)r/2LMAP (z|α). (7.11)

Furthermore,

∫
logL1(z|θ, α)πG(θ|z, α)dθ =

∫
log{Kz(α)L1(z|θ, α)}πG(θ|z, α)dθ − logKz(α) (7.12)

Notice that

log{Kz(α)L1(z|θ, α)} = −r
2

log(2π)− (θ − θ̂MAP )>I(θ̂MAP )(θ − θ̂MAP )

2
+

n∑
i=1

log g′α(zi),

(7.13)
so

∫
logL1(z|θ, α)πG(θ|z, α)dθ = −r

2
log(2π)− r

2
+

n∑
i=1

log g′α(zi)− logKz(α). (7.14)

Finally, we see that the integrated likelihood
∫
L1(z|θ, α)π(θ|α)dθ is also proportional to

LLOG(z|α):

log

{∫
L1(z|θ, α)π(θ|α)dθ

}
= logLLOG(z|α) +

r

2
log(2π) +

r

2
. (7.15)

Interestingly, this heuristic also predicts that

log{LMAP (z|α)} − log{LLOG(z|α)} = r/2. (7.16)

This prediction provides a sanity check for the heuristic, which we use in the application
below.

7.4 Industrial Application

Integrating out Kriging hyperparameters

Figure 7.2 shows that α can only reasonably belong to [0, 1], so we endow [0, 1] with the fine
grid 0.01 ∗ [[0, 100]]. For every element α in this grid, we sample 100 points θ(j)

α ∈ (0,+∞)r

from the Gibbs reference posterior distribution. This is done by performing 9000 iterations
of the Gibbs algorithm and keeping only one out of 90.
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Figure 7.4 – Left: Logarithm of LMAP (z|α) (red dotted line) and LLOG(z|α) (blue solid line).
LMAP is not represented for greater values of α because the MAP cannot be reliably computed. Right:
Logarithm of LLOG(z|α) (blue solid line) and log-likelihood LMLE(z|α) if the MLE estimator for θ
is used (black dotted line). LMAP and LMLE are not represented for greater values of α, because the
MAP cannot be reliably computed and the MLE favors correlation lengths so high that correlation
matrices are ill-conditioned.

Figure 7.4 (left) gives the logarithm of the pseudo-likelihoods LMAP and LLOG.

LMAP and LLOG reach their maxima at α = 0.34 and α = 0.32 respectively. Interestingly,
the average value of LMAP (z|α) − LLOG(z|α) for α ∈ [0.25, 0.55] is 3.4 and its standard
deviation 0.3. This is quite close to the prediction (7.16) that this difference should be
constant, especially considering that the values of both functions spread over an interval of
length greater than 50. However, the value 3.4 is substantially lower than the predicted
r/2 = 4.5, which suggests that not all 9 parameters are influent.

On account of LLOG not depending on the estimate of the MAP, we accept the value of α
maximizing LLOG, α = 0.32 as the “true” alpha. In this respect, we follow the suggestion
of Box and Cox [1964]. Naturally, a completely Bayesian treatment would require defining
a prior distribution on α in order to integrate it out. In this case however, both versions
of the likelihood are so pronounced that any reasonable prior would have little effect on the
posterior distribution. In the interest of completeness though, we do offer in the next section
a comparison between the prediction of the Maximum Likelihood approach setting α = 0.32

and a “full-Bayesian” approach using the Uniform prior distribution on [0, 1].

The question of whether or not to use a Bayesian approach to deal with α instead of the MLE
may be debatable, but it is not when dealing with θ: the Bayesian approach is clearly superior.
Figure 7.4 (right) shows the log-likelihood of α when taking θ to be equal to its MLE (dotted
curve). It favors high values of α, which means the data are weakly transformed so the MLE
on θ favors very high correlation lengths and correlation matrices become ill-conditioned.

Let us consider again the observation data presented in Figure 7.2 (left). If we apply the
transformation Cα with α = 0.32, we obtain Figure 7.2 (center). Notice that the observations
seem to be placed along a straight line. This is no coincidence: it reflects our choice of mean
function space F2. The optimal transformation parameter is in first approximation the one
that makes the data match our assumption about the mean function.
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To confirm this, consider a surrogate model of transformed linear regression. It can be seen as
a Trans-Gaussian Kriging model with null correlation lengths. We provide the log-likelihood of
the transformation parameter for such a model in Figure 7.4 (right). It reaches its maximum
at α = 0.30, very near α = 0.32 where LLOG reaches its maximum. This shows that the
correlation structure parametrized by θ has little impact on the maximum likelihood of α.
β and σ2 having been integrated out of the model, the choice of mean function space Fp is
necessarily the primary explanation for the the likelihood function of α reaching its maximum
where it does.

