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Title: Cluster mass scaling relations through weak lensing measurements

Abstract: Galaxy clusters are essential cosmological and astrophysical tools,
since they represent the largest and most massive gravitationally bound
structures in the Universe. Through the study of their mass function, of
their correlation function, and of the scaling relations between their mass
and different observables, we can probe the predictions of cosmological
models and structure formation scenarios. They are also interesting
laboratories that allow us to study galaxy formation and evolution, and
their interactions with the intra-cluster medium, in dense environments. For
all of these goals, an accurate estimate of cluster masses is of fundamental
importance. I studied the accuracy of the optical richness obtained by the
RedGOLD cluster detection algorithm (Licitra et al. 2016) as a mass proxy,
using weak lensing and X-ray mass measurements. I measured stacked weak
lensing cluster masses for a sample of 1323 galaxy clusters in the CFHTLS
W1 and in the NGVS at 0.2<z<0.5, in the optical richness range 10-70. I
tested different weak lensing mass models that account for miscentering,
non-weak shear, the two-halo term, the contribution of the Brightest Cluster
Galaxy, and the intrinsic scatter in the mass-richness relation. I found that
the miscentering correction is necessary to avoid a bias in the measured halo
masses, while the inclusion of the BCG mass does not affect the results. I
calculated the coefficients of the mass-richness relation, and of the scaling
relations between the lensing mass and X-ray mass proxies. My results are
consistent with simulations and previous works in the literature.
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Titre: Relation d’échelle d’amas de galaxies à partir d’observations de lentilles
gravitationnelles

Résumé : Les amas de galaxies sont des outils cosmologiques et astrophysiques
essentiels, car ce sont les objets les plus grands et les plus massifs gravita-
tionnellement liées dans l’Univers. L’étude de leur fonction de masse, de
leur fonction de corrélation et des relations d’échelle entre leur masse et
différentes observables nous permettent de tester les prévisions des modèles
cosmologique et les scenarii de formation des structures. Ils sont aussi
d’intéressants laboratoires pour l’étude de la formation et de l’évolution
des galaxies, et de leur interactions avec le milieu qui les entourent,
dans d’environnements denses. Pour y parvenir, estimer précisément leur
masse revêt une importance fondamentale. J’ai étudié la précision de la
richesse optique calculée par l’algorithme de détection d’amas RedGOLD
(Licitra et al. 2016) en tant que mass proxy, en utilisant des mesures de
lentilles gravitationnelles (weak lensing) et des observations en rayon X.
J’ai mesuré les masses cumulées d’un échantillon de 1323 amas de galaxies
dans le CFHTLS et NGVS à 0.2<z<0.5, dans l’intervalle de richesse
10-70. J’ai testé différents modèles prenant en compte les erreurs sur la
position du centre de l’amas, les effets de lentille non faible (non-weak
shear), le "two-halo term", la contribution de la galaxie centrale brillante
et la dispersion intrinsèque de la relation masse-richesse. J’ai montré
que la correction de la position du centre est nécessaire pour éviter un
biais dans la mesure de la masse, alors que l’ajout de la galaxie centrale
n’affecte pas les résultats. J’ai calculé les coefficients de la relation
masse-richesse et ceux de la relation d’échelle entre masses issues du weak
lensing et celle estimées à partir d’observations dans les rayons X. Mes
résultats sont en accord avec les simulations et les précédents travaux publiés.

Mots clefs: Lentilles gravitationnelles, amas de galaxies, relation d’échelle
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ABSTRACT

Galaxy clusters are essential cosmological and astrophysical tools, since
they represent the largest and most massive gravitationally bound structures
in the Universe. Their number and distribution permit us to probe the pre-
dictions of cosmological models and structure formation scenarios. Through
the study of their mass function, of their correlation function, and of the
scaling relations between their mass and different observables, we can infer
the cosmological parameters and constrain them. Galaxy clusters are also
interesting laboratories that allow us to study galaxy formation and evolu-
tion, and their interactions with the intra-cluster medium, being the densest
environment that we can find in the Universe.

For all of these goals, an accurate estimate of the cluster mass is of fun-
damental importance. Since it cannot be measured directly, we need to rely
on mass proxies. Studying galaxy clusters radiation at different wavelengths,
we can estimate their mass using different tracers.

The cluster mass can be derived from X-ray observations of the cluster
gas, measuring its temperature under the assumption of hydrostatic equilib-
rium (Sarazin, 1988). Studying the emission in the millimeter of the intra-
cluster medium, we can measure the total cluster mass through the thermal
Sunyaev-Zel’dovich effect (S-Z effect; Sunyaev & Zeldovich, 1972). In the
optical and in the infrared, we can use the starlight emission of cluster galax-
ies. In fact, we can relate the velocity dispersion of cluster members to the
cluster mass through the virial theorem, assuming that the cluster is in dy-
namical equilibrium. Also the cluster’s total optical or infrared luminosity
can be used as a mass proxy. Postman et al. (1996), for example, defined
the richness parameter, introduced by Abell (1958), as the number of cluster
galaxies brighter than the characteristic luminosity of the Schechter (1976)
profile, L∗.

Gravitational lensing is another tool that can be used to measure cluster
masses. Strong and weak gravitational lensing produce a distortion of the
image of the background sources that it’s proportional to the total cluster
mass. In the strong lensing regime, this distortion can be so intense that it
creates multiple-image systems or image deformations that can be seen by
eye, like Einsteins rings or arcs in galaxy clusters. On the other hand, in
the weak lensing regime, the cluster gravitational potential produces small
distortions in the observed shape of the background field galaxies, creating
the so-called shear field. Because the shear is small relative to the intrinsic
ellipticity of the galaxies (due to their random shape and orientation), a
statistical approach is required to measure it and the signal is averaged over
a large number of background sources to increase the signal-to-noise ratio
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(Schneider, 2005).
Different mass proxies usually lead to mass estimations that are affected

by different systematics. X-ray mass measurements are not reliable in sys-
tems for which the assumption of the hydrostatic equilibrium is not valid,
such as clusters in merging process or in the central regions of clusters with
strong AGN feedback. The S-Z method allows us to perform mass measure-
ments at high redshifts, but it is subjected to projection effects. Velocity
dispersion measurements are not affected by forms of non-thermal pressure
such as magnetic fields, turbulence and cosmic ray pressure, as X-ray and
S-Z mass measurements, but they are sensitive to triaxiality and projection
effects, and constrained to the assumption of dynamical equilibrium. Gravi-
tational lensing, on the other hand, does not require any assumption on the
dynamical state of the cluster and it is sensitive to the projected mass along
the line of sight, representing a more reliable tool to determine total cluster
masses (Meneghetti et al., 2010; Allen, Evrard & Mantz, 2011; Rasia et al.,
2012).

Every method as its advantages and disadvantages but optical and in-
frared detection methods are particularly important since, in the future, large
scale surveys at these wavelengths, such as LSST1 and Euclid2 will be able
to identify clusters that will not be detected with other methods.

Several works in the literature have proven that the optical richness shows
a good correlation with the cluster total masses derived from weak lensing
(Johnston et al., 2007; Covone et al., 2014; Ford et al., 2015; van Uitert et al.,
2015; Simet et al., 2016; Melchior et al., 2016). The typical mass uncertainty
at a given richness is of ∼ 10 − 25% including statistical and systematic
errors, in the mass range 6 × 1012M⊙ ≲ M ≲ 1015M⊙ and in the redshift
range 0.1 ≲ z ≲ 0.9.

Rykoff et al. (2014) built an optical cluster finder based on the red-
sequence finding technique, redMaPPer, and applied it to the Sloan Digital
Sky Survey (SDSS; York et al., 2000). This technique detects galaxy clus-
ters looking for overdensities of early type galaxies (ETGs). It relies on the
observational evidence that cluster inner regions host a large population of
this kind of galaxies, which are tightly distributed on a red-sequence on the
color-magnitude diagram (Gladders & Yee, 2000). redMaPPer richness is
computed using optimal filtering, as a sum of probabilities and depends on
three filters based on colors, positions and luminosity (Rozo et al., 2009a;
Rozo & Rykoff, 2014; Rykoff et al., 2012, 2014, 2016).

Licitra et al. (2016a,b) introduced a simplified definition of cluster rich-
1http://www.lsst.org
2http://euclid- ec.org
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ness based on the redMaPPer richness measurement, within their detection
and cluster selection algorithm RedGOLD.

This algorithm is based on a revised red-sequence technique. It assigned
to each detection the center coordinates, the redshift, a significance parame-
ter, and a richness. RedGOLD richness quantifies the number of red, passive
ETGs brighter than 0.2L∗, inside a given radius. It is optimized to detect
massive galaxy clusters ( M200 > 1014M⊙), and to produce optical cluster
catalogs with high completes and purity. When compared to X-ray mass
proxies, the RedGOLD richness leads to scatters in the X-ray temperature-
richness relation similar to those obtained with redMaPPer (Rozo & Rykoff,
2014), which is very promising since RedGOLD was applied to a lower rich-
ness threshold (i.e. lower cluster mass).

The goal of my thesis was to measure cluster masses using weak lensing,
and derive scaling relations with optical and X-ray mass proxies. This per-
mitted me to calibrate and evaluate the precision of the RedGOLD richness
as a cluster mass proxy. Using the mean lensing cluster masses calculated
stacking clusters in bins of richness, I inferred the mass-richness relation. I
then compared the weak lensing masses with X-ray masses, luminosity, and
temperature.

For this work, I used the RedGOLD cluster catalogs of the Canada-
France-Hawaii Telescope Legacy Survey (CFHT-LS; Gwyn, 2012) Wide 1
(W1) field and of the Next Generation Virgo Cluster Survey (NGVS; Fer-
rarese et al., 2012), obtained by Licitra et al. (2016a,b). The algorithm
detected 652 clusters on the CFHTLS W1, and 279 and 1704 clusters on the
∼ 20deg2 of the NGVS covered by 5 bands and on the entire NGVS without
the r-band coverage, respectively. For the weak lensing analysis, I selected
a subsample of 1323 clusters with a threshold in significance of σdet ≥ 4,
with richness 10 < λ < 70, and redshift 0.2 ≤ z ≤ 0.5. Using this selection,
the published catalogs are ∼ 100% complete and ∼ 80% pure Licitra et al.
(2016a).

I used the photometric redshift catalogs obtained by Raichoor et al.
(2014), with the Bayesian softwares LePhare (Arnouts at al., 1999; Arnouts
et al., 2002; Ilbert et al., 2006) and BPZ (Benítez, 2000; Benítez et a., 2004;
Coe et al., 2006). They found a bias −0.05 < ∆z < 0.02, scatter values in
the range 0.02 < σ < 0.06, and 5− 15% of outliers, for i′ < 23 mag.

For the shear analysis, I used the CFHTLenS and the NGVSLenS shear
catalogs, based on an improved data reduction, compared to the standard
THELI pipeline (Erben et al., 2005, 2009, 2013), performed by Raichoor et
al. (2014). Galaxy shape measurements were obtained applying the Bayesian
lensfit algorithm (Miller et al., 2013).

For the X-ray comparison, I used Gozaliasl et al. (2014), Mehrtens et al.
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(2012), and Piffaretti et al. (2011) X-ray catalogs.
In order to infer weak lensing masses, using the cluster, photometric red-

shift, and shear catalogs, I developed and optimized my own weak lensing
analysis pipeline. The code starts with the selection of the background galaxy
field inside a circular area of a given radius around each cluster in the sam-
ple, through a photometric redshift selection. The algorithm stacks clusters
according to their richness, and calculates the radial shear profiles, averag-
ing the tangential shear in logarithmic radial bins around the center of the
stacked samples. It applies lens-source pairs weights (that depend on the
lensing efficiency and on the quality of background galaxy shape measure-
ments), and the lensfit calibration corrections. The algorithm then calculates
the covariance matrices, using the bootstrap method (Efron, 1979), taking
clusters with replacements in each richness bin, in order to assign error bars
to each point of the radial shear profile. For each stack of clusters, a signal-
to-noise ratio map is calculated using aperture mass statistics (Schneider,
1996; Schirmer et al., 2006; Du & Fan, 2014).

Once I obtained the shear profiles for each stack of clusters, I fitted them
using Markov Chains Monte Carlo (MCMC; Metropolis et al., 1953). This
method allowed me to efficiently sample the model likelihood distribution,
from which I obtained the estimation of the error bars on the fitting param-
eters and of the confidence regions for each couple of parameters.

I matched the observed profiles with three analytic models. The Basic
Model, which consists of a halo model (Seljak, 2000), with an NFW (Navarro,
Frenk & White, 1996) surface density contrast and correction terms that take
into account cluster miscentering (Johnston et al., 2007; George et al., 2012),
non-weak shear (Mandelbaum et al., 2006; Johnston et al., 2007) and the two
halo term (Seljak, 2000; Seljak & Warren, 2004; Johnston et al., 2007). The
free parameters of this model are r200, from which I calculate the mass M200,
and the miscentering parameters pcc, and σoff . I then added to this model
an additional free parameter, σM |λ, the intrinsic scatter in the mass-richness
relation (hereafter Added Scatter Model). Finally, I took into account the
contribution from the Brightest Central Galaxy (BCG) mass MBCG, adding
this parameter to the Basic Model (hereafter Two Component Model).

For the three models, I obtained the mass-richness relation fitting the
lensing mass values recovered for each richness bin.

I validated my code comparing my results with those of Ford et al. (2015),
obtained in an independent way, using the entire CFTHLS W1, W2, W3, W4,
and the public cluster catalog of Milkeraitis et al. (2010), and performed
several tests to estimate possible biases in the results. I tested different
kinds of background sample selection and source magnitude cuts. I tested
the redshift selection and different binnings in richness of the cluster sample. I
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checked that the behavior of the tangential and cross components of the shear
profiles were as expected from theory. I compared masses estimated with and
without the miscentering correction, in order to evaluate the contribution of
this correction term. I used aperture mass statistics to test the identification
of cluster centers through the lensing signal, using simulated shear maps,
simulated clusters, and observed RedGOLD clusters. In order to check that
fitting the profile of each richness bin individually does not introduce a bias
in the determination of the mass-richness relation parameters, I tested a joint
fit (i.e. the fit of the profiles associated to all richness bin simultaneously).

From the tests that I performed, I concluded that : (1) the joint and
individual fitting techniques are equivalent. (2) The miscentering correction
is the one that most affects the halo mass measurements. (3) The BCG mass
and the intrinsic scatter in the mass-richness relation are not constrained
by the data. (4) The BCG mass addition in the model doesn’t affect the
recovered halo mass.

For these reasons, I decided to use the mass-richness relation inferred from
the Two Component Model, with an a posteriori intrinsic scatter correction
(Ford et al., 2015) Final Model. With this model, I obtained a mass-richness
relation of logM200/M⊙ = (14.46±0.02)+(1.04±0.09) log (λ/40) (statistical
uncertainties). This result is consistent within 1− 2σ with the lensing mass-
richness relations obtained by Rykoff et al. (2012), Saro et al. (2015), Simet
et al. (2016), Farahi et al. (2016) and Melchior et al. (2016), using the SDSS
and DES redMaPPer cluster samples.

For the lensing mass vs X-ray luminosity relation I found
log


M200E(z)
8×1013h−1M⊙


= (0.10 ± 0.03) + (0.61 ± 0.12) log


LX

5.6×1042h−2erg/sE(z)


.

For the lensing mass vs X-ray temperature relation I obtained
log


M200E(z)
6×1013h−1M⊙


= (0.23 ± 0.03) + (1.46 ± 0.28) log


TX

1.5KeV


. These

results are consistent with those of Leauthaud et al. (2010), Kettula et al.
(2015), Mantz et al. (2016). For all three relations, I found a scatter of
0.20 dex, consistent with redMaPPer scatters.

In the remaining months of my PhD, I will focus on projects that are
complementary to what I’ve done so far. I will study the relation between
the lensing halo mass and the BCG stellar mass. I will check how different
kinds of BCG selection affect the estimated lensing masses, and calculate the
stellar-to-halo mass ratio for cluster central galaxies. I will also be able to
infer an optical mass-luminosity relation, with the information on the b rest
frame luminosity of central galaxies and of the entire cluster.

On the other hand, I would like to study in more detail the miscentering
problem to see how different center choices would affect the shear profiles
and the mass measurements of stacked or individual massive clusters. I
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would like to expand the work of George et al. (2012) and include in the
comparison also centers based on the peak of the weak lensing signal and on
the hybrid approach between galaxy centers and centroids (used for example
in RedGOLD), not considered in the cited work.

For these new projects I will use the new self calibrating version of
the lensfit algorithm, and refined photometric redshift estimations on the
CFHTLS W1 and on entire NGVS.

Next generation space surveys as Euclid and WFIRST3 will have a huge
impact on the kind of weak lensing analysis that I performed for my thesis
work, giving access to a cluster sample of one order of magnitude bigger.
Also, the next generation radio surveys such as SKA4 will allow us to extend
weak lensing measurements to the radio band, and to even larger scales.

The aim for future analysis is to reach an accuracy of 1% in cluster mass
measurements. The main challenge in weak lensing analysis comes from the
photometric redshift estimation that is linked to the selection of background
source samples and to the weights assigned to each lens-source pair. In my
future work I would like to study how the use of the photometric redshift dis-
tribution derived with different calibration methods affect the measurement
of weak lensing masses and of cluster lensing centers.

The thesis is organized as follows: in Chapter 1, I will discuss galaxy
clusters from a theoretical and observational point of view. I will describe
the standard cosmological model, the structure formation mechanism, the
most used cluster mass profiles, and the cluster mass function. I will also
talk about how we can detect galaxy clusters and estimate their mass using
different mass proxies, and the importance of scaling relations. In Chapter
2, I will summarize the theoretical principles of weak lensing, and discuss
its possible applications. In Chapter 3, I will explain the statistical methods
that I used for my analysis and the way that I applied them to the data. In
Chapter 4, I will describe in detail the analysis and the tests that I performed.
Finally, in Chapter 6, I will summarize the main results of my thesis work,
discuss my future projects, and the perspectives of the weak lensing field.

3http://wfirst.gsfc.nasa.gov
4http://www.skatelescope.org
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RÉSUMÉ

Les amas de galaxies sont des outils cosmologiques et astrophysique essen-
tiels, car ce sont les objets les plus grands et les plus massifs gravitationnelle-
ment liées dans l’Univers. Leur nombre et leur distribution nous permettent
de tester les prévisions des modèles cosmologique et les scenarii de formation
des structures. Par l’étude de leur fonction de masse, de leur fonction de cor-
rélation et des relations d’échelle entre leur masse et différentes observables,
nous pouvons contraindre les paramètres cosmologiques de façon toujours
plus stricte. En tant qu’environnements les plus denses qu’y soit dans l’Uni-
vers, les amas de galaxies sont aussi d’intéressants laboratoires pour l’étude
de la formation et de l’évolution des galaxies, et de leur interactions avec le
milieu qui les entourent.

Pour y parvenir, estimer précisément leur masse revêt une importance
fondamentale. Puisqu’elle ne peut pas être mesurée directement, nous devons
compter sur d’autres observables appelés alors mass proxy.

Avec les différentes longueurs d’onde auxquelles l’amas est observée
viennent différents mass proxy. La masse d’un amas peut être dérivée de
l’observation du gaz de l’amas en rayon X, en mesurant sa température avec
l’hypothèse que ce dernier est en équilibre hydrostatique (Sarazin, 1988). En
étudiant l’émission millimétrique du milieu intra-amas, nous pouvons mesu-
rer la masse totale à l’aide de l’effet Sunyaev-Zel’dovich thermique (effet S-Z ;
Sunyaev & Zeldovich, 1972). En optique et en infra-rouge, c’est l’émission des
étoiles de l’amas qui nous renseigne : la mesure de la dispersion de vitesse
des membres de l’amas et la masse totale peut être mis en relation, lorsque
celui ci s’applique, avec le théorème du viriel. La luminosité en optique et
en infra-rouge peuvent aussi être utilisés comme de mass proxy. On définit
alors, à la manière de Abell (1958) et Postman et al. (1996) par example, le
paramètre de richesse comme le nombre de galaxies d’amas plus brillantes
que la luminosité caractéristique du profil de Schechter (1976), L∗.

L’effet de lentille gravitationnelle est un autre outil qu’on peut utiliser
pour mesurer la masse des amas. L’effet de lentille gravitationnelle fort et
l’effet de lentille gravitationnelle faible (i.e. strong lensing et weak lensing,
respectivement), produisent une distorsion de l’image des sources en arrière
plan proportionnelle à la masse totale de l’objet d’avant plan, ici un amas
de galaxies. Dans le régime de strong lensing d’une part, cette distorsion
peut être si intense qu’elle crée un système d’images répliquées ou une dé-
formation de l’image qui peuvent être aisément identifiées à l’œil, comme les
anneaux d’Einstein ou les arcs dans les amas de galaxies. Dans le régime du
weak lensing d’autre part, le potentiel gravitationnel produit de plus faibles
distorsions qui affectent la forme observée de la galaxie d’arrière plan. Ces
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déformations sont quantifiées par le biais de ce que l’on nomme champ de
shear. Comme ce dernier est faible devant la grande diversité de morphologie
et d’orientation des galaxies, il faut adopter une approche statistique pour le
mesurer et ainsi calculer la moyenne sur un grand nombre de sources d’arrière
plan (Schneider, 2005).

Différents mass proxy mènent généralement à des estimations de masse
qui sont affectées par des différences systématiques. Les mesures de masse
en rayon X faillissent dans les systèmes où l’hypothèse d’équilibre hydrosta-
tique n’est pas applicable, comme les amas en cours de fusion ou dans les
régions centrales lorsque l’effet d’un noyaux actif de galaxie (AGN ) est im-
portant. La méthode S-Z quant à elle, nous permet de faire des mesures de
masse à haut décalage spectral (redshift), mais elle est affectée par des effets
de projection. Contrairement aux deux méthodes précédentes, les mesures
de dispersion de vitesse ne sont pas impactées par les formes de pression
non-thermique comme les champs magnétiques, la turbulence et la pression
des rayons cosmiques, mais elle sont sensibles à l’asymétrie du potentiel et
aux effets de projection en plus de reposer sur l’hypothèse que le système
est à l’équilibre dynamique. L’effet de lentille gravitationnelle, par contre, ne
souffre d’aucun de ces écueils. Il est directement sensible à la masse totale
projetée sur la ligne de visée, et représente donc un outil fiable pour la déter-
mination de la masse totale des amas (Meneghetti et al., 2010; Allen, Evrard
& Mantz, 2011; Rasia et al., 2012).

Chacune de ces méthodes offre des avantages et présente des inconvénients
mais les méthodes de détection en optique et en infra-rouge sont particulière-
ment importantes car, dans le future, les programmes d’observations à grande
échelle dans ces longueurs d’onde, comme LSST et Euclid, seront capables
d’identifier des amas qui ne sauraient être détectés autrement.

Plusieurs travaux ont démontré que la richesse optique présente une
bonne corrélation avec la masse totale de l’amas mesurée avec le weak len-
sing (Johnston et al., 2007; Covone et al., 2014; Ford et al., 2015; van
Uitert et al., 2015; Simet et al., 2016; Melchior et al., 2016). L’incerti-
tude caractéristique sur la masse, à richesse fixée, est de ∼ 10 − 25%, cela
inclue les erreurs statistiques et systématiques, dans l’intervalle de masse
6× 1012M⊙ ≲ M ≲ 1015M⊙ et dans l’intervalle de redshift 0.1 ≲ z ≲ 0.9.

Rykoff et al. (2014) ont développé redMaPPer, un algorithme optique
de détection d’amas basé sur la technique de la sequence rouge, algorithme
qu’ils ont appliqué aux Sloan Digital Sky Survey (SDSS ; York et al., 2000).
Cette méthode identifie les amas de galaxies en détectant les surdensités de
galaxies early type (ETGs). Les observations montrent en effet que la région
centrale d’un amas accueille un grande nombre de galaxies de ce type, ces
dernières sont, lorsqu’on les placent dans un diagramme couleur - magnitude,

15



distribuées dans une étroite région appelée la séquence rouge. La richesse de
redMaPPer est définie comme une somme de probabilité et utilise un filtrage
en couleur, position et luminosité (Rozo et al., 2009a; Rozo & Rykoff, 2014;
Rykoff et al., 2012, 2014, 2016).

Licitra et al. (2016a,b) ont par la suite présenté une définition simplifiée de
la richesse basée sur celle de redMaPPer et l’ont utilisé pour bâtir RedGOLD,
leur algorithme de détection d’amas.

Cet algorithme est fondé sur une technique de sequence rouge révisée ;
il estime à chaque détection d’un amas les coordonnées de son centre, son
redshift, un paramètre dit de confiance et sa richesse. La richesse de Red-
GOLD quantifie le nombre de ETGs rouge et passives, plus brillantes que
0.2L∗, dans un rayon donné. Il est optimisé pour détecter des amas de ga-
laxies massifs (M200 > 1014M⊙), et pour produire des catalogues optiques
complets et purs. Comparés aux résultats obtenues via des observations en
rayon X, la richesse définie dans RedGOLD conduit à des dispersions dans
la relation temperature X - richesse qui sont similaires à celles obtenues avec
redMaPPer (Rozo & Rykoff, 2014), ce qui est très prometteur étant donné
que RedGOLD a été appliqué avec un seuil en richesse inférieur (soit sur des
amas de masse inférieure).

L’objectif de mon travail de thèse était de mesurer des masses d’amas
en utilisant le weak lensing ainsi d’établir les relations entre la masse totale
d’une part et la richesse, la luminosité X, la température X et la masse X
d’autre part. On parle alors de relation d’échelle. Cela m’a permis de calibrer
et valider la précision de la richesse de RedGOLD en tant que mass proxy.
J’ai inféré la relation masse - richesse, en utilisant les masses weak lensing
moyennes calculées en empilant les amas en groupes de richesse. Ensuite j’ai
comparé mes masse weak lensing avec de masse, luminosités et temperatures
en rayon X.

Pour ce travail, j’ai utilisé les catalogues d’amas de RedGOLD des cam-
pagnes d’observations du Canada-France-Hawaii Telescope Legacy Survey
(CFHT-LS ; Gwyn, 2012) Wide 1 (W1) et Next Generation Virgo Cluster
(NGVS ; Ferrarese et al., 2012), obtenus par Licitra et al. (2016a,b). L’al-
gorithme a détecté 652 amas dans le CFHTLS W1 et, pour le NGVS, 279
amas dans la portion de ∼ 20 degrés carrés observée dans 5 bandes et 1704
dans l’intégralité du champ observé sans la bande r. Pour l’analyse weak len-
sing, j’ai sélectionné un échantillon de 1323 amas, au dessus d’un seuil de
détection σdet ≥ 4, dans l’intervalle de richesse 10 < λ < 70 et de redshift
0.2 ≤ z ≤ 0.5. En utilisant cette sélection, les catalogues publiés sont ∼ 100%
complets et ∼ 80% purs (Licitra et al., 2016a).

J’ai utilisé les catalogues de redshift photométriques obtenus par Rai-
choor et al. (2014), avec les logiciels bayésiens LePhare (Arnouts at al.,
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1999; Arnouts et al., 2002; Ilbert et al., 2006) et BPZ (Benítez, 2000;
Benítez et a., 2004; Coe et al., 2006). Ces derniers ont déterminé un biais
−0.05 < ∆z < 0.02, une valeur de dispersion 0.02 < σ < 0.06, et 5− 15% de
points aberrants, pour i′ < 23 magnitude.

Pour mon analyse, j’ai utilisé les catalogues de shear CFHTLenS et
NGVSLenS, basés sur une analyse de données plus sophistiquée comparée
à la procédure THELI standard (Erben et al., 2005, 2009, 2013), réalisée par
Raichoor et al. (2014). Les mesures de formes des galaxies ont été ensuite
obtenues en appliquant l’algorithme bayésien lensfit (Miller et al., 2013).

Pour effectuer la comparaison avec les observations en rayon X, j’ai utilisé
les catalogues de Gozaliasl et al. (2014) et Mehrtens et al. (2012).

Pour obtenir les masses weak lensing à partir de catalogues d’amas, de
redshift photométriques et de shear, j’ai développé et optimisé ma propre
procédure d’analyse. Tout d’abord, l’algorithme fait la sélection des galaxies
d’arrière plan dans une région circulaire de rayon donné autour du centre
de chaque amas de l’échantillon à l’aide des redshift photométriques. L’al-
gorithme empile ensuite les amas selon leur richesse et il calcule les profils
de shear radiaux, en faisant la moyenne des shear tangentielles dans des in-
tervalles logarithmiquement espacés autour du centre de l’échantillon empilé.
Cette moyenne inclue des coefficients qui dépendent de l’efficacité de l’effet de
lentille produit par l’amas, de la qualité des mesures des déformations subit
par l’image de la source d’arrière plan ainsi que de corrections de calibration
opérées par lensfit. Ensuite mon logiciel calcule les matrices de covariance,
par la méthode dite de bootstrap (Efron, 1979), qui consiste à réaliser un
tirage avec remise d’amas dans chaque intervalle de richesse afin d’assigner
une barre d’erreur à chaque point du profile radial de shear. Pour chaque
regroupement d’amas, une carte du rapport signal sur bruit est produite en
utilisant la statistique dite d’aperture mass (Schneider, 1996; Schirmer et al.,
2006; Du & Fan, 2014).

Une fois les profils de shear obtenus pour chaque pile d’amas, j’ajuste un
modèle sur chacun grâce à un algorithme de chaînes de Markov Monte Carlo
(MCMC ; Metropolis et al., 1953). Cette méthode me permet d’échantillonner
efficacement la distribution de vraisemblance du modèle, de laquelle je tire
une estimations et une barre d’erreur pour chaque paramètre ainsi que des
intervalles de confiance pour chaque couple de paramètres.

Dans une premier temps, j’ajuste aux profils observés un modèle basique
(ci-après Basic Model) qui consiste en un modèle de halo (Seljak, 2000), avec
un contraste de densité superficiel NFW (Navarro, Frenk & White, 1996) et
un termes de correction qui tient compte de l’erreur sur le centrage de l’amas
(miscentering ; Johnston et al., 2007; George et al., 2012), les non-weak shear
(Mandelbaum et al., 2006; Johnston et al., 2007) et le two-halo term (Seljak,

17



2000; Seljak & Warren, 2004; Johnston et al., 2007). Les paramètres libres
de cette modèle sont r200 (duquel je déduit la masse M200), le paramètres dit
de miscentering, pcc et σoff .

À ce premier modèle, j’ai ensuite ajouté un paramètre supplémentaire,
σlnM |λ, qui caractérise la dispersion intrinsèque dans la relation masse-
richesse. Cela donne le Added Scatter Model.

Indépendamment, j’ai pris en compte la contribution de la galaxie la plus
brillante (nommé BCG) à la masse totale, et ajouté pour ce faire le paramètre
libre MBCG au Basic Model pour obtenir le Two Component Model.

La masse prédite pour chaque regroupement d’amas par chacun des trois
modèles me permet ensuite d’établir une relation entre masse et richesse.

J’ai ensuite validé mon code en comparant mes résultats avec ceux de
Ford et al. (2015), obtenus de façon indépendante, en utilisant le CFHTLS
W1, W2, W3, W4 entier, et le catalogue d’amas publique de Milkeraitis et al.
(2010). J’ai effectué plusieurs tests afin d’écarter d’éventuels biais dans mes
résultats. J’ai notamment testé différents critères de sélection pour l’échan-
tillon de sources d’arrière plan et différentes limites en magnitude. J’ai vérifié
la sélection en redshift et la façon d’échantillonner les amas en fonction de leur
richesse. J’ai contrôlé que le comportement des composantes ortho-radiales
du shear étaient conforme aux prédictions théoriques. J’ai comparé les masses
estimées avec et sans la correction de miscentering afin d’évaluer sa contri-
bution. J’ai utilisé la statistique d’aperture mass pour tester l’identification
des centres des amas à l’aide du signal de lensing, en utilisant des cartes de
shear simulées, d’amas simulés et d’amas observés par RedGOLD. Afin de
vérifier qu’en ajustant le profil de chaque intervalle de richesse individuelle-
ment nous n’introduisons pas un biais dans la détermination des paramètres
de la relation masse - richesse, j’ai essayé d’ajuster l’ensemble des intervalles
de richesses simultanément.

Mes test m’ont permis de conclure que : (1) les techniques d’ajustement
individuel et simultané sont équivalentes. (2) La correction de miscentering
est celle dont l’impact sur la mesure de la masse est le plus grand. (3) La
masse de la galaxie centrale (BCG) et la dispersion intrinsèque dans la re-
lation masse - richesse ne sont pas contraintes par les données. (4) L’ajout
de la masse de la BCG dans le modèle n’affecte pas l’estimation de la masse
totale de l’amas.

Pour cette raisons, j’ai décidé d’utiliser la relation masse - richesse infé-
rée par le Two Component Model, avec un correction a posteriori pour la
dispersion intrinsèque (Ford et al., 2015) (Final Model). Avec ce modèle, j’ai
obtenu la relation masse-richesse logM200/M⊙ = (14.46 ± 0.02) + (1.04 ±
0.09) log (λ/40) (erreurs systématiques). Ce résultat est cohérent à 1 − 2σ
avec les relations masse - richesse lensing obtenues par Rykoff et al. (2012),
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Saro et al. (2015), Simet et al. (2016), Farahi et al. (2016) et Melchior et al.
(2016), en utilisant les échantillons d’amas obtenus par redMaPPer avec le
SDSS et le DES.

Pour la relation M lens
200 − MX

200, pour une pente unitaire fixé, j’ai obtenu
logM lens

200 = (0.20± 0.03) logMX
200. Pour la relation masses lensing - lumino-

sité en rayons X j’ai trouvé log


M200E(z)
8×1013h−1M⊙


= (0.10 ± 0.03) + (0.61 ±

0.12) log


LX

5.6×1042h−2erg/sE(z)


. Pour la relation masses lensing - tempéra-

ture en rayons X j’ai obtenu log


M200E(z)
6×1013h−1M⊙


= (0.23 ± 0.03) + (1.46 ±

0.28) log


TX

1.5KeV


. Ces résultats sont en accord avec ceux de Leauthaud et al.

(2010), Kettula et al. (2015), Mantz et al. (2016). Pour ces trois relations, j’ai
trouvé une dispersion de 0.20 dex, ce qui est compatible avec les dispersions
de redMaPPer.

Au cours des derniers mois de mon doctorat, je me concentrerai sur des
projets complémentaires à ce que j’ai fait jusqu’ici. J’étudierai la relation
entre les masses lensing des halos et les masses stellaires des BCG. Je véri-
fierai comment différents critères de sélection de la galaxie BCG affectent les
masses estimées avec le lensing, et je calculerai le rapport masse du halo sur
masse stellaire pour les galaxies centrales des amas. Je serai aussi en mesure
de déduire la relation masse - luminosité optique avec la luminosité en bande
b soit pour l’objet central soit pour l’ensemble de l’amas.

D’un autre côté, j’aimerai étudier plus en détail le problème du miscente-
ring pour voir comment différents choix de centrage affectent les profiles de
shear et les mesures de masse d’amas massifs, individuels ou empilés. J’ai-
merai étendre le travail de George et al. (2012) et y inclure une comparaison
avec une technique de centrage utilisant le weak lensing et une reposant sur
une approche hybride entre l’utilisation de galaxies et de centroïdes comme
centres (utilisé par example dans RedGOLD), méthodes non considérées dans
le travail cité.

Pour ces nouveaux projets, j’utiliserai la nouvelle version auto calibrante
de l’algorithme lensfit, et des estimations raffinées de redshifts photomé-
triques de CFTHLS W1 et de l’intégralité de NVGS.

Les programmes d’observations spatiaux de nouvelle génération comme
Euclid et WFIRST auront un énorme impact sur les analyses de données de
weak lensing telles que les ai conduites au cours de mon travail de thèse.
Ils donneront accès à un échantillon d’amas un ordre de grandeur plus im-
portant. Sans compté les campagnes en radio de nouvelle génération tel que
SKA qui permettront d’étendre les mesures de masses weak lensing en bande
radio à des échelles spatiales plus grande encore.

Le but des analyses futures est de parvenir à une précision de l’ordre du
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pourcent sur les mesures de masses des amas. Le principal défi dans le trai-
tement des données issues du weak lensing vient de l’estimation du redshift
photométriques qui est liée à la sélection de l’échantillon de sources d’arrière
plan et aux coefficients assignés à chaque paire lentille-source. Dans mon
travail futur j’aimerai étudier comment l’utilisation de la distribution de red-
shift photométriques obtenue par différentes méthodes de calibration affecte
les mesures de masse weak lensing et la position estimée du centre des amas.

Cette thèse est organisée comme suit : dans le Chapitre 1, je présenterai
les amas de galaxies d’un point de vue théorique et observationnel. Je décrirai
le modèle cosmologique standard, le mécanisme de formation des structures,
les profils de masse les plus couramment utilisés, et la fonction de masse des
amas. Je discuterai aussi des techniques employées pour détecter les amas de
galaxies et estimer leur masse en utilisant différents estimateurs (mass proxy),
ainsi que l’importance des relations d’échelle. Dans le Chapitre 2, je résumerai
les principes théoriques du weak lensing, et je présenterai ces applications
possibles. Dans le Chapitre 3, j’expliquerai les méthodes statistiques que j’ai
mises à profit pour mon analyse et la manière dont je les ai appliquées aux
données. Dans le Chapitre 4, je discuterai en détail l’analyse et les tests que
j’ai réalisés. Enfin dans le Chapitre 6, je résumerai les principaux résultats
de mon travail de thèse, je discuterai mes projets futurs et les perspectives
du domaine d’étude des lentilles gravitationnelles faibles.
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CHAPTER

ONE

GALAXY CLUSTERS

Galaxy clusters are the the largest and the most massive gravitationally
bound systems in the Universe. They have proven to be important tools to
probe the predictions of cosmological models and structure formation sce-
narios. They also permit us to study galaxy formation and evolution, and
their interactions with the intra-cluster medium, in a dense environment.
Their number and distribution allows us to study the mass function and the
correlation function, from which we can infer the cosmological parameters.
Studying with accuracy the scaling relations between cluster mass, and dif-
ferent observables, we can put even tighter constrains on the cosmological
model.

In this chapter, I will start by describing the standard cosmological model
and the evolution of its components. I will explain the process of cluster
formation through the growth of the density perturbations in non linear
regime. I will discuss clusters from a theoretical point of view, their profile
and mass function, and from an observational point of view, reviewing the
main methods to detect them and infer their masses through mass proxies.

1.1 Theory

1.1.1 Cosmological model

Cosmology is the study of the Universe and of the formation, evolution, and
interaction of its components, from galaxies and clusters to the large scale
structure.

Modern cosmology is based on the cosmological principle that states that
the Universe is homogeneous and isotropic at scales larger than ∼ 100Mpc.
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This means that at large scales the Universe appears the same in all direc-
tions, and therefore doesn’t have a center and neither a privileged observing
position.

In the context of General Relativity, such a universe can be described by
the Friedmann-Robertson-Walker metric:

ds2 = c2dt2 − a(t)2

dr2 + Sk(r)

2dΩ2


with dΩ2 ≡ dθ2 + sin2 θϕ2 and Sk a function of the curvature of space-time:

Sk(r) =





R sin (r/R) for k = +1

r for k = 0

R sinh (r/R) for k = −1

where k is the curvature constant (that corresponds, for the three cases listed,
to a positively curved, flat and negatively curved space, respectively) and R
is the curvature radius.

a(t) is the scale factor that describes how distances expand or contract
as a function of time, in an homogeneous and isotropic universe.

In 1929, in fact, Hubble discovered that the Universe is expanding. Con-
sidering that the light emitted by galaxies is shifted toward longer wave-
lengths when observed by us, the redshift of a galaxy can be defined as:

z ≡ λob − λem

λem

Hubble derived a linear relation between redshift and distance, known today
as the Hubble’s law :

z =
H

c
r

where H = ȧ/a is the Hubble constant and a(t) is the scale factor introduced
above that, at present time is equal to one. In an homogeneous and isotropic
universe in expansion, the scale factor ensures that relative distances are
preserved.

We can also define the Hubble distance as DH = c/H that is a good
approximation of the horizon, the maximum distance that a photon can
travel during the age of the universe.

In 1922, Friedmann derived an equation to describe such a universe in
expansion using Einstein’s field equation:


ȧ

a

2

=
8πG

3
ρ− kc2

a2
+

Λc2

3
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ä

a
= −4πG

3


ρ+

3p

c2


+

Λc2

3

where ρ and p are the density and the pressure of the fluid, G is the gravita-
tional constant, c is the speed of light, and Λ is the cosmological constant.

Considering a flat universe composed by radiation, matter, and a cosmo-
logical constant, we can rewrite Friedmann’s equation as:


ȧ

a

2

=
8πG

3
(ρm + ρr + ρΛ)

with ρm = ρDM + ρb, meaning that the matter component is composed by
dark matter and baryons. The densities ρm, ρr, ρΛ, ρDM , ρb are the densities
of matter, radiation, dark energy, dark matter, and baryons, respectively.

Furthermore, defining the Hubble constant at present time as H0 =
(ȧ/a)t=t0 , and the critical density of the universe as ρc,0 = 3H2

0/8πG, the
equation takes the form:

H2

H2
0

=
Ωm

a3
+

Ωr

a4
+ ΩΛ

where the density parameter for each component x is Ωx = ρx,0/ρc,0, and
their sum is Ω = Ωm + Ωr + ΩΛ = 1. The evolution of the density as a
function of the scale factor is given by the continuity equation:

ρ(a) =
ρ0

a3(1+w)

and

w =





0 matter

1/3 radiation

−1 Λ

The standard cosmological model assumed today is the Λ − CDM . It’s
a spatially flat model that contains baryonic and dark matter, radiation
and a dark energy (whose impact on the Universe dynamic is quantified by
the cosmological constant), with the Hubble constant assumed to be H0 =
70 km s−1 Mpc−1.

The total matter density parameter is Ωm ∼ 0.3 and includes contribu-
tions from both dark matter and baryons, where the density parameter of
the first is ∼ 6 times greater than the second.

The radiation density parameter is Ωr ∼ 10−5 and includes neutrinos and
photons.
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Figure 1.1 – In the table on the top, the density parameter of the different
components of the Λ − CDM model. In the table on the bottom, the scale
factor, time, redshift, and temperature at which the main events took place
(Ryden, 2006).
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Figure 1.2 – Dependance of the scale factor with time for the different epochs.
trm is the radiation-matter equality, tmΛ is the matter-Λ equality, and t0 is
the present time (Ryden, 2006).

Finally the cosmological constant density parameter is ΩΛ ∼ 0.7.
In Figure 1.1, we find the density parameter values of the different com-

ponents and the scale factor, time, redshift, and temperature at which the
main events took place. In Figure 1.2, we can see how the scale factor, and
thus the expansion of the Universe, depends on time in the different epochs:
radiation, matter, Λ and present time.

Given a cosmological model, there are several ways to measure cosmolog-
ical distances.

Following Hogg (2000), we define the comoving line-of-sight distance to
an object at redshift z as:

DC = DH

 z

0

dz′

E(z′)
(1.1)

where E(z) ≡ H(z)/H0(z) =

Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ, DH is the

Hubble distance previously defined, and Ωk = 1−Ωm−Ωr−ΩΛ is the density
parameter associated to the curvature constant.

The transverse comoving distance is defined as:
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DM =





DH
1√
Ωk

sinh (
√
ΩkDC/DH) for Ωk > 0

DC for Ωk = 0

DH
1√
Ωk

sin (
√
ΩkDC/DH) for Ωk < 0

(1.2)

so that the comoving distance between two objects at the same redshift,
separate on the sky by an angle δθ will be DMδθ.

The angular diameter distance of a given object is defined as the ratio
of its physical transverse size, l, to its angular size in radians, θ, and it is
related to the transverse comoving distance:

DA ≡ l/θ =
DM

(1 + z)
(1.3)

Finally, the luminosity distance is defined as the relation between the
bolometric (i.e. integrated over all frequency) luminosity L, and the bolo-
metric flux S, of an object. It is related to the transverse comoving distance
and to the angular diameter distance:

DL ≡


L

4πS
= (1 + z)DM = (1 + z)2DA (1.4)

1.1.2 Density perturbations and structure formation

In the standard model, the primordial Universe was very dense and hot
(T >> 104K) so that the baryonic matter was completely ionized, and the
photons scattering by free electrons made it completely opaque. In the very
first phases of its evolution its density was dominated by the radiation den-
sity, then, as it expanded the matter density dominated and finally the dark
energy density, which is the dominant component today.

While expanding, the average Universe temperature cooled to ∼ 3000K
and, at this point, ions and electrons combined to form neutral atoms (re-
combination epoch), photons started to stream freely from the so called last
scattering surface, decoupling from the electrons, and the Universe became
transparent. We observe the photons from the last scattering surface as a
Cosmic Microwave Background (CMB; Penzias & Wilson, 1965) with a black
body distribution at a temperature of ∼ 2.7K. The CMB shows tempera-
ture fluctuations that correspond to matter density perturbations (Planck
Collaboration IX, 2016).

Cosmic structures form from gravitational instability and the subsequent
growth of these primordial density perturbations. The study of the large
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scale structure in the Universe and its formation is linked to the study of the
statistical properties of the overdensity field:

δ(x⃗) =
ρ(x⃗)− ρb

ρb

where ρb is the average density of the universe.
Assuming that δ(x⃗) is an homogeneous and isotropic Gaussian random

field, we can think of our Universe as a statistical realisation of the over-
density field, and of its unperturbed density as the mean over the statistical
ensemble, ρb ≡ ⟨ρ(x⃗)⟩. Moreover, the Gaussian assumption implies that to
completely describe the field, we only need its variance.

In practice, with the ergodic hypothesis, we can calculate ρb averaging the
overdensity field in finite volumes of the Universe that are sufficiently distant
to be considered independent (Coles & Lucchin, 2002).

Averaging in a finite volume V is equivalent to filter the overdensity field
on a given scale R (Voit, 2005):

δM(x⃗) ≡ δM(x⃗)

M
= δ(x⃗) ∗W (x⃗;R)

where W (x⃗;R) is a generic window function, and δM is the mass fluctuation.
Considering that luminous matter traces the total matter distribution, we
can link the number of galaxies in a given volume V with the corresponding
total mass fluctuation in the same volume through the bias parameter b, so
that δg ≡ bδM .

We can then write the mass variance as:

σ2 ≡

δ2(x⃗)


=

1

(2π)3


P (k) |W (kR)|2 d3k

where P(k) is the power spectrum, the Fourier transform of the correlation
function ξ(r) ≡ ⟨δ(x⃗)δ(x⃗+ r⃗)⟩.

Assuming that the power spectrum has a power-law form, P (k) ∼ kn and
that the window function is a spherical one, we have:

σ2 ∼ kn+3 → δM

M
∼ M−(n+3)/6

The growth of the perturbations doesn’t depend on the scale and they all
grow in unison until they are outside of the horizon, where the only important
effect is gravity. In this regime, the different components of the Universe are
coupled to the dominant one, so in the radiation dominated epoch δ ∝ δr ∝ a2

and in the matter dominated epoch δ ∝ δdm ∝ a.
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Figure 1.3 – Growth of the perturbations inside the horizon, as a function of
time (Ryden, 2006).

As time passes and perturbations of larger scales enter in the horizon,
new physical effects that modify the scale-free nature of the initial power
spectrum need to be taken into account. As we can see in Figure 1.3, before
the radiation-matter equality (trm) and inside the horizon, the dominant
component is the radiation, and the baryonic component is coupled to it.
Radiation pressure resists gravitational compression, inhibiting the growth
of the perturbations. The photo-baryonic fluid oscillates as acoustic waves,
and eventually damps because of photon diffusion, while the dark matter
component stalls at the amplitude at which it entered the horizon.

After the radiation-matter equality, when the Universe becomes matter
dominated, dark matter perturbations start to grow again. The baryons,
after decoupling from the photons (tdec), are attracted by the gravitational
wells of dark matter, and catch up with the perturbation growth of this
component, while radiation continues to oscillate.

All the alterations that these effects produce on the original power spec-
trum, until we are in linear regime, can be described by the transfer function
(Voit, 2005):

T (k) ≡ δk(z = 0)

δkD(z)
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where D(z) is the growth function:

D(a) ∝ δρ

ρ
∝ ȧ

a

 a

0

da

ȧ3
a =

1

(1 + z)

If the primordial power spectrum has a power law index of n=1, the power
spectrum of linear perturbations is P (k) ∝ knT 2(k), at z=0 (Voit, 2005).

In the Λ−CMD model, structure formation is driven by the growth of the
dark matter density perturbations and it leads to a hierarchical or bottom-
up scenario, in which small scale perturbations reach the nonlinear regime
before larger-scale ones (Ryden, 2006). This can be explained by the fact
that, before the radiation-matter equality, dark matter perturbations with
wavelengths greater than the Hubble distance (small scales in the Fourier
space) will be free to grow, while perturbations with smaller wavelengths
that are then inside the horizon (large scales in the Fourier space), will stall
until the matter dominated epoch.

Figure 1.4 – Power spectrum at the radiation-matter equality for a cold dark
matter model (CDM), and for a hot dark matter model (HDM), compared
with the scale free power spectrum, P ∝ k (Ryden, 2006).

In Figure 1.4, we can see that the power spectrum at the time of radiation-
matter equality is suppressed in amplitude for large wavenumbers. This
means that galaxies form first, then clusters, and then the large scale struc-
ture. This scenario is consistent with the observed ages of galaxies and
clusters.
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1.1.3 Cluster formation

As small clumps of matter merge and coalesce to form larger structures,
perturbations reach the nonlinear regime with δ ∼ 1. At this point is no
longer possible to study the evolution of the perturbations in linear regime
and we need to rely on numerical simulations. In a simplified way though,
cluster formation can also be studied assuming a spherically symmetric model
as the spherical top-hat.

In this model, the radius of a mass shell with constant density has a
parametric solution:

r = rta
(1− cos θ)

2

where rta is the turnaround radius at which the expansion stops, and the
collapse starts. The behavior of the radius of a nonlinear perturbation is
shown in Figure 1.5.

Figure 1.5 – Evolution of the radius of a non-linear spherical perturbation, in
red, compared with the evolution in linear theory, in blue (Springel, V., Dark
Matter, Cosmology & Structure Formation, ISAPP, Heidelberg 2011).

The radius of the collapsed object is the cluster’s outer boundary. This
radius satisfies the virial theorem and corresponds to half the turnaround
radius. In a matter dominated universe, the virial radius can be estimated
as ∼ 178ρc (Voit, 2005). Even though it’s possible to perform more accurate
numerical calculations, a value that is often used is the scale radius r200, that
corresponds to a density of 200ρc, as we will see in the next paragraph.
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1.1.4 Mass profile

Observations have shown that the velocity dispersion of cluster galaxies is
almost constant with the distance from the cluster center (Voit, 2005). A
simple analytical model that fits this behavior is the singular isothermal
sphere, that has a density profile of the form:

ρ(r) =
σ2
v

2πGr2

with σv constant and isotropic at every point.
Numerical simulations (e.g. Navarro, Frenk & White, 1996; Moore et al.,

1998; Rasia et al., 2003) though have shown that the density profile of a dark
matter halo should be shallower at small radii and steeper at large radii,
fitting better with the generic form:

ρ(r) ∝ r−p(r + rs)
p−q

Today the most used fitting formula is the Navarro, Frenk and White profile
(Navarro, Frenk & White, 1996), that has p = 1 and q = 3. Slightly different
values are also possible and consistent with both simulations and optical and
X-ray observations.

In a more complete form, the NFW profile is usually written as:

ρ(r) =
δcρc

( r
rs
)(1 + r

rs
)2

(1.5)

ρc =
3H(z)2

8πG
(1.5a)

rs =
r200
c

(1.5b)

δc =
200

3

c3

ln (1 + c)− c
1+c

(1.5c)

where we can see that the scale radius rs depends on the radius r200 in-
troduced in the last paragraph; c, is the concentration parameter; δc is a
dimensionless parameter that depends only on the concentration.

The mass M200 is defined as the mass of a sphere of radius r200 and density
200ρc:

M200 = M(r200) =
800π

3
ρcr

3
200 (1.6)

Simulations have also shown that there is a relation between M200 and c (e.g.
Navarro, Frenk & White, 1996; Bullock et al., 2001). Given the hierarchical
model of structure formation, lower mass objects formed before than higher
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mass ones, when the Universe was more dense, and therefore have higher
halo concentration values. Typical values are c ∼ 4− 10.

Cluster mass can be defined also at other overdensity values. For example
in X-ray observation, M500 is commonly used because simulations have shown
that clusters are considerably more relaxed in the region within r500, making
it easier to observe them. Knowing the concentration values though, it is
possible to convert masses from a definition to another:

M∆1

M∆2

=
∆1

∆2


c∆1

c∆2

3

with ∆1 and ∆2, two different overdensity values.

1.1.5 Mass function

The cluster mass function n(M) is defined as the number density of clusters
with a mass greater than M in a given volume. It is an important tool to
constrain the cosmological model parameters.

The first to find an analytical form for the mass function, assuming
the spherical top-hat model and the linear growth function, were Press &
Schechter (1974). If perturbations are assumed to grow according to the lin-
ear growth function, even when they reach the nonlinear regime, the variance
on mass scale M can be written as:

σ2(M, z) =
D2(z)

(2π)3


P (k)|Wk(M)|2d3k

Perturbations then collapse and virialize when they exceed the threshold δc.
Assuming a flat universe with Ωm = 1 and the parametric solution for the
radius of a spherical perturbation in the top-hat model (described above),
leads to a value of δc ∼ 1.686.

The mass function can be then written as:

dn

d lnσ−1
=


2

π

Ωmρc,0δc
M

δc
σ
exp


− δ2c
2σ2



Measuring this function, we can put constraints on the values of Ωm and σ8,
the normalization of the power spectrum, defined as the variance at which
δM/M ∼ 1 within a radius of 8h−1Mpc.

Press & Schechter (1974) mass function agrees rather well with the results
of N-body simulations, and has been widely used for its simplicity despite its
limitations. In particular, the Press & Schechter (1974) formalism doesn’t
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take into account the so-called cloud-in-cloud problem, which is the possibil-
ity that an object that is underdense for a given filtering mass scale could end
up in a collapsed halo of larger mass. Not considering properly the under-
dense regions, Press & Schechter (1974) accounted only for half of the mass,
and corrected their result multiplying it by a factor 2, without a rigorous
justification. Also this approach is merely statistical, and doesn’t take into
account the detailed evolution of individual objects.

The Press & Schechter (1974) model has been refined and extended during
the years. Bond et al. (1991) and Lacey & Cole (1993) used predictions
from the merger histories of dark matter haloes to identify those objects
that were neglected in the cloud-in-cloud problem, and explained how the
factor 2 can arise for a particular filter choice. Sheth & Tormen (1999)
improved the model replacing the spherical collapse with an ellipsoidal one.
Using larger and more detailed simulations, the accuracy in the mass function
determination increased from 30% to 1% (Jenkins et al., 2001; Tinker et al.,
2008; Crocce et al., 2010; Bhattacharya et al., 2011; Angulo et al., 2012;
Watson et al., 2013; Fosalba et al., 2015; Bocquet et al., 2016)

In Figure 1.6, we can see the predicted halo mass function for the standard
Λ − CDM model and, in the bottom panel, the fractional changes induced
by adopting different cosmological models (Weinberg et al., 2013).

1.1.6 Cluster mass and cosmology

The cosmological model can be constrained using different and complemen-
tary methods.

Type Ia supernovae (SN Ia) can be considered standard candles since
they show a tight correlation between their peak luminosity and the shape
of their light curves (Phillips, 1993). Comparing the peak apparent mag-
nitude of distant SN to those of local (z < 0.1) calibrators with distances
inferred from the distance scale ladder, we can measure the luminosity dis-
tance DL(z), which is related to the cosmological parameters by Equations
1.1-1.4 (Weinberg et al., 2013).

CMB anisotropies can provide strong constraints on Ωm, Ωb and Ωk. In
fact, the amplitudes of the acoustic peaks in the CMB angular power spec-
trum depend on the matter and baryon densities, while the locations of the
peaks depend on spatial curvature (Weinberg et al., 2013).

The ratio between baryonic and total mass in massive galaxy clusters is
expected to match the ratio of the cosmological parameters Ωb/Ωm. The
combination of X-ray gas mass fraction measurements in clusters with the
determination of Ωb from CMB data can be used to put tighter constraints
on Ωm (Allen et al., 2013).
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Figure 1.6 – Halo mass function for the standard Λ − CDM model and
fractional changes induced by varying the w and Ωk cosmological parameters
(Weinberg et al., 2013).
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Figure 1.7 – Constraints on the cosmological parameters σ8 and Ωm derived
from galaxy cluster abundances and WMAP CMB data. Mantz et al. (2010),
Henry et al. (2009), and Vikhlinin et al. (2009) used X-ray measurements.
Rozo et al. (2010) used optically selected clusters and performed a stacked
weak lensing mass calibration. Tinker et al. (2012) used galaxy clustering
and mass-to-number ratios. Benson et al. (2011) used SZ measurements
(Weinberg et al., 2013).
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The baryonic acoustic oscillation (BAO) method is based on the calcu-
lation of the acoustic length scale, the comoving distance that the sound
waves produced by the oscillations of the photo-baryonic fluid in the early
universe could travel from the Big Bang until the recombination epoch (Hu
& Sugiyama, 1996; Eisenstein & Hu, 1998):

rs =

 trec

0

cs(t)

a(t)
dt =

 ∞

zrec

cs(z)

H(z)
dz (1.7)

where cs is the speed of sound. The acoustic scale can be known, to
better than 1% accuracy, measuring the relative heights of the acoustic peaks
in the CMB anisotropy power spectrum, and can therefore be considered as
a standard ruler. Using the BAO method is possible to calculate cosmic
distances, in fact the separation along the line of sight is related to H(z)rs,
and the separation transverse to the line of sight is proportional to DA(z)/rs
(Weinberg et al., 2013).

The combination of the galaxy power spectrum with the CMB power
spectrum can be used to put even tighter constraints on the cosmological
parameters, especially on the Hubble constant (Weinberg et al., 2013).

Figure 1.8 – Halo mass thresholds as a function of cumulative number counts
predicted for a 104deg2 survey at redshift z = 0.4 ± 0.05, and fractional
changes obtained using different cosmological models (Weinberg et al., 2013).

Also, as I will discuss in greater detail in Chapter 2, there are several
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methods in which gravitational lensing can be used to constrain the cosmo-
logical model.

Finally, cluster abundances can be used for cosmological studies, compar-
ing the predicted mass function with the observed one, obtained measuring
cluster masses with different methods. Cluster masses cannot be measured
directly but we need to rely on different observables, at different wavelengths,
that correlate with the halo mass.

Halo abundance studies allow us to measure the amplitude of the matter
power-spectrum, σ8, and Ωm. In fact, clusters form from the gravitational
collapse of fluctuations of σ8 scale (8h−1Mpc ∼ 2 × 1014M⊙), and the total
mass of each collapsed volume scales linearly with Ωm. Since these two
parameters are degenerate, it is necessary to measure abundances at different
masses (Weinberg et al., 2013).

In figure 1.7, we can see the constraints on these two parameters, ob-
tained from galaxy cluster abundance studies performed using cluster sam-
ples selected in different ways. Mantz et al. (2010), Henry et al. (2009), and
Vikhlinin et al. (2009) used X-ray measurements. Rozo et al. (2010) used
optically selected clusters and performed stacked weak lensing mass measure-
ments, which is the method used that I used for my thesis work. Tinker et
al. (2012) used optically selected clusters and galaxy clustering. Benson et
al. (2011) used South Pole Telescope (SPT) selected clusters (Weinberg et
al., 2013).

More recently, Mantz et al. (2015) used weak lensing mass measurements
from Weighing the Giants of the X-ray selected cluster sample in the ROSAT
All-Sky Survey to constrain the matter density parameter and the normal-
ization of the power spectrum. They found results in agreement with CMB
data, both from WMAP and Planck. Pacaud et al. (2016) used the bright
cluster sample from the XMM-Newton XXL Survey to put constraints on
the cosmological parameters, comparing the X-ray luminosity-temperature
relation with predictions from different cosmological models.

Bocquet et al. (2015) calibrated the SPT-SZ cluster sample using velocity
dispersion measurements, and compared the SPT cluster abundances with
what expected from WMAP9 and Planck+WMAP9 cosmology. de Haan
et al. (2016) performed a similar analysis but using X-ray and weak lensing
calibrations. Planck Collaboration XXIV (2016) presented constraints on the
cosmological parameters from cluster counts of the full-mission SZ catalog
PSZ2 (Planck Collaboration XXVII, 2016).

In order to avoid the systematics related to the halo mass calibration in
cluster abundances studies, Caldwell et al. (2016) directly compared the pre-
dicted and observed cluster counts as a function of cluster velocity dispersion
measurements.
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Finally, Liu, X., et al. (2015); Liu, J., et al. (2015); Hamana et al. (2015)
used weak lensing cluster counts, obtained from shear peaks analysis, to
constrain the Ωm and σ8 parameters.

The calibration of the scaling relations between cluster observables and
halo masses is fundamental to achieve high precision in cluster cosmology. In
Figure 1.8, we can see the halo mass thresholds as a function of cumulative
number counts predicted for a 104deg2 survey at redshift z = 0.4± 0.05, and
different cosmological models. Changing w and keeping fixed the primor-
dial power spectrum amplitude, As, changes the predicted abundances by
30 − 60%, while the corresponding mass threshold changes only by ∼ 20%.
Keeping σ8 fixed, the change in abundance is ∼ 15% and corresponds to a
change in mass threshold ∼ 2.5% − 6% (Weinberg et al., 2013). For this
reason, it is important to calibrate the cluster mass-observable relations with
the highest possible accuracy, and ideally measure cluster masses at ∼ 1%
precision.

In Figure 1.9, we can see how all the methods described can be combined
to put much tighter constraints on the cosmological parameters (Allen et al.,
2013).

In Section 1.2, I will describe in detail the techniques that can be used to
detect galaxy clusters and the different observables that allow us to measure
cluster masses (i.e. mass proxies).

1.2 Observations

1.2.1 Detection and catalog creation

Galaxy clusters can be detected using different techniques based on their
emission at different wavelengths.

Cluster can be easily identified though their X-ray emission. The po-
tential well of galaxy clusters compresses the baryon gas to virial temper-
atures of 107 − 108K. At these temperatures, atoms are ionized and the
bremsstrahlung radiation, the free-free emission due to collisions between
ions and electrons in the intra cluster medium (ICM), causes clusters to emit
in X-ray. This method selects preferentially relaxed, gas-rich systems, while
gas-poor filamentary or assembling structures are not recovered. X-ray cat-
alogs are therefore incomplete for systems with an X-ray emission below the
survey detection limit.

The ICM electrons also interact with the CMB photons through inverse
Compton scatter. CMB photons are shifted to higher energies as they pass
through the hot ICM and collide with its free electrons, distorting the CMB
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Figure 1.9 – Constraints on the dark energy equation of state, w, and on
the mean matter density Ωm, from the observed abundance and growth of
galaxy clusters, from cluster X-ray gas fraction measurements, from WMAP
CMB measurements, from type Ia supernovae, and from baryonic acoustic
oscillations (BAO), for spatially flat, constant w models (Allen et al., 2013).
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black body spectrum in a frequency dependent way. This process is known
as the thermal Sunyaev-Zel’dovich effect (S-Z effect; Sunyaev & Zeldovich,
1972). Unlike the X-ray surface brightness, the S-Z mass selection function
is almost redshift independent and reaches lower masses at high redshifts
(Figure 1.10). Selecting clusters based on their S-Z emission allows us to
detect clusters at higher redshift, compared to other techniques. As in X-ray
surveys, the S-Z detected clusters are massive relaxed systems.

In principle gravitational lensing could be used to detect massive galaxy
clusters, using aperture mass statistics that associates high S/N peaks in
lensing maps with massive structures along the line of sight (Wittman et al.,
2001, 2003; Dahle et al., 2003; Schirmer et al., 2003). This method though
suffers of projection effects that give rise to non physical low and medium
S/N peaks that contaminate the measurements (Kratochvil et al., 2010; Yang
et al., 2011). On the other hand, since weak lensing peak abundance is
related to the mass function of dark matter halos, peak counts can be used to
constraint the cosmological model and to study the non-gaussian information
that is unaccessible with two-point correlation analysis (Liu, J., et al., 2015;
Martinet et al., 2015).

Using optical and infrared data, it is possible to detect galaxy clusters
tracing their stellar component. There several techniques that can be applied
to this purpose. Matched filter techniques detect galaxies in one band and
assume some a priori model profiles to fit the data, such as a luminosity
profile or a radial profile (Postman et al., 1996; Olsen et al., 2007; Grove et
al., 2009; Milkeraitis et al., 2010). Adaptive kernel methods are based on the
detection of the most significant peaks in galaxy density maps (Shectman,
1985; Mazure et al., 2007; Durret et al., 2011). Friends-of-Friends is an
algorithm that searches for galaxy structures, iteratively linking together
objects with a spatial difference smaller than a fixed value, called linking
length (Huchara & Geller, 1982). The red-sequence based algorithms look
for overdensities of red early type galaxies in the color magnitude diagram,
based on the observational evidence that large populations of this kind of
objects can be found in the inner regions of galaxy clusters (Gladders & Yee,
2000; Thanjavur et al., 2009; Licitra et al., 2016a,b).

Every method as its advantages and its disadvantages but optical and
infrared detection methods are particularly important since, in the future,
large scale surveys at these wavelengths, such as LSST and Euclid will be
able to identify clusters that won’t be detected with other methods. The
limiting cluster mass for a 3σ detection for Euclid will be ∼ 8 × 1013M⊙,
up to z < 2 (Sartoris et al., 2016). Imposing completeness and purity rates
> 80% the limiting cluster mass will be < 2×1014M⊙ up to z < 1.5 for Euclid,
and even lower for LSST, up to z < 0.8 (Ascaso et al., 2016). As shown in
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Figure 1.10 – Selection function of the next generation surveys (Ascaso et
al., 2016).

Figure 1.10 (Ascaso et al., 2016), the selection function of the e-Rosita X-ray
survey (Merloni et al., 2012) will be comparable with the optical ones only
at z < 0.2, while the limiting cluster mass for the SPTpol (Carlstrom et al.,
2011) and ACTpol (Marriage et al., 2011) S-Z survey at the same redshift will
be ∼ 4 × 1014M⊙ and ∼ 7 × 1014M⊙, respectively. This means that optical
and near-infrared surveys will be of fundamental importance to detect low
mass galaxy clusters at low to medium redshift.

1.2.2 Mass proxies

The cluster mass is not a direct measurement and is inferred using several
mass proxies. Galaxy clusters emit radiation in different wavelengths and
their mass can be estimated using different tracers. Different mass proxies
usually lead to mass estimations that are affected by different systematics.

The X-ray temperature is related to the cluster’s gravitational potential
and, consequently, to its mass. Assuming that the ICM is isothermal and
at hydrostatic equilibrium, the X-ray density and temperature profiles can
be related to the total mass (Sarazin, 1988). X-ray mass measurements are
less subjected to projection and triaxiality effects compared to the optical
ones. On the other hand, this method cannot be applied if we can’t assume
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hydrostatic equilibrium, as in systems undergoing mergers, or in the central
regions of clusters with strong AGN feedback (Allen, Evrard & Mantz, 2011).

The S-Z effect is proportional to the line of sight integral of the product of
the cluster gas density and temperature and it’s related to the total cluster
mass. The S-Z mass selection is almost redshift independent at z > 0.5,
and reaches lower masses when compared to the steep X-ray survey selection
function (Figure 1.10). For the same reason, though, the method is also
subjected to projection effects due to the overlap of all the groups and clusters
along the line of sight (Voit, 2005).

In galaxy clusters, the majority of optical and near infra-red emission
comes from starlight. At these wavelengths, we observe the number den-
sity, luminosity and velocity dispersion profiles. If a cluster is at dynamical
equilibrium, the velocity distribution of its galaxies is expected to be gaus-
sian and the velocity dispersion can be directly linked to its mass through
the virial theorem. An advantage of this method is that, unlike X-ray and
S-Z mass measurements, it’s not affected by forms of non-thermal pressure
such as magnetic fields, turbulence and cosmic ray pressure. As a downside,
it is sensitive to triaxiality and projection effects, the precision of the mea-
surements is limited by the finite number of galaxies and the assumption
of dynamical equilibrium it’s not always possible (Allen, Evrard & Mantz,
2011).

Also, considering that light traces mass, the total optical luminosity of
a cluster is another indicator of its mass. Abell (1958) defined a richness
class to categorize clusters based on the number of member galaxies brighter
than a given magnitude limit. The luminosity distribution function of cluster
galaxies, though, is well described by the Schechter (1976) profile and the
observation of the high luminosity tip of this distribution allows us to better
constrain cluster masses. Postman et al. (1996), for example, defined the
richness parameter as the number of cluster galaxies brighter than the char-
acteristic luminosity of the Schechter (1976) profile, L∗. Different definitions
are possible and intrinsically related to the technique used to optically detect
galaxy clusters.

The total cluster mass can also be derived by its strong and weak grav-
itational lensing of background sources. In the weak lensing regime, the
gravitational potential of clusters of galaxies produces small distortions in
the observed shape of the background field galaxies, creating the so-called
shear field, which is proportional to the cluster mass. Being the shear much
smaller compared to the intrinsic ellipticity of the galaxies (due to their ran-
dom shape and orientation), a statistical approach is required to measure
it and the signal is averaged over a large number of background sources
to increase the signal-to-noise ratio (Schneider, 2005). Gravitational lensing
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doesn’t require any assumption on the dynamical state of the cluster and it is
sensitive to the projected mass along the line of sight, representing a reliable
tool to determine total cluster masses (Allen, Evrard & Mantz, 2011).

1.2.3 Scaling relations

Considering all the mass proxies described above, it is important to study
the relation between the cluster mass and different observables that correlate
with it, with the aim of identifying systematics and converge towards an
estimation of the cluster true mass.

The study of scaling relations is useful because, given a cluster mass es-
timated with a certain method, it is possible to calculate other parameters
linked to it. On the other hand, comparing different masses we can study
the systematics related to the methods used. Also, the study of the scal-
ing relations as a function of the redshift can give us informations on the
cluster evolution. Moreover, scaling relations can help us to put tighter con-
straints on the cosmological parameters, through the reconstruction of the
mass function.

The advantages and the systematics of the different mass proxies are
found in the respective scaling relations.

For example, assuming a singular isothermal sphere at hydrostatic equi-
librium, the relation between the true cluster mass and its X-ray temperature
can be written as:

kBT200 = (8.2keV )


M200

1015h−1M⊙

2/3 
H(z)

H0

2/3

Since clusters are not perfectly isothermal though, it’s important how we
define the cluster temperature. A definition often used is the luminosity
weighted mean temperature, in which each component is proportional to
its photon flux in the overall spectrum. The normalization of the mass-
temperature relation can change if galaxy formation is taken into account or
not. This can lead to a discrepancy between observed and theoretical masses
of ∼ 30− 60%. The discrepancy could be explained by systematic errors in
the determination of the cluster mass from observations. The assumption
of hydrostatic equilibrium, in fact, can lead to a mass underestimation of a
factor ∼ 10− 15% (Voit, 2005).

X-ray luminosity is easier to measure than the temperature but it corre-
lates less tightly with mass, with a scatter of ∼ 50%. Also, even more than
in the case of the mass-temperature relation, the slope and normalization of
the mass-luminosity relation depend greatly on the model of galaxy forma-
tion assumed. A way to calibrate the mass-luminosity relation is to combine
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the mass-temperature relation with the observed luminosity-temperature re-
lation. If the density distribution of the intracluster gas within r200 was
independent of cluster mass, then we would expect L ∝ T 2. The observed
slope though is steeper, indicating that non gravitational processes raised the
entropy of the intracluster gas and, making it hard to compress, lowered its
mean density and luminosity. Excising the central regions of a cluster can
reduce the scatter in the relation, since cooling and non gravitational heating
processes alter the temperature and luminosity of these regions in different
ways from cluster to cluster (Voit, 2005).

Clusters in optical surveys are selected as galaxy overdensities, which
can be biased by line-of-sight projections (Cohn et al., 2007). Richness is
found to correlate quite well with X-ray observables even though the scatter
is large (Donahue et al., 2001, 2002; Yee & Ellingson, 2003; Kochanek et al.,
2003; Gilbank et al., 2004). Galaxy concentrations projected along the line of
sight can lead to an overestimation of the cluster mass, especially when their
redshifts is not precisely known. The intrinsic scatter between true cluster
mass and richness, leads to an overestimation of the normalization of the
mass function. Because the low mass clusters that are scattered to higher
masses are far more than the low mass clusters scattered in the opposite way,
mean cluster masses will be on average biased high. Underestimating this
scatter leads also to a bias in the cosmological parameters estimation (Rozo
et al., 2009a,b).

Galaxy velocity dispersion in clusters has shown to correlate well with
cluster mass (Xue & Wu, 2000; Munari et al., 2013). Velocity dispersion
in the optical traces the X-ray temperature of the cluster but the masses
inferred from those measurements are larger than the X-ray counterparts
(Reiprich & Böhringer, 2002). This discrepancy can be explained considering
the intrinsic scatter in the velocity dispersion-mass relation but also by cut-
off and projection effects in the measurements of the one-dimensional velocity
dispersion (Voit, 2005).
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CHAPTER

TWO

WEAK LENSING

As predicted by General Relativity, gravitational lensing is a phenomenon in
which a mass concentration creates a curvature of space time, and deflects
the light rays that propagate along the geodesic lines, causing the distortion
of the image of the emitting source.

In the strong lensing regime, this distortion can be so intense that multiple
light rays can travel from the source to the observer creating multiple-image
systems or image deformations that can be seen by eye, like Einsteins rings,
when the source and the lens are perfectly aligned, or arcs in galaxy clusters.

On the other hand, in the weak lensing regime, this effect can’t be de-
tected on single sources, and a statistical approach is needed to access the
information on the mass distribution of the lens. Galaxies, in fact, are not
perfectly circular and the shape distortion due to lensing, called shear, can’t
be distinguished from their intrinsic ellipticity. Assuming that galaxies are
randomly oriented in the universe though, it’s possible to extract the shear
signal averaging over a large sample of background sources as the expected
value of the intrinsic ellipticity will be zero.

Moreover, since the deflection angle of the light rays, and thus the shape
distortion of the background galaxies, depends only on the gravitational po-
tential of the lens, and not on the nature or the physical state of the matter,
gravitational lensing probes the total mass distribution and no assumption
is required regarding the dynamical state of the lensing object, unlike other
methods that imply the condition of hydrostatic equilibrium and the appli-
cation of the virial theorem.

For these reasons, weak lensing can be considered a powerful tool to con-
strain the cosmological model with different kind of applications, ranging
from the study of the large scale structure, through cosmic shear and CMB
lensing that, for example, allow to measure the cosmological parameters from

45



the power spectrum, to the estimation of the mass of galaxy clusters and
galaxies, and of the various observable-mass relations from the reconstruc-
tion of their shear radial profiles. Galaxy-galaxy lensing and galaxy clusters
lensing can lead then to the comparison of the observed mass function with
the theoretical models from simulations and to the study of the formation
and evolution of these gravitationally bound systems and their environment.

In this chapter, I will describe the lensing formalism and I will review
in more detail the lensing applications cited above, then I will discuss what
kind of data is required for these analysis, and the different tools developed to
adequately process them, alongside with the main results and the challenges
for the future of the lensing field. This synthesis is based mainly on three
reviews: Wright & Brainerd (2000), Bartelmann & Schneider (2001), and
Bartelmann & Maturi (2016). I refer the reader to these works for a complete
reference review of weak lensing.

2.1 Theory

2.1.1 Lens equation

In General Relativity, light deflection can be calculated starting from the
Fermat principle that states that a light ray travels along a path along which
the travel time is extremal. We have to consider the path for which, given
two fixed points A and B, we have:

δ

 B

A

n[x⃗(l)dl] = 0 (2.1)

where n is the refraction index. In order to calculate n, we can use the week
field approximation, Φ

c2
<< 1.

The lens causes a perturbation of the Minkowski space-time:

ds2 = gµνdx
µdxν = (1 +

2ϕ

c2
)c2dt2 − (1− 2ϕ

c2
)dx⃗2 (2.2)

and since for a light ray ds2 = 0, we can calculate the speed of light reduced
by the gravitational field of the lens:

c
′
=

dx⃗

dt
≃ c(1 +

2ϕ

c2
) (2.3)

The refraction index then will be:

n =
c

c′
≃ 1− 2ϕ

c2
(2.4)
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If we assume that the integral line of Equation 2.1 is parametrized by an
arbitrary parameter λ, we can write:

δ

 λB

λA

dλn[x⃗(λ)]|dx⃗
dλ

| = 0 (2.5)

Using Euler equations and the refraction index previously calculated, we
can write the total deflection angle as:

⃗α =
2

c2

 λB

λA

∇⃗⊥ϕdλ =
4GM

Rc2
(2.6)

where ∇⃗⊥ is the gradient with respect to the normal direction.
The deflection angle is a linear function of the lens mass. If we suppose

to have a distribution of N point masses on a plane, with masses Mi and
positions ξi, the deflection angle will be the linear superposition of the angle
due to each lens:

⃗α(ξ⃗) = Σi
⃗αi(ξ⃗ − ξ⃗i) =

4G

c2
ΣiMi

ξ⃗ − ξ⃗i

|ξ⃗ − ξ⃗i|2
(2.7)

Since the physical size of the lens is usually much smaller compared to
the distance between lens and observer, the deflection takes place on a short
path, and the lens can be approximated with a planar matter distribution,
the so called lens plane, while the sources will be distributed on their on
place, as shown in Figure 2.1.

Σ(ξ⃗) =


ρ(ξ⃗, z)dz (2.8)

The deflection angle can then be rewritten as:

⃗α(ξ⃗) = 4G

c2


(ξ⃗ − ξ⃗

′
)Σ(ξ⃗

′
)

|ξ⃗ − ξ⃗′ |2
d2ξ

′
(2.9)

In Figure 2.1, we find the observer, the lens plane, the source plane,
and the respective angular diameter distances. DL is the distance between
the observer and the lens, DS is the distance between the observer and the
source, and DLS is the distance between the lens and the source. Since we
are dealing with angular distances, DL +DLS ̸= DS.

The dashed vertical line represents the optical axis from which we measure
the angular position of the lens and of the source. If the source is at distance
η⃗ = β⃗DS from the optical axis, the impact parameter on the lens plane is
ξ⃗ = θ⃗DL.
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Figure 2.1 – Scheme of a typical lensing system (Bartelmann & Schneider,
2001).
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If θ⃗, β⃗, and ⃗α are small, the true and the observed position of the source
are linked by a simple equation:

θ⃗DS = β⃗DS + ⃗αDLS (2.10)

Defining the reduce deflection angle as α⃗(θ⃗) ≡ DLS

DS

⃗α(θ⃗), we can write the
lens equation:

β⃗ = θ⃗ − α⃗(θ⃗) (2.11)

Defining a scale length ξ0, such that µ0 = ξ0DS/DL, we can write:

x⃗ ≡ ξ⃗

ξ0
, y⃗ ≡ µ⃗

µ0

, α⃗(x⃗) =
DLDLS

ξ0DS

⃗α(ξ0x⃗) (2.12)

We obtain the dimensionless lens equation:

y⃗ = x⃗− α⃗(x⃗) (2.13)

2.1.2 Lensing potential

An extended matter distribution is characterized by an effective lensing po-
tential. It can be calculated projecting the tridimensional Newtonian poten-
tial on the lens plane, applying a convenient scaling:

Ψ(θ⃗) =
DLS

DLDS

2

c2


ϕ(DL, θ⃗, z)dz (2.14)

Imposing Ψ =
D2

L

ξ20
Ψ.

Two important properties of the lensing potential are:

• The gradient of Ψ gives the scaled deflection angle:

∇⃗xΨ(x⃗) = α⃗(x⃗) (2.15)

• The Laplacian of Ψ is twice the convergence:

∆xΨ(x⃗) = 2k(x⃗) (2.16)

where the convergence k(x⃗) is defined as a dimensionless surface density:

k(x⃗) ≡ Σ(x⃗)

Σcr

(2.17)
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and Σcr, is the critical surface density. It is a quantity that characterizes the
lensing system, and is a function of the angular diameter distance of the lens
and of the source:

Σcr =
c2

4πG

DS

DLDLS

(2.18)

Equation 2.16 can be demonstrated using Poisson’s equation:

∆ϕ = 4πGρ (2.19)

to rewrite the surface density as:

Σ(x⃗) =

 +∞

−∞
ρdz =

1

4πG

 +∞

−∞
∆ϕdz (2.20)

Inserting it in Equation 2.17, along with Equation 2.18, we find:

k(x⃗) =
DLDLS

DSc2

 +∞

−∞
∆ϕdz (2.21)

The total Laplacian can be written as:

∆ =
1

ξ20
∆x +

∂2

∂z2
(2.22)

So we obtain:

k(x⃗) =
DLDLS

DSc2ξ20

 +∞

−∞
∆xϕdz +

���
���� +∞

−∞

∂2ϕ

∂z2
dz


≡ 1

2
∆xΨ(x⃗) (2.23)

since the second integral, taken at the end points of the line-of-sight, is
zero if the mass distribution is small compared to the distances characterizing
the system.

2.1.3 Shear and convergence

In principle, the image of the source can be determined solving the lens
equation in every point of the extended surface. If the lens is much smaller
compared to the angular scale in which its physical property change, the
distortion of the image can be described by the Jacobian matrix A:

A ≡ ∂y⃗

∂x⃗
= (δij −

∂αi(x⃗)

∂xj

) = (δij −
∂2Ψ(x⃗)

∂xi∂xj

) ≡ (δij −Ψij) (2.24)
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Considering the anisotropic part of the Jacobian matrix, we have:

(A− 1

2
TrA · I)ij =


−1

2
(Ψ11 −Ψ22) −Ψ12

−Ψ21
1
2
(Ψ11 −Ψ22)


(2.25)

This symmetric matrix with null trace is called shear. It quantifies the
gradient of the gravitational force that describes the distortion of the back-
ground sources.

The shear field γ is defined as:

γ⃗ = (γ1, γ2), γ1(x⃗) =
1

2
(Ψ11 −Ψ22), γ2(x⃗) = Ψ12 = Ψ21 (2.26)

The shear is actually a pseudo vector. In fact, defining the eigenvectors
of the shear matrix as ±


γ2
1 + γ2

2 = ±γ, it exist a coordinate rotation of an
angle ϕ such that:


γ1 γ2
γ2 −γ1


= γ


cos 2ϕ sin 2ϕ

sin 2ϕ − cos 2ϕ


(2.27)

where the factor 2 indicates that the shear components are elements of a 2x2
tensor.

Consider the isotropic part of the Jacobian matrix, we find:

1

2
TrA · I = [1− 1

2
(Ψ11 +Ψ22)]δij = (1− 1

2
∆Ψ)δij = (1− k)δij (2.28)

with k, the convergence previously defined.
The Jacobian matrix can be then rewritten as:

A =


1− k − γ1 −γ2

−γ2 1− k + γ1


=


−γ1 −γ2
−γ2 γ1


+ (1 + k)


1 0

0 1



(2.29)
As shown in Figure 2.2, the convergence scales the images of a constant

factor in every direction, while the shear distorts the image in a privileged
direction.

The magnification is related to the convergence. Through the lens equa-
tion, we have δβ2 → δθ2, but since there is no photon emission or absorption
during the lensing process, the surface brightness of the lensed source is con-
served. The change of solid angle therefore implies that the received flux will
be magnified or demagnified.

Defining the magnification tensor as M = A−1, we can define the magni-
fication factor µ:
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Figure 2.2 – Sketch of the effect of the convergence and shear on the image
of a round source (Bartelmann & Schneider, 2001).

µ = detM =
1

detA
=

1

(1− k)2 − γ2
(2.30)

µt =
1

λt

=
1

1− k − γ
, µr =

1

λr

=
1

1− k + γ
(2.31)

Imposing the eigenvalues as λt = λr = 0, we can define two curves on
the lens plane, called tangential and radial critical lines, which ideally have
infinite magnification. If an image forms along the tangential critical line, it
will be distorted in its direction. If the image forms near the radial critical
line, it will be elongated in the direction perpendicular to it. The critical
lines mapped on the source plane are called caustics.

The shear can be written in complex form:

γ = γ1 + iγ2 = |γ|e2iϕ (2.32)

The amplitude describes the amount of distortion, and the phase indicates
the distortion direction.

We can also define a tangential and a cross component relative to the
direction ϕ:

γt = −Re[γe−2iϕ], γ× = −Im[γe−2iϕ] (2.33)

where the factor 2 again reminds us that the shear is not a vector but a
tensor defined by the trace-free part of the symmetric Jacobian matrix A.
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This definition is useful in case of a spherically symmetric matter distri-
bution. In this case, in fact, the shear will be always positive and oriented
tangentially respect to the center of symmetry, while the cross component
will always be null.

Figure 2.3 – Representation of the tangential and cross components of the
shear, for an image with ϵ1 = 0.3 and ϵ2 = 0, and three different ϕ directions
(Meneghetti, M., 2009, "Weak Lensing by Galaxy Clusters").

In Figure 2.3, we can see how the tangential and cross components change
along with the direction considered, for an image with the same values of ϵ1
e ϵ2, in all three cases.

2.1.4 Ellipticity definition

If we define the reduce shear as:

g(θ⃗) =
γ(θ⃗)

1− k(θ⃗)
(2.34)

we can rewrite the Jacobian matrix:

A(θ⃗) = (1− k)


1− g1 −g2
−g2 1 + g1


(2.35)

with g1 and g2, the components of the reduced shear.
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The image distortion can be described also through the surface brightness,
considering the lens equation locally linearized:

β⃗ − β⃗0 = A(θ⃗0) · (θ⃗ − θ⃗0) (2.36)

where β⃗0 = β⃗(θ⃗0). Considering the invariance of the surface brightness re-
spect to the gravitational deflection of the light, I(θ⃗) = I(s)[β⃗(θ⃗)], we find:

I(θ⃗) = I(s)(β⃗0 + A(θ⃗0) · (θ⃗ − θ⃗0)) (2.37)

Considering an isolated image with surface brightness I(θ⃗), we can define
its center as:

θ⃗ ≡

d2θI(θ⃗)qI [I(θ⃗)]θ⃗
d2θI(θ⃗)qI [I(θ⃗)]

(2.38)

where qI(I) is an appropriate weight function.
We then define the second moment tensor of the brightness:

Qij =


d2θI(θ⃗)qI [I(θ⃗)](θi − θi)(θj − θj)

d2θI(θ⃗)qI [I(θ⃗)]
, i, j ∈ {1, 2} (2.39)

The trace of Q describes the size of the image, the traceless part of Qij

contains informations on the ellipticity. From Qij, we can define two complex
ellipticities:

χ ≡ Q11 −Q22 + 2iQ12

Q11 +Q22

, ϵ ≡ Q11 −Q22 + 2iQ12

Q11 +Q22 + 2(Q11Q22 −Q2
12)

1/2
(2.40)

Both have the same phase but a different absolute value. We can easily
pass from a definition to another if one appear more convenient in the context
in which is used.

In Figure 2.4, we can see the shape of the images as a function of their
complex ellipticity χ.

We can define the same quantities for a non lensed source:

Q
(s)
ij =


d2βI(s)(θ⃗)qI [I

(s)(β⃗)](βi − βi)(βj − βj)
d2βI(s)(θ⃗)qI [I(s)(β⃗)]

i, j ∈ {1, 2} (2.41)

Considering that:
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Figure 2.4 – Shape of the image of a circular source, as a function of the
ellipticity components χ1 and χ2 (Meneghetti, M., 2009, "Weak Lensing by
Galaxy Clusters").

d2β = detAd2θ (2.42)

β⃗ − β⃗ = A(θ⃗ − θ⃗) (2.43)

Q(s) = AQAT = AQA (2.44)

and using the definition of complex ellipticity, we can write:

χ(s) =
χ− 2g + g2χ∗

1 + |g|2 − 2Re(gχ∗) , ϵ(s) =





ϵ−g
1−g∗ϵ se|g| ≤ 1
1−gϵ∗
ϵ∗−g∗ se|g| > 1

(2.45)

In order to estimate the shear, since there isn’t a privileged direction in
the Universe, we assume that galaxies are randomly oriented:

E(χ(s)) = 0 = E(ϵ(s)) (2.46)

This implies that averaging over the formula shown so far:

E(ϵ) =


g se|g| ≤ 1

1/g∗ se|g| > 1
(2.47)
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This is a fundamental result, since it shows that the ellipticity is an
estimation of the local reduced shear. The noise of this measurement is
given by intrinsic ellipticity dispersion:

σϵ =


⟨ϵ(s)ϵ(s)∗⟩ (2.48)

This means that averaging over a large number of galaxies affected by the
same shear, we get σϵ/

√
N . Actually, since the region in which the shear can

be considered constant is very small, we need to rely on very deep surveys
to increase the number density of the background sources. Alternatively, we
can use wide surveys and stack the background samples of lenses with similar
characteristics.

The background sources used so far in week lensing studies are distant
galaxies observed in the optical or near-infrared. In order to obtain a very
high number density of sources, it’s necessary to study also very distant and
faint galaxies. This objects have a small size and are then greatly affected by
the Point Spread Function (PSF), caused by the atmospherical seeing, and
by the instrumentation.

Taking into account the seeing, the observed ellipticity is then:

ϵoss = (ϵintr + γ)⊗ PSF (2.49)

This represents the sum of the intrinsic ellipticity, due to the shape of a
galaxy, and of the gravitational shear, convolved with the PSF. To accurately
perform shape measurements is therefore important to study in detail the
PSF to adequately correct the images.

2.1.5 Lens models

a) Point mass

The simplest lens model is a point mass lens. For this object, the lens
equation can be written as:

β = θ − 4GM

c2DLθ

DLS

DS

(2.50)

Defining the Einstein radius, we can rewrite it as:

θE ≡


4GM

c2
DLS

DS

(2.51)
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β = θ − θ2E
θ

(2.52)

b) Extended surface mass density

If we consider instead an extended surface with axial symmetry, we can
choose the optical axis in such a way that it intercepts the lens plane,
passing though the center of the lens. In this case, Σ(ξ⃗) = Σ(|ξ⃗|), and
the lens equation can be written as:

y = x− m(x)

x
(2.53)

where m(x⃗) the dimensionless mass, from which we can calculate the
deflection angle:

α⃗(x⃗) =
m(x⃗)

x2
x⃗ (2.54)

Differentiating α⃗(x⃗), we can reconstruct the elements of the Jacobian
matrix A and, from that, calculate the convergence k(x), and the shear
components γ1(x) e γ2(x).

c) SIS

Another lens model that we can consider is the Singular Isothermal
Sphere (SIS). Assuming that the matter of which the lens is composed
behaves as an ideal gas confined in a spherically symmetric gravitational
potential at thermal and hydrostatic equilibrium, we find:

ρ(r) =
σ2
v

2πGr2
(2.55)

where σv is the velocity dispersion of the gas particles, and r is the
distance from the center of the sphere.

We can calculate the surface density, projecting the tridimensional den-
sity along the line of sight:

Σ(ξ) = 2
σ2
v

2πG

 ∞

0

dz

ξ2 + z2
=

σ2
v

2Gξ
(2.56)

Choosing a scale length ξ0, we can write:
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Σ(x) =
1

2x
Σcr (2.57)

Then we can calculate the convergence, the potential and the deflection
angle:

k(x) =
1

2x
, Ψ(x) = |x|, α(x) =

x

|x| (2.58)

and the lens equation will be:

y = x− x

|x| (2.59)

In order to calculate the shear components, we need the derivatives of
Ψ:

∂Ψ

∂xi

=
xi

|x|
∂Ψ

∂xi∂xj

=
δijx

2 − xixj

x3

Then we get:

Ψ11 =
x2
2

x3

Ψ12 = −x1x2

x3

Ψ22 =
x2
1

x3

The shear components will be:

γ1 =
1

2
(Ψ11 −Ψ22) = −1

2

cos 2ϕ

x

γ2 = Ψ12 = −1

2

sin 2ϕ

x
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d) NFW

Finally, I will described an NFW lens model, the one that is most
commonly assumed in weak lensing by galaxy clusters analysis.

Integrating the density profile along the line of sight, as for the previous
model, and imposing ξ0 = rs, we find the surface density:

Σ =
2rsδcρc
x2 − 1

f(x) (2.60)

where:

f(x) =





1− 2√
x2−1

arctan


x−1
x+1

x > 1

0 x = 1

1− 2√
1−x2 arctanh


1−x
1+x

x < 1

(2.61)

The lensing potential will be:

Ψ(x) =
4rsδcρc
Σcr

g(x) (2.62)

where:

g(x) =
1

2
ln2 x

2
+





2 arctan2


x−1
x+1

x > 1

0 x = 1

−2 arctanh2


1−x
1+x

x < 1

(2.63)

The deflection angle will be:

α(x) =
4rsδcρc
Σcrx

h(x) (2.64)

where:

h(x) = ln
x

2
+





2√
x2−1

arctan


x−1
x+1

x > 1

1 x = 1

2√
1−x2 arctanh


1−x
1+x

x < 1

(2.65)

Finally, for the shear we can write:
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γ(x) =





rsδcρc
Σcr

g>(x) x > 1
rsδcρc
Σcr

[10
3
+ 4 ln 1

2
] x = 1

rsδcρc
Σcr

g<(x) x < 1

(2.66)

where:

g>(x) =
8 arctan


x−1
x+1

x2
√
x2 − 1

+
4

x2
ln

x

2
− 2

x2 − 1
+

4 arctan


x−1
x+1

(x2 − 1)3/2
(2.67)

g<(x) =
8 arctanh


1−x
1+x

x2
√
x2 − 1

+
4

x2
ln

x

2
− 2

x2 − 1
+

4 arctanh


1−x
1+x

(x2 − 1)(1− x2)1/2

(2.68)

2.2 Applications

2.2.1 Galaxy-galaxy lensing

Unlike the case of single massive galaxy cluster, the lensing signal from a
single galaxy is too small to be detected on the background sources sample,
even for the most massive objects. Besides averaging over a large number
of background galaxies, it’s therefore necessary to stack many foreground
galaxies, acting as lenses, selecting and binning them according to some
observable that correlates well with their total mass (e.g. luminosity, stellar
mass).

Galaxy-galaxy lensing can be applied to field and cluster galaxies, mea-
suring the stacked tangential radial shear profile around these objects and
inferring their masses with a fit to a chosen model. In the second case, on
first approximation, the aperture around the lenses needs to be small enough
not to include the contribution from the host halo and neighboring clus-
ter galaxies, while in a more detailed analysis is necessary to model these
supplementary signals.

In Figure 2.51, we can see an example of a shear profile reconstruction.
The same method can be applied in case of cluster lensing. We find, on

1All figures cited as Gravlens 2016 were taken from talks presented at the conference
"From theory to applications: celebrating a century of gravitational lensing", 11-15 July
2016, Leiden, the Netherlands. The complete pdf presentations can be found at http:
//home.strw.leidenuniv.nl/~gravlens2016/Talks/talks.html
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Figure 2.5 – The images of the background sources are distorted by the fore-
ground objects. Averaging the shear signal in concentric annuli around the
lens, it’s possible to reconstruct the radial surface density contrast (Brouwer,
M., Gravlens 2016).
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the left, a drawing representing the bending of the space time caused by the
foreground mass concentration, and the path followed by the light emitted
by the background sources, whose image is distorted. On the right, we have
a representation of the annular binning around the lens. Galaxy ellipticities
are averaged inside each annulus to calculate the shear radial profile, shown
in the bottom right.

With this kind of analysis, it’s possible to infer the stellar-to-subhalo
mass ratio and different observable-halo mass relations (Coupon et al., 2015;
Sifón et al., 2015; van Uitert et al., 2016) and, for example, compare these
results with abundance matching (Li et al., 2014). The abundance matching
technique it’s based on the assumption of a monotonic relation between a
(sub)halo property (i.e. mass or velocity) and an observed galaxy property
(i.e. luminosity or mass). It consist in the match between an halo mass
function from simulations with a luminosity or stellar mass function from
observations, so that the most massive or the most luminous galaxy will
reside in the most massive halo. This technique offers a very simple prediction
of the stellar-to-subhalo mass ratio that can be tested against observations,
using for example this kind of lensing measurements.

Dividing cluster galaxies into satellites and centrals, it’s also possible to
study the interaction between the host halo and the subhalos, binning them
according to their distance from the cluster center (Li et al., 2016). The mass
loss as a function of the halo centric radius can give evidence of tidal stripping
and allows us to constrain galaxy formation models, comparing the results
with simulations. (Li et al., 2016) found that the subhalo-to-stellar mass
ratio of satellite galaxies increases as a function of the halo-centric radius,
as predicted from simulations. In fact, when a small halo merges to a larger
system, becoming a subhalo, it starts to suffer from environmental effects
such as tidal stripping, ram-pressure, and dynamical friction. The infalling
subhalos will mainly loose dark matter rather than luminous matter, since
the mass distribution of the latter is much more concentrated compared to
the more extended profile of the first.

2.2.2 Galaxy cluster lensing

Galaxy cluster masses can be inferred with different methods (i.e. X-ray
flux and temperature, S-Z effect, dynamics) but as stated before, unlike
gravitational lensing, they have to rely on the assumption of hydrostatic
equilibrium. The simulations of Rasia et al. (2012) showed that the bias on
weak lensing derived masses is ∼ 5−10%, while for X-ray masses it increases
to ∼ 25 − 30%. The X-ray bias is mainly due to the lack of hydrostatic
equilibrium, presence of clumps, and temperature inhomogeneity.
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Hoekstra (2003) showed that the relative accuracy on individual cluster
mass measurements, leaving the concentration as a free parameter, goes from
∼ 30% to ∼ 15% for masses between ∼ 7 × 1014M⊙ and ∼ 3 × 1015M⊙.
Clusters less massive than ∼ 7 × 1014M⊙ need then to be stacked to allow
the shear signal to emerge from the noise of the intrinsic ellipticity of the
background sources and, in this case, the profile obtained will give a mean
lensing mass.

There are two different methods to infer cluster masses from the lensing
signal, either using single clusters or stacking them, that have been largely
used so far. I will discuss this methods briefly, and I refer the reader to Hoek-
stra et al. (2013) for a more comprehensive review on cluster mass estimation
from weak lensing measurements.

Aperture mass measurements, first introduced by Schneider (1996), are
based on the computation of the amount of tangential shear inside a fix
aperture radius, filtered by a function that maximizes the signal-to-noise ratio
for a given lens model. In Hoekstra (2001), two different filters are used, one
corresponding to a SIS lens model and one based on the ζ−statistic (Fahlman
et al., 1994), which is independent of the mass distribution. In the same
paper, the contribution from the large scale structure is also addressed and
considered as an additional statistical source of error, estimated integrating
the power spectrum. Hoekstra et al. (2012) measured masses of single X-ray
selected clusters (from Chandra and XMM-Newton; Mahdavi et al., 2012)
using this technique and compared the results with S-Z mass estimates (from
OVRO and BIMA; Bonamente et al., 2006), finding good agreement between
the two.

Israel et al. (2010) also measured single cluster masses with aperture mass
statistics. He used a different filter, first introduced by Schirmer et al. (2006),
which corresponds to an NFW lens model. In the same work, this method
is used to identify cluster centers, and the results are compared with X-ray
centers.

In principle, aperture mass statistic could be then used to detect galaxy
cluster and their center using only their shear signal but this is possible
only for very massive clusters that give rise to high S/N peaks that can be
distinguished from spurious low peaks.

Another way in which cluster masses can be inferred is to assume a semi-
analytic model for the lens, called halo model and first introduced by Seljak
(2000). The idea is that all the matter in the universe is confined in spherical
halos that are clustered according to their mass. As a first approximation
then, a galaxy cluster can be modeled with an NFW profile, and the contri-
bution from neighboring halos and filaments can be included in a second term
(i.e. two-halo term), proportional to the linear matter bias and correlation
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function. Assuming this model, it is possible to relate the measured shear ra-
dial profile (the tangential shear averaged in annuli around the center of the
lens or the stack of lenses, as explained in the case of galaxy-galaxy lensing
in Figure 2.5) to the surface density contrast, and perform a fit to evaluate
the parameters of interest, the radius r200, and optionally the concentration
c200.

Figure 2.6 – Example of miscentering parameters from van Uitert et al. (2016)
as a function of the halo mass in each richness bin. In the top plot, the width
of the miscentering distribution P (rmis). In the middle, the width normalized
by the radius r200. In the bottom, the percentage of correctly centered clusters
in each bin. The different colors represent different redshift bins. There is
no evidence of redshift evolution.

Additional terms can be included in the model to take into account, for
example, the contribution from the cluster BCG or non-weak shear effects in
the innermost regions. The most important term is the one that corrects for
errors in the determination of the true cluster center. George et al. (2012)
performed an analysis on miscentering that resulted in a underestimation
of the mass by 5 − 30%, depending on the centering method. They tested
galaxy candidate centers (the galaxy with the greatest stellar mass within
a given radius from the X-ray centroid, the galaxy with the greater stellar
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mass within r200, the brightest galaxy within a given radius from the X-
ray centroid, and the brightest galaxy within r200), and centroid candidate
centers (the centroid of member galaxies, the centroid of member galaxies
weighted by stellar mass, the centroid of member galaxies weighted by flux,
and the X-ray centroid). Based on the recovered weak lensing signal, the
brightest or the most massive galaxy near the X-ray centroid resulted to be
the best cluster center tracer.

Johnston et al. (2007) found from simulations that the distribution of
center offsets can be modeled as a Reyleigh distribution that, when applied
to the shear radial profile, creates a smoothing responsible for the mass un-
derestimation. In order to add this effect in the analytic model is therefore
necessary to add some parameters, usually the width of the offset distribution
and the percentage of correctly centered clusters.

Figure 2.7 – Mass-richness relation inferred with shear profile fitting from
van Uitert et al. (2016), compared with the results of Johnston et al. (2007),
in back. The different colors represent different redshifts bins. The normal-
ization of the mass richness relation increases with redshift.

Johnston et al. (2007), and more recently Ford et al. (2015) and van
Uitert et al. (2016), applied this technique, stacking clusters in richness and
luminosity bins and evaluating the mean mass M200, with other interest-
ing parameters such as the linear bias, the concentration, the miscentering
parameters, and mass of the BCG, deriving also the corresponding scaling
relations.

As an example, I show the results of van Uitert et al. (2016). In Figure
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Figure 2.8 – Mass-concentration relation inferred with shear profile fitting
from van Uitert et al. (2016), compared with others in literature. The differ-
ent colors represent different redshift bins. The uncertainties are too high to
constrain redshift evolution.

2.6, we can see the recovered miscentering parameters, as a function of the
mean halo mass in each bin. From top to bottom, we find the width of the
miscentering distribution, the width over the radius r200, and the percentage
of correctly centered clusters in each bin. Different colors correspond to dif-
ferent redshift bins. They found that the miscentering parameters increase
with the cluster mass, with no evidence of evolution with redshift of these
relations. In Figure 2.7, we can see the mass-richness relation that they in-
ferred, for different redshifts bins, compared to the results of Johnston et
al. (2007), in black. They found that the normalization of the mass-richness
relation increases with redshift. This is the opposite of what we would ex-
pect, since M200 masses are defined with respect to the critical density of the
universe, they should increase for lower redshifts, as the background density
decrease. They justify the unexpected trend that they found with the evolu-
tion of richness with redshift. Since the richness quantifies the number of red
passive galaxies in a cluster, its value will increase for lower redshift, as tidal
and ram pressure stripping will quench the galaxy star formation. In Figure
2.8, we find their mass-concentration relation. The uncertainties on the con-
centration parameter are large, as it is generally the case with this kind of
analysis (e.g. Johnston et al., 2007; Mandelbaum et al., 2008; Covone et al.,
2014). The concentration parameter, in fact, it’s usually not well constrained
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by the data since it’s degenerate with the miscentering parameters.
Simet et al. (2016) performed the same kind of analysis but with a dif-

ferent choice of parametrization, studying extensively the systematic error
budget, taking into account photo-z and shape measurements, miscentering,
cluster projections, halo triaxiality and baryonic effects and deriving an up-
dated mass-richness relation. Unlike van Uitert et al. (2016), they didn’t
calculate the fit parameters in each richness bin, but performed a simultane-
ous fit of all the shear profiles, inferring directly the slope and normalization
of the mass-richness relation, and the mean values of the miscentering pa-
rameters. They found results in good agreement with others in literature.

Kettula et al. (2015), on the other hand, used the same method on indi-
vidual X-ray detected clusters to correlate lensing masses with X-ray (XMM-
Newton) luminosity and temperature. They divided their sample in relaxed
and merging clusters, based on the offset between the X-ray peak and the
BCG position. They found that the scatter in TX at fixed mass is lower
than that of LX . For the mass-luminosity and mass-temperature relations,
they found that merging cluster sample shows a greater scatter, compared to
the relaxed samples. They also performed a X-ray cross calibration between
XMM-Newton and Chandra, and found that the slopes of the luminosity-
temperature, and mass-temperature relations are flatter using Chandra cal-
ibration, while the mass-luminosity relation is not affected.

2.2.3 Peak statistics

High S/N peaks in lensing maps are expected to be associated with massive
structures along the line of sight. Theoretically then, weak lensing peak
abundance is related to the mass function of dark matter halos and peak
counts can be used to constrain the cosmological model and also to study
the non-gaussian information that is unaccessible with the reconstruction
of the convergence power spectrum alone, in two-point correlation analysis
(Figure 2.9).

As we said in the previous chapter, it’s possible to detect galaxy cluster
using aperture mass measurements. The problem though is that, while high
S/N peaks are actually associated with a single massive collapsed halo, the
nature of low and medium peaks has to be interpreted differently. Kratochvil
et al. (2010) and Yang et al. (2011) reconstructed convergence maps from ray
tracing simulations (Figure 2.10) to investigate the nature of these peaks.
They found that they arise from the projection of multiple halos along the
line of sight and by random galaxy shape noise. They also reached the counter
intuitive conclusion that noise can increase the peak counts, simulating low
peaks, since it doesn’t add linearly to the lensing signal.
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Figure 2.9 – Peak counts from different cosmological simulations and com-
pared with those expected for Gaussian Random Fields (GRF). Peak statis-
tics is highly non Gaussian (Yang et al., 2011).

Figure 2.10 – Illustration of simulations for peak counts prediction. Starting
from N-body simulations, ray tracing is applied to get a full cosmological
simulation (Haiman, Gravlens2016).
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Liu, X., et al. (2015) applied peaks statistics to observed data, recon-
structing convergence maps and scanning the pixels to look for maxima.
Cosmological parameters were then inferred applying a fit to a theoretical
model of peak abundance.

Figure 2.11 – Constraints on cosmological parameters from peak counts statis-
tics, power spectrum, and joint analysis (Liu, J., et al., 2015).

Liu, J., et al. (2015) performed a similar analysis on another sample of
observed data, calculating also the convergence power spectrum from the
Fourier transform of the convergence maps. The results were then compared
with a set of ray tracing simulations for different cosmological models. The
constraints derived are tighter when using the power spectrum and peak
counts combined (Figure 2.11).

Martinet et al. (2015) on the other hand, applied the peak statistics di-
rectly on shear maps, instead of performing the convergence map recon-
struction. Peaks were identified using the aperture mass technique using a
particular filter (not associated with the physical mass of the dark matter
halos), on simulated shear maps for different kind of cosmologies.

2.2.4 LSS lensing

Lensing by Large Scale Structure was first probed by Bacon et al. (2000)
and called cosmic shear. It has proven to be an important tool to directly
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measure the projected matter power spectrum, and cosmological parameters
such as the matter density and the amplitude of the power spectrum. It
has been used also to constrain neutrino mass and dark energy, especially if
used in combination with other measurements (for example those from CMB
lensing).

Bacon et al. (2000) calculated the two-dimensional power spectrum to
differentiate between different cosmological models, averaging the shear in
cells to minimize cosmic variance. Their results are consistent with CMD
models. In particular, for a Λ − CDM model with Ωm=0.3, they found
σ8 = 1.5± 0.7, consistent with the value derived from cluster abundance.

Hoekstra et al. (2005) used different two-point statistics to calculate the
correlation functions. In particular, the ellipticity correlation function allows
us to separate the signal into E-mode and B-mode. The latter should be zero
and its amplitude provides an estimate of the residual systematics. They
also used the aperture mass statistics as two-point statistics to calculate the
aperture mass variance. The observed two-point statistics can be related to
the matter power spectrum to infer the cosmological parameters of interest.
They found σ8 = 0.85±0.06, and w0 < −0.8 at 68% confidence, in agreement
with previous results.

Becker et al. (2016) also performed two-point statistics on Dark Energy
Survey Science Verification (DES VS) data in both, real and Fourier space,
extensively testing for systematics using simulations, including B-modes con-
tamination and dependence on observing conditions and galaxy properties.
The constraints on the cosmological parameters inferred with these data are
presented in the companion paper Dark Energy Survey Collaboration (2016).
They found σ8 (Ωm/0.3)

0.5 = 0.81±0.06. This result is in agreement with cos-
mic shear studies from the CFHTLenS and Planck CMB data. The ∼ 20% of
the error budget comes from photometric redshift calibration uncertainties.

2.2.5 CMB lensing

Gravitational lensing has different effects on the Cosmic Microwave Back-
ground radiation, introducing correlations in the temperature fluctuation
modes. This distorts the local 2-D power spectrum (as it happens on galaxy
images) and smears its peaks. While cosmic variance creates fluctuations
in the power spectrum that can’t be distinguished from lensing effects, the
B-mode polarization on small scales is due to lensing alone and constitutes
noise for the inflation B-modes (Lewis, Challinor & Lasenby, 2000).

CMB lensing can be used to study structure formation at high redshift,
probing the sum of neutrino masses, and to measure the gravitational poten-
tial on very large scales, constraining curvature, dark energy and modified
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gravity.
While previously CMB observation alone lacked of the sensitivity and

resolution to detect lensing, and had to be studied in cross correlation
with galaxy distributions from other data, van Engelen et al. (2012) used
a quadratic estimator to reconstruct the lensing power spectrum with SPT
data, measuring its amplitude and constraining other cosmological parame-
ters, studying in detail the systematics due to noise and foreground.

POLARBEAR Collaboration (2014), in the POLARBEAR Collabora-
tion, used again the four-point correlation function, detecting for the first
time evidence of CMB lensing polarization with CMB information alone,
and measuring the amplitude of matter fluctuations and lensing B-modes.

Planck Collaboration XV (2016), performed the most significant detection
of the CMB lensing potential using temperature and polarization data. They
estimated the lensing potential power spectrum finding good agreement with
Planck temperature and polarization power spectra. They combined this
information with E-mode polarization to have an estimate of the B-mode,
and detected cross-correlation of this signal with large scale temperature
anisotropies.

In Figure 2.12, we can see the lensing power spectrum measured by
Planck, POLARBEAR and other surveys. The significance of the measure-
ment grew from ∼ 3σ to almost 50σ.

Melin & Bartlett (2015) proposed a different use of CMB lensing data.
They used simulations of Planck observations to demonstrate that it’s pos-
sible to measure cluster masses, even in low S/N conditions, analyzing the
distortions of the CMB anisotropies caused by the lens gravitational po-
tential. After removing the tSZ signal, a map of the cluster gravitational
potential is reconstructed applying a quadratic estimator on the background
CMB temperature map. Then a matched filter is used to extract the lens
mass, assuming an NFW profile. They first simulated 62 observations of
A2163, one of the most massive clusters known, with MX

500 = 1.9 × 1015M⊙ ,
and z = 0.203. They found M lens

500 /MX
500 = 1.01 ± 0.13, which results in

an unbiased recovery of the sample mass scale with 13% of uncertainties.
Then they simulated 62 clusters from a mock of the Planck Early Sunyaev-
Zeldovich sample with good X-ray observations (ESZ-XMM), with masses in
the range 2×1014M⊙−2×1015M⊙. They found an unbiased estimate of the
mass scale M lens

500 /MX
500 = 0.99 ± 0.28. The larger uncertainty in this case is

due to the larger range of masses used.
This method could be complementary to the other methods described

for cluster lensing, based on the use of shear measurements on background
galaxies. The use of the CMB as source plane, in fact, allows us to extend
this analysis to much higher redshifts and to infer mass-SZ relations.
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Figure 2.12 – CMB lensing power spectrum measured from different surveys
with increasing significance (Carron, J., Gravlens 2016).
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2.3 Data and tools
For weak lensing studies, very accurate shape measurements of the back-
ground sources are required, and have been performed so far using optical
images obtained from ground based telescopes in optimal seeing conditions
for wide field surveys (e.g. CFHTLS2, SDSS3 and ongoing and future KiDS4,
LSST5, DES6, HSC7) or space telescopes for single clusters observations (e.g.
HST Frontier Fields8). In the upcoming future though, thousands of square
degrees of the sky will be covered from space surveys such as Euclid9 and
WFIRST10, and this will have a huge impact on this kind of work. Also, the
next generation radio surveys such as SKA11 will allow us to extend weak
lensing measurements to the radio band, giving access to even larger scales.

Figure 2.13 – Illustrative example of the effects of shear, seeing, pixelization
and noise on the image of a galaxy (von der Linden, Gravlens2016).

In Figure 2.13, we can see an example of how the image of a background
galaxy is modified by the effect of the shear, the PSF, the pixelization, and
the noise, in a typical ground based survey.

Some of the tools developed for the purpose of measuring galaxy ellipticity
are:

• lensfit (Miller et al., 2013): a Bayesian code that fits a two component
(bulge plus disk) galaxy model, convolved with pixel-based models of
the PSF for each image, marginalizing over nuisance parameters of
galaxy position, size, brightness and bulge fraction.

2http://www.cfht.hawaii.edu/Science/CFHTLS/
3http://www.sdss.org
4http://kids.strw.leidenuniv.nl
5http://www.lsst.org
6http://www.darkenergysurvey.org
7http://subarutelescope.org/Projects/HSC
8http://www.stsci.edu/hst/campaigns/frontier-fields/
9http://euclid- ec.org

10http://wfirst.gsfc.nasa.gov
11http://www.skatelescope.org
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• im3shape (Zuntz et al., 2103): a model fitting code similar to lensfit.
It uses a sum of two Sersic profiles for the galaxy model, and a Moffat
profile for the PSF.

• ngmix (Sheldon, 2014): another model fitting method that, unlike the
previous two, is not based on a point estimate of the shear (the ex-
pectation value of the galaxy ellipticity). It relies on the fact that the
mean shear estimated from a large ensemble of galaxy images has a
posterior distribution that approaches a Gaussian. The code uses then
sums of Gaussians to model galaxies convolved with a round Gaussian
PSF.

• SExtractor + PSFEx (Bertin, 2011): this method relies on SExtractor’s
two-dimensional model fitting capabilities, and the convolution with
the PSF modeled by the integrated companion code PSFEx, which
uses a linear combination of basis vectors, that can be the pixel basis,
the Gauss-Laguerre basis, or any other user-provided basis.

Alongside shape measurements, it’s important to have redshift estima-
tions as accurate as possible since they are used to select background sources
samples. Contaminations from foreground galaxies will lead to not negligible
biases in mass profile reconstructions.

Because spectroscopic redshifts measurements are subjected to instru-
ment limitations, they can’t be performed on very faint galaxies (i.e. fainter
than magAB = 24) and very large sky areas. In fact, spectroscopic surveys
can’t be as wide and deep as required by weak lensing studies, and we have
to rely on photometric redshift (photo-z) estimations (Newman et al., 2015).

Even though photo-zs measurements are still not considered completely
reliable and further improvements are needed in the future to reach the goal
of 1% accuracy in mass estimations, the use of the complete P(z) distributions
has proven to lead to almost unbiased results compared to the use of a single
photo-z for each galaxy, when applied to cosmological analysis (Mandelbaum
et al., 2008).

Commonly used softwares for photo-zs estimations, that rely on accurate
multi band photometry, are:

• BPZ (Benítez, 2000): a Bayesian code that assumes an empirical prior
for the expected redshift distribution for galaxies of a given spectral
type as a function of magnitude, derived from objects with spectro-
scopic redshifts in the HDF-N. A marginalization over a library of SED
templates is then performed.
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• lePhare (Ilbert et al., 2006): this code applies a simple χ2 fit of the input
photometry to various SED templates redshifted by different amounts.
Varying both redshift and spectral type, a likelihood distribution can
be obtained for each object.

• zebra (Feldmann et al., 2006): this code produces two estimates for the
photometric redshift of each galaxy, a Maximum Likelihood one and
a Bayesian one, using both the approaches described above with some
improvements: SED models are corrected with an iterative technique
and a training set of spectroscopic redshifts can optionally be used to
optimize the initial set of galaxy templates.

• EAZY (Brammer, van Dokkum & Coppi, 2008): this algorithm is opti-
mized for studies in which the spectroscopic redshifts are not available,
or they are biased by the sample selection. In fact, the templates used
in this code are not based on spectroscopic samples, but on a semi
analytic model that uses galaxy synthetic photometry. It offers the
possibility of performing a χ2 minimization of linear combinations of
templates, and of using bayesian priors.

In Figure 2.14, we can see a scheme that represents the different stages
that are typical of a weak lensing analysis. Starting from high resolution and
multi-band imaging we can identify and separate galaxies and stars, then we
measure ellipticities and photometric redshift with the methods described
above, performing calibration through simulations and overlapping spectro-
scopic redshifts samples. Depending on the kind of analysis, and lensing
objects involved, we use a different statistics and compare the results with
analytic models, or N-body simulations to infer the parameters of interest.

2.4 Challenges for the future
Concerning cluster and galaxy lensing, the aim for future analysis is to reach
an accuracy of 1% in mass measurements. At present, the main challenge
in this context, comes from the photometric redshift estimation. While we
can be satisfied with our knowledge of the calibration biases in shear mea-
surements, further improvements need to be made for photo-zs calibration
to avoid the contamination of background sources samples from foreground
galaxies. For example, the ellipticity estimates performed by lensfit are char-
acterized by a multiplicative bias, m, that is inversely proportional to the size
and detection signal-to-noise ratio of the galaxy, and by an additive bias, c,
that increases for the smallest brightest objects. In Figure 2.15, we find the m
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Figure 2.14 – Scheme of the different ingredients involved in weak lensing
analysis (Heymans, C., Gravlens 2016).

76



and c calibration biases, as a function galaxy ellipticity for different redshift
bins, calculated by Fenech Conti et al. (2016) from simulations. They found
an average multiplicative bias ∼ 2%, and an average additive bias ∼ 5−4.

Figure 2.15 – Multiplicative and additive calibration corrections of lensfit el-
lipticity measurements as a function of the galaxy ellipticity, for different
redshift bins, calculated from simulations (Fenech Conti et al., 2016).

Figure 2.16 – Constraints on cosmological parameter obtained with different
redshift uncertainty and calibration methods. Weighted direct calibration in
blue, cross correlation calibration in grey, original P(z) from BPZ in green
and recalibrated version in orange (Hildebrandt et al., 2016).

In Figure 2.16, we can see the impact of various calibration methods for
photometric redshifts estimations on the derived constraints on the cosmo-
logical parameters, through the tomographic weak lensing analysis of the
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KiDS-450 data. They used three different kind of photometric redshift cal-
ibrations: a weighted direct calibration that consists in the use of the dis-
tribution of spectroscopic redshifts of object selected in the same way as
the photometric sample that we want to analyze (DIR); an indirect method
based on the angular cross-correlation function between the photometric and
spectroscopic samples (CC); the recalibration of the original photometric
P (z) (BPZ) through its integration over the spectroscopic redshift range for
each spectroscopic training object (BOR). We can see that the DIR method
provides the best fit to the data. with uncertainties that are subdominant
compared to the measurements errors. The CC method, on the other hand,
provides much larger constraints, due to the limited coverage of the used
spectroscopic sample. Even though all four methods shown give consistent
results, it will be fundamental to further reduce the statistical uncertainties
in the calibration to fully exploit the shear measurements in cosmological
studies (Hildebrandt et al., 2016).

It is also important to increase the number density of background sources
to achieve an higher S/N ratio in shear profile measurements. This will be
possible thanks to the upcoming space missions, as Euclid and WFIRST that
will produce optical images, and the ground based SKA radio survey, that
will give access to a new order of magnitude in sky coverage.

In Figure 2.17, we can see a clear illustrative example of the different
resolution achieved by ground based telescopes, on the top, and by space
telescopes, on the bottom.

Regarding CMB lensing, future studies will focus on the informations
accessible through polarization, to constrain neutrino masses and to probe
lensing B-modes that represent noise for the measure of inflation B-modes.
It is then necessary to study CMB delensing techniques to clean the signal
enough to probe B-modes from primordial gravitational waves.

In cosmic shear studies and peak counts statistics it will be interesting
to analyze non Gaussianity in more depth, to see if we can have access to
new kind of informations that will allows us to put even tighter constraints
on the cosmological model parameters.

Finally, as we can see in Figure 2.18, while the results from CMB lens-
ing with Planck and those from clustering, galaxy-galaxy lensing, and cosmic
shear with DES are in good agreement with what obtained with Planck CMB
(top and middle plots), there is still a 2−3σ tension with KiDS measurements
that needs to be further investigated (bottom plot). In fact, using KIDS-450
data, Hildebrandt et al. (2016) found S8 ≡ σ8


Ωm/0.3 = 0.745±0.039, con-

sistent with several previous cosmic shear analysis, but inconsistent within
2 − 3σ with Planck 2015 results. They found evidence of low-level shear B
modes that suggests the presence of some unaccounted systematics in the
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Figure 2.17 – Low resolution images from ground based telescopes on the
top, compared with high resolutions ones from space telescopes on the bottom
(Heymans, C., Gravlens 2016).
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data that, however, do not affect the constraints on the cosmological param-
eters. In particular, the correction for B modes increases the tension with
Planck results. Despite the increasingly accurate corrections for systematic
errors, the nature of this tension is still unknown.
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Figure 2.18 – Planck CMB lensing and DES lensing are in agreement with
Planck CMB, while there is a 2−3σ tension with KiDS lensing (Sherwin and
Kwan, Gravlens 2016).
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CHAPTER

THREE

STATISTICAL ANALYSIS

In this chapter, I will explain the theory behind the statistical methods that
I used in the week lensing analysis that I performed. I will describe the
bootstrap, the Markov Chain Monte Carlo (MCMC), and the aperture mass
statistics, and how I applied them to my work in order to estimate the errors
on the shear profiles, the errors on the fit parameters, and the lensing S/N
ratio for individual and stacked clusters, respectively.

3.1 Bootstrap theory
The idea of bootstrap was first introduced by Efron (1979) and presented as
a more general technique compared to Quenouille - Tukey jackknife method.
The bootstrap allows us to make inference about a population characteristic,
sampling from an approximating distribution. This makes it particularly
useful when the theoretical distribution is unknown or when the sample size
is insufficient to be fully representative of the population.

In order understand how the bootstrap works, we first need to clarify the
notation used in Efron (1979), and briefly introduce the theory of inferential
statistics.

A sample (X1, ..., Xn) is a probability sample if the probability of each unit
of the population of interest being selected is known, and greater than zero.
Before the n units are drawn, the sample (X1, ..., Xn) is a random variable,
formed by independent and identically distributed random variables (i.i.d.).
After the selection, the sample won’t be a random variable anymore, and
it will contain the observed realization of the n units (x1, ..., xn), so that
(X1 = x1, ..., Xn = xn).
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We generally denote by θ the population characteristic that we are in-
terested in, and by T , the estimator that we use to make inference about θ.
Before the sample is drawn, the statistic T (X1, ..., Xn) is a random variable
while after the selection, T (x1, ..., xn) = t, where t is the value in the observed
sample.

The probability that a random variable X will fall within a particular
range of values is given by the integral of its probability density function
(PDF) over that range. If we denote the PDF by f , for an absolutely con-
tinuos univariate distribution we’ll have:

Pr(a ≤ X ≤ b) =

 b

a

f(x)dx (3.1)

We can then denote the cumulative distribution function (CDF) by F .
The CDF gives the probability that the random variable X will take a value
less than, or equal to x. It can be expressed as the integral of the PDF:

F (x) = P (X ≤ x) =

 x

−∞
f(y)dy (3.2)

When f is fully determined by a particular mathematical model with
adjustable constants or parameters, the statistical methods based on this
model are said parametric, while if no such mathematical model is used, the
statistical analysis is nonparametric.

In case of nonparametric analysis, an important role is played by the
empirical distribution function (EDF), denoted by F̂ , which estimates F . It
is defined as the CDF that puts equal probability 1/n at each sample value
xi:

F̂ (x) =
1

n

n

i=1

H(x− xi) (3.3)

where H(n) is the Heaviside step function

H(n) =


0, n < 0

1, n ≥ 0

At any fixed value of x

E{F̂ (x)} = F (x)

V ar{F̂ (x)} =
1

n
F (x)(1− F (x))

and this implies that F̂ (x) → F (x) with probability 1.
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Given this notation and following Efron (1979), we want to estimate the
sampling distribution of a random variable R(X,F ), with F unknown, on
the basis of the observed sample x.

To apply the bootstrap method we need the F̂ and, keeping it fixed, we
draw a sample of size n from it:

(X∗
1 = x∗

1, ..., X
∗
n = x∗

n), (X∗
1 , ..., X

∗
n)

i.i.d.∼ F̂

where the values of X∗ are selected with replacements from the observed
sample x (while with jackknife we would draw a sample of size n−1 without
replacements).

We can then approximate the sampling distribution of R(X,F ) by the
bootstrap distribution:

R∗ = R(X∗, F̂ )

To calculate R∗, there are three methods: direct theoretical calculation,
which is not always possible; Monte Carlo approximation; Taylor series ex-
pansion. We will focus on the second one.

To approximate the bootstrap distribution with a Monte Carlo approach,
we can generate N different realization of X∗, always drawing random sam-
ples of size n from F̂ , and use the histogram of the values:

(R(x∗1, F̂ ), ..., R(x∗N , F̂ ))

In Fig. 3.1 we can see a scheme that illustrates this process. In this case,
B samples of size n are drawn with replacements from the original observed
sample (x1, ..., xn) and, for each of those, the statistic T (x∗i) is calculated,
creating the bootstrap distribution (T1, ..., TB).

As we will see in the chapter dedicated to the weak lensing analysis, when
applying this method to shear data, the original observed sample (x1, ..., xn)
will be the stacked cluster in a given richness bin, and the statistic T (x∗i) =
∆Σ(R) will be the shear estimator. For each richness bin, I will drew with
replacements n clusters from the stack and repeated this process B = 100
times, calculating each time ∆Σ(R). In the end, I obtained the bootstrap
distribution (∆Σ(R)1, ...,∆Σ(R)B) of the shear estimator. From that, I was
be able to calculate the covariance matrix using the value of ∆Σ(R) in each
bootstrap realization, and the mean over all the bootstrap samples.
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Figure 3.1 – The statistic T is calculated for each of the B samples of size
n drawn with replacements from the original observed sample, creating the
bootstrap distribution (Li, L., "Calculating the Confidence Intervals Using
Bootstrap", 2004).

3.2 MCMC theory
Markov chain Monte Carlo methods (MCMC; Metropolis et al., 1953) allow
us to efficiently sample from a posterior PDF, even when the assumed model
has a large number of parameters and it’s computationally expensive, by
constructing a Markov chain that has the target posterior distribution as its
equilibrium distribution.

To understand how these algorithms work, we first need to introduce the
concept of Bayesian inference through Bayes’ Theorem. Following (Gilks,
Richardson & Spiegelhalter, 1996), given a model that depends on some
parameters θ and a series of observed data D, we define:

the prior probability P (θ), the probability of model θ before D is ob-
served.

the posterior probability P (θ|D), the probability of the model θ having ob-
served D.

the likelihood P (D|θ), the probability of observing D given the
model θ.

the marginal likelihood P (D) =

P (D|θ)P (θ)dθ, the probability of observ-

ing D for any model. It can be considered as a nor-
malization constant.
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Bayes’ Theorem states that the probability of the model θ given the
observed data D (the posterior) is proportional to the inherent likeliness of
the model (the prior) and to the compatibility of the observed data with the
model (likelihood):

P (θ|D) =
P (D|θ)P (θ)

P (D)
=

P (D|θ)P (θ)
P (D|θ)P (θ)dθ

∝ P (D|θ)P (θ) (3.4)

Given the posterior probability, the expectation value of a function f(θ)
will be

E[f(θ)] =


f(θ)P (θ|D)dθ ∝


f(θ)P (D|θ)P (θ)dθ (3.5)

In a more general notation, we can consider a random variable X
that comprises the model parameters θ and, through a Monte Carlo
integration, we can approximate the expectation value of f(X) by a sample
mean, drawing n samples (X1, ..., Xn) from the posterior distribution P(X|D)

E[f(X)] ≃ 1

n

n

t=1

f(Xt) (3.6)

The samples can be drawn through a Markov chain that has the posterior
distribution as its stationary distribution.

A Markov chain is defined as a sequence of random variables
(X0, X1, X2, ...) such that, at each time t ≥ 0, the next state Xt+1 is sampled
from P (Xt+1|Xt). This means that the next state Xt+1 depends only on the
previous one and not on the rest of the chain. As t increases, the chain will
converge to a stationary distribution ϕ(X) (that we want to coincide with the
posterior P (X|D)) and after a burn-in period of, say m iterations, the points
(Xm+1, ..., Xn) will be dependent samples approximately from the stationary
distribution ϕ(X):

E[f(X)] ≃ 1

n−m

n

t=m+1

f(Xt) (3.7)

In Fig. 3.2 we can visualise the chain convergence after the initial burn-in
phase.

There are several MCMC sampling algorithms. In the next paragraphs,
I will describe the Metropolis-Hastings, the most simple and used one, and
an affine invariant sampling algorithm from Goodman & Weare (2010), the
Stretch Move. We will also see how is possible to estimate the convergence
rate of a chain using the autocorrelation time.
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Figure 3.2 – After a certain number of iterations, the chain converges to its
stationary distribution. The vertical line denotes the end of the burn-in phase
(Gilks, Richardson & Spiegelhalter, 1996).

3.2.1 Metropolis-Hastings

The aim of every MCMC algorithm is to have the distribution of interest as
the stationary distribution of the Markov chain. In our case we want that to
be the posterior probability P (X|D).

To see how we can construct such a chain, I first describe the most sim-
ple and widely used algorithm, the Metropolis-Hastings, first proposed by
Metropolis et al. (1953) and then generalized by Hastings (1970).

At each step t, a candidate point Y is chosen for the next state Xt+1,
sampling it from a proposal distribution Q(.|Xt) that depends on the previous
state Xt. The probability that Y is accepted as the next state is given by:

α(Xt, Y ) = min


1,

P (Y |D)Q(Xt|Y )

P (Xt|D)Q(Y |Xt)


(3.8)

We then sample a random variable U from a uniform distribution (0, 1),
and compare it with α to decide if accept the proposed state:

if U ≤ α(Xt, Y ) → Xt+1 = Y

if U > α(Xt, Y ) → Xt+1 = Xt

This means that if Y is not accepted the chain doesn’t move and the next
state will be again Xt.

The chain will converge to its stationary distribution P (X|D) regardless
of the form of the proposal distribution Q(.|X) but the rate of convergence
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will depend on the relationship between the two distributions. Usually, a
preliminary analysis is useful to choose the right proposal distribution which,
for computational efficiency, should also be easy to sample and evaluate.

3.2.2 Stretch Move

The Stretch Move from Goodman & Weare (2010) is an algorithm which is
based on the affine invariance property of an ensemble MCMC samplers.

An affine transformation is an invertible mapping Rn → Rn of the form
y = Ax+b. If X has probability density P (x), then Y = AX+b has density:

P (Y ) = P (y) = P (Ax+ b) ∝ P (x) (3.10)

This property is particularly useful in case of high anisotropic distribu-
tions, for example the skewed probability density on R2, shown if Fig. 3.3:

P (x) ∝ exp

−(x1 − x2)
2

2ϵ
− (x1 + x2)

2

2



This probability would be difficult to sample with the algorithm described
above because we would be forced to make perturbations of the same order
in the two directions, and the chain would converge slowly. However, if we
apply an affine invariant transformation we can scale the probability density
in a from which is easier to sample, and that is independent of ϵ:

P (y) ∝ exp

−(y21 − y22)

2



This means that the method is independent of the aspect ration of the dis-
tribution.

Now to explain how the algorithm works, we can define an ensemble, and
the complementary one, of K random variables, that we call walkers :

S = {Xk}
S[k] = {Xj,∀j ̸= k}

For every step t of the chain, one after the other every walker of the ensem-
ble is updated using the position of the k − 1 walkers in the complementary
ensemble:

Xk,t → Xk,t+1 k = 1, ..., K

To choose the proposed step Y for Xk,t, a walker Xj is drawn from S[k]

and a random variable Z is drawn from the distribution:

g(z) ∝

1/
√
z ifz ∈


1
a
, a


0 otherwise
(3.12)
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Figure 3.3 – Example of a skewed probability density on R2 that would be dif-
ficult to sample using the Metropolis-Hastings algorithm (Goodman & Weare,
2010).

where a > 1 is an adjustable parameter (that usually is set to a = 2).
Then the proposed next state Y is defined as:

Y = Xj + Z (Xk,t −Xj)

and it will be accepted with probability:

α(Xk,t, Y ) = min


1, ZN−1 P (Y |D)

P (Xk,t|D)


(3.13)

Then, as for the previous method, we sample a random variable U from
a uniform distribution (0, 1) and compare it with α(Xk,t, Y ):

if U ≤ α(Xk,t, Y ) → Xk,t+1 = Y

if U > α(Xk,t, Y ) → Xk,t+1 = Xk,t

A visual representation of the Stretch Move is shown in Fig. 3.4.
This process needs to be repeated for every walker in the ensemble, one

at a time, at each step t, but a parallel implementation is also possible to
speed up the process.
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Figure 3.4 – Representation of a step of the Stretch Move. Xk is the current
state, Y is the proposed next state and Xj is the current state of a ran-
domly selected walker in the complementary ensemble. The grey dots are the
other walkers in the complementary ensemble that don’t take part in the move
(Goodman & Weare, 2010).

In the parallel Stretch Move, the full ensemble S is dived in two subsets:

S(0) = {Xk,∀k = 1, ..., K/2}
S(1) = {Xk,∀k = K/2 + 1, ..., K}

All the walkers in S(0) are updated simultaneously drawing from S(1), and
applying the normal Stretch Move. Then all the walkers in S(1) are updated
simultaneously using the new values at step t+ 1 of S(0).

In order to run MCMC for the weak lensing analysis, I used emcee
(Foreman-Mackey et al., 2013), a Python implementation of the parallel
Stretch Move by Goodman & Weare (2010). I used an ensemble of 100
walkers, a chain length of 1000 steps and a burn-in of 100 steps leading to a
total of 90000 points in the parameters space

3.2.3 Autocorrelation time

The autocorrelation time can be used to estimate the number of steps re-
quired in the chain so that the samples drawn from the target posterior
probability will be independent. It can be written as:

τf = 1 + 2
∞

T=1

Cf (T )

Cf (0)
(3.16)
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where Cf (T ) is the auto covariance function of a time series X(t) and mea-
sures the covariance between samples at a time lag T :

Cf (T ) = lim
t→∞

cov [f(X(t+ T )), f(X(t))]

The shorter the autocorrelation time is, the fewer computations of the
posterior will be needed to produce independent samples from the chain. As
shown in Goodman & Weare (2010), the Stretch Move has a much shorter
autocorrelation time, compared for example to the Metropolis-Hastings algo-
rithm. Also, for the parallel version of the Stretch Move the autocorrelation
time is the same as in the non parallel version, making it extremely powerful
in terms of computational speed.

3.3 Aperture mass statistics
The aperture mass statistics (Map) is a statistical method for the detection
of dark matter concentrations that allows us to generate signal-to-noise ratio
maps from the ellipticities of faint galaxies. It was introduced by Schneider
(1996), and it can be written as a filtered integral of the tangential shear γt:

Map(θc) =


d2φγt(φ;θc)Q(φ) (3.17)

It can be interpreted as the filtered amount of the tangential shear around
a point θc on the sky, where γt(φ;θc) is the tangential shear at position φ
relative to θc, and Q is a radially symmetric spatial filter function.

The signal-to-noise ratio of Map can be calculated trough the S-statistics
(Schirmer et al., 2006):

S(θout;θc) =


n

πσ2
ϵ

 θ

c
d2ϑγt(ϑ;θc)Q(ϑ) θ

c
d2dϑϑQ2(ϑ)

(3.18)

where θout is the aperture radius, and ϑ is the distance inside this aperture
from its centre θc.

To apply this formula to data, we need its discrete. We replace the
tangential shear γt with the tangential ellipticity ϵt, which can be considered
an unbiased estimator of γt in the weak lensing regime. So we get:

S(θc; θout) =

√
2

σϵ

Σiϵt,iQi(x)
ΣiQ2

i (x)
(3.19)

where ϵt,i is the tangential component of ϵi of the galaxy at θi:
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ϵt = −[ϵ1 cos (2ϕ) + ϵ2 sin (2ϕ)], (3.20)

and x is the projected angular separation ϑ on the sky from the aperture
centre θc, in units of the aperture radius θout:

x := ϑ/θout = |θi − θc|/θout (3.21)

The filter function Q that maximizes S for a given density profile of the
lens can be derived using a variational principle (Schirmer et al., 2003), or the
Cauchy-Schwarz inequality (Schneider, 1996). Schneider (1996) derived it for
an isothermal sphere, while (Schirmer et al., 2006) constructed it considering
an NFW density profile and, given its mathematical complexity, they intro-
duced an approximating filter function that produces similarly good results:

Q(x) =
xc tanh (x/xc)

x(1 + ea+bx + ec+dx)
(3.22)

with a = 6, b = −150, −47, d = 50 and xc is a dimensionless parameter that
controls the sharpness of the filter (Du & Fan, 2014).

The aperture radius θout needs to be varied to find the value that maxi-
mizes S, then the position with the highest S value is chosen as the centre
of the halo.

For the CFHTLS and NGVS data, I constructed a grid of side 1 Mpc
for each cluster, centered on the RedGold optical centers, with a spacing of
0.001 deg. For the filter parameters I used xc = 0.15 and θout = 6 arcmin.
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CHAPTER

FOUR

THE WEAK LENSING ANALYSIS OF CFHTLS
AND NGVS GALAXY CLUSTERS

4.1 Aim of this work
The goal of my thesis work was to infer cluster masses using weak lensing
measurements from the CFTLS W1 and NVSG surveys. The cluster sample
that I used was obtained with the optical cluster finder RedGOLD. In or-
der to increase the shear signal, I stacked galaxy clusters according to their
RedGOLD optical richness λ. In this way, I was able to calibrate the accu-
racy of RedGOLD richness as a mass-proxy, and to infer the mass-richness
relation. I then compared lensing masses with X-ray masses, luminosity, and
temperature.

In this chapter, I will describe:

• the observations

• the shear catalogs

• the photometric redshift catalog

• the optical and X-ray cluster catalogs

• how the RedGOLD algorithm works and how its richness parameter is
defined

• how I calculated the shear profiles and the different models that I used
to fit them

• the tests that I performed on my lensing analysis
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• my results and the comparison with similar works in literature.

Throughout this work I assumed a standard ΛCDM model, with Ωm =
0.3, ΩΛ = 0.7 and H0 = 70 km s−1 Mpc−1.

Magnitudes are given in the AB system (Oke & Gunn, 1983; Sirianni et
al., 2005).

4.2 Data
For this analysis, I used the shear and photometric data from the Canada-
France-Hawaii Telescope Legacy Survey (CFHT-LS; Gwyn, 2012) Wide 1
(W1) field and from the Next Generation Virgo Cluster Survey (NGVS; Fer-
rarese et al., 2012). In this section, I will describe the two surveys, and the
data reduction performed to obtain galaxy shape measurements and photo-
metric redshifts.

4.2.1 CFHTLenS and NGVSLenS

The CFHT-LS and NGVS are multi-band optical surveys obtained with the
CFHT optical multi-chip MegaPrime instrument (MegaCam1; Boulade et al.,
2003). The first consists of 171 pointings covering ∼ 154 deg2, and the latter
of 117 pointings covering 104 deg2, centered on the Virgo cluster.

The CFHT-LS has a complete coverage in the five bands u∗g′r′i′z′. All
images used in this work were obtained under optimal seeing conditions with
a seeing < 0.8

′′ in the primary lensing band i′ (Erben et al., 2013). The
5σ point source limiting magnitudes in a 2.0

′′ aperture in the five u∗g′r′i′z′

filters are ∼ 25.2, ∼ 25.6, ∼ 24.9, ∼ 24.5, ∼ 23.5 mag, respectively (Erben
et al., 2013).

The entire NGVS area was observed in the four bands u∗g′i′z′. 23 of the
117 pointings (∼ 20 deg2) are also covered in the deep r′-band (∼ 23.6 mag).
Again, the best seeing conditions were reserved to the i′-band which covers
the entire field with a seeing < 0.6

′′ . The 5σ point source limiting magnitudes
in a 2.0

′′ aperture in the five u∗g′r′i′z′ filters are ∼ 25.6, ∼ 25.7, ∼ 24.7,
∼ 24.4, ∼ 23.6 mag, respectively (Raichoor et al., 2014).

Both the CFHTLenS and NGVSLenS data reductions that I used for this
work were performed by Raichoor et al. (2014). They used an improved
version of the THELI pipeline (Erben et al., 2005, 2009, 2013; Raichoor
et al., 2014) on the preprocessed Elixir 2 data, available at the Canadian

1http://www.cfht.hawaii.edu/Instruments/Imaging/ Megacam/
2http://www.cfht.hawaii.edu/Instruments/Elixir/
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Astronomical Data center (CADC3). The final products are co-added science
images accompanied by weights, flag maps, sum frames, image masks and
sky-subtracted individual chips that are then used as inputs of the shear
and photometric pipelines. A detailed description of the THELI processing
pipeline and a full systematic error analysis can be found in Erben et al.
(2013) and Heymans et al. (2012).

The modification of the standard pipeline by Raichoor et al. (2014) con-
sists in performing the zero-point calibration using the SDSS data, taking
advantage of its internal photometric stability. The SDSS covers the entire
NGVS field and 62 out of 72 pointings of the CFHT-LS W1 field (∼ 60deg2).
Raichoor et al. (2014) constructed the photometric catalogs as described in
Hildebrandt et al. (2012), adopting a global PSF homogenization to measure
unbiased colors. Multicolor catalogs were obtained from PSF-homogenized
images using SExtractor (Bertin & Arnouts, 1996) in dual-image mode, with
the un-convolved i′-band single-exposure as the detection image.

Galaxy shape measurements for the shear analysis were obtained applying
the Bayesian lensfit algorithm of Miller et al. (2013) to single-exposure i′-
band images with accurate PSF modeling. The code estimates the complex
ellipticity of each galaxy:

ϵ = ϵ1 + iϵ2 (4.1)

performing a fit to a PSF-convolved disc plus bulge galaxy model. The ellip-
ticity components, ϵ1 and ϵ2, are calculated from the mean likelihood of the
model posterior probability, marginalized over model nuisance parameters of
galaxy position, size, brightness and bulge fraction. The algorithm assigns a
weight to each galaxy:

wlens ∝ (σ2
e + σ2

pop)
−1 (4.2)

where σ2
e is the variance of the ellipticity likelihood surface and σ2

pop is the
variance of the ellipticity distribution of the galaxy population.

The ellipticity estimated by lensfit is related to the true ellipticity (i.e.
the sum of the shear and of the galaxy intrinsic ellipticity) by:

ϵlens = (1 +m)[γ + ϵint] + c (4.3)

where m and c are calibration corrections. m is a multiplicative bias, calcu-
lated using simulated images, that is inversely proportional to the size and
detection signal-to-noise ratio of the galaxy. c is an additive bias, estimated
empirically from the data, that increases for the smallest brightest objects.
The multiplicative bias needs to be applied as a weighted ensemble aver-
age correction, to avoid instabilities in case the term (1 +m) tends to zero,

3 http://www4.cadc- ccda.hia- iha.nrc- cnrc.gc.ca/ cadc/
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and to remove any correlation between the calibration correction and the
intrinsic ellipticity (Miller et al., 2013). On a weighted average ⟨1 +m⟩, this
term corresponds to a 6% correction (Heymans et al., 2012). The additive
bias is found to be significantly non-zero only for the second component of
the ellipticity, ϵ2, and it’s of order 10−4. This correction can be applied on a
galaxy-by-galaxy basis, since the subtraction of c is stable. The nature of this
additive bias in the ϵ2 component is not clear but could likely be attributed
to the data processing (Heymans et al., 2012).

4.2.2 Photometric redshifts

The photometric redshifts that I used in this work were estimated by Rai-
choor et al. (2014), for the ∼ 60 deg2 of the CFHTLenS covered by the SDSS
and of the entire NGVSLenS. They were obtained using the Bayesian soft-
wares LePhare (Arnouts at al., 1999; Arnouts et al., 2002; Ilbert et al., 2006)
and BPZ (Benítez, 2000; Benítez et a., 2004; Coe et al., 2006). Raichoor et
al. (2014) used the re-calibrated SED template set of Capak et al. (2004).

Both LePhare and BPZ are designed for high redshift studies, giving
biased or low quality photo-z’s estimations for objects with i′ < 20 mag
which represent a non-negligible fraction of both samples. In order toimprove
the performance at low redshift, Hildebrandt et al. (2012) used an ad hoc
modified prior for the CFHTLenS data. Raichoor et al. (2014) adopted a
more systematic solution for the reprocessed CFHTLenS W1 field and for
the NGVSLenS, building a new prior calibrated on observed data, using the
SDSS Galaxy Main Sample spectroscopic survey (York et al., 2000; Strauss
et al., 2002; Ahn et al., 2014) to include bright sources.

In order to analyze the accuracy of the photometric redshift estimates,
Raichoor et al. (2014) used several spectroscopic surveys covering the
CFHTLenS and NGVSLenS: the SDSS Galaxy Main Sample, two spec-
troscopic programs at the Multiple Mirror Telescope (MMT; Peng et al.
2016, in preparation) and at the Anglo-Australian Telescope (AAT; Zhang
et al., 2015, 2016, in preparation), the Virgo Dwarf Globular Cluster Survey
(Guhathakurta et al. 2016, in preparation), the DEEP2 Galaxy Redshift
Survey over the Extended Groth Strip (DEEP2/EGS; Davis et al., 2003;
Newman et al., 2013), the VIMOS Public Extragalactic Redshift Survey
(VIPERS; Guzzo et al., 2014), and the F02 and F22 fields of the VIMOS
VLT Deep Survey (VVDS; Le Fèvre et al., 2005, 2013).

As shown in Raichoor et al. (2014), when using all five filters, for zphot < 1
and i′ < 23 mag, they found a bias ∆z =

zphot−zspec
1+zspec

< 0.02, scatter values in
the range 0.02 < σ < 0.05 and < 5% of outliers. When using four bands the
quality of the measurements slightly decreases. In the range 0.3 < zphot < 0.8
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and i′ > 21 mag we obtain −0.05 < bias < 0.02, a scatter σ ∼ 0.06 and an
outliers rate of 10−15%, due to the lack of the r′-band to sample the 4000 Å
break.

For my analysis, I used the photometric redshifts derived with BPZ, cor-
responding to zbest, the peak of the redshift posterior distribution (hereafter,
zphot).
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4.3 Cluster catalogs
In this section, I will describe the optical and X-ray cluster catalogs, cover-
ing the CFHT-LS W1 and NGVS fields, that I used for my analysis. The
optical catalogs were obtained using the RedGOLD cluster finding algorithm
of Licitra et al. (2016a,b). The output from the code, for each cluster, are
the center coordinates, the redshift, and the richness. In the following, I will
explain how the algorithm works and how the richness parameter is defined.
The X-ray catalogs were obtained by Gozaliasl et al. (2014) and Mehrtens et
al. (2012).

4.3.1 The RedGOLD Optical Cluster Catalogs

4.3.1.1 RedGOLD algorithm

The RedGOLD algorithm (Licitra et al., 2016a,b) is based on a modified red-
sequence technique, and it searches for passive and bright early-type galaxies
(ETGs) overdensities. This choice relies on the observational evidence that
the inner regions of galaxy clusters host a large population of ETGs, which
are tightly distributed on a red-sequence on the color-magnitude diagram.

In order to distinguish between ETGs and dusty red star-forming galaxies,
and to avoid contamination from the latter, the algorithm selects galaxies on
the red sequence both in the rest-frame (U − B) and (B − V ). It uses red
sequence rest-frame zero point, slope and scatter from Mei et al. (2009),
and with a ETG spectral classification from LePhare. In order to select an
overdensity detection as a cluster candidate, the algorithm also imposes that
the ETGs radial distribution follows an NFW (Navarro, Frenk & White,
1996) surface density profile.

RedGOLD centers the cluster detection on the ETG with the highest
number of red companions, weighted on luminosity. This is motivated by
the fact that the brightest cluster members lying near the X-ray centroid are
better tracers of the cluster centers compared to using only the BCG (George
et al., 2012). The redshift of the cluster is the median photometric redshift
of the passive ETGs.

Each detection is characterized by two parameters, the significance σdet

and the richness λ, which quantifies the number of bright red ETGs inside
the cluster, using an iterative algorithm.

RedGOLD is optimized to produce cluster catalogs with high complete-
ness and purity. In Licitra et al. (2016a, ab), the completeness is defined
as the ratio between detected structures corresponding to true clusters and
the total number of true clusters, and the purity is defined as the number of
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detections that correspond to real structures to the total number of detected
objects. A true cluster is assumed to be a dark matter halo more massive
than 1014M⊙ (Evrard et al., 2008).

Details on the method and the performance of the algorithm when applied
to numerical simulations can be found in Licitra et al. (2016a).

4.3.1.2 Richness definition

Rykoff et al. (2014) proposed redMaPPer, an optical cluster finder based on
the red-sequence technique, and applied it to the Sloan Digital Sky Survey
(SDSS; York et al., 2000). Their richness is computed using optimal filter-
ing, as a sum of probabilities and depends on three filters based on colours,
positions and luminosity, that consist of a linear red-sequence model in the
colour-magnitude space, a projected NFW density profile and the Schechter
(1976) luminosity function, respectively (Rozo et al., 2009a; Rozo & Rykoff,
2014; Rykoff et al., 2012, 2014, 2016).

The redMaPPer richness is defined as λRM =


pmemθLθR, where pmem is
the probability that each galaxy in the vicinity of the cluster is a red-sequence
member and θL, θR are weights that depend on luminosity and radius. In this
calculation, only galaxies brighter than 0.2L∗ and within a scale radius Rλ

are considered. The radius is richness dependent and it scales as Rλ =
1.0(λ/100)0.2h−1Mpc.

The RedGOLD richness is a simplified version of λRM. Licitra et al.
(2016a,b) constrained the radial distribution of the red-sequence galaxies
with an NFW profile and applied the same luminosity cut and the same
scaling of the radius with richness as in Rykoff et al. (2014) but didn’t apply
a luminosity filter. Unlike the redMaPPer definition, RedGOLD richness is
not a sum of probabilities. Those choices were made to minimize the scatter
in the mass-richness relation.

In order to estimate the richness, RedGOLD divides the entire galaxy
sample in overlapping redshift slices. Each slice is then divided in over-
lapping circular cells, with a fixed comoving radius of 500 kpc. The algo-
rithm counts Ngal, the number of red ETGs inside each cell, brighter than
0.2L∗, building the galaxy count distribution in each redshift slice. The
background contribution is defined as Nbkg, the mode of this distribution,
with standard deviation σbkg. The detection significance is then defined as
σdet = (Ngal − Nbkg)/σbkg. Overdensities larger than Nbkg + σdet × σbkg are
selected as preliminary detections.

The algorithm then estimates the richness λ, counting Ngal inside a scale
radius, initially set to 1 Mpc. The radius is iteratively scaled with richness as
in Rykoff et al. (2014), until the difference in richness between two successive
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iterations is less than Nbkg.
As shown in Licitra et al. (2016a), the difference λRM−λ

λ
is only of 5−15%,

for redshifts z < 0.3, while it increases to 40 − 60% at 0.4 < z < 0.5,
where the redMaPPer richness is systematically higher than that estimated
by RedGOLD. This difference might be due to the different depths of the
CFHTLenS and SDSS surveys.

In Section 4.6, I will use this similarity to compare my results, obtained
using RedGOLD richness as a mass proxy, with others in literature based on
the redMaPPer cluster sample.

4.3.1.3 CFHT-LS W1 and NGVS cluster catalogs

For this work, I used the CFHT-LS W1 and NGVS cluster catalogs from
Licitra et al. (2016a) and Licitra et al. (2016b), respectively. Those catalogs
were obtained calibrating the σdet and λ parameters to maximize the com-
pleteness and purity of clusters more massive than ≈ 1014M⊙, the mass limit
for which ∼ 90% of dark matter halos at zphot < 1.5 are virialized (Evrard
et al., 2008).

Licitra et al. (2016a) demonstrated that when they considered only detec-
tions with σdet ≥ 4 and λ ≥ 10 at zphot ≤ 0.6, and σdet ≥ 4.5 and λ ≥ 10 at
zphot ≲ 1, they obtained catalogs with a completeness of ∼ 100% and ∼ 70%,
respectively, and a purity of ∼ 80%.

Both in the CFHT-LS W1 and the NGVS, areas around bright stars and
nearby galaxies were masked. Licitra et al. (2016a) found that in only ∼ 2%
of clusters (low richness structures at high redshift) > 10% of their bright
potential members are masked. Therefore, the richness estimates are not
significantly affected by masking.

For the NGVS, as explained above, the five band coverage was limited
to only the ∼30% of the survey. The lack of the r′-band in the remaining
pointings, causes higher uncertainties on the determination of photometric
redshifts for sources at 0.3 < zphot < 0.8 but the global accuracy on the
photometric redshifts remains high even for this sample, as shown in Raichoor
et al. (2014). Since there are some fields in which the quality of the r′-band
is lower because of the lower depth and the lack of coverage of the intra-
CCD regions, this makes also more difficult the detection of the less massive
structures at intermediate and high redshifts and the determination of the
clusters center and richness.

In order to quantify this effect in the richness estimation, Licitra et al.
(2016b) compared the values recovered with a full band coverage λr with
the ones obtained without the r′-band λwr, and measured ∆λ/λr ≡ (λr −
λwr)/λr, in different redshift bins. Median values of ∆λ/λr and their standard
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deviations are listed in Tab. 2 of Licitra et al. (2016b). At zphot < 0.5 and
zphot > 0.8, the two estimates are in good agreement, with ∆λ/λr < 10%.
This is due to the fact that the (g− z) and (i− z) colors straddle the 4000 Å
break at zphot < 0.5 and zphot > 0.8, respectively. At 0.5 < zphot < 0.6,
λwr is systematically underestimated by ∼ 40% on average and, at 0.6 <
zphot < 0.8, it’s systematically overestimated by ∼ 20% on average. The first
systematic is due to the use of the (g − z) color, that changes less steeply
with redshift and has larger photometric errors, compared with (r − i) and
(i−z) colors. The latter is caused by the use of the (i−z) color only, without
the additional cut in the (r − z) or (r − i) colors that allows us to reduce
the contamination of dusty red galaxies on the red sequence (Licitra et al.,
2016b).

For these reasons, for the NGVS, Licitra et al. (2016b) built two separate
catalogs: the first for the ∼ 20 deg2 covered by the r′-band and the second for
the entire NGVS using only four bandpasses. In this last catalog, I corrected
the λwr estimations using the average shifts given in Tab. 2 of Licitra et
al. (2016b). As I will discuss later, since for this analysis I’m only selecting
clusters at zphot < 0.5, the level of completeness and purity remains the same,
using four bands, as using the five bands catalog. Hereafter, I will refer to
the NGVS catalog obtained on the area covered by the five bandpasses as
NGVS5 and the catalog obtained with four bandpasses, after the λ correction,
as NGVS4.

The CFHT-LS W1 published catalog includes 652 detections in an area of
∼ 60 deg2. The NGVS published catalogs include 279 and 1505 detections,
in the ∼ 20 deg2 with the five band coverage and in the rest of the survey,
respectively.

Hereafter, I will refer to these catalogs, optimized with the thresholds
in richness and significance described above, as Licitra’s published catalogs.
The Licitra et al. (2016a,b) catalogs, without any threshold applied, will be
referred as complete catalogs.

4.3.1.4 Weak lensing subsample selection

In order to optimize the weak lensing analysis, I selected a cluster subsample
from the published catalogs.

The source galaxies in the complete sample have a mean redshift zphot ∼ 1.
For this mean source redshift, the peak in the lensing efficiency is found at
zphot ∼ 0.3 − 0.4 (Hamana et al., 2004), as can be seen in Figure 4.1. The
lensing efficiency as been calculated as:
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Figure 4.1 – Lensing efficiency as a function of cluster redshift, for sources
at z = 1. The peak is found at ∼ z = 0.3

g(zlens) =

 DM (zsource)

DM (zlens)

P (z)


1− DM(zlens)

DM(z)


dDM(z) (4.4)

where DM is the transverse comoving distance, and P (z) is the distribu-
tion of sources, in this case assumed for simplicity as a step function equal
to 1 if z < zsource, and zero otherwise.

Considering this, and that shear measurements from ground based tele-
scopes are reliable for clusters with redshifts 0.2 < zphot < 0.5 (Kasliwal et
al., 2008), I decided to select detections only in this redshift range.

I also discarded clusters with richness λ < 10 and λ > 70. In fact, as
shown in Licitra et al. (2016a) at richness λ < 10, the purity decreases for
a given significance threshold. For the significance threshold of σdet > 4,
applied to the published catalogs, λ < 10 implies a contamination of false
detections larger than ∼ 20%. On the other hand, for λ > 70, there are very
few detections and not enough clusters to obtain an average profile from a
statistically significant sample.

The final selection for the weak lensing analysis includes 1323 clusters.
Their richness and redshift distributions are shown in Fig. 4.2. Hereafter,
I will refer to this cluster subsample, specifically selected from the published
catalogs for the weak lensing analysis, as selected catalogs.

4.3.2 X-ray cluster catalog

In order to compare the weak lensing estimated masses with X-ray masses,
temperatures and luminosities, I used Gozaliasl et al. (2014), Mehrtens et al.
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Figure 4.2 – The richness and redshift distributions of the RedGOLD CFHT-
LS W1, NGVS5, and NGVS4 1323 clusters from the selected catalogs (see text
for the description of the catalogs). The richness is plotted in bins of ∆λ =
20, and the redshift in bins of ∆z = 0.1. In each bin, the bars corresponding
to the three different samples are plotted next to each other.
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(2012), and Piffaretti et al. (2011) X-ray catalogs.
Gozaliasl et al. (2014) analyzed the XMM-Newton observations in the ∼

3 deg2 overlapping the CFHT-LS W1 field, as a part of the XMM-LSS survey
(Pierre et al., 2007). They presented a catalog of 129 X-ray groups, in a
redshift range 0.04 < zphot < 1.23, characterized by a rest frame 0.1−2.4 keV
band luminosity range 1041 − 1044 ergs s−1. They removed the contribution
of AGN point sources from their flux estimates and applied a correction of
∼ 10% for the removal of cool core flux based on the high resolution Chandra
data on COSMOS as shown in Leauthaud et al. (2010). They used a two-color
red-sequence finder to identify group members and calculate the mean group
photometric redshift. They inferred cluster’s M200 masses using the lensing
LX − M relation of Leauthaud et al. (2010), with a systematic uncertainty
of ∼ 20%.

Mehrtens et al. (2012) presented the first data release of the XMM Clus-
ter Survey (XCS), a serendipitous search for galaxy clusters in the XMM-
Newtown Science Archive data. The catalog consists of 503 optically con-
firmed clusters, in a redshifts range 0.06 < zphot < 1.46. 402 of these clus-
ters have measured X-ray temperatures in the range 0.4 < TX < 14.7 keV .
They derived photometric redshift with the red-sequence technique, using one
color. They used a spherical β-profile model (Cavaliere & Fusco-Fermiano,
1976) to fit the surface brightness profile and derive the bolometric (0.05 -
100 keV band) luminosity in units of 1044 erg s−1 within the radius R200 and
R500.

Piffaretti et al. (2011) presented the MCXC, which includes 1743 clus-
ters and it’s a compilation of the X-ray catalogs based on the ROSAT All
Sky Survey (NORAS, REFLEX, BCS, SGP, NEP, MACS, CIZA) and the
serendipitous cluster catalogs 160SD, 400SD, SHARC, WARPS, and EMSS.
The MCMX catalog provides the 0.1 − 2.4 keV band luminosity L500, and
the total mass M500. These masses were estimated using the luminosity-mass
relation calibrated from the M − YX relation of Arnaud et al. (2007, 2010),
adopting a non-self-similar slope (with YX ≡ TXMgas). Mass values were
obtained fitting an NFW profile to the total mass profile calculated from the
temperature profile, under the assumption of hydrostatic equilibrium.

I performed a match between these three catalogs and the RedGOLD
detections imposing a maximum separation of 1 Mpc and a maximum differ-
ence in redshift of 0.1. I included detections from both the published and the
complete catalogs to broaden the sample, and have more statistics to perform
the scaling relation fits. Results obtained with the complete catalogs might
be affected by contamination biases, since for those, I estimated the purity
to decrease to ∼ 60% (Fig. 8-9 of Licitra et al., 2016a).

Within all three fields, I recover 36(27) objects from the match of the
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complete(published) catalog with Gozaliasl et al. (2014) (in this case all ob-
jects are from the CFHT-LS W1 field), 21(17) from objects from the match
of the complete(published) catalog with Mehrtens et al. (2012), and 7 objects
from the match of the complete catalog with Piffaretti et al. (2011). As shown
in Licitra et al. (2016a), RedGOLD recovers 38 clusters, up to z ∼ 1, in the
3 deg2 of the CFHT-LS W1 field, covered by Gozaliasl et al. (2014) catalog.
The clusters detected by RedGOLD that don’t have an X-ray counterpart
seem to be, from visual inspection, small galaxy groups. It is possible that
these systems have an X-ray emission below the X-ray detection limit, or
that they are not relaxed systems and don’t have any X-ray emission at all.

In Section 4.6, I will show the results I obtained, using these catalogs to
compare the lensing masses that I measured with X-ray masses and calcu-
late the scaling relations between lensing masses and X-ray temperature and
luminosity. I analyzed the three catalogs separately because of the different
treatment of the emission from the central regions of the clusters leads to dif-
ferent mass estimates. In Chapter 5, I will discuss a comparison with other
works in literature.
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4.4 Weak lensing analysis
The aim of this work is to infer cluster masses by reconstructing the tangential
shear radial profile γt(R), averaging in concentric annuli around the halo
center, and fitting it to a known density profile.

γt(R) accounts for the distortion, due to the gravitational potential of the
lens, of the shape of the background sources in the tangential direction with
respect to the center of the lens and it’s defined as:

γt = −Re

γe−2iϕ


(4.5)

with γ = ϵ1 + iϵ2 = |γ|e2iϕ, were ϵ1 and ϵ2 are the ellipticity components of
the galaxy and ϕ is the position angle of the galaxy respect to the center of
the lens (Schneider, 2005).

As described in Wright & Brainerd (2000), the tangential shear profile
γt(R) is related to the surface density contrast by:

∆Σ(R) = ⟨γt(R)⟩Σc (4.6)

Where R is the projected radius with respect to the center of the lens and:

Σc =
c2

4πG

Ds

DlDls

(4.7)

is the critical surface density. Here c is the speed of light and Ds, Dl, Dls

are the angular diameter distances from the observer to the source, from the
observer to the lens, and from the lens to the source, respectively.

In order to infer cluster masses, I fitted the measured ∆Σ(R) profile,
obtained as described in Section 4.4.1, to the shear profile theoretical model,
described in Section 4.4.2.

4.4.1 Shear profile measurement

In this section, I will explain how I calculated the shear radial profiles of the
stacked clusters of the selected catalogs.

Only the shear profiles of the most massive clusters in the sample (M200 >
4 × 1014M⊙, for a signal–to–noise ratio S/N > 3; they represent the ∼ 2%
of the sample) can be reconstructed individually, while for lower masses the
noise dominates the measurement. In order to increase the signal-to-noise
ratio and measure average radial profiles for all the other detections, I stacked
galaxy clusters in five richness bins, from λ = 10 to λ = 70, in steps of 10
(20 for the last bin) in richness.

I selected the background galaxy sample using the following criteria:
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zphot,s > zphot,l + 3× σzphot (i
′ −mags) × (1 + zphot,s) (4.8)

where zphot,s is the source redshift, zphot,l is the lens redshift, and
σzphot (i

′ −mags) is the error on the photometric redshift as a function of the
source i′-band magnitude. This function was obtained interpolating the val-
ues in Figure 9 of Raichoor et al. (2014), up to i′ ∼ 24.7mag. As I will show in
Section 4.5, I tested different cuts in magnitude (i′ ∼ 24.7, 24, 23.5, 23mag),
and found consistent results in all cases. We can conclude that the inclusion
of faint sources in the background sample does not introduce a bias in the
total cluster mass estimation.

Following Ford et al. (2015), I then sorted the background galaxies in 10
logarithmic radial bins from 0.09 Mpc from the center of the lens to 5 Mpc.
In fact, at radii closer than 0.09 Mpc, I find a lack of background sources,
due to low sky area, and at larger radii the scatter in the mass estimate
can be ≥ 20% because of the contribution of large scale structure (Becker &
Kravtsov, 2011; Oguri & Hamana, 2011).

In each radial bin, I performed a weighted average of the lensing signal
as follows:

∆Σ(R) =

l
i=1

s
j=1

wijΣc,ijγt,ij

l
i=1

s
j=1

wij

(4.9)

where the sum is over every lens-source pair (i.e. i-j indices up to the l
number of lenses and s number of sources). The weights wij = Σ−2

c,ijwlens

(Mandelbaum et al., 2005) quantify the quality of the shape measurements
through the lensfit weights wlens (defined in Section 4.2.1) and down-weight
source galaxies that are close in redshift to the lens through Σ−2

c,ij, which
is evaluated for every lens-source pair using zphot to calculate the angular
diameter distances that appear in eq. 4.7.

The measured signal needs to be corrected applying the calibration cor-
rections introduced in Section 4.2.1. As explained, the additive bias c only
affects the second component of the ellipticity and the correction can be
applied to single ellipticity measurements. Therefore, I simply calculated
ϵ2,corr = ϵ2 + c, for each galaxy.

The multiplicative correction m needs to be applied as a weighted ensem-
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ble average correction:

1 +K(R) ≡

l
i=1

s
j=1

wij[1 +mij]

l
i=1

s
j=1

wij

(4.10)

This is done to avoid possible instabilities in case the term (1 + m) tends
to zero. In this way, I also removed any correlation between the calibration
correction and the intrinsic ellipticity (Miller et al., 2013). The calibrated
signal is written as:

∆Σcal(R) =
∆Σ(R)

1 +K(R)
(4.11)

In order to estimate the errors on ∆Σ(R), I created a set of 100 bootstrap
realizations for each richness bin, selecting the same number of clusters for
each stack but taking them with replacements. As already determined by
Ford et al. (2015), increasing the number of realization from 100 to 1000
or 10000 does not change the estimated errors. I applied eq. 4.9 to obtain
∆Σ(R) for each bootstrap realization.

Following Ford et al. (2015), I then calculated the covariance matrix:

C(Ri, Rj) =


N

N − 1

2
1

N

N

k=1


∆Σk(Ri)−∆Σ(Ri)



×

∆Σk(Rj)−∆Σ(Rj)


(4.12)

where Ri and Rj are the radial bins, N is the number of bootstrap samples
and ∆Σ(Ri) is the average over all bootstrap realizations.

For each radial bin, the shear was weighted using the lensfit weights as
shown in eq. 4.9, so these error bars also include the error on the shape
measurements of the source galaxies. I calculated the covariance matrix to
take into account the correlation between radial bins and the contribution to
the stacked signal of clusters with different masses inside the same richness
bin.

4.4.2 Shear profile model

In order to fit the tangential shear profiles I used an analytic model for the
cluster profile:

∆Σ(R) = pcc[∆ΣNFW(R) + ∆Σnw(R)]+

(1− pcc)∆Σsm(R) + ∆Σ2halo(R) (4.13)
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∆ΣNFW is the surface density contrast calculated from an NFW density
profile, assumed as the halo profile. ∆Σnw, ∆Σsm and ∆Σ2halo are correction
terms that take into account, respectively, non-weak shear effects, cluster
miscentering and the contribution to the signal from large scale structure.
pcc is a free parameter related to the miscentering term and represents the
percentage of correctly centered clusters in each stack. I will describe in de-
tail, in the following sections, each term and the free parameters of the model.
This approach mainly follows the one adopted by Johnston et al. (2007) and
Ford et al. (2015). However, I did not use the Ford et al. (2015) pipeline, but
developed my own, and the data used (NGVSLenS+CFHTLenS), the cluster
detections (much purer and complete), and the photometric redshift analysis
are different. In particular, this work was performed in the context of the
NGVS collaboration, and the cluster catalog used is much less contaminated
than that used in Ford et al. (2015).

In addition to this model, hereafter Basic Model, I also considered two
model extensions, discussed in Section 4.4.2.5, in order to study how the
addition of new terms changes the final cluster profile.

All the averages in the equations below were performed using the same
weighting as in Equation 4.9.

4.4.2.1 ∆ΣNFW profile

For the halo profile, I assumed an NFW profile (Equation 1.5), and the
Dutton & Macció (2014) mass-concentration relation:

log c200 = a+ b log

M200/[10

12h−1M⊙]


(4.14)

with a = 0.520+(0.905−0.520) exp (−0.617z1.21) and b = −0.101+0.026z.
This reduces the dimensionality of the model to one parameter, r200, from
which I can calculate the halo mass using eq. 1.6.

I calculated the NFW surface density, integrating the tridimensional
NFW density profile along the line of sight:

ΣNFW(R) = 2

 ∞

0

ρNFW(R, z)dz (4.15)

Integrating again, I find ΣNFW(R), the average surface density inside a radius
R:

ΣNFW(< R) =
2

R2

 R

0

R′ΣNFW(R′)dR′ (4.16)

Finally, I can calculate the first term in eq. 4.13:

∆ΣNFW = ΣNFW(< R)− ΣNFW(R) (4.17)
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4.4.2.2 Miscentering Term

Since the NFW density profile is spherically symmetric, an error in the de-
termination of the halo center would lead to underestimate the lens mass.
In fact, the stacking of offset clusters smooths the differential surface mass
density profile (George et al., 2012).

In oreder to obtain a model of the distribution of the offsets between the
RedGOLD centers and the cluster true centers, I used both simulations and
X-ray observations. Licitra et al. (2016a) applied RedGOLD to the lightcones
of Henriques et al. (2012), and calculated the offsets between the centers
estimated by the algorithm and the true centers from the simulations. I also
matched the RedGOLD detections to X-ray detections in the same areas
(Gozaliasl et al., 2014) to measure the average offset between RedGOLD and
X-ray cluster centers. The matching procedure, and the number of recovered
objects were discussed in Section 4.3.2.

In both cases, I found that the distribution of the offsets on the plane
perpendicular to the line of sight can be modeled as a Rayleigh distribution
with a mode of 23 arcsec and 13 arcsec, respectively (Figure 4.3, on the
left; see also Johnston et al., 2007; George et al., 2012; Ford et al., 2015).
In the analysis, I left the mode of this distribution as a free parameter in
the fit. In Figure 4.3, on the right, I also show the offset distributions in
kpc. A Rayleigh distribution is also consistent with the published center
offset distribution predicted from cosmological simulations for X-ray detected
clusters, including AGN feedback (Cui et al., 2016).

I assumed that this distribution represents the general offset distribution
for the entire RedGOLD sample P (Roff) and modeled it following Johnston
et al. (2007):

P (Roff) =
Roff

σ2
off

exp


−1

2


Roff

σoff

2


(4.18)

where Roff is the offset between the true and the estimated center, projected
on the lens plane, and σoff is the mode, or scale length, of the distribution.
The surface density measured at the coordinates (R, θ), with θ the azimuthal
angle relative to the offset position Roff , is:

ΣNFW(R, θ|Roff) = ΣNFW


R2 +R2

off − 2RRoff cos θ


(4.19)

and the azimuthal averaged surface density around Roff is given by:

ΣNFW(R|Roff) =
1

2π

 2π

0

ΣNFW(R, θ|Roff)dθ (4.20)
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Figure 4.3 – On the top, the distribution of the offsets, in arcsec, between the
RedGOLD and X-ray cluster centers (in blue), and between the RedGOLD
and the Henriques et al. (2012) simulation centers (in red). The blue and
red lines show the fitted Rayleigh distribution with mode of 13 arcsec and 23
arcsec, respectively. On the bottom, the offset distribution in kpc.
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In order to model the effect of miscentering, I smoothed the ΣNFW(R|Roff)
profile convolving it with P (Roff):

Σsm(R) =

 ∞

0

ΣNFW(R|Roff)P (Roff)dRoff (4.21)

and obtained the stacked surface density profile Σsm(R) around the offset
positions of the ensemble of clusters with offset distribution P (Roff) (Yang
et al., 2006; Johnston et al., 2007; George et al., 2012).

Finally, I can write the miscentering term as:

∆Σsm(R) = Σsm(< R)− Σsm(R) (4.22)

with Σsm(< R) being, as before, the average surface density within the radius
R.

The miscentering term adds two free parameters to the model, σoff and
pcc, which is the percentage of correctly centered clusters in the stack, already
introduced in eq. 4.13.

4.4.2.3 Non-weak Shear Term

The non-weak shear correction arises from the fact that what we actually
measure is the reduced shear:

gt =
γt

1− k
(4.23)

where k ≡ ΣNFW/Σc is the convergence. Usually in the weak lensing regime
gt ≈ γt, if γt << 1 and k << 1, but for relatively massive halos this assump-
tion may no longer hold at the innermost radial bins in which the cluster
profile is measured.

As described in Johnston et al. (2007), it is necessary to introduce the
non-weak shear correction term, calculated in Mandelbaum et al. (2006). In
non-weak regime, the tangential ellipticity component, ϵt is proportional to
gt, instead of γt. We can expand ϵt in power series as:

ϵt =
∞

n=0

Ag2n+1
t = A


γt

1− k

2n+1

= A


∆ΣΣ−1

c

1− ΣΣ−1
c

2n+1

(4.24)

As shown in detail in appendix A of Mandelbaum et al. (2006), we can
calculate the correction term from the expansion in power series to second
order of ϵt, in powers of Σc. I obtained the following term, that I added in
eq. 4.13:

∆Σnw(R) = ∆ΣNFW(R)ΣNFW(R)
⟨Σ−3

c ⟩
⟨Σ−2

c ⟩ (4.25)
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4.4.2.4 Two-halo Term

On large scales, the lensing signal is dominated by nearby mass concentra-
tions, halos, and filaments. Seljak (2000) developed an analytic halo model,
in which all the matter in the Universe is hosted in virialized halos, described
by a universal density profile. They computed analytically the power spec-
trum of dark matter and galaxies, and their cross-correlation based on the
Press & Schechter (1974) model. They found that, ignoring the contribution
from satellite galaxies, a cluster can be modeled by two contributions, the
one-halo term and the two-halo term. The first represents the correlation
between the central galaxy and the host dark matter halo and corresponds
to ∆ΣNFW(R). The second accounts for the correlation between the cluster
central galaxy and the host dark matter halo of another cluster. On large
scales, the two-halo power spectrum is proportional to the halo bias and the
linear power spectrum, P2halo ∝ b(M200,z)Plin(k). In order tocalculate the
surface density associated to the two-halo term, we can integrate the galaxy-
dark matter linear cross-correlation function ξlin(r), obtained by the Fourier
transform of the linear power spectrum.

Following Johnston et al. (2007) and Ford et al. (2015), we can write the
two-halo term as:

∆Σ2halo(R, b) = b(M200, z)Ωmσ
2
8D(z)2∆Σl(R) (4.26)

where b(M200, z) is the bias factor, Ωm is the matter density parameter, σ2
8

is the amplitude of the power spectrum on scales of 8 h−1Mpc, D(z) is the
growth factor and:

∆Σl(R) = Σl(< R)− Σl(R) (4.27)

where

Σl(R, z) = (1 + z)3ρc,0

 ∞

−∞
ξlin


(1 + z)


R2 + y2


dy (4.28)

The factor (1+z) arises from the conversion from physical units to comoving
units.

For the bias factor, I used the analytic formula calculated by Seljak &
Warren (2004), and for Plin(k), I used tabulated values from CAMB (Lewis,
Challinor & Lasenby, 2000).

4.4.2.5 Model extensions

In order to take into account possible profile fitting biases, I introduced two
modifications of the Basic Model.
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As explained in Section 4.4.1, to enhance the shear signal, I stacked galaxy
clusters in bins of richness. It has been proven that, when fitting the model
profile to the measured stacked shear profile, the intrinsic scatter between the
dark matter halo mass and the richness biases mass measurements (Becker
et al., 2007; Rozo et al., 2009a). In order to take this into account, I assumed
that the mass M200 has a log-normal distribution at fixed richness, with
variance in lnM200, σlnM200|λ (i.e. the intrinsic scatter). In the first extension
to Basic Model, that I will call Added Scatter Model, I added σlnM200|λ as
a new free parameter. In addition, as shown by Gavazzi et al. (2007), the
two contributions to the shear signal from the luminous and dark matter can
be distinguished by fitting a two-component mass model, which take into
account the contribution from the stellar mass of the halo central galaxy
MBCG.

In the second extension (hereafter Two Component Model), I added this
contribution to the total halo mass in the Basic Model. In order to model
the BCG signal, I followed Johnston et al. (2007) and added a point mass
term to Equation 4.13:

∆Σ(R) =
MBCG

πR2
+ pcc[∆ΣNFW(R) + ∆Σnw(R)]+

(1− pcc)∆Σsm(R) + ∆Σ2halo(R) (4.29)

The BCG mass, MBCG, is either fixed at the value of the mean BCG
stellar mass in each bin (hereafter M∗

BCG), or left as a free parameter in
the fit. M∗

BCG were obtained by my collaborator Anand Raichoor, using the
photometric and photometric redshift catalogs from Raichoor et al. (2014),
and Bruzual & Charlot (2003) stellar population models with LePhare, in
fixed redshift mode at the galaxy photometric redshift.

4.4.3 Fit the model to the measured shear profile

Here I will explain the method that I used to fit the measured shear profiles,
obtained as described in Section 4.4.1, with the shear profile models of Section
4.4.2, for the Basic Model, the Added Scatter Model and the Two Component
Model.

I performed the fit using Markov Chains Monte Carlo (MCMC; Metropo-
lis et al., 1953). This method is particularly useful when the fitting model
has a large number of parameters, the posterior distribution of the param-
eters is unknown, or the calculation is computationally expensive. MCMC
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Basic Model Added Scatter Model Two Component Model

r200[Mpc] (0, 2) — (0, 2)

σoff [arcmin] (0, 2) (0, 2) (0, 2)

pcc (0, 1) (0, 1) (0, 1)

σlnM|λ — (0.1, 0.7) —

log (M200/M⊙) — (11, 17) —

log (MBCG/M⊙) — — (9, 13) or fixed at log (M∗
BCG/M⊙)

Table 4.1 – MCMC uniform prior ranges for the different parameters of the
three models. The lack of a numerical value indicates that the parameter is
not included in the respective model.

allow to efficiently sample the model likelihood by constructing a Markov
chain that has the target posterior probability distribution as its stationary
distribution. Each step of the chain is drawn from a model distribution and
is accepted, or not, based on the criteria defined by the sampler algorithm.

In order to run MCMC, I used emcee (Foreman-Mackey et al., 2013), a
Python implementation of the parallel Stretch Move by Goodman & Weare
(2010). In order to choose the starting values of the chain, I first performed
a minimization with the Python version of the Nelder-Mead algorithm, also
known as downhill simplex (Nelder & Mead, 1965). I used flat priors (i.e.
a uniform distribution within a given range) for all parameters. The pri-
ors, for the three different models, are shown in Tab. 4.1. All parameters
are constrained to be positive and inside a range chosen according to their
physical meaning. In order to choose the range for the intrinsic scatter,
I referred to the values calculated by Licitra et al. (2016a). They found
σlnM|λ = 0.39 ± 0.07 using the X-ray catalog of Gozaliasl et al. (2014) and
σlnM|λ = 0.30± 0.13 from Mehrtens et al. (2012).

MCMC produce a representative sampling of the likelihood distribution,
from which I obtained the estimation of the error bars on the fitting parame-
ters and of the confidence regions for each couple of parameters. I calculated
the model likelihood using the bootstrap covariance matrix of eq. 4.12:

lnL = −1

2
(∆Σdata −∆Σmodel)

T C−1 (∆Σdata −∆Σmodel) (4.30)

I used an ensemble of 100 walkers, a chain length of 1000 steps and a burn-in
of 100 steps leading to a total of 90000 points in the parameters space.

In order to test the result of the chain, I checked the acceptance fraction
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Figure 4.4 – Confidence levels on the fit parameters obtained with the MCMC
analysis. On the diagonal, there are the 1-D histograms of each parame-
ter. The 2-D histograms are also shown for each couple of parameters with
confidence levels corresponding to 0.5σ, 1σ, 1.5σ, 2σ. The parameter values
and errors are based on the 16th, 50th and 84th quantiles (shown as dashed
lines in the 1-D histograms). The red squares and lines represents the values
that correspond to the maximum likelihood. I obtained similar plots for each
richness bin.
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and the autocorrelation time to be sure of efficiently sample the posterior
distribution and having enough independent samples.

Fig. 4.4 shows an example of error bars and the confidence regions of the
parameters, obtained using the python package corner by Foreman-Mackey
et al. (2016). This example corresponds to the third richness bin, fitted with
the Two Component Model. On the diagonal are shown the one-dimensional
histograms of the parameter values, representing the marginalized poste-
rior probability distributions. Under the diagonal, the two-dimensional his-
tograms for each couple of parameters and the confidence levels corresponding
to 0.5σ, 1σ, 1.5σ and 2σ. The dashed lines in the 1-D histograms represent
the 16th, 50th and 84th quantiles, while red squares and lines represents the
values that correspond to the maximum likelihood. The 50th quantile and
the maximum likelihood will match only in case the posteriori distribution
is symmetrical.
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4.5 Preliminary tests
In this section I will describe the tests that I performed before applying
the lensing analysis described so far, to the real data. They consist in the
validation of the code, an estimation of the completeness and purity of the
selected background samples, a study of the effects of cluster redshift cut,
richness binning, stacking, and centering.

4.5.1 Code validation

In order to validate my code, I applied my weak lensing analysis pipeline to
real data. I used the entire CFHTLenS sample (W1, W2, W3, W4 fields),
and the public cluster catalog of Milkeraitis et al. (2010), in order to compare
my results with what found by Ford et al. (2015).

Ford et al. (2015) studied the weak lensing mass-richness relation using
the CFHTLenS galaxy clusters, detected by the 3D-Matched-Filter (3D-MF)
cluster finding algorithm of Milkeraitis et al. (2010), with masses ranging
from small groups up to ∼ 1015M⊙, and redshifts in the range 0.2 ≲ z ≲ 0.9.
They took into account non-weak shear effects, miscentring and nearby halos
contribution, fixing the mass-concentration relation and the mass bias. They
stacked clusters in richness and redshift bins, finding no evolution of the
mass-richness relation in the redshift range considered.

The 3D-MF algorithm detects more than 18000 clusters in all the
CFHTLenS area, assigning to each detection a significance parameter. Ford
et al. (2015), defined the richness N200 of this cluster sample, starting from
the detection significance. N200 is the number of galaxies within the radius
r200, and within ∆z = 0.08(1+z) (i.e. the 2σ scatter of photometric redshifts
in the CFHTLenS) of the cluster redshift. Member galaxies are also selected
to be brighter than magi = −19.35, that corresponds to the limiting appar-
ent magnitude of the CFTHLenS, at the highest cluster redshift probed in
their work, z ∼ 1.

Using the N200 values supplied to me privately by Jes Ford, I stacked
galaxy clusters in richness bins as in Ford et al. (2015) and applied my code
to estimate the cluster masses in each stack.

The differences between our two analysis are:

• In order to select the background source sample for each cluster, Ford et
al. (2015) used the entire redshift probability distribution P (z). They
imposed that the peak (i.e. zbest, corresponding to the zphot) that I
used, and at least 90% of this distribution have to be at higher redshift
compared to the cluster.
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Figure 4.5 – Comparison of the mass-richness relation that I estimated (in
blue) with that of Ford et al. (2015) (in red), obtained using the same sample
and cluster catalog. For validation purposes, I used the richness N200, as
defined in Ford et al. (2015).

For my selection I used only zphot and not the entire P (z). I tested the
use of the P (z) for a small subsample of clusters without any evidence of
significant improvement in the measured shear profiles. I don’t expect
then that this different selection choice will be relevant for the kind of
analysis performed.

• Ford et al. (2015) used a composite-halo approach to fit the shear pro-
files. Instead of fitting a single average mass for each richness bin,
they fit the normalization of the mass-richness relation, keeping the
slope fixed. In this way, they were able to assign a mass to each clus-
ter, in each bin, as a first approximation. They then performed a fit to
the mass-richness relation, using the previously inferred cluster masses,
leaving both normalization and slope as free parameters.

I instead simply fit to a single average mass, for each richness bin. Since
Ford et al. (2015) fitted each richness bin individually, as I did, their
choice of fitting directly the normalization of the mass-richness relation
keeping the slope fixed should not make a difference in the final mass
recovered with the two methods.

• Ford et al. (2015) used the downhill simplex method (Nelder & Mead,
1965) to perform the fits to the shear profiles. In order to calculate
the errors they derived the χ2 distribution of each parameter, leaving
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Figure 4.6 – Comparison of the miscentering parameters that I estimated (in
blue) with those derived by Ford et al. (2015) (in red), obtained using the
same sample and cluster catalog. The plot on the top shows σoff , the mode
of the offset distribution, modeled as a Reyleigh distribution, as a function
of richness. The plot on the bottom shows, pcc, the percentage of correctly
centered clusters in the stack, as a function of richness.

120



free one parameter at a time and fixing all the others to the value
corresponding to the minimum of the χ2.

I used MCMC to derive the errors and confidence regions for each cou-
ple of parameters. I used the downhill simplex method just to choose
the starting values of the chains. I therefore expect the error bars that
I calculated to be more accurate.

Figure 4.5 shows the comparison between the mass estimates from this
work, in blue, and those from Ford et al. (2015), in red. The results are
consistent within 1σ and the difference is of a few percent for all bins except
two, in which it increases to 10 − 20%. The error bars on the red dots
are larger that those on the blue dots. This could be due to the fact that
the composite-halo approach used by Ford et al. (2015) introduces larger
uncertainties in the fit, compared to the simpler approach used in this work.
Also, Ford et al. (2015) didn’t calculate the errors bars in a rigorous way,
as the sampling of the χ2 distribution was done manually. The MCMC, on
the other hand, have the advantage of producing an efficient sampling of the
likelihood surface, giving more reliable confidence regions.

Figure 4.6 shows the comparison of the miscentering parameters, with my
results in blue and those of Ford et al. (2015) in red. The results are still con-
sistent within 1σ, for almost all the bins. We note that, due to the degeneracy
of the two miscentering parameters, when σoff is overestimated compared to
Ford et al. (2015) results, the corresponding pcc is underestimated, in the
majority of the bins. This means that the miscentering correction is im-
portant to correctly model the cluster mass, but the value of the individual
miscentering parameters is not well constrained by the data, since in each
bin there could be different combinations of σoff and pcc that would lead to
the same result.

4.5.2 Background selection

4.5.2.1 Selection criteria

Before deciding to use photometric redshift to select the background sources
for the lensing analysis, I tested different kind of selection criteria.

I compared the photo-z used for this work, with spectroscopic redshifts
from VIPERS (Guzzo et al., 2014) (assumed as the true redshifts) to identify
the percentage of recovered background galaxies and the percentage of wrong
selections (sources with redshift lower than the cluster redshift). I performed
this comparison as a function of the cluster redshift, for three criteria:

• The selection used by Kettula et al. (2015), based on photo-z only:
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zphot,s > zphot,l + 0.15

• The color criteria of Oguri et al. (2012).

• A combination of the first two.

As we can see from Figure 4.7, the third criteria (in black) is the one
that gives the purest but less populated background sample. The photo-z
selection (in red) and the color selection (in blue) both show less than 10%
of contamination at z < 0.5 (the limit chose for the weak lensing analysis),
and less than 3% at z < 0.4. In terms of completeness, the photo-z selection
is much more efficient compared to the color selection, with a percentage of
selected sources of 90− 100% against 50− 75%, up to z < 0.5.

I decided to use the photo-z selection since it’s the best compromise be-
tween purity and background number density. In a previous version of my
analysis, I used the same selection of Kettula et al. (2015), then I decided
to refine the selection criteria using Equation 4.8. In next paragraph I will
describe the tests that I performed to test this criterion, compared to the
simpler redshift selection.

4.5.2.2 Magnitude limit

I selected the background sources applying a redshift cut that is magnitude
dependent, using Equation 4.8. I will refer to this selection as σphotoz cut. I
tested this criterion comparing it with the results that I obtained using the
simple redshift selection of Kettula et al. (2015), and the magnitude cuts
magi = 24.7, 24, 23.5, 23.

In order to do so, I fitted the shear profiles using the Basic Model, and
then I fitted the mass-richness relation to compare the normalization and
slope obtained with the different kinds of selection. Since the brightest mag-
nitude cuts significantly reduce the number density of background sources,
I combined the two highest, less populated, richness bins (i.e. 40 < λ ≤ 70,
for a total of 4 bins), to have enough signal to reconstruct the shear profile.

The results are shown in the top plot of Figure 4.8, and in Table 4.2,
where mag cut indicates the criteria used, ngal is the number density of
background sources per arcmin2, a and b are the normalization and slope of
the mass-richness relation. In Table 4.3, we find the difference between the
mass-richness relation parameters calculated with each kind of selection, and
the compatibility in σ. As we can see, all results are consistent within 1.5σ,
1σ, and 0.5σ (from the lighter to the darker shade of green, respectively).
This means that the σphotoz cut can be considered as reliable as the brightest
magnitude cut, magi = 23 (for which we expect more reliable photometric
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Figure 4.7 – On the top, the percentage of selected background sources as a
function of the cluster redshift, for the three different criteria. On the bottom,
the percentage of wrong selections as a function of the cluster redshift, for
the three different criteria.
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mag cut ngal a b

24.7 7.3± 1.5 14.43± 0.02 1.04± 0.07

24 4.7± 1.0 14.45± 0.04 1.19± 0.19

23.5 3.0± 0.8 14.47± 0.05 1.37± 0.24

23 1.7± 0.7 14.44± 0.04 1.09± 0.17

σphotoz 5.2± 1.8 14.44± 0.03 1.09± 0.13

Table 4.2 – Mass-richness relation parameters obtained with the different
selection criteria (mag cut; see text for definition). ngal is the number density
of background sources. a and b are the normalization and slope of the mass-
richness relation.

mag cut 24.7 24 23.5 23 σphotoz

24.7 ∆a = 0.03± 0.04 (1σ) ∆a = 0.01± 0.05 (0.5σ) ∆a = 0.04± 0.06 (1σ) ∆a = 0.01± 0.05 (0.5σ) ∆a = 0.01± 0.03 (0.5σ)

∆b = 0.15± 0.20 (1σ) ∆b = 0.34± 0.25 (1.5σ) ∆b = 0.05± 0.19 (0.5σ) ∆b = 0.05± 0.15 (0.5σ)

24 ∆a = 0.02± 0.07 (0.5σ) ∆a = 0.00± 0.06 (0.5σ) ∆a = 0.00± 0.05 (0.5σ)

∆b = 0.18± 0.31 (1σ) ∆b = 0.10± 0.26 (0.5σ) ∆b = 0.10± 0.23 (0.5σ)

23.5 ∆a = 0.03± 0.07 (0.5σ) ∆a = 0.03± 0.06 (0.5σ)

∆b = 0.28± 0.30 (1σ) ∆b = 0.29± 0.28 (1σ)

23 ∆a = 0.00± 0.05 (0.5σ)

∆b = 0.00± 0.22 (0.5σ)

σphotoz

Table 4.3 – Difference between the mass-richness relation parameters (and
compatibility within nσ) obtained with the different selection criteria (see
text for definition). The different shades of green indicates that the results
are consistent within 1.5σ, 1σ, and 0.5σ, from lighter to darker respectively.
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redshift estimation, and therefore less contamination from foreground source
or cluster member galaxies in background sample) and, at the same time, it
preserves a higher ngal.

The number density of background sources obtained with the σphotoz cut
is enough to split the highest richness bin in two bins (i.e. 40 < λ ≤ 50, and
50 < λ ≤ 70, for a total of 5 bins), as in the final analysis that I performed.
I then compared the mass-richness relations obtained with σphotoz cut, using
4 bins and 5 bins. The results are shown in the bottom plot of Figure
4.8. The difference between the normalization and slopes in the two cases is
∆a = 0.01 ± 0.03 and ∆b = 0.04 ± 0.15. The results are consistent within
0.5σ.

4.5.3 Cluster redshift cut

As said before, shear measurements from ground based telescopes are reliable
for clusters with redshifts 0.2 < zphot < 0.5 (Kasliwal et al., 2008), and for
this reason, I restricted my analysis to this redshift range.

In order to test the validity of this assumption, I fitted individually the
most massive clusters in the sample, with λ > 50 and an expected M200 >
1014M⊙.

The results are shown in Figure 4.9. As we can see, the clusters with
z > 0.5 (in blue) show a higher scatter, and some underestimated masses,
compared to the clusters sample at z < 0.5 (in red).

This can also be explained looking at Figure 4.10 that shows the number
density of background sources as a function of redshift for all the clusters in
the sample, and the mean values in redshift bins (red). For redshift higher
than 0.5, the mean number of sources is below 2 arcmin−2, which is not
enough to properly recover the shear signal.

In Figure 4.11, we can see the redshift-richness plane, color coded by
the mean number of background sources. The dashed black line shows the
region selected for the study of individual cluster profiles, which corresponds
to z < 0.5, and λ > 50. The mean background count in this region is
ngal ∼ 6 arcmin−2.

This test confirms the greater reliability of the shear measurements of the
cluster sample selected for this work, with z < 0.5.

4.5.4 Richness binning

In order to test the stability of the mass-richness relation, I performed the fit
using different λ binnings. In Table 4.4, I show the range in λ, the number
of clusters, and the mean λ, for each bin.
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Figure 4.8 – On the top, the mass-richness relations obtained using the differ-
ent selection criteria (see text for definition). On the bottom the comparison
between the mass-richness relations obtained with σphotoz cut, using 4 bins
and 5 bins (as in the final analysis that I performed).
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Figure 4.9 – Masses inferred fitting individual clusters with λ > 50. In red,
clusters with z < 0.5, and in blue, all clusters. The blue points show a greater
scatter and some underestimated masses.
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Figure 4.10 – Number density of background sources as a function of redshift
for all the clusters in the sample (in black). The mean values in redshift bins
are shown in red.
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Figure 4.11 – Mean number density of background sources as a function of
redshift and richness. The region enclosed in the dashed line is the sample
selected for individual cluster profile studies, which is characterized by ngal ∼
6 arcmin−2.
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Figure 4.12 – Mass-richness relations obtained fitting different λ bins. The
difference in normalization is < 1%, and the difference in slope is 5− 30%.
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Binning λ range N ⟨λ⟩

1
15 < λ ≤ 25 91 18.5

25 < λ ≤ 40 45 30.7

40 < λ ≤ 55 12 47.0

2
20 < λ ≤ 30 48 24.0

30 < λ ≤ 40 23 34.7

40 < λ ≤ 50 10 45.7

3 20 < λ ≤ 35 58 25.3

35 < λ ≤ 50 23 40.8

Table 4.4 – Range in λ, the number of clusters, and the mean λ, for each bin
in the different λ binnings

In Figure 4.12, I show the fitted mass-richness relations for the different
binnings, and the 1σ confidence regions. I found that the relations are con-
sistent within the errors. The difference in normalization is < 1%, and the
difference in slope is 5 − 30%. The binning affects mostly the size of the λ
error bars and, therefore, the slope of the fitted relation.

This test shows that is important to bin clusters in richness bins as narrow
as possible, and still preserve a significant signal-to-noise ratio in each stack
of clusters.

4.5.5 Stacking and shear components

Stacking clusters is useful to increase the lensing signal-to-noise ratio and
to make the coherent shear signal emerge from the noise of the background
galaxies intrinsic ellipticity. As we saw, the shear aligns along the cluster
potential lines. This means that for a spherically symmetric lens, we should
observe only the tangential component of the shear.

In order to visualize this effect, in Figure 4.13, I show the shear field maps
of the stacking of 50, 100, 150 clusters. We can clearly observe the expected
progressive alignment of the shear bars around the center of the lens.

The cross component of the shear should be consistent with zero. This
is observable in the stacked shear profiles of Figure 4.14, measured using the
weak lensing selected CFHT-LS W1 + NGVS5 + NGVS4. In red, we find
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Figure 4.13 – Shear field maps for the stacking of 50, 100, 150 clusters. In-
creasing progressively the number of stacked clusters, the shear signal emerges
from the noise of the intrinsic ellipticity, and the shear bars align tangentially
to the center of the stack.

the tangential component (used to fit the profiles to the model), and in blue,
the cross component that behaves as expected, within the error bars.

4.5.6 Centering

The error in the determination of the true cluster center is the systematic that
can bias the most the mass estimation, if not correctly taken into account.
From the fit to the stacked shear profiles, I found that miscentering can bias
the mass low by 10− 40%.

As we can see in Figure 4.15, this is true also for individual clusters.
Masses estimated without taking into account miscentering (blue circles) are
systematically underestimated, compared to the masses inferred with the
miscetering correction (blue dots). In a few cases, the masses are underesti-
mated of different orders of magnitude.

This shows again the importance of the cluster center selection, and of
the correct modeling of miscentering.

In principle, cluster centers could be detected through the week lensing
signal, applying the aperture mass statistics, previously described. In or-
der to test the reliability of week lensing centers, I performed this analysis
to simulated shear maps, to simulated clusters, and to observed RedGold
clusters.
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Figure 4.14 – Shear profiles measured with the weak lensing selected CFHT-
LS W1 + NGVS5 + NGVS4. In red the tangential shear component, and in
blue the cross shear component. The cross component is consistent with zero,
as expected from theory.
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Figure 4.15 – Masses of individual clusters obtained with the miscentering
correction (blue dots), and without (blue circles). Masses are systematically
underestimated without the miscentering correction.

4.5.6.1 Simulated shear maps

I use a simple simulation of a background field of lensed source galax-
ies, provided by my collaborator Thomas Erben. The lens is a Singular
Isothermal Sphere (SIS), with a velocity dispersion of 816 Km/s, located at
x = 677 pixel and y = 744 pixel, in an area that corresponds to 64 arcmin2,
using a pixel scale of 0.238′′ . The cosmology used for the simulation is an
Einstein de Sitter universe (i.e. Ωm = 1 and ΩΛ = 0). The redshift of the
lens is zl = 0.3, and the redshift of all the sources is zs = 1. The number
density of the sources is 25 arcmin−2. I used two versions of this simulated
shear field, one in which the galaxies don’t have intrinsic ellipticities, and
one more realistic in which this noise contribution is present.

In Figure 4.16, I show the lensing S/N ratio maps, obtained with aperture
mass statistics and the shear field map, for the two versions on the simulation.
The shear field maps were obtained averaging the ellipticity components in
a grid of cells with side of 100 pixel.

The center is correctly identified in both cases, in the dark red region.
The maps of the version without intrinsic ellipticity (on the top) are more
regular, and show a much higher and unrealistic S/N ratio, compared to the
version with intrinsic ellipticity (on the bottom). The maximum S/N ratio of
the more realistic version is ∼ 5. This is typically considered a high lensing
signal, and can be found for observed clusters with M200 ≳ 5× 1014M⊙.
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Figure 4.16 – On the top, the lensing S/N ratio map of the simulation without
intrinsic ellipticity. On the bottom, the lensing S/N ratio map of the simula-
tion with intrinsic ellipticity. The center (in dark red) is correctly recovered
in both cases. We can notice that the contours and the orientation of the
shear bars are less regular in the case with intrinsic ellipticity, as expected.133



This means that is possible to identify the center of observed massive
clusters, using the lensing signal.

4.5.6.2 Simulated clusters

I used a simulated cluster Subaru observation in the r−band, performed by
my collaborator Massimo Meneghetti (Meneghetti et al., 2016). The lens
redshift is z = 0.5, and the cluster center coincides with the center of the
field of view, which is 30′ × 30′. The cluster image was processed with the
public KSB pipeline, the KBSf904. There are no substructures in the cluster.

In Figure 4.17, we find the image of the convergence of the simulated
clusters (on top), and its S/N ratio map with the shear field map superim-
posed (on the bottom). As we can see, the center is correctly identified with
the center of the field of view, in dark red. The color map and the shear
field map are not perfectly circular but slightly elongated diagonally. They
correctly reproduce what observed in the convergence map on the top.

4.5.6.3 Weak lensing analysis of the observed RedGOLD clusters

The tests that I performed have shown that the centering based on the weak
lensing signal worked well for the simulations above. In order to test its per-
formance on observed data, I applied the same analysis to the most massive
clusters in the RedGOLD sample, with λ > 50, and compared the results
with optical images. In Figure 4.18 and 4.19, I show the optical images (on
the left), and the S/N ratio maps superimposed to the negative of the optical
images (on the right). The withe circles have a radius of 0.5r200 and r200.
The red squares sign the position of the cluster member galaxies and the
black square is the center identified by RedGOLD. The S/N ratio maps were
calculated inside r200.

In Figure 4.18, the cluster centers identified by RedGOLD and those
calculated using the week lensing signal are in good agreement within a few
arc seconds. The maximum of the lensing S/N ratio is between 3 and 4, as
expected for observed clusters with M200 ∼ 1014M⊙. The contours of the
color maps are much more irregular compared to those obtained applying
the centering algorithm to the simulations previously described. This is due
to the fact that in observed images we find additional sources of noise (other
than the intrinsic ellipticity) that are not present in the simulations, and a
much lower background source density. In all maps, beside the cluster center
in dark red, we can observe some orange and yellow regions that correspond
to secondary lensing peaks. These peaks can represent real structures, as

4http://www.roe.ac.uk/ heymans/KSBf90/Home.html
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Figure 4.17 – On the top, the convergence map of the simulated cluster. On
the bottom, the S/N ratio map and the shear field map of the simulated clus-
ter. The simulation comes from Meneghetti et al. (2016). We notice that
the cluster center is correctly identified, and the color contours reproduce the
diagonally elongated shape that we can see in the image on the top.
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for the cluster in the middle, in which the color map follows the diagonal
distribution of the member galaxies (in red on the optical image on the left).
In most of the cases though, the secondary peaks are due to noise that can
simulate the lensing signal.

In Figure 4.19, I show some cases in which there is disagreement between
the RedGOLD centers and the lensing centers, or in which other systematics
make more difficult the center determination. In the images on the top,
we can see that the member galaxy distribution is not well represented by
the lensing map. The high S/N ratio region is smaller than what we would
expect from the optical image, and the center is lower. The images in the
middle present a masked region on the left due to a bright star. This could
explain the asymmetry observed in the distribution of the cluster members
that affects also the lensing map. In the images on the bottom, we can see
a case in which RedGOLD fails to identify the cluster center. The cluster
members distribution is clearly asymmetric and shows a higher density on
the top right part of the image. The lensing map correctly identify the cluster
center on the right, but shows a not negligible secondary peak on the left.
The mean offset found in these case between the two center estimates is
∼ 100 arcsec.

This analysis showed that, for observed data, the centering based on week
lensing cannot be used systematically since it is reliably applicable only on
very massive clusters. This test showed also that aperture mass statistics
gives reliable contours and S/N ratio in low noise situations, such as simula-
tions or stacking of many observed clusters. Even though RedGOLD misiden-
tifies the cluster center in some cases, the miscentering correction applied to
the fit of stacked shear profiles is enough to account for this systematic.

4.5.7 Joint fit

In order to check that fitting the profile of each richness bin individually
doesn’t introduce a bias in the determination of the mass-richness relation
parameters, I tested a joint fit. This method consists in the fit of the pro-
files associated to all richness bin simultaneously. In this case, the fitting
parameters will be directly the normalization and slope of the mass-richness
relation, and the likelihood of the model will be the sum of the likelihoods
of all shear profiles.

Also for the joint fit, I tested different models:

Model 1) It has four parameters: logM0, α, pcc, and σoff , which are the
normalization and slope of the mass-richness relation, and the miscentering
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Figure 4.18 – On the left, the optical images of some of the most massive
RedGOLD clusters. The withe circles have a radius of 0.5r200 and r200. The
red squares sign the position of the cluster member galaxies and the black
square is the center identified by RedGOLD. On the right, lensing S/N map
inside r200, superimposed on the negative of the optical image. There is good
agreement between the centers estimated with the two different methods.
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Figure 4.19 – Same as in Figure 4.18 but in this case the estimated centers
don’t agree. The mean offset is ∼ 100 arcsec.
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parameters. The BCG mass is fixed at the stellar mass calculated by my
collaborator Anand Raichoor using lePhare (hereafter MBCG∗).

Model 2) It has five parameters: logM0, α, pcc, σoff , and σM |λ, which are
the parameters of Model 1 plus the intrinsic scatter of the mass-richness
relation. The BCG mass is fixed at MBCG∗ .

Model 3) It has five parameters: logM0, α, pcc, σoff , and aMbcg, which are
the parameters of Model 1 plus a constant that multiplies MBCG∗ so that,
if we define the true BCG mass as MBCG, we have MBCG=aMbcg×MBCG∗

Model 4) It has five parameters: logM0, α, pcc, σoff , and aCM , which are
the parameters of Model 1 plus the amplitude of the mass-concentration
relation used (i.e. Dutton & Macció, 2014). The BCG mass is fixed at
MBCG∗ .

Model 5) has seven parameters: logM0, α, pcc, σoff , σM |λ, aMbcg, and aCM .

In Table 4.5 we find the priors on the parameters. In Table 4.6, we find
the results of the MCMC for the different models.

Model logM0 α pcc σoff σM |λ aMbcg aCM

1 (11,16) (-2, 2) (0, 1) (0, 2) – – –

2 (11,16) (-2, 2) (0, 1) (0, 2) (0.1, 0.7) – –

3 (11,16) (-2, 2) (0, 1) (0, 2) – (0, 10) –

4 (11,16) (-2, 2) (0, 1) (0, 2) – – (0, 10)

5 (11,16) (-2, 2) (0, 1) (0, 2) (0.1, 0.7) (0, 10) (0, 10)

Table 4.5 – MCMC uniform prior ranges for the different parameters of the
five models of the joint fit. The lack of a numerical value indicates that the
parameter is not included in the respective model.

I found that the results from the different models are consistent with each
other within 1σ or 2σ. The normalization and slope of the mass-richness
relation are well constrained in all models. aMbcg is not constrained, as the
BCG mass is not constrained even in the Two Component Model, with the
version of the fit I used for my final analysis. aCM is constrained but it
is slightly degenerate with the miscentering parameters. σoff in particular is
less well constrained in the models that include aCM . Moreover, for these
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Model logM0 α pcc σoff σM |λ aMbcg aCM

1 14.49+0.03
−0.03 1.28+0.06

−0.06 0.65+0.05
−0.05 0.86+0.45

−0.33 – – –

2 14.49+0.05
−0.05 1.27+0.15

−0.13 0.65+0.04
−0.06 1.00+0.49

−0.43 0.12+0.05
−0.01 – –

3 14.48+0.03
−0.03 1.28+0.06

−0.06 0.65+0.05
−0.06 0.82+0.46

−0.35 – 3.69+4.10
−2.79 –

4 14.41+0.02
−0.02 1.19+0.06

−0.06 0.83+0.10
−0.18 0.56+0.75

−0.40 – – 0.65+0.07
−0.06

5 14.40+0.04
−0.06 1.17+0.14

−0.12 0.83+0.11
−0.16 0.56+0.69

−0.40 0.13+0.07
−0.02 2.25+4.23

−1.26 0.64+0.08
−0.06

Table 4.6 – Parameters derived for the five models of the joint fit. The results
are consistent with each other within 1σ or 2σ.

models the normalization and slope of the mass-richness relation have lower
values compared to the models without aCM . σM |λ seems to be constrained
but it has a much smaller value compared to what expected from Licitra et
al. (2016a,b).

When comparing the results from the joint fit with what obtained fitting
each richness bin individually and then inferring the mass-richness relation
as a different step, I find consistent results (< 1−2σ), confirming the validity
of both approaches.
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4.6 Results
In this section I will show the results that I obtained applying the method
described so far, and tested on different data and simulations.

I will describe the mass estimation procedure for the different models and
the fit of the mass-richness relation and of the lensing mass versus X-ray mass
proxies scaling relations.

4.6.1 Mass estimation

After calculating the shear profiles as described in Section 4.4.1, I fit them
with the shear profile models of Section 4.4.2, for the Basic Model, the Added
Scatter Model, and the Two Component Model, as explained in Section 4.4.3.

Here I summarize the characteristics of the three models:

Basic Model) It consists of a basic halo model, with an NFW surface den-
sity contrast and correction terms that take into account cluster mis-
centering, non-weak shear and the two halo term. It has three free
parameters: the radius r200, from which we calculate the mass M200

from Equation 1.6, and the miscentering parameters pcc, and σoff .

Added Scatter Model) It is based on the Basic Model but takes into ac-
count also the intrinsic scatter in the mass-richness relation. It has
four free parameters: logM200, pcc, σoff , and σM |λ. For each bin, we use
the mass-richness relation calculated from the Basic Model to infer the
mean mass of the stacked clusters, as a first approximation. We then
randomly scatter the mass using a gaussian distribution with mean
⟨lnM200⟩ and width σlnM200|λ.

Two Component Model) It is based on the Basic Model but takes into
account also the contribution from the BCG mass. When we set free
the BCG mass, this model has four free parameters: r200, pcc, σoff , and
logMBCG. When we fix the BCG mass to the mean stellar mass for
each richness bin, MBCG = M∗

BCG, the free parameters reduce to three.

I performed this analysis on the CFHTLS-W1, NGVS5 and NGVS4 sam-
ples individually, then on the CFHTLS-W1 and the NGVS5 samples com-
bined and, finally, on the three samples together. This was done to check the
improvement obtained in the shear profiles, stacking a progressively greater
number of clusters. With this procedure I also checked that the addition of
the four bands catalog didn’t introduce a bias in the shear profiles and mass
estimates.
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Figure 4.20 – Shear profiles measured with the weak lensing selected CFHT-
LS W1 + NGVS5, in red, with weak lensing selected NGVS4, in blue, and
with the weak lensing selected CFHT-LS W1 + NGVS5 + NGVS4, in black.
We notice that the addition of the four bands sample does not significantly
change the profiles. The profiles measured using the three different samples
are compatible within 1σ and the profiles obtained using CFHT-LS W1 +
NGVS5 + NGVS4 have smaller error bars.
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NGVS4 CFHT-LS W1 + NGVS5 ALL
N cluster ngal ⟨ngal⟩ N cluster ngal ⟨ngal⟩ N cluster ngal ⟨ngal⟩

bin 1 665 3359 5 294 1801 6 959 5184 5

bin 2 154 787 5 73 463 6 227 1263 5

bin 3 53 257 5 34 233 7 87 499 5

bin 4 16 88 5 16 102 6 32 190 5

bin 5 12 79 6 6 38 6 18 118 6

Table 4.7 – Total number of clusters, total number density of background
sources, mean number density of background sources, for each richness bin
and for the three samples considered.

The profiles measured using the CFHT-LS W1 + NGVS5 sample, the
NGVS4 sample, and the complete sample are shown in Figure 4.20. They
are consistent within 1σ and the error bars are smaller in the last case. We
can conclude that the richness shifts applied to NGVS4 seem not to bias the
results, when this sample is added to the other two, covered by five bands.
As shown in Table 4.7, increasing the sample size, and therefore the number
density of background sources, we notice a progressive improvement in the
profiles which are recovered with a lower noise level.

The profiles obtained using the Basic Model and the complete sample
(CFHT-LS W1 + NGVS5 + NGVS4) are shown in green in Fig. 4.21. The
error bars on the shear profiles are the square root of the diagonal elements
of the covariance matrix.

Since the miscentering correction is the one that most affects the mass
estimation, in Figure 4.21, on the left, I show the fitted profiles (green lines),
and the profiles that we would obtain with and without the miscentering
term. The red lines represent the profiles we would obtain in the case in
which all the clusters in the stack were perfectly centered (pcc = 1), and
the blue lines show the opposite case (pcc = 0). An incorrect modeling of
this effect leads to biased mass values (i.e. mass underestimation between
10− 40%, Ford et al., 2015).

In Figure 4.21, on the right, I show the lensing signal-to-noise ratio maps.
I calculated these maps using aperture mass statistics (Schneider, 1996;
Schirmer et al., 2006; Du & Fan, 2014). For each richness bin, I created
a grid with a side of 1 Mpc and binning of 0.001 deg, centered on the stacked
clusters. In each cell, I evaluated the amount of tangential shear, filtered by
a function that maximizes the signal-to-noise ratio of an NFW profile, inside
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Figure 4.21 – On the left: shear profiles measured with the complete sample
(CFHT-LS W1 + NGVS5 + NGVS4). The fits were obtained using the
Basic Model. I show the shear profile measurement (black), the fit results
(green), the ideal profiles that we would obtain in the case in which all the
clusters in the stack were perfectly centered (red) and when they would have
been all miscentered (blue). The dotted lines show ∆Σ(R) = 0. I get similar
results using the Added Scatter Model and the Two Component Model. On the
right: lensing signal-to-noise ratio maps in each richness bin for the complete
sample. I applied aperture mass statistics.
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Figure 4.22 – Contribution of the different terms of Equation 4.29 to the
shear profile, calculated from the first richness bin.

a circular aperture, following Schirmer et al. (2006). For stacked clusters, a
S/N ∼ 10 is considered sufficient to recover the fitting parameters (Oguri &
Takada, 2011). All richness bins have S/N ≥ 10. The highest richness bin
shows the lowest S/N, being less populated than the others.

I show the results of the fits in Table 4.8, for the three models. The
values of the radius, of the mass, and of the miscentering parameters, for each
richness bin, are consistent within 1σ for the three models. I found that the
intrinsic scatter and BCG mass are not constrained by the data. The main
effect of the addition of σM |λ to the fit is to introduce more uncertainties and
to increase the error on the estimated parameters. The inclusion of MBCG in
the model (either set as a free parameter or fixed to M∗

BCG) has no impact on
the estimated parameters, that are therefore the same as those obtained using
the Basic Model. We can conclude that the contribution of the BCG mass is
not significant in the radial range that I used to fit the shear profiles. This is
confirmed looking at Figure 4.22, where the contribution from the different
terms is shown for the first richness bin. The green, red, and blue lines have
the same meaning as In Figure 4.21, while the magenta line represents the
contribution from the 2-halo term, the brown line is the non-weak shear term,
and the orange line is the BCG point mass signal. As expected the non-weak
shear term and the BCG signal increase in the inner part of the radial profile,
while the 2-halo term is more important for the outer part.
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λ range N λ z Model r200 M200 σoff pcc σlnM|λ MBCG (M∗
BCG)

Mpc 1013M⊙ arcmin 1011M⊙

Basic 0.83+0.03
−0.03 10+1

−1 1.5+0.3
−0.3 0.5+0.1

−0.1 – –

10 < λ ≤ 20 959 14± 3 0.40 Added Scatter 0.86+0.13
−0.13 11+5

−5 1.5+0.3
−0.3 0.5+0.1

−0.1 0.4+0.2
−0.2 –

Two Component 0.83+0.02
−0.03 10+1

−1 1.5+0.3
−0.3 0.5+0.1

−0.1 – 1+3
−3 (1.53+0.02

−0.02)

Basic 0.94+0.03
−0.04 14+1

−2 1.0+0.7
−0.7 0.7+0.2

−0.1 – –

20 < λ ≤ 30 227 24± 3 0.39 Added Scatter 0.94+0.08
−0.08 14+4

−3 0.9+0.7
−0.8 0.8+0.2

−0.1 0.4+0.2
−0.2 –

Two Component 0.94+0.03
−0.04 14+1

−2 1.0+0.7
−0.7 0.7+0.2

−0.1 – 1+3
−3 (1.7+0.1

−0.1)

Basic 1.09+0.05
−0.05 22+3

−3 0.7+0.3
−0.5 0.6+0.2

−0.1 – –

30 < λ ≤ 40 87 34± 3 0.39 Added Scatter 1.12+0.11
−0.13 24+7

−9 0.7+0.3
−0.4 0.6+0.2

−0.2 0.4+0.2
−0.2 –

Two Component 1.09+0.05
−0.05 22+3

−3 0.7+0.3
−0.5 0.6+0.2

−0.2 – 1+3
−3 (1.8+0.1

−0.1)

Basic 1.21+0.04
−0.03 30+3

−3 0.5+0.1
−0.1 0.1+0.1

−0.1 – –

40 < λ ≤ 50 32 44± 3 0.39 Added Scatter 1.18+0.10
−0.11 28+7

−8 0.5+0.1
−0.1 0.1+0.1

−0.1 0.4+0.2
−0.2 –

Two Component 1.21+0.04
−0.03 30+3

−3 0.5+0.1
−0.1 0.1+0.1

−0.1 – 1+3
−3 (1.9+0.2

−0.2)

Basic 1.35+0.04
−0.05 41+4

−4 1.1+0.8
−0.6 0.7+0.2

−0.2 – –

50 < λ ≤ 70 18 59± 6 0.38 Added Scatter 1.35+0.26
−0.27 41+2

−2 0.9+0.7
−0.7 0.7+0.3

−0.2 0.4+0.2
−0.2 –

Two Component 1.35+0.04
−0.05 41+4

−5 1.1+0.8
−0.6 0.7+0.2

−0.2 – 1+4
−4 (2.0+0.2

−0.2)

Table 4.8 – Parameters derived from the fit of the Basic Model, the Added
Scatter Model, and the Two Component Model shear profiles to the measure-
ments. λ is the cluster optical richness derived with RedGOLD and the first
column gives the richness range; N is the number of stacked clusters in each
bin; z is the mean redshift; r200 is the mean radius in Mpc; M200 is the mean
mass in units of 1013M⊙; σoff is the scale length of the offset distribution in
arcmin; pcc is the percentage of correctly centered clusters in the stack; σlnM|λ
is the intrinsic scatter in the mass-richness relation; MBCG (M∗

BCG) is the
mean BCG mass in units of 1011M⊙, left as a free parameter in the fit, and
fixed at the stellar mass value recovered with LePhare, respectively.
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Figure 4.23 – The weak lensing mass-richness relations obtained with the
complete sample CFHT-LS W1 + NGVS5 + NGVS4, using the Basic Model
(black line and black dots), the Added Scatter Model (blue line and blue
squares), and the Two Component Model (red line and red triangles). See
text for the description of the models.

4.6.2 Mass-richness relation

Using the mass measured for each richness bin, I performed a fit to a power
law to infer the mass-richness relation for all three models, using the python
orthogonal distance regression routine (ODR; Boggs & Rogers, 1990) to take
into account the errors in both log λ and logM200:

logM200 = logM0 + α log λ/λ0 (4.31)

with a pivot richness λ0 = 40.
In Table 4.9 and in Figure 4.23, I show the results obtained fitting the

three models. The slope and the normalization values are all consistent
within 1σ, for the three models. We notice that the uncertainties in the fit
of the Added Scatter Model are larger, due to the inclusion of the intrinsic
scatter as a free parameter.

In order to take into account the intrinsic scatter between richness and
mass also in the Basic Model and in the Two Component Model, and compare
the results with those obtained when using the Added Scatter Model, I applied
an a posteriori correction as in Ford et al. (2015). Using the mass-richness
relation inferred from the Basic Model and the Two Component Model, I
calculated the mass of all the clusters in the sample, then I scattered those
masses assuming a log-normal distribution centered on logM200 and with a
width σlnM|λ = 0.39, based on the value measured by Licitra et al. (2016a). I
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Model logM0 α ⟨diff⟩G ⟨diff⟩M ⟨diff⟩P ⟨ML/MX⟩G ⟨ML/MX⟩M ⟨ML/MX⟩P
Basic 14.43± 0.01 1.05± 0.07 0.06± 0.19 −0.07± 0.99 0.42± 0.22 1.06± 0.19 0.93± 0.99 1.42± 0.22

Basic + ISC 14.47± 0.02 1.05± 0.09 0.17± 0.20 0.01± 1.07 0.56± 0.24 1.17± 0.20 1.01± 1.07 1.56± 0.24

Added Scatter 14.42± 0.03 0.97± 0.14 0.12± 0.21 −0.07± 1.06 0.35± 0.24 1.12± 0.21 0.93± 1.06 1.35± 0.24

Two Component 14.43± 0.01 1.05± 0.07 0.06± 0.19 −0.07± 0.99 0.42± 0.22 1.06± 0.19 0.93± 0.99 1.42± 0.22

Two Component + ISC 14.46± 0.02 1.04± 0.09 0.15± 0.20 −0.00± 1.06 0.52± 0.24 1.15± 0.20 1.00± 1.06 1.52± 0.24

Table 4.9 – Results of the fit of the mass-richness relation: logM200 =
logM0 + α log λ/λ0, with a pivot λ0 = 40, obtained using the three mod-
els. For the Basic Model and for the Two Component Model, I also show
the results after applying the a posteriori intrinsic scatter correction (ISC).
The last six columns show the normalized average difference between lensing
and X-ray masses, < diff >= (ML −MX) /MX, and the average ratio of the
two, < ML/MX >, using the X-ray detections of Gozaliasl et al. (2014) (G),
Mehrtens et al. (2012) (M), and Piffaretti et al. (2011) (P).

repeated this procedure creating 1000 bootstrap realizations, choosing masses
randomly with replacements from the entire sample. I calculated the new
mean mass values in each richness bin and averaged them over all bootstrap
realizations. I then repeated the fit to infer the new mass-richness relation.
This procedure is illustrated in Fig. 4.24, where I show the results from the
fit to the Two Component Model (in black), the scattered masses (in light
red), and the new mean masses and mass-richness relation (in red). Due to
the shape of the halo mass function, the net effect of the intrinsic scatter
correction is to lead to a slightly higher normalization value of the mass-
richness relation. The difference in normalization for the Basic Model and
the Two Component Model, and their scattered versions is less than 1%.

Having verified the impact of each model term on the final results, I
consider as the Final Model the model that takes into account all the pa-
rameters considered so far, the Two Component Model with the a posteriori
intrinsic scatter correction. Hereafter I will quote as the final mass-richness
relation the one calculated from the Final Model: logM0 = 14.46± 0.02 and
α = 1.04± 0.09.

As shown in Section 4.5, I checked that the richness binning choice does
not affect significantly the recovered mass-richness relation. I verified that
fitting each richness bin individually, and then fitting the mass-richness re-
lation as a second step, does not significantly change my results. More-
over, the addition of a scatter of 0.14 dex (as in Simet et al., 2016) in the
concentration-mass relation, does not change the fitted parameters and the
derived mass-richness relation, as can be seen in Figure 4.25.
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Figure 4.24 – Effect of the a posteriori intrinsic scatter correction. Using
the mass-richness relation inferred from Two Component Model (in black),
I calculated cluster masses for the selected sample. I scattered those masses
assuming a log-normal distribution centered on logM200 and with a width
σlnM|λ = 0.39, based on the value measured by Licitra et al. (2016a) (in
light red). I repeated this procedure creating 1000 bootstrap realizations and
calculated the new mean mass values in each richness bin, averaging over all
realizations. I then repeated the fit to infer the new mass-richness relation
(in red), which is shifted towards larger masses.
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Figure 4.25 – Comparison of the mass-richness relations derived with (blue)
and without scatter (black) in the concentration-mass relation. The value of
the scatter was fixed to 0.14 dex as in Simet et al. (2016).
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4.6.3 Weak lensing mass vs X-ray mass proxies relations

In order to compare the lensing masses that I calculated with X-ray mass
proxies, I used the X-ray catalogs described in Section 4.3.2. As said be-
fore, Gozaliasl et al. (2014) M200 masses were estimated using the lensing
MX − L relation of Leauthaud et al. (2010). I estimated Mehrtens et al.
(2012) M200 masses from the r200 values given in their catalog, using eq. 1.6.
Piffaretti et al. (2011) masses were estimated using the luminosity-mass re-
lation calibrated from the M − YX relation of Arnaud et al. (2007, 2010),
assuming hydrostatic equilibrium. The masses M lens

200 were calculated using
the mass-richness relation from the Final Model.

In Figure 4.26, I show the normalized difference between the lensing
masses and the X-ray masses


M lens

200 −MX
200


/MX

200 as a function of MX
200,

for Gozaliasl et al. (2014) catalog (top), Mehrtens et al. (2012) catalog (mid-
dle), and Piffaretti et al. (2011) (bottom). The ratio is measured with respect
to MX

200 since this sample is X-ray selected (i.e. I selected the clusters in the
X-ray catalog, and then compare their X-ray and lensing mass estimate).

In the last six columns of Table 4.9, I show the mean normalized difference
and the mean ratio between lensing and X-ray masses, for the three models,
obtained with Gozaliasl et al. (2014), Mehrtens et al. (2012), and Piffaretti et
al. (2011) catalogs. For all models, the mean differences obtained using MX

200

from Piffaretti et al. (2011) (∼ 0.4 − 0.6) are higher than those obtained
using Gozaliasl et al. (2014) (∼ 0.1 − 0.2) and Mehrtens et al. (2012) (∼
−0.1 − 0.0). However, uncertainties on the individual measurements are
larger and the scatter in the difference is about an order of magnitude higher
for the Mehrtens et al. (2012) sample, as can be seen in Figure 4.26. Piffaretti
et al. (2011) did not give an estimate of the error on the mass in their catalog.

Using Gozaliasl et al. (2014) catalog and the lensing masses estimated
from the mass-richness relation derived from the Final Model, applied on
the complete catalogs, I found a mean normalized difference of 0.15 ± 0.20

(M
lens
200

MX
200

= 1.15± 0.20), considering the whole mass range. If we consider two
different mass ranges, we find a mean normalized difference of 0.17 ± 0.24
for MX

200 < 1014M⊙, and a mean normalized difference of 0.14 ± 0.18 for
MX

200 ≥ 1014M⊙.
With Piffaretti et al. (2011) catalog I found a mean normalized difference

of 0.52± 0.24 (M
lens
200

MX
200

= 1.52± 0.24).
Matching the lensing masses with those of Gozaliasl et al. (2014) and

Piffaretti et al. (2011), based on core-excised X-ray luminosities and temper-
atures, I found a much lower scatter compared with Mehrtens et al. (2012)
masses, calculated without core excision. This indicates that core-excised X-
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Figure 4.26 – Comparison of lensing masses and X-ray masses calculated
from the fitted mass-richness relations obtained using the Final Model (i.e.
the Two Component Model with the a posteriori intrinsic scatter correction).
Using Gozaliasl et al. (2014) catalog (top), I obtained a mean normalized
difference of 0.15± 0.20 and a mean ratio of 1.15± 0.20, using Mehrtens et
al. (2012) catalog (middle), I found −0.00±1.06 and 1.00±1.06, while using
Piffaretti et al. (2011) I found 0.52± 0.24 and 1.52± 0.24, respectively.
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Figure 4.27 – I compare the weak lensing derived masses with the masses
from Gozaliasl et al. (2014) (top) and Piffaretti et al. (2011) (bottom) X-ray
catalogs. The weak lensing masses have been derived from the fit of the mass-
richness relation using the Final Model with the a posteriori intrinsic scatter
correction. The black dots are the RedGOLD detections from the published
catalogs (RG PC) and the black squares are the detections from the complete
catalogs (RG CC). The red lines show the fits obtained with the slope as a free
parameter, and the green lines those obtained with the slope fixed at unity.
In both cases, solid lines refer to the published catalogs, and the dashed lines,
to the complete catalogs. The black dotted line is the diagonal. See Section
4.3.1 for the catalog definitions.
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Figure 4.28 – I compare the weak lensing derived masses with X-ray mass
proxies. On top, I show the mass-luminosity relation, and on the bottom,
the mass-temperature relation, compared with others in literature. The black
dots, the black squares, and the red lines have the same meaning as in Fig.
4.27. The different cyan lines show the relations obtained using the X-ray
masses from Gozaliasl et al. (2014) catalog (GZ), calculated with the M-L
relation of Leauthaud et al. (2010) (LT), the relations inferred by Kettula et
al. (2015) (KT), and by Mantz et al. (2016) (MN) (see the legend for the
line styles).
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ray measurements better correlate with the total cluster mass (Pratt et al.,
2009). For this reason, I decided to exclude Mehrtens et al. (2012) catalog
from the rest of the analysis.

In the following analysis, I excluded the two clusters with mass MX
200 < 2×

1013M⊙ from the matched sample with Gozaliasl et al. (2014), because both
the lensing catalog and the X-ray catalog are incomplete at these low masses.
I also did not consider the two highest mass matches (MX

200 > 2× 1014M⊙),
because the catalog used is incomplete at this masses, given the low area
coverage. All four excluded clusters were matches with the Licitra’s published
catalog.

In Fig. 4.27, I plot the MX
200 −M lens

200 relation, obtained with Gozaliasl et
al. (2014) and Piffaretti et al. (2011) catalogs, and in Fig. 4.28, the LX−M lens

200

and the TX −M lens
200 relations, obtained with Gozaliasl et al. (2014) catalog.

In those plots, the black dots represent matches with the RedGOLD cluster
detections in Licitra’s published catalogs, while the black squares represent
all those with the complete catalogs (see Section 4.3.1).

In Fig. 4.27, I show the relation between X-ray and lensing masses:

log

M lens

200


= a+ b log


MX

200


(4.32a)

The black dotted line is the diagonal, the solid lines are the fit to the
published catalogs, and the dashed lines are the fit to the complete catalogs.
The red lines were obtained with the slope as a free parameter of the fit, and
the green lines with the slope fixed at unity. For the published catalogs, the
threshold in richness and σdet is meant to select clusters with M200 > 1014M⊙
with a completeness ∼ 80%. Part of these detections have X-ray masses lower
than the selection threshold of M200 > 1014M⊙, in fact their X-ray masses are
in the range 2×1013M⊙ < MX

200 < 1014M⊙. I expect to have a contamination
of clusters with these lower masses and a lower completeness (<80%) in this
mass range (MX

200 < 1014M⊙), as shown in Licitra et al. (2016a).
Using Gozaliasl et al. (2014) catalog, when fixing the slope at unity, I ob-

tained a = 0.20±0.03(a = 0.23±0.03), and a scatter of σM = 0.20 dex(σM =
0.17 dex), for the complete(published) catalogs. In this case, the difference
in a for the two samples is negligible, ∼ 0.03 ± 0.06 dex. When leaving the
slope as a free parameter, I found a = −0.13 ± 2.96 and b = 1.02 ± 0.21,
with a scatter of σM = 0.20 dex(a = 6.42± 3.17 and b = 0.56± 0.23, with a
scatter of σM = 0.15 dex) for the complete(published) catalogs. The incom-
pleteness when using the published catalogs appears to bias the fit slope,
which becomes much shallower than the diagonal.

Using Piffaretti et al. (2011) catalog, I found a = 0.18 ± 0.03 with a
scatter of σM = 0.07 dex, fixing the slope at unity, and a = 2.44± 1.46 and
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b = 0.84± 0.10, with a scatter of σM = 0.05 dex, leaving the slope as a free
parameter.

As explained in Section 4.3.2, Gozaliasl et al. (2014) masses were calcu-
lated from the lensing mass - X-ray luminosity relation of Leauthaud et al.
(2010), after the excision of the AGN contribution and the correction for
cool core flux removal. Therefore it is not accurate to define these masses
as proper X-ray masses, as those of Mehrtens et al. (2012) and Piffaretti et
al. (2011). Leauthaud et al. (2010) calculated their scaling relation stacking
clusters according to their LX , while I used the optical richness. The dif-
ference between the lensing masses that I estimated from the Final Model,
and those of Gozaliasl et al. (2014) calibrated by Leauthaud et al. (2010),
is not straightforward to interpret since includes different contributions (i.e.
samples selected in different ways, different data, and shear calibration). In-
terpreting this difference precisely implies degeneracies on each contribution.

On the other hand, there are only 7 clusters matching between Piffaretti
et al. (2011) catalog, and the sample that I used, in mass range in which the
RedGOLD catalog has a lower completeness, given the low area coverage.

For the above reasons, I cannot use these two catalogs to interpret in
a rigorous way the difference and the relation between lensing and X-ray
masses.

In Fig. 4.28, I show the mass-luminosity and mass-temperature relations,
derived from Gozaliasl et al. (2014) catalog. I applied a logarithmic linear
fit, in the form:

log


M200E(z)

M0


= a+ b log


LX

L0E(z)


(4.33a)

log


M200E(z)

M0


= a+ b log


TX

T0


(4.33b)

where E(z) = H(z)/H0, M0 = 8 × 1013 h−1M⊙ for the M200 − LX, M0 =
6×1013 h−1M⊙ for the M200−TX, L0 = 5.6×1042 h−2erg/s, and T0 = 1.5 keV .

For the mass-luminosity relation, I found a = 0.10± 0.03 and b = 0.61±
0.12, with a scatter σlogM200|LX

= 0.20 dex(a = 0.16±0.03 and b = 0.43±0.12,
with a scatter σlogM200|LX

= 0.15 dex) for the complete(published) catalogs.
For the mass-temperature relation, I found a = 0.23±0.03 and b = 1.46±0.28,
with a scatter σlogM200|TX

= 0.20 dex(a = 0.28±0.03 and b = 1.03±0.30, with
a scatter σlogM200|TX

= 0.15 dex), for the complete(published catalogs). The
relations obtained with the published catalogs show again shallower slopes.

I summarize the results in Tab.4.10.
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Relation Sample a b scatter

ML −MX
CC −0.13± 2.96 1.02± 0.21 0.20

PC 6.42± 3.17 0.56± 0.23 0.15

CC (P) 2.44± 1.46 0.84± 0.10 0.05

ML −MX
CC 0.20± 0.03 fixed at 1 0.20

PC 0.23± 0.03 fixed at 1 0.17

CC (P) 0.18± 0.03 fixed at 1 0.07

ML − TX
CC 0.23± 0.03 1.46± 0.28 0.20

PC 0.28± 0.03 1.03± 0.30 0.15

ML − LX
CC 0.10± 0.03 0.61± 0.12 0.20

PC 0.16± 0.03 0.43± 0.12 0.15

Table 4.10 – Results of the fit of the weak lensing mass versus X-ray mass
and mass proxy relations: logML = a+ b logMX; log (M200E(z)/M0) =
a + b log (LX/L0E(z)); log (M200E(z)/M0) = a + b log (TX/T0). "CC" refers
to the complete catalogs and "PC" to the published catalogs. All results were
obtained using Gozaliasl et al. (2014) catalog, except for those marked with
P, derived from Piffaretti et al. (2011) catalog (See text for the catalogs defi-
nitions and for the values of the pivot mass, luminosity and temperature used
in the fit of the scaling relations).
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Relation Comparison Sample ∆a ∆b a compatibility b compatibility

ML − TX

Kettula et al. (2015) CC 0.08± 0.14 0.06± 0.33 1 σ 1 σ

PC 0.25± 0.15 0.49± 0.34 2 σ 1.5 σ

Mantz et al. (2016) CC 0.27± 0.28 0.06± 0.13 1 σ 1 σ

PC 0.22± 0.54 0.34± 0.28 1 σ 1.5 σ

ML − LX

Kettula et al. (2015) CC 0.06± 0.15 0.13± 0.15 1 σ 1 σ

PC 0.24± 0.15 0.31± 0.15 1.5 σ 2 σ

Leauthaud et al. (2010) CC 0.22± 0.08 0.05± 0.18 2.5 σ 1 σ

PC 0.33± 0.09 0.23± 0.19 4 σ 1.5 σ

Table 4.11 – Comparison of the mass-temperature and mass-luminosity re-
lations with others in literature. "CC" refers to the results obtained using
the complete catalogs and "PC" using the published catalogs (See text for the
catalogs definitions). ∆a is the difference in normalization, and ∆b the differ-
ence in slope, between my results and those obtained by Kettula et al. (2015),
Mantz et al. (2016) and Leauthaud et al. (2010). The last two columns show
that the relations that I inferred are consistent, in normalization and slope,
within ≲ 1 σ with the others in literature (≲ 2.5 σ in normalization with
Leauthaud et al. (2010)), when using the complete catalogs.
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CHAPTER

FIVE

DISCUSSION

In this Chapter, I will discuss my results in the context of similar recent
studies. I will compare the mass-richness relation that I inferred, and lensing
mass versus X-ray mass proxies relations, with others in literature.

5.0.4 Comparison with previously derived mass-
richness relations

As stated in Section 4.3.1 and shown in Licitra et al. (2016a,b), the richness
estimator used in this work, λ, is defined in a similar way as the richness from
redMaPPer (Rykoff et al., 2014). This allows me to compare the results of
this analysis with other works that used the redMaPPer cluster sample.

Simet et al. (2016) performed a stacking analysis of the redMaPPer cluster
sample, using shear measurements from the SDSS. Their sample is much
larger than the one considered in this work, consisting of 5,570 clusters, with
a redshift range 0.1 < z < 0.3, and a richness range 20 ≤ λRM ≤ 140. With
these data, they were able to characterize the different systematic errors
arising in their analysis with great accuracy. For the mass-richness relation,
they obtained the normalization log (M0 [h

−1M⊙]) = 14.34± 0.04 (the error
includes both statistical and systematic error) and the slope α = 1.33+0.9

−0.1.
To compare my results to theirs, I used masses in units of h−1M⊙ and I

repeated the fits. Using the Final model, I obtained logM0 = 14.31±0.02 and
α = 1.04 ± 0.09 (the errors are only statistical). The normalization I found
is consistent within 1σ and the slope is consistent within ∼ 2σ with Simet
et al.’s. Comparing the masses at the pivot richness, λ0 = 40, I obtained
2.04×1014h−1M⊙±0.02 compared to Simet et al.’s 2.21×1014h−1M⊙±0.15.

In another recent work, Farahi et al. (2016) inferred the mass-richness
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Figure 5.1 – Comparison of the mass-richness relation derived from the Two
Component Model, with the a posteriori intrinsic scatter correction, with oth-
ers in literature. All relations are consistent within 1σ (the grey area, and
the area between the colored lines represent the 1σ confidence regions).

relation using the same sample of SDSS redMaPPer clusters (0.1 < z < 0.3
and λRM > 20), performing a stacking analysis and estimating the velocity
dispersion of the dark matter halos from satellite-central galaxy pairs mea-
surements. For the mass-richness relation, they found a normalization of
14.19± 0.1 and a slope of 1.31± 0.19 (the error includes both statistical and
systematic error), using a pivot λ0 = 30. Repeating the fit using their pivot
richness, I obtained logM0 = 14.18 ± 0.02 and α = 1.04 ± 0.09, consistent
within less than 1σ in normalization and 1.5σ in slope, with their results. At
the pivot richness λ0 = 30 I found a mass of 1.51×1014M⊙±0.02, consistent
with their value of 1.56× 1014M⊙ ± 0.35.

Melchior et al. (2016) calibrated the mass-richness relation and its evo-
lution with redshift up to z < 0.8, using 8000 RedMaPPer clusters in
the Dark Energy Survey Science Verification (DES; Dark Energy Survey
Collaboration, 2016) with 5 ≤ λRM ≤ 180. They found a normalization
M0 = 2.35± 0.34× 1014M⊙ and a slope 1.12± 0.26, using the pivot richness
λ0 = 30 and a mean redshift z = 0.5. Their errors include both statistical
and systematic errors. Once again these results are consistent with what
found in this analysis, within less than 1σ, even if this sample has a larger
average redshift, where we expect the two richness definitions to be less sim-
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ilar. As discussed in Section 4.3.1, the difference λRM−λ
λ

ranges from 5− 15%
at redshift z < 0.3 and it increases to 40− 60% at 0.4 < z < 0.5.

The normalization that I found is in perfect agreement with all the works
cited above (< 1σ). On the other hand, there is a slight tension between
slope that I obtained and those of Simet et al. (2016) and Farahi et al.
(2016) (1.5 − 2σ), but not with Melchior et al. (2016) (< 1σ). The slope I
obtained is also consistent with the first mass-richness relation inferred using
the redMaPPer cluster sample from Rykoff et al. (2012), and with Saro et
al. (2015) richness-mass relation, inferred cross-matching the SPT-SZ survey
with the DES redMaPPer cluster sample. They found a value of 1.08 (the
error is not given), and 0.91± 0.18, respectively. Saro et al. (2015) value has
been converted from the slope of the richness-mass relation to the slope of
the mass-richness relation by Simet et al. (2015).

Figure 5.1, shows the comparison of the cited mass-richness relations. The
1σ region of the mass-richness relation from this work (in grey) is smaller
compared to others because it accounts only for statistical errors. All rela-
tions are consistent within 1− 2σ.

A possible explanation of the slope discrepancy between what I found
using the RedGOLD cluster sample, and the results obtained by Simet et al.
(2016) and Farahi et al. (2016), using the SDSS redMaPPer sample, could
be due to the different mean redshift of the stacked clusters. In fact, as said
before, though the median difference between RedGOLD and redMaPPer
richness is ∼ 5−15% at z < 0.3, it increases up to ∼ 60% for higher redshift,
as can be seen in Figure 5.2, taken from Licitra et al. (2016a).

Licitra et al. (2016a) explained the observed trend considering that, due
to the different depths of the CFHTLS and SDSS surveys (i′ ∼ 24.7 and i′ ∼
21.3, respectively), redMaPPer richness is calculated with an extrapolation
technique to reach the required limit in L∗ for the ETG selection. As a result,
for z > 0.45 redMaPPer richness is higher compared to RedGOLD richness
by a factor ∼ 2. In other words, for a given mass, redMaPPer richness is
higher compared to RedGOLD richness, and for a given richness redMaPPer
mass is lower than RedGOLD mass. Figure 5.2 shows that, with increasing
redshift, richness values λ < 40 are more affected by this bias. This implies
that, compared to RedGOLD, redMaPPer assigns on average lower masses
in the richness range 10 < λ ≤ 40, explaining the steeper slope found by
Simet et al. (2016) and Farahi et al. (2016). On the other hand, Melchior et
al. (2016) and Saro et al. (2015) used the DES redMaPPEr sample. Licitra
et al. (2016a) did not compare their richness estimates with this sample, but
it is reasonable to assume that, since DES depth (i′ ∼ 24) is closer to that of
the CFHTLS, the richness discrepancy shouldn’t be very important in this
case. This would explain the agreement in the slope values found comparing
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Figure 5.2 – Comparison of RedGOLD and redMaPPer richnesses as a func-
tion of redshift. The difference is ∼ 5− 15% at z < 0.3, and it increases up
to ∼ 60% for higher redshift. Figure taken from Licitra et al. (2016a).
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my results to those of Melchior et al. (2016) and Saro et al. (2015).
van Uitert et al. (2016) also found an increase of the normalization of

the mass-richness relation with redshift. This is counter intuitive because,
since M200 masses are defined with respect to the critical density of the
universe, they are expected to increase of lower redshifts, as the critical
density decreases while cluster densities do not significantly change given that
clusters are virialized. They then explain the observed trend by the evolution
of the fraction of quenched galaxy, which increases at lower redshift increasing
also the richness of the clusters (calculated as the number of red galaxies in a
given radius). This could explain why SDSS redMaPPer richness values are
systematically higher than those of RedGOLD, and my results are more in
agreement with what found using the DES redMaPPer cluster sample, which
extend to higher redshifts (i.e. DES clusters have a mean redshift of z = 0.5)

Moreover, assuming that the difference in richness between the different
samples is negligible, the method used to derive lensing masses could play
a role in explaining the observed results. As shown in Section 4.5, when
performing the joint fit of the shear profiles, as in Simet et al. (2016), I
obtained higher slope values, closer to the Simet et al. (2016) slope, even if
always consistent within 1−2σ with the results of the Final Model. This could
be explained considering that in the joint fit, we are imposing that there is a
log-log linear relation between mass and richness, and this could cause a bias
in the recovered parameters of the mass-richness relation. Fitting each bin
individually, we allow the miscentering parameters to vary in each bin, and
we don’t make any assumption on the relation between the mean richness of
the stack and the corresponding mass, other than for a narrow richness bin we
expect to be selecting similar cluster masses, within the intrinsic scatter. In
any case, the mass-richness relation parameters obtained with this technique
are all consistent with what found with the Final Model, within 1− 2σ.

5.0.5 Comparison with previously derived X-ray scaling
relations

In Fig. 4.28, I compare the lensing mass versus X-ray mass proxies relations,
with other works in literature.

In the LX−M lens
200 plot, I compare my results with those from Kettula et al.

(2015) and Leauthaud et al. (2010). As stated before, the fit to the published
catalogs (solid red line) shows a shallower slope because of the selection in
mass, which, while optimizes purity, leads to a bias in slope due to the lack
of clusters detected at masses M200 < 1014M⊙.

Because of the large uncertainties, the fit to both the complete and pub-
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lished catalogs (dashed red line) are consistent within < 1σ and < 2σ, re-
spectively, in normalization and slope with results from Kettula et al. (2015),
even if the normalizations I found are higher.

With respect to the E(z)M200 derived from Leauthaud et al. (2010) (and,
as a consequence, from Gozaliasl et al. (2014), since they used Leauthaud
et al. (2010) to derive their mass relations), my results are consistent within
< 2.5σ in normalization and within < 1σ slope for the complete catalogs. For
the published catalogs, normalization difference is ∼ 3.7σ, while the slopes
are consistent within < 1.5σ.

Both Kettula et al. (2015) and Leauthaud et al. (2010) didn’t apply the
miscentering correction but, while the first performed their lensing analysis
on single clusters, the latter stacked their low mass clusters in very poorly
populated bins. This procedure could have introduced a bias that lead to
more smoothed profiles and thus to lower mass estimates and to a lower
normalization of the scaling relation.

In the TX −M lens
200 plot, I compare my results with Kettula et al. (2015)

and Mantz et al. (2016). Since their masses are derived at the overdensity
∆ = 500, I converted their M500 values to M200, using M200 = 1.35M500 from
Rines et al. (2016), derived considering that the mass-concentration relation
weakly depends on mass (Bullock et al., 2001) and assuming an NFW profile
with a fixed concentration c = 5. I found that the normalization and slope
of the fit to the complete(published) catalogs are consistent with Kettula et
al. (2015) results within < 1σ(≲ 2σ), and with Mantz et al. (2016) results
within < 1σ(< 1.5σ) in normalization and slope.

In Tab. 4.11, I show the differences in normalization, ∆a, and in
slope, ∆b, between my results and those used for comparison for the mass-
luminosity, and the mass-temperature relations.

Given that my results based on the RedGOLD complete catalogs are con-
sistent with other results in the literature, we can conclude that the thresh-
olds that were applied in the RedGOLD published catalog introduces system-
atics in the fit of the cluster lower mass end.

Assuming a cosmological model, and the predictions of spherical collapse
in the absence of additional heating or cooling, we can calculate the theo-
retical slope of these scaling relations. In fact, galaxy clusters form from
the amplification of the initial density fluctuations in the large-scale matter
distribution, that can be described by a Gaussian random field, character-
ized by a power spectrum with a smoothly changing power law index, over
relevant length scales. Galaxy clusters therefore reflect this behavior, in
the sense that the evolution of their characterizing parameters shows self-
similarity in scale and time. From the point of view of purely gravitational
interactions, Navarro, Frenk & White (1996) showed how dark matter halos
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on different scales can be described by a universal profile, dependent on two
parameters, the NFW profile. This average profile is then scattered by the
different statistical realizations of mass distributions in the protoclusters and
by merger events that produce deviations from equilibrium. This scenario
is then complicated by the addition of the baryons to the dark matter only
approximation, through hydrodynamical processes, such as radiative cool-
ing, feedback from star formation, AGN activity. As a first approximation
though, self-similar scaling relation between cluster parameters can be de-
rived in a purely gravitational picture (e.g. Böhringer et al., 2011). In
particular X-ray self-similar scaling relations are:

M ∝ T 1.5
X ; M ∝ LX ; M ∝ L0.75

bol ; Lbol ∝ T 2 (5.1)

Comparing these predictions with observations, different slope values have
been found (Böhringer et al., 2011):

M ∝ T 1.5
X ; M ∝ L0.62

X ; M ∝ L0.52
bol ; Lbol ∝ T 2.9 (5.2)

This result can be explained considering that the ICM gas mass fraction is
not constant as a function of cluster mass, but decreases for for lower masses:

fgas ∝ M0.3
tot (5.3)

this is due to an increase of the specific energy of the ICM introduced
by star formation and AGN feedback, that were neglected in the calculation
of the self-similar scaling relations (Böhringer et al., 2011). Feedback reg-
ulates the amount of baryons that condense into stars and cold gas clouds.
Implementing cooling in simulations leads to a larger fraction of condensed
baryons in cool clusters, causing a decrease of their mass-to-light ratio (Voit,
2005). Also radiative cooling is an important process to consider since, the
ICM radiating thermal energy loses its low-entropy gas, raising the mean en-
tropy of the remaining gas, and therefore its temperature. On the other hand
the lower gas density implies a lower luminosity (Voit, 2005). This means
the observed deviations from self-similar prediction can be interpreted as an
effect of hydrodynamical processing acting.

The slope values that I found for the mass-temperature and the mass-
luminosity relations confirm this picture.

Simulations predict that mass measurements from lensing and X–ray
proxies are systematically lower of ∼ 5− 10% and ∼ 25− 35%, respectively,
than the cluster total mass, with ⟨M sim

X /M sim
L ⟩ ∼ 0.7 − 0.8 (Meneghetti et

al., 2010; Rasia et al., 2012).
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When I compared the weak lensing mass measurements to Gozaliasl et
al. (2014) cluster masses, derived from X-ray luminosity based lensing mea-
surements (Figure 4.26 (top) and Tab. 4.9) for Final Model, I obtained a
difference of ∼ 15%.

As mentioned before in Section 4.6.3, and from Tab. 4.9 and Fig. 4.26,
the mean residuals and ratio values obtained using Mehrtens et al. (2012)
catalog are lower, with ⟨ML/MX⟩ ∼ −0.1− 0.0, which means that non core-
excised temperature lead to overestimated X-ray masses, as expected (Pratt
et al., 2009). This is also confirmed in Mehrtens et al. (2012), since some of
the clusters their catalog are contaminated by low signal-to-noise line-of-sight
or embedded point sources (AGN and cool core). Analyzing one cluster that
was observed also with Chandra, that is significantly more sensitive to point
sources, they found a contamination in the flux of 15%. The correction to
this contamination lead to a decrease of the luminosity of 33%. This means
that Mehrtens et al. (2012) masses could actually be overestimated.

On the other hand, in my analysis I have assumed that dark matter halos
can be fitted with a spherically symmetric NFW profile. From the LCDM
predictions we expect halos to actually be triaxial. Optical cluster finder
selection function is biased towards line-of-sight elongated objects, which are
easier to detect, since the contrast with the background is maximized. Bartel-
mann (1995); Hamana et al. (2004); Oguri et al. (2005) have shown that such
an orientation enhances significantly the lensing signal, which leads to overes-
timated cluster masses by up to 50%. Corless & King (2007) though showed
that, according to the triaxial halo orientation, there can be an equivalent
mass underestimation. Since I calculated stacked masses, this effect should
be reduced to a few percent bias by the superposition of randomly oriented
and elongated objects (2− 4%, Simet et al., 2016).

Previously published XMM-Newton X-ray to lensing mass ratios show
values of ⟨MX/ML⟩ ∼ 0.91 − 0.99 (Zhang et al., 2008) and ∼ 0.72 − 0.96
(Simet et al. (2015), using observations from Piffaretti et al., 2011; Hajian
et al., 2013). Given that I measured the bias on the lensing mass given
an X-ray selection, I cannot compare my measurements directly with those,
obtained by the measure of the bias in the X-ray mass given the lensing
mass. However, the trend is similar and consistent with simulation. Our
uncertainty on ⟨ML/MX⟩ (σ⟨ML/MX⟩ ∼ 15−20%) is also similar to those cited
in these works (σ⟨MX/ML⟩ ∼ 3− 20%).

It is also known that XMM-Newton and Chandra have different in-
strument calibrations that lead to different temperature estimations, with
Chandra X-ray temperatures being higher, and leading to higher cluster
mass estimation (Israel et al., 2014; von der Linden et al., 2014; Schel-
lenberger et al., 2015). Applying the correction from Schellenberger et
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al. (2015), to convert XMM-Newton masses to Chandra masses, I found
⟨MX/ML⟩Chandra = 0.99±0.17, using the lensing masses from the Final Model.

I remind the reader though that even if these results are consistent with
previous work, the scaling relations, normalized difference and ratios that
I obtained between the lensing masses from the Final Model, and those of
Gozaliasl et al. (2014), depend in a not straightforward way on the X-ray
and optical sample selections, on the data used, and on the analyses that
were performed which include different biases. It is therefore not possible to
interpret precisely the relation between lensing and X-ray masses, with the
available catalogs.
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CHAPTER

SIX

CONCLUSIONS AND PERSPECTIVES

6.1 Summary and conclusions
The aim of my thesis work is to infer galaxy cluster masses using weak lensing
measurements, through the reconstruction of their stacked shear profiles, and
to calibrate the precision of the RedGOLD optical richness as a mass proxy.

In order to do so, I wrote and optimized a weak lensing analysis pipeline
that, starting from an input cluster catalog and shear catalog of background
sources, returns as output the lensing cluster masses in richness bins, and
the mass-richness relation.

The input catalogs are:

• The CFHT-L1 W1 and NGVS cluster catalogs obtained with the Red-
GOLD (Licitra et al., 2016a) optical cluster finder algorithm. As ex-
plained in Chapter 4 and Section 4.3.1, this algorithm is based on a
revised red-sequence technique. It searches for ETGs overdensities and
identifies the cluster center with the ETG with the highest number of
red companions, weighted on luminosity. Other than the center co-
ordinates, RedGOLD assigns to each cluster detection a redshift, a
significance parameter, and a richness. The algorithm is optimized
to detect massive galaxy clusters ( M200 > 1014M⊙), and to produce
optical cluster catalogs with high completeness and purity.

For this work, I used the RedGOLD catalogs obtained by Licitra et al.
(2016a,b) from the CFHT-LS W1 and NGVS surveys, and binned the
detected clusters according to their richness λ. When applied to the
∼ 60deg2 of the CFHTLS W1 field, RedGOLD found 652 detections,
and when applied to the ∼ 20deg2 (∼ 104deg2) of the NGVS covered by
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five and four bands, found 279 and 1704 clusters respectively. I used
a subsample of 1323 published clusters, selected with a threshold in
significance of σdet ≥ 4 and in richness λ ≥ 10, at redshift 0.2 ≤ z ≤ 0.5,
for which the published catalogs are ∼ 100% complete and ∼ 80% pure
Licitra et al. (2016a)

• The photometric redshifts catalogs that I used in this work, and that
were used by Licitra et al. (2016a,b), for both the ∼ 60 deg2 of the
CFHTLenS covered by the SDSS and for the entire NGVSLenS, were
obtained by Raichoor et al. (2014). They used the Bayesian softwares
LePhare and BPZ, improving the performance at low redshift building
a new prior calibrated on observed data, using the SDSS Galaxy Main
Sample spectroscopic survey. Comparing their results with spectro-
scopic redshift, Raichoor et al. (2014) found a bias −0.05 < ∆z < 0.02,
scatter values in the range 0.02 < σ < 0.06, and 5 − 15% of outliers,
for i′ < 23 mag.

• Both the CFHTLenS and NGVSLenS shear catalogs data that I used
for this work were obtained by my collaborator Ludovic van Waerbeke
using the data reduction performed by Raichoor et al. (2014).

Galaxy shape measurements for the shear analysis were obtained apply-
ing the Bayesian lensfit algorithm. The code estimates the ellipticity
components of each background galaxy and the associated multiplica-
tive and additive biases that need to be applied as explained in Chapter
4 and Section 4.2.1.

Given these ingredients, the first step in my lensing analysis pipeline con-
sists in the selection of the background galaxy samples inside a circular area
of 5 Mpc, around each cluster in the reference cluster catalog. In order to
separate the background sources from the foreground galaxies and cluster
members, I tested different kind of selections. As shown in Chapter 4 and
Section 4.5, from the comparison with a matching spectroscopic sample, the
most efficient selection resulted to be the one based on photometric redshift
instead of colors, along with a cut in the i−band magnitude. The tests that
I performed prove that from different cuts in magnitude we can obtain con-
sistent results, with some adjustment in the richness binning for the highest
cluster masses.

The second step consists in the binning of the clusters according to their
richness, and in the stack of their background samples. In this phase, the
stacked radial shear profiles are calculated by averaging the tangential shear
in logarithmic radial bins around the center of the stacked samples. As
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described in Chapter 4 and Section 4.4.1, I applied lens-source pairs weights
that depend on the lensing efficiency and on the quality of background galaxy
shape measurements, and the lensfit calibration corrections. In order to
obtained the error bars on each point of the radial shear profiles, I calculated
the bootstrap covariance matrices, taking clusters with replacements in each
richness bin. In order to check the signal-to-noise ratio of each richness bin,
I calculated S/N maps using aperture mass statistics.

In the last step, once I obtained the shear profiles for each stack of clusters,
I fitted them using MCMC as described in Chapter 4 and Section 4.4.3.

I extensively tested my code and checked wether the choices made intro-
duced a bias in the results, as described in Chapter 4 and Section 4.5.

• I validated my code comparing my results with those of Ford et al.
(2015), obtained in an independent way, using the entire CFTHLS W1,
W2, W3, W4, and the public cluster catalog of Milkeraitis et al. (2010).

• I tested different kinds of background selection and magnitude cuts.

• I checked the goodness of restricting my analysis to the sample of clus-
ters in the redshift range 0.2 < zphot < 0.5 (Kasliwal et al., 2008),
individually fitting massive clusters (λ > 50), and I found a lower scat-
ter when applying this selection.

• I tested different binnings in richness and found a difference in normal-
ization < 1%, and a difference in slope of 5−30%, in the mass-richness
relations obtained.

• I checked the progressive improvements in the signal-to-noise ratio of
the tangential shear profiles, increasing the number of stacked clusters
and, at the same time, I checked the consistency with zero of the cross
shear profile, as expected from theory.

• I tested the importance of the miscentering correction, individually
fitting massive clusters (λ > 50), and found a mass underestimation of
10− 40%, when the correction is not taken into account.

• I tested the use of aperture mass statistics for the identification of
cluster centers, using simulated shear maps, simulated clusters, and
observed RedGOLD clusters. I found that, while on simulation the
method works well, on observed clusters there is often ambiguity on
the detected center, due to the fact that noise simulates shear peaks.

• I tested a joint fit (i.e. the fit of all richness bins simultaneously) and
found consistent results with the method I used for my analysis.
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As explained in detail in Chapter 4 and Section 4.4.2, I used three analytic
models in order to fit the tangential shear profiles:

Basic Model) It consists of a basic halo model, with an NFW surface den-
sity contrast and correction terms that take into account cluster mis-
centering, non-weak shear and the two halo term. It has three free
parameters: the radius r200, from which we calculate the mass M200

from Equation 1.6, and the miscentering parameters pcc, and σoff .

Added Scatter Model) It is based on the Basic Model but takes into ac-
count also the intrinsic scatter in the mass-richness relation. It has
four free parameters: logM200, pcc, σoff , and σM |λ. For each bin, we use
the mass-richness relation calculated from the Basic Model to infer the
mean mass of the stacked clusters, as a first approximation. We then
randomly scatter the mass using a gaussian distribution with mean
⟨lnM200⟩ and width σlnM200|λ.

Two Component Model) It is based on the Basic Model but takes into
account also the contribution from the BCG mass. When we set free
the BCG mass, this model has four free parameters: r200, pcc, σoff , and
logMBCG. When we fix the BCG mass to the mean stellar mass for
each richness bin, MBCG = M∗

BCG, the free parameters reduce to three.

From the fit results, I found that the intrinsic scatter and BCG mass are
not constrained by the data. The main effect of the addition of σM |λ to the fit
is to introduce more uncertainties and to increase the error on the estimated
parameters. The inclusion of MBCG in fit has no impact on the estimated
parameters, that are therefore the same as those obtained using the Basic
Model. For these reasons, I decided to discard the Added Scatter Model, and
to apply an a posteriori intrinsic scatter correction to the Basic Model and
to the Two Component Model. This correction has the effect of increasing
the normalization of the mass-richness relation by less than 1%.

Since it is the most complete and reliable between the three models de-
scribed, I chose to use Two Component Model with the intrinsic scatter cor-
rection (Final Model), in the remaining of my analysis, and obtained the
mass-richness relation.

Once I obtained a mass for each cluster in the sample, using the mass-
richness relation that I inferred, I compared these results with X-ray masses,
temperatures and luminosities, using Gozaliasl et al. (2014), Mehrtens et al.
(2012), and Piffaretti et al. (2011) X-ray catalogs.

I performed a match between these three catalogs and the RedGOLD
detections imposing a maximum separation of 1 Mpc and a maximum dif-
ference in redshift of 0.1. Within all three fields, I recovered 36 objects from
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the match with Gozaliasl et al. (2014), 21 from Mehrtens et al. (2012), and 7
from Piffaretti et al. (2011). I analyzed the three catalogs separately because
the different treatment of the emission from the central regions of the clusters
leads to different mass estimates.

Summarizing, the main results of this work are:

• I implemented and optimized my own weak lensing pipeline that ana-
lyzes shear profiles and calculates weak lensing masses of individual or
stacked clusters.

• I tested different profile models and different fitting techniques, ob-
taining results in good agreement with each other. In particular, the
miscentering correction resulted to be the one that most affects the
halo mass measurements, while including or not the BCG mass doesn’t
make a difference in the recovered parameters. The intrinsic scatter in
the mass-richness relation is generally not constrained by the data. The
amplitude of the mass-concentration relation, set as a free parameter,
is slightly degenerate with the miscentering parameters and can lead
to an underestimation of the parameters of the mass-richness relation.

• I calibrated RedGOLD optical richness, using weak lensing masses,
fitting the mass-richness relation logM200 = logM0 + α log λ/λ0. For
the Final Model, I obtained logM0 = 14.46± 0.02 and α = 1.04± 0.09,
with a pivot richness λ0 = 40.

Even if the cluster sample used in this analysis is one order of magnitude
smaller than the SDSS and DES redMaPPer cluster samples used in
Simet et al. (2016), Farahi et al. (2016) and Melchior et al. (2016), my
results are consistent with theirs within 1 − 2σ. This confirms that
RedGOLD cluster selection is not biased towards a different cluster
selection when compared to the SDSS and DES redMaPPer cluster
samples, as expected.

• Using the mass–richness relation that I measured, I inferred scaling
relations between lensing masses and X-ray proxies. For the M lens

200 −
MX

200 relation, fixing the slope at unity, I obtained logM lens
200 = (0.20±

0.03) logMX
200, using Gozaliasl et al. (2014) catalog. With Piffaretti et

al. (2011) catalog, I found a = 0.18 ± 0.03, fixing the slope at unity,
and a = 2.44 ± 1.46 and b = 0.84 ± 0.10, leaving the slope as a free
parameter.

For the lensing mass vs X-ray luminosity relation log


M200E(z)
M0


= a+

b log


LX

L0E(z)


, I found a = 0.10 ± 0.03 and b = 0.61 ± 0.12, with
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M0 = 8× 1013h−1M⊙ and L0 = 5.6× 1042h−2erg/s.

For the lensing mass vs X-ray temperature relation log


M200E(z)
M0


=

a + b log


TX

T0


, I obtained a = 0.23 ± 0.03 and b = 1.46 ± 0.28, with

M0 = 6× 1013h−1M⊙ and T0 = 1.5KeV .

These results are consistent with those of Kettula et al. (2015) and
Mantz et al. (2016), within < 1σ. The normalization is consistent
within < 2.5σ, and the slope within 1σ, with the results of Leauthaud
et al. (2010) (and therefore with Gozaliasl et al., 2014).

• I found a scatter of 0.20 dex, for all three relations, consistent with
redMaPPer scatters, confirming the Licitra et al. (2016a,b) results that
the RedGOLD optical richness is an efficient mass proxy. This is very
promising since the mass range used in this work is lower than that
probed by redMaPPer, and the scatter does not increase as expected
to these lower mass ranges.

6.2 Current projects
My first author refereed paper describing my thesis work was submitted to
the Astrophysical Journal and I’m in the process of answering the referee
report. The submitted paper is reproduced in the Appendix.

In the future, I will focus on projects that are complementary to what
I’ve done so far.

This analysis showed that, with the data used, it’s not possible to con-
strain the BCG mass and neither a constant that multiplies the BCG stellar
mass, inferred with a tool external to the lensing pipeline. In order to cal-
culate a scaling relation between lensing mass and BCG mass, in my next
project, I will repeat the weak lensing analysis described but, this time, bin-
ning clusters according to their BCG stellar mass.

I will use different parameters and criteria to select the cluster members,
and to identify the BCG:

• I will select galaxies inside a radius of 50 or 500 kpc.

• I will select members based on a simple cut in photometric redhsift:

|zmembers| < zcluster + 0.15
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or using the velocity dispersions:

|zmembers| <


(0.03(1 + zcluster))
2 +


σDM(1 + zcluster)

vc

2

where vc is the speed of light and σDM is the virial relation of Evrard
et al. (2008):

σDM = (1082.9± 4.0 km s−1)


h(z)M200

1015M⊙

0.3361±0.0026

• I will select the BCG within the cluster members choosing the most
massive galaxy, or the most luminous in magnitude b rest frame.

This work will allow me to study how a different kind of BCG selec-
tion, and therefore a different cluster center, will affect the estimated lensing
masses. It will also allow me to calculate the stellar-to-halo mass ratio for
cluster central galaxies, and again, compare the results for different selection
criteria. At the same time, having information on the b rest frame luminosity
of central galaxies and of the entire cluster, I will be able to infer an optical
mass-luminosity relation.

At the same time, I will use galaxy-galaxy lensing to infer the stellar-to-
halo mass relation of satellite galaxies. The concept behind this analysis is
the same compared to my thesis work, since it consists in stacking galaxies
instead of clusters, according to their BCG stellar mass, and then calculate
and fit the shear radial profiles with an analytical model of the kind:

∆Σ = ∆Σstar +∆Σsat + fsat∆Σhost +∆Σ2halo (6.1)

A very preliminary result can be found in Figure 6.1, where we can see in
red, the results obtained from stacked cluster lensing, in blue those derived
from individual cluster mass fits, and in green what found whit galaxy-galaxy
lensing.

On the other hand, I would like to study in more detail the miscentering
problem to see how different center choices would affect the shear profiles
and the mass measurements of stacked or individual massive clusters.

As shown in Chapter 4 and Section 4.5.6, aperture mass statistics can
be used to create a lensing signal-to-noise ratio map from the background
source sample, and to identify the center of the cluster with the peak of
the lensing signal. This technique gives optimal results when applied to
simulations of low noise shear fields or of very massive clusters. The situation
is different when we obtain maps from observed clusters. Comparing lensing
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Figure 6.1 – Halo masses inferred from lensing versus stellar masses cal-
culated through SED fitting. The green symbols correspond to galaxy-galaxy
lensing, the red dots to cluster lensing, and the blue dots to individual massive
cluster measurements. The gray lines are results from previous observations
and simulations.

174



center estimated in this way with RedGOLD centers, I found results often in
disagreement.

While RedGOLD centers are based on optical data and should correspond
with the position of the BCG, the peak of the lensing signal should correspond
to the center of the halo. In principle then, a difference in the two center
estimates can be justified considering that the BCG could be offset with
respect to the dark matter halo center, but it could also be due to fails of
the centering method.

Visually inspecting the images of the most massive clusters in the sample,
I found that in some cases RedGOLD failed to identify the center with a
galaxy in the most densely populated region, while the lensing center seemed
to be more accurate. In other cases though, the lensing center was completely
wrong and what was detected as the cluster center was actually a noise peak.

I would like to expand the work of George et al. (2012) and include in the
comparison also centers based on the peak of the weak lensing signal and on
the hybrid approach between galaxy centers and centroids (used for example
in RedGOLD), not considered in the cited work. Also I will test the use of
a different filter for the calculation of the lensing signal-to-noise ratio maps.
For example, Maturi et al. (2005) developed an optimal filter that takes into
account the noise associated to the large scale structure, to better isolate the
shear signal of the cluster. This method has proven to be more efficient in
detecting galaxy clusters and shear peaks (Maturi et al., 2005), and should be
then in principal a better instrument to study cluster centers. In Figure 6.2,
we can see a comparison of the simple filter developed by Schneider (1996),
and the more refined optimal filter of Maturi et al. (2005), considering only
poisson noise or also the contribution from the large scale structure.

In order to calculate this other source of noise Maturi et al. (2005) scaled
the filter obtained consider a simple NFW profile (i.e. what I used for the
aperture mass analysis) with the effective convergence power spectrum, that
in the Limber approximation can be written as:

Pk =
9H2

0Ω
2
m

4c2

 DC,H

0

dDC
W

2
(DC)

a2(DC)
Pδ


k

DM(DC)
, DC


(6.2)

where DC and DM are the comoving line-of-sight distance and the trans-
verse comoving distance defined in Chapter 1, W

2
(DC) is a function that

depends on the redshift distribution of the background sources, and Pδ is the
power spectrum of the three-dimensional matter density fluctuations.

The effective convergence power spectrum for sources at redshift z = 1 is
shown in Figure 6.3. The non linear matter power spectrum has been calcu-
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Figure 6.2 – Comparison of the filter of Schneider (1996), with the filter of
Maturi et al. (2005), with and without considering the large scale structure
contribution.

lated using the Python package Cosmicpy1, following Smith et al. (2003).
In Figure 6.4, I show a preliminary comparison of the centers of a Red-

GOLD cluster obtained using aperture mass statistics (cyan dot) and Maturi
et al. (2005) optimal filter (magenta dot). The latter is closer to the optical
center estimated by RedGOLD (green dot), suggesting a promising improv-
ing of this future analysis.

Moreover, for these new projects I will use the new self calibrating version
of the lensfit algorithm, and refined photometric redshift estimations on the
CFHTLS W1 and on entire NGVS. With these new data, I will also be able
to check wether the improvements in the shear estimates affect the mass
measurements in a meaningful way.

6.3 Future perspectives
In weak lensing mass measurements, the selection of the background sam-
ple is of great importance. In this context, the main challenge to reach
the accuracy of ∼ 1% we would like to get from future large scale optical,
near-infrared surveys such as Euclid and LSST, comes from the photometric

1http://cosmicpy.github.io/
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Figure 6.3 – Effective convergence power spectrum for sources at z = 1.

Figure 6.4 – Lensing signal-to-noise ratio map obtained using Maturi et al.
(2005) optimal filter. The green dot is the center estimated with RedGOLD,
the magenta one with the optimal filter, and the cyan one with aperture mass
statistics.
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redshift estimation.
The redshift of source galaxies, or their redshift distribution P (z), is also

required to appropriately weight the shear estimator. The weak lensing signal
is proportional to the surface mass density of the lens and to the geometry of
the system formed by observer, lens and source. The efficiency of the lensing
signal for a given lens-source pair is ∝ Dl/(Dls/Ds) (Hoekstra et al., 2015),
the angular diameter distance from the observer to the lens, from the lens to
the source and from the observer to the lens, respectively.

The knowledge of the spectroscopic redshift of each lens and source galaxy
would allow us to estimate these quantities, and consequently the shear sig-
nal, in an unbiased way. Unfortunately, current or near-future instruments
will not be able to provide a spectroscopic follow-up of faint galaxies of the
next generation large scale surveys such as Euclid and LSST. We will then
need to rely on photometric redshifts that, to meet the requirements on sys-
tematic errors, will need to be measured with an accuracy of ∼ (0.002)(1+z)
(Newman et al., 2015).

Different techniques have been developed to infer photometric redshifts,
from likelihood maximization to Bayesian and neural network based meth-
ods. Every photometric redshift algorithm needs to rely on spectroscopic
informations for the purpose of training and calibration. The goal of the
first is the minimization of the difference between the estimated redshift and
the true one, and the aim of the latter is to constrain and control the bi-
ases involved in the measurement. The application of different training and
calibration techniques, and the use of different spectroscopic samples impact
the estimated photometric redshifts and the associated errors. It is therefore
important to study how the choice of a method and the relative uncertainties
propagate in the quantities estimated through weak lensing analysis, such as
the cosmological parameters, the power spectrum, galaxy and cluster masses.

Calibration methods can be divided in two categories: direct and indi-
rect. Direct methods, such as template based and machine learning algo-
rithms, consists in the calibration of a mapping from the flux in photometric
bands to a galaxy redshifts. Indirect calibration can be obtained trough cross
correlation methods (Johnson et al., 2017).

Hildebrandt et al. (2016) compared the results of three different kind of
photometric redshift calibrations on the cosmological parameters estimation
through the tomographic weak lensing analysis of the KiDS-450 data. The
first is a weighted direct calibration, it consists in the use of the distribution
of spectroscopic redshifts of object selected in the same way as the photo-
metric sample that we want to analyze. In order to account for the fact
that spectroscopic catalogs are never complete and representative samples of
the photometric counterpart, they implemented a weighting system based on
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the volume density of objects in the magnitude space of both catalogs. The
second is an indirect method based on the angular cross-correlation function
between the photometric and spectroscopic samples. Unlike direct methods,
this one has the advantage of not requiring the spectroscopic sample to be
complete in the color and magnitude space but only to span the full redshift
range of the photometric sample. The third is the recalibration of the pho-
tometric P (z) through its integration over the spectroscopic redshift range
for each spectroscopic training object.

They then compared the sensitivity of the cosmological parameters con-
straints to the calibration method used. In Chapter 2, Figure 2.16 from
Hildebrandt et al. (2016), we find the confidence contours in the Ωm − σ8

plane obtained through the photometric redshift distributions inferred with
the three methods described, and through the original P (z) calculated by
BPZ.

All cases give consistent results but the first two methods provide a better
fit to the data. The direct calibration technique has uncertainties that are
subdominant compared to the measurements errors, while the indirect one
has much larger constraints. In this case the uncertainties dominate the error
budget due to the small areal coverage of the used spectroscopic sample.

In my future work, I would like to apply a similar kind of analysis to the
weak lensing mass estimates of galaxy clusters, in order to study how the use
of the photometric redshift distribution derived with a method over another
influences this kind of measurements. The photometric redshift calibration
would have an impact also on cluster centering techniques.

Euclid will provide imaging data in a very broad RIZ band and in the
broad Y, J,H bands. It will be complemented with optical ground based data
in the g, r, i, z bands. In addition, the mission will use near-IR slit less spec-
troscopy that will identify mainly Hα emitters up to z ∼ 2. In the redshift
range 0.9 < z < 1.8, we expect to find a total of 30-72 million of sources in
the 15000 deg2 covered by Euclid (Pozzetti et al., 2016). On the other hand,
LSST will cover over 20000 deg2 in the ugrizy bands. These observations, in
conjunction with spectroscopic follow up of areas covered by the space survey
will allow us to step forward in constraining the photometric redshift bias. In
particular, given the availability of larger and deeper spectroscopic samples,
indirect calibration methods such as cross-correlation will be substantially
improved.

In preparation for the Euclid survey, it would be interesting to test this
kind of analysis on realistic simulations and study how the available filters
and the wide coverage can be used to constrain calibration uncertainties.

Moreover, the VISTA Kilo-Degree Infrared Galaxy survey (VIKINGS;
Edge at al., 2013) will complement KiDS in five near-infrared bands, bringing
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the total number of bands up to 9 (ugriZY JHK). This will lead to better
and deeper photometric redshifts estimations and will allow us to perform a
direct comparison with the standard four bands KiDS data.
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Abstract
We measured stacked weak lensing cluster masses for a sample of 1325 galaxy clusters detected

by the RedGOLD algorithm in the Canada-France-Hawaii Telescope Legacy Survey W1 and the
Next Generation Virgo Cluster Survey at 0.2 < z < 0.5, in the optical richness range 10 < λ < 70.
After a selection of our best richness subsample (20 < λ < 50), this is the most comprehensive
lensing study of a ∼ 100% complete and ∼ 90% pure optical cluster catalogue in this redshift
range, with a total of 346 clusters in ∼ 164 deg2. We test three different mass models, and our best
model includes a basic halo model, with a Navarro Frenk and White profile, and correction terms
that take into account cluster miscentering, non-weak shear, the two-halo term, the contribution
of the Brightest Cluster Galaxy, and an a posteriori correction for the intrinsic scatter in the
mass-richness relation. With this model, we obtain a mass-richness relation of logM200/M� =
(14.48± 0.04) + (1.14± 0.23) log (λ/40) (statistical uncertainties). This result is consistent with
other published lensing mass-richness relations. When compared to X-ray masses and mass
proxies, we find that on average weak lensing masses are ∼ 10% higher than those derived in the
X-ray in the range 2 × 1013M� < E(z)MX

200 < 2 × 1014M�, in agreement with most previous
results and simulations. We also give the coefficients of the scaling relations between the lensing
mass and X–ray mass proxies, LX and TX , and compare them with previous results.
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1. INTRODUCTION

Galaxy clusters are the largest and most mas-
sive gravitationally bound systems in the Uni-
verse and their number and distribution permit us
to probe the predictions of cosmological models.
They are the densest environments where we can
study galaxy formation and evolution, and their
interaction with the intra-cluster medium (Voit
2005). For both these goals, an accurate estimate
of the cluster mass is essential.

The cluster mass cannot be measured directly
and is inferred using several mass proxies. Galaxy
clusters emit radiation at different wavelengths
and their mass can be estimated using different
tracers. Different mass proxies usually lead to
mass estimations that are affected by different sys-
tematics.

From X-ray observations of the cluster gas, we
can derive the gas temperature, which is related
to its total mass (Sarazin 1988), under the as-
sumption of hydrostatic equilibrium. X-ray mass
measurements are less subjected to projection and
triaxiality effects but the mass proxies are not reli-
able in systems undergoing mergers or in the cen-
tral regions of clusters with strong AGN feedback
(Allen, Evrard & Mantz 2011).

The intracluster medium (ICM) can also be de-
tected in the millimeter by the thermal Sunyaev-
Zel’dovich effect (S-Z effect; Sunyaev & Zeldovich
1972) and the S-Z flux is related to the total cluster
mass. Unlike optical and X-ray surface brightness,
the integrated S-Z flux is independent of distance,
allowing for almost constant mass limit measure-
ments at high redshifts. For the same reason,
though, the method is also subjected to projec-
tion effects due to the overlap of all the groups
and clusters along the line of sight (Voit 2005).

In the optical and infrared bandpasses, we ob-
serve the starlight from cluster galaxies. If a clus-
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Cedex, France
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ter is in dynamical equilibrium, the velocity distri-
bution of its galaxies is expected to be Gaussian
and the velocity dispersion can be directly linked
to its mass through the virial theorem. An advan-
tage of this method is that, unlike X-ray and S-Z
mass measurements, it is not affected by forms of
non-thermal pressure such as magnetic fields, tur-
bulence and cosmic ray pressure. As a downside,
it is sensitive to triaxiality and projection effects,
the precision of the measurements is limited by
the finite number of galaxies, and the assumption
of dynamical and virial equilibrium is not always
correct (Allen, Evrard & Mantz 2011).

Also, considering that light traces mass, the to-
tal optical or infrared luminosity of a cluster is
another indicator of its mass. Abell (1958) de-
fined a richness class to categorize clusters based
on the number of member galaxies brighter than
a given magnitude limit. The luminosity distri-
bution function of cluster galaxies, is also well de-
scribed by the Schechter (1976) profile and the ob-
servation of the high luminosity tip of this distri-
bution allows us to better constrain cluster masses.
Postman et al. (1996), for example, defined the
richness parameter as the number of cluster galax-
ies brighter than the characteristic luminosity of
the Schechter (1976) profile, L∗. Different defini-
tions are possible and intrinsically related to the
technique used to optically detect galaxy clusters.

Rykoff et al. (2014) built an optical cluster
finder based on the red-sequence finding tech-
nique, redMaPPer, and applied it to the Sloan
Digital Sky Survey (SDSS; York et al. 2000). Their
richness is computed using optimal filtering, as a
sum of probabilities and depends on three filters
based on colors, positions and luminosity (Rozo et
al. 2009; Rozo & Rykoff 2014; Rykoff et al. 2012,
2014, 2016).

In Licitra et al. (2016a,b), we introduced a sim-
plified definition of cluster richness based on the
redMaPPer richness measurement, within our de-
tection and cluster selection algorithm RedGOLD.
RedGOLD is based on a revised red-sequence tech-
nique.

RedGOLD richness quantifies the number of
red, passive early type galaxies (ETGs) brighter
than 0.2L∗, inside a scale radius, subtracting the
scaled background. When compared to X-ray
mass proxies, the RedGOLD richness leads to scat-
ters in the X-ray temperature-richness relation
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similar to those obtained with redMaPPer (Rozo
& Rykoff 2014), which is very promising since Red-
GOLD was applied to a lower richness threshold
(i.e. lower cluster mass).

The total cluster mass can also be derived by
its strong and weak gravitational lensing of back-
ground sources. In the weak lensing regime, the
gravitational potential of clusters of galaxies pro-
duces small distortions in the observed shape of
the background field galaxies, creating the so-
called shear field, which is proportional to the clus-
ter mass.

Because the shear is small relative to the intrin-
sic ellipticity of the galaxies (due to their random
shape and orientation), a statistical approach is re-
quired to measure it and the signal is averaged over
a large number of background sources to increase
the signal-to-noise ratio (Schneider 2005). Gravi-
tational lensing does not require any assumption
on the dynamical state of the cluster and it is sen-
sitive to the projected mass along the line of sight,
representing a more reliable tool to determine to-
tal cluster masses (Meneghetti et al. 2010; Allen,
Evrard & Mantz 2011; Rasia et al. 2012).

In the future, as shown in Ascaso et al. (2016),
optical and near-infrared (NIR) cluster surveys,
such as Euclid1 (Laureijs et al. 2011), LSST2 and
J-PAS (Benítez et a. 2014), will reach deeper than
X-ray and S-Z surveys, such as e-Rosita (Merloni
et al. 2012), SPTpol (Carlstrom et al. 2011) and
ACTpol (Marriage et al. 2011). It is then impor-
tant to understand the reliability of optical and
NIR mass proxies, since they will be the only mass
proxy available for these new detections.

Several works in the literature have proven that
the optical richness shows a good correlation with
the cluster total masses derived from weak lensing
(Johnston et al. 2007; Covone et al. 2014; Ford et
al. 2015; van Uitert et al. 2015; Simet et al. 2016;
Melchior et al. 2016). The typical scatter found
in the cluster virial mass at a given richness is of
∼ 10 − 25% including statistical and systematic
errors, in the mass range 6 × 1012M� . M .
1015M� and in the redshift range 0.1 . z . 0.9.

The aim of this work is to calibrate and eval-
uate the precision of the RedGOLD richness as a
mass proxy, and to compare it to stacked weak

1http://euclid- ec.org
2http://www.lsst.org

lensing masses. We then compare our lensing cal-
ibrated masses to X-ray mass proxies. Our ap-
proach mainly follows the one adopted by John-
ston et al. (2007) and Ford et al. (2015), and we
compare our results to Simet et al. (2016), Farahi
et al. (2016) and Melchior et al. (2016).

The paper is organized as follows: in Section 2,
we describe the shear data set and the photometric
redshifts catalog; in Section 3, we briefly present
the RedGOLD detection algorithm and the cluster
catalogs; in Section 4, we describe the weak lensing
equations and the method; in Section 5, we present
the results; in Section 6, we discuss our findings in
comparison with other recent works; in Section 7,
we present our conclusions.

Throughout this work we assume a standard
ΛCDM model, with Ωm = 0.3, ΩΛ = 0.7 and
H0 = 70 km s−1 Mpc−1.

Magnitudes are given in the AB system (Oke &
Gunn 1983; Sirianni et al. 2005).

2. DATA

For our analysis, we use our own data re-
duction (Raichoor et al. 2014) of the Canada-
France-Hawaii Telescope Legacy Survey (CFHT-
LS; Gwyn 2012) Wide 1 (W1) field and of the
Next Generation Virgo Cluster Survey (NGVS;
Ferrarese et al. 2012). We describe below these
two datasets.

2.1. CFHTLenS and NGVSLenS

The CFHT-LS is a multi-color optical survey
conducted between 2003 and 2008 using the CFHT
optical multi-chip MegaPrime instrument (Mega-
Cam3; Boulade et al. 2003). The survey consists
of 171 pointing covering ∼ 154 deg2 in four wide
fields ranging from 25 to 72 deg2, with complete
color coverage in the five filters u∗g′r′i′z′. All
the pointings selected for this analysis were ob-
tained under optimal seeing conditions with a see-
ing < 0.8

′′
in the primary lensing band i′ (Erben

et al. 2013). The 5σ point source limiting magni-
tudes in a 2.0

′′
aperture in the five u∗g′r′i′z′ filters

are ∼ 25.2, ∼ 25.6, ∼ 24.9, ∼ 24.5, ∼ 23.5 mag,
respectively (Erben et al. 2013).

3http://www.cfht.hawaii.edu/Instruments/Imaging/ Mega-
cam/

3



The NGVS (Ferrarese et al. 2012) is a multi-
color optical imaging survey of the Virgo Clus-
ter, also obtained with the CFHT MegaCam in-
strument. This survey covers 104 deg2 with 117
pointings in the four filters u∗g′i′z′. 34 of these
pointings are also covered in the r′ band. As for
the CFHT-LS, the optimal seeing conditions were
reserved to the i′-band which covers the entire sur-
vey with a seeing < 0.6

′′
. The 5σ point source

limiting magnitudes in a 2.0
′′
aperture in the five

u∗g′r′i′z′ filters are∼ 25.6, ∼ 25.7, ∼ 24.7, ∼ 24.4,
∼ 23.6 mag, respectively (Raichoor et al. 2014).

Both our CFHTLenS and NGVSLenS photome-
try and photometric redshift catalogs were derived
using the dedicated data processing described in
Raichoor et al. (2014). The preprocessed Elixir4

data, available at the Canadian Astronomical
Data Centre (CADC5) were processed with an
improved version of the THELI pipeline (Erben
et al. 2005, 2009, 2013; Raichoor et al. 2014) to
obtain co-added science images accompanied by
weights, flag maps, sum frames, image masks and
sky-subtracted individual chips that are at the
base of the shear and photometric analysis. We re-
fer the reader to Erben et al. (2013) and Heymans
et al. (2012) for a detailed description of the differ-
ent THELI processing steps and a full systematic
error analysis. Raichoor et al. (2014) modified the
standard pipeline performing the zero-point cal-
ibration using the SDSS data, taking advantage
of its internal photometric stability. The SDSS
covers the entire NGVS field and 62 out of 72
pointings of the CFHT-LS W1 field (∼ 60 deg2).
Raichoor et al. (2014) constructed the photometric
catalogs as described in Hildebrandt et al. (2012),
adopting a global PSF homogenization to measure
unbiased colors. Multicolor catalogs were obtained
from PSF-homogenized images using SExtractor
(Bertin & Arnouts 1996) in dual-image mode,
with the un-convolved i′-band single-exposure as
the detection image.

We restrict our analysis to the entire NGVS and
the ∼ 60 deg2 of the W1 field that were repro-
cessed by Raichoor et al. (2014), to have an ho-
mogeneously processed photometric catalog on a
total of ∼ 164 deg2.

For the shear analysis, as described in Miller

4http://www.cfht.hawaii.edu/Instruments/Elixir/
5http://www4.cadc- ccda.hia- iha.nrc- cnrc.gc.ca/ cadc/

et al. (2013), shape measurements were obtained
applying the Bayesian lensfit algorithm to single-
exposure i′-band images with accurate PSF mod-
eling, fitting PSF-convolved disc plus bulge galaxy
models. The ellipticity of each galaxy is estimated
from the mean likelihood of the model posterior
probability, marginalized over model nuisance pa-
rameters of galaxy position, size, brightness and
bulge fraction. The code assigns to each galaxy
an inverse variance weight wlens ∝ (σ2

e + σ2
pop)−1,

where σ2
e is the variance of the ellipticity likelihood

surface and σ2
pop is the variance of the ellipticity

distribution of the galaxy population. Calibration
corrections consist in a multiplicative bias m, cal-
culated using simulated images, and an additive
bias c, estimated empirically from the data. As
discussed in Miller et al. (2013), the former in-
creases as the size and the signal-to-noise ratio of
a galaxy detection decrease, while the latter in-
creases as the signal-to-noise ratio of a galaxy de-
tection increases and the size decreases.

2.2. Photometric Redshifts

The photometric redshift catalogs of the ∼
60 deg2 of the CFHTLenS covered by the SDSS
and of the entire NGVSLenS were obtained using
the Bayesian softwares LePhare (Arnouts at al.
1999; Arnouts et al. 2002; Ilbert et al. 2006) and
BPZ (Benítez 2000; Benítez et a. 2004; Coe et al.
2006), as described in Raichoor et al. (2014). We
used the re-calibrated SED template set of Capak
et al. (2004).

Both LePhare and BPZ are designed for high
redshift studies, giving biased or low quality
photo-z’s estimations for objects with i′ < 20 mag
which represent a non-negligible fraction of both
samples. In order to improve the performance at
low redshift, Hildebrandt et al. (2012) used an
ad hoc modified prior for the CFHTLenS data.
Raichoor et al. (2014) adopted a more systematic
solution for our reprocessed CFHTLenS W1 field
and for the NGVSLenS, building a new prior cal-
ibrated on observed data, using the SDSS Galaxy
Main Sample spectroscopic survey (York et al.
2000; Strauss et al. 2002; Ahn et al. 2014) to in-
clude bright sources.

To analyze the accuracy of the photometric red-
shift estimates, Raichoor et al. (2014) used several
spectroscopic surveys covering the CFHTLenS
and NGVSLenS: the SDSS Galaxy Main Sam-
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ple, two spectroscopic programs at the Multiple
Mirror Telescope (MMT; Peng et al. 2016, in
preparation) and at the Anglo-Australian Tele-
scope (AAT; Zhang et al. 2015, 2016, in prepa-
ration), the Virgo Dwarf Globular Cluster Sur-
vey (Guhathakurta et al. 2016, in preparation),
the DEEP2 Galaxy Redshift Survey over the Ex-
tended Groth Strip (DEEP2/EGS; Davis et al.
2003; Newman et al. 2013), the VIMOS Public
Extragalactic Redshift Survey (VIPERS; Guzzo
et al. 2014), and the F02 and F22 fields of the
VIMOS VLT Deep Survey (VVDS; Le Fèvre et al.
2005, 2013).

As shown in Raichoor et al. (2014), when us-
ing all five filters, for zphot < 1 and i′ < 23 mag
we found a bias ∆z =

zphot−zspec

1+zspec
< 0.02, scatter

values in the range 0.02 < σ < 0.05 and < 5% of
outliers. When using four bands the quality of the
measurements slightly decreases, due to the lack
of the r′-band to sample the 4000 Å break. In the
range 0.3 < zphot < 0.8 and i′ > 21 mag we ob-
tained −0.05 < bias < 0.02, a scatter σ ∼ 0.06
and an outliers rate of 10− 15%.

In this analysis, we use the photometric red-
shifts derived with BPZ, corresponding to zbest,
the peak of the redshift posterior distribution
(hereafter, zphot).

3. CLUSTER CATALOGS

3.1. The RedGOLD Optical Cluster Cat-
alogs

3.1.1. The RedGOLD Algorithm

The RedGOLD algorithm (Licitra et al. 2016a,b)
is based on a modified red-sequence search algo-
rithm. Since the inner regions of galaxy clus-
ters host a large population of passive and bright
early-type galaxies (ETGs), RedGOLD searches
for passive ETG overdensities. To avoid the se-
lection of dusty red star-forming galaxies, the al-
gorithm selects galaxies on the red sequence both
in the rest-frame (U −B) and (B − V ), using red
sequence rest-frame zero point, slope and scatter
from Mei et al. (2009), and with a ETG spectral
classification from LePhare. In order to select an
overdensity detection as a cluster candidate, the
algorithm also imposes that the ETG radial distri-
bution follows an NFW (Navarro, Frenk & White
1996) surface density profile.

RedGOLD centers the cluster detection on the
ETG with the highest number of red companions,
weighted on luminosity. This is motivated by the
fact that the brightest cluster members lying near
the X-ray centroid are better tracers of the cluster
centers compared to using only the BCG (George
et al. 2012). The redshift of the cluster is the
median photometric redshift of the passive ETGs.

Each detection is characterized by two parame-
ters, the significance σdet and the richness λ, which
quantifies the number of bright red ETGs inside
the cluster, using an iterative algorithm.

The entire galaxy sample is divided in over-
lapping photometric redshift slices. Each slice is
then divided in overlapping circular cells, with
a fixed comoving radius of 500 kpc. The algo-
rithm counts Ngal, the number of red ETGs in-
side each cell, brighter than 0.2L∗, building the
galaxy count distribution in each redshift slice.
The background contribution is defined as Nbkg,
the mode of this distribution, with standard de-
viation σbkg. The detection significance is then
defined as σdet = (Ngal −Nbkg)/σbkg. Overdensi-
ties larger than Nbkg + σdet × σbkg are selected as
preliminary detections. The uncertainties on the
cluster photometric redshift range between 0.001
and 0.005, with an average of 0.003 ± 0.002. In
this paper we assume that these uncertainties are
negligible for our analysis (see also Simet et al.
2016).

The algorithm then estimates the richness λ,
counting Ngal inside a scale radius, initially set to
1 Mpc. The radius is iteratively scaled with rich-
ness as in Rykoff et al. (2014), until the difference
in richness between two successive iterations is less
than Nbkg.

RedGOLD is optimized to produce cluster cata-
logs with high completeness and purity. In Licitra
et al. (2016a,b), the completeness is defined as the
ratio between detected structures corresponding
to true clusters and the total number of true clus-
ters, and the purity is defined as the number of de-
tections that correspond to real structures to the
total number of detected objects. Following the
definition of a true cluster in the literature (e.g,
Finoguenov et al. 2003; Lin et a. 2004; Evrard
et al. 2008; Finoguenov et al. 2009; McGee et al.
2009; Mead et al. 2010; George et al. 2011; Chi-
ang et al. 2013; Gillis et al. 2013; Shankar et al.
2013), we define a true cluster as a dark matter

5



halo more massive than 1014 M�. In fact, numer-
ical simulations show that 90% of the dark mat-
ter haloes more massive than 1014 M� are a very
regular virialized cluster population up to redshift
z ∼ 1.5 (e.g., Evrard et al. 2008; Chiang et al.
2013). In order to validate the performance of
our algorithm to find clusters with a total mass
larger than 1014 M� and measure our obtained
sample completeness and purity, we have applied
RedGOLD to simulations and observations. We
then have compared our RedGOLD optical detec-
tion with X-ray detected cluster masses. For de-
tails on the method and the performance of the
algorithm when applied to numerical simulations
we refer the reader to Licitra et al. (2016a).

3.1.2. The RedGOLD CFHT-LS W1 and NGVS
Cluster Catalogs

We use the CFHT-LS W1 and NGVS cluster
catalogs from Licitra et al. (2016a) and Licitra et
al. (2016b), respectively. For both surveys, when
using five bandpasses, in the published catalogs,
we selected clusters more massive than ≈ 1014M�,
the mass limit for which ∼ 90% of dark matter
halos at zphot < 1.5 are virialized (Evrard et al.
2008). In Licitra et al. (2016a,b), we calibrated
the σdet and λ parameters to maximize the com-
pleteness and purity of the catalog of these type of
objects. Licitra et al. (2016a) demonstrated that
when we considered only detections with σdet ≥ 4
and λ ≥ 10 at zphot ≤ 0.6, and σdet ≥ 4.5 and
λ ≥ 10 at zphot . 1, we obtain catalogs with a
completeness of ∼ 100% and ∼ 70%, respectively,
and a purity of ∼ 80%.

Both in the CFHT-LS W1 and the NGVS,
we masked areas around bright stars and nearby
galaxies. We found that in only ∼ 2% of the
cluster candidates (low richness structures at high
redshift) more than 10% of their bright potential
members are masked (Licitra et al. 2016a). There-
fore our richness estimates are not significantly af-
fected by masking.

For the NGVS, as explained above, the five
band coverage was limited to only the ∼ 30% of
the survey. The lack of the r′-band in the remain-
ing pointings, causes higher uncertainties on the
determination of photometric redshifts for sources
at 0.3 < zphot < 0.8 but the global accuracy on
the photometric redshifts remains high even for
this sample, as shown in Raichoor et al. (2014).

Since there are some fields in which the quality of
the r′-band is lower because of the lower depth and
the lack of coverage of the intra-CCD regions, this
makes also more difficult the detection of the less
massive structures at intermediate and high red-
shifts and the determination of the clusters center
and richness.

To quantify this effect in the richness estima-
tion, Licitra et al. (2016b) compared the values re-
covered with a full band coverage λr with the ones
obtained without the r′-band λwr, and measured
∆λ/λr ≡ (λr − λwr)/λr, in different redshift bins.
Median values of ∆λ/λr and their standard devia-
tions are listed in Table 2 of Licitra et al. (2016b).
At zphot < 0.5 and zphot > 0.8, the two estimates
are in good agreement, with ∆λ/λr < 10%. This
is due to the fact that the (g − z) and (i− z) col-
ors straddle the 4000 Å break at zphot < 0.5 and
zphot > 0.8, respectively. At 0.5 < zphot < 0.6,
λwr is systematically underestimated of ∼ 40% on
average and, at 0.6 < zphot < 0.8, it’s systemati-
cally overestimated of ∼ 20% on average. The first
systematic is due to the use of the (g − z) color,
that changes less steeply with redshift and has
larger photometric errors, compared with (r − i)
and (i− z) colors. The latter is caused by the use
of the (i−z) color only, without the additional cut
in the (r − z) or (r − i) colors that allows us to
reduce the contamination of dusty red galaxies on
the red sequence (Licitra et al. 2016b).

To take this into account, we correct the λwr es-
timations using the average shifts given in Table 2
of Licitra et al. (2016b). As we will discuss later,
since for this analysis we are only selecting clus-
ters at zphot < 0.5 (see below), using four bands
we preserve the same level of completeness and
purity as using the five bands catalog.

For these reasons, for the NGVS we built two
separate catalogs: the first for the ∼ 20 deg2 cov-
ered by the r′-band and the second for the en-
tire NGVS using only four bandpasses. In this
last catalog we corrected for the average shift in
λ when applying our thresholds (Licitra et al.
2016b). Hereafter, we define the NGVS catalog
obtained on the area covered by the five band-
passes as NGVS5 and the catalog obtained with
four bandpasses as NGVS4.

The CFHT-LS W1 published catalog includes
652 cluster candidate detections in an area of ∼
60 deg2. The NGVS published catalogs include
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279 and 1505 detections, in the ∼ 20 deg2 with the
five band coverage and in the rest of the survey,
respectively.

We select cluster subsamples from these cat-
alogs for our weak lensing analysis. Knowing
that the peak in the lensing efficiency is found
at zphot ∼ 0.4 for source galaxies at zphot ∼ 1
(Hamana et al. 2004) and that shear measure-
ments from ground based telescopes are reliable
for clusters with redshifts 0.2 < zphot < 0.5 (Kasli-
wal et al. 2008), we select detections only in this
redshift range. We also discard clusters with rich-
ness λ < 10 and λ > 70. In fact, as shown in
Licitra et al. (2016a) at richness λ < 10, our pu-
rity decreases for a given significance threshold.
For our significance threshold of σdet > 4, λ < 10
implies a contamination of false detections larger
than ∼ 20%. For λ > 70, we have very few detec-
tions and there are not enough clusters to obtain
an average profile from a statistically significant
sample.

Our final selection for the weak lensing analysis
includes 1325 clusters. Their richness and redshift
distributions are shown in Figure 1. Hereafter,
we will define the catalogs to which we applied
the thresholds in significance, richness and redshift
for the weak lensing analysis as selected catalogs.
The published Licitra et al. (2016a,b) catalogs, to
which we applied the thresholds in significance and
richness, will be referred to as Licitra’s published
catalogs. The Licitra et al. (2016a,b) catalogs,
without any threshold as complete catalogs.

3.2. The X-ray Cluster Catalogs

Gozaliasl et al. (2014) analyzed the XMM-
Newton observations in the ∼ 3 deg2 overlapping
the CFHT-LS W1 field, as a part of the XMM-
LSS survey (Pierre et al. 2007) 6. They pre-
sented a catalog of 129 X-ray groups, in a red-
shift range 0.04 < zphot < 1.23, characterized by
a rest frame 0.1− 2.4 keV band luminosity range
1041 − 1044 ergs s−1. They removed the contri-
bution of AGN point sources from their flux esti-
mates and applied a correction of∼ 10% for the re-
moval of cool core flux based on the high resolution
Chandra data on COSMOS as shown in Leauthaud
et al. (2010). They used a two-color red-sequence
finder to identify group members and calculate the

6https://heasarc.gsfc.nasa.gov/W3Browse/all/cfhtlsgxmm.html

mean group photometric redshift. They inferred
cluster’s M200 masses using the LX −M relation
of Leauthaud et al. (2010), with a systematic un-
certainty of ∼ 20%.

Mehrtens et al. (2012) presented the first data
release of the XMM Cluster Survey (XCS), a
serendipitous search for galaxy clusters in the
XMM-Newtown Science Archive data 7. The cata-
log consists of 503 optically confirmed clusters, in
a redshift range 0.06 < zphot < 1.46. 402 of these
clusters have measured X-ray temperatures in the
range 0.4 < TX < 14.7 keV . They derived photo-
metric redshifts with the red-sequence technique,
using one color. They used a spherical β-profile
model (Cavaliere & Fusco-Fermiano 1976) to fit
the surface brightness profile and derive the bolo-
metric (0.05 - 100 keV band) luminosity in units
of 1044 erg s−1 within the radius R200 and R500.

In Section 5.3, we will use these catalogs to com-
pare our lensing masses with X-ray masses and cal-
culate the scaling relations between lensing masses
and X-ray temperature and luminosity. We ana-
lyze the two catalogs separately because the dif-
ferent treatment of the emission from the central
regions of the clusters leads to different mass esti-
mates. In Section 6.2 we will discuss these results.

4. WEAK LENSING ANALYSIS

In this Section, we describe our weak lensing
analysis. Our aim is to infer cluster masses by
reconstructing the tangential shear radial profile
γt(R), averaging in concentric annuli around the
halo center, and fitting it to a known density pro-
file. γt(R) accounts for the distortion, due to the
gravitational potential of the lens, of the shape of
the background sources in the tangential direction
with respect to the center of the lens and it’s de-
fined as:

γt = −Re
[
γe−2iφ

]
(1)

with γ = ε1 + iε2 = |γ|e2iφ, were ε1 and ε2 are the
ellipticity components of the galaxy and φ is the
position angle of the galaxy respect to the center
of the lens (Schneider 2005).

As described in Wright & Brainerd (2000), the
tangential shear profile γt(R) is related to the sur-
face density contrast by:

∆Σ(R) = 〈γt(R)〉Σc (2)

7https://heasarc.gsfc.nasa.gov/W3Browse/all/xcs.html
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Where R is the projected radius with respect to
the center of the lens and:

Σc =
c2

4πG

Ds

DlDls
(3)

is the critical surface density. Here c is the speed
of light and Ds, Dl, Dls are the angular diameter
distances from the observer to the source, from
the observer to the lens, and from the lens to the
source, respectively.

To infer cluster masses, we fit the measured
∆Σ(R) profile, obtained as described in Section
4.1, to the theoretical models introduced in Sec-
tion 4.2.

4.1. Cluster Profile Measurement

To measure cluster masses, we need to fit the
cluster radial profiles. This is possible individually
only for the most massive clusters in our sample
(M200 > 4 × 1014M� for a signal–to–noise ratio
S/N > 3; they represent the ∼ 2% of the sample),
while the noise dominates for the others. In order
to increase the signal-to-noise ratio and measure
average radial profiles for all the other detections,
we stack galaxy clusters in six richness bins, from
λ = 10 to λ = 70, in steps of 10 in richness.

We select the background galaxy sample using
the following criteria:

i′ < 24.7 mag (4a)
0.2 < zphot < 1.3 (4b)

to obtain reliable shape measurement and pho-
tometric redshifts (Kettula et al. 2015; Hilde-
brandt et al. 2012; Raichoor et al. 2014). As in
Kettula et al. (2015), for each cluster we select
only background galaxy with redshift:

zphot,s > zphot,l + 0.15 (5)

where zphot,s is the source redshift and zphot,l is
the lens redshift.

Following Ford et al. (2015), we then sort the
background galaxies in 10 logarithmic radial bins
from 0.09 Mpc from the center of the lens to
5 Mpc. In fact, at radii closer than 0.09 Mpc,
galaxy counts are dominated by cluster galaxies,

and at larger radii the mass estimate can be under-
estimated as much as ∼ 20% because of the contri-
bution of large scale structure (Becker & Kravtsov
2011; Oguri & Hamana 2011).

In each radial bin we perform a weighted aver-
age of the lensing signal as follows:

∆Σ(R) =

∑l
i=0

∑s
j=0wijΣc,ijγt,ij

∑l
i=0

∑s
j=0wij

(6)

where we sum over every lens-source pair (i.e. i-j
indices up to the l number of lenses and s number
of sources). The weights wij = Σ−2

c,ijwlens (Man-
delbaum et al. 2005) quantify the quality of the
shape measurements through the lensfit weights
wlens (defined in Section 2.1) and down-weight
source galaxies that are close in redshift to the
lens through Σ−2

c,ij , which is evaluated for every
lens-source pair using zphot to calculate the an-
gular diameter distances that appear in Equation
3.

We need then to correct the measured signal,
applying the calibration corrections introduced in
Section 2.1. As shown in Heymans et al. (2012),
the ellipticity estimated by lensfit can be related
to the true ellipticity (i.e. the sum of the shear
and of the galaxy intrinsic ellipticity) as εlens =
(1 +m)[γ + εint] + c, where m and c are the mul-
tiplicative and additive biases. While the latter
can be simply added on single ellipticity measure-
ments, the first needs to be applied as a weighted
ensemble average correction:

1 +K(R) ≡
∑l
i=0

∑s
j=0 wij [1 +mij ]

∑l
i=0

∑s
j=0 wij

(7)

This is done to avoid possible instabilities in
case the term (1+m) tends to zero. In this way we
also remove any correlation between the calibra-
tion correction and the intrinsic ellipticity (Miller
et al. 2013). The calibrated signal is written as:

∆Σcal(R) =
∆Σ(R)

1 +K(R)
(8)

To estimate the errors on ∆Σ(R), we create a
set of 100 bootstrap realizations for each richness
bin, selecting the same number of clusters for each
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stack but taking them with replacements. We ap-
ply Equation 6 to obtain ∆Σ(R) for each boot-
strap sample.

Following Ford et al. (2015), we then calculate
the covariance matrix:

C(Ri, Rj) =
[

N

N − 1

]2
1

N

N∑

k=1

[
∆Σk(Ri)−∆Σ(Ri)

]

×
[
∆Σk(Rj)−∆Σ(Rj)

]
(9)

where Ri and Rj are the radial bins, N is the
number of bootstrap samples and ∆Σ(Ri) is the
average over all bootstrap realizations.

For each radial bin, we weight the shear using
the lensfit weights as shown in Equation 6, so these
error bars also include the error on the shape mea-
surements of the source galaxies. We calculate the
covariance matrix to take into account the corre-
lation between radial bins and the contribution to
the stacked signal of clusters with different masses
inside the same richness bin.

4.2. Cluster Profile Model

To fit the tangential shear profiles we use an
analytic model for the cluster profile:

∆Σ(R) = pcc[∆ΣNFW(R) + ∆Σnw(R)]+

(1− pcc)∆Σsm(R) + ∆Σ2halo(R) (10)

∆ΣNFW is the surface density contrast calcu-
lated from an NFW density profile, assumed as the
halo profile. ∆Σnw, ∆Σsm and ∆Σ2halo are cor-
rection terms that take into account, respectively,
non-weak shear, cluster miscentering and the con-
tribution to the signal from large scale structure.
pcc is a free parameter related to the miscentering
term and represents the percentage of correctly
centered clusters in each stack. Each term and
the free parameters of the model will be described
in detail in the following Sections.

In addition to this basic model, hereafter
Model 1, we also consider two model extensions
discussed in Section 4.3.

All the averages in the equations below are per-
formed using the same weighting as in equation 6.

4.2.1. ∆ΣNFW Profile

For the cluster halo profile, we assume an NFW
profile. Numerical simulations have shown that
dark matter halos density profiles, resulting from
the dissipationless collapse of density fluctuations,
can be well described by this profile:

ρNFW(r) =
δcρc

( rrs )(1 + r
rs

)2
(11)

ρc =
3H(z)2

8πG
(11a)

rs =
r200

c
(11b)

δc =
200

3

c3

ln 1 + c− c
1+c

(11c)

where ρc is the critical density of the universe; c is
the concentration parameter; δc is a dimensionless
parameter that depends only on the concentration;
rs is a scale radius that depends on r200; r200 is the
radius at which the density is 200 times the critical
density of the Universe and can be considered as
an approximation of the virial radius of the halo.
The mass M200 is the mass of a sphere of radius
r200 and average density of 200ρc:

M200 = M(r200) =
4π

3
r3
200 × 200ρc (12)

Simulations have also shown that there is a re-
lation between M200 and c (e.g. Navarro, Frenk &
White 1996; Bullock et al. 2001). In order to take
this into account, we use the Dutton & Macció
(2014) mass-concentration relation:

log c200 = a+ b log
(
M200/[1012h−1M�]

)
(13)

with a = 0.520+(0.905−0.520) exp (−0.617z1.21)
and b = −0.101+0.026z. This reduces the dimen-
sionality of the model to one parameter, r200, from
which we can calculate the halo mass using Equa-
tion 12.

Integrating the tridimensional NFW density
profile along the line of sight, we can calculate the
NFW surface density:

ΣNFW(R) = 2

∫ ∞

0

ρNFW(R, z)dz (14)
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Integrating again, we get ΣNFW(R), the average
surface density inside a radius R:

ΣNFW(< R) =
2

R2

∫ R

0

R′ΣNFW(R′)dR′ (15)

Finally, we can calculate the first term in Equa-
tion 10:

∆ΣNFW = ΣNFW(< R)− ΣNFW(R) (16)

4.2.2. Miscentering Term

Since the NFW density profile is spherically
symmetric, an error in the determination of the
halo center would lead to systematically underes-
timate the lens mass. In fact, the random stacking
offset smooths the differential surface mass density
profile (George et al. 2012).

Following Licitra et al. (2016a), we match our
RedGOLD detections to X-ray detections in the
same areas (Gozaliasl et al. 2014) to measure our
average offset between RedGOLD and X-ray clus-
ter centers, which we consider as the true cen-
ters. We perform the match between the Red-
GOLD and the Gozaliasl et al. (2014) catalogs by
imposing a maximum separation between centers
of 1 Mpc and a maximum difference in redshift of
∆z = 0.1.

We find that the distribution of the offsets be-
tween the X-ray and the RedGOLD centers in two
dimensions can be modeled as a Rayleigh distribu-
tion with a mode of 13 arcsec (Figure 2, on the
left; see also Johnston et al. 2007; George et al.
2012; Ford et al. 2015). In Figure 2, on the right,
we also show the offset distribution in kpc. This
distribution is consistent with the center offset dis-
tribution predicted from cosmological simulations
for X-ray detected clusters, including AGN feed-
back (Cui et al. 2016).

We assume that this distribution represents the
general offset distribution for our entire RedGOLD
sample P (Roff), and model it following Johnston
et al. (2007):

P (Roff) =
Roff

σ2
off

exp

[
−1

2

(
Roff

σoff

)2
]

(17)

where Roff is the offset between the true and the
estimated center, projected on the lens plane, and

σoff is the mode, or scale length, of the distribu-
tion. The surface density measured at the coordi-
nates (R, θ), with θ the azimuthal angle, relative
to the offset position, Roff , is:

ΣNFW(R, θ|Roff) =

ΣNFW

(√
R2 +R2

off − 2RRoff cos θ

)
(18)

and the azimuthal averaged surface density around
Roff is given by:

ΣNFW(R|Roff) =
1

2π

∫ 2π

0

ΣNFW(R, θ|Roff)dθ

(19)
To model the effect of miscentering, we smooth

the ΣNFW(R|Roff) profile convolving it with
P (Roff):

Σsm(R) =

∫ ∞

0

ΣNFW(R|Roff)P (Roff)dRoff (20)

and obtain the stacked surface density profile
Σsm(R) around the offset positions of our ensemble
of clusters with offset distribution P (Roff) (Yang
et al. 2006; Johnston et al. 2007; George et al.
2012).

Finally we can write the miscentering term as:

∆Σsm(R) = Σsm(< R)− Σsm(R) (21)

with Σsm(< R) being, as before, the average sur-
face density within the radius R.

The miscentering term adds two free parame-
ters to our model, σoff and pcc, which is the per-
centage of correctly centered clusters in the stack,
already introduced in Equation 10.

4.2.3. Non-weak Shear Term

The non-weak shear correction arises from the
fact that what we actually measure is the reduced
shear:

gt =
γt

1− k (22)

where k ≡ ΣNFW/Σc is the convergence. Usually
in the weak lensing regime gt ≈ γt, if γt << 1
and k << 1, but for relatively massive halos this
assumption may no longer hold at the innermost
radial bins in which we want to measure the cluster
profile.
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As described in Johnston et al. (2007), we in-
troduce the non-weak shear correction term, cal-
culated in Mandelbaum et al. (2006). In the non-
weak regime, the tangential ellipticity component,
εt is proportional to gt, instead of γt. We can ex-
pand εt in power series as:

εt =
∞∑

n=0

Ag2n+1
t

= A

(
γt

1− k

)2n+1

= A

(
∆ΣΣ−1

c

1− ΣΣ−1
c

)2n+1

(23)

As shown in detail in appendix A of Mandelbaum
et al. (2006), we can calculate the correction term
from the expansion in power series to second order
of εt, in powers of Σc. We obtain the following
term, that we add in Equation 10:

∆Σnw(R) = ∆ΣNFW(R)ΣNFW(R)

〈
Σ−3

c

〉
〈
Σ−2

c

〉 (24)

4.2.4. Two-halo Term

On large scales, the lensing signal is dominated
by nearby mass concentrations, halos, and fila-
ments. Seljak (2000) developed an analytic halo
model, in which all the matter in the Universe is
hosted in virialized halos, described by a univer-
sal density profile. They computed analytically
the power spectrum of dark matter and galaxies,
and their cross-correlation based on the Press &
Schechter (1974) model. They found that, ignor-
ing the contribution from satellite galaxies, a clus-
ter can be modeled by two contributions, the one-
halo term and the two-halo term. The first rep-
resents the correlation between the central galaxy
and the host dark matter halo and corresponds to
∆ΣNFW(R). The second accounts for the corre-
lation between the cluster central galaxy and the
host dark matter halo of another cluster.

On large scales, the two-halo power spectrum is
proportional to the halo bias and the linear power
spectrum, P2halo ∝ b(M200,z)Plin(k). In order to
calculate the surface density associated to the two-
halo term, we integrate the galaxy-dark matter
linear cross-correlation function ξlin(r), obtained
by the Fourier transform of the linear power spec-
trum.

Following Johnston et al. (2007) and Ford et al.

(2015), we can write the two-halo term as:

∆Σ2halo(R, b) =

b(M200, z)Ωmσ
2
8D(z)2∆Σl(R) (25)

where b(M200, z) is the bias factor, Ωm is the mat-
ter density parameter, σ2

8 is the amplitude of the
power spectrum on scales of 8 h−1Mpc, D(z) is
the growth factor and

∆Σl(R) = Σl(< R)− Σl(R) (26)

where

Σl(R, z) =

(1 + z)3ρc,0

∫ ∞

−∞
ξlin

(
(1 + z)

√
R2 + y2

)
dy (27)

The factor (1 + z) arises from the conversion
from physical units to comoving units.

For the bias factor, we use the analytic for-
mula calculated by Seljak & Warren (2004), and
for Plin(k), we use tabulated values from CAMB
(Lewis, Challinor & Lasenby 2000).

4.3. Model Extensions

To take into account possible profile fitting bi-
ases, we introduce two modifications of the basic
Model 1.

Previous work (Becker et al. 2007; Rozo et al.
2009) have shown that, when fitting the model
profile to the halo profile derived from the observa-
tions in richness bins, the intrinsic scatter between
the dark matter halo mass and the richness biases
mass measurements. Following their modeling, we
assume that the mass M200 has a log-normal dis-
tribution at fixed richness, with the variance in
lnM200, σln M200|λ, and, in our first modification
(hereafter Model 2), we add σln M200|λ as a new
parameter to Model 1.

In addition, as shown by Gavazzi et al. (2007),
the two contributions to the shear signal from the
luminous and dark matter can be distinguished
by fitting a two-component mass model, which
take into account the contribution from the stellar
mass of the halo central galaxy MBCG. In the sec-
ond modification (hereafter Model 3), we add this
contribution to the total halo mass in Model 1. In
order to model the BCG signal, we follow John-
ston et al. (2007) and add a point mass term to
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Equation 10:

MBCG

πR2
(28)

and add log(MBCG) as an additional parameter
to Model 1:

∆Σ(R) =
MBCG

πR2
+

pcc[∆ΣNFW(R) + ∆Σnw(R)]+

(1− pcc)∆Σsm(R) + ∆Σ2halo(R) (29)

5. RESULTS

5.1. Cluster Mass Estimation

5.1.1. Fit the Profile Model to the Shear Profile

We fit the shear profiles obtained as described
in Section 4.1 with the density profile models of
Section 4.2, for Model 1, 2 and 3.

We perform the fit using Markov Chains Monte
Carlo (MCMC; Metropolis et al. 1953). This
method is particularly useful when the fitting
model has a large number of parameters, the pos-
terior distribution of the parameters is unknown,
or the calculation is computationally expensive.
MCMC allow to efficiently sample the model like-
lihood by constructing a Markov chain that has
the target posterior probability distribution as its
stationary distribution. Each step of the chain is
drawn from a model distribution and is accepted,
or not, based on the criteria defined by the sampler
algorithm.

To run our MCMC, we use emcee8 (Foreman-
Mackey et al. 2013), a Python implementation of
the parallel Stretch Move by Goodman & Weare
(2010). In order to choose the starting values of
the chain we first perform a minimization with the
Python version of the Nelder-Mead algorithm, also
known as downhill simplex (Nelder & Mead 1965).
We choose to use uninformative priors (i.e. a uni-
form distribution within a given range) for all pa-
rameters. Our initial priors, for the three different
models, are shown in Table 1. All parameters are
constrained to be positive and inside a range cho-
sen according to their physical meaning. To choose
the range for the intrinsic scatter, we refer to the
values calculated by Licitra et al. (2016a). They

8https://github.com/dfm/emcee

found σln M|λ = 0.39±0.07 using the X-ray catalog
of Gozaliasl et al. (2014) and σln M|λ = 0.30± 0.13
from Mehrtens et al. (2012).

MCMC produce a representative sampling of
the likelihood distribution, from which we obtain
the estimation of the error bars on the fitting pa-
rameters and of the confidence regions for each
couple of parameters. We calculate the model like-
lihood using the bootstrap covariance matrix of
Equation 9:

lnL = −1

2
(∆Σdata −∆Σmodel)

T
C−1

(∆Σdata −∆Σmodel) (30)

We use an ensemble of 100 walkers, a chain length
of 1000 steps and a burn-in of 100 steps leading to
a total of 90000 points in the parameters space. In
order to test the result of our chain, we check the
acceptance fraction and the autocorrelation time
to be sure of efficiently sample the posterior distri-
bution and having enough independent samples.

5.1.2. Fit Parameters

We perform the fit of the models to the observed
profiles on each of the three samples, CFHT-LS
W1, NGVS5 and NGVS4. We then combine the
CFHTLS and NGVS5, and all the three sample
together.

For Model 1, we measure the radius r200 and
the miscentering parameters, pcc and σoff . We
calculate the mass M200 from Equation 12. For
Model 2, instead of measuring the mean radius
r200, we directly calculate logM200. In order to
do so, for each bin, we use the mass-richness re-
lation calculated from Model 1 to infer the mean
mass of the stacked clusters, as a first approxima-
tion. We then randomly scatter the mass using
a gaussian distribution with mean 〈lnM200〉 and
width σln M200|λ, to take into account the intrin-
sic scatter effect, as described in Section 4.3. For
Model 3, we add to Model 1 the point mass term
with the new parameter MBCG (see Equation 29).

The profiles obtained using Model 1 and the
complete sample (CFHT-LS W1 + NGVS5 +
NGVS4) are shown in green in Figure 3. The er-
ror bars on the shear profiles are the square root
of the diagonal elements of the covariance matrix.

The profiles measured using the CFHT-LS W1
+ NGVS5 sample (shown in Figure 4), and the
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complete sample, are consistent within 1σ and the
error bars are smaller in the last case. We can con-
clude that the richness shifts applied to NGVS4
seem not to bias our results, when this sample is
added to the other two, covered by five bands. In-
creasing the sample size, we notice a progressive
improvement in the profiles which are recovered
with a lower noise level.

Since the miscentering correction is the one that
most affects the mass estimation, in Figure 3 we
also show the profiles that we would obtain with
and without the miscentering term to show how
an incorrect modeling of this effect leads to biased
mass values (i.e. mass underestimation between
10−40%, Ford et al. 2015). The red lines represent
the profiles we would obtain in the case in which
all the clusters in the stack were perfectly centered
(pcc = 1) and the blue lines show the opposite case
(pcc = 0).

We show the results of our fits in Table 2, 3, 4,
for Model 1, 2, 3, respectively. The values of the
miscentring parameters, in each richness bin, are
consistent within 1σ, for the three models. Since
the center of the most massive clusters should be
easier to identify, we would expect σoff to decrease
and pcc to increase, for increasing masses. How-
ever, we do not observe this trend. In fact, the
number of stacked clusters decreases for higher
richness values, leading to more noisy smoothed
profiles.

This is confirmed from the lensing signal-to-
noise ratio maps shown in Figure 5. These maps
were calculated using aperture mass statistics
(Schneider 1996; Schirmer et al. 2006; Du & Fan
2014). For each richness bin, we create a grid with
a side of 1 Mpc and binning of 0.001 deg, centered
on the stacked clusters. In each cell, we evaluate
the amount of tangential shear, filtered by a func-
tion that maximizes the signal-to-noise ratio of an
NFW profile, inside a circular aperture, following
Schirmer et al. (2006).

For stacked clusters, a S/N ∼ 10 is considered
sufficient to recover the fitting parameters (Oguri
& Takada 2011). All bins, except the last two,
have S/N > 10, explaining the more regular be-
havior and the smaller error bars of the respective
shear profiles.

In Figure 6, we show an example of error
bars and the confidence regions of the parame-

ters, obtained using the python package corner
by Foreman-Mackey et al. (2016). This exam-
ple corresponds to the third richness bin, fitted
with Model 1. On the diagonal, we show the one-
dimensional histograms of the parameter values,
representing the marginalized posterior probabil-
ity distributions. Under the diagonal, we show the
two-dimensional histograms for each couple of pa-
rameters and the confidence levels corresponding
to 0.5σ, 1σ, 1.5σ and 2σ.

5.2. Mass-Richness Relation

Using the mass measured for each richness bin,
we perform a fit to a power law to infer the
mass richness relation for all three models, using
the python orthogonal distance regression routine
(ODR; Boggs & Rogers 1990) to take into account
the errors in both log λ and logM200:

logM200 = logM0 + α log λ/λ0 (31)

with a pivot richness λ0 = 40.
We use different richness bins to test the sta-

bility of our results. At first we use all richness
bins. Then, we consider only the bins with the
best statistics. As we discussed, from the shear
profiles and the signal-to-noise ratio maps we no-
tice that the two highest richness bins are more
noisy when compared to the others, because they
include less detections. We also know, from Lic-
itra et al. (2016a), that at a given significance
threshold, a lower richness implies a more con-
taminated sample. For this reason, we repeat the
fit discarding the lowest and the two highest rich-
ness bins, restraining our sample to an optimized
richness range 20 < λ ≤ 50. With λ > 20 and
z < 0.5, we expect our sample to be ∼ 90% pure
and ∼ 100% complete, significantly reducing con-
tamination from false detections (see Figure 7 and
8 from Licitra et al. 2016a). This sample (hereafter
best richness bin sample) includes 346 clusters.

In Figure 7, on the left, we plot the results ob-
tained fitting all the bins and, on the right, fitting
only the best richness bin sample. The three mod-
els are shown in black (Model 1), blue (Model 2)
and red (Model 3). For each richness bin, the
masses estimated are compatible within 1σ, for the
three models. We notice that the uncertainties in
the fit of Model 2 are much larger. This is due to
the fact that we add more uncertainty through the
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intrinsic scatter parameter. Our results are shown
in Table 5. The slope and the normalization val-
ues are all consistent within 1σ when discarding
the first and the higher richness bins.

The advantage of using the ODR is clear when
we use all data points (plot on the left), since ap-
plying an ordinary least square method would have
resulted in a steep fit dominated by the highest
richness bins, which present the lowest errors. We
also note that, in this case, the fit is mainly driven
by the last three points that have much smaller
error bars both in logM200 and log λ, and have
more weight in the fit. In contrast with the other
two models, when using Model 2, for which the
error bars in logM200 are an order of magnitude
larger than in the other two models, the difference
between the parameters obtained fitting all bins
and only three bins is minimal. However, when
considering all bins, the slopes obtained when fit-
ting Model 1 and 3 are steeper and have four times
larger errors.

To take into account the intrinsic scatter be-
tween richness and mass also in Model 1 and 3
and compare results with those obtained when us-
ing Model 2, we apply an a posteriori correction
as in Ford et al. (2015). Using the mass-richness
relation inferred from Model 1 and 3, we calculate
the mass of all the clusters in the sample then we
scatter those masses assuming a log-normal dis-
tribution centered on logM200 and with a width
σln M|λ = 0.39, based on the scatter measured
by Licitra et al. (2016a). We repeat this proce-
dure creating 1000 bootstrap realizations, choos-
ing masses randomly with replacements from the
entire sample. We calculate the new mean mass
values in each richness bin and average them over
all bootstrap realizations. We then repeate the fit
to infer the new mass-richness relation. This pro-
cedure is illustrated in Figure 8, where we show
the results from the fit to Model 3 (in black), the
scattered masses (in light red), and the new mean
masses and mass-richness relation (in red). Due
to the shape of the halo mass function, the net ef-
fect of the intrinsic scatter correction is to lead to
a slightly higher normalization value of the mass-
richness relation. The difference in normalization
for Model 1 and 3, and their scattered versions is
less than 1%.

In Figure 9 we show the BCG masses inferred
from the fit to Model 3 compared to the stellar

mass of the central galaxies of each cluster, and
their mean values in each richness bin. We ob-
tain the BCG stellar masses using our photometric
and photometric redshift catalogs from Raichoor
et al. (2014), and Bruzual & Charlot (2003) stellar
population models with LePhare, in fixed redshift
mode at the galaxy photometric redshift. We find
that the BCG stellar masses obtained with our
fit are in good agreement with those from LeP-
hare, while they are about one order of magnitude
smaller than the BCG masses that we would ex-
pect, using the halo mass - BCG mass relation
of Johnston et al. (2007). This discrepancy could
be due to the fact that in Johnston et al. (2007)
the halo concentration is a free parameter, and
they obtained on average higher concentration val-
ues than ours, calculated from Dutton & Macció
(2014) mass-concentration relation. In fact, be-
cause of the degeneracy between the two mass pa-
rameters, a higher concentration would lead to a
lower halo mass value and therefore to a higher
BCG mass to compensate for the excess of signal.

Hereafter, we quote as our final mass-richness
relation the one calculated from Model 3, with
the best richness bin sample, and after the intrin-
sic scatter correction: logM0 = 14.48 ± 0.04 and
α = 1.14 ± 0.23. In fact, the a posteriori intrin-
sic scatter correction is more reliable than the re-
sults from Model 2, in which σln M|λ is not well
constrained by the data. Model 3, with the inclu-
sion of the BCG mass, is also more complete than
Model 1.

5.3. Comparison with X-ray Mass Proxies

To compare our mass estimates with X-ray
mass proxies, we follow the same matching pro-
cedure as in Licitra et al. (2016a). We use the
Gozaliasl et al. (2014) and Mehrtens et al. (2012)
X-ray catalogs, and perform the match between
their and our detections imposing a maximum sep-
aration of 1 Mpc and a maximum difference in
redshift of 0.1. We include detections from both
the published and the complete catalogs to broaden
our sample, and have more statistics to perform
the scaling relation fits. Results obtained with the
complete catalogs might be affected by contami-
nation biases, since for those, we estimated the
purity to decrease to ∼ 60% (Figure 8-9 of Licitra
et al. 2016a).

Within all three fields, we recover 36(27) ob-

14



jects from the match of the complete(published)
catalog with Gozaliasl et al. (2014) (in this case
all objects are from the CFHT-LS W1 field),
and 21(17) from objects from the match of the
complete(published) catalog with Mehrtens et al.
(2012). As shown in Licitra et al. (2016a), Red-
GOLD recovers 38 clusters, up to z ∼ 1, in the
3 deg2 of the CFHT-LS W1 field, covered by Goza-
liasl et al. (2014) catalog. The clusters detected by
RedGOLD that don’t have an X-ray counterpart
seem to be, from visual inspection, small galaxy
groups. It is possible that these systems have an
X-ray emission below the X-ray detection limit, or
that they are not relaxed systems and don’t have
any X-ray emission at all.

As explained in Section 3.2, Gozaliasl et al.
(2014) M200 masses were estimated using the
MX − L relation of Leauthaud et al. (2010). We
estimate Mehrtens et al. (2012) M200 masses from
the r200 values given in their catalog, using Equa-
tion 12. Our masses M lens

200 are calculated using
our final mass-richness relation.

In Figure 10, we compare the normalized
difference between X-ray and lensing masses(
MX

200 −M lens
200

)
/MX

200 as a function of MX
200, ob-

tained using Model 3, with those obtained with
the other two models. MX

200 is from Gozaliasl et
al. (2014) and from Mehrtens et al. (2012) in the
top and bottom panels, respectively.

For all models, the mean differences obtained
using MX

200 from Gozaliasl et al. (2014) (∼ 0.5−
0.7 dex) are lower than those obtained using
Mehrtens et al. (2012) (∼ 1 − 1.7 dex). As ex-
plained in Section 3.2, Gozaliasl et al. (2014)
masses were calculated from the X-ray luminosity,
after the excision of the AGN contribution and
the correction for cool core flux removal. We find
that this leads to mass estimates that are more in
agreement with masses derived with weak lensing
than those calculated without core excision.

Using Gozaliasl et al. (2014) catalog and the
lensing masses estimated from the mass-richness
relation derived from our best model, Model 3,
applied on the complete catalogs, we find a mean
residual of 0.66 dex, considering the complete
mass range. If we consider two different mass
ranges, we find a mean residual of 0.77 dex for
MX

200 < 1014M�, and a mean residual of 0.41 dex
for MX

200 ≥ 1014M�.

Hereafter, we will use only the Gozaliasl et
al. (2014) sample, given the higher number of
matches, and because core-excised X-ray temper-
atures better correlate with cluster masses (Pratt
et al. 2009). For our sample, this is also shown
in Table 5, where the mean ratios between X-ray
and lensing masses are biased 20− 40% higher for
Mehrtens et al. (2012), for the best bins, while are
∼ 1 when using Gozaliasl et al. (2014). This means
that non core-excised temperatures lead to masses
that are on average higher than those derived with
weak lensing measurements.

To obtain scaling relations, we exclude the two
clusters with mass MX

200 < 2 × 1013M� from
the matched sample with Gozaliasl et al. (2014),
because both our and the X-ray catalog are in-
complete at these low masses. We also do not
consider the two highest mass matches (MX

200 >
2 × 1014M�), because our catalog is incomplete
in this mass range, given our low area coverage.
All four excluded clusters were matches with the
Licitra’s published catalog.

In Figure 11, we plot the MX
200 −M lens

200 rela-
tion, and in Figure 12, the LX −M lens

200 and the
TX − M lens

200 relations. In those plots, the black
dots represent matches with the RedGOLD clus-
ter detections in Licitra’s published catalogs, while
the black squares represent all those with the com-
plete catalogs (see Section 3.1).

In Figure 11, we show the relation between X-
ray and lensing masses:

log
(
M lens

200

)
= a+ b log

(
MX

200

)
(32a)

The black dotted line is the diagonal, the solid
lines are the fit to the published catalogs, and the
dashed lines are the fit to the complete catalogs.
The red lines were obtained with the slope as a
free parameter of the fit, and the green lines with
the slope fixed at unity. For the published cata-
logs, our threshold in richness and σdet is meant to
select clusters with M200 > 1014M� with a com-
pleteness ∼ 80%. Part of these detections have
X–ray masses lower than our selection threshold
of M200 > 1014M�, in fact their X-ray masses are
in the range 2 × 1013M� < MX

200 < 1014M�. We
expect to have a contamination of clusters with
these lower masses, and our purity of ∼ 80% is
calculated for real clusters with MX

200 > 1013M�.
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However our completeness decreases (<80%) in
this mass range (MX

200 < 1014M�), as shown in
Licitra et al. (2016a).

When fixing the slope at the unity, we ob-
tain a = 0.18 ± 0.03(a = 0.22 ± 0.04), and a
scatter of σM = 0.22(σM = 0.18), for the com-
plete(published) catalogs. In this case, the dif-
ference in a for the two samples is negligible,
∼ 0.04 ± 0.05 dex. The small shift in normal-
ization (∼ 0.2 dex) compared to the diagonal is
expected, since lensing mass estimates are gener-
ally higher than X-ray masses (Rasia et al. 2012;
Zhang et al. 2008; Simet et al. 2015). When
leaving the slope as a free parameter, we find
a = −1.6± 3.3 and b = 1.1± 0.2, with a scatter of
σM = 0.22(a = 5.7± 3.5 and b = 0.61± 0.25, with
a scatter of σM = 0.16) for the complete(published)
catalogs. The incompleteness when using the pub-
lished catalogs appears to bias our fit slope, which
becomes much shallower than the diagonal.

In Figure 12, we show the mass-luminosity and
mass-temperature relations. We apply a logarith-
mic linear fit, in the form:

log

(
M200E(z)

M0

)
= a+ b log

(
LX

L0E(z)

)
(33a)

log

(
M200E(z)

M0

)
= a+ b log

(
TX

T0

)
(33b)

where E(z) = H(z)/H0, M0 = 8 × 1013 h−1M�
for the M200 − LX, M0 = 6 × 1013 h−1M� for
the M200 − TX, L0 = 5.6 × 1042 h−2erg/s, and
T0 = 1.5 keV .

For the mass-luminosity relation, we find
a = 0.11 ± 0.04 and b = 0.66 ± 0.13, with a
scatter σlogM200|LX

= 0.22(a = 0.17 ± 0.04 and
b = 0.45± 0.14, with a scatter σlogM200|LX

= 0.16)
for the complete(published) catalogs. For the mass-
temperature relation, we find a = 0.23± 0.04 and
b = 1.57 ± 0.31, with a scatter σlogM200|TX

=
0.22(a = 0.29 ± 0.04 and b = 1.09 ± 0.32,
with a scatter σlogM200|TX

= 0.16), for the com-
plete(published catalogs). The relations obtained
with the published catalogs show again shallower
slopes.

We summarize our results in Table 6.

6. DISCUSSION

6.1. Comparison to Previously Derived
Mass-Richness Relations

In this Section, we discuss our results in the
context of similar current studies.

As stated before and shown in Licitra et al.
(2016a,b), our richness estimator λ is defined in
a similar way as the richness from redMaPPer
(Rykoff et al. 2014). The redMaPPer richness
is defined as λRM =

∑
pmemθLθR, where pmem

is the probability that each galaxy in the vicin-
ity of the cluster is a red-sequence member and
θL, θR are weights that depend on luminosity and
radius. In this calculation, only galaxies brighter
than 0.2L∗ and within a scale radius Rλ are con-
sidered. The radius is richness dependent and it
scales as Rλ = 1.0(λ/100)0.2h−1Mpc.

The RedGOLD richness is a simplified version
of λRM. We constrained the radial distribution of
the red-sequence galaxies with an NFW profile and
applied the same luminosity cut and radius scaling
as in Rykoff et al. (2014) but did not apply a lu-
minosity filter. Unlike the redMaPPer definition,
our richness is not a sum of probabilities. Those
choices were made to minimize the scatter in the
mass-richness relation. For redshifts z < 0.3, the
difference λRM−λ

λ is only of 5 − 15%, while it in-
creases to 40 − 60% at 0.4 < z < 0.5, where the
redMaPPer richness is systematically higher (Lic-
itra et al. 2016a). This difference might be due to
the different depths of the CFHTLenS and SDSS
surveys. This means that we can compare our re-
sults with others obtained using the redMaPPer
cluster sample.

Simet et al. (2016) performed a stacking anal-
ysis of the redMaPPer cluster sample, using shear
measurements from the SDSS. Their sample is
much larger than ours, consisting of 5,570 clusters,
with a redshift range 0.1 < z < 0.3, lower than
the one used for this work, and a richness range
20 ≤ λRM ≤ 140. With these data, they were able
to characterize the different systematic errors aris-
ing in their analysis with great accuracy. For the
mass-richness relation, they obtained the normal-
ization log (M0 [h−1M�]) = 14.34±0.04 (the error
includes both statistical and systematic error) and
the slope α = 1.33+0.9

−0.1.
To compare our results to theirs, we use our
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masses in units of h−1M� and we repeat our fits.
Using Model 3, we obtain logM0 = 14.32 ± 0.03
and α = 1.14 ± 0.22 (the errors are only statis-
tical). Our normalization and slope are consis-
tent with Simet et al.’s within 1σ. Comparing the
masses at the pivot richness, λ0 = 40, we obtain
2.13 × 1014h−1M� ± 0.03 compared to Simet et
al.’s 2.21× 1014h−1M� ± 0.15.

In another recent work, Farahi et al. (2016) in-
ferred the mass-richness relation using the same
sample of SDSS redMaPPer clusters (0.1 < z <
0.3 and λRM > 20), performing a stacking analy-
sis and estimating the velocity dispersion of the
dark matter halos from satellite-central galaxy
pairs measurements. For the mass-richness rela-
tion, they found a normalization of 14.19 ± 0.1
and a slope of 1.31± 0.19 (the error includes both
statistical and systematic error), using a pivot
λ0 = 30. Repeating the fit using their pivot
richness, we obtain logM0 = 14.19 ± 0.03 and
α = 1.14 ± 0.22, consistent within less than 1σ
with their results. At the pivot richness λ0 = 30
our mass is 1.53× 1014M�± 0.03, consistent with
their value of 1.56× 1014M� ± 0.35.

Melchior et al. (2016) calibrated the mass-
richness relation and its evolution with redshift
up to z < 0.8, using 8000 RedMaPPer clusters
in the Dark Energy Survey Science Verification
(DES; Dark Energy Survey Collaboration 2016)
with 5 ≤ λRM ≤ 180. They found a normal-
ization M0 = 2.35 ± 0.34 × 1014M� and a slope
1.12 ± 0.26, using the pivot richness λ0 = 30 and
a mean redshift z = 0.5. Their errors include
both statistical and systematic errors. Once again
these results are consistent with ours within less
than 1σ, even if this sample has a larger average
redshift, where we expect our richness definitions
to be less similar. We can not compare our results
with the scaling relations obtained in Johnston
et al. (2007), Covone et al. (2014), Ford et al.
(2015) and van Uitert et al. (2015) because their
definition of richness is different.

We conclude that our fit of the mass-richness
relation is in agreement with all the other works
cited above. These results confirm the efficiency
of the RedGOLD richness estimator, and quantify
the relation between the RedGOLD richness mea-
surements and the total cluster masses obtained
with weak lensing. Even without using a proba-
bility distribution, our richness is as efficient as the

more sophisticated redMaPPer richness definition.

6.2. Weak Lensing vs X-ray Masses

In Figure 12, we compare our lensing mass ver-
sus X-ray mass proxies relations, with other works
in literature.

In the LX−M lens
200 plot, we compare our results

with those from Kettula et al. (2015) and Leau-
thaud et al. (2010). We remind the reader that
the fit to the published catalogs (solid red line)
shows a shallower slope because of our selection
in mass, which, while optimizes purity, leads to a
bias in slope due to the lack of clusters detected
at masses M200 < 1014M� (see discussion in Sec-
tion 5.3).

Because of the large uncertainties, the fit to
both the complete and published catalogs (dashed
red line) are consistent within < 1σ and < 2σ, re-
spectively, in normalization and slope with results
from Kettula et al. (2015), even if our normaliza-
tions are higher.

With respect to the E(z)M200 derived from
Leauthaud et al. (2010) (and, as a consequence,
from Gozaliasl et al. (2014), since they use Leau-
thaud et al. (2010) to derive their mass relations),
we are consistent within < 2σ in normalization
and within < 1σ in slope for the complete cata-
logs. For the published catalogs, we are inconsis-
tent in normalization (the normalization difference
is ∼ 3.4σ) and are consistent in slope within < 1σ.

Both Kettula et al. (2015) and Leauthaud et
al. (2010) didn’t apply the miscentering correc-
tion but, while the first performed their lensing
analysis on single clusters, the latter stacked their
low mass clusters in very poorly populated bins.
This procedure could have introduced a bias that
lead to more smoothed profiles and thus to lower
mass estimates and to a lower normalization of the
scaling relation.

In the TX−M lens
200 plot, we compare our results

with Kettula et al. (2015) and Mantz et al. (2016).
Since their masses are derived at the overdensity
∆ = 500, we convert their M500 values to M200,
using M200 = 1.35M500 from Rines et al. (2016),
derived considering that the mass-concentration
relation weakly depends on mass (Bullock et al.
2001) and assuming an NFW profile with a fixed
concentration c = 5. We find that the normaliza-
tion and slope of our fit to the complete(published)
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catalogs are consistent with the Kettula et al.
(2015) results within < 1σ(. 1.5σ), and with
Mantz et al. (2016) results within < 1σ(< 1σ) in
normalization and slope.

In Table 7, we show the differences in normal-
ization, ∆a, and in slope, ∆b, between our re-
sults and those used for comparison for the mass-
luminosity, and the mass-temperature relations.

Given that our results based on the RedGOLD
complete catalogs are consistent with other results
in the literature, we conclude that the thresholds
that we apply in the RedGOLD published cata-
log introduces systematics in the fit of the cluster
lower mass end.

Simulations predict that mass measurements
from lensing are systematically lower by ∼ 5−10%
and those from X–ray proxies by ∼ 25−35% than
the cluster true total mass, with

〈
Msim

X /Msim
L

〉
∼

0.7−0.8 (Meneghetti et al. 2010; Rasia et al. 2012).
When we compare our weak lensing mass mea-
surements to X-ray Gozaliasl et al. (2014) cluster
masses (Figure 10 and Table 5) in our three best
bins for Model 1 and 3, we obtain 〈MX/ML〉 ∼ 1,
when we do not consider the intrinsic scatter cor-
rection, and 〈MX/ML〉 ∼ 0.9 when we do. The
intrinsic scatter correction leads to a small (within
1σ) positive shift in the normalization of the mass-
richness relation and to a better agreement with
simulations.

For Model 2, we obtain 〈MX/ML〉 ∼ 1, at odds
with simulation predictions. This might be due
to the greater uncertainties introduced by the in-
trinsic scatter as a free parameter in the fit of the
shear profiles.

As we mentioned before in Section 5.3, and
from Table 5 and Figure 10, the mean residuals
and ratio values obtained using Mehrtens et al.
(2012) catalog are much higher, with 〈MX/ML〉 ∼
1.2− 1.3, which means that non core-excised tem-
perature lead to overestimated X-ray masses, as
expected (Pratt et al. 2009).

Previously published XMM-Newton X-ray to
lensing mass ratios show values of 〈MX/ML〉 ∼
0.91− 0.99 (Zhang et al. 2008) and ∼ 0.72− 0.96
(Simet et al. (2015), using observations from Pif-
faretti et al. 2011; Hajian et al. 2013), consis-
tent with our results. Also our uncertainty on
〈MX/ML〉 (σ〈MX/ML〉 ∼ 40 − 50%) is similar to
those cited in these works (σ〈MX/ML〉 ∼ 30−50%).

There is a known tension between the con-
strains on the cosmological parameters derived
using the number density of S-Z galaxy clusters
detected by Planck, and those derived from the
CMB temperature power spectrum. Planck clus-
ter masses are derived with hydrostatic mass mea-
surements applied to XMM-Newton X-ray obser-
vations. One possible explanation of this discrep-
ancy could then be that these masses are biased
low with respect to true masses. Our results are
consistent with this explanation.

It is also known that XMM-Newton and Chan-
dra have different instrument calibrations that
lead to different temperature estimations, with
Chandra X-ray temperatures being higher, and
leading to higher cluster mass estimation (Is-
rael et al. 2014; von der Linden et al. 2014;
Schellenberger et al. 2015). Applying the correc-
tion from Schellenberger et al. (2015), to convert
XMM-Newton masses to Chandra masses, we find
〈MX/ML〉Chandra ∼ 1, using the lensing masses
from our best model.

7. SUMMARY AND CONCLUSIONS

We measure weak lensing galaxy cluster masses
for optically detected cluster candidates stacked
by richness. We fit the weak lensing mass versus
richness relation and compare our findings to X-
ray detected mass proxies in the area.

Our cluster sample was obtained with the Red-
GOLD (Licitra et al. 2016a) optical cluster finder
algorithm. The algorithm is based on a revised
red-sequence technique and searches for passive
ETG overdensities. RedGOLD is optimized to
detect massive clusters ( M200 > 1014M�) with
both high completeness and purity. We use the
RedGOLD cluster catalogs from Licitra et al.
(2016a,b) for the CFHT-LS W1 and NGVS sur-
veys. The catalogs give the detection significance
and an optical richness estimate that corresponds
to a proxy for the cluster mass.

For our weak lensing analysis, we use a sample
of 1325 published clusters, selected with a thresh-
old in significance of σdet ≥ 4 and in richness
λ ≥ 10 at redshift 0.2 ≤ z ≤ 0.5, for which
our published catalogs are ∼ 100% complete and
∼ 80% pure Licitra et al. (2016a). In order to
obtain the mass-richness relation, we concentrate
on our best richness bins 20 < λ < 50, which in-
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clude a subsample of 346 clusters, which is ∼ 100%
complete and ∼ 90% pure (Licitra et al. 2016a).
At λ > 50 we detect very few clusters, and find
large lensing mass scatters. To compare to X-ray
mass proxies we considered both the published and
complete Licitra et al.’s catalogs, as defined in our
data Sections. Our photometric and photometric
redshift catalogs were obtained with a modified
version of the THELI pipeline (Erben et al. 2005,
2009, 2013; Raichoor et al. 2014), and weak lensing
shear measurements with the shear measurement
pipeline described in Erben et al. (2013), Heymans
et al. (2012), and Miller et al. (2013).

We calculate our cluster mean shear radial pro-
files by averaging the tangential shear in loga-
rithmic radial bins in stacked cluster detections
binned by their richness. We apply lens-source
pairs weights that depend on the lensing efficiency
and on the quality of background galaxy shape
measurements.

We obtain the average cluster masses in each
richness bin by fitting the measured shear pro-
files using three models: (1) a basic halo model
(Model 1), with an NFW surface density contrast
and correction terms that take into account cluster
miscentering, non-weak shear and the second halo
term; (2) a model that includes the intrinsic scat-
ter in the mass-richness relation (Model 2); (3) a
model that includes the contribution of the BCG
stellar mass (Model 3). In Model 1 and 3, we ap-
ply an a posteriori correction to take into account
the intrinsic scatter in the mass–richness relation.

We find that our best model is Model 3 which,
with the inclusion of the a posteriori correction
for the intrinsic scatter in the mass–richness rela-
tion, is more complete in taking into account the
systematics, and more reliable in the obtained re-
sults. The BCG masses obtained with this model
are consistent with the BCG stellar masses ob-
tained from their spectral energy distribution fit.

Our main results are:

• Comparing weak lensing masses to Red-
GOLD optical richness, we calibrate our
optical richness with the lensing masses, fit-
ting the power law logM200 = logM0 +
α log λ/λ0. For our best model, we obtain
logM0 = 14.48 ± 0.04 and α = 1.14 ± 0.23,
with a pivot richness λ0 = 40. Even if our
sample is one order of magnitude smaller

than the SDSS and DES redMaPPer cluster
samples used in Simet et al. (2016), Farahi
et al. (2016) and Melchior et al. (2016), our
results are consistent with theirs within 1σ.
This confirms that our cluster selection is
not biased towards a different cluster selec-
tion when compared to the SDSS and DES
redMaPPer cluster samples, as we expect.

• Using our mass–richness relation, we in-
fer scaling relations between lensing masses
and X-ray proxies. For the M lens

200 − MX
200

relation, fixing the slope at 1, we obtain
logM lens

200 = (0.18± 0.03) logMX
200.

For the lensing mass vs X-ray luminosity re-
lation log

(
M200E(z)

M0

)
= a + b log

(
LX

L0E(z)

)
,

we find a = (0.11 ± 0.04) and b = (0.66 ±
0.13), with M0 = 8× 1013h−1M� and L0 =
5.6× 1042h−2erg/s.

For the lensing mass vs X-ray temperature
relation log

(
M200E(z)

M0

)
= a+ b log

(
TX

T0

)
, we

obtain a = (0.23 ± 0.04) and b = (1.57 ±
0.31), with M0 = 6× 1013h−1M� and T0 =
1.5KeV .

Our results are consistent with those of Ket-
tula et al. (2015) and Mantz et al. (2016),
within < 1σ. Our normalization is consis-
tent within < 2σ, and our slope within 1σ,
with the results of Leauthaud et al. (2010)
(and therefore with Gozaliasl et al. (2014)).

• We find a scatter of 0.22, for all three rela-
tions, consistent with redMaPPer scatters,
confirming the Licitra et al. (2016a,b) re-
sults that the RedGOLD optical richness is
an efficient mass proxy. This is very promis-
ing since our mass range is lower than that
probed by redMaPPer, and the scatter does
not increase as expected to these lower mass
ranges.

In order to increase the accuracy on the weak
lensing mass estimates, it will be important to in-
crease the number density of background sources
to achieve a higher signal-to-noise ratio in the
shear profile measurements in the future. This
will be possible with ground- and space-based
large-scale surveys such as the Large Synoptic Sur-
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vey Telescope(LSST9), Euclid10 and WFIRST11.
Also, the next generation radio surveys such as
SKA12 will allow us to extend weak lensing mea-
surements to the radio band, giving access to even
larger scales. Cluster samples will then be an or-
der of magnitude bigger than the one used for this
work, allowing us to constrain with even higher
accuracy cluster masses and their scaling relations
(e.g. Sartoris et al. (2016), Ascaso et al. (2016)).

This work is based on observations obtained
with MegaPrime/MegaCam, a joint project of
CFHT and CEA/IRFU, at the Canada-France-
Hawaii Telescope (CFHT) which is operated by
the National Research Council (NRC) of Canada,
the Institut National des Sciences de l’Univers of
the Centre National de la Recherche Scientifique
(CNRS) of France, and the University of Hawaii.
This research used the facilities of the Canadian
Astronomy Data Centre operated by the National
Research Council of Canada with the support of
the Canadian Space Agency. CFHTLenS data
processing was made possible thanks to significant
computing support from the NSERC Research
Tools and Instruments grant program. R.L., S.M.
and A.Ra. acknowledge the support of the French
Agence Nationale de la Recherche (ANR) under
the reference ANR10- BLANC-0506-01-Projet VI-
RAGE (PI: S.Mei). S.M. acknowledges financial
support from the Institut Universitaire de France
(IUF), of which she is senior member. H.H. is
supported by the DFG Emmy Noether grant Hi
1495/2-1. We thank the Observatory of Paris and
the University of Paris D. Diderot for hosting T.E.
under their visitor programs.
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Fig. 1.— The richness and redshift distributions of the RedGOLD CFHT-LS W1, NGVS5 and NGVS4 1325
clusters from published catalogs and selected for our weak lensing analysis (see text for the description of the
catalogs). The richness is plotted in bins of ∆λ = 20, and the redshift in bins of ∆z = 0.1. In each bin, the
bars corresponding to the three different samples are plotted next to each other.
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Fig. 3.— Shear profiles measured with our weak lensing analysis selected sample (CFHT-LS W1 + NGVS5+
NGVS4). The fits were obtained using Model 1. We show our shear profile measurement (black), the fit
results (green), the ideal profiles that we would obtain in the case in which all the clusters in the stack
were perfectly centered (red) and when they would have been all miscentered (blue). The dotted lines show
∆Σ(R) = 0. We get similar results using Model 2 and Model 3.
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W1 + NGVS5 + NGVS4 catalog. We applied aperture mass statistics.
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Fig. 10.— Comparison of X-ray masses and lensing masses calculated from the fitted mass-richness relations
obtained using all bins, our best bins, and our best bins with the a posteriori correction for the intrinsic
scatter in the mass-richness relation, for all three models. For the top plot we used Gozaliasl et al. (2014)
catalog and for the bottom plot Mehrtens et al. (2012) catalog. From our best model, using Gozaliasl et
al. (2014) catalog, we obtain a mean normalized difference of 0.66 and a mean ratio of 0.89, while using
Mehrtens et al. (2012) catalog, we find 1.65 and 1.18, respectively.
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Model 1 Model 2 Model 3

r200[Mpc] (0, 2) — (0, 2)

σoff [arcmin] (0, 2) (0, 2) (0, 2)

pcc (0, 1) (0, 1) (0, 1)

σln M|λ — (0.1, 0.7) —

log (M200/M�) — (11, 17) —

log (MBCG/M�) — — (9, 13)

Table 1: MCMC uninformative prior values for the different parameters of the three models. The lack of a
numerical value indicates that the parameter is not included in the respective model.

λ range N λ z r200 M200 σoff pcc
Mpc 1013M� arcmin

10 < λ ≤ 20 961 14± 3 0.40 0.81+0.02
−0.02 9+1

−1 1.1+0.2
−0.3 0.5+0.1

−0.1

20 < λ ≤ 30 227 24± 3 0.39 0.98+0.03
−0.03 16+2

−2 1.2+0.6
−0.5 0.7+0.1

−0.1

30 < λ ≤ 40 87 34± 3 0.39 1.09+0.04
−0.03 22+2

−2 0.8+0.2
−0.4 0.6+0.2

−0.2

40 < λ ≤ 50 32 44± 3 0.39 1.24+0.03
−0.03 33+2

−3 0.4+0.1
−0.1 0.2+0.1

−0.2

50 < λ ≤ 60 9 53± 2 0.40 1.50+0.01
−0.01 58+2

−1 0.8+0.1
−0.1 0.1+0.1

−0.1

60 < λ ≤ 70 9 64± 3 0.35 1.23+0.01
−0.01 31+1

−1 0.0+0.0
−0.2 0.6+0.4

−0.4

Table 2: Parameters derived from the fit of the Model 1 shear profile to our measurements. λ is the cluster
optical richness derived with RedGOLD and the first column gives the richness range; N is the number of
stacked clusters in each bin; z is the mean redshift; r200 is the mean radius in Mpc; M200 is the mean mass in
units of 1013M�; σoff is the scale length of the offset distribution in arcmin; pcc is the percentage of correctly
centered clusters in the stack.

λ range N λ z r200 M200 σoff pcc σln M|λ
Mpc 1013M� arcmin

10 < λ ≤ 20 961 14± 3 0.40 0.79+0.10
−0.08 8+3

−3 1.1+0.2
−0.3 0.5+0.1

−0.1 0.4+0.2
−0.2

20 < λ ≤ 30 227 24± 3 0.39 0.98+0.12
−0.09 16+6

−4 1.1+0.5
−0.6 0.6+0.1

−0.1 0.4+0.2
−0.2

30 < λ ≤ 40 87 34± 3 0.39 1.04+0.11
−0.17 19+6

−10 0.8+0.2
−0.3 0.6+0.2

−0.2 0.4+0.2
−0.2

40 < λ ≤ 50 32 44± 3 0.39 1.25+0.10
−0.08 34+8

−7 0.4+0.1
−0.1 0.2+0.1

−0.2 0.4+0.2
−0.2

50 < λ ≤ 60 9 53± 2 0.40 1.48+0.13
−0.08 56+14

−9 0.8+0.6
−0.1 0.2+0.1

−0.3 0.4+0.2
−0.2

60 < λ ≤ 70 9 64± 3 0.35 1.17+0.11
−0.18 26+8

−12 0.0+0.0
−0.1 0.5+0.4

−0.4 0.4+0.2
−0.2

Table 3: The same as in Table 2, for the parameters derived from the fit of Model 2, i.e. with the addition
of the intrinsic scatter of the mass-richness relation σln M|λ.
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λ range N λ z r200 M200 σoff pcc MBCG

Mpc 1013M� arcmin 1011M�

10 < λ ≤ 20 961 14± 3 0.40 0.81+0.03
−0.03 9+1

−1 1.1+0.3
−0.3 0.5+0.1

−0.1 1.1+3.4
−3.2

20 < λ ≤ 30 227 24± 3 0.39 0.97+0.04
−0.03 16+2

−1 1.0+0.5
−0.7 0.6+0.1

−0.1 1.2+3.9
−3.7

30 < λ ≤ 40 87 34± 3 0.39 1.08+0.04
−0.04 22+3

−2 0.8+0.2
−0.4 0.6+0.2

−0.2 1.4+4.5
−4.1

40 < λ ≤ 50 32 44± 3 0.39 1.23+0.03
−0.04 32+3

−3 0.4+0.1
−0.2 0.2+0.1

−0.2 0.7+2.1
−2.3

50 < λ ≤ 60 9 53± 2 0.40 1.51+0.02
−0.02 59+3

−2 0.8+0.1
−0.1 0.1+0.1

−0.1 1.4+4.3
−4.2

60 < λ ≤ 70 9 64± 3 0.35 1.23+0.02
−0.01 31+1

−1 0.0+0.0
−0.2 0.6+0.4

−0.4 3.6+14.5
−10.0

Table 4: The same as in Table 2, for the parameters derived from the fit of Model 3, i.e. with the addition
of the the BCG stellar mass MBCG in units of 1011M�.

Model Bins logM0 α 〈diff〉1 〈diff〉2 〈MX/ML〉1 〈MX/ML〉2

1
all 14.39± 0.12 1.72± 0.89 0.50 0.97 2.36 3.94

2-4 14.45± 0.03 1.15± 0.21 0.59 1.50 0.96 1.28

2-4 + ISC 14.48± 0.04 1.13± 0.22 0.66 1.66 0.88 1.16

2 all 14.48± 0.06 1.18± 0.33 0.64 1.61 0.93 1.25

2-4 14.46± 0.04 1.21± 0.35 0.58 1.50 1.01 1.37

3
all 14.40± 0.12 1.64± 0.84 0.49 1.04 2.06 3.29

2-4 14.45± 0.03 1.16± 0.22 0.58 1.49 0.98 1.30

2-4 + ISC 14.48± 0.04 1.14± 0.23 0.66 1.65 0.89 1.18

Table 5: Results of the fit of the mass-richness relation: logM200 = logM0 + α log λ/λ0, with a pivot
λ0 = 40, obtained using the three models in different richness bins. All bins correspond to the richness
range 10 ≤ λ ≤ 70, and bins 2-4 to the range 20 ≤ λ ≤ 50. For Model 1 and 3 we also show the results
after applying the a posteriori intrinsic scatter correction (ISC). The last four columns show the normalized
average difference between X-ray and lensing masses < diff >=

(
MX

200 −Mlens
200

)
/MX

200, and the average ratio
of the two, using the X-ray detections of Gozaliasl et al. (2014) (< MX/ML >1) and Mehrtens et al. (2012)
(< MX/ML >2).
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Relation Sample a b scatter

ML −MX
CC −1.61± 3.25 1.13± 0.23 0.22

PC 5.67± 3.48 0.61± 0.25 0.16

ML −MX
CC 0.18± 0.03 fixed at 1 0.22

PC 0.22± 0.04 fixed at 1 0.18

ML − TX
CC 0.23± 0.04 1.57± 0.31 0.22

PC 0.29± 0.04 1.09± 0.32 0.16

ML − LX
CC 0.11± 0.04 0.66± 0.13 0.22

PC 0.17± 0.04 0.45± 0.13 0.16

Table 6: Results of the fit of the weak lensing mass versus X-ray mass and mass proxy relations:
logML = a+ b logMX; log (M200E(z)/M0) = a+b log (LX/L0E(z)); log (M200E(z)/M0) = a+b log (TX/T0).
"CC" refers to the complete catalogs and "PC" to the published catalogs (See text for the catalogs definitions
and for the values of the pivot mass, luminosity and temperature used in the fit of the scaling relations).

Relation Comparison Sample ∆a ∆b a compatibility b compatibility

ML − TX

Kettula et al. (2015) CC 0.04± 0.16 0.05± 0.35 1 σ 1 σ

PC 0.23± 0.16 0.43± 0.36 1.5 σ 1 σ

Mantz et al. (2016) CC 0.35± 0.27 0.00± 0.13 1 σ 1 σ

PC 0.14± 0.53 0.29± 0.27 1 σ 1 σ

ML − LX

Kettula et al. (2015) CC 0.02± 0.16 0.08± 0.15 1 σ 1 σ

PC 0.22± 0.16 0.29± 0.16 1.5 σ 2 σ

Leauthaud et al. (2010) CC 0.18± 0.09 0.00± 0.19 2 σ 1 σ

PC 0.31± 0.09 0.21± 0.19 3 σ 1 σ

Table 7: Comparison of our mass-temperature and mass-luminosity relations with others in literature. "CC"
refers to the results obtained using the complete catalogs and "PC" using the published catalogs (See text for
the catalogs definitions). ∆a is the difference in normalization, and ∆b the difference in slope, between our
results and those obtained by Kettula et al. (2015), Mantz et al. (2016) and Leauthaud et al. (2010). The
last two columns show that our relations are consistent, in normalization and slope, within . 2 σ with the
others in literature, when using the complete catalogs.
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