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Abstract

More than half a century passed since the first detection of the cosmic microwave background (CMB).
From that moment on, the increasing accuracy of CMB observations, exploring both its spectral scaling
and angular anisotropies, kept refining our understanding of the universe. The current frontier is the
polarization of the CMB anisotropies with the B-modes—the curl-like polarization pattern—which are
expected to convey invaluable information on both the primordial and the late universe.

In order to extract unique constraints on fundamental physics from the faint B-mode signal, the
sensitivity of CMB experiments have been constantly increasing and the size of their datasets growing,
approaching trillions of raw data samples. The reconstruction of the map is one of the main steps down
any CMB data analysis pipeline, as it allows to compress by many orders of magnitude the data volume,
while striving for preserving all the information.

The map-making is made difficult by the fact that typically the raw data are filtered in order to remove
unwanted signals of instrumental or astrophysical origins. For instance, in the context of ground-based
observations, filtering is frequently used to minimize the impact of low-frequency noise, atmospheric
contributions and/or scan-synchronous signals on the resulting maps.

In this thesis, I study the CMB map-making problem in the presence of filtering. To accomplish
this task I construct a general filtering operator, capable of unambiguously removing arbitrary and
heterogeneous sets of filters, and amend the map-making procedure to incorporate and correct for it.
I subsequently investigate the conditions under which this amended map-making procedure can render
an unbiased estimate of the sky signal in realistic circumstances and discuss how this new formalism
generalizes and incorporates the previous approaches.

This new formalism has been implemented in a massively parallel map-making code, capable of
producing high fidelity renditions of the observed sky, whenever this is possible, and of characterising
the degenerate modes—the sky patterns that cannot be reconstructed due to the filtering— as well as
the map-domain correlations induced by the time-domain filtering.

These methodological developments have been motivated by needs of a specific CMB experiment,
Polarbear, which I am a member of. Polarbear is one of the leading ground-based CMB telescopes,
at the forefront of the B-mode quest. During my PhD training I have participated in the analysis of the
first and second seasons of observations and, specifically, I have led the development of one of its two
main data analysis pipelines. This has involved a reconstruction of high fidelity maps of the polarized sky
from the Polarbear data and the analysis of their power spectra, capitalizing on the unique features
of the map-making code.

In this thesis, I also describe the Polarbear data analysis methodology, the pipeline and its ap-
plication to the actual Polarbear data. As part of this work, I investigate the role of the large-scale
correlations present in the recovered sky maps, demonstrating that they can undermine the performance
of popular numerically-efficient power spectrum techniques based on the pseudo-spectrum methods. I
then propose a practical approach to compensate for this effect and apply it to the analysis of the
Polarbear maps.
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Résumé

Plus d’un demi-siècle s’est écoulé depuis la première détection du fond diffus cosmologique (CMB). A
partir de ce moment, la précision croissante des observations du CMB, explorant à la fois son spectre
d’émission et ses anisotropies angulaires, a continué à affiner notre compréhension de l’univers. La
frontière actuelle est la polarisation des anisotropies du CMB, en particulier avec les modes B, c’est-à-
dire la composante rotationelle de la polarisation, qui devraient fournir des informations inestimables à
la fois sur l’univers primordial et sur l’univers tardif.

Afin d’extraire des contraintes uniques sur la physique fondamentale à partir du signal faible des
modes B, la sensibilité des expériences CMB et le volume des données ont constamment augmenté, ce
dernier approchant des milliers de milliards d’échantillons brutes. La reconstruction de la carte est l’une
des principales étapes de tout pipeline d’analyse de données CMB, car elle permet de compresser le
volume des données de plusieurs ordres de grandeur, tout en s’efforçant de préserver toute l’information
physique.

La production des cartes est rendue difficile par le fait que, typiquement, les données brutes sont
filtrées afin d’éliminer les contaminations d’origine instrumentale ou astrophysique. Par exemple, dans
le contexte des observations au sol, le filtrage est fréquemment utilisé pour minimiser l’impact du bruit
à basse fréquence, issu des contributions atmosphériques et / ou des signaux synchrones au scan.

Dans cette thèse j’étudie le problème de la création de cartes CMB en présence de filtrage. Pour
accomplir cette tâche, je construis un opérateur de filtrage général, capable de traiter les données sans
ambiguïté avec un ensemble de filtres arbitraires et hétérogènes. J’ai également modifié la procédure
de création des cartes pour incorporer et corriger l’effet de cette opération. Par la suite j’étudie les
conditions dans lesquelles cette procédure de cartographie modifiée peut rendre une estimation non
biaisée du signal du ciel dans des circonstances réalistes et je discute comment ce nouveau formalisme
généralise et incorpore les approches antérieures.

Ce nouveau formalisme a été implémenté dans un code massivement parallèle, capable de produire des
rendus du ciel observé de haute fidélité, lorsque cela est possible, et de caractériser les modes dégénérés,
c’est-à-dire les modes du ciel qui ne peuvent pas être reconstruits à cause du filtrage, ainsi que les
corrélations induites dans la carte par le filtrage temporel.

Ces développements méthodologiques ont été motivés par les besoins d’une expérience spécifique,
Polarbear, dont je suis membre. Polarbear est l’un des principaux télescopes CMB basés au sol, à
l’avant-garde de la quête des modes B. Au cours de ma formation doctorale, j’ai participé à l’analyse de la
première et deuxième saisons d’observation et j’ai dirigé le développement de l’un de ses deux principaux
pipelines d’analyse des données. Cela a impliqué une reconstruction des cartes du ciel polarisé avec
une haute fidélité, à partir des données de Polarbear et l’analyse de leurs spectres de puissance, en
capitalisant sur les caractéristiques uniques du code de production de cartes.

Dans cette thèse, je décris également la méthodologie d’analyse de Polarbear, le pipeline et son
application aux données Polarbear. Dans le cadre de ce travail, j’étudie le rôle des corrélations à grande
échelle présentes dans les cartes du ciel estimé, démontrant qu’elles peuvent nuire aux performances des
techniques populaires de construction des spectres en puissance, numériquement efficaces, et basées sur
les méthodes de pseudo-spectre. Je propose ensuite une approche pratique pour compenser cet effet et
l’appliquer à l’analyse des cartes de Polarbear.

Mots clés: cosmologie – fond diffus cosmologique – POLARBEAR – création des cartes

V





Acknowledgements

I am sincerely thankful to all those people that helped me during these years. I am very thankful to
my advisor Radek Stompor for his guidance in this project as well as for the endless chats on the most
diverse topics: they taught me a lot about both science and research. Likewise, the other members of
the APC Polarbear team Giulio Fabbian, Josquin Errard, Julien Peloton and Maude Le Jeune had an
important role in advising me, especially at the very beginning. I also thank our new member Dominic
Beck for participating to all the rehearsals of my defence.

I would like to thank Nabila Aghanim, Olivier Perdereau and Stavros Katsanevas for accepting the
invitation to be members of my committee and Davide Maino and Juan Macias-Perez for also thoroughly
reading and evaluating this thesis.

I am very thankful to Adrian T. Lee and all the members of the Polarbear Collaboration: working
on this experiment has been a great experience.

I am grateful to the whole APC, especially to my PhD colleagues and the Cosmology group, for
making the laboratory a lively and stimulating environment.

Finally, I would like to thank Mathieu Langer, Jean-Baptiste Durrive and especially Eric Chassande-
Mottin for their help in finding this PhD opportunity when I was a master student.

VII





Contents

1 The standard cosmological model 3
1.1 The cosmological principle and the geometry of the universe . . . . . . . . . . . . . . . . . 3
1.2 Friedmann equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Parametrising the dynamical and homogeneous universe . . . . . . . . . . . . . . . . . . . 5
1.4 Expansion history of our universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Cosmic inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5.1 Ordinary matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5.2 Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.3 Dark matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.4 Dark energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 The early universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6.1 The singularity and the Planck epoch . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6.2 Equilibrium in the radiation dominated epoch . . . . . . . . . . . . . . . . . . . . . 9
1.6.3 Beyond equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Problems of the standard model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7.1 Baryogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7.2 Horizon problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.7.3 Flatness problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.7.4 Magnetic monopoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.7.5 The origins of structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Inflation 15
2.1 The inflation mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Implementation with a scalar field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 End of inflation and reheating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 The origin of inhomogeneities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Statistical characterisation of the perturbation . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Perturbed homogeneous universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.3 Perturbations during inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Constraints on inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 The cosmic microwave background 23
3.1 Primordial photon background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 The black-body spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 µ-type distortions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.3 y-type distortions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.4 Sources of spectral distortions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.5 Constraints on CMB spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Describing the CMB anisotropies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 Stokes parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Radiation on a sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Inhomogeneities in the primordial plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Perturbations of the photon fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

IX



X CONTENTS

3.3.2 The dynamics of the plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 From inhomogeneities to anisotropies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Secondary anisotropies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Constrains on the temperature power spectrum . . . . . . . . . . . . . . . . . . . . . . . . 34
3.7 Including polarization and tensor perturbations . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7.1 Compton scattering: polarization from unpolarised light . . . . . . . . . . . . . . . 34
3.7.2 Sources of polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.7.3 Constraints on polarization power spectra . . . . . . . . . . . . . . . . . . . . . . . 36

3.8 Lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.8.1 The deflection angle and lensing potential . . . . . . . . . . . . . . . . . . . . . . . 37
3.8.2 Convergence and rotation fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.8.3 Reconstructing the lensing potential . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.8.4 The lensed CMB power spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.8.5 Neutrino mass and dark energy from CMB lensing . . . . . . . . . . . . . . . . . . 44
3.8.6 CMB lensing measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.9 CMB foregrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.9.1 Foregrounds in future B-mode measurements. . . . . . . . . . . . . . . . . . . . . . 48

3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Map-making and power spectrum estimation for the CMB experiments 51
4.1 Map-making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 The standard map-making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.2 The need for filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.3 The filtering operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.4 Meta-pixel approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.5 Solving the map-making inverse problem . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Degeneracies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.1 The columns of A are not independent . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.2 The columns of T are not independent . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.3 Some columns of A are not independent from the columns of T . . . . . . . . . . . 60
4.2.4 Case of ground-based experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Power spectrum estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.1 Pseudo-power spectrum estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.2 Computing the spectrum of biased maps . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 The Polarbear experiment 71
5.1 The project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 The site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 The instrument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.1 The Huan Tran Telescope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.2 The Polarbear receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 First and second season observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.5 Overview of the low-level data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5.1 Pointing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5.2 Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5.3 Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5.4 Polarization angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6 Results from the first season . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.6.1 Measurement of the Cosmic Microwave Background Polarization Lensing Power

Spectrum with the Polarbear Experiment . . . . . . . . . . . . . . . . . . . . . . 78
5.6.2 Evidence for gravitational lensing of the cosmic microwave background polarization

from cross-correlation with the cosmic infrared background . . . . . . . . . . . . . 79
5.6.3 A measurement of the cosmic microwave background B-mode polarization power

spectrum at sub-degree scales with Polarbear . . . . . . . . . . . . . . . . . . . 79
5.6.4 Polarbear constraints on cosmic birefringence and primordial magnetic fields . . 79

5.7 The future of the Polarbear project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



CONTENTS 1

6 The Polarbear unbiased map-maker 83
6.1 Goals, requirements and constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 The data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3 The implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3.1 Filtering Operator F T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.2 Computation of A>F Td . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.3 Computation of A>F TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.4 Inversion of A>F TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3.5 Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.5 Validation of the implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.5.1 Effectiveness of the filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.5.2 Accuracy of the covariance of the estimator . . . . . . . . . . . . . . . . . . . . . . 92
6.5.3 Accuracy of the estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.6 A simulated noise-free reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.6.1 Eigenstructure of A>F TA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.6.2 Reconstructed map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7 Analysis of the Polarbear first and second season data 103
7.1 The Polarbear blindness policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2 X2PURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2.1 Reconstruction of signal only simulations . . . . . . . . . . . . . . . . . . . . . . . 105
7.3 Computing the spectrum of biased maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.4 Filtering-induced correlations and the map-domain mode removal . . . . . . . . . . . . . . 106

7.4.1 Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.4.2 Noise spectrum of unbiased maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.4.3 Comparison of the performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.5 The noise-bias problem and the cross-spectrum approach . . . . . . . . . . . . . . . . . . 113
7.5.1 Probing the noise bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.5.2 Power spectrum estimation with the help of cross-spectra . . . . . . . . . . . . . . 115

7.6 Recap: the standard Polarbear analysis set-up . . . . . . . . . . . . . . . . . . . . . . . 117
7.7 Foreground treatment in the Polarbear analysis . . . . . . . . . . . . . . . . . . . . . . 117

8 Validation of the data set 119
8.1 Null power spectra analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.2 Detailed study of the outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.3 Robustness of null power with respect to the threshold . . . . . . . . . . . . . . . . . . . . 123
8.4 Map-domain null test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.5 Maps from the validated data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9 Conclusions 129

A Block-wise GLS estimator 131
A.1 The direct approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.2 The two-step approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B Filtering the ground-synchronous signal 133
B.1 Total intensity measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
B.2 Polarization-sensitive measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135





Chapter 1

The standard cosmological model

In this chapter I review the current understanding of the universe, its history, its content and dynamics.
The pillars of the model are the cosmological principle and the general relativity. The former constrains
the structure of space-time, the latter states how the content of the universe affects the dynamics of
the space-time (and vice versa). We then illustrate the Big Bang model, which is at the basis of our
cosmological model and assumes that the universe underwent a hot and dense phase in its early stages.
This phase is predicted to leave a background radiation, filling the whole universe. The observation of
this radiation, called cosmic microwave background (CMB), is one of the cornerstones of the Big Bang
model. The purpose of this work is to contribute to the exploitation of the information conveyed by the
CMB.

In order to explain observations, our cosmological model has to postulate two exotic components:
a form of matter that interacts only gravitationally with the other components, the cold dark matter
(CDM), and a form of energy analogous to the energy of the vacuum, the cosmological constant (Λ).
Ironically, the standard cosmological model is named after the two components that we understand the
least and is indeed called ΛCDM.

1.1 The cosmological principle and the geometry of the universe

The cosmological principle states that on sufficiently large scales the universe is spatially homogeneous
and isotropic. It was introduced to mathematically describe the universe in the 1920s, when there was
no observational evidence for it and when the existence of something beyond the Milky Way was still a
subject of animated debate.

The equations of general relativity are too difficult to solve for a general distribution of matter. The
cosmological principle simplifies enormously the problem. It implies that the four-dimensional space-
time has a three dimensional maximally symmetric subspace. The most general metric of such a space is
known as Friedmann-Lemaître-Robertson-Walker (FRLW) metric. Adopting (here as in the rest of this
work) the natural units c = } = kB = 1, the FRLW metric reads

ds2 = gµνdxµdxν = dt2 − a(t)2

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]
= dt2 − a(t)2

[
dχ2 + S2

k(χ)(dθ2 + sin2 θdϕ2)
]
, (1.1a)

where

Sk(χ) =


sin−1(χ) k = 1,

χ k = 0,

sinh−1(χ) k = −1.

(1.2)

k is a parameter that can assume three values: 1, 0,−1. Each of them identifies one of the three spatial
topologies satisfying the symmetry principle imposed. k = 0 corresponds to the flat euclidean space. For
k = 1 space is an hypersphere: a space with finite volume but no boundaries, easy understandable in
analogy with a usual sphere in a 3-d space. k = −1 is an hyperbolic space. Though hard to visualize,

3
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similarly to Euclidean space it is infinite but it has (constant) negative curvature.
This frame emphasizes the isotropy. Homogeneity is less apparent but ensured by a being a function of
the time only and collecting the entire time dependence of the metric. The function a(t) is called scale
factor, it is the only dynamical degree of freedom of the metric. For k = 0 it has no absolute meaning
because the space is scale invariant. Intuitively speaking, for k = ±1 a is the physical scale at which the
non flat nature of space becomes apparent. a carries dimension while while the comoving coordinates r,
χ, φ and θ are dimensionless. Other useful dimensionless quantities are the conformal time τ , defined by

dτ ≡ dt

a(t)
, (1.3)

and the redshift

1 + z(t) ≡ a0

a(t)
. (1.4)

The subscript 0 means “today”. A photon emitted with wavelength λe is observed at a different frequency
λ0: because of the expansion of the universe, λ ∝ a. The redshift was indeed first introduced as
1 + z(te) = λ0

λe
.

About the conformal time, it enables to write the metric Eq. (1.1) as a2 multiplying a Minkowski
metric. Notice that dτ is the comoving distance that light can travel in a time dt (ds2 = 0).

1.2 Friedmann equations

In general relativity the link between the metric and energy content of space-time is established by the
Einstein field equations

Gµν = 8GπTµν . (1.5)

G is the gravitational constant. The Einstein tensor Gµν = Rµν − 1
2Rgµν − Λgµν , is built from the

metric and its first and second derivatives (through Rµν , the Ricci tensor, and R, the scalar curvature).
In the modern view (Gliner, 1966; Zel’dovich, 1968), the term containing the cosmological constant Λ is
moved to the RHS and interpreted as the contribution from the vacuum, with energy momentum tensor
Λgµν/8πG.

Because of Eq. (1.5), imposing the cosmological principle not only binds the metric to be Eq.
(1.1) but also forces the energy-momentum tensor to have the same symmetry properties as the metric.
Consequently, the content of the universe is bound to be a perfect fluid, i.e. to have a energy momentum
tensor of the form

Tµν = (ρ+ p)uµuν − pgνµ, (1.6)

where ρ and p are the energy density and the pressure of the fluid and uµ is the four-velocity of the
fluid. The physical properties of the fluid define its equation of state p(ρ), which in many cases can be
approximated as linear p ≡ wρ. A non-relativistic fluid has w = 0 , a relativistic one has w = 1/3, while
the cosmological constant is equivalent to a fluid with w = −1.

Einstein equations then read

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ

3
(1.7a)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
(1.7b)

called Friedmann-Lemaître equations. The covariant conservation of the energy momentum tensor
DµT

µν = 0 (embedded in Einstein equations, since DµG
µν = 0) gives the following useful conserva-

tion expression

ρ̇+ 3(ρ+ p)
ȧ

a
= 0. (1.8)

If the components of the cosmic fluid interact just gravitationally, the previous equation holds also for
each component i independently (DµT

µν
i = 0) and, if wi is constant, it can be written as

ρi = ρi0

(
a

a0

)−3(1+wi)

= ρi0 (1 + z)
3(1+wi) . (1.9)
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As the universe expands components with low w become more important. Notice that in the Friedmann
equations Eq. (1.7) the curvature acts like a component with equation of state wk = −1/3 and density
ρk = 3k/8πGa2. Conversely, whether the universe expands and at which rate is determined by its
content. For most of the history of the universe a single component with equation of state wx dominates
the energy content of the universe at a given time (

∑
i ρi ' ρx) and determines through Eq. (1.7) the

time evolution of the scale factor

a ∝
{
t

2
3(1+wx) wx 6= −1

eHt wx = −1.
(1.10)

Thus, the smaller the value of w of the dominating component, the faster the universe expands and the
expansion is exponential if wx = −1. Eq. (1.7b) make a very important prediction about the past of an
expanding universe: if one of the fluids have equation of state w > −1/3, a(t) = 0 at some point in the
past. This singularity is called Big Bang.

1.3 Parametrising the dynamical and homogeneous universe

The Hubble parameter H ≡ ȧ/a is the most important quantity characterizing the dynamical state of
the universe. It defines two quantities (which coincide because we are adopting c = 1),

tH = rH =
1

H
. (1.11)

The Hubble time tH is the characteristic time of the expansion and the Hubble radius rH is how far the
light can travel in such a time, it quantifies the distance of causal connection at a given time.

Today’s value of the Hubble parameters is usually expressed in terms of h

H0 = 100h kms−1Mpc−1. (1.12)

The acceleration is quantified by the deceleration parameter

q ≡ −aä
ȧ2

= −1− Ḣ

H2
, (1.13)

which is negative when the expansion is accelerating. The content of the universe is parametrised in
terms of a characteristic density: the critical density

ρc =
3H2

0

8πG
. (1.14)

It is called critical because
∑
i ρi0 = ρc means that the universe is flat (k = 0). Moreover, if

∑
i ρi0 ≤ ρc

we get from Eq. (1.7a) that ȧ can’t be equal to zero and consequently the universe expands forever.
The density of a component i today is often expressed as density parameter

Ωi =
ρi
ρc
, (1.15)

Eq. (1.7a) says that Ωm + Ωr + ΩΛ + Ωk = 1. The first Friedmann equation can also be rewritten as

H(z) = H0E(z) (1.16)

E(z) ≡
√

Ωm(1 + z)3 + Ωk(1 + z)2 + Ωr(1 + z)4 + ΩΛ. (1.17)

The age of the universe can be computed as

t0 =

∫ t0

0

dt = H−1
0

∫ ∞
0

dz

(1 + z)E(z)
(1.18)

and converges for any choice of the Ωs, if at least one of Ωr and Ωm is different from zero.
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Figure 1.1: Top panel : Hubble diagram of the original work by Hubble (1929), using Cepheid variables
he showed that more distant nebulae recede faster. It is considered the first evidence of the expansion
of the universe. Bottom left: state of the art Hubble diagram using SDSS-II and SNLS supernova
samples (Betoule et al., 2014). The similar measurements by Perlmutter et al. (1999) and Riess et al.
(1998) showed that the expansion of the universe is accelerating, providing strong evidence for the
existence of dark energy. Bottom right: Hubble parameter as a function of redshift derived from the
BAO measurements (full circles) (Busca et al., 2012). By measuring the curve at high redshift the BOSS
experiment (red) constrained for the first time the deceleration period during the matter-dominated era.

1.4 Expansion history of our universe

In this section I overview how the observations constrain the dynamical history of the universe, i.e. the
evolution of the scale factor. Observing a given object or structure in the sky, we can have a sound
measurement of the scale factor at the time of the emission from the redshift Eq. (1.4). Its distance is
obtained by comparing an intrinsic property of the source with an observed one: comparing its intrinsic
and apparent luminosity we get its luminosity distance or, equivalently, comparing its intrinsic size and
angular size we get the angular distance. Objects of the former types are called standard candles, objects
of the latter are called standard rulers. The Cepheid are variable stars with a strong relationship between
the luminosity and the pulsation period, by measuring this latter they can be used as standard candles.
Using them E.Hubble derived his famous diagram (Fig. 1.1), showing more distant nebulae receding
faster. The measurement turned out to be affected by severe systematics errors but it was considered
the first evidence of the expansion of the universe1. Using Cepheid stars, more recent estimations by
Freedman et al. (2012) combined the measurements of Hubble and Spitzer Space Telescopes to get an
estimation of the Hubble constant

h = 0.743± 0.015 (stat)± 0.021. (syst) (1.19)

1However, this interpretation was still surrounded by big scepticism, notably from Hubble himself
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A value of H0 can be derived also from CMB observations. Latest measurements by Planck Collaboration
(2015f) find h = 0.6751 ± 0.00642. The tension between the results of these two probes is subject of
debate.

The Supernovae Ia (SNIa) are another type of standard candle thanks to the similarity of their light
curve during their explosion (Kowal, 1968). Due to their transient nature, they are more difficult to detect
but they enable to probe deeper universe, even at z ∼ 1. In 1998 using SNIa two independent groups
(Riess et al., 1998; Perlmutter et al., 1999) have shown—with their great surprise—that the expansion
of the universe is accelerating, unlike what Eq. (1.7b) predicts for a matter- or radiation-dominated
universe. Successive measurements confirmed this discovery, Fig. 1.1 show the most up-to-date Hubble
diagram obtained with these type of measurements (Betoule et al., 2014). Bearing in mind Eq. (1.7b),
these results imply that the current universe is dominated by a mysterious component, called dark energy,
with equation of state w < −1/3.

The distribution of baryonic matter in the universe has a special correlation scale: the baryon acoustic
oscillation (BAO) scale. It is constant in comoving coordinates and therefore can be used as a standard
ruler. Recently, the BOSS/SDSS experiment has been able to probe the distribution of baryonic matter
up to z = 3.5. Measuring the BAO scale for 2.1 ≤ z ≤ 3.5, they have been able for the first time to
measure the deceleration period when the universe was dominated by matter (Fig. 1.1).

As mentioned earlier, this model of the universe predicts a singularity in space-time: a(t) = 0 for
some finite t in the past. The CMB is the most direct evidence of this singularity. It was serendipitously
detected for the first time by Penzias and Wilson (1965) and accurately characterised since then. We
will illustrate the CMB, its physics and observation in a dedicated chapter (Chapter 3), here we limit
ourselves to mention that it sets the age of the universe at (Planck Collaboration, 2015f)3:

t0 = (13.807± 0.026) Gyr (1.20)

The different probes mentioned study the universe at different ages, rely on different principles and
are based on different instruments. Consequently, they are sensitive to different theoretical, astrophysical
and instrumental systematics. In modern cosmology measurements are becoming so accurate that the
systematic effects sometimes dominate over the statistical ones (e.g. in supernovae measurements),
therefore probing the universe through a variety of complementary probes is increasingly important.
The fact that all the current probes are in overall agreement is a success of the ΛCDM. Nevertheless,
there are already some tensions between different probes. Besides the already mentioned determination
of H0, probably the most important in current observations is the tension between the amplitude of
power spectrum of density perturbations inferred from the CMB and the one directly measured from the
large-scale structures.

1.5 Cosmic inventory

The universe evolves differently depending on its content. In this section summarise the constituents of
the universe and their properties.

1.5.1 Ordinary matter
Ordinary matter includes all the particles that belong to the standard model of particle physics, in
particular it includes everything that can interact electromagnetically. It is organised in a variety of
structures that can be probed through different means. The main source of visible light is the nuclear
fusion inside stars, located inside the galaxies. Galaxies, in turn, are sometimes grouped in clusters of
galaxies—gravitationally bound systems containing from hundreds to thousands of galaxies each.

Only when astronomers started to observe the sky outside of the visible frequencies they realised that
only a small fraction of the ordinary matter is located in the stars. Galaxies contain also the interstellar
medium, composed by hydrogen, helium and a small fraction of heavier atoms—the debris of previous
generations of stars. However, most of the matter is located in the intergalactic medium (IGM), in the
form of cold diffuse clouds that did not take part in the galaxy or star formation and, therefore, preserves
the primordial composition (see next section). Within the galaxy clusters, the IGM falls in the same
potential well that binds together the galaxies, its temperature rises to millions of Kelvin and therefore
it becomes visible in the X-rays due to bremsstrahlung emission. In this context it is called intracluster

2The number quoted is the TT, TE,EE+lowP+lensing case
3Also in this case, the number quoted is the TT, TE, EE + lowP + lensing case
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medium (ICM). Otherwise, the IGM does not emit significantly but can nevertheless be observed because
of the absorption of a background light. The most remarkable studies that exploit this effect are probably
the IGM mapping through the Lyman-α forest and the estimation of the primordial deuterium fraction.

1.5.2 Radiation

Exception made for the CMB, all the observable radiations were produced well inside the matter or dark
energy dominated era and therefore had no impact on the energy budget of the universe. Moreover the
radiation from astrophysical emissions has a negligible energy density compared to the CMB. The only
moment in the history of the universe in which astrophysical emissions has a relevant cosmological effect
is reionisation, during which the neutral hydrogen of the universe was ionised by the radiation of quasars
and first generations of stars and galaxies. We will discuss further this epoch in Sec. 3.5.

1.5.3 Dark matter

Dark matter, as any dark component, is observed only through gravitational effects. Its existence is
established by a variety of probes through the whole history of the universe (the rotation curves of galax-
ies, galaxies peculiar velocity inside clusters, ICM temperatures, the large-scale structures formation,
the angular power spectrum of the CMB, etc.). Electromagnetic coupling aside, dark matter behaves
exactly like ordinary matter: it has equation of state w = 0 and can collapse to form cosmic structures.
Its abundance is roughly 5 times the one of ordinary matter and therefore drives the structure formation,
with ordinary matter collapsing on dark matter overdensities.

From the side of the fundamental physics, the simplest models interpret dark matter as weakly
interacting massive particles (WIMP). The particle physics community is active in the direct searches
for dark matter, trying to detect an excess of interaction in their detectors unexplainable by the standard
model. A yearly modulation of this signal would be consistent with the solar system moving in the dark
matter bath of our galaxy.

1.5.4 Dark energy

Dark energy is the unknown component of the universe that produce the accelerated expansion. First
postulated to explain supernovae measurements, it is nowadays confirmed by a variety of measurements
(BAO, CMB, etc.).

The ΛCDM interprets dark energy as vacuum energy, which consequently has a constant density
as the universe expands. This explanation is particularly compelling because the fields associated to
the particles of the standard model are expected to have non-zero quantum energy density. However,
the particle physics prediction and the observed dark energy density differ by many tens of orders of
magnitudes. Reconciling the particle physics prediction with the cosmological observations is one of the
most active interfaces between the two disciplines.

1.6 The early universe

In this section we give an overview of the processes that characterise the early phases of the universe in
the Big Bang model.

1.6.1 The singularity and the Planck epoch

As explained in Sec. 1.2, all expanding isotropic and homogeneous cosmological models containing a
perfect fluid with equation of state w > −1/3 have a singularity in the past. In the vicinity of the Big
Bang, the universe was at extremely high energies and quantum effects involved cosmological scales.
In this regime, the model of the universe described previously—based on a non-quantum description of
gravity and the strict separation between the concepts of gravity field and matter—is no longer valid.
Therefore, the Big Bang model does not state that a singularity necessarily occurred but it does predict
an initial epoch in which the standard model of particle physics and the general relativity are no longer
adequate to describe the physical phenomena. In the absence of a quantum theory of gravity it is
impossible to know when gravitational quantum effects had a cosmological impact. From qualitative
arguments we estimate the characteristic quantities of this epoch, called Planck epoch: the Planck
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time tP =
√
G ∼ 10−43 s, the Planck energy EP = 1/

√
G ∼ 1019 GeV (or, expressed as temperature,

TP = 1/
√
G ∼ 1032 K). Another useful quantity is the Planck mass mP ≡ 1/

√
8πG = 2.435× 1018 GeV.

1.6.2 Equilibrium in the radiation dominated epoch

The universe in its very early stages was substantially different from Sec. 1.2: the content of the universe
was in a very hot and dense state and therefore all the particles of (and beyond) the standard model are
thought to have been interacting.

The particle species were able to establish equilibrium if their rate of interaction was faster than the
expansion rate

Γ

H
� 1 (1.21)

This condition was satisfied by all the particles of the Standard Model for T > 100 GeV. In this regime
they are all relativistic, and their energy density is ρ ∼ T 4 and thus H ∼ √ρ/mP ∼ T 2/mP. From
a dimensional analysis we can evaluate the cross section of two particles to be σ ∼ α2/T 2, where α is
the structure constant associated to the gauge boson through which the two particles interact. Since
the particles are relativistic, v ∼ 1 and n ∼ T 3, thus we can estimate the rate of interaction to be
Γ ≡ nσv ∼ α2T . Assuming α ∼ 10−1 (reasonable value for an electro-weak interaction) we can evaluate
the LHS of Eq. (1.21)

Γ

H
∼ α2mP

T
∼ 1016 GeV

T
. (1.22)

For 1016 GeV ≥ T ≥ 100 GeV all the particles are in equilibrium. At higher temperatures (earlier times)
the expansion is too fast compared to the interaction rate. At lower temperature (later times) some of
the particles are no longer relativistic.

The number density of some massive species is a factor (mT )3/2 exp(m/T ) smaller than the number
the density of massless particles, which is proportional to T 3. Therefore, when T . m the massive
species become non-relativistic and, if they are still in equilibrium with the relativistic components, their
number density exponentially decreases.