Probability Of defect Detection

With this machinery, we can now return to the question of POD curves. For any point in
the r = 9-dimensional input space of C3D, the Trans-Gaussian Kriging surrogate model can
provide a probability that the detection threshold s = 200mV is crossed. We need a few
definitions.

Definition 7.2. Let a ∈ [0, 1]. The actual POD, denoted by POD(a), is the probability for
a defect of depth a to be detected: POD(a) = P(z(a,X) > s)

This probability refers to actual randomness, in the sense that the geometrical characteristics
of a defect are considered random. It is a probability in the frequentist sense but cannot be
accessed without prohibitive computational costs because it would involve running C3D over
a large set of geometries x.

Definition 7.3. The surrogate model safety denoted by SAFE(a,x) is the probability, ac-
cording to the surrogate model, of a particular defect characterized by (a,x) being detected:
SAFE(a,x) = P(Z(a,x) > s).

Contrarily to actual POD, surrogate model safety does not refer to any randomness in the
frequentist meaning but instead expresses the “opinion” of the surrogate model. It represents
epistemic uncertainty and is a probability in the Bayesian sense.

Definition 7.4. Let a ∈ [0, 1]. The mean POD, denoted by PODmean(a), is the average
of surrogate model safety over all defects of depth a: PODmean(a) = E(SAFE(a,X)) =

P(Z(a,X) > s).

The mean POD is perhaps the best approximation of the actual POD available to us. However
it is difficult to interpret since it aggregates two very different kinds of uncertainty: uncertainty
about the defect geometry, which is random in kind, and epistemic uncertainty, which refers
to imprecision on the part of the surrogate model.

Definition 7.5. Let a ∈ [0, 1] and γ ∈ [0, 1]. The POD at safety level γ, denoted by
PODγ(a), is the probability for surrogate model safety to be greater or equal to γ: PODγ(a) =

P(SAFE(a,X) > γ).

The POD at safety level γ for a given depth length a is the probability of the surrogate model
being confident about the defect being detected, with γ denoting the required confidence level.
Its aim is to constrain epistemic uncertainty in order to provide a figure that reflects actual
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randomness. Its interpretation is therefore clearer than that of the mean POD. However, it
is of interest only if γ is high. In the following, we compute it with γ = 95% and γ = 99%.

Computationally speaking, because the defect depth a belongs to the interval [0, 1], we endow
this interval with the fine grid 0.01 ∗ [[0, 100]]. For every value of a in this grid, we generate a
1000-points sample from the probability distribution of X. For every a therefore, we gather
1000 probabilities of defect detection. With this, we may:

1. compute the mean;

2. count how many are greater or equal to safety levels (95% and 99%).

The first quantity is a Monte-Carlo approximation of the mean POD, the second of the POD
at safety level 95% or 99%.

The mean POD and POD at safety level 95% and 99% are drawn in Figure 7.5. On the left,
α is taken to be 0.32, the value for which LLOG reaches its maximum. On the right, they are
also depicted and accompanied by the curves obtained with integrated α.

Integrated α here means that the Uniform prior distribution on [0, 1] was used for transfor-
mation parameter α. Because the likelihood LLOG has a very sharp peak, integration was
performed only over the interval [0.30, 0.37]. The complement set was deemed to have too low
posterior probability to be worth taking into account. Integration was performed by using the
rectangle method over [0.30, 0.37] with gap 0.01. This is admittedly a rough approximation,
and is intended to serve as a glimpse into a Bayesian treatment of every single parameter
of the problem. Figure 7.5 (right) shows that the full-Bayesian method differs only slightly
from the Maximum Likelihood method. Interestingly, the full-Bayesian method seems slightly
less conservative than the Maximum Likelihood method. We therefore adopt in this case the
Maximum Likelihood method for simplicity and conservativeness both.
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Figure 7.5 – Left: POD curves with α = 0.32. Right: POD curves with α = 0.32 and for integrated
α (points). Since curves with α = 0.32 and integrated α are almost confused, it was not necessary to
use different graphical styles for the different POD curves derived with integrated α.



181 7.5. CONCLUSION

7.5 Conclusion

In this chapter, we demonstrated how an Objective Bayesian framework could be applied to
a Trans-Gaussian Kriging surrogate model. Contrary to Maximum Likelihood approaches, it
makes the likelihood function of the transformation parameter clearly discriminate between all
possible candidates. Moreover, it provides a way to naturally incorporate hyperparameter un-
certainty into the prediction (at least as far as “Gaussian parameters” are concerned, because
one of our findings was precisely that there is not much uncertainty about the transformation
parameter).

This is especially useful in the context of calibration of NDT techniques by numerical simu-
lation. It makes a clear distinction between randomness and epistemic uncertainty possible.
This distinction can then be incorporated into Probability Of defect Detection (POD) curves.

Concerning the particular problem of detecting defects in Steam Generator tubes, our frame-
work provides a theoretically sound solution for estimating surrogate model uncertainty. This
makes interpretation of results easier and thereby increases the reliability of the results of the
study.





Conclusion

What was done

This thesis is the result of the combination of methods originating from geostatistics, Ob-
jective Bayesian statistics and from Markov chain theory. All three domains are part of the
solution to an industrial problem put forward by EDF.

This problem was how to compute Probability Of defect Detection (POD) curves for non-
destructive testing of defects in steam generator tubes. Because a computer simulation of the
procedure was available, such curves could theoretically have been obtained by repeated calls
to the code under a Monte-Carlo procedure. Budgetary constraints made such an approach
untractable, however.

It is precisely to deal with such cases that surrogate models like Kriging exist. However, the
scarcity of available data made reliable estimation of Kriging hyperparameters impossible.
Hence the use of Objective Bayesian techniques to circumvent the need to estimate these
parameters in the first place.

The first part of the present dissertation describes the tools that were the basis of the solution:
Kriging and reference analysis. It recalls how Berger et al. [2001] combined these tools to
provide a complete Objective Bayesian analysis of the Kriging model with isotropic covariance
kernel and fixes problems in the original proof.

The third part of the dissertation builds on Berger et al. [2001]’s success to extend the analysis
to Kriging models with anisotropic kernels. It shows how such a Bayesian analysis makes the
derivation of POD curves natural even in the absence of reliable estimate for the Kriging
hyperparameters. It also demonstrates how this approach is compatible with the elementary
non-Gaussian technique called “trans-Gaussian Kriging” which is basically regular Kriging
with an added parametric transformation. Even though complexity increases with each new
parameter, it sketches a full-Bayesian analysis of the full model, including the transformation
parameter.

This would not have been possible without the notion of optimal compromise between po-
tentially incompatible conditional distributions, which is introduced in the second part. This
notion is of great practical interest because it allows Gibbs sampling and thereby makes the
full-Bayesian solution tractable. An alternative was developed recently [Gu et al., 2018]: it
uses the reference prior obtained by grouping all covariance parameters in the reference prior
algorithm. Practical implementations however rely on the Maximum A Posteriori estimator
instead of conducting a full-Bayesian analysis.
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What remains to be done

There is much that remains to be understood about the optimal compromise between in-
compatible conditional distributions. By definition, it fits an optimality criterion, but its
properties remain largely unknown. What is the precise link between each of the incompati-
ble conditionals and the corresponding conditional in the compromise? My intuition is that
the optimal compromise tends to blur dependence relationships, but this idea would need to
be quantified.

Is it possible to quantify how much each conditional is taken into account in the compromise?
Could changes to the definition allow for the regulation of the importance of each conditional
in the definition of the compromise?

For example, an intuitive idea would be to modify the scanning probabilities. If we wanted
one of the conditionals to be better taken into account, we could alter the Gibbs algortithm
and make the probability of choosing it greater.

But whether the impact of a conditional predominantly depends on this probability or on other
factors is unclear. A rarely chosen conditional could still have a tremendous impact on one
of the marginals of the resulting joint distribution and thereby impact the joint distribution
itself.

And above all, a compromise being optimal does not actually mean that it is good. Criteria
should be developed to quantify how satisfying a compromise is. In the application presented
in the dissertation, results in terms of frequentist behavior were surprisingly good, but they
remain empirical rather than formal.
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