Consequently, as long as the massive particles stay in equilibrium with the relativistic thermal bath,
the relativistic components dominate the energy content of the universe

ρ ' ρr =
π2

30
g∗(T )T 4. (1.23)

g∗ is the effective number of relativistic degrees of freedom. It is obtained by summing the degrees of
freedom from all the relativistic species i

g∗ ≡
∑

Bosons

gi +
7

8

∑
Fermions

gi. (1.24)

Assuming the particles of the standard model we can predict the g∗ at different temperatures see Fig.
1.2. Every time the temperature decreases below the mass of a particle-antiparticle pair, g∗ falls because
those particles are no longer relativistic. Another sharp drop happens when the temperature reaches
the confinement-deconfinement temperature, between 1012 and 1013 K: the strong force binds the quarks
into hadrons and, exception made for the π mesons, they are all non relativistic.

At the same time, the particle-antiparticle annihilation or the binding of quarks in hadrons releases
heat. Since the comoving entropy density is conserved , a3s ∝ a3g∗(T )T 3 = const, we get the relation
between temperature and scale factor during the radiation dominated epoch

T (t) = TP
a(tP)

a(t)

[
g∗(TP)

g∗(T )

]1/3

. (1.25)

The error in using the formula that neglects the varying number of relativistic species, T ∝ a−1, is very
small: the term containing g∗ varies by a factor of few while T wildly spans 30 orders of magnitude. The
correction is however relevant when estimating, for example, the temperature of the neutrino background,
as I expand on in the next section.
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Figure 1.2: Number of relativistic degrees of freedom as a function of temperature according to the
standard model. The sharp drop happens at the confinement-deconfinement temperature, when quarks
start to bind and form hadrons.

1.6.3 Beyond equilibrium

Equilibrium condition Eq. (1.21) can not be indefinitely maintained. Even though the expansion rate
slows down (H ∝ T 2 ∝ a−2), the interaction rate decreases faster, both because n ∝ a−3 ∝ T 3 and
because at, for different reasons, the cross-section of the relevant interactions drops. In this section we
consider few examples.

Nucleosyntesis

As mentioned in Sec. 1.6.2 protons and neutrons (and their antiparticles) start forming as their quarks get
confined into hadrons around T ∼ 130 MeV. However, since they are non relativistic, their abundance
exponentially decreases with the temperature. We now assume that in the universe there was some
asymmetry in the mater and antimatter amounts (see Sec. 1.7.1). Consequently, baryon and antibaryons
keep annihilating until no antibaryon is left and the number of baryons freezes.

The high neutron-proton conversion rate keeps the ratio of their abundances equal to n/p = e−Q/T ,
where Q ≡ mn −mp = 1.293 MeV. However, the interaction rate Γn↔p ∼ G2

FT
5 falls faster than the

expansion rate H ∼ T 2 and at Tfr ' 1 MeV the weak interaction ceases to keep equilibrium between
protons and neutrons. Their relative abundance does not vary with temperature any longer, n/p =
e−Q/Tfr ' 1/6, and neutrons are said to experience freeze-out. Freeze-out is the state when the number
density of the particles of the same type is fixed because the interactions with the rest of the cosmic
plasma are not frequent enough to keep equilibrium.

When temperature falls below T ' 0.1 MeV protons and neutrons can combine without being imme-
diately photo-dissociated by a high energy photon, the production of light nuclei can start (notice that
by this moment the n/p has dropped to ∼ 1/7 due to neutron β-decay). This process is called nucle-
osynthesis: a series of 2-body interactions that produce D, 3He, 4He, 7Li. The rates of these interactions
depend on the baryon density, usually expressed in terms of nγ (known from the CMB temperature)
η ≡ nb/nγ which in turn is related to the baryonic fraction h2Ωb ' η · 1010/274.

The cross sections of the nuclear reactions involved have all been measured and enable to predict
the abundances of the light element for different values of η or, equivalently, h2Ωb. Conversely, by
measuring these abundances we can measure η and check the consistency between the abundances of
the different elements, setting constraints not only on cosmology but also on the Standard Model. The
challenging part of these measurements is either finding sites that preserved the primordial abundances
or properly accounting for the products of the stellar nucleosynthesis (the strong constraining power of
deuterium comes indeed from the fact that stars destroy all the deuterium they produce). The values of
η inferred by the measurements of the light element abundances agree between themselves and with the
value estimated from the CMB constraints, with the only exception of the lithium (see Fig. 1.3). The
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Figure 1.3: The abundances of 4He, D, 3He and 7Li as predicted by standard model of nucleosynthesis,
the corresponding bands represent the 95% CL range. Yellow boxes show the observed abundances, while
the vertical bans indicate the 95% CL concordance interval from light element measurements (red) and
the constraints from the CMB (blue). (Olive et al., 2014)

Lithium abundance inferred from the CMB measurement of Ωbh
2 is inconsistent at more than 5σ level

with the observed Lithium abundance (Cyburt et al., 2008). While striving for better constraints on the
astrophysics and nuclear physics involved, the lithium problem is also stimulating explanations involving
new physics.

For further readings on nucleosynthesis we refer to Schramm and Turner (1998), Steigman (2007)
and Iocco et al. (2009).

Neutrino decoupling

Neutrinos interact only through the weak interaction. As the temperature decreases, the W and Z
bosons—responsible for the interaction of the neutrinos—get mass. In this regime the cross section
scales as σG2

FT
2, where GF is Fermi’s constant. The LHS of Eq. (1.21) evaluates to Γ/H ∼ G2

FmPT
3 ∼

(T/1 MeV)3. Therefore, as the temperature approaches ∼ 1 MeV neutrinos decouple from the other
particles and their (independent) evolution now follows Eq. (1.8). On the contrary, the photon fluid is
still interacting with e±, its temperature follows Eq. (1.25) and will be affected when e± become non
relativistic. Consequently,

Tν

T after e±
γ

=
T before e±
γ

T after e±
γ

=

(
gafter e

±

∗
gbefore e

±
∗

)1/3

=

(
4

11

)1/3

. (1.26)

Taking into account the different relation between T and n for fermions and bosons, we can express Eq.
(1.26) in terms of number density nν = (3/11)nγ . If a neutrino family has mass mν > Tν ∼ T

(CMB)
γ ∼

2× 10−4 eV, it is not relativistic today and its energy density would be ρν = mνnν . Therefore, the
neutrino background can represent a relevant energy content in today’s universe:

Ων =

∑
νmν

h2 94 eV
(1.27)

where the sum is only over the neutrino and anti-neutrino of the different flavours. Therefore setting
constraints on Ων can set tight constraints on the total mass of the neutrinos. This is particularly
interesting because atmospheric and solar neutrino oscillations imply a non-zero squared mass differences
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Figure 1.4: The decrease of the free electron fraction as the universe cools. Assuming that at each
temperature the reaction Eq. (1.28) reaches the equilibrium proportions, we get the exponential fall
described by the Saha equation. However, the temperature drops too fast and the equilibrium is not
reached: the exact solution of the free electron fraction differ considerably from the Saha approximation.
(Dodelson, 2003)

between the three neutrino flavours (Fukuda et al., 2000), suggesting a lower limit on the neutrino mass
of 0.05 eV.

Recombination

When the temperature is few tens of eV the universe is composed of photons, electrons, decoupled neu-
trinos and ionized light nuclei (mainly hydrogen and some helium). Free electron tend to bind to protons
because neutral Hydrogen is energetically favoured: mp +me −mH ≡ ε0 = 13.6 eV. However, energetic
photons scatter off the electron and, if they are energetic enough, they ionise again the Hydrogen.

The reaction we are discussing is

e− + p↔ H + γ (1.28)

where the abundance of the left side of the equation is disfavoured by a factor e−ε0/T . As for the
deuterium production, the high density of photons above the ionisation energy threshold delays the
formation of neutral hydrogen until T ∼ 1/4eV. At this temperature the exponential suppression of
the ionised state causes a steep decrease in the free electron fraction, this scenario is described by the
famous Saha equation. However, at this stage the density of the ingredients in Eq. (1.28) is low and
the reaction rate cannot reach the equilibrium value because Eq. (1.21) is not satisfied. As a result,
recombination—the period of transition from ionised to neutral hydrogen—requires more time than what
Saha’s equation would predict and, moreover, some freeze-out fraction of free electrons is left (see Fig.
1.4).

1.7 Problems of the standard model

1.7.1 Baryogenesis

The Big Bang model owes a considerable part of its success to the capability of explaining the abundances
of the elements in the universe, giving them a cosmological origin. The standard primordial nucleosyn-
thesis is based on an important assumption: a primordial baryon-antibaryon asymmetry. When the
temperature drops below the mass of the baryons they annihilate with antibaryons. Nevertheless, when
all antibaryons have annihilated, some baryons are left and can not be converted into lighter particles
because all the interactions of the Standard Model preserve the baryon number. For the same reason, this
asymmetry can not have been produced when the universe is in the energy regime that is well described
by the standard model. Trying to avoid the assumption of a primordial asymmetry, many models have
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been proposed to produce dynamically this asymmetry, typically at the GUT energy scale. Without
adding further detail, they all satisfy the three Sakharov (1967) conditions: baryon number violation, C
and CP violation and interactions out of thermal equilibrium.

1.7.2 Horizon problem
Since the singularity photos have travelled only for a finite time. The comoving distance they can have
covered is then

χph(t̄) ≡
∫ t̄

0

dt

a(t)
=

∫ ā

0

da

aȧ
, (1.29)

which is called comoving particle horizon. From Eq. (1.7a) we know that ȧ ∝
√
ρa2 ∝ a−(1+3w)/2 where

w is the equation of state of the dominating component of the universe. Therefore the integral Eq. (1.29)
converges if ρa2 a→0−−−→ +∞, i.e. w > −1/3 in the very early universe. This is the case in the Big bang
model since radiation (w = 1/3) dominates eventually in the past and, consequently, there is a finite
comoving distance of causal connection.
The comoving particle horizon at the last scattering of the CMB photons was about 150 Mpc, which
corresponds to ∼ 1 deg in angular size. A large number of CMB regions are expected to be causally
disconnected. How is it possible that the CMB is so homogeneous across the sky?

1.7.3 Flatness problem
There is no a priori reason for k to be equal to zero. Nevertheless Ωk today is very small. This is even
more surprising if we consider how it evolves with the expansion of the universe

Ωk(a) =
Ωk

Ωk + ΩΛ(a/a0)2 + Ωm(a/a0)−1 + Ωr(a/a0)−2
. (1.30)

As a goes to zero, the denominator goes to infinity: in order to match a non-zero value of Ωk today, its
initial value have be very finely tuned. For example, if we suppose that the initial value of Ωk was set
during the Planck epoch, in order to reproduce |Ωk| ∼ 1 its initial value has to be |Ωk(aP)| . 10−60.

1.7.4 Magnetic monopoles
As mentioned earlier the very early universe is supposed to be described by a GUT. As the universe cools
many of these theories undergo a phase transition and produce topological defects. The most popular
is the magnetic monopole, a zero-dimensional defect. Depending on the theory higher dimensional
analogues can be produced: strings (one dimensional), domain walls (two dimensional) and textures
(three dimensional). All these theories are exotic but nevertheless share this copious production of
defects while they are not observed in the universe.

1.7.5 The origins of structures
The framework of the Big Bang model assumes the homogeneity of the universe. However, the universe
can be considered as such only on large scales (> 100 Mpc). The structures that we observe at smaller
scales are the result of the gravitational collapse seeded by some initial perturbation. These initial
conditions are an assumption of the standard cosmological model. Their natural explanation would be
a desirable property of its possible extensions.

1.8 Summary

The standard cosmological model, ΛCDM, has been found extremely successful over the last few decades,
explaining satisfactorily most if not all existing observations. The CMB radiation and the abundance of
the light elements provide some of the most robust pieces of evidence in its favour. As is, the model is
however incomplete. Indeed, it has to postulate the existence of dark matter and energy, the nature of
which is still unknown. In addition, it has to assume the presence of initial perturbations. In this latter
case a well-motivated theory, called inflation, provides an elegant solution to the initial perturbations
problem and, moreover, it successfully address many other theoretical issues of the cosmological model.





Chapter 2

Inflation

As explained in the previous chapter, the Big Bang model has several problems. Though they are not
true inconsistencies, they require very accurate tuning of the initial conditions in order to reproduce the
observed universe. Inflation is the most popular solution to these problems: by postulating a period of
accelerated expansion in the early universe, it dynamically reproduces these unlikely initial conditions.
Moreover, inflation also naturally explains the inhomogeneities at the origin of CMB anisotropies and
cosmic structures.

Since it was first postulated (Starobinskǐi, 1979; Guth, 1981), the inflationary paradigm has been
extensively studied and has become the most widely accepted extension of the standard cosmological
model.

In the next section we illustrate the qualitative features that (basically) all inflationary models share
and explain why the solve the problems mentioned above. We then consider in more detail the simplest
inflationary scenario, the inflation produced by a single scalar field. Our discussion focuses on the salient
aspects, without being complete nor fully pedagogical. Nowadays any cosmology textbook has at least a
chapter on inflation. Among the wide literature available, Baumann and Peiris (2008) can be a concise
and self contained first reading, more detailed treatments can be found in Linde (1986), Kolb and Turner
(1994) or in the more recent book Liddle and Lyth (2000) and review article Bassett et al. (2005). While
writing this chapter, I have also made use of the following lecture notes Baumann (2011) and Langlois
(2004).

2.1 The inflation mechanism

In the flatness and horizon problems the comoving Hubble horizon (aH)−1 plays a crucial role.
By combining Eq. (1.7a) and Eq. (1.9), we get that, in a universe dominated by a component with

equation of state w, the comoving Hubble radius evolves as

1

aH
∝ a 1

2 (1+3w). (2.1)

In particular, it grows during matter and radiation dominated epochs. We now show that both the
flatness and horizon problems are related to the steady increase of the comoving Hubble parameter.

For the flatness, this is apparent if we use Eq. (1.7a) for rewriting Eq. (1.30) as

|Ωk(a)| = 1

(aH)2
(2.2)

For the horizon problem, we first notice that Eq. (1.29) can be rewritten as

χph(tf ) = τf − τi =

∫ af

0

d ln a

aH
. (2.3)

and plugging in Eq. (2.1) we notice that χph(t) ∼ 1/a(t)H(t): the particle horizon today is approxi-
mately equal to the Hubble radius. As a consequence, unless we introduce by hand homogeneous initial
conditions, regions separated by more than a Hubble radius are expected to have completely different

15
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properties because they have never been in causal contact. This contrasts with the observations, which
show homogeneous properties far beyond the Hubble radius. The CMB is one of the most striking exam-
ples: its properties are homogeneous across the sky despite we observe nearly 104 causally disconnected
regions.

These two problems can be solved by supposing that in the very early universe, between a time ti
and te, there was actually an epoch in which the comoving Hubble radius decreased, this period is called
inflation. As Eq. (2.1) says, in order to have inflation we need a universe dominated by a component
with

w < −1/3 during inflation. (2.4)

The condition for a decreasing comoving Hubble radius coincides with the one for an accelerated expan-
sion because 1/aH = 1/ȧ.

Without inflation, the fact that the primordial Ωk value has to be 10−60 times smaller than the
current value requires the fine tuning of the initial conditions. Inflation solves the problem because it is
capable of dynamically producing arbitrarily small values of Ωk (see Eq. (2.2)).

Inflation also naturally solve the horizon problem. The presence of an inflationary period in the
integral of Eq. (2.3) can make the comoving particle horizon grow arbitrarily big, by taking the comoving
Hubble radius at the beginning of inflation arbitrarily large. In the inflationary scenario, comoving regions
that in the standard Big Bang model would be causally disconnected could have been in causal contact
before inflation shrunk the comoving Hubble radius.

Finally, inflation also solves the monopole problem and naturally explains the origin of the per-
turbations to homogeneity. The condition expressed Eq. (2.4) says that during inflation the universe
undergoes a phase of accelerated expansion during which its size increase by an enormous factor (see
Eq. (2.15)). If topological defects were produced before inflation, by the end of inflation they would be
extremely diluted, explaining why we do not see any in our observations. Since during inflation micro-
scopic lengths are blown up to cosmological scales, quantum fluctuation before inflation can be the seed
of the inhomogeneities at the origin of cosmic structures.

Summarizing, the key of inflation is the accelerated expansion. In the inflationary context this
condition is expressed as a constraint on H rather then a. Noticing that ä = a(Ḣ +H2), the accelerated
expansion is equivalent to −Ḣ/H2 < 1. During inflation it is sometimes convenient to measure the time
in terms of e-folds

dN ≡ Hdt = d ln a. (2.5)

We therefore define the first and second slow-roll parameter—the reason of the name will be apparent
later—as follows

ε ≡ − Ḣ

H2
(2.6)

η ≡ d ln ε

dN
=

ε̇

Hε
. (2.7)

They both have to be small: ε, |η| < 1. The condition on ε produce the accelerated expansion, the other
condition ensures that the acceleration lasts for a sufficiently long period of time.

As a last remark for the rest of this chapter, in the inflationary context the conformal time is typically
measured choosing the end of inflation as reference. With this choice |τ | is approximately equal to the
comoving Hubble radius both before and after inflation: in Eq. (2.3) the dominant contribution to the
integral comes from early times before inflation and from late times after inflation.

2.2 Implementation with a scalar field

The easiest way produce inflation is through a scalar field φ, referred to as inflaton, minimally coupled to
gravity. This last property means that the interaction between the inflaton and the metric is given just
by the kinetic term 1

2g
µν∂µφ∂νφ in the action. We will consider the self-interaction term of the inflaton

to be given by a potential V (φ).
The energy-momentum tensor of the inflaton is

Tµν = ∂µφ∂νφ− gµν
(

1

2
∂σφ∂σφV(φ)

)
. (2.8)
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In the case of a homogeneous field one extract the following energy density and pressure

ρφ =
1

2
φ̇2 + V (φ) (2.9a)

pφ =
1

2
φ̇2 − V (φ). (2.9b)

For a universe dominated by a scalar field, the Friedmann equations and the continuity equation now
read

H2 =
1

3m2
Pl

(
1

2
φ̇2 + V (φ)

)
(2.10a)

ä

a
= − 1

6mPl

(
2φ̇2 − V (φ)

)
(2.10b)

φ̈+ 3Hφ̇+ V,φ = 0, (2.10c)

where V,φ ≡ dV/dφ.
If during the dynamics of the scalar field the kinetic energy is sufficiently smaller than the potential
energy, the slow-roll conditions are satisfied. This can be easily seen in the extreme case: the so called
slow-roll approximation (SRA)

1

2
φ̇2 � V (φ) (2.11a)

|φ̈| � |Vφ(φ)|. (2.11b)

The second condition—derived as the time derivative of the first—ensures that the first one is satisfied
for sufficiently long period of time. In this approximation Eqs. (2.10) read

H2 ' V (φ)

3m2
Pl
∼ const (2.12a)

Ḣ = − φ̇2

2m2
Pl
' −1

6

V 2
,φ

V
(2.12b)

3φ̇H + V,φ ' 0 (2.12c)

A nearly constant value of the Hubble parameter means that the expansion is quasi-De Sitter: a(t) ∼ eHt.
In the SRA the slow-roll parameters take the form

ε ' m2
Pl

2

(
V,φ
V

)2

� 1 (2.13a)

η ' m2
Pl

[
V,φφ
V
− 1

2

(
V,φ
V

)]
� 1 (2.13b)

These expressions highlight two things. First, inflation is obtained by requiring that the potential have a
gentle slope1. Second, measuring the slow-roll parameters sets constraints on the potential of the scalar
field.
Notice that inflation can be obtained even if the SRA is not satisfied but we wouldn’t obtain the simple
expressions in Eq. (2.12) and the relationship between potential and slow-roll parameters wouldn’t be as
simple. This case would require the potential slow-roll parameters (Liddle and Lyth, 1992) and infinite
hierarchy of slow-roll parameters (Liddle et al., 1994).

2.3 End of inflation and reheating

At some point, inflation has to end and the standard Big Bang scenario begins. By definition, inflation
ends when the scalar field acquire relevant kinetic energy and, consequently, the first slow-roll parameter

1Actually, one also have to constrain the initial velocity φ̇ since it doesn’t necessarily satisfy Eq. (2.11b). This is a
minor problem because usually Eq. (2.11b) is an attractor solution and wide range of initial values of the velocities quickly
converges to it, see e.g. Liddle et al. (1994).
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becomes of order unity.
During inflation the universe expanded by a number of e-folds equal to

N =
ln aend
ln astart

=

∫ tend

tstart

Hdt =

∫ φend

φstart

H

φ̇
dφ

SRA' 1

m2
Pl

∫ φend

φstart

V

Vφ
dφ (2.14)

In order to solve the flatness problem, the comoving Hubble radius at the beginning of inflation has to be
at least the equal to the comoving Hubble radius today. Since the end value is fixed, this requirement sets
a lower bound on the duration of inflation: assuming H = const during inflation and the temperature at
its end Tend ∼ 1015 GeV, one can set the following famous requirement on the number of e-folds

N =
ln aend
ln astart

∼ 64. (2.15)

The transition between the end of inflation and the early universe of the standard Big Bang scenario
is an important part of every inflationary model. Inflation typically leaves the universe in a cold and
non-thermal state while the very early universe of the Big Bang model is hot and thermalised. This
transition is therefore called reheating. Traditionally, in this process the scalar field was treated as a
collection of statistically independent particles decaying into the particles of the standard model. In the
1990s this picture has considerably evolved, together with the awareness of the impact of reheating on
baryogenesis and nucleosynthesis. More information on reheating can be found in the comprehensive
review by Bassett et al. (2005).

2.4 The origin of inhomogeneities

Inflation also has the extraordinary property of naturally explaining the inhomogeneities in the universe
that are observed in the CMB anisotropies and seed the structure formation. In this section we will
summarize how the quantum fluctuation of the inflation can give rise to inhomogeneities.

2.4.1 Statistical characterisation of the perturbation
We now make a small digression to introduce the power spectrum, in our discussion it will be the most
important statistical characterisation of a field X.

The correlation function is defined

ξ(x,x′) ≡ 〈X(x)X(x′)〉 = ξ(|x− x′|) (2.16)

where 〈· · · 〉 denotes the expected value and the last equality holds when the X is statistically homoge-
neous and isotropic, which we will assume henceforth.

X can be represented in Fourier domain

Xk ≡
∫

d3xX(x) e−ik·x (2.17)

X(x) =
1

(2π)3

∫
d3kXk e

ik·x (2.18)

The power spectrum is defined as

〈XkXk′〉 ≡ (2π)3δ3(k + k′)PX(k) (2.19)

∆2
X(k) ≡ k3

2π2
PX(k). (2.20)

PX(k) so-defined has the property of being the Fourier transform of the correlation function.
The spectral index (or tilt) of the power spectrum is defined as

n ≡ d ln ∆2
X

d ln k
(2.21)

and n = 0 means flat spectrum. n has to be defined at some reference scale since it is independent of
k only for power-law power spectra. The running of the spectral index is typically parametrised with
the second derivative of the power-spectrum. However, no current cosmological observation detected
departure from power law primordial density spectra. Beware that for scalar perturbation, the actual
parameter traditionally adopted is ns ≡ n+ 1.
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2.4.2 Perturbed homogeneous universe
We review here few facts about cosmological perturbation theory that are necessary to link inflation to
the inhomogeneities of the observable universe. For a complete treatment see e.g the review article by
Malik and Wands (2008).

First of all, we have to account for first-order perturbations of the FLRW metric. The most general
form is

ds2 = −(1 + 2Ψ)dt2 + 2aBidx
idt+ a2[(1− 2Φ)δij + Eij ]dx

idxj . (2.22)

where the perturbations are further divided in scalar, tensor and vector perturbation. Bi ≡ ∂iB−Si and
Eij ≡ 2∂ijE− ∂iFj − ∂jFi + hij, where Φ, Ψ, E and B are scalar quantity, Fi and Si are divergence-less
vector fields and hij is a symmetric tensor field satisfying ∂ihij = hi

i = 0.
Similarly to the metric, the stress-energy tensor in Eq. (1.6) now has to allow for perturbations. Its

density and pressure can have time and space dependent perturbations

δρ(t, xi) ≡ ρ(t, xi)− ρ̄(t) (2.23)

δp(t, xi) ≡ p(t, xi)− p̄(t) (2.24)

and it also can have a first order anisotropic stress Σµν satisfying Σ00 = Σi0 = Σii = 0.
These perturbations are not necessarily physical, they could have been produced simply by applying a
first order gauge transformation to the FLRW metric. For example, in constant-time slices of a FLRW
universe the content of the universe is homogeneous but if we squeeze the spatial coordinates at some
point in space an unphysical underdensity appears.

Ψ, Φ, E, B, Fi, Si, δρ, δp are indeed gauge dependent. On the contrary, the tensor component of Σij

and hij are gauge independent. The ambiguities related to the gauge dependency of the perturbations
are avoided by expressing the results in terms of gauge independent quantities (Bardeen, 1980; Ellis and
Bruni, 1989). The one relevant for our discussion will be

R ≡ Φ− H

ρ̄+ p̄
δq. (2.25)

δq is the scalar component of the 3-momentum density. In the comoving frame, it is by definition zero
and R reduces to the curvature Φ. R is indeed called comoving curvature perturbation.

2.4.3 Perturbations during inflation
Plugging the perturbed metric and stress-energy tensor into the Einstein equations Eq. (1.5) we get the
differential equations governing the time evolution of the perturbations. Einstein equation, in general,
are coupled second-order partial differential equations but, thanks to the symmetries of the background,
to first order they simplify to a set of uncoupled ordinary differential equations in which the scalar, vector
and tensor components evolve independently.

The Einstein equation for the k Fourier mode of the scalar perturbation and the amplitude h of one
of the two polarizations of the tensor perturbations reduce to the Mukhanov equation

v′′k +

(
k2 +

z′′

z

)
vk = 0 (2.26)

where the prime denotes the derivative with respect to the conformal time,

vk =

{
ahkmPl/

√
2 tensor

zRkmPl scalar
(2.27)

and

z =

{
a tensor
a|φ̇|/(HmPl) = a

√
2ε scalar.

(2.28)

In general the Mukhanov equation have to be solved numerically because of the dependence of z from
the evolution of the background. However, we can get interesting insights by considering the SRA, for
which we get ε → 0 and a quasi-De Sitter evolution for the background. In this case also for scalar
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perturbations z′′/z → a′′/a and a′′/a → 2/τ2. In this approximation (2k)1/2e−kτ (1 − i/kτ) and its
complex conjugate are a basis for the solutions of Eq. (2.26). The standard quantization of vk 2(similar
to the canonical quantization of the harmonic oscillator) allows to compute the following expected value
on the vacuum state

1

a2
〈vkvk′〉 = (2π)3δ3(k + k′)

H2

2k3
(1 + k2τ2) (2.29)

|kτ |<<1−−−−−→ (2π)3δ3(k + k′)
H2

2k3
(2.30)

At some point the modes k leave the comoving horizon because during inflation it shrinks, the second
equation shows that when it happens the amplitude of the power spectrum freezes. If we allowed slight
variations of H, its value in Eq. (2.30) would be the one at horizon crossing, H?. Using Eq. (2.27) we
estimate the spectrum of scalar and tensor perturbations

∆2
s(k) ≡ ∆2

R(k) =
1

8π2

H2
?

m2
Pl

1

ε?
(2.31)

∆2
t (k) ≡ 2∆2

h(k) =
2

π2

H2
?

m2
Pl

(2.32)

The amplitude of the tensor perturbations is often expressed in terms of the tensor to scalar ratio

r ≡ ∆2
t

∆2
s

= 16ε?. (2.33)

These power spectra stay frozen until the k modes re-enter the comoving Hubble horizon in the standard
Big Bang model. They therefore set the initial condition for the perturbations of the observable universe.
H2
?m

2
Pl is basically the energy at which inflation happened. ε? quantifies how close the universe was to De-

Sitter. Measuring scalar perturbations constrains a combination of these two quantities while measuring
the tensor perturbations would directly probe the energy scale of inflation. Notice that H and ε are
assumed to vary very little during inflation. Therefore, the spectra of the perturbations are predicted to
be scale invariant, their small tilt would be the consequence of their slight variation during inflation –
imprinted on the power spectrum because different scales cross the horizon at different times.
These results actually exploited only the approximation of the quasi-De Sitter expansion. The SRA
allows to go further and predict more relations between observables and inflationary quantities, most
notably ns − 1 = 2η − 4ε, the consistency relation

r = −8nt (2.34)

and

V
1
4 '

( r

0.01

) 1
4

1016GeV (2.35)

2.5 Constraints on inflation

The most important (and currently the only) probe for inflation is the CMB, discussed in the next
chapter. In addition to solving the problems of the standard model mentioned earlier, inflation makes
predictions that found confirmation in the CMB observations. The simplest inflationary models predict
Gaussian primordial perturbations and current CMB observations set remarkable constraints on the pri-
mordial non-Gaussianity (Planck Collaboration et al., 2015c). Simplest inflationary models also predict
a nearly scale-invariant spectrum for scalar perturbations, with a slight tilt due to the different time
at which different scales cross the horizon. This departure from the scale invariance was recently de-
tected by Planck Collaboration (2015g), ns = 0.9677± 0.0060 (remind that the scale-invariant spectrum
corresponds to ns = 1).

In general, CMB observations characterise inflation mostly by constraining the power spectrum of
primordial scalar and tensor perturbations. Their “lowest order” properties are parametrised by ns and

2The normalisation also assumes the choice of the Minkowski vacuum in the far past as vacuum state.
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Figure 2.1: State-of-the-art constraints on the ns − r space. Deep and light contour regions are the 68%
and 95% CL regions from Planck alone and in combination with its cross-correlation with BICEP2/Keck
Array and/or BAO data. The other lines represent the prediction of different inflationary model. Most
notably φ2-inflation and natural inflation are now disfavoured compared to other models that predict
lower values of r. (Planck Collaboration et al., 2015b)

r, of which every inflationary model give a prediction. Therefore, the constraints on inflation set by an
experiment are typically expressed as a contour plot in the ns-r plane. As Fig. 2.1 shows, currently we
have only upper bounds on r. In the next chapter we explain that the polarization B-modes of the CMB
are the most promising probe of primordial gravitational waves. The measurement of r is indeed one of
the central motivations of the hunt for primordial B modes.

2.6 Summary

Inflation is an attractive theory for the very first instants after the Big Bang. It proposes an elegant
solution to the numerous problems of the cosmological model, such as flatness, horizon, and abundance
of monopoles. It also explains the origin of the initial perturbations, making predictions about their
nature and amplitude as a function of scale.

These predictions are testable. In particular, the existence of the primordial gravity waves—expected
in many inflationary models—is considered one of the possibly most tantalizing signatures of inflation.
At present, CMB anisotropies, and in particular B-mode CMB polarization, are the best way to detect
such signature. While confirming inflation, this will also provide unique insights on the physics at the
energies 12 orders of magnitude higher than those currently investigated by LHC.





Chapter 3

The cosmic microwave background

One of the consequences of the Big Bang model, as summarised in Chapter 1, is the existence of a
background radiation, the CMB. It was first predicted by Alpher and Herman (1948) and serendipitously
detected nearly twenty years later by Penzias and Wilson (1965). Its observation has been a crucial
evidence in favour of the Big Bang model.

The CMB is the oldest observable light and thus it is a unique window on the primordial universe.
Great efforts were already made to exploit its scientific potential. Remarkable turning points were the
measurement by the COBE satellite of its black body spectrum (Mather et al., 1990), which left no doubt
on the primordial origin, and the detection of the anisotropies (Smoot et al., 1992). The information
they convey is a goldmine for cosmology and their increasingly accurate characterisation led to precise
constraints on a number of cosmological parameters.

In this chapter we explain why the CMB is an invaluable probe for cosmology and how it can be used
to constrain the primordial and late universe. We also describe the observational status and the current
forefront: the B-mode polarization.

3.1 Primordial photon background

In this section we explain further the link the between the spectrum of the CMB and the physics of the
early universe.

To start with, a photon gas in equilibrium with a thermal bath at temperature T has the Bose-Einstein
distribution function1

f(ν;T, µ) =
1

e(x−µ) − 1
. (3.1)

where, for consistency with the literature, in this section x ≡ 2πν/T , ν is the frequency of the photon
and µ is the chemical potential.
If the gas is free to gain or lose photons, its chemical potential is µ = 0. This case is called black body.
If µ > 0 the gas has a deficit of photons, while it has an excess of photons if µ < 0.

In the primordial plasma photons interact mainly with electrons. The most relevant processes are
Compton scattering, double Compton scattering and bremsstrahlung. They are very efficient in the very
early universe but progressively become negligible as the universe expands. Compton scattering consists
in e+ γ → e+ γ, energy can be efficiently transferred from electron to photons (and vice versa) but the
total number of particles in each of the species is left unchanged. On the contrary, the double Compton
scattering and bremsstrahlung produce (or destroy) a photon in each interaction.

Consider a particle with quadrimomentum Pµ in the FLRW universe, we can show that the time
component of the geodesic equation can be written as p2 ≡ −P iP jgij ∝ 1/a2. For a photon this implies
that p = ν ∝ 1/a. The fact that Eq. (3.1) can be written in terms of x ≡ ν/T means that the
Bose-Einstein distribution is preserved by the expansion of the universe but the temperature parameter
decreases as T ∝ 1/a.

1remind that we are using kB = ~ = 1

23



24 CHAPTER 3. THE COSMIC MICROWAVE BACKGROUND

Figure 3.1: The black-body spectrum (black solid line) and examples of µ-type and y-type distortions.
The red (dashed) and green (dotted) lines represent µ-type distortions with a negative and positive
chemical potential, respectively. The blue (dot-dashed) line is for the y-type distortion. For comparison,
the black-body spectrum with the same temperature is plotted as the black (solid) line. The thin lines
show the spectra in the Bose–Einstein distributions with constant chemical potentials. (Tashiro, 2014)

3.1.1 The black-body spectrum

Before z ' 2 × 106 (i.e. temperature higher than T ' 500 eV) all the three interactions mentioned
above were very efficient. Photon momenta are easily redistributed and, consequently, the radiation is
thermalised and follows the distribution in Eq. (3.1). Moreover, double Compton and bremsstrahlung
are able to increase and decrease the number of photons. Their contribution to the Boltzmann equation
of photons is proportional to 1 − f(ex − 1), thus enforcing µ = 0 in the photon distribution: radiation
has a black body spectrum. Fig. 3.1 shows the black body spectrum together with some (exaggerated)
examples of the following spectral distortions

3.1.2 µ-type distortions

After z ' 2×106 double Compton and bremsstrahlung become inefficient: their interaction rate no longer
satisfies Eq. (1.21). Compton scattering with electrons still thermalise the photons but no mechanism
can keep µ = 0, the so-called µ-type of distortions can be produced. In particular, if energy is injected
into the plasma the temperature of the electrons rises. The temperature of the photons rises too but,
since the number of photons cannot change, there is a deficit of photons and thus µ increases. Conversely,
if for some reasons photons are injected the temperature of the radiation keeps tracking the temperature
of the electrons but the excess in the number of photons produces µ < 0.

Notice that the e± annihilation happens well before z ' 106, therefore the consequent massive photon
injection does not produce spectral distortion. The electrons present at this epoch are the leftover of the
matter-antimatter asymmetry.

3.1.3 y-type distortions

At z ' 2 × 104 also the Compton scattering starts to become inefficient and energy injections in the
photons cannot be thermalised. In the non-relativistic limit for the electrons, the evolution of the
distribution function is described by the Kompaneets equation (Kompaneets, 1957). For a black body
radiation in an optically thin cloud of electrons, it simplifies to (Zeldovich and Sunyaev, 1969)

δf

f
= y

xex

(ex − 1)2
(x coth(x/2)− 4) . (3.2)
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where

y ≡
∫

dtneσT
Te − T
me

(3.3)

is called Compton parameter. Therefore, if Te > T some photons are scattered to higher energies
creating the so-called y-type distortion. A y-type distortion can also be produced if two black bodies
with a temperature difference ∆T are averaged: y = 1

2 〈∆T/T 〉.

3.1.4 Sources of spectral distortions

A wide variety of phenomena lead to spectral distortions: recombination, reionization, dissipation of
primordial density fluctuations, decaying or annihilating particles, primordial magnetic fields, etc.They
involve both standard and exotic physics, making the spectral distortions of the CMB a particularly
valuable probe for both testing our understanding of the universe and constraining out standard models
of cosmology and particle physics. For a concise discussion on the spectral distortions predicted by the
ΛCDM see Chluba (2016), while a recent review on spectral distortions can be found in Tashiro (2014).

3.1.5 Constraints on CMB spectrum

The Far Infrared Absolute Spectrophotometer (FIRAS) (Mather et al., 1990) aboard the COBE satellite
(Boggess et al., 1992) accurately measured for the first (and last) time the CMB spectrum on a wide
range of wavelengths, from 2 to 21 cm. The temperature of the CMB radiation was measured to be
T = (2.728± 0.004) K at 95% confidence level. No deviation from the black body spectrum was found,
setting the following 95% confidence level upper limits |y| < 1.5 × 10−5 and |µ| < 9.0 × 10−5. These
results were confirmed by the COBRA rocket experiment (Gush et al., 1990) soon after. The CMB power
spectrum was further probed from the ground at low frequencies by the TRIS (Gervasi et al., 2008)
and the ARCADE (Seiffert et al., 2011) experiments, setting upper bounds on the chemical potential
respectively equal to |µ| < 6.0 × 10−5 at 95% confidence level and |µ| < 6.0 × 10−4 at 2σ level. A new
satellite mission, PIXIE (Kogut et al., 2011), is being considered, aiming at improving by a factor ∼ 103

the constraints set by the COBE satellite.

3.2 Describing the CMB anisotropies

Before discussing the origin and the implications of the CMB anisotropies, we introduce the physical
quantities and the mathematical tools necessary for their description.

3.2.1 Stokes parameters

The cosmic microwave background is polarised and is characterised with the help of the Stokes parameters.
Consider a monochromatic plane wave with frequency ω propagating along the z axis, it can be fully

described in terms of the time evolution of the electric vector on the x-y plane:

Ex(t) = A cos(ω + φx) (3.4)
Ey(t) = B cos(ω + φy). (3.5)

The x and y components of the field are independently oscillating at the same frequency with a relative
phase φx − φy. We can also express the electric field as a single complex 2-vector E(t) = E0e

iωt, where
the information about the phase offset is moved in the argument of the components of the complex vector
E0.

This simple description, however, is not adequate for the observation of the cosmic microwave back-
ground: the photons observed at a given frequency have indeed random phases and, even if the photons
were coherent, in the microwave-band observations we typically measure power, quantified as the average
power absorbed on a period of time ∆t� 1/ω. In this section we will denote this averaging operation as
〈· · · 〉. Therefore, the formalism adopted for describing the CMB measurements is the one of the Stokes
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parameters, which are defined as

I ≡ 〈E2
x + E2

y〉
Q ≡ 〈E2

x − E2
y〉

U ≡ 〈2Re(ExE∗y)〉
V ≡ 〈−2Im(E∗xEy)〉. (3.6)

I is the total intensity, while the other parameters describe the polarization of the radiation. Q and U
characterise the linear polarization state while V the circular one.

One can show that the following relation holds

Q2 + U2 + V 2 ≤ I2. (3.7)

For the monochromatic wave considered above the equality holds, but doesn’t for incoherent radiation.
We define the polarization intensity as

P 2 ≡ Q2 + U2 + V 2. (3.8)

The relation in Eq. (3.7) express the fact that the polarized energy cannot exceed the total energy.
It is important to notice how the Stokes parameters change under parity change and rotation of

the reference coordinate system. I is a scalar while V is a pseudo-scalar (it changes sign under parity
transformation). More important to us, Q and U change if the x-y plane is rotated by an angle θ. One
can easily show that in the new system x′-y′

(Q′ ± iU ′) = e∓2θi(Q± iU) (3.9)

or, equivalently, one can gather Q and U in a 2-vector and express the same relation as(
Q
U

)′
=

[
cos(2θ) sin(2θ)
− sin(2θ) cos(2θ)

](
Q
U

)
. (3.10)

This relations express the spin-2 nature of the linear polarization field that can thus be represented as a
head-less vector with magnitude P , if V = 0, and orientation

α =
1

2
arctan

(
U

Q

)
(3.11)

3.2.2 Radiation on a sphere

Astronomical observations measure the Stokes parameters illustrated in the previous section in many
directions n̂ (i.e. many (θ, φ) angles in polar coordinates), potentially covering the whole celestial
sphere. This section illustrates how to describe and characterise a radiation on a sphere. In Sec. 3.2.1
we explained that the radiation field can be decomposed into a scalar component, I, and a spin ±2
component Q ∓ iU . From now on we will ignore the pseudo-scalar component V because it is not
produced by Compton scattering, the dominant process when the CMB radiation was generated. In
addition, in the CMB context, the intensity is typically expressed as temperature fluctuation T with
respect to the average temperature of the CMB (see Sec. 3.3.1).

Spin-weighted spherical harmonics

We can expand these components in the corresponding spin weighted basis

T (n̂) =
∑
lm

alm Ylm(n̂) (3.12)

(Q∓ iU)(n̂) =
∑
lm

±2alm ±2Ylm(n̂), (3.13)

where Q and U are defined with respect to the (êθ, êφ). The Ylm(n̂) functions are the usual scalar
spherical harmonics while sYlm(n̂) functions are the spin-weighted spherical harmonics with spin s
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(Goldberg, 1967). They are related to the scalar spherical harmonics by spin-rising and spin-lowering
operators

ð = − sins θ

[
∂

∂θ
− i csc θ

∂

∂φ

]
sin−s θ (3.14)

ð̄ = − sin−s θ

[
∂

∂θ
− i csc θ

∂

∂φ

]
sins θ (3.15)

where s is the spin of the function on which the operator is being applied. If f is a spin-s function, then
ðf has spin s+ 1. Conversely, if f has spin-s function, then ð̄f has spin s− 1.
In particular, when applied to spherical harmonics,

ð sYlm = [(l − s)(l + s+ 1)]1/2 s+1Ylm (3.16a)

ð̄ sYlm = −[(l + s)(l − s+ 1)]1/2 s+1Ylm (3.16b)

therefore the spherical harmonics with spin ±2 can be derived from the spin-0 spherical harmonics as

2Ylm = [(l − 2)!/(l + 2)!]1/2ððYlm (3.17)

−2Ylm = [(l − 2)!/(l + 2)!]1/2ð̄ð̄Ylm. (3.18)

Combining the these two relations we obtain that ð ð ð̄ ð̄ = ð̄ ð̄ ð ð = ∇2(∇2 + 2).

E-B decomposition

A vector field (spin 1) on a two dimensional manifold can be decomposed into a gradient and a curl
component by the Helmholtz theorem. Similarly the spin ±2 polarization field can be naturally expressed
in terms of its gradient and curl components, respectively called E and B fields in analogy with the
electromagnetism. They are both spin-0 fields, their harmonic coefficients can be derived from those of
the harmonic coefficients of the spin-2 field

Ea`m = − 1
2 (2a`m + −2a`m) (3.19)

Ba`m = i
2 (2a`m − −2a`m). (3.20)

Conversely, Q and U can be written in terms of E and B

Q = −
∑
`m

(Ea`m 1X`m + i Ba`m 2X`m) (3.21)

U = −
∑
`m

(Ba`m 1X`m + i Ea`m 2X`m) (3.22)

where 1X`m ≡ (2Y`m + −2Y`m)/2 and 2X`m ≡ (2Y`m − −2Y`m)/2.
In the vector notation of Eq. (3.10), Eq. (3.22) reads

P = −
∑
`m

(Ea`m EY `m + Ba`m BY `m) (3.23)

where the basis for the electric and magnetic component of the spin-2 spherical harmonics is defined as

EY `m ≡
(

1X`m

−i 2X`m

)
= DEY`m (3.24)

BY `m ≡
(
i 2X`m

1X`m

)
= DBY`m (3.25)

The second order differential operators in the second equality are defined as

DE ≡
1

2

(
ðð + ð̄ð̄
−i(ðð− ð̄ð̄)

)
(3.26)

DB ≡
1

2

(
i(ðð− ð̄ð̄)
ðð + ð̄ð̄

)
. (3.27)
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The following properties of these operators

D†E ·DB = D†B ·DE = 0 (3.28)

D†E ·DE = D†B ·DB = (∇2 + 2)∇2 (3.29)

make apparent that any B mode is orthogonal to any E mode.

Small scale limit

In the small scale limit the sky can be considered to be flat and the harmonic decomposition becomes
the Fourier transform. In this case the spin rising and lowering operators take the form

ð = −(∂x + i∂y) (3.30)
ð̄ = −(∂x − i∂y) (3.31)

and Eq. (3.22) takes the form

P (x) ≡
(
Q
U

)
(x) =

∫
dk

(2π)2

[
E(k)

(
cos(2φ)
sin(2φ)

)
+B(k)

(
− sin(2φ)
cos(2φ)

)]
eik·x. (3.32)

The wave vector k ≡ k(cosφ, sinφ) is the direction along which the magnitude of the vector P varies.
P and k are not necessarily aligned. We can make two interesting observations from this expression.
First, The E/B decomposition becomes local in Fourier space, as in Eq. (3.20). Second, consider a single
Fourier mode P (k), if we perform a rotation such that in the new frame φ = 0, we obtain that E = Q
and B = U . In other words for the modes of type E the vector P is either aligned or orthogonal to the
direction in which its magnitude increases, while in the modes of type B the vector P forms an angle of
45 deg. This last statement is true also if we don’t restrict ourselves to a single Fourier mode P (k) and
even beyond the flat-sky approximation: it express indeed the heuristic properties of a gradient-like or
curl-like spin-2 field.

Statistical characterisation of a field on the sphere

A field X on the sphere can be characterised in terms of the two point correlation function.

C(x̂, x̂′) ≡ 〈X∗(x̂)X(x̂′)〉 (3.33)

where the angle brackets denote the average over the ensemble of possible realisation of the field X. If
we assume statistical isotropy C(x̂, x̂′) becomes a function of only x̂ · x̂′ and it can be expanded on the
Legendre polynomial

C(x̂ · x̂′) =
1

4π

∞∑
`=0

(2`+ 1)C`P`(x̂ · x̂′), (3.34)

where C` is called angular power spectrum, though often it simply referred to as power spectrum, for
brevity. With this assumption, the RHS of Eq. (3.33) is equal to the one of Eq. (3.34), they can be
multiplied by Y`m(x̂)Y ∗`′m′(x̂

′) and integrated over x̂ and x̂′, the equality reduces to2

〈a∗`ma`′m′〉 = δ``′δmm′C`. (3.35)

This implies that, given the spherical harmonic decomposition of X, the C` can be estimated with

Ĉ` =
∑̀
m=−`

a∗`ma`m
2`+ 1

(3.36)

In current observations the CMB anisotropies are compatible with Gaussian fluctuations, as predicted
by inflation. Assuming this has two important implications. The first one is that the power spectrum

2Remember that the Legendre polynomials can be written in terms of the spherical harmonics:

P`(x̂ · x̂′) =
4π

2`+ 1

∑̀
m=−`

Y`m(x̂′)Y ∗`m(x̂)
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(or, equivalently, the two point correlation function) fully describes the statistical properties of the field.
Second, even assuming no uncertainty in the harmonic coefficients, we get the following variance on the
estimator in Eq. (3.36)

Var(Ĉ`) =
2

2`+ 1
C2
` . (3.37)

called cosmic variance. In the power spectrum estimation in Eq. (3.36) we try to evaluate the variance
of the distribution of the a`ms from a`ms themselves. Since for each ` we have only 2`+1 different values
of m, the measurement is affected by the sampling variance in Eq. (3.37). Approximately speaking, if
only a fraction of the sky fsky is available, the number of modes available is accordingly reduced and the
cosmic variance is boosted by a factor 1/fsky.

All the considerations made in this sections can be generalised to the case involving two (potentially
different) fields X and Y . If the two fields are isotropic, similarly to Eq. (3.35), the harmonic coefficients
are related to the power spectrum through

〈Y a∗`m Xa`′m′〉 = δ``′δmm′C
XY
` . (3.38)

and it can be estimated with

ĈXY` =
∑̀
m=−`

Xa
∗
`m Y a`m
2`+ 1

(3.39)

As explained in the previous sections, the CMB radiation can be expressed in two scalar and one pseudo
scalar field: T , E and B. Therefore, in order to fully characterise its 2-point correlation, we have to
estimate the six spectra coming from the combinations TT , EE, BB, TE, TB and EB.

3.3 Inhomogeneities in the primordial plasma

In this section we outline the dynamics of the primordial plasma, focusing in particular on the photon fluid
and its properties after recombination. The formalism is the linear theory of cosmological perturbations,
applied to the baryon, dark matter and photon fluid (Peebles and Yu, 1970; Bond and Efstathiou, 1984;
Bond and Efstathiou, 1987), the aim is to understand the link between the observed CMB angular power
spectrum and the physics of the primordial universe. This field has been very active between the 80s
and the 90s. The discussion presented here is based on Hu and Sugiyama (1995), Hu et al. (1996), Seljak
and Zaldarriaga (1996) and Dodelson (2003).

3.3.1 Perturbations of the photon fluid
The inhomogeneities of a fluid and their evolution are studied in terms of the time dependence of its
distribution function, which is governed by the Boltzmann equation

d

dt
f(x,p, t) = C[f ], (3.40)

where C is the possible interaction term with other fluids. What we are mostly interested in is the time
evolution of the departure δf from the background distribution f̄ (the bar denotes the solution if the
universe was homogeneous).

For dark matter, δf is usually expressed in terms density fluctuation δ(x, t) ≡ (ρ(x, t) − ρ̄(t))/ρ̄(t)
and the velocity v defined as the average of p/E over the momenta of the background distribution. The
density and velocity of baryons, δb and vb, are defined in the same way.

For photons, δf is expressed in terms of fractional temperature fluctuations Θ(x, p̂, t) around the
background black body homogeneous distribution

f(x̂, p̂, t) ≡ 1

exp{ p
T (t)[1+Θ]} − 1

(3.41)

= f̄(t)− p ∂ f̄

∂p
(t)Θ(x̂, p̂, t) +O(Θ2). (3.42)

As in Sec. 2.4, the study of linear perturbations is more natural in Fourier space. Therefore, henceforth
we adopt the convention (standard in the literature) of denoting simply as Θ, δ, v, etc. the generic k
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Fourier mode Θ̃(k, p̂, t), δ̃(k, t), ṽ(k, t), etc. Assuming that perturbations are axisymmetric around k,
the angular dependence of Θ is usually expressed as a function on µ ≡ k̂ · p̂ and further decomposed on
Legendre polynomials

Θ = Θ(k, µ, t) =

∞∑
`=0

(−i)`(2`+ 1)Θ`(k, t)P`(µ). (3.43)

If Θ is isotropic, only the monopole Θ0 is different from zero.
Finally, the evolution of the perturbation is usually studied in conformal time, hence the overdot will

denote derivative with respect to the conformal time, for consistency with the literature and in contrast
with previous chapters.

3.3.2 The dynamics of the plasma
Since in the primordial plasma photons and baryons are strongly interacting, they behave as a single
fluid. The dynamics of this fluid is affected by the inhomogeneous gravitational potential, to which
dark matter contributes. Gravity attracts the photon-baryon fluid in the potential well, photon pressure
increases, eventually inverting the infall: the results is an oscillatory dynamics that is at the origin of
the CMB anisotropies and we shall outline in this paragraph.

The Boltzmann equations for baryons are the following

δ̇b + ikvb = −3Φ̇ (3.44)

v̇b +
ȧ

a
vb = −ikΨ +

κ̇

R
[vb + 3iΘ1]. (3.45)

Eq. (3.44) is just the evolution of matter perturbation in a perturbed metric. On the contrary, Eq. (3.45)
also contains in its last them the interaction with photons through Coulomb scattering, which tends to
enforce isotropy in the rest frame of the electrons, vb = −3iΘ1. How efficiently the interaction can
establish this condition depends on the frequency of Compton scattering and the inertia of the baryons.
The former is represented by the differential optical depth κ̇ = neσTaχe, where χe is the ionization
fraction, while the baryon inertia is expressed by the inverse proportionality on R ≡ 3ρ̄b/4ρ̄γ , the baryon
to photon density normalized at 3/4 at photon/baryon equality.

Neglecting polarization, the Boltzmann equation of photons reads

Θ̇ + ikµΘ = −Φ̇− ikµΨ + κ̇[Θ0 −Θ + µvb]. (3.46)

In this case the interaction with electrons, proportional to the differential optical depth, tends to isotropise
the radiation in the rest frame of the electrons.

In the rest of this section, we discuss the dynamics of the fluids well before recombination, when the
differential optical depth is very large. In this tight coupling regime Θ1 ' −3vb and higher multiples
are negligible because Compton scattering isotropises the photon distribution. Using this condition,
we integrate Eq. (3.46) both before and after multiplying it by µ. We obtain two coupled first order
differential equations in Θ0 and Θ1 that can be combined in the following famous second order differential
equation

Θ̈0 +
ȧ

a

R

1 +R
Θ̇0 + k2c2sΘ0 = −k

2

3
Ψ +

ȧ

a

R

1 +R
Φ̇− Φ̈ (3.47)

which describes the driven oscillatory dynamics of the monopole of the temperature fluctuations. cs ≡
1/
√

3(1 +R) is the speed of sound in the photon-baryon fluid, which slowly decrease with the expansion
of the universe since R ∝ a. The maximum distance sound could travel by time τ is called sound horizon
and is given by s ≡

∫ τ
0
csdτ

′. In the rest of this section, we outline the oscillatory dynamics of the fluid
in a schematic fashion.

Oscillatory dynamics

To start with, if there were no baryons and the potentials were constant the solution of Eq. (3.47) would
be Θ + Ψ = 1

3Ψ cos(ks), where the amplitude of the harmonic function and the absence of the sin(ks)
term comes from imposing deep in the radiation dominated era that the initial conditions match the
adiabatic perturbations produced by inflation.
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When at time τ∗ recombination takes place, photons decouple from baryons and start free streaming.
Since they have to climb (descend) the potential Ψ, they lose (gain) energy and photons appear colder
(hotter) then they were at recombination. This is the so-called Sachs-Wolfe effect. Θ + Ψ is the effective
temperature visible to an observer outside of the potential well that caused the oscillation.

In this first crude approximation, the effective temperature undergoes an oscillatory dynamics with
a phase, ks, that grows with the sound horizon s until recombination.

At recombination, super-horizon modes (ks∗ � 1) did not evolve significantly and they still reflect
the primordial perturbations, Θ+Ψ = 1

3Ψ. Assuming ns ' 1, as predicted by inflation, we have P ∝ k−3

which, as we will see in the next section, produces an angular power spectrum C` ∝ `−2. Super-horizon
modes produce `(`+ 1)C` ∼ const, which is called Sachs-Wolfe plateau.

Modes such that ks∗ ≥ 1 had time to experience the oscillatory dynamics. If ks∗ = π the mode
has just reached its first compression and produce a peak in the power spectrum. In general, peaks are
produced wherever at recombination the oscillations was at an extreme, i.e. for k multiple of π/s∗.

The “velocity” of the effective temperature also oscillates with the same period but π/2 out of phase:
it has extrema when the effective temperature equals to zero.

Adding baryons

We now add baryons but suppose that R = const. The equation of the oscillatory dynamics becomes
Θ + Ψ = 1

3Ψ(1 + 3R) cos(ks)−RΨ.
The mass of the baryons shifts the zero point of the oscillation enhancing the compression of the

fluid. The consequence is that the absolute amplitude of the compressional peaks is 2RΨ higher than
the rarefaction peaks. The mass of the baryons also decreases the speed of sound thus reducing the size
of the sound horizon at a given time. Finally, R actually slowly evolve with time, since it is proportional
to the scale factor. It can be shown that the consequence is a small decay with time proportional to
(1 +R)−1/4.

Diffusion dumping

So far we have assumed to be in the tight coupling regime. In reality photons have a finite mean free
path given by λT = 1/neσT before they scatter off an electron. In a Hubble time there are on average
N ∼ σTne/H such scatters, each randomizing the photon direction. Consequently, in a Hubble time
the mean distance travelled by a photon is λD ∼ λT

√
N ∼ 1/

√
neσTH. For k & kD ≡ 2π/λD photons

and electrons can’t be considered as a single fluid: hot and cold regions mix, effectively cancelling out
fluctuations. The result is an exponential suppression factor given by e−k/kD . Notice that λD evolves
with time and goes to infinity at recombination. By definition most of the photons last scatter before
this happens, the scale actually important is the “thickness” of the last scattering surface, the average
diffusion length at last scattering.

3.4 From inhomogeneities to anisotropies

In the previous section we have studied the evolution of the Fourier modes of the perturbations until the
last scattering. In this section we illustrate how they translate into anisotropies.

One way of doing this is to perform the Legendre expansion of Eq. (3.46) to get an infinite number
of coupled first order differential equations, one for each ` = 0, . . . ,∞. We can then let this infinite
differential system evolve from the primordial perturbations deep inside the radiation dominated era
until the present time. As explained in the previous section, as long as the plasma is in the tight
coupling limit only Θ0 and Θ1 are not suppressed. As the differential optical depth decreases, eventually
reaching zero after recombination, Θl with ` > 1 are progressively excited. This was the approach
adopted by early calculations (e.g. Stompor, 1994; Sugiyama, 1995).

Another way of computing anisotropies from primordial perturbations is to start by writing the formal
solution of Eq. (3.46)

(Θ + Ψ)(τ0, µ) =

∫ τ0

0

[κ̇(Θ0 + Ψ− iµvb)− Φ̇ + Ψ̇]eκ(τ,τ0)eikµ(τ−τ0)dτ. (3.48)

The optical depth κ is computed from τ to today, τ0 and the combination g(τ) ≡ κ̇e−κ is the visibility
function, which gives the probability that an observed photon was last scattered at time τ , it has a sharp
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peak at recombination τ∗. Taking the multiple moments of Eq. (3.48) we get the following approximate
solution

Θ`(k, τ0) '[Θ0(k, τ0) + Ψ(k, τ0)]j`[k(τ0 − τ∗)]

+ 3Θ1(k, τ0)

(
j`−1[k(τ0 − τ∗)]−

(l + 1) j`[k(τ0 − τ∗)
j`[k(τ0 − τ∗)]

)
(3.49)

+

∫ τ0

0

dτ e−κ
[
Ψ̇(k, τ0)− Φ̇(k, τ0)

]
j`[k(τ0 − τ)].

from which one can derive the angular power spectrum today from the initial power spectrum PΨ

C` = (4π)2

∫
dkk2PΨ(k)|Θ`(k, τ0)|2. (3.50)

j`(x) are the Bessel functions. They express how a Fourier mode k contributes to a multipole `: their
peak at x ∼ ` means that the k Fourier mode contributes predominantly to the ` = k(τ0− τ∗) multipole.
However, they are not delta functions and consequently the angular power spectrum appears smoother
than the power spectrum of the Fourier modes at the last scattering.

The most important term in Eq. (3.49) is the first row. It is the contribution from the oscillations of
the effective temperature to the present multipoles. The second row represents the Doppler effect due to
the line of sight velocity of the photon-baryon fluid at the moment of recombination. Its more complex
geometrical term smooths the structure of the peaks compared to the one of the effective temperature.
Since the velocity field is π/2 out of phase with the density field, at the power spectrum level the crest
of the former corresponds to the trough of the latter. Consequently, the velocity field adds power on the
top of the power spectrum of the density field but smooths its peaks.

The third raw in Eq. (3.49) is the integrated Sachs-Wolfe. It tells us that anisotropies can be sourced
if, after the last scattering, the potential through which the photon is travelling evolves (Sachs and Wolfe,
1967). The contribution to this term is typically divided into two terms the early ISW, the late ISW.
Moreover, the ISW has a non-linear analogous: the Rees-Sciama effect. Since they are produced after
the last scattering we include them in the secondary anisotropies.

3.5 Secondary anisotropies

We discussed the physics of the primordial universe and how it leaves imprints in the CMB power
spectrum at the last scattering surface. However, also the intervening universe produces anisotropies in
the CMB, in this section we discuss very briefly the most relevant effects. For a review see Aghanim
et al. (2008).

Integrated Sachs-Wolfe effect (Sachs and Wolfe, 1967). When a photon enters and then leaves a
static gravitational potential well, it is first blue-shifted and then redshifted, with no net effect. However,
if the potential evolves during the passage of the photon, the energy balance can be non-zero (see e.g.
Mukhanov et al., 1992). This happens at early times, close to recombination, because the radiation
energy density is not dynamically negligible (early ISW), and it also happens at late times (late ISW),
when large-scale potentials decay because of the accelerated expansion during the dark energy dominated
era.

Rees-Schiama effect. The ISW is a first order term, on small spatial scales these terms cancel out
and thus second order effect can become relevant. In hierarchical structure formation the collapse of
structure can produce an effect analogous to the ISW if the photon passing time is a relevant fraction of
the collapse time-scale (Rees and Sciama, 1968; Dyer, 1976).

Gravitational lensing. The path of the CMB photons is deflected by the gravitational attraction
exerted by intervening cosmic structures. Given the importance of this effect in the context of B-modes,
and Polarbear in particular, we devote a dedicated section to the topic (see Sec. 3.8).



3.5. SECONDARY ANISOTROPIES 33

Sunyaev-Zeldovich effect. The optical depth of the ICM of galaxy clusters is typically 10−3. Because
of the high temperature of the ICM—typically 5-10 keV—the scattering of the photons injects energy
in the CMB that cannot be thermalised. As discussed in Sec. 3.1 this produces a y-type distortion,
known as thermal Sunyaev-Zeldovich (tSZ) effect (Sunyaev and Zeldovich, 1972, 1980). This signal has
a singular property: its amplitude—the Compton parameter y, effectively the ICM pressure integrated
along the line of sight—depend only on the cluster properties and not on its redshift, which gives to the
SZ an edge on the X-ray on the detection of far clusters.

The development in the observation of large-area surveys by the ACT (Hincks et al., 2010; Marriage
et al., 2011; Hasselfield et al., 2013), SPT (Staniszewski et al., 2009; Vanderlinde et al., 2010; Williamson
et al., 2011; Reichardt et al., 2013) and Planck (Planck Collaboration, 2014c, 2015h,i) telescopes dra-
matically improved the quality and the number of the SZ cluster detections, allowing the extraction of
cosmological information from the statistical properties of the SZ-cluster samples.

The abundance of clusters and its evolution with redshift are indeed sensitive to both the total
matter density and the amplitude of the power spectrum of density fluctuations. SZ-cluster counts
recently become a powerful probe of σ8 and Ωm (Planck Collaboration, 2014a, 2015e). In particular,
these studies highlighted a tension with the determination of the same quantities from primary CMB
anisotropies. This discrepancy is particularly interesting because the two measurements probe completely
different cosmological epochs, and thus might imply that the current understanding of the evolution of
the universe has to be improved.

The tSZ effect also provided other cosmological constraints, for example, on the redshift dependence
of the CMB temperature (Hurier et al., 2014), on angular distance-redshift relation (Bonamente et al.,
2006) and the distance duality relation (Uzan et al., 2004).

The tSZ effect has also emerged as a powerful probe of the physics of the ICM, especially combined
with the traditional X-ray measurements. The two signals are indeed sourced by the same thermal gas
of electrons but have a different dependence of the electron density: they are proportional to ne and
n2
e respectively. The tSZ signal enables to better characterise the outskirts of the clusters (e.g. Planck

Collaboration et al., 2013), where the X-ray emission becomes too faint. The focus on the outskirts is also
driven by the resolution of microwave-surveys that typically have arcmin-resolution—which is comparable
with the angular size of the clusters and much larger than the arcsec-resolution of X-ray measurements.
However, individual clusters have been observed at high resolution, e.g. by the MUSTANG (Mroczkowski
et al., 2011) and NIKA experiments (Adam et al., 2015; Adam et al., 2015, 2016).

Until now we have discussed only the thermal motion of the electrons as a source of the SZ effect.
However, it can be also sourced by the bulk motion of the ICM, the so-called kinematic SZ effect (kSZ).
Detections of this effect have been reported either statistically (Hand et al., 2012) or from high-velocity
mergers (Sayers et al., 2013).

More information about the SZ effect can be found in the review articles by Birkinshaw (1999),
Carlstrom et al. (2002) and Kitayama (2014).

Reionisation. After recombination the universe is basically only composed by neutral hydrogen.
About 400 Myr after, the first generations of galaxies start to form, setting the end of the so-called
dark ages. The newly born astrophysical objects emit UV-radiation, which is capable of ionising the
neutral hydrogen. Therefore, the first generation of stars and black hole driven sources (e.g. mini-
quasars, X-ray binaries, etc.) starts to carve out ionised regions around them. The speed of this process
increases with the number of sources and proceeds until the whole universe is ionised again. This process
is called reionisation and is thought to take place within the redshift range z ∼ [15, 6].

Reionisation can be probed using the Lyman-α forest and future observations of the redshifted 21-cm
emission line from neutral hydrogen will provide direct and detailed evidence of this process. In addition,
reionisation affects also the CMB power spectrum in three ways. First, the re-scattering of CMB photons
on free electrons causes the suppression of the angular anisotropies on all scales because it blends photons
coming from initial different directions. Second, reionisation adds some small-scales power due to the
inhomogeneous baryon density (Ostriker-Vishniac effect) and the patchy expected nature of reionisation.
Third, the bulk flows of electrons at recombination create a quadrupole anisotropy that, as discussed
later, produces a bump in the polarization power spectrum at very large scales, ` . 10. Despite the
challenges related to measuring such scales, this signal was detected (Kogut et al., 2003). The quantities
that parametrise the impact of reionisation on the CMB power spectrum—the Thompson optical depth τ
and the reionisation redshift—are difficult to constrain accurately because of their degeneracy with other
parameters. Nevertheless, CMB observations start to provide relevant constraints on the recombination
process (see Planck Collaboration, 2016a).
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Figure 3.2: The TT spectrum of the Planck (Planck Collaboration, 2014b), ACT (Das et al., 2014) and
SPT (George et al., 2015) experiments. The consistency with the WMAP9 measurement (Bennett et al.,
2013) as well agreement between the other three experiments shows a sound control of the systematic
effects. (Planck Collaboration, 2014b)

3.6 Constrains on the temperature power spectrum

Since the first detection of the CMB anisotropies by the COBE-DMR experiment (Smoot et al., 1992),
the accuracy in their characterisation has been steadily increasing. The determination of the location
of the first peak was a major landmark, after a tentative measurement by Torbet et al. (1999) the
peak was detected by the BOOMERANG (Mauskopf et al., 2000; Melchiorri et al., 2000) and MAXIMA
(Hanany et al., 2000; Stompor et al., 2001a) balloon experiments. These measurement constrained the
flat geometry of the universe, indirectly confirming the dark energy fraction of the present universe.
The second and third peak were detected by the WMAP satellite (Hinshaw et al., 2007). The most
accurate measurement to date come from the Planck satellite (Planck Collaboration, 2015g) combined
with the ACT (Das et al., 2014) and SPT (George et al., 2015) ground-based experiments, see Fig. 3.2.
The former probes ` ≤ 2500 over the whole sky and the latter are sensitive to smaller scales, reaching
` = 11000.

3.7 Including polarization and tensor perturbations

In this section we move our attention to polarization. Following Kosowsky (1996), we first illustrate how
Compton scattering can produce polarization when the radiation being scattered off is unpolarised but
not isotropic around the electron, more precisely when it has non-vanishing quadrupole moment. Then,
we illustrate how the scalar perturbation underlying the temperature power spectrum also source polar-
ization. We show that another possible source are gravitational waves and, unlike scalar perturbations,
the polarization produced has a B-type component. This latter section is based on Hu et al. (1996).

3.7.1 Compton scattering: polarization from unpolarised light

We consider for simplicity an observation in the −ẑ direction and suppose that the observed radiation
all comes from a single electron that last scattered the CMB, supposed at the centre of the coordinate
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Figure 3.3: The quadrupole moments produce by scalar, vector and tensor perturbations. Assuming
the ẑ axis in the direction of the wave vector they correspond to m = 0,±1,±2 quadrupole moments
respectively.

system. For a single photon, the Compton cross section is given by

dσ

dΩ
=

3σT
8π
|ε̂in · ε̂out|2. (3.51)

ε̂ is the polarization versor of the radiation, orthogonal to the direction of propagation of the photon n̂.
n̂out is ẑ and we chose x̂ and ŷ as a basis for ε̂out. For the photon incoming from the (θ, φ) direction in
spherical coordinates we have

n̂ = (sin θ cosφ, sin θ sinφ, cos θ) (3.52)

and for ε̂in we choose the basis

ε̂1 = (cos θ cosφ, cos θ sinφ,− sin θ) (3.53)
ε̂2 = (− sinφ, cosφ, 0). (3.54)

Since we are assuming that the incoming radiation is unpolarised, the incoming intensity I(n̂in) along ε̂1

and ε̂2 is on average the same (in the sense used in the definition of the Stokes parameters). We allow
however this intensity to be depend on the direction n̂in. Owing to Eq. (3.51), the contribution from
the n̂in direction to Ix, the outgoing intensity on the x̂ axis, is proportional to I(n̂in)[ |x̂ · ε̂1|2 + |x̂ · ε̂1|2 ]
and a similar relation holds for Iy. By averaging over all the possible incoming directions, we get the
total observed Stokes parameters

Q(n̂out) = A

∫
dΩ I(n̂in) sin2 θ cos(2φ)

∝ A
∫

dΩ I(n̂in)(Y2 2 + Y2−2) (3.55)

U(n̂out) = −A
∫

dΩ I(n̂in) sin2 θ sin(2φ)

∝ A
∫

dΩ I(n̂in)(Y2−2 − Y2 2) (3.56)

from which we learn that polarization is produced from unpolarised radiation when (and only when) the
latter has non zero quadrupole moment (` = 2) around the scattering centre. Notice also that not all the
quadrupole moments produce polarization, just the one with m = ±2 (loosely speaking, the ones with
the anisotropies on the plane orthogonal to the line of sight ẑ).

3.7.2 Sources of polarization
In this section we qualitatively explain that scalar, vector and tensor perturbations source polarization
and comment on the salient differences in the polarization patterns that they produce. We consider a
single plane wave at the scattering surface with wave vector k parallel to the z axis.

If the perturbation is of scalar type, it causes bulk flows from hot to cold (effective) temperature
regions. For scalar perturbation equal phase planes are equal temperature, so the flow is along k (or-
thogonal to equal phase planes). An electron that at last scattering is in a trough, a cold region, sees hot
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radiation coming from k̂ or −k̂ and cold radiation coming from the orthogonal directions. It therefore
observes a quadrupolar component of the radiation with m = 0, see Fig. 3.3. In positions different from
the trough the m = 0 nature of the quadrupole moment is preserved, it is just modulated by the same
phase of the oscillatory dynamics.

The vector modes source vorticity in the photon-baryon plasma. As a consequence the velocity field
always satisfies ∇·v = 0. For a single Fourier mode k it implies that the velocity is always orthogonal to
k. Equal phase planes glide on each other at different velocity, depending on their phase in the oscillatory
dynamics. Because of this velocity, an electron at last scattering sees a dipole due to the velocity in its
equal phase plane. Moreover, it sees a quadrupole moment due to the relative velocity between the equal
phase planes “above” and “below” its own. The quadrupolar anisotropy sourced is of type m = ±1, see
Fig. 3.3.

Tensor modes can be seen as gravitational waves. If we consider the equal phase plane of a Fourier
mode k, the space is periodically stretched in a direction and squeezed in the orthogonal direction,
sourcing quadrupole anisotropy lying on the plane orthogonal to the k vector, thus of type m = ±2.

Summarising, the Fourier mode k of scalar, vector and tensor perturbations produce quadrupole
anisotropies respectively with m = 0,±1,±2 at the last scattering surface. In the previous paragraph
we said that, assuming the observation to take place in the ẑ direction, only the m = ±2 quadrupole
produce polarization. So at the poles only tensor perturbations produce polarization. For any other
direction, the amount of polarization produced by scalar, vector and tensor perturbations depends on
how the m = 0,±1,±2 quadrupoles project on the m = ±2 quadrupoles assuming the ẑ axis in the
observation direction. This geometrical dependence causes the different type of perturbation to produce
different amounts of polarization.

The polarization pattern of the scalar case has a notable feature. Since the m = 0 quadrupole is
symmetric around the z axis, the polarization pattern produced depend on θ but not φ. For the same
reason, the polarization vector P can be oriented only either in the êθ direction or in the êφ direction.
Summarising the polarization vector is either parallel or orthogonal to the gradient of its magnitude,
implying that scalar perturbations produce a pure E-type polarization.

Tensor and vector perturbations, on the contrary, produce both E and B modes. One can show that,
at small angular scales, the B/E ratio, equal to 0 for scalar perturbations, is 8/13 for tensor perturbations
and 6 for vector perturbations.

Fig. 3.4 compares the expected power spectra produced by the scalar and tensor perturbations
(the tensor-to-scalar ratio assumed, r = 0.24 is actually excluded to high significance nowadays). The
scalar contribution dominates over the tensor one. Consequently, the cosmic variance of the former is
an obstacle to the measurement of the latter. The only exception is the B-mode polarization, where the
primordial scalar perturbations are expected to have no signal. As we will show in Sec. 3.8, primordial
E modes are converted into B modes due to gravitational lensing. The lensing B signal dominates at
small scales. Therefore, the large scales of the BB power spectrum is where the signal of the primordial
gravitational waves is expected to be more visible.

3.7.3 Constraints on polarization power spectra

The first detection of CMB polarization was published in 2002 by the DASI experiment, which made
statistical detection of both EE and TE.

TE and EE has been characterised accurately with a series of subsequent experiments: BICEP
(Chiang et al., 2010), BOOMERANG (Piacentini et al.), CAPMAP (Bischoff et al., 2008), CBI (Sievers
et al., 2005), DASI (Leitch et al., 2005), QUAD (Brown et al., 2009), WMAP (Bennett et al., 2013) and
QUIET (Bischoff et al., 2011). The most stringent constraints on large and intermediate scales are set
by Planck Collaboration (2015d), see Fig. 3.5, while the small scales are constrained to high accuracy
by ACTPol (Naess et al., 2014a) and SPTPol (Crites et al., 2015).

The lensing B-modes were tentatively detected by Polarbear Collaboration (2014a). Soon after,
BB power was detected to high significance by BICEP2 Collaboration (2014) at large scales. However,
the contribution from galactic dust could not be reliably estimated and removed. This was performed in
a BICEP2-Planck joint analysis (The BICEP2/Keck Array and Planck Collaborations, 2015), in which
lensing B-modes were detected at 7σ and the most stringent constraints on the tensor-to-scalar ratio
were set, r < 0.07 at 95% confidence level. ACTPol (Naess et al., 2014a) and SPTPol (Keisler et al.,
2015) set further constraints at small scales and The BICEP2/Keck Array Collaboration (2016) improved
their constraints, setting the most stringent upper bound on the tensor-to-scalar ratio, r < 0.07 at 95%
confidence level, when combined with Planck and BAO measurements.
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Figure 3.4: The power spectrum of scalar perturbations compared to the one of the tensor perturbations
assuming r = 0.24. Large-scale B modes are the only probe for the primordial gravitational wave which
is not dominated by the signal produced by the scalar perturbations. (Challinor, 2013)

3.8 Lensing

Gravity can bend the trajectory of light rays. While in the Newtonian theory this was obtained by
supposing that the photons had an infinitesimal mass, in general relativity gravity bends the space-
time itself and, consequently, the null geodesics followed by the light are not “straight”. Gravitational
structures act like lenses and the distortion of a background source due to an intervening structure is
called gravitational lensing. This section describes this effect in the context of the CMB, see Hanson
et al. (2010) for a concise and Lewis and Challinor (2006) for a comprehensive review.

The lensing of some source light allows probing the intervening structures. Many modern and forth-
coming experiments probe the evolution of cosmic structures by studying the distortion of the ellipticity
shape of distant galaxies. In the context of lensing, also the CMB is an invaluable probe. This backlight
has indeed the unique properties of being extended across the full sky and being the furthest observable
light, potentially enabling to probe the structure formation of the whole observable universe. Moreover,
since the CMB is linearly polarized, two more Stokes parameters can be exploited in addition to the
total intensity of the radiation. Last but not least, theoretical prediction and observations of the CMB
anisotropies are compatible with Gaussian fluctuations, therefore the non-Gaussian component can be
exploited to constrain the lensing effect.

In order to have an idea of the effect of weak lensing on the CMB, we start with an order of magnitude
analysis. We consider some representative property of the cosmological structure. The characteristic
comoving scale for the inhomogeneities of the gravitational potential is about 300 Mpc and a typical
value for their depth is ψ ∼ 2× 105. A photon approaching such a structure would be deflected by an
angle δβ ∼ 2ψ ∼ 10−4. Since the comoving distance of the last scattering surface is about 14 000 Mpc,
there are approximately 14000/300 ∼ 50 such deflections and the total deviation is about

√
50δβ ∼

7× 10−4 ∼ 2 arcmin. The coherence of this shift is given by the angular size of the structure. Supposing
the typical structure to be halfway between us and the last scattering surface, the coherence scale is about
300/7000rad ∼ 2◦. Therefore lensing consists in a ∼arcminute displacement coherent over ∼degree scales.

3.8.1 The deflection angle and lensing potential

In this section we give a heuristic demonstration of how the displacement between the observed and
original picture is related to the gradient of the gravitational potential integrated along the line of sight.

Consider the trajectory of a photon in a perturbed FLRW metric, schematically represented in Fig.
3.6 in comoving coordinates. The infinitesimal deflection δβ of the trajectory of the photon is related
to the Newtonian potential φ (actually the Weyl potential). It can be shown that, for an infinitesimal
displacement δχ, the infinitesimal deflection is

δβ = −2δχ∇⊥Ψ (3.57)
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Figure 3.5: The top left and right panels show the TE and EE power spectrum from the Planck satellite
(Planck Collaboration, 2015d). The bottom panel shows the current constraints on BB (Courtesy of
Yuji Chinone).

where ∇⊥ψ is the derivative of the potential in the direction orthogonal to the direction of movement of
the photon. Since the δβ and δθ subtend the same comoving size, the following relation holds

Sk(χ∗ − χ)δβ = Sk(χ∗)δθ. (3.58)

Thus the infinitesimal contribution to the deflection angle is

δθ = −2δχ
Sk(χ∗ − χ)

Sk(χ∗)
∇⊥Ψ. (3.59)

In principle, in order to reconstruct the total deflection angle, we should integrate all the infinitesimal
deflections over the path of the photon. However, to first order, the quantities inside this path integral
can be evaluated along the unperturbed path of the photon, this is called Born approximation. The
gradient of the of the potential becomes orthogonal to the line of sight and it is thus related to the
angular derivative (henceforth denoted simply by ∇) by ∇Ψ = ∇⊥ΨSk(χ). The deflection field can be
written as

α(x̂) = −2

∫ χ∗

0

dχ
Sk(χ∗ − χ)

Sk(χ)Sk(χ∗)
∇Ψ(x̂χ, τ0 − χ), (3.60)
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Figure 3.6: Geometry of a single deflection due to gravitational lensing. The plane at the top represents
the last scattering surface while the vertical line is the line of sight. The deflection of the photon trajectory
by δβ at a comoving distance χ causes a displacement between the observed and original direction of the
photon of δθ.

where the conformal time τ0−χ is when the photon was at the comoving coordinates x̂χ. The deflection
field therefore can be written as

α(x̂) = ∇ψ(x̂) (3.61)

where we have defined the lensing potential

ψ(x̂) ≡ −2

∫ χ∗

0

dχ
Sk(χ∗ − χ)

Sk(χ)Sk(χ∗)
Ψ(x̂χ, τ0 − χ), (3.62)

which is nothing but the gravitational potential multiplied by a geometrical factor and integrated along
the line of sight.
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Figure 3.7: (a) The total lensing power spectrum (black) and cumulative contributions as function of
the maximum redshift. While the galaxy surveys probe the lensing potential up to z ∼ 1, the lensing
potential to which the CMB is sensitive receive a substantial contribution from higher redshifts. (b) The
angular power spectrum of the lensing potential from the linear theory compared to the one including
the halofit non-linear correction (Smith et al., 2003). (Lewis and Challinor, 2006)

3.8.2 Convergence and rotation fields

In this section we will work in the flat sky approximation and write the 3-dimensional versor x̂ as a
2-dimensional vector x. The lensed CMB (denoted by a tilde) is related to the unlensed CMB by T̃ (x)

Q̃(x)

Ũ(x)

 =

 T (x+α)
Q(x+α)
U(x+α)

 (3.63)

where α, the deflection angle, is a 2-dimensional vector. Particularly important, themagnification matrix,
related to the derivative of the deflection angle,

M ≡ ∂(x+α)

∂x
(3.64)

is the Jacobian of the lensing remapping of the sphere. We always assume it to be invertible, this is
the mathematical definition of the weak lensing regime. In practice, this is a necessary and sufficient
condition to ensure that the remapping is a diffeomorphism, thus excluding the presence of caustics and
multiple images of the same portion of the last scattering surface. These latter features define the strong
lensing regime and can be seen only in the vicinity of galaxy clusters or compact objects.

The magnification matrix is usually parametrised as follows

M(x) =

(
1 + κ+ γQ γU + ω
γU − ω 1 + κ− γQ

)
(x). (3.65)

The convergence, κ, magnifies the feature in the x direction by a factor 1 + κ while the rotation field,
ω, will rotate it clock-wise by ω radians. The Q-shear stretch the feature in the x axis by (1 + γQ)
while squeezes it by (1− γQ) in the y axis. The U -shear does the same thing in the x = y and x = −y
directions. The formalism has a complete analogy with the polarization field, with the shear being the
equivalent of the Q and U Stokes parameters and the κ and ω being the analogous of the E and B modes
respectively. The shear can be indeed derived from the convergence and rotation fields with Eq. (3.32).

As any vector field, α, can be decomposed into the gradient of a potential and the curl of the
cross-potential,

α(x) = ∇Ψ(x) + ?∇Ω(x), (3.66)
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where the ? denotes the ninety-degree rotation operator. Propagating the decomposition through the
magnification matrix we find

κ = −1

2
∇2ψ (3.67)

ω = −1

2
∇2Ω. (3.68)

Working with the potentials or with convergence and rotation fields is equivalent, the latter being equal
to the former multiplied by k2/2 in harmonic space.

The most important observation about the gradient-curl decomposition is that the rotation field
is very small compared convergence field. Indeed, as it was shown in the previous section, in the Born
approximation the rotation field is zero. Both recent post-Born semi-analytical work (Pratten and Lewis,
2016) and ray-tracing simulations (Calabrese and Fabbian, in preparation) confirm that the post-Born
contribution to the rotation field is undetectable for any realistic experimental configuration. Even for
the convergence field, the post-Born corrections don’t give a relevant contribution to the power spectrum
for any near future observation (Krause and Hirata, 2010; Calabrese et al., 2014; Pratten and Lewis,
2016) but they produce a relevant amount of non-Gaussianity that might be detectable within a decade
(Pratten and Lewis, 2016).

The lensing potential ψ can be used to constrain the history of the gravitational potential Ψ, which
is sensitive to both the primordial perturbations and their evolution. As long as the evolution is linear,
the Fourier modes of the gravitational potential are given by

Ψ(k, τ) = TΨ(k; τ)Rk (3.69)

where R is the primordial comoving curvature perturbation and TΨ is the transfer function that makes
the Fourier modes evolve with the (conformal) time τ . The power spectrum of the lensing potential in
Eq. (3.62) can be rewritten as (Lewis and Challinor, 2006)

Cψψ` = 16π

∫
dk

k
PR(k)

[∫ χ∗

0

dχTΨ(k; τ0 − χ)j`(kχ)

(
χ∗ − χ
χ∗χ

)]2

(3.70)

where, for simplicity we have assumed a flat universe. This expression emphasises the three key elements
that affect the lensing potential power spectrum: the primordial power spectrum of scalar fluctuations,
PR, its evolution through the transfer functions and the geometrical term. Because of these last two
terms different distances contribute differently to the power spectrum (see Fig. 3.7a). In particular, the
lensing potential sensitive to the late time non-linear evolution (see Fig. 3.7b). The non linear power
spectrum is estimated through N-body simulations (Das and Bode, 2008; Fosalba et al., 2008; Carbone
et al., 2009; Calabrese et al., 2014), though codes that compute theoretical CMB and matter power
spectra (such as camb, Lewis and Challinor, 2006) use analytic fitting formulae (e.g. Smith et al., 2003),
reaching per cent-level accuracy up to ` ' 2000.

3.8.3 Reconstructing the lensing potential
In this section we illustrate the most popular technique to estimate the lensing potential from the lensed
CMB sky (Hu and Okamoto, 2002). As in the previous section we adopt for simplicity the flat sky
approximation but the full sky formalism (Okamoto and Hu, 2003) is very similar.

The lensing produces ∼arcmin deflections while CMB fluctuates on ∼degree-scale. Therefore, the
following Taylor expansion is adequate

X̃(x) = X(x+α(x)) (3.71)

= X(x) +α(x) · ∇X(x) +O(α2), (3.72)

where X is any of the Stokes parameters. This equation expresses the lensed CMB X̃ as the unlensed
CMB X plus a first order correction δX̃. This latter term involves the gradient of the of the lensing
potential α = ∇ψ and the gradient of the Stokes parameter ∇X. Since it is a real space scalar product
of these two functions, δX̃ can be equivalently expressed as a convolution of lψl and l′Xl′ in harmonic
space

δX̃l =

∫
dl′

(2π)2
Xl′l

′ · (l− l′)ψl−l′ . (3.73)
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It is insightful to express the polarization Stokes parameters in terms of E and B (see Eq. (3.32)),

δẼl =

∫
dl′

(2π)2
[El′ cos 2ϕl′l −Bl′ sin 2ϕl′l] l

′ · (l− l′)ψl−l′ (3.74)

δB̃l =

∫
dl′

(2π)2
[El′ sin 2ϕl′l +Bl′ cos 2ϕl′l] l

′ · (l− l′)ψl−l′ , (3.75)

where the ϕl′l ≡ ϕl′ − ϕl. We assume the Stokes parameters as well as the lensing potential to be
Gaussian, so

〈X∗l′Xl〉 = δ(l− l′)CXXl (3.76)

〈ψ∗l′ψl〉 = δ(l− l′)l2Cddl . (3.77)

and, in addition,

〈T ∗l′El〉 = δ(l− l′)CTEl (3.78)

while CTBl = CEBl = 0. These equations together with Eq. (3.75) implies that the off-diagonal cor-
relations of the harmonic modes can be used for estimating the displacement field (or equivalently the
lensing potential). For l 6= l′ and any choice X,Y ∈ {T,E,B}

〈X̃lỸl′〉CMB ' 〈XlYl′〉CMB + 〈δX̃lYl′〉CMB + 〈XlδỸl′〉CMB (3.79)
= fα(l, l′)ψαl−l′ (3.80)

where α denotes the XY combination, 〈· · · 〉CMB means ensemble average over realisations of the CMB
(not the lensing potential) and the proportionality constant fα(l, l′) depends only on the power spectra of
the unlensed CMB and some known geometrical factor (see Hu and Okamoto, 2002, Table 1). Therefore,
in order to estimate dL trough the α cross correlations we can coadd all the products as the one in Eq.
(3.80) such that L = l− l′

dαL =
A(L)

L

∫
dl

(2π)2
XlYl′F

α(l, l′). (3.81)

Since for different l and l′ the product XlYl′ has typically different signal to uncertainty, the generic
Fα(l, l′) weights their coaddition. The factor

A(L) ≡ L2

[∫
dl

(2π)2
fα(l, l′)Fα(l, l′)

]−1

(3.82)

ensures that the estimator is unbiased.
The power spectrum of the displacement field can be computed from the dαdβ product for any α and

β, it is therefore computed from the 4-point correlation function of the observed CMBmaps. For example,
in The Polarbear Collaboration (2014) the α, β = EE,EB and α, β = EB,EB were considered. In
general one can combine all the dα into a minimum variance coaddition dmv. For current experiments
the dmv is dominated by the αs that involve temperature, TT in particular. However, as the sensitivity
of the experiments increases, polarization will take over and eventually the minimum variance estimator
will be dominated by the EB estimator (Hu and Okamoto, 2002).

3.8.4 The lensed CMB power spectra
Similarly to the previous section, the lensed CMB power spectra can be estimated by making a lowest
order expansion that expresses the lensed Stokes parameters in terms of the unlensed CMB and the
lensing potential. The only major difference is that in order to get per cent-level accuracy up to ` ∼ 2000
we have to include second order terms,

X̃ = X +α · ∇X +
∑
ij

αjαi∇i∇jX +O(α3). (3.83)

This expression is then written in Fourier domain and the power spectrum is computed up to the
second order. Making the usual Gaussianity assumptions about the primordial CMB and assuming
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Figure 3.8: Temperature (a) and polarization (b) lensed power spectra (top) and their difference with
respect to the unlensed spectra (bottom). The dashed line is the power spectrum of the lensing potential.
(Lewis and Challinor, 2006)

CTBl = CEBl = CBBl = 0, the lensed power spectra are (Hu, 2000)

C T̃ T̃l ' (1− l2Rψ)CTTl +

∫
dl′

(2π)

[
l′ · (l− l′)

]2
Cψψ|l−l′|C

TT
l′ (3.84)

CẼẼl ' (1− l2Rψ)CEEl +

∫
dl′

(2π)

[
l′ · (l− l′)

]2
Cψψ|l−l′|C

EE
l′ cos2 2(φl′ − φl) (3.85)

C T̃ Ẽl ' (1− l2Rψ)CTEl +

∫
dl′

(2π)

[
l′ · (l− l′)

]2
Cψψ|l−l′|C

TE
l′ cos 2(φl′ − φl) (3.86)

CB̃B̃l '
∫

dl′

(2π)

[
l′ · (l− l′)

]2
Cψψ|l−l′|C

EE
l′ sin2 2(φl′ − φl), (3.87)

where we used half the total deflection angle power

Rψ ≡ 1

4π

∫
dl

l
l4Cψψl . (3.88)

The integral term is basically a convolution of an unlensed CMB spectrum with the spectrum of the
lensing potential. Notice that for BB, we are assuming no primordial power and the unlensed spectrum
convolved is actually EE: these are the so-called lensing B modes. The lensed spectra are reported in
Fig. 3.8.

At large scales and intermediate scales, for everything but BB, the result of the convolution is a
blurring of the acoustic peaks with a characteristic kernel width of δl ∼ 50. Consequently, the peaks of
the lensed spectra are smoother compared to the unlensed one. This effect is more visible on EE then
TT because the former has a sharper structure of peaks (compare the a and b bottom panels of Fig.
3.8).

As far as the large scales of BB are concerned, since EE has little power at small l, most of the
contribution of the convolution comes from l � l′ and thus we can assume Cψψ|l−l′| ∼ Cψψl′ . The integral
then becomes a constant contribution, independent of l. Consequently, at large scales the power spec-
trum of the lensing B modes is approximately white, for standard ΛCDM CB̃B̃l ∼ 2× 10−6 µK2, which
corresponds to the power of a ∼5 µKarcmin noise level.

At small scales, primordial spectra fall sharply because of the diffusion dumping, therefore the con-
volution term of both temperature and polarization spectra results in an increase of power at l > 3000.
Moreover, since the primordial term (first term) of the lensed spectra is negligible, the lensed EE and
BB converge toward the same spectrum (see the top panel of Fig. 3.8b).
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Figure 3.9: Effect on the lensing potential of a neutrino mass
∑
νmν = 0.1 meV and an equation of state

of dark energy w = .8, compared to the standard massless neutrino and w = −1 case. The error boxes
are the cosmic variance. (Lewis and Challinor, 2006)

3.8.5 Neutrino mass and dark energy from CMB lensing
The neutrino mass and dark energy are main drivers of the quest for lensing B-modes. The physics
behind the primordial anisotropies is basically insensitive to these two components. At recombination
the standard dark energy was negligible and neutrinos were relativistic, consequently their number of
degrees of freedom mattered but not their mass. On the contrary, lensing is sensitive to late times, when
the mass of the neutrinos becomes relevant and dark energy starts dominating the universe. Therefore,
it is more effective in probing the total mass of the neutrinos and the properties of dark energy. In Fig.
3.9 and 3.10 we show the effect of a neutrino mass

∑
νmν = 0.1 meV and an equation of state of dark

energy w = 0.8, compared to the standard massless neutrino and w = −1 case. These scenarios affect
both the lensing potential and the CMB power spectrum. BB is particularly sensitive because it is not
affected by the cosmic variance of the unlensed spectrum, which constitutes the dominant contribution
to the TT and EE spectrum.
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Figure 3.10: Effect on the CMB power spectrum of a neutrino mass
∑
νmν = 0.1 meV and an equation

of state of dark energy w = .8, compared to the standard massless neutrino and w = −1 case. The error
boxes are the cosmic variance. (Lewis and Challinor, 2006)

3.8.6 CMB lensing measurements

In the last decade we have seen tremendous progress in the measurements of CMB lensing, moving
from first detections to stringent cosmological constraints. Measurements are of two types. The lensing
potential can be reconstructed from CMB data only, as explained in Sec. 3.8.3. Alternatively, the
lensing potential estimated with the quadratic estimators (Eq. 3.81) can be correlated with tracers of
the gravitational potential, like the Cosmic Infrared Background (CIB) or galaxy and radio surveys:
since they are sensitive to the same gravitational potential (at least for some redshift range) they are
expected to have a positive correlation.

The first detection was made by Smith et al. (2007) through cross-correlation of the quadratic es-
timator applied on WMAP maps and radio galaxy counts from the NVSS survey. Similarly, Hirata
et al. (2008) correlated the WMAP-estimated potential with the NVSS and SDSS surveys. Using ACT
data and data from the Canada-France-Hawaii Telescope, Hand et al. (2015) provided the first cross-
correlation between CMB lensing and galaxy lensing.

The first detection of the lensing potential from CMB only–through the four point correlation– was
done by ACT (Das et al., 2011). Soon after, the constraints were improved by SPT (van Engelen
et al., 2012) with a similar measurement. This type measurements started to really deliver cosmological
constraints with the Planck satellite (The Planck Collaboration, 2014): compared to the CMB power
spectrum constraints, lensing—detected at 25σ—allowed to double the constraints on curvature and
partially break the τ -As degeneracy.

When polarization data became available, polarization lensing estimators were used as a mean of
detecting B modes. Cross-correlating SPTpol data with the CIB map from Herschel-SPIRE Hanson
et al. (2013) obtained the first B-mode detection. Later the same year, Polarbear Collaboration
(2014b) performed a cross-correlation of its polarization quadratic estimators with the Herschel-ATLAS
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Figure 3.11: Lensing power spectrum reconstructed by Planck (The Planck Collaboration, 2014; Planck
Collaboration, 2015d), SPT (van Engelen et al., 2012) and ACT (Das et al., 2014). (Image credits
ESA/Planck)

Figure 3.12: Intensity (left) and polarised (right) spectrum of the CMB and the foregrounds. Figure
credits: Planck.

map. Also ACTpol performed a similar analysis by cross-correlating its temperature- and polarization-
derived convergence fields with the CIB maps from Planck (van Engelen et al., 2015). In addition, the
CMB lensing from galaxy clusters has been recently measured by ACT (Madhavacheril et al., 2015) and
SPT (Baxter et al., 2015).

The first lensing reconstruction using polarization data alone was performed by The Polarbear
Collaboration (2014). A similar analysis was recently published by The BICEP2/Keck Array Collab-
orations (2016). As previously mentioned, polarization data will eventually dominate the constraints
on the lensing potential. However, we are not at that stage yet: the most stringent constraints on the
lensing potential are given by Planck Collaboration (2015d), see Fig. 3.11, and are dominated by the
TT quadratic estimator.

3.9 CMB foregrounds

One of the reasons why the CMB has been so powerful in constraining cosmology comes from the fact that
observations did not encounter fundamental obstacles: improving constraints required mainly increasing
the sensitivity of the experiments. Nowadays the situation is changing. For example, the constraints
from the temperature power spectrum are cosmic variance limited. Another major obstacle comes from
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the foreground emission by other astrophysical sources. Indeed, before the era of B-mode observation
started, it was always possible to find a region in the sky and an observational frequency in which
the amplitude of the CMB signal at large and intermediate scales was dominating over the foreground
emission. However, the primordial B-mode signal (if any) is weaker than the foreground emission and
properly disentangling between CMB and foreground has become more and more challenging.

Foregrounds are mostly of galactic origin and thus their intensity is typically more intense close
to the galactic plane and fainter at galactic poles. Nevertheless some of them are extragalactic and,
consequently, their signal is more uniform across the sky.

We now summarise the principal CMB foregrounds, emphasizing those relevant to polarization mea-
surements.

Thermal dust. The relevance of thermal dust for B-mode measurements became strikingly clear after
BICEP2 Collaboration (2014) and the follow-up study The BICEP2/Keck Array and Planck Collabora-
tions (2015), which assessed that the detected large scales B-mode signal interpreted as a detection of
r = 0.2+0.07

−0.05 was in fact due to the foreground emission of galactic dust.
Part of the interstellar medium is indeed in the form of dust grains with size ranging from few nm

to several µm. They are heated by ultraviolet and visible light and re-emit thermal radiation in the
far-infrared. However, the tail of their emission law is relevant also in the microwaves.

Dust grains can have an asymmetric shape and emit preferably along their shortest axis, producing
a polarized emission. The orientation of the grains in a region of the galaxy can be correlated due to the
presence of a galactic magnetic field. Consequently, the emission of thermal dust can be polarized, with
a typical polarization fraction ranging from few per cent up to ∼ 20%. Remarkably, directions with a
high dust column density are less polarized due to the line-of-sight integration or, in other words, the
polarization fraction can be stronger where the dust intensity signal is fainter.

The latest constraints from the Planck satellite (Planck Collaboration, 2016b) show that the dust
emission law is consistent with a modified black-body with temperature Td = 19.6 K and a spectral index
of βd = 1.59, while the polarised angular power spectrum is consistent with a power law C` ∝ `α with
α = −2.45 ± 0.02 (interestingly, the BB power spectrum has approximately half the amplitude of the
EE one). Therefore, dust emission is particularly important at high frequencies and large angular scales.

Synchrotron. At low frequencies another foreground obstruct CMB measurements: the synchrotron
emission produced by cosmic-ray electrons spiraling around the galactic magnetic field. Its emission law
is well described by a power law νβs steeply decreasing, βs = −3.16±0.40 (Planck Collaboration, 2015d).
Also the angular power spectrum follows a power law ∝ `α, with α ∈ [−3.0,−2.6], depending on the
galactic latitude (La Porta et al., 2008). At high galactic latitudes the emission is polarised at 10− 40%
level (Planck Collaboration et al., 2015a) and has to be taken into account for B-mode studies (see e.g.
Krachmalnicoff et al., 2015)

Point sources Some galaxies host an active galactic nucleus, which is thought to be the accretion
of a massive black hole. These galaxies have a strong synchrotron emission and are loud in the radio
frequencies. These sources have a Poissonian statistics and therefore have white angular power spectrum.
At small scales the signal from unresolved point sources dominates over the CMB signal, which is
suppressed by Silk dumping. Point sources can be polarized, typically between 1 and 5%, which makes
them a potential foreground for small scales CMB polarization measurements.

Carbon monoxide The spectrum of the Milky Way interstellar medium contains line emissions. The
most relevant for CMB observational frequencies is the rotational line emission from carbon monoxide
(CO). The most significant transitions are J = 1 → 0, J = 2 → 1 and J = 3 → 2 at approximately
115 GHz, 230 GHz and 345 GHz respectively. CO lies mostly in the denser parts of the interstellar medium
and thus its signal is concentrated at low and intermediate galactic latitudes. For more details and a full
sky map of CO emission see Planck Collaboration (2014d).

CO emission is not expected to be significantly polarized but any line emission is potentially pernicious
for polarization measurements. At different frequency in its band-pass, each detector has a different
response. If the incoming signal has a smooth spectrum the detector-specific response is integrated
over the band-pass. However, the signal recorded from line emission is very sensitive to the to specific
response of different detectors. Therefore, when taking the difference between the signal of two orthogonal
detectors the CO contribution does not perfectly cancel out and some intensity-to-polarization leakage
is produced, typically of the order of few per cent.
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Figure 3.13: Estimated angular power spectrum of the polarised foregrounds at different frequencies
and for different sky fractions. For comparison, the theoretical CMB power spectrum is also reported,
including both the lensing B modes and primordial B modes for different values of the tensor to scalar
ratio r. (Errard et al., 2016)

Cosmic infrared background The infrared emission by the interstellar medium of all galaxies in
the universe forms a background called cosmic Infrared background (CIB). The CIB carries information
about the galaxies at all epochs and therefore it enables to probe objects that are too distant to be
resolved. The CIB was detected for the first time by Puget et al. (1996) using data from the FIRAS
instrument onboard the COBE satellite. Important constraints on the CIB spectrum were set in the
past years thanks to the data from the Hershel Space Observatory (Béthermin et al., 2012).
For reviews on the CIB see Hauser and Dwek (2001) and Kashlinsky (2005).

Free-free Free electrons interact with ions in our galaxy and produce bremsstrahlung radiation. This
component is relevant at low frequencies and has a steep spectrum. Due to the incoherent nature of
the process, the signal produced is not polarized to relevant levels and is negligible in CMB polarization
measurements.

Others. For completeness we mention, without elaborating on, other foreground signals which are not
expected to be relevant to CMB polarization studies. The Zodiacal light is produced by the emission from
interplanetary dust. Spinning dust signal is produced by dust grains with a magnetic dipole spinning at
GHz frequencies. Magnetic dust emission is caused by changes in the magnetization of dust grains due
to thermal fluctuation.

3.9.1 Foregrounds in future B-mode measurements.

Compared to previous CMB measurements, the detection of primordial B-modes is particularly chal-
lenging because the target signal is covered by foregrounds.

Foregrounds can be distinguished from the CMB signal owing to the different frequency dependence
of their spectrum. The process of reconstructing the CMB from a mixture of CMB and foregrounds,
measured at multiple frequencies, is called component separation.

Until a few years ago the approach of most of the ground-based B-mode experiments was to observe
in one frequency band only a region of the sky known to have negligible foreground emission. Recent
studies have demonstrated that no sky area can be safely considered foreground-free, especially if the
large scales are to be probed. All the CMB experiments are thus upgrading their hardware, in order to
have the multi-frequency coverage needed for component separation.

In the design of forthcoming experiments, it is crucial to assess how a given configuration will perform
in terms of component separation. Errard et al. (2011) developed an efficient framework for accomplishing
this task, enabling the quick exploration of large sets of experimental configurations.
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Such techniques have been heavily used in designing and optimising the future instalments of the
Polarbear observatories, including PolarbearII and Simons Array (see e.g. Fig. 5.9c and Sec. 5.7).
As they have not been applied to the Polarbear data sets, I do not elaborate on them in this thesis,
the details are available in the quoted paper.

A key assumption in this method is that the sky model adopted in the component separation process
matches the actual sky emission. During my thesis I worked on extending this method to the case in
which the sky is more complex then the model assumed. The method is capable of efficiently evaluating
the consequent bias and uncertainty of the cosmological parameter estimation, as described in Stompor
et al. (2016).

3.10 Summary

The CMB anisotropies are a goldmine of cosmological information. Measuring B-modes is the most
powerful probe we have for primordial gravitational waves and, consequently, it is a unique window on
inflation and the physics of the early universe. On the other hand, the lensing B modes are very sensitive
to structure formation and consequently to the properties of dark energy and the neutrino mass.

A successful detection and characterization of the CMB B-mode polarization will have an enormous
impact not only on the modern cosmology but also on fundamental physics. However, extracting this
invaluable information requires accurate measurements and sophisticated data analysis techniques. This
topic is the subject of the rest of the present work.





Chapter 4

Map-making and power spectrum estimation
for the CMB experiments

Nowadays, in the quest for B-modes, the time-ordered data (TOD) of CMB experiments consist of tens
of billions of samples. This volume is impractical for cosmological studies (but see e.g. Wandelt et al.,
2004, who estimate cosmological parameters directly from the TOD), therefore data are compressed
in a sequence of intermediate steps that aim at reducing the data size while preserving the relevant
cosmological information. This operation is typically done in two steps: map-making and power-spectrum
estimation. The former reconstructs a map of the observed sky signal, the latter use this map to
estimate the power spectrum of the CMB across the sky. These problems are well understood and, under
broad assumptions, these operations can be lossless (Tegmark, 1996). However, such algorithms are not
applicable in modern data analysis. The growing size and the complexity of present and forthcoming
CMB datasets poses serious computational challenges and require the design of new algorithms capable
of extracting the cosmological information within accessible computational costs.

In this chapter, I introduce the map-making formalism as used later in the Polarbear data analysis,
Sec. 4.1. The major focus is the inclusion of the time-domain filtering in the formalism. In Sec. 4.2 we
describe in detail what are the consequences of this filtering and, more specifically, when it can prevent
a faithful reconstruction of the sky map. We also discuss the typical filters applied in the contest of
ground-based CMB experiments. This part is based on Poletti et al. (2016). Then, in Sec. 4.3 we
discuss the second step of the information compression, the power-spectrum estimation. We focusing on
pseudo-power estimation methods in particular, as they are the only computationally accessible option
for high resolution experiments.

4.1 Map-making

Map-making aims at compressing the volume of the data—typically by 3 to 6 orders of magnitude—while
preserving the cosmological information (e.g., Janssen and Gulkis, 1992; Wright et al., 1996; Tegmark,
1997). Map-making is usually phrased as a linear problem and the generalized least square (GLS)
technique gives a closed form solution. In this section we illustrate this formalism. Then, we amend the
formalism to accommodate the presence of the time domain filtering, always required in the analysis.
Finally, we explain the possible degeneracies in the formalism and how to deal with them.

4.1.1 The standard map-making
The starting point of map-making is the calibrated time ordered data recorded by the detectors. We
collect all these time samples in a vector, d, which contains thus Nt elements. The scanning strategy of
the telescope and the polarization modulation defines how the sky signal contributes to each measured
sample, dt, which can be then represented as,

dt = Ipt + cos(2ϕt)Qpt + sin(2ϕt)Upt + nt. (4.1)

Here nt is the noise, I, Q and U are the Stokes parameters of the incoming light for the sky pixel p being
observed at time t. ϕ is the orientation of the linear polarization sensitive detector projected on the sky.

51
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We assume in this work that the instrumental beams are axially symmetric and are therefore convolved
with the sky signals, which we aim at estimating. There are two important, specific cases of (4.1), which
we will find useful further in this work. One is the total intensity measurement,

dt = I(pt) + nt, (4.2)

and the other is the polarization-only measurement,

dt = cos(2ϕt)Qpt + sin(2ϕt)Upt + nt. (4.3)

All the Stokes parameters characterizing the sky signal in Np observed sky pixels can be arranged in a
single signal Ns-vector, s. For concreteness, we sort the vector in such a way that the Stokes parameters
for one pixel are followed by the Stokes parameter for a subsequent one. The entire data vector, d, can
be then represented in a compact way as,

d = As+ n. (4.4)

Here, noise vector n is assumed to have zero expected value and covariance matrix Cn. The pointing
matrix A is a Nt by Ns known matrix. Each row of A defines a linear combination of the signal, which
contributes to the measurement at the time corresponding to the row. A column of A is a “time domain
signature” of the corresponding entry of s, telling us when a given sky pixel was observed and with what
weight it contributed to the measured signal.

The least squares estimator

Map-making is a linear statistical problem. The generalised least square (GLS) method provides the
following estimator of the signal vector

ŝ = (A>MA)−1A>Md, (4.5)

for any choice of the positive definite weight matrix, M . An intuitive geometrical interpretation of the
estimator is provided at the end of Sec. 4.1.4. The estimator is unbiased: 〈d〉 = As and therefore
〈ŝ〉 = (A>MA)−1A>MAs = s.

It is derived as minimisation of the quadratic form

g(s) = (As− d)>M(As− d), (4.6)

which can be analytically computed as

0 =
∂g(s)

∂s
= 2

(
As

∂s

)>
M(As− d) = 2A>M(As− d). (4.7)

Since M is positive definite, A>MA is non-singular and thus invertible if and only if A is an injection,
i.e. if its column are linearly independent. For time being, we assume that A is indeed full rank, we
discuss this issue later on. The covariance of the matrix of the estimator is

C ŝ = (A>MA)−1(A>MCnMA)(A>MA)−1 (4.8)

Maximum likelihood estimator

If the noise vector is assumed to have a Gaussian distribution, the likelihood function takes the following
form

−2 lnL(s) ≡ n>C−1
n n

= (As− d)>C−1
n (As− d) + const. (4.9)

By a change of the constant in the previous equation, the likelihood can be expressed in the following
form

−2 lnL(s) = [(A>C−1
n A)−1A>C−1

n d− s]>A>C−1
n A[(A>C−1

n A)−1A>C−1
n d− s] + const. (4.10)
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Since A>C−1
n A inherits the positive definiteness from Cn, the RHS clearly has a minimum when the

(A>C−1
n A)−1A>C−1

n d = s. Therefore, forM = C−1
n the GLS estimator in Eq. (4.5) coincide with the

maximum likelihood estimator. In this specific case, the covariace matrix of the estimator reduces to

C ŝ = (A>MA)−1 (4.11)

This estimator not only is minimum variance—the Fisher information of the estimator and the TOD
is the same—but also saturates the Creamér-Rao bound, i.e. the variance of the estimator is the inverse
of its Fisher information. Consequently, for any mode (component of s), any other unbiased estimator
has larger variance. In a more picturesque way, this means that for any other unbiased estimator ŝ′,
the ellipsoid defined by the vectors u such that (u − s)>C−1

ŝ′ (u − s) = const lies everywhere outside
(u− s)>(A>C−1

n A)(u− s) = const.

4.1.2 The need for filtering
The analysis of cosmic microwave background (CMB) datasets typically requires some filtering of the
raw TOD. The purpose of this operation can be removing from the TOD some signal different from the
CMB, for example the ground pickup. Another reason can be that some component of the noise have a
very large variance. It is the case of the low-frequency noise, which typically arises either from the atmo-
spheric contamination or instrumental thermal drifts. Often, exploiting the corresponding time-domain
information does not provide significant constraints on the signal but complicates the implementation
and increases the computational cost of the estimator. Consequently, such modes are filtered, effectively
discarding any information about the signal they might contain. Both of these examples will be studied
in more detail in Sec. 4.2.4.

In the following section we explain how to build a filtering operator that properly removes all the
unwanted components. We show that a heuristic unbiased map estimator can be built by substituting
the filtering operator to the weight matrix in Eq. (4.5).

We continue with the meta-pixel approach and show that the same estimator can be equivalently
obtained by introducing extra components in Eq. (4.4) and solving for the parameters of this extended
data model.

4.1.3 The filtering operator
The specific filters employed are adapted to the nature and the amount of the contaminating signals.
However, filtering generally works as follows. The contaminating signal can be written as an unknown
amplitude y multiplying a known time domain template t. Filtering sets to zero the amplitude of the t
component of the timestream:

d′ =
(
1− t(t · t)−1t>

)
d ≡ F td, (4.12)

so that t · d′ = 0.
In the rest of this section we refine this elementary filtering operation in order to properly handle an
arbitrary number of templates ti that we collect in the columns of a single template matrix T . Our
filtering operator will be

F T = M −MT (T>MT )−1T>M (4.13)

where M can be any full rank matrix.
The simplified approach, actually adopted by many of the current CMB data analysis pipelines (e.g.

Polarbear Collaboration, 2014a; BICEP2 Collaboration, 2014; Keisler et al., 2015), is to sequentially
apply the filters F ti . This approach has two drawbacks. First, the result depends on the order of the
filters because in general

F tiF tj = 1− tit>i − tjt>j + ti(t
>
i tj)

−1t>j 6= (4.14)

6= 1− tit>i − tjt>j + tj(t
>
j ti)

−1t>i = F tjF ti , (4.15)

where, for simplicity, we have assumed that all the templates are normalised, t>i ti = 1. Second, the
templates are not completely filtered out since, in general

F tiF tj tj = 0 but F tiF tj ti = −tjt>j ti + ti(t
>
i tj)

−1t>j ti 6= 0. (4.16)
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Both these properties of the sequential filtering are caused by the fact that in general the templates are
not orthogonal, t>i tj 6= 0.

The remedy consists in orthogonalising the templates before building the filtering operator. We build
an orthonormal version of the template matrix as

T̃ = T (T>T )−1/2, (4.17)

where (T>T )−1/2 is any matrix that once squared gives (T>T )−1. We note that the number of columns
of T̃ may be smaller than that of T , this happens when some of the original templates are not linearly
independent. In such cases, the matrix (T> T )−1 has to be interpreted as the pseudo-inverse. The fact
that the columns of T̃ are orthonormal is apparent from

T̃
>
T̃ = (T>T )−1/2> T> T (T>T )−1/2 = 1. (4.18)

They are also a basis for the columns of T , the space of the modes that we want to filter out. The fact
that (T>T )−1/2 is not unique reflects the fact that the choice of the basis of the columns of T is not
unique.

Now that we have an orthonormal version of the templates we can build the filtering operator

F T = 1− T̃ T̃>

=
∏
i

F t̃i
(4.19)

= 1− T (T>T )−1T>. (4.20)

Notice that the order in the product in Eq. (4.19) does not matter because the t̃i are orthogonal. Since

F TT = 0, (4.21)

any possible unwanted contribution Ty is correctly filtered out by F T . This property persists if we
generalise Eq. (4.20) to Eq. (4.13) by adding an arbitrary full rank weight matrix M .

With help of this operator we can now generalize the map-making equation, (4.5), as

ŝ = (A>F TA)−1A>F Td, (4.22)

where F T acting upon d removes all the unwanted modes and weights the others as requested, while
the matrix operator (A>F TA)−1 ensures that the estimator is unbiased. Indeed, inserting (4.4) for d
we get,

ŝ = s+ (A>F TA)−1A>F Tn, (4.23)

and thus,

〈ŝ− s〉 = 〈(A>F TA)−1A>F Tn〉 = 0, (4.24)

where the average is taken over the statistical ensemble of instrumental noise realizations and 〈n〉 = 0.
The map domain noise covariance matrix of the unbiased map estimator is (see, e.g., Tegmark (1997) or
Stompor et al. (2001b))

C ŝ ≡ 〈(ŝ− s)(ŝ− s)>〉
= (A>F TA)−1A>F T 〈nn>〉F TA(A>F TA)−1

= (A>F TA)−1A>F T Cn F TA (A>F TA)−1 (4.25)

If M = C−1
n then this can be rewritten in a compact way as,

C ŝ = (A>F TA)−1, (4.26)

owing to the fact that, F T M
−1 F T = F T .
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4.1.4 Meta-pixel approach
We note that an equation analogous to (4.22) can be derived from the meta pixel approach (e.g., Stompor
et al., 2001b; Cantalupo et al., 2010). In order to do so, let us generalize the data model in Eq. (4.4) to
incorporate the effects discussed in Sec. 4.1.3. This can be done as follows,

d = As+ Ty +w. (4.27)

where T is in general a set of time domain templates that we want to filter out, y is their unknown
amplitude and w is the noise. Rewriting Eq. (4.27) as,

d = [A,T ] [ sy ] +w. (4.28)

Estimating the unknown parameters for this data model or for the one in (4.4) is formally equivalent.
Similarly to Sec. 4.1.1, we assume that [A,T ] is full rank: the time domain signature of the unknown
parameters are all linearly independent, postponing a more pertinent discussion on degeneracies to Sec.
4.2. The GLS estimator for Eq. (4.27), written in a block wise fashion is

ŝ = (A>F TA)−1A>F Td (4.29)
ŷ = (T>FAT )−1T>FAd (4.30)

where operators F T and FA are filtering operators as in (4.13). Given the relevance of Eq. (4.29) in
this work, we provide a full derivation in Appendix A.

As (4.29) shows, ŝ can be computed without explicitly solving for the amplitude of the templates
ŷ. We call this the direct approach. Moreover, this is exactly the same expression we derived in the
previous section, (4.22). There are however several advantages to this derivation. For instance, it shows
that if the weights are chosen appropriately, i.e., M = Cn

−1, then the map estimated via (4.22) is both
maximum likelihood and minimum variance. Moreover if the Bayesian perspective is adopted, then the
posterior probability distribution for the combined vector of unknowns in (4.28), i.e., [ sy ], is Gaussian
and the second term in the expression for the filtering operator, F T , (4.13), arises simply as a result of
a marginalization of this posterior over the unknowns contained in y assuming flat priors.

This manner of deriving the estimator also suggests that the map can be solved with a two-step
approach. If instead of using (4.29) we first estimate ŷ, then ŝ can be estimated using the following
formula (see Appendix A for the proof),

ŝ = (A>MA)−1A>M(d− T ŷ), (4.31)

which, for simple M may be much easier to solve than (4.29).
This latter approach provides a basis for the destriping technique (e.g., Poutanen et al., 2004; Kei-

hänen et al., 2004, 2010). We emphasize that the direct or two-step methods are formally equivalent:
they lead to the same estimate of the sky signal and they filter the same components of the TOD vector
d. Eq. (4.31) is usually easy and cheap to implement as the weight matrix, M , is typically taken to
be diagonal in this context. Choosing between the direct or two-step approach is therefore driven by
the cost of (4.29) compared to (4.30). These two equations require handling dense algebraic objects of
a dimension equal to the number of columns of A and T respectively. The former is proportional to
the number of pixels observed while the latter to the number of temporal templates that have to be
filtered. As this last number typically grows with the number of detectors and the presence of spurious
signals in the observations, the direct method provides a potentially attractive approach for modern
experiments, which employ kilo-pixel arrays of detectors. This includes ground-based observatories, such
as Polarbear (The Polarbear Collaboration, 2014) but also planned CMB satellite missions, e.g.,
LiteBIRD (Matsumura et al., 2016) or CORE (The COrE Collaboration, 2011). In contrast, the two-
step approach was very well adapted to experiments with a limited number of detectors observing big
sky areas, which therefore produced maps with a large number of pixels but needed few templates to
be removed. For these reasons, it has played a particularly prominent role in the analysis of the Planck
data (Burigana et al., 1999; Maino et al., 1999; Tristram et al., 2011; Planck Collaboration, 2015a,b).

If M is diagonal then A>MA and T>MT are usually sparse and structured and therefore easy to
compute and invert. On the contraryA>F TA and T>FAT are dense and potentially big. The size of the
former matrix is proportional to the number of pixels, ranging from 105 from ground-based experiments
to 109 for satellites covering the whole sky. The size of the latter matrix also typically exceeds 108 for
kilo-pixels arrays. These matrices are not only computationally-heavy to perform algebraic operations
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on but often prohibitively large to permit their explicit computation and/or storage. As we discuss
in more detail in Sec. 4.1.5, computing the inverse of dense matrices is computationally intensive and,
consequently, the solution of the inverse problem either in (4.29) or in (4.30) would ideally be found using
some iterative linear equations solvers such the preconditioned conjugate gradient method (PCG) (e.g.,
de Gasperis et al., 2005; Cantalupo et al., 2010; Szydlarski et al., 2014). However, the convergence of
these iterative solvers may be hard to attain if the matrices are not well conditioned. We discuss the
PCG approach in the context of the extended map-making equation, (4.22), in Sec. 4.2.3, from the
formal point of view, and in Sec. 6.6.2 in the specific context of Polarbear.

Biased estimator

Performed directly or iteratively, the inversion of A>F TA (or T>FAT ) is the bottleneck of both the
development and the computational time. This is why many experiments preferred the use of the
following biased map estimator

ŝ = (A>MA)−1A>F Td. (4.32)

As F T still acts upon the data vector, d, the templates are still explicitly filtered out of the data. However,
this is not accounted for in the system matrix, (A>MA)−1, which therefore does not correct for the
filtering but only for the weighting. IfM is diagonal, this choice simplifies enormously the implementation
and drastically reduces the computational cost. The price to pay is a bias in the estimator. This bias is
usually evaluated and removed at the power spectrum level using Monte Carlo simulations and typically
requires some additional assumptions (e.g., Hivon et al., 2002). This approach is thus most frequently
considered to be a part of the power spectrum estimation pipeline.

The presence of the bias on the map level is apparent as we have,

Bias = 〈ŝ− s〉 =
[
(A>MA)−1A>F TA− 1

]
s, (4.33)

which does not vanish in general. The covariance of the estimated map reads,

C ŝ ≡ 〈(ŝ− 〈ŝ〉)(ŝ− 〈ŝ〉)>〉
= (A>MA)−1A>F T 〈nn>〉F TA(A>MA)−1

= (A>MA)−1A>F T Cn F TA (A>MA)−1. (4.34)

Therefore, if the filters are chosen in the way that matrix F T Cn F T is nearly diagonal for any diagonal
weights, M , then we can take them to be, M = diag (F T Cn F T ), yielding,

C ŝ ≈ (A>MA)−1, (4.35)

and therefore the covariance can have a particularly simple structure. However, generally this is rarely the
case and instead even if the true noise is uncorrelated and M = C−1

n , the expression for the covariance
reads

C ŝ = (A>MA)−1A>F TA (A>MA)−1, (4.36)

and thus it is a dense matrix with potentially non-negligible, off-diagonal correlations.
We note that the informational content of both, the unbiased and biased, maps is the same as one

can be derived from the other via an invertible linear operation. Indeed,

ŝunbiased = R ŝbiased (4.37)

whereR ≡ (A>F TA)−1 (A>MA) is an invertible matrix. However, the keystone of the biased approach
is that no attempt is ever made to estimate the matrix R. Consequently though the same information is
contained in both maps, it is encoded differently in each of them and whenever the biased and unbiased
maps are further processed in a similar way, the information is compressed differently in both cases,
giving rise to different statistical properties of the resulting estimator.
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Geometrical interpretation of the estimators

In this section I re-examine the key map-making equations from the geometric perspective and shows
how the estimators can be interpreted as orthogonal projections in the vector space of time domain
vectors. We start from the standard map-making and then move to the meta-pixel approach, both direct
and two-step. For simplicity, but without losing generality, we will consider M = 1.

Before starting, we describe briefly the orthogonal projector (for ease of reading we will drop “orthog-
onal” from now on). Consider the columns of X to be the basis of the subspace span(X). The projector
on span(X) is

PX = X(X>X)−1X>. (4.38)

For any z ∈ span(X), PXz = z. For any z orthogonal to span(X), PXz = 0. Any projector is
idempotent: PXPX = PX . It is true also for the projector on the space orthogonal to span(X):
P⊥X = 1−PX (notice the similarity with the filtering operator). If X is not full rank and X>X is not
invertible one can still build the orthogonal projector by using the pseudoinverse in place of the inverse.

Forgetting for a second about s, the data model Eq. (4.4) can be written as d = a + n, with
a ∈ span(A). We now build the estimator â. The RHS of Eq. (4.9) is the squared of the length of d−a.
Therefore the likelihood is maximized by the vector â the closest to d:

â = PAd (4.39)

which is nothing but the estimator Eq. (4.5) multiplied by A from left. The map-making estimator Eq.
(4.5) is the s such that As is the projection of d on span(A). Notice that this projection can always be
determined (no assumption on A was made in the derivation of (4.39)). However, if A is not full rank
(its columns are not linearly independent) there is not a one-to-one correspondence between the a and
the s such that a = As. Consider a(1,2) ≡ As(1) = As(2) for two linearly independent modes s(1) and
s(2), there is no problem in constraining a(1,2) but it is impossible to get separate constraints on s(1)

and s(2).
We now consider the case of the data model containing time domain templates Eq. (4.27). We remind

that it is the very same problem as before with [A,T ] in place of A. The arguments on the degeneracies
are the very same. We just emphasize that now s(1) can be the sky mode and s(2) a “template mode”
y(2). This said, we will now assume [A,T ] to be full rank.
As explained previously in this section, mapmaking means finding the ŝ and ŷ such that Aŝ + T ŷ =
P [A,T ]d. The only difficulty comes from the fact that A and T are not orthogonal.

The following steps might not be as straightforward as the previous ones and it is convenient to use
the low dimensional example in Fig. 4.1 to guide the intuition. A and T are still general, despite they
are both depicted as single vectors. The following relations hold (only the second one is represented in
the plot)

P⊥TAŝ = PP⊥T Ad (4.40)

P⊥AT ŷ = PP⊥ATd. (4.41)

They are Eq. (4.29) and (4.30) multiplied from left by P⊥TA and P⊥AT respectively. Eq. (4.40) shows
that the direct estimation is equivalent to finding the projection of d on the component of A orthogonal
to T . The two-step approach can be interpreted by noting that

PAd = Aŝ+ PAT ŷ (4.42)

is nothing but a rearrangement of Eq. (4.31) after the multiplication by A from left.

4.1.5 Solving the map-making inverse problem
The inverse problem is the main obstacle to the implementation and cost in the solution of the unbiased
map-making estimator, Eq. (4.29). In this section we summarise how this linear algebra problem is
typically tackled.

We want to find the x satisfying

Bx = b (4.43)

where, in the case of Eq. (4.29), B = A>F TA and b = AF Td.
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P⊥AT

P⊥AT ŷ

PAd

T ŷ

Aŝ

P [A,T ]d

A

T

Figure 4.1: Geometric visualisation of the map-making operations. In particular, the figure highlights
the equivalence between the direct and the two-step approach (see Eqs. (4.40-4.42) and the surrounding
text)

Explicit method

It consists in actually computing B−1 and applying it on b.
The advantages of this approach are

• the solution is numerically accurate;

• once B−1 is computed, solving Bx′ = b′ is straightforward and efficient;

• the computation of the inverse can be performed by highly-optimised numerical libraries;

while the disadvantages are

• the scaling with the size of the system n is steep: the cost is O(n3);

• it requires the explicit computation of B, not only the capability of applying B on a vector.

If the matrix is ill-conditioned, the inversion requires some care. In order to have the numerical con-
trol of the process, the eigendecomposition of B has to be computed in order to identify and handle the
degeneracies. In addition to the above list of pro and cons, the eigendecomposition adds valuable knowl-
edge and control of the solution of the system, while preserving the O(n3) scaling of the computational
cost.

Iterative method

All the present mega-pixel map-makers cannot afford the direct solution and implement an iterative one:
the preconditioned conjugate gradient (PCG). The idea of the PCG is the following. The B matrix is
symmetric and positive definite, therefore it can be used to define a scalar product in the vector space.
This scalar product choice has an advantage: the component of the solution along a normalised vector
p is equal to p>Bx = p>b, thus computable without actually having x.

The iterative process finds the projection of the solution over the space spanned by a growing set of
orthonormal vectors. The first basis vector is typically p0 = b/

√
b>Bb, the approximate solution is thus

x0 = (p>0 b)p0. The next dimension of the basis is chosen to be r0 = b−Bx0, p1 is defined by removing
the component of r0 along the previous basis vector and normalising the result. It is not guaranteed
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that p1 actually exists since r0 could be proportional to p0. Assuming it is not the case, the solution
can now be refined as x1 = (p>0 b)p0 + (p>1 b)p1. The process continues analogously by choosing as next
dimension ri = b −Bxi. The iterations are stopped either after some predefined number of iterations
or when a convergence criterion is met, e.g. |ri|2 is lower than some threshold.

However, the convergence cannot be guaranteed. Typically, the convergence is not achieved when
the B matrix is ill-conditioned. Its condition number can be improved by using a preconditioner but
no general prescription exists: preconditioners are typically ad-hoc and require some knowledge on the
specific system to be solved.

Summarising the advantages of the iterative solution are

• the speed: it scales as the cost of the application of B times the number of iterations;

• B does not have to be explicitly computed;

while the downsides are

• no guarantee that the convergence criteria are met and

• when it is not the case, the control of the solution is limited;

• solving the system Bx = b does not give any advantage in the solution of Bx′ = b′

4.2 Degeneracies

So far we have assumed that the generalized map-making equation can be robustly solved, implicitly
assuming that the system matrix, A>F TA, is invertible. This may not always be however the case, in
this section we elaborate on those cases and discuss what can be done in such circumstances.

We first note that invertibility of the system matrix is ensured if matrix [A,T ] is full column rank.
This can be seen immediately by noting that matrix (A>F TA)−1 stands for an upper left diagonal block
of the inverse of the matrix [

A>

T>

]
M [A,T ] =

[
A>MA A>MT

T>MA T>MT

]
, (4.44)

which is invertible only when [A,T ] is full column-rank. This may not be the case for three different
reasons, leading to three possible types of degeneracies. We discuss each of them in turn in the following
three paragraphs. Obviously, in practice, as all the operations have to be performed numerically, what
really matters is not the strict linear independence in the mathematical sense but rather linear inde-
pendence sufficient to ensure stable and robust, finite-precision numerical calculations, as exemplified by
Eqs. (4.29), (4.30), (4.13), (4.31) and (4.32).
In general, given a matrix B and a vector z of laying in its range, if B is singular then we can solve
equation Bx = z for x only down to an unknown contribution from the nullspace of B. Typically, the
component of the solution parallel to the nullspace will be arbitrarily set to zero and its true value un-
avoidably lost. This in practice could be obtained with help of a regularization of the matrix and involves
first calculating its inverse via computing and inverting its eigenvalues. The regularization is applied to
all eigenvalues that are smaller than some predefined threshold and as the corresponding eigenvalues of
the inverse are set directly to zero.

4.2.1 The columns of A are not independent

This degeneracy could affect as much the standard as the extended map-making, but we include it here
for completeness. In such a case, the scanning strategy does not allow for the reconstruction of some sky
mode. A typical example is a polarization pixel that was not observed with sufficient redundancy in the
polarization angle. This case is easy to avoid because A>MA is easy to build. If M is diagonal the
cost is O(Nt) operations and A>MA is block diagonal (a block for each pixel), its eigendecomposition
(O(Np) operations) enables to evaluate the condition number of each of the diagonal blocks. After a pixel
selection based on these condition numbers (and removal from the TOD of the corresponding samples)
the new A>MA can be safely inverted.
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4.2.2 The columns of T are not independent
This reflects the fact that there is redundancy in the templates. This case basically corresponds to an
attempt to filter the same template twice. For example, this happens in practice when two different sets
of templates, e.g. the polynomial and the ground template filters, both remove the global offset of the
TOD.
Since the final goal is to estimate ŝ and not ŷ, Eqs. (4.29) and (4.30), this degeneracy does not pose
any fundamental problem. We merely need to construct a basis of span(T ) and use it to define a new
(smaller) set of independent templates T̂ as it is described in Sec. 4.1.3.
In practice, the situation is also quite straightforward. By construction, there are usually many known
orthogonality relations between the templates. As a consequence, T>MT is typically reasonably easy
to compute and is sparse and structured. Its inverse can be then computed explicitly using standard
matrix inversion techniques. The condition number of this matrix provides an easy test of the linear
independence of the templates. If it is too high the matrix has to be regularized while being inverted.
Once such a regularized inverse, (T>MT )−1, is computed it should be used in the projector of Eqs. (4.29)
and (4.32), taking care of the redundancies and therefore the degeneracies.

4.2.3 Some columns of A are not independent from the columns of T
This is the most insidious type of possible degeneracy of the map-making problem. Its presence highlights
existing degeneracy between the sky signal and the templates. As a consequence the reconstruction
of some sky component is not possible if the templates have been filtered. As a trivial example, by
systematically filtering the mean of the total intensity TOD we create a degeneracy with the global
offset of the temperature map.
This type of the degeneracy manifests itself as a singularity of both A>F TA and T>FAT . This can
be seen immediately by noting that, if the columns of A and T are not independent, then there exits at
least two modes, one in the map domain, s̃, and one in the template domain, ỹ, such as,

As̃ = T ỹ, (4.45)

and therefore

A>F TAs̃ = A>F TT ỹ = 0, (4.46)
T>FAT ỹ = T>FAAs̃ = 0, (4.47)

given that F TT = FAA ≡ 0, (4.21). The two modes, s̃ and ỹ, constitute a pair of degenerate modes,
residing in different domains but leading to the same effects in the time domain and therefore indistin-
guishable from each other.

Consequently, the very best one can do to solve the map-making problem in such cases is to regularize
the inversion of the singular matrix and compute all the modes of the map for which the solution can be
obtained and determine those modes for which this can not be done. These last modes will be missing
from the reconstructed map. We note that this is not due to the regularization procedure but because
these modes are removed from the data by the filters. Indeed,

AF Td = AF TAs+AF Tn = AF TAs⊥ +AF Tn, (4.48)

where the subscript ⊥ denotes the part of the sky signal orthogonal to the nullspace of AF TA, as the
part parallel to it is irrecoverably lost. The information about these removed modes needs then to be
propagated to next steps of the analysis and properly taken into account to ensure that the final results
are statistically meaningful.
This route is only straightforward in practice if all the matrices appearing Eq. (4.44), can be constructed
and decomposed explicitly. This however may be a formidable task, because of their sizes and complexity,
and often unfeasible even if the help of the largest massively parallel platforms and parallel software
packages is enlisted. If this is indeed the case and the solution can be only derived using some iterative
technique, then the singular modes may not only be impossible to compute and correct for, but indeed
it may not be clear from the onset whether the matrices are singular or not. In such cases this may need
to be inferred from the solver behavior after the computation. We discuss these issues in the context of
Polarbear map-making in Sec. 6.6.2.

We also emphasize that in the presence of this kind of degeneracies the maps computed by the direct
and two-step approaches may not be identical. Indeed, in the direct case the unconstrained sky modes
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will be missing in the estimated map. In the two-step case the situation is different as the regularized
inversion has to happen when the estimate of the template amplitudes is performed. Consequently, these
will be degenerate “modes” of the templates, which will be missing in ŷ, while the template-corrected
data vector, d − T ŷ, will retain a time domain component that should have been filtered out. Hence,
the map estimated on the second step, (4.31), will contain some of the degenerate sky modes, which will
be set automatically to zero in the direct approach. Obviously, if the fact that these modes cannot be
estimated is properly taken into account in the maps covariance, both maps will be statistically fully
equivalent. We also note that to compute what map modes are non-constrainable, one may use the
singular modes of T>FAT found, while performing the first step of the two-step method and use them
on the second step, by replacing the template-corrected data vector, d− T ŷ by Tz, where z stands for
one of the singular eigenvectors. Map-domain templates resulting from this calculation will have to be
then orthogonalized using, e.g., the Gram-Schmidt procedure.

In the case of the biased map estimator, (4.32), this degeneracy does not pose any numerical issue.
As in the unbiased cases the map estimate will have no contribution from the sky signal modes residing
in the nullspace of A>F TA, due to the filtering applied on the time-domain level, (4.48). However,
these modes may, and usually will, appear in the biased map itself. Nevertheless, their amplitude will
not reflect that of the true, underlying sky signal.

4.2.4 Case of ground-based experiments
As a specific application of the above formalism let us consider a map-making problem for a modern,
ground-based, CMB experiment, which scans the sky with a kilo-pixel array of polarization sensitive
detectors in the presence of both atmospheric and ground emissions. Commonly, in order to minimize
the impact of the atmospheric contributions, the scans are performed at constant elevations for relatively
short periods of time. The elevation is then changed in order to catch up with the sky patch, which
moves away due to the Earth rotation. The scan amplitude, specific choices of the scan elevations, as
well as elevation dwelling time are specific to a specific observation. In the following, we consider only
cases, which conform to this general description.

The data of such an experiment are typically more complex than the simple model exemplified by
(4.4), be it due to the atmospheric, instrumental, or ground contaminations. Below we describe common
contributions of this type and explain how they fit within the extended data model, (4.27), and how they
can be treated with the map-making technique introduced earlier.

Noise correlations

The noise is usually correlated between different detectors and typically displays significant low-frequency
excess, dubbed typically as 1/f noise, which arises either due to instrumental reasons, the emission of
the atmosphere or some other effects. As a result, the time domain noise correlation matrix, Cn,
is dense, making its inversion and multiplication computationally demanding. Moreover, the matrix,
Cn, is unknown and has to be estimated from the data themselves (e.g., Ferreira and Jaffe, 2000).
This procedure is usually difficult, especially as far as the low-frequency modes and detector-detector
correlated modes are concerned. In addition, the low-frequency contributions may not be even stationary
or Gaussian, and thus cannot be properly described merely by a covariance. Consequently, using the
optimal weight, C−1

n , in the map-making process may be difficult. Using a simpler weight matrix, M ,
does not lead to a bias in the standard map estimator, Eq. (4.5), however its choice does affect the quality
of the final map. This is because for different weights, the time-domain data, d, are coadded differently
on the first step of the map-making procedure, when the so-called right hand side of the map-making
equation, i.e., A>Md, is calculated. For instance, the diagonal weights (in map domain) cannot suppress
selectively some temporal frequency bands over the others. Consequently, if the 1/f noise is present,
even if it is Gaussian and stationary, the low-frequency modes will not be properly down-weighted as
compared to the high-frequency ones. This may result in striped features appearing in the direction of
the scans (see, e.g., Maino et al., 2002). The effect is particularly apparent if the scanning strategy does
not provide a good cross-linking. Non-Gaussian/non-stationary features can be even more difficult to
deal with.

Instead of down-weighting such long modes, one may prefer to filter them out as it is done in the
filtered map-making, Eq. (4.22). The time-domain data are then explicitly filtered, when compressed
to the pixel-domain object, A>F Td. The long-term trends present in the time-ordered data can be
removed at this stage. Such removal is blind to the origin and nature of the trends, potentially removing
the true sky signal together with the noise and some unwanted spurious contributions. However, the



62 CHAPTER 4. CMB MAP-MAKING AND POWER SPECTRUM ESTIMATION

signal-to-noise ratio for these modes is usually very low, as the 1/f noise quickly dominates, and the
information loss due to the potential removal of the sky signal is typically negligible. If this is the case,
the filtering can provide a useful alternative to weighting in this context.

The modes to be filtered out are typically assumed to be arbitrary linear combinations of some
sufficiently rich family of temporal templates, which has to be defined case-by-case. For the long-term
trends, the templates are often taken as piece-wise low order polynomials or harmonic functions defined
for all samples of the data and are represented by columns of some template matrix, B. If the templates
are well matched to the problem at hand, then the residual noise, w, defined as,

w ≡ n−Bx, (4.49)

is expected to be ’whiter’ than the actual time domain noise, n, and thus potentially, sufficiently well,
albeit approximately, characterized by a diagonal noise covariance matrix. Here, x stands for a set of a
priori arbitrary parameters to be determined, similar to the sky signal, s, and, which define amplitudes
of the corresponding templates (Stompor et al., 2001b).

We point out that in general one could introduce some additional information about the long-term
modes of the noise by setting some constraints on x. As such constraints are typically hard to identify
and might not lead to a significant improvement in the sensitivity, we will not consider them in this
work (see, e.g., Keihänen et al., 2010, for an implementation of this idea in the context of the two-step
map-making). As we will see below, in their absence, the map-making will discard all the information
in the data that matches the time domain signature of the templates, effectively filtering all template-
like modes out of the data. As previously explained, this causes a loss of a sky mode, s̃, only if its
time domain projection As̃ is a template-like mode. In general, subsequent observations brake the
degeneracy that a template might have on a subset of the dataset. There are two well-known exceptions.
First, the global offset of the time streams is always filtered, as a consequence the global offset of the
temperature map is unconstrained. Second, when observing from the Earth’s pole, the scans at constant
elevation always probe constant declination stripes, with different elevations corresponding to different
declinations. Filtering the offset from the time streams of each of these scans prevents the reconstruction
of the offset of each of these constant declination stripes. These can be partially recovered if the stripes
share some of the sky pixels owing to the assumption that the sky signal is constant across a pixel. The
resulting constraints would be typically weak, in particular for the relative offset of two stripes that are
not directly adjacent, which could be constrained only thanks to the intermediary ones. Consequently,
one should expect in such cases poorly constrained long modes in declination.

Ground pickup

Ground-based experiments usually have non-negligible ground-synchronous signal contaminating their
TOD. A possible source of this signal is the response of the detectors to the local magnetic field. Also
emission from the ground can be registered by the instruments due to the far side lobes of the beam.
These are designed to be very low but, as the ground is very bright by the CMB measurement standards,
the contribution cannot be typically neglected. This ground-synchronous signal could be thought of as
a two-dimensional template in Earth-bound coordinates. However, in practice, the situation is more
complex as the signal can vary in time and may be different for different detectors, as they may have
a different, and usually poorly known, level and structure of the side lobes. Therefore, typically one
models the ground signal as a one-dimensional template specific to each constant elevation scan and to
each detector, or at the very least a group of those located sufficiently close to each other in the focal
plane.

Such a one-dimensional ground template can be parametrized with the azimuth of the observation
and represented by one dimensional discretized map with entries standing for the amplitude of the
ground signal in each of the disjoint, consecutive azimuth bins. Following our previous argument, we
need to introduce such a template for each detector and each constant elevation scan separately. These
concatenated together are then denoted as g. The time domain data, in the presence of the ground
pickup, can be the modelled as a sum of three terms the sky signal term, As, the ground-pickup term,
Gg, and the noise, n, assuming, as we do for the sake of this section, that no other contributions are
present. We can write then,

d = As+Gg + n. (4.50)

This is merely a specialized version of (4.27). The role played by the matrix G is analogous to that
played by the sky pointing matrix, A. Adopting the simple binned ground template model introduced
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Figure 4.2: Geometry of a constant elevation observation. Gray lines represent the equatorial coordinate
system at a fixed time instant. The red line represents the scan at constant elevation: it is the (moving)
pointing direction in the ground-bound horizontal coordinate system. The orientation of the detector
projected on the sky (green), assumed constant in horizontal coordinates, varies from left to right because
the parallactic angle (blue) also changes from left to right.

above, each column of G is associated with some specific azimuthal bin assigned to some specific detector
and some constant elevation scan. This column will be composed of ones and zeros, with 1 indicating
that the given measurement was made by the specific detector and was performed within the specific
scan, when the observations azimuth fallen with the specific azimuthal bin. Therefore applying G to the
template, g, will add the same value of the ground pick up to all these measurements. In this section we
summarize the effects the modeling of the ground pick-up may have on the quality of the map recovered
with the unbiased map estimator, leaving a more detailed discussion to Appendix B.

We start by considering a site far from the Earth poles. For a single constant elevation scan, the
samples having the same ground pick will correspond to the measurements taken by a single detector
with the azimuthal position falling into one of the azimuthal bins. As time progresses and the sky rotates
in the Earth-bound coordinates (see Fig. 4.2 and 4.3 for a sketch of the geometry of the problem) the
measurements will cover the sky area extending along the RA direction in the sky coordinates. The
size in declination of the area depends on the scan elevation and the azimuth of the bin. The sky areas
covered by measurements corresponding to two different azimuthal bins will be disjoint and as both these
subsets are affected by a different ground pickup amplitude, their relative offsets will be unconstrained.
As a consequence, a single detector map will have multiple degenerate modes, each corresponding to a
sky patch swept by a different azimuthal bin. The degeneracies can be in part removed if data of another
detector are used, but only if the azimuthal bins of the latter are shifted with respect to those of the
first detector in such a way that their corresponding sky patches are also shifted and each patch of the
second detector includes pixels from two adjacent patches of the first one.
Yet another factor breaking the degeneracy here is the sky pixelization, as the sky pixels crossing the
boundary of two adjacent bin sky patches will constrain their relative amplitude. However, in all these
cases the breaking may be quite weak because the overlaps typically involve only a limited number of
neighboring sky patches corresponding to single azimuthal bins.

For the observations taken from the poles the situation is different. Since the sky movement is in the
azimuthal direction the same sky can be measured in different azimuthal bins. Consequently, there is a
significant constraining power on the relative offsets, leaving the overall offset of the observed constant
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Figure 4.3: The picture illustrates two aspects of the interplay of constant elevation observation and sky
rotation. First, while in horizontal coordinates the observation consists of just one line, because of the
sky rotation an entire area is observed in equatorial coordinates: it is the target patch. The area above
the red line has been already observed, while the part below the red line is still to be observed. Second,
disjoint azimuthal segments are in correspondence with disjoints regions in equatorial coordinates. Notice
that the declination interval of the leftmost region is larger than the one of the rightmost, because the
parallactic angle gets close to π. Filtering the constant ground signal inside an azimuthal bin also filters
the offset of the corresponding sky region. As explained in the text, this holds for both temperature and
polarization, if the polarization angle does not vary appreciably in the azimuthal range of the bin.

declination stripe as the only truly degenerate mode. We already encountered this degenerate mode in
Sec. 4.2.4: the offset of the TOD is filtered also when removing correlated noise. The consequences of
this degenerate mode and the possible degeneracy braking effects were already discussed at the end of
Sec. 4.2.4.

Recap

The following useful conclusions have been drawn out in this section (and are borne out further by a more
detailed analysis in Appendix B). In the presence of time domain filtering of the kinds discussed here,
only relatively few sky modes are expected to be genuinely degenerate. Nevertheless, a few additional ill-
conditioned modes with large variance should also be expected. They are mainly related to the filtering
of the ground signal, which cause poorly constrained modes in the declination direction. The details of
these modes will depend on choices made regarding pixelization, definition of the ground template bins
and observational strategy but they will be more prominent for observations conducted from the poles.
Given this, the biased map-making, by construction oblivious to the presence or absence of such modes,
may be seen as providing a more convenient and adaptable way to perform the analysis. Indeed, it has
been the approach of choice for multiple past analysis of this kind of data sets (e.g., Culverhouse et al.,
2010; Schaffer et al., 2011; BICEP2 Collaboration, 2014). However, a relevant question, which we discuss
in more detail in Chapter 6, is whether it is feasible at all for a ground-based experiment to produce an
unbiased estimate of the sky signal and with what fidelity.
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4.3 Power spectrum estimation

In Sec. 3.2.2 we introduced the power spectrum as the harmonic counterpart of the two-point correlation
function of a statistically isotropic field. It is particularly important for Gaussian fields because it fully
characterises the statistical properties of the field. In Eq. (3.36) we introduced the simplest example
of power spectrum estimator. However, it is not suitable for the power spectrum estimation of real
observation because it assumes the true CMB alms and thus perfect knowledge CMB over the full sky.

The power spectrum estimation can be formulated as a maximum likelihood problem (e.g. Bond et al.,
1997). Suppose that the available sky map is

x = s+ n (4.51)

where s is the actual sky signal and n is the noise contribution, we denote its covariance matrix as N .
Consistently with Eq. (3.33), we call the covariance matrix of the signal C.

Assuming signal and noise to be uncorrelated, the probability of a realisation of x and likelihood
function for the power spectrum is (e.g. Tegmark, 1996)

P (x|C`) = L(C`) =
exp{ 1

2x
>(N +C)−1x}√

(2π)Np det(N +C)
(4.52)

where the dependence on the power spectrum C` is inside C, see Eq. (3.34). Evaluating this likelihood
function is expensive because it involves the inversion of the covariance matrix, which is different at each
evaluation. Estimating C` though likelihood maximisation therefore requires the number of sky pixels to
be limited or, equivalently, only low multipoles can be probed since Np ∼ `2maxfsky. Maximum likelihood
estimation is indeed only used for probing the low multipoles of the power spectrum, for example ` < 40
in Hinshaw et al. (1996) and ` < 30 in Planck Collaboration (2015d).

4.3.1 Pseudo-power spectrum estimation

The cost of the maximum likelihood power spectrum estimation scales as `6max while the one of a spherical
harmonics transform and, consequently, of the idealistic power spectrum estimator in Eq. (3.36) is
typically of order `3max. The pseudo-power spectrum methods fill this gap in the scaling, providing a
method for estimating power spectra under realistic assumption at a `3max computational cost (but with
a large pre-factor compared to the naive spectrum estimator). They were first introduced in the context
of galaxy surveys (Hauser and Peebles, 1973) and then applied to the CMB (Hivon et al., 2002; Kogut
et al., 2003). In the next paragraph we explain the basic idea using temperature while two different
ways of including polarization are presented in dedicated subsections. More details can be found in e.g.
Brown et al. (2005).

We first outline the key idea of the pseudo-power spectrum estimators by considering a signal only
reconstructed map, x = s. For each ` multipole there is an associated subspace of functions: the one
generated by the set of spherical harmonics {Ylm}`∈[−`,`]. The estimator Eq. (3.36) first evaluates the
scalar product of the CMB sky with each basis functions, a`m =

∫
Y ∗`msdΩ, and then sums their squared

absolute values. Similarly, the pseudo-power spectrum estimators first define a pseudo basis, Ỹ`m, then
compute the pseudo-multipoles

ã`m ≡
∫
Ỹ ∗`msdΩ (4.53)

and the pseudo-power spectrum

C̃` =
∑̀
m=−`

ã∗`mã`m
2`+ 1

. (4.54)

Finally, they estimate the power spectrum from the pseudo-power spectrum. Since

ã`m =

∫
Ỹ ∗`m

∑
`′m′

a`′m′Y`′m′dΩ =
∑
`′m′

K0
`m`′m′a`′m′ , (4.55)

where we have defined the convolution kernel,

K0
`m`′m′ ≡

∫
Ỹ ∗`mY`′m′dΩ, (4.56)
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the pseudo-power spectrum is

C̃` =
∑̀
m=−`

ã∗`mã`m
2`+ 1

(4.57)

=
∑̀
m=−`

1

2`+ 1

∑
`′m′`′′m′′

a∗`′m′a`′′m′′K
0
`m`′m′(K

0
`m`′′m′′)

∗ (4.58)

By using the power spectrum we are implicitly assuming statistical isotropy, consequently 〈a∗`′m′a`′′m′′〉 =
C`′δ`′`′′δm′m′′ and the expected value of the previous equation simplifies to

〈C̃`〉 =
∑
`′

M``′C`′ (4.59)

where the mixing kernel is defined as

M``′ ≡
∑̀
m=−`

∑
`′

`′∑
m′=−`′

2`′ + 1

2`+ 1
K0
`m`′m′(K

0
`m`′m′)

∗. (4.60)

The mixing kernel is then inverted and the power spectrum estimated.
One way of understanding the pseudo-power spectrum estimation is the following. The actual reali-

sation of the sky has a component in the ` subspace, the vector subspace of the functions on the sphere
spanned by {Y`m}m∈[−`,`]. The assumption of statistical isotropy means that, on average, the power of
this component is the same, C`, in all the directions of the ` subspace. Therefore, we can measure this
power as the average power over some set of functions belonging to the ` subspace. In Eq. (3.36) this
functions are the {Y`m}m∈[−`,`], an orthonormal basis of the ` subspace. For this choice, the evaluation
of the sky power on each function is independent and the information in the sky realisation is fully
exploited. If we give up on these attractive properties, the set of functions can be completely arbitrary.
In the formalism described above the set of functions, called pseudo-basis, is even more general. As
the actual basis, the functions of the pseudo-basis are grouped in subsets indexed by ` and m ∈ [−`, `],
but this does not require the functions to belong to the respective ` subspace: it is just an arbitrary
indexing choice related to the way these functions are computed in practice. Any given function of the
pseudo-basis, Ỹ`m, can be decomposed in the components belonging to the different `′ subspaces. The
sky power evaluated on the function is the sum of the power of each of these components. On average,
the power along these components is given by the power spectrum C`′ and therefore the expected value
of the whole power along Ỹ`m is a known linear combination of the true power spectrum. By doing this
study on the Ỹ`m for all the ms, we are able to say how much power (on average) C̃` gets from each `′
multipole of the true power spectrum C`′ , as expressed in Eq. (4.59). Typically, the mixing matrix has
diagonal structure just approximately, actually coupling neighbouring multipoles, but the fact that each
` of the pseudo-power spectrum is a mixture of possibly all the ` of the actual power spectrum does not
pose any problem to the estimation of the latter–as long as the mixing matrix is invertible. However,
suppose that C` contributes to C̃`′ with `′ 6= `, if C`′ has a cosmic variance much bigger than C`, the
former might dominate the uncertainty budget of C̃` and, consequently, of the estimation of C`. (Also)
for this reason, both pseudo and actual power spectrum are multiplied by `(`+ 1)/(2π) because

D` ≡ `(`+ 1)C`/(2π) (4.61)

is roughly constant at large scales–the ones affected the most by the cosmic variance–and therefore its
cosmic variance is proportional to a gentle `−1/2.

Now that the main idea of the pseudo-power spectrum estimators is explained, we illustrate how the
formalism easily accommodates the presence of noise in the maps, their convolution with the experimental
beam as well as their partial sky coverage. The pseudo-basis is usually built as

Ỹ`m ≡WY`m (4.62)

where the window function W is a function on the sphere that is different from zero only inside the
observed region. Similarly to how sharp features in a function f : R → R cause ringing in its Fourier
transform, a smooth apodisation of the window function mitigates the off-diagonal correlations in the
mixing matrix. Moreover, if the window function is somewhat inversely proportional to the noise variance
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map, the definition of the pseudo-basis in Eq. (4.62) naturally downweights the noise pixels when
computing the pseudo-power spectrum. Taking into account the noise and the beam of the instrument,
the multipole of the observed map are ∫

Y ∗`mx = B`a`m + n`m (4.63)

where the B` function models the effect of the beam. For a Gaussian beam B` = e`
2σ2
b , where σb is

related to the FWHM by FWHM = 2
√

2 ln 2σb ∼ 2.4σb. So far we have assumed that the mixing
matrix is invertible. However, this is typically not the case, the limited observed sky area prevents the
reconstruction of the lowest multipoles, for example. Therefore, the spectrum is usually binned, with
the mutipoles bins spanning a sufficiently large ` interval. As mentioned earlier the use of the pseudo-
basis also correlates neighbouring multipoles and thus the size of the bins is usually chosen to be large
enough so that the measurements of the different bins are sufficiently uncorrelated. The binning can be
represented as a binning operator that averages over ∆`b, the multipole range of the bin b,

Cb ≡
∑
`

Pb`C` ≡
∑
`∈b

C`
∆`b

(4.64)

If we work with D`s we average an almost constant quantity, rather then the steeply decreasing C`. This
is another reason why the former is typically preferred. Eq. (4.59) now reads

〈D̃b〉 =
∑
b′

Mbb′Db′ + 〈D̃Nb 〉. (4.65)

where the binned mixing matrix reads

Mbb′ =
∑
``′

Pb`M``′B
2
`′Pb′`′ . (4.66)

The second term, the noise bias, is the binned pseudo-D` of the noise:

D̃Nb ≡
∑
`∈b

`(`+ 1)

2π∆`b

∑
m

ñ∗`mñ`m
2`+ 1

(4.67)

The power spectrum estimator can thus be estimated as

D̂b =
∑
b′

M−1
bb′

(
D̃b′ − 〈D̃Nb′ 〉

)
. (4.68)

The estimation of the expected value of the noise bias is usually a difficult task. For this reason, many
experiments adopt mainly cross-spectra: the pseudo-cross-spectrum of two maps containing the same
sky but uncorrelated noise is noise bias-free (see, e.g., Hinshaw et al., 2003; Tristram et al., 2005).

Polarization: standard estimator

In analogy with the temperature case, the formalism can be extended to polarization introducing a spin
2 pseudo-basis,

±2Ỹ`m ≡W±2Y`m. (4.69)

Given Eq. (3.20), we define the E and B pseudo-multipoles,

E ãlm = − 1
2

∫
+2Ỹ

∗
`m(Q− iU) + −2Ỹ

∗
`m(Q+ iU) (4.70)

B ãlm = i
2

∫
+2Ỹ

∗
`m(Q− iU)− −2Ỹ

∗
`m(Q+ iU). (4.71)

Writing the polarization field as Q∓ iU =
∑
`′m′(Ea`′m′ ± iBa`′m′)±2Y`′m′ and defining

K±`m`′m′ ≡
1

2

(∫
+2Ỹ

∗
`m+2Y`′m′dΩ±

∫
−2Ỹ

∗
`m−2Y`′m′dΩ

)
, (4.72)
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we can rewrite the E and B pseudo-multipoles in terms of the E and B multipoles

E ãlm =
∑
`′m′

(
K+
`m`′m′Ealm +K−`m`′m′Balm

)
(4.73)

B ãlm =
∑
`′m′

(
−K−`m`′m′Ealm +K+

`m`′m′Balm
)
. (4.74)

Defining the pseudo-power spectrum as

C̃XY` ≡
∑̀
m=−`

X ã
∗
`mY ã`m
2`+ 1

, (4.75)

its expected value is related to the power spectrum by the mixing kernel

〈


C̃TT`
C̃TE`
C̃TB`
C̃EE`
C̃EB`
C̃BB`


〉

=



M00
``′

M0+
``′ M0−

``′

−M0−
``′ M0+

``′

M++
``′ (M−+

``′ +M+−
``′ ) M−−``′

−M+−
``′ (M++

``′ −M−−``′ ) M−+
``′

M−−``′ −(M−+
``′ +M+−

``′ ) M++
``′




CTT`
CTE`
CTB`
CEE`
CEB`
CBB`

 (4.76)

where the blocks of the mixing matrix are defined as

MY Z
``′ =

∑̀
m=−`

∑
`′

`′∑
m′=−`′

KY
`m`′m′(K

Z
`m`′m′)

∗. (4.77)

with Y,Z ∈ {0,+,−}.
The presence of many zero blocks is due to the fact that the pseudo basis does not mix temperature

and polarization. However, the polarization pseudo-basis mixes E and B modes whenever theM−− block
is not zero, causing a problem analogous to the mixing of power from different `s with very different
C`s. The mixing matrix quantifies which fraction of the E power leaks into the pseudo-B and effectively
corrects for it when applying the inverted mixing matrix on the pseudo-power spectrum. However, the
cosmic variance of EE severely affects the BB uncertainty, especially at large scales. This problem is
overcome by using the pure estimators described in the next section.

Polarization: pure estimator

As said earlier, a polarization field P is type E(B) if D†B ·P = 0 (D†E ·P = 0). A polarization field that
satisfies both is said to be ambiguous. On the sphere (and actually on any manifold without boundary) if
D†B ·DBf = 0 (or D†E ·DEf = 0) then the polarization field DBf (or DEf) itself is zero, implying that
the space of E and B modes are orthogonal. However, the observed sky region typically have boundaries.
In this case there exist a set of non-trivial functions f that satisfy D†B ·DBf = 0 (or D†E ·DEf = 0)
and thus are ambiguous modes. In these cases it is useful to define the pure B modes as those B modes
that are orthogonal to any E mode, pure E modes are similarly defined. A polarization field can thus
be unambiguously decomposed into pure E, pure B and ambiguous modes (Bunn et al., 2003). The
power in the ambiguous modes cannot be unambiguously assigned to E or B. However, in the CMB
case this power (and its related cosmic variance) is dominated by the E mode contribution. In order
to prevent the E-type cosmic variance from affecting the B mode estimation, the pure-pseudo-power
spectrum estimators adopt a pure B-mode pseudo-basis (Smith, 2006; Smith and Zaldarriaga, 2007).

Any E mode can be written as DEf , for some function f , therefore having a pure B pseudo-basis
means that for any f and (`,m) ∫

4π
BỸ

†
`,m ·DEf = 0 (4.78)

A natural choice is (c.f. Eq. (4.69))

BỸ `m ≡DB(WY`m), (4.79)
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which indeed fulfils Eq. (4.78),∫
4π

(BỸ `m)† ·DEf =

∫
4π

[DB(WY`m))]
† ·DEf (4.80)

=

∫
4π

WY`mD
†
B ·DEf = 0. (4.81)

The integration by partition in the second row does not produce any boundary term because the sphere
has no boundaries while the last equality comes form Eq. (3.28). The second order differentiation in
the definition (4.79) implicitly assumes some regularity conditions on W . In order to account for the
unobserved region, W is equal to zero in the unobserved region and consequently at least the value at
the boundary of both W and its derivative in the outward direction have to be zero (the Dirichlet and
Neumann boundary conditions). Another way of understanding these condition is the following. Since
the pseudo-basis is zero outside of the observed patch, all the integrals in this section can be restricted
to the observed area. The only relevant consequence is that the integration by partition in the last
equations produces boundary integrals containing either W or its derivative in the outward direction.
The Neumann-Dirichlet conditions ensure that these terms are equal to zero.

Analogously, we can define the pure E pseudo-basis and refer to this case as the pure formalism.
However, the B-to-E leakage does not pose problems for the estimation of the E spectrum and therefore
the use of the pure pseudo-basis is not required. On the contrary, using the standard E pseudo-basis and
the pure B pseudo-basis (hybrid formalism) exploits the information contained in the ambiguous modes
for the E mode estimation while prevents the E-modes cosmic variance from affecting the B-modes
estimation.

In general, the mixing matrix reads

M``′ =



MTT,TT
``′

MTE,TE
``′ MTE,TB

``′

MTB,TE
``′ MTB,TB

``′

MEE,EE
``′ MEE,EB

``′ MEE,BB
``′

MEB,EE
``′ MEB,EB

``′ MEB,BB
``′

MBB,EE
``′ MBB,EB

``′ MBB,BB
``′


. (4.82)

Without getting too much into details, in the pure formalism the MEE,BB and MBB,EE are zero by
construction and therefore the EE power is prevented from contributing to the BB pseudo-power and
vice versa. In the hybrid formalism MBB,EE is still zero but MEE,BB can be different from zero.

4.3.2 Computing the spectrum of biased maps
The previous section assumed that the map available x is an unbiased rendition of the sky signal. When
it is not the case the formalism of the pseudo-power spectrum estimators has to be amended. In this
section we will illustrate an approximate quick method called Monte Carlo Apodized Spherical Transform
Estimator (MASTER), very popular in current CMB B-mode experiments.

The most common bias in the reconstructed maps comes from the use of the biased estimator in Eq.
(4.32). The map is thus related to the unbiased estimate by some linear relation xbiased = Rxunbiased.
The bias is due to the fact that the TOD are filtered but the filtering is not taken into account when
estimating the map. The filtering is (or at least involve) a linear operation diagonal in the frequency
domain, e.g. high pass filtering. Since the observations consist of constant velocity scans, there is a
qualitative correspondence between frequencies in the time domain and angles (and thus `) on the sky.
Following this heuristic argument, the bias is modelled as a systematic multiplicative bias in the `-space,
F`, completely analogous to the one of the beam. The relation between the CMB power spectrum and
the pseudo-power spectrum therefore has an extra term

〈C̃`〉 =
∑
``′

M``′F`′B
2
`′C` + 〈Ñ`〉, (4.83)

where Ñ` is the pseudo-power spectrum of the noise bias. The transfer function F` are evaluated using
Monte Carlo simulations. Noise-free simulations of the CMB are performed and a TOD is generated
using the actual scanning strategy of the data set being analysed. A map is produced using the same
data processing of the real data and its pseudo-power spectrum is evaluated. The average of these spectra
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over the set of Monte Carlos is then plugged in Eq. (4.83) and F` can be estimated either directly, ifM`,`′

is invertible, of iteratively (Hivon et al., 2002). Once the transfer functions are computed the estimation
of the power spectrum of the real data can be performed. Since Eq. (4.83) is an ansatz, the procedure
assumes that the estimation of the transfer functions does not depend on the sky signal and, therefore,
the cosmology assumed in the simulations does not bias the power spectrum estimation of the real data.
Hivon et al. (2002) have shown that, in the specific case they studied, the dependence of their transfer
functions on the assumed cosmology is very weak.

4.4 Summary

The standard map-making problem can be extended to include and account for time-domain filtering in
statistically sound manner. The general framework, introduced in this chapter, includes as special cases
some of the most common map-making approaches and thus sheds new light on them. This formalism
is a keystone of one of the Polarbear map-making pipelines as it is elaborated on in Chapter 6.



Chapter 5

The Polarbear experiment

5.1 The project

In the 2000s the scientific potential of the B modes of CMB polarization was well understood and
recognised (e.g. Zaldarriaga and Seljak, 1997; Kamionkowski, 2007). On the experimental level, several
polarization-sensitive instruments didn’t encounter any fundamental observational obstacle when setting
upper bounds to the BB spectrum (e.g. Kovac et al., 2002; Page et al., 2007; Pryke et al., 2009; Hinderks
et al., 2009). In this period Polarbear was devised as B-mode dedicated experiment (Lee et al., 2008).
By constraining both the lensing and the primordial B modes, the project aims at probing both the
energy scale of inflation and the total mass of the neutrinos as well as dynamical dark energy scenarios.

The constraining power of the experiment will increase over time as the project evolves in its different
stages: Polarbear, PolarbearII and Simons Array. After the 2010 engineering campaign in the Cedar
Flat in the Inyo Mountains of California, Polarbear was deployed in Chile in 2011 and saw first light
on January 10th 2012. In summer 2013 I started my PhD and joined the Polarbear effort, to which I
contributed at the data analysis level. The results of the first observational campaign were published in
December 2013 and March 2014.

5.2 The site

The Polarbear experiment is installed at the James Ax Observatory, located in Chilean Atacama
desert on Cerro Toco, at West longitude 67◦47′10.40′′ and South latitude 22◦57′29.03′′. Being at 5200 m
above the sea level, it is one of the observatories located at the highest elevation. The main obstacle of
for microwave observations is the water vapour in the atmosphere. The dryness of the atmosphere makes
Polarbear site one of the best microwave observational site in the world after the south pole. During
Polarbear first observational campaign, the median precipitable water vapour (PWV) measured by
the nearby APEX water vapour radiometer was 1.0 mm. This corresponds to a sky brightness in the
Polarbear design band of 12 K at an elevation angle of 60◦. In addition to this very good observational
condition, the site has a considerable logistical advantage. It is indeed accessible throughout the whole
year: the site team drives from San Pedro de Atacama (2400 m of elevation) to the observational site on
a daily basis.

5.3 The instrument

The Polarbear experiment is composed of a cryogenic receiver mounted on the Huan Tran Telescope
(HTT). A more detailed overview of the instrument can be found in Kermish et al. (2012).

5.3.1 The Huan Tran Telescope

HTT is a two-mirror refractive telescope with an off-axis Gregorian design. In on-axis telescopes the
secondary mirror is necessarily supported by some structure that obstructs the beam of the telescope.
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Figure 5.1: (a) Ray tracing scheme of the optics of the telescope. (b) The Huan Tran Telescope fully
assembled at the James Ax observatory in Chile. (i) Primary guard ring. (ii) Monolithic precision
primary mirror. (iii) Comoving shields (iv) Primary focus baffle.

These structures can scatter or diffract signal from the ground into the main beam. HTT avoids the con-
sequent limitation in the performances by adopting an off-axis design. The angle between the symmetry
axis of primary and secondary mirrors satisfies the Mizuguchi-Dragone condition (Mizugutch et al., 1976;
Dragone, 1978). Consequently, the resulting antenna has a rotationally symmetric equivalent paraboloid,
ensuring low cross polarization and astigmatism over a large diffraction-limited field of view. This con-
dition can be satisfied both with a Gregorian and with a crossed Dragone design. One major difference
between the two designs is the size of the secondary mirror, typically comparable with the one of the
primary for the crossed configuration. HTT adopts a Gregorian configuration, which allows easier baf-
fling to prevent far sidelobes due to scattering at the receiver window. The scheme of the optics of the
telescope is schematically reported in 5.1a. In addition to the supporting mechanics, the telescope is
endowed with comoving baffles that shield the detectors from stray radiation. The size of the primary
mirror is 3.5 m. However, because of the 4 K aperture stop in the receiver, only the inner 2.5 m is actually
illuminated, in an inverse ray tracing sense. This inner part is a monolithic aluminium dish with 53 µm
r.m.s. surface accuracy. The 2.5-meter primary gives a 3.5 arcminute beam at 150 GHz, setting an upper
bound of ` ∼ 2500 to the multipoles range to which the experiment is sensitive. The size of the beam is
the most important element of the B-mode dedicated design: is sufficiently small to fully characterise the
lensing B-modes—which peak at ` ∼ 1000—but not too small because it would impede the measurement
of large scales.

5.3.2 The Polarbear receiver

The cryogenic receiver contains a cold half-wave plate, a re-imaging optics and a focal plane. The key
design goal is to keep the emission from the Chilean atmosphere the main noise contribution. Controlling
the noise of the instrument itself below this level requires a refrigerated focal plane and optics.

The optics

The cryogenic system has a large aperture, seeking high optical throughput. In order to preserve the
cryogenic environment, filters have to reject the optical power outside of the band of interest. For this
reason the thermal filters are located right after the vacuum window. They are composed by several
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Figure 5.2: Scheme of the cryostat of Polarbear.

hot-pressed multilayer low-pass filters, single layer IR shaders and an IR-absorbing sheet of porous teflon.
A cold half-wave plate is located close to the aperture and refrigerated at ∼ 80 K, for reducing its

in-band emission. It is made of a single crystal of sapphire with an anti-reflection coating. The half-wave
plate can be stepped, providing a way of modulating the sky signal in addition to the one given by the
sky rotation. This extra modulation helps in mitigating systematics related to the non-idealities of the
instrument.

A set of lenses reimage the focus of the telescope—located just in front of the first lens—on the
focal plane. The lenses are made of ultra-high molecular weight polyethylene and endowed with an anti-
reflection coating. They are cooled at ∼ 6 K, to reduce the optical loading on the detectors. Together
with the reimage lenses, a cold aperture stop creates the 2.4◦ diffraction-limited field of view.

The focal plane

Polarbear focal plane houses 637 pixels organised in 7 hexagonal wafers. Each pixel hosts two antenna-
coupled transition edge sensor (TES) detectors. The two dipole antennas are sensitive to orthogonal
polarization states of the incoming photons. The planar antenna is in direct contact with a silicon
lenslet. The lenslet increases the directionality of the beam inherent to the antenna. Moreover, the
lenslet covering the pixel magnifies the active size of the antenna, leaving some room under the lenslet,
away from the centre of the antennas. The bolometers and the microstrips can be accommodated in this
region of the pixel, effectively without losing precious focal plane area coupled to the diffraction limited
field of view. The antennas couple the incoming radiation onto superconducting Niobium microstrips.
Along the lines an on-chip bandpass filter is applied. Incoming light has been already filtered by the
intervening optics, but it is the microstrip filters that effectively define the bandpass of the detectors
around 150 GHz (see Fig. 5.3d). After filtering, the radiation is dissipated in a load resistor located in
a thermally isolated island. A TES thermistor converts changes in the absorbed optical power into a
modulated current. An image of the focal plane and its parts is reported in Fig. 5.3, more details can
be found in Arnold et al. (2012).

Readout

One of the main difficulties in deploying kilo pixel arrays is how to read the signal from the bolometers
without disturbing the sub-Kelvin cryogenic environment of the focal plane. In Polarbear this task is
accomplished by using a digital frequency domain multiplexer (DfMUX) (Dobbs et al., 2008).

Each bolometer is biased with a constant amplitude sinusoidal voltage, defined by am LC tank circuit
in series with the bolometer. The circulating current is converted to magnetic flux by an inductor coil
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(a) (b)

(c) (d)

Figure 5.3: (a) The fully assembled Polarbear focal plane. The photo also shows the support structure
and the milliKelvin wiring. In Fig. (b) the left panel shows the back of a wafer, the unfolded LC boards
are visible around of the hexagonal support. The bottom-left inset is an image of the focal plane pixel
underneath a lenslet, showing the orthogonal antennas, the microstrips (the microstrip filters are also
visible) and the two bolometers. The top-right panel zooms on the thermally isolated island of the
bolometer.
(c) Schematic representation of a lenslet. The extended hemisphere approximates an elliptical shape
(dashed line). In the latter case, for a specific value of the eccentricity defined by the optical index of
the silicon, the transmitted angle would be zero. Since the values of the eccentricity would be small,
in Polarbear the elliptical lenslet is approximated with an extended hemisphere, with a value of
L/R ranging between 0.36 and 0.39. Fig. (d) shows the 150 GHz bandpass fitting the atmospheric
transmittance window.
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Patch R.A. Decl. Effective Area

RA4.5 4h40m12s −45◦ 7.0 deg2

RA12 11h53m0s −0◦30′ 8.7 deg2

RA23 23h1m48s −32◦48′ 8.8 deg2

Table 5.1: The three Polarbear patches observed during the first and the second observational cam-
paigns

and measured by a superconducting quantum interference device (SQUID) amplifier. The optical power
absorbed by the bolometer changes the resistance of the bolometer and therefore the resonant frequency of
the circuit. Consequently, part of the signal is moved to the sidebands adjacent to the carrier, from which
the optical energy absorbed by the bolometer is estimated, after demodulation at room temperature.

Each detector has a different bias frequency, ranging from 300 kHz to 1 MHz. This allows Polar-
bear’s 8x DfMUX to pack the signal from 8 bolometers on the same wire and measure them with one
single SQUID. This cutting-edge technology allowed to dramatically reduce the volume of the readout
electronics as well as the heat it produces.

The LC circuits are lithographed on boards folded under the bolometer array. In order the make the
noise of the carrier negligible, the LC boards are cooled at ∼0.25µK. The SQUIDs operate at ∼4 K, the
temperature is needed not only for their functioning but also for achieving high gain in the readout.

5.4 First and second season observation

Between May 2012 and June 2016 the first two Polarbear observational campaigns took place. They
focused on three small patches integrated deeply (see Table 5.1). Their locations were chosen on the basis
of three criteria: low dust intensity, availability throughout the day and overlap with other observations.
RA23 and RA4.5 overlap with QUIET observations (Araujo et al., 2012), RA12 and RA23 overlap with
Hershel ATLAS fields (Eales et al., 2010), which was exploited in the cross-correlation study published
in December 2013 (Polarbear Collaboration, 2014b). The observation included also astrophysical
sources, used as on-sky calibrator. Tau A, in the crab nebula, has an intrinsic polarization and it was
used in order to calibrate the polarization angle of the detectors. Jupiter and Saturn were also observed
and they were used for characterizing the beam of the experiment.

The observations are scheduled according to the cryostat fridge cycle, normally 36 hours long. The
typical schedule starts with calibration observations, in which the telescope tracks either planets or
Tau A. Afterwards, the CMB observation stars with one of the patches. The fundamental unit of the
Polarbear CMB observation is the constant elevation scan (CES). A CES consists of a pointing phase,
which brings the boresight to where the centre of the patch will be in 7.5 minutes, and the observation
itself. The observation consists of approximately 8◦-wide sweeps in azimuth while keeping the elevation
fixed, each of them is called subscan. During a subscan the telescope moves at the constant velocity
of 0.75 deg /s, afterwards it slows down in order to invert the azimuthal direction for the subsequent
subscan. Only the data taken in the constant velocity portion are retained for the CMB analysis, 74%
of the observing time. After 15 minutes (corresponding to roughly 150 subscans) the patch leaves the
field of view of the telescope and a new CES starts. Each patch is available for 6-8 hours per day. The
minimum elevation for CMB observation was 40◦ for the first three months and 30◦ for the rest, while
the maximum observing elevation is 80◦. As the elevation changes the atmospheric optical loading varies.
In order to optimise the linearity and sensitivity of the detectors, the detectors are re-biased every hour.
Before and after re-bias the relative gain between detectors is assessed using both elevation nods and
stimulator observations. The former consists of 2◦ elevation movements of the telescopes. During the
latter, the detectors observe a thermal source located behind the secondary mirror. The source is kept at
700 deg C and is modulated at a frequency ranging from 4 to 44 Hz by a chopper. Stimulator observations
also enable to estimate the time constants of the detectors–which were found to be of the order of the
mHz and thus negligible compared to our science band (1.04 to 3.13 Hz).
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5.5 Overview of the low-level data processing

My main contribution to the Polarbear analysis was the unbiased map-making, extensively discussed
in Chapter 6. It requires the timestreams to be prepared: the measurements of the detectors have
to be calibrated and, for each time sample, the observed sky pixels and polarization angle are also
required. For completeness, this section presents an overview of how this information is extracted from
the observations. More details can be found in Polarbear Collaboration (2014a).

5.5.1 Pointing

The boresight pointing is reconstructed using a five-parameter pointing model (Magnum, 2014). The
parameters are azimuth and elevation zero encored offset, IA and IE, the collimation error of the elec-
tromagnetic axis, CA, and the azimuth axis offset/misalignment (north-south and east-west), AN and
AW. The parameters are estimated using point sources selected from Wrobel et al. (1998) and Murphy
et al. (2010). The robustness of the pointing model was tested by estimating the parameters only from
a subset of the data. Some deviations were found and propagated to the systematics pipeline in order
to asses their impact on the BB spectrum.

The beam offset of the individual detectors with respect to the boresight is estimated using Jupiter
and Saturn scans. These offsets are measured several times per weeks and the fluctuations over time
were less than 6′′.

5.5.2 Beam

The beam is reconstructed using Jupiter observations. For each observation a map is produced after
a masked filtering of a zero and first order polynomial for each sweep over the planet. It is masked in
the sense that the samples within a 50′′ radius from the planet are excluded from the evaluation of the
amplitude of the polynomial to be removed. Single detector maps are then coadded using the rms outside
of the radius as weight. The beam is calculated as the azimuthal average of the two-dimensional Fourier
transform dinned in ∆` = 80 wide bins. The so-obtained B` is then corrected for the pixel window
function of the observation map and the finite size of the planetary disk.

We assume the inaccuracy of the pointing model to act as a blurring of the coadded CMB map. This
is modelled as a σp r.m.s. pointing error in map space. The resulting effective beam is then assumed to
be Beff

` = B` × e−`(`+1)σ2
p/2 and σp is estimated patch by patch by fitting the point sources present in

the observed field.

5.5.3 Gain

The raw TOD measured by the detectors are currents. These values have to be converted into KCMB,
this process is done in three steps.

Before and after every period of constant bias of the detectors (one hour of observations) the relative
gain between the detectors is assessed by performing an observation of the stimulator, 700 deg C thermal
source behind the secondary mirror observable through a 6 mm light-pipe. For this purpose is very
important to accurately characterise the polarization fraction of the thermal source, since it results in a
relative gain error that causes intensity to polarization leakage. We propagate the related uncertainty to
the systematics pipeline in order to assess the impact of relative gain errors on the BB spectrum.

Using observations of Saturn we perform a first absolute calibration of the different observations. The
current model takes into account the variation of the intrinsic brightness of Saturn due to differences in
the opening angle under which the rings are seen (see Weiland et al., 2011). Neglecting this effect caused
up to 10% differences in the calibration products (see Peloton, 2015, Chapter 6, for more details).

Later in the analysis, the TT power spectrum is fitted to the one obtained from the Planck maps (or,
formerly, WMAP best fit model). Since the correction for the time variation of the Saturn rings opening
angle was introduced, this TT-estimated absolute gain correction gives a factor compatible with 1.

5.5.4 Polarization angle

Tau A (the Crab Nebula) is a polarised supernova remnant, characterised or used as a calibrator by many
experiments (Farese et al., 2004; Weiland et al., 2011; Naess et al., 2014b, e.g.). Also in Polarbear we
use Tau A for measuring the orientation of each of our detectors projected on the sky. Our calibration
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Figure 5.4: The power spectrum of the curl component of the deflection field. For both the 〈EBEB〉
and the 〈EEEB〉 estimator the spectrum computed for the three patches is displayed as well as their
combination, they are all consistent with zero.

is based on the IRAM measurement (Aumont et al., 2010). With their 30 m telescope they produced a
high resolution map (30′′) at 90 GHz.

The method we use consists in producing simulated timestreams of each detector by scanning the
IRAM map, taking into account each individual beam. Then we consider the difference timestream
of the bolometers in a pair both for the data and the simulations. The simulated one has three free
parameters: the polarization angle, the polarization efficiency and the relative gain between detectors.
We have only one free polarization angle for each pair of bolometers because we assume their relative
angle to be exactly 90◦. Similarly to the beam analysis, simulated and real timestreams are filtered with
a fifth order polynomial excluding from the evaluation of the amplitude of the polynomial all the samples
within a 10′ from the centre of Tau A. Samples within a 5′ radius are then used for estimating the free
parameters by fitting the simulated timestreams to the real one.

This determination of the polarization angle has a 1.2◦ r.m.s. variation across all the observation. This
level of inaccuracy can produce relevant E to B leakage compared to our noise level. We therefore perform
later a power spectrum-based calibration. Assuming CMB EB spectrum to be zero, a measured non-zero
EB spectrum can be produced by a miscalibration of the polarization angle. Since our uncertainty is
small, the model for the measured EB power described in Keating et al. (2013) simplifies to CEB` '
±2∆ψ(CEE` − CBB` , where the plus or minus depends on the convention adopted for measuring the
polarization angle. We fit ∆ψ in our measured EB spectrum and use that value to remove the consequent
4∆ψ2CEE` leaked EE power from our BB spectrum.
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Figure 5.5: Power spectrum of deflection field assuming no lensing polarization signal (left) and assuming
ΛCDM theoretical polarization lensing (right). The insets show the distribution ofA–the fitted amplitude
of the ΛCDM theoretical CddL shape–of 500 simulations. The left panel yields a 4.6σ statistical rejection
of the null hypothesis.

5.6 Results from the first season

The data collected between June 2012 and June 2013 were used for the first set of results. Four publi-
cations were delivered using the sub-degree polarization measurements of Polarbear.

5.6.1 Measurement of the Cosmic Microwave Background Polarization Lens-
ing Power Spectrum with the Polarbear Experiment

From each of the three Polarbear patches the deflection field was estimated using the quadratic
estimator Eq. (3.81). Two quadratic estimators were considered, dEE(L) and dEB(L). Since the focus
of the Polarbear experiment are the polarization B modes, the power spectrum of the deflection field
was estimated using only 〈dEEdEB〉 and 〈dEBdEB〉, respectively referred to as 〈EBEB〉 and 〈EEEB〉.

The curl component of the deflection field is found to be consistent with zero (Fig. 5.4), as expected
from the linear theory of weak lensing (see Sec. 3.8). On the contrary, the spectrum of CddL shows evidence
for gravitational lensing: the null hypothesis of no signal is rejected at 4.6σ statistically (4.2σ combining
the statistical and systematic errors in quadrature) and at 4.6σ statistically if only the 〈EBEB〉 estimator
is considered.

The analysis is also performed assuming the predicted amount of polarization predicted by the ΛCDM.
The first consequence is that the weighting given to the different l and l′ in the quadratic estimator is
different. The second consequence is that the error bar calculation has to include the sample variance
of the signal. We fit the amplitude of the ΛCDM theoretical CddL shape, the value measured is A =
1.06± 0.47(stat)± +0.35

−0.31(syst), consistent with the ΛCDM value of 1, see Fig. 5.5.
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Figure 5.6: Spectrum of the correlation between the convergence field κ estimated from Polarbear
polarization maps and the CIB map of the Hershel ATLAS fields. In the right panel only the EB
quadratic estimator of κ is adopted. In the left panel EB and EE quadratic estimators are combined

This study was the first evidence of CMB lensing derived from polarization alone. More details on
this study can be found in The Polarbear Collaboration (2014).

5.6.2 Evidence for gravitational lensing of the cosmic microwave background
polarization from cross-correlation with the cosmic infrared background

As previously mentioned, the RA12 and RA23 patches overlap with ATLAS fields. The far-IR/submillimeter
emission mapped by the Hershel satellite is mostly star emission absorbed and re-emitted by dust in the
galaxies, therefore this cosmic infrared background (CIB) is a tracer of the matter density. As explained
in Sec. 3.8, the convergence field κ is basically the Laplacian of the matter density integrated along
the line of sight and therefore is expected to be correlated with the CIB. In Polarbear Collaboration
(2014b) we correlate the CIB with the EB-estimated and EE-estimated κ field and find a 4.0σ correla-
tion (2.6σ for the EB estimator alone). The power spectrum of the cross-correlation is reported in Fig.
5.6.

5.6.3 A measurement of the cosmic microwave background B-mode polar-
ization power spectrum at sub-degree scales with Polarbear

TheBB-power spectrum extracted from Polarbear polarization maps in the [400, 2100] multipole range
was published in Polarbear Collaboration (2014a). The spectrum is reported in Fig. 5.7, it yields a
97.2% confidence level rejection of the hypothesis of no B modes. Fitting the amplitude of the theoretical
shape of the ΛCDM BB spectrum gives ABB = 1.12±0.61(stat)±+0.04

−0.12(syst)±0.07(multi), where “stat”
represents the statistical uncertainty, “syst” represents the possible systematic bias due to either the
instrumental or the astrophysical foregrounds and “multi” represents a multiplicative uncertainty due to
calibration. In addition, the paper provides details on the data processing adopted also for the previous
two papers (outlined in the previous section) and also a thorough investigation of the possible impact of
systematic effects (see Fig. 5.7).

5.6.4 Polarbear constraints on cosmic birefringence and primordial mag-
netic fields

Similarly to weak lensing, an anisotropic polarization rotation field α, arising for example from anisotropic
cosmic birefringence, can be probed using quadratic estimators. In particular, a non zero α(l+l′) sources
a non zero E(l)B(l′) correlation. Thus the power spectrum of the rotation field can be measured using a
〈EBEB〉 estimator, see Sec. 3.8.3 for more details. This power spectrum was measured in Polarbear
Collaboration (2015) using the Polarbear first season data and is reported in Fig. 5.8. Its consistency
with zero sets an upper limit the power spectrum of the magnetic fields that might source the cosmic
birefringence. Assuming a scale-invariant spectrum, B1 Mpc–the strength of the magnetic field smoothed
at a scale of 1 Mpc–is constrained to be lower than 93 nG (95% confidence level, inclusive of systematic
uncertainty).
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Figure 5.7: Left: BB power spectrum measured from the three Polarbear patches of the first season.
For comparison, a theoretical WMAP-9 ΛCDM theoretical BB power spectrum is displayed in red. Right:
Possible bias from instrumental systematics errors in the BB power spectrum. Colour points represent
the individual uncertainty while the black dashed line is the cumulative bias. The estimation considers
all the CMB patches. The grey-shaded region show the 1σ bounds on the cumulative bias limit, after the
self-calibration procedure described in Sec. 5.5. The bias from Individual effects is evaluated by adding
the systematics in simulated observations of an E-only simulated sky. The effects included in this analysis
were the boresight and differential pointing uncertainty (light blue, cross mark), the residual uncertainty
in instrument polarization angle after self-calibration (purple, plus mark), the differential beam size and
ellipticity (yellow arrow and black square mark respectively), the electrical crosstalk (blue, arrow mark),
the drift of the gains between two consecutive thermal source calibrator measurements (red star mark),
and the HWP-independent and HWP-dependent terms of the relative gain model (green diamond and
blue circle mark respectively).

Magnetic fields present before the recombination source vector and tensor perturbations in the metric.
These perturbations leave an imprint in CMB B-mode anisotropies. At the small scales probed by
Polarbear, the B-mode spectrum is particularly sensitive to the vector perturbations that might have
been sourced by an inhomogeneous magnetic field before recombination (see. Fig. 5.8). In Polarbear
Collaboration (2015) we also use the measurement of the BB power spectrum to constrain the amplitude
of such primordial magnetic fields to B1 Mpc < 3.9 nG at 95% confidence level, assuming a flat prior on
the magnetic field amplitude.

5.7 The future of the Polarbear project

Since May 2014 the focus of Polarbear moved larger angular scales. Since then the telescope started
scanning the sky region observed by the BICEP2 experiment. The effective area is roughly 20× 50 deg2

and it is observable for nearly 14 hour per day. These large patch observations will be used mainly
as a pathfinder for PolarbearII (Suzuki et al., 2014a). These two phases of the Polarbear project
not only have comparable scanning strategy—both are interested in scales considerably larger than the
ones probed by Polarbear first and second season—but they also have important similarities in the
instrumental set up. Since the beginning of the third observational campaign, a continuously rotating
warm half-wave plate was mounted at the prime focus, between the secondary and the primary mirror.
It rotates at 2 Hz, and consequently the incoming polarized radiation is modulated at 8 Hz.

A warm continuously rotating half wave plate is the current baseline of PolarbearII. However, the
most important innovation of PolarbearII is the multi-frequency coverage, adding a 95 GHz band to
the 150 GHz of Polarbear. The PolarbearII focal plane is composed of 1897 pixel, each of them
sensitive to the two orthogonal polarization states of the two frequency. The sinuous antennas (see Fig.
5.9a and O’Brient et al. (2013), for more details) enable to couple a broad range of frequencies to the
microstrip lines. The two frequencies can then be selected by microstrip filters and directed to different
bolometers. Thus each focal plane pixel has four bolometers, for a total of 7,588 detectors. Traditionally,
detectors sensitive to different frequencies occupy separate focal plane pixels. This multichroic technology
allows for a much more efficient usage of the focal plane area, enabling faster scanning speed. More
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Figure 5.8: Left: the power spectrum of the rotation filed as measured from Polarbear using the first
season data. Right: A representative B-mode polarization power spectrum sourced by a scale-invariant
primordial magnetic field. Shown are the passive tensor mode (green), the compensated vector mode
(orange), the gravitational lensing contribution (blue), and the combinations of the lensing and vector
B modes (red) and all three components (magenta). See Polarbear Collaboration (2015) for more
details.

details about the PolarbearII focal plane can be found in Suzuki et al. (2014b). As of fall 2016, the
PolarbearII focal plane, optics and cryostat are under construction (Fig. 5.9b). A twin HTT is being
assembled at the site and will soon be ready to host the new receiver. The complete PolarbearII is
expected to see first light in summer 2017.

In 2018, two PolarbearII-like receivers will be deployed. One of them is an exact replication of
PolarbearII, the other adopts the same dichroic technology but is sensitive to 150 and 220 GHz. They
will be mounted on the current HTT and on a third twin, currently under construction. This three-
telescopes stage is called Simons Array (Arnold et al., 2014). The multi-frequency coverage will allow the
rejection of both the dust and the synchrotron foreground signals. Including the statistical uncertainty
endemic to this component separation process, Simons Array will constrain the tensor to scalar ratio
and the total mass of the neutrinos down to σr=0.1 = 6× 10−3 and σ∑mν = 40 meV. Fig. 5.9c shows
the forecast sensitivity at the power spectrum level.

In the spring, a further stage has been funded. It is called Simons Observatory and will merge the
Polarbear and ACT collaborations. The Simons Observatory will be an intermediate step towards
Stage IV, a next-generation observatory in which dedicated telescopes from the south pole, the Chilean
Atacama plateau and possibly northern hemisphere sites will observe a large fraction of sky with a total
of 500,000 detectors. Stage IV is expected to be operational by 2020 and observe the sky for at least 5
years. More information can be found in the CMB S4 wiki1 and in the (soon to be published) science
book.

5.8 Summary

The Polarbear experiment is one of the leading CMB experimental projects currently in operation. So
far it produced a host of results concerning the CMB polarization signal on small angular scales. The next
campaigns (called PolarbearII and Simons Array) will explore the B-modes on large scales. These
efforts will culminate in the Simons Observatory, the comprehensive, multi-frequency, multi-telescope
experiment aiming at setting unprecedented constraints on small and large angular scales, thus probing
both primordial gravity waves and the masses of the neutrinos. At present, the final stages of the small-
scale B-mode Polarbear analysis is taking place. I have actively taken part in this analysis since the
beginning of my thesis and in the following chapters I describe the contributions I have made.

1https://cosmo.uchicago.edu/CMB-S4workshops/index.php/Main_Page

https://cosmo.uchicago.edu/CMB-S4workshops/index.php/Main_Page
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Figure 5.9: (a) A PolarbearII focal plane pixel, the antenna has sinuous design, which makes them
broadband. Four detectors are fitted in a single focal plane pixel, one for each polarization direction of
the two frequency bands, centred at 95 and 150 GHz. (b) the PolarbearII cryostat being assembled
at KEK. (c) Forecast of the sensitivity of Simons Array (Errard et al., 2016).



Chapter 6

The Polarbear unbiased map-maker

The project of an unbiased map-maker for the Polarbear experiment was started at APC in the
summer of 2013 and now involve also our collaborators at SISSA and Sussex University. Two codes
are currently available, an iterative and an explicit map-maker. The latter is the current baseline. I
contributed to it by leading its design, implementation and validation, which will be illustrated in this
chapter.

The implemented estimator is the unbiased estimator discussed in Sec. 4.1.4. Given the small sky
area observed by Polarbear, the number of pixels observed was limited to about 5× 104. On the
contrary, as described in Sec. 6.2, the number of templates to be filtered out is roughly 109. Therefore
the direct solution of Eq. (4.29) is preferable to the two-step solution involving Eq. (4.30) and Eq. (4.31).
As already mentioned, the other fundamental property of the implementation is the explicit solution of
the inverse problem in Eq. (4.29).

After a description of the formalism and its implementation, we assess its performances and compare
it with both a different implementation (the popular iterative solver) and a different estimator (the biased
estimator Eq. (4.32)).

6.1 Goals, requirements and constraints

In Polarbear we already had an iterative unbiased map-maker. The motivations for the implementation
of the explicit solver were the following.

Simulation capability. The advantage of the iterative solution of the map-making equation is the
speed of the algorithm. The cost indeed is equal to the cost of the application of the system matrix
A>F TA times the number of iterations. Moreover, the system matrix doesn’t even need to be explicitly
calculated, we can simply apply sequentially the linear operators of which it is composed. Postponing for
a moment the quantitative derivation, a map-making run of the iterative solver cost ∼ 1014 operations
while explicitly computing A>F TA and inverting it costs ∼ 1015 operations. Thus, for a single run,
the iterative solver is more convenient than the explicit solution. However, a fundamental requirement
of any data analysis pipeline is the capability of running simulations, typically hundreds or thousands.
As long as the observation and filtering are the same for all the simulations, the explicit implementation
can recycle all the heavy computations and get an arbitrary number of simulations for a negligible extra
cost. On the contrary, the iterative solution cannot take advantage of the fact that for each simulation
the system being solved is the same.

Accurate reconstruction. Another disadvantage of iterative solvers is that they not always accurately
converge (within a reasonable number of iterations) to the solution. As discussed in Sec. 6.6.2, we indeed
encounter this problem in Polarbear.

Characterise the degeneracies. The iterative solver suffers from convergence problems especially
if the system matrix is badly conditioned. As detailed in Sec. 4.2, this happens when there are some
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degeneracies in the data model. The explicit inversion of the system matrix through the calculation of
its eigenstructure provides quantitative insights on the possible degeneracies.

Strict implementation of the estimator. The previous motivations are general differences between
iterative and explicit solvers. In our case, we also had motivations specific to our implementation of the
iterative estimator. One of the most important is the lack of orthogonalisation of the filters: instead
of building the filtering operator in Eq. (4.13), two set of templates (the ground templates and the
polynomial templates, discussed in Sec. 6.2) are sequentially filtered. Though internally orthogonal,
the lack of mutual orthogonality (and even the degeneracies) between these two set of templates didn’t
ensure proper marginalisation over them. This approximation was forced by the serial implementation
of the iterative mapmaker: the memory available to the single processor is insufficient to store the
orthonormalisation kernel in the memory. This problem is thus related to the following requirement.

Intrinsically massively parallel implementation. The serial implementation of the iterative solver
also limits the amount of data it is able to grind at a time. Indeed, an unbiased map can be computed
only from a maximum of 24 CESs. Moreover, obtaining the memory necessary to analyse this cases
requires a severe under-population of the compute node (typically using only 2 processors out of 24),
making an inefficient use of the computational resources.

Since the computational aspects are part of the motivations for the explicit implementation of the
unbiased estimator, when devising the algorithm and the implementation we had to bear in mind the
specifications of the machines on which the code was supposed to run. As part of the repository mp107—
dedicated to the data analysis of post-Planck experiments—we had between 8Mcpuh and 11 65Mcpuh1
available at the National Energy Research Scientific Computing Center (NERSC). The machine we used
and their main specifications are

Name Hopper Edison Cori Phase I

Machine Cray XE6 Cray XC30 Cray XC based

Node # CPUs 24 24 32
Node memory [GB] 32 64 128
CPU clock rate [GHz] 2.1 2.4 2.3

The volume of Polarbear first and second season dataset for the RA23 patch is about 1.2 TB. As it
will be explained later in Sec. 6.3, the map estimator requires other 3 TB of memory, in addition to the
data volume loaded in the memory. Given the machines at our disposal, this required to implement a
code that scales properly when run on thousands of processors.

6.2 The data model

In this section we illustrate in detail the Polarbear data model, providing a concrete and detailed
example for the general considerations presented earlier in Sec. 4.1.4 and Sec. 4.2.4. Indeed, as any
other ground-based CMB experiment, our raw TOD contain a contribution from the following two
contaminating signals.

Atmospheric signal. The observational site of Polarbear provides a very dry environment, which
minimises the impact of atmospheric emission on the measurements of our detectors. The atmosphere
signal gives nevertheless a relevant contribution to our time streams, especially at low frequencies. Fig.
6.1 shows the power spectral density (PSD) of the sum and the difference of two bolometers in the same
focal plane pixel. The TOD of a single CES are noise dominated and therefore the figure essentially
represents the PSD of our noise. Above a knee-frequency, the noise is basically white. The atmospheric
emission is responsible for the 1/f tail of the noise. Since it is not polarized it affects mostly the sum
of the detectors (i.e. the total intensity measurement). However, because of the bandpass mismatch, a
small fraction of the 1/f intensity noise leaks into the difference of the detectors (i.e. the polarisation-
only measurements). The figure highlights the frequency band where we expect our target CMB signal

1hours to be shared with all the other users of the repository
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Figure 6.1: Power spectral density of the sum and the difference of a pair of detectors.

to be. For temperature, the whole science band is affected by the 1/f noise. For polarization, only
the low-frequency part of the band is affected by 1/f noise. The extent of this 1/f contribution to
the science frequencies varies depending on the detector, the weather, etc. A dedicated study of TODs
recorded by different detectors in a variety of observing conditions empirically found that a first order
polynomial filtering of each subscan suppresses the 1/f contribution to the polarization measurements
most of the times. This procedure, of course, removes also the signal in those frequencies but has the
advantage of making the map estimation sensitive only to the white part of the noise. Since total intensity
measurements are more affected by atmospheric 1/f noise, the subscans of a detector sum are filtered
up to a third order polynomial, which however does not remove completely the 1/f component. Our
analysis and results focus on polarization but we mention that, consequently, our total intensity white
noise simulations do not accurately reproduce the noise of the actual Polarbear data, analysed in the
next chapter.

Ground pickup. As described in the previous chapter, the design of the Polarbear telescope in-
clude several comoving baffles for preventing the ground emission from leaking into the measurement.
However, as any other ground-based experiment, we can not consider our TOD to be free from ground
pickup. We therefore need to filter some signal stationary in ground coordinates. This is done by bin-
ning the azimuthal span of each detector and CES in 0.08 deg-wide intervals and removing for each bin
the mean of all the samples taken in that range. In order to check that the size of the azimuthal bins
enables to capture the structure due to the ground pickup we first used our data set to make a map in
ground bound coordinates, then this map is scanned in a simulated observation and the resulting TOD
are filtered and used to create a sky map that gives an estimation of the leaked ground signal into our
CMB estimation. We checked that this residual is negligible compared to our statistical uncertainty.

Following the prescription illustrated in Sec. 4.1.4, the two set of filters just described and adopted in
Polarbear Collaboration (2014a) are achieved by introducing appropriate templates in the data mode,
which we describe in details in the rest of this section.

For convenience, we first consider data collected during a single CES by a single pair of detectors
in the same focal plane pixel. This is the fundamental unit of our data model and we have a total of
Npair × NCES ∼ 1.5 · 106 of them. The two detectors in such a pair are sensitive to two orthogonal
polarizations and are referred to as ‖ and ⊥. As discussed in Sec. 4.2.4, we model their TOD to include
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signal, ground pickup, templates related to the correlated noise and an actual noise term:[
d‖

d⊥

]
= As+Gg +Bx+w

=

[
A‖

A⊥

]
s+

[
Gd 0

0 Gd

] [
g‖

g⊥

]
+Bx+

[
w‖

w⊥

]
, (6.1)

where we have arranged the data vector so that all the measurements of the first detector of the pair are
gathered together and followed by the measurements taken by the other one.

The pointing matrices, A‖/⊥, are as given by (4.1), and thus have only three non-zero elements for
each row, which correspond to three Stokes parameters of a given sky pixel, p, observed at the time
assigned to the row. These are equal to 1, cos(2ϕ

‖
t ) and sin(2ϕ

‖
t ) for detector ‖ and 1, cos(2ϕ⊥t ) =

− cos(2ϕ
‖
t ) and sin(2ϕ⊥t ) = − sin(2ϕ

‖
t ) for detector ⊥, and for the I, Q and U signal components, respec-

tively. We are assuming that ϕ‖t = ϕ⊥t + π/2 is strictly true, a justified assumption in the Polarbear
case. From now on we will write simply ϕt instead of ϕ⊥t . The block-diagonal structure of matrix G is
due to the fact that we have introduced two independent ground templates, one for each detector of the
pair. Since we always use the boresight azimuth to define the azimuthal bins, each of the blocks is the
same for each detector and all focal plane pixels. Matrix B describes the time-domain filtering and thus
can have more complex structure. In particular it needs to account for two types of contributions: the
ones that are correlated between detectors and the ones that are independent. This can be achieved by
assuming that matrix B has the following structure,

B ≡
[
Bcorr Buncorr 0
Bcorr 0 Buncorr

]
, (6.2)

where we assumed that we use the same filtering of the uncorrelated part for each of the detectors. This
corresponds to the following breakdown of vector x,

x ≡

 xcorr

x
‖
uncorr

x⊥uncorr

 . (6.3)

Here, xcorr collects the amplitudes of all the time-domain modes common to both the detectors, while
x
‖/⊥
uncorr those specific to only one of them.
Owing to the orthogonality of the two polarization directions for the two detectors in a pair, we can

represent their data with summed and differenced data streams, d+,d−, which contain the information
about total intensity and polarized sky signals, respectively. These are defined as,

d+ ≡ 1

2
(d‖ + d⊥) (6.4)

d− ≡ 1

2
(d‖ − d⊥). (6.5)

Using (6.1) and introducing quantities specific to each of the new data streams, defined as,

A± ≡ 1

2
(A‖ ±A⊥) (6.6)

B+ ≡
[
Bcorr, Buncorr

]
, (6.7)

B− ≡ Buncorr (6.8)

x+ ≡
[

xcorr
1
2 (x
‖
uncorr + x⊥uncorr)

]
, (6.9)

x− ≡ 1

2
(x‖uncorr − x⊥uncorr), (6.10)

g± ≡ 1

2
(g‖ ± g⊥), (6.11)

w± ≡ 1

2
(w‖ ±w⊥), (6.12)

we can express these new data in a concise way as,

d± = A±sT/QU +Gdg± +B±x± +w±. (6.13)
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Here sT and sQU denote sky signal vectors made of the total intensity and interleaved, pixel-by-pixel, Q
and U Stokes parameters, respectively. These expressions emphasize that as intended each of the new
data streams contains information either about the total intensity, d+, or polarization, d−. Moreover,
as all the amplitudes appearing on the right hand side of these equations are specific for each data set,
each of these two data sets can be analysed completely separately and, under the assumptions specified
earlier, without any loss of accuracy. Specifically, the maps of the total intensity on the one hand, and
the Q and U Stokes parameters on the other can be estimated independently. This is the approach we
follow in this work.

We point out that a perfect separation of the total intensity and polarization information is strictly
speaking only possible if the two detectors of each pixel pair are perfectly calibrated and have identical
beams. Otherwise, some residual total intensity contribution may be present in d− and, less harmfully,
some polarization in d+. The beams of two detectors are more likely to be similar if they belong the same
focal plane pixel. In any case, if needed, leakage from the total intensity to the differenced data, d−,
can be modelled as a total intensity-like template and used in the map-making process, e.g. as proposed
in Wallis et al. (2015). Though such tests were indeed performed as part of the analysis of the actual
Polarbear data set (Polarbear Collaboration, 2014a), we do not consider them in the present work.
Leaving aside this kind of systematic effect, it is mathematically equivalent whether we use one or the
other data representation, as long as the filtered temporal templates, defined by Bcorr and Buncorr, are
used consistently.

In Eq. (6.13) the pointing matrices, A+ and A−, are given as in Eqs. (4.2) and (4.3) and therefore
are composed of zeros and ones for the summed data and have two non-zeros per row given by cos(2ϕ

‖
t )

and sin(2ϕ
‖
t ) for the differenced data. The ground template operator, Gd, is the same for the summed

and differenced data. As an independent ground template is used for each detector pair and for each
CES, the Gd matrix has as many columns as the number of bins used to discretize the ground signal and
as many rows as the number of samples in a given CES. We bin the observed azimuths in intervals of the
width of 0.08 deg and thus have NCES,p

G ∼ 100 bins per template. At any given time t the corresponding
row of Gd has only one non-zero entry (equal to 1) in a column corresponding to the ground bin observed
at this time.

The B± matrices define the time-domain filtering applied to both data streams in order to suppress
long-term correlations. In the Polarbear case the filtering is done subscan-by-subscan (Polarbear
Collaboration, 2014a). Consequently, the B± are block diagonal with one block per subscan, and each
block displaying the same structure as in Eqs. (6.2) and (6.7). We denote such an elemental block with
a subscript, s, to emphasize that we are referring to a single subscan. Each of these blocks removes
from a given subscan time-domain trends given by time domain templates defined as polynomials up
to some order, selected to ensure that the noise after filtering is nearly white. In our analysis, Bcorr, s

contains four templates (the Legendre polynomials up to the 3rd order, appropriately rescaled to become
orthonormal over the time interval given by the subscan) and Buncorr,s contains only the constant and
linear templates. Consequently, the columns of Buncorr, s are linearly dependent on those of Bcorr, s

and we restrict B+ to the latter ones, i.e., B+ = Bcorr, s without any loss of generality, as discussed
in Sec. 4.2.2. Moreover, for simplicity, for each subscan we use the orthogonalized version of the Legendre
polynomials so matrices B± are by construction column-orthonormal from the outset.
w+ and w− are the noise terms, describing the noise in the data after the ground template and

temporal trends removal. These noise terms are expected to be “prewhitened” with respect to the actual
noise in the data. We model these vectors as white with inverse variances given by ω+ and ω− respectively.
We allow for different weights ω for each CES and detector pair. These weights are evaluated from the
actual data as the inverse of the average of the power spectral density of the timestreams sum and
difference, taken between 1.04 Hz and 3.13 Hz.

It is now straightforward to generalize these considerations to multiple CESs and multiple detector
pairs. In both cases we stack all the TOD for every detector pair and every CES together and, for
concreteness, we do so for the summed and differenced data separately. The form of Eq. (6.13) for
the concatenated summed and differenced data remains the same but the data objects and operators
on its right-hand side need to be appropriately redefined. In particular, as we define a different ground
template for each detector pair and each CES the global G±all matrix, will be block diagonal, with
each block given by the detector-pair and CES specific matrix, Gd. The vector of the ground template
amplitudes, g±all will accordingly be made of the detector-pair and CES specific vectors, g±. Similar
generalizations also apply to the temporal drifts term. However, in this case, one may need, or want,
to account for effects that would be correlated between different detector pairs. Such effects could, for
instance, be a result of contributions to the summed data due to atmospheric fluctuations. Consequently,
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the ultimate filtering operator, B±all, may not be strictly block-diagonal but have rather a form resembling
that of (6.2). In the Polarbear data model, however, we do not include this possibility but introduce a
separate template for each detector, each subscan and each polynomial order. This adds some flexibility
that may permit better accounting for systematic effects, but it may not be always advantageous as
far as statistical uncertainties are concerned due to the significant number of extra independent degrees
of freedom this choice implies. The number of polynomial templates per CES and detector pair is
NCES,p

B = Nsub × Npoly ∼ 150 × Npoly, where Npoly is 4 or 2 if we are considering the sum or the
difference of the detector pair. Consequently the total number of templates per CES and detector pair
sum (resp. difference) is NCES,p

T = NCES,p
G +NCES,p

B ∼ 700 (resp. 400).

6.3 The implementation

We use the timestreams in the form of Eq. (6.13). Consequently the temperature and polarization
problems can be solved independently. In the following we drop the ± superscript and specify if we are
referring to the temperature of polarization case only when necessary.

The implementation of the explicit unbiased map-maker can be divided in four main tasks.

1. The computation of the A>F TA matrix.

2. The computation of the A>Fd vector.

3. The inversion the A>F TA matrix.

4. The application of (A>F TA)−1 on A>Fd.

Steps 1, 2, 3 are discussed in details in what follows. Step 4 does not deserve any explanation: it is
just the application of a dense matrix on a vector. The computational cost is completely dominated by
steps 1 and 3. Steps 1 and 2 both involve the filtering operator and consequently the orthonormalisation
kernel of the templates, which is precomputed and used in both steps. We provide details about its
precomputation in a dedicated section.

6.3.1 Filtering Operator F T

We describe here the implementation of the two different usages of the filtering operator: its application
on a timestream and the evaluation of one of its entries. Both require the orthonormalisation kernel
K ≡ (T>T )−1, of which we describe the precomputation. The other relevant objects to be stored in the
memory are the matrices G and B. Since for any given row G is equal to one for the (unique) observed
ground bin and zero elsewhere, we store it as a timestream of integers containing only the index of the
non-zero elements. Also B is very sparse and is not stored explicitly, we rather keep in the memory
a single copy of precomputed Legendre polynomial for all the required order and length. Since most
the subscans have generally similar length, the memory required by B is limited. As a last important
remark, the filtering operator inherits the block diagonal structure from the templates, with one block
for every detector pair of every CES. Moreover, the corresponding blocks of the weight matrix M are
equal to ω±1 and, therefore, in the computation we can consider M = 1 and multiply each of diagonal
block by the corresponding ω. For the sake of clarity, all the following explanation refers to a single
diagonal block. In order to extrapolate the global cost in term of memory and computational time, it is
sufficient to multiply it by NCES ×Npair.

Orthonormalisation kernel K

We first compute the inverse of the kernel and then the kernel itself. Since

(K±)−1 = [G,B±]>[G,B±] (6.14)

=

[
G>G G>B±

(B±)>G> (B±)>(B±)

]
(6.15)

the computation involves scalar products of timestream vector. We therefore loop over time, computing
the product of templates and update the entry of K−1. These are, in principle, NCES

t × (NG +Nsub ×
Npoly)2 operations. However, taking advantage from the sparse nature of G and B, they are reduced to
NCES
t ×N 2

poly. Then, we compute the eigenstructure of K−1 = V diag(e)V > using the dsyev routine of
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LAPACK (Anderson et al., 1999). We compute the regularised inverse by setting to zero the eigenvalues
smaller than 10−6 times the larger eigenvalue and inverting all the others, and recomposing again the
kernel by multiplying V and V > from left and right, respectively. The regularisation is particularly
required because by construction we are in presence of the degeneracies described in Sec. 4.2.2. The
scaling of the eigendecomposition is (NT )3.

Summarising the computational cost of K−1 is NCES
t ×N 2

poly . 5× 105 operations, negligible com-
pared to the cost of the inversion (NT )3 which is roughly equal to 108 operations for temperature and 107

operations for polarization. The global cost is therefore approximately 1014 operations for temperature
and 1013 for polarization. As far as the memory consumption is concerned, the (NT )2 double precision
values of the kernel are permanently kept in the memory, allocating 1.5 MB for polarization and 4 MB
for temperature, for a total of 2 TB for polarization and 5 TB for temperature.

Application of the filtering operator

In order to apply the filtering operator on a timestream vector d we sequentially perform the matrix
multiplication that composes the filtering operator

F Td = ω±{d− [G,B±]

(II)︷ ︸︸ ︷
K [G,B±]>d︸ ︷︷ ︸

(I)

}

︸ ︷︷ ︸
(III)

(6.16)

Step (I) computes the scalar product between the templates and the data. It consists of one iteration
over the timestream and, taking advantage of the sparsity of the templates, 1 + Npoly multiplications
for each of the NCES

t samples. Step (II) applies the kernel, N 2
T operations, and the resulting vector

is projected back to the time-domain in step (III). Also this last step—which moreover subtracts the
result from the original data vector and apply the weighting—consists in few times NCES

t operations.
Summarising, the whole filtering operation scales like NCES

t and is therefore negligible compared to the
precomputation of K. The memory work-space required is also irrelevant.

Evaluation of a matrix element

The only non-trivial part in the evaluation of (F T )tt′ is to evaluate {[G,B±]K [G,B±]>}tt′ . Again, we
take advantage from that fact that, for any time t, the corresponding row of [G,B±] has just 1 +Npoly
non-zero elements. Therefore, the cost of the evaluation of a matrix element is (1 +Npoly)2.

Considering the filtering matrix of the whole dataset, (F T )tt′ can be different from zero (and in
general it is) only if t and t′ refer to the samples of the same CES and pair of detectors. Therefore the
non zero elements are NCES ×Npair × (NCES

t )2 ∼ 1015.

6.3.2 Computation of A>F Td

The non-trivial part is the application of the filter operator on the data vector. The time-domain
filtered vector is never stored explicitly, instead, as its entry d′t is calculated, we compute directly its
contribution to A>F Td. It consists in adding dt, cos(φt)dt and sin(φt)dt respectively to the I, Q and
U Stokes parameters of the pixel being observed at time t.

6.3.3 Computation of A>F TA

The basic idea of the algorithm is to iterate over all the non-zero elements of F T , a Nt×Nt matrix, and
compute its contribution to the A>F TA, a Np ×Np matrix for temperature and a 2Np × 2Np matrix
for polarization.

Consider a time sample t and call p the observed sky pixel. Since the only non-zero entries of the
t-th row of A are the columns corresponding to pixel p, the t-th column of F T contributes only to the
p-th column of F TA. Analogously the t′-th row of F T contributes only to the p′-th row of A>F T .
Therefore, in order to build the A>F TA matrix we loop over the elements of F T : for the (t′, t) entry
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we compute its contribution to the (p′, p) block of A>F TA

Temperature: (F T )tt′ (6.17)

Polarization: (F T )tt′ ·
[

cos(ϕt) cos(ϕt′) cos(ϕt) sin(ϕt′)
sin(ϕt) cos(ϕt′) sin(ϕt) sin(ϕt′)

]
(6.18)

Because of the symmetry of F T , we could add the same contribution to the (p, p′) block of A>F TA,
without (F T )t′t. Equivalently, we take advantage of this symmetry by evaluating the contribution to
A>F TA only when p ≥ p′. This was more convenient especially because the routine that we use for the
computation of the eigenstructure of A>F TA requires only the upper triangle of the matrix.

The computational cost of the calculation of A>F TA scales as the number of non zero entries of
F T times the cost of its evaluation for given (t′, t): NCES × Npair × (NCES

t )2 × (1 + Npoly)2 ∼ 1016

operations.

6.3.4 Inversion of A>F TA

We then perform the eigendecomposition of A>F TA representing it as,

A>F TA = V diag(e)V >. (6.19)

This is done with help of a ScaLAPACK routine, pdsyevr (Blackford et al., 1997). The numerical cost
is O(N 3

p ) ∼ 1015 operations. This scaling relation is the main obstacle in the application of the explicit
implementation to maps with a larger number of pixels. By construction the eigenvalues, e, are all non-
negative numbers though numerically some small eigenvalues may turn out to be negative. The inversion
of this matrix is then performed by inverting its eigenvalues. Since the condition number of the matrix
is typically very large, the inversion needs to be regularized by employing a (pseudo)inverse defined as,

(A>F TA)−1 = V diag(ẽ)V >, (6.20)

where,

ẽi ≡
{
e−1
i , if ei > 10−6 maxj ej ;

0, otherwise.
(6.21)

6.3.5 Parallelism
There are basically two types of computations. The ones that compute objects from the time-domain
information and linear algebra operations on dense pixel-domain objects.

In the second category the algebraic objects are distributed across the system according to the block-
cyclic distribution of ScaLAPACK2. The map-domain square matrices (A>F TA, its inverse and V ) are
divided into square (or nearly square) blocks. We work with a square grid of processors. The size of the
blocks is decided on the basis of the processor grid in such a way that each processor is assigned to one
and only one block. We keep the same block structure for map-domain vectors, therefore involving only
the first column of the processor grid.

In the first category computation is always done CES by CES, detector pair by detector pair. Each
processor is responsible for a set of detector pairs belonging to several CESs. We could not assign an entire
CES to a processor because the number of processors is comparable to the number of CESs. Different
CES can have a considerably different number of detectors: having one (or few) CES per detector would
result in a considerably uneven workload. A CES is typically scattered across 24 processors.

In the computation of A>F Td, each processor computes the contribution of the detectors pairs it
owns by storing a local copy of the full A>F Td. These processor specific copies are then gathered,
summed and scattered on the processors’ grid.

This method can not be used for the computation of the A>F TA matrix. The maximum number
of pixels used in production run was ∼ 7.5× 104, for polarization this means that storing A>F TA in
the memory takes 180 GB, largely exceeding the average memory per processors and even the memory
of each node. Therefore A>F TA is computed block by block: each processor computes its contribution
to the block, all the contribution are summed and the result is sent to the processor that owns the final
block.

2http://netlib.org/scalapack/slug/node75.html

http://netlib.org/scalapack/slug/node75.html
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6.4 Inputs

We summarise here all the information that have to be collected and the operations that have to be
performed before solving for the algebra of the unbiased map estimator.

The timestreams have to be calibrated and the time domain cuts have to be performed, this includes
the definition of the subscans. The resulting vector makes up the d vector.

In order to build the (compressed) pointing matrix, two more timestream-like vectors are required.
For each time sample, they store the polarization angle and the index of the observed sky pixel.

In order to prepare for the ground pickup filtering, the boresight azimuth of each CES is discretised
and a different index is given to each of the azimuthal bins. A fourth timestream-like array contains the
index of the azimuthal bin being observed at each time sample. In our implementation, we also make
sure that only the ground bins actually observed are included in the indexing. The regularisation of the
kernel K before its inversion makes this procedure unnecessary. However, removing unobserved ground
pixels from the indexing considerably reduces the size of the block of the orthonormalisation kernel,
which is the bottleneck of the memory consumption.

In order to define the matrixM , the weights ω have to be precomputed. These weights are evaluated
from the actual data as the inverse of the average of the power spectral density of the real data sum and
difference, taken between 1.04 Hz and 3.13 Hz.

Finally, we have to perform the pixel selection. Traditionally this is done by setting a maximum
threshold on the condition number of the blocks of A>MA. We apply a first cut based on this criterion,
discarding pixels with a condition number higher than 106. However, the reconstruction of some of the
sky pixel can still be unsuccessful since it can only be ensured by the study of A>F TA, which is still
unknown at this stage. We indeed saw that applying the selection purely on the basis of the A>MA
matrix produced degenerate involving few pixels at the very boundaries of the patch. We empirically
saw that imposing a lower limit on the number of different CESs observing a pixel was effective in
solving these pathologies. Imposing a threshold of 5 CES was usually enough, though we typically use a
threshold of 10. We occasionally used very high thresholds, ∼ 120 CESs, but in these cases the choice was
typically driven by the need to limit the total number of pixels, not by the pathologies at the boundaries.
Once the pixel selection is done, it is propagated back to the time domain, excluding from the TOD the
samples recorded in correspondence with the rejected sky pixels.

6.5 Validation of the implementation

We have performed multiple tests in order to validate and verify the map-making code. For validation,
we test whether the filtering operator, F T , removes all the unwanted modes as desired; for verification
we perform a number of full, end-to-end runs of the code, testing that the various outputs have the
expected statistical properties.

6.5.1 Effectiveness of the filtering
Our validation test checks that the filtering operator F T satisfies the relation F TTy = 0, for some vector
of template amplitudes y. Since we are interested in map domain residuals, we actually test whether

sres = (A>MA)−1A>F TTy = 0. (6.22)

We separately test the ground pick up filtering, T = G, and the polynomial filters, T = P . In the former
case, we produce a simulated ground signal timesteam as follows. For every CES, there is an index i for
each ground template bin. i ranges between 0 and ∼ 100. For each CES we set the amplitude of the ith
ground template to yGi = 1 + 0.01× i, while the entries of y corresponding to the polynomial templates
are set to zero. We obtain a simulated data vector dground = Ty, where d groundt = yGit . This construction
has been devised in order to ensure that the simulated timestream is a linear combination of all the
ground templates, with elements that are of order unity and are always positive. This last condition
mimics the worst-case scenario of a ground signal that is coherent in time. In a very similar fashion, we
test the filtering operator on the polynomial filters by setting d polyt = 1 + 0.01 × i, where now i is the
index of the swipe in azimuth within the CES (remember that we have a set of polynomial templates
for each constant direction azimuthal glide). We find that the map domain residuals, sres, never exceed
10−6 for temperature and 10−8 for polarization. These levels are expected given the precision of our
filter orthogonalization procedure, which tends to be merely approximate for very short subscans. They
are however negligible for any practical purposes.
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Figure 6.2: Histogram of the whitened unbiased map: V diag(
√
e)V >ŝ, where ŝ is estimated starting

from a time-domain white noise simulation (see Sec. 6.5 for the details). The excellent compatibility
of the distribution with the normal distribution shows that the (A>F TA)−1 = V diag(e−1)V > matrix
(explicitly computed) correctly reproduces the covariance properties of the unbiased map, including the
correlations due to the time-domain filtering.

6.5.2 Accuracy of the covariance of the estimator

As part of our end-to-end verification tests, we study the statistical properties of the noise-only maps
produced by our map-making code. In this case, we produce the simulated noise-only stream in time-
domain, with properties described by the diagonal weight matrix, M , and processed it via our code.
The output map was then prewhitened using the square root of the theoretically expected covariance,
A>F TA. The result was then histogrammed, Fig. (6.2), and compared to a Gaussian with unit variance.
The agreement was found to be very good, e.g., the Kolmogorov-Smirnov test found p-values of 0.66 for
polarization and 0.27 for temperature.

6.5.3 Accuracy of the estimator

Other examples of end-to-end tests involve a direct comparison of the known input map with the recon-
structed map. As discussed in Sec. 6.6.2, the overall agreement is found to be excellent, compatible
with the finite numerical precision.

6.6 A simulated noise-free reconstruction

In this section, we present the typical results produced by our unbiased map-making code on a simulated
run. The realism of this benchmark comes from the use of the real pointing information and ω factors
of Polarbear.

We create a simulated CMB sky using the synfast tool of the HEALPix package (Górski et al.,
2005) and assuming the Planck best-fit parameters Planck Collaboration (2015j)3. The simulated sky
and our pixel selection are reported in Fig. 6.3. We produce a signal-only timestream by using pointing
and polarization angle information from the first and second seasons RA23 observations. These do not
necessarily coincide with the dataset used for the cosmological analysis since we are only interested in a
realistic scanning strategy.

As previously explained a key product of our map-maker is the eigenstructure of the A>F TA matrix.
In Sec. 6.6.1, we describe an analysis of its eigenvalues and eigenvectors. Then we focus on the recon-
structed map, the final product of our map-maker, and compare it the one produced by our iterative
unbiased map-maker and a dedicated implementation of the unbiased estimator.
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Figure 6.3: Maps of the input sky used here for the reconstruction comparison of the different map
estimators.

6.6.1 Eigenstructure of A>F TA.

The eigenstructure of A>F TA not only determines which modes are missing from the final unbiased
sky estimate, it also provides information about the modes, which, while not singular, are not well
constrained by the data. This is because the matrix is closely connected to the noise covariance in the
pixel domain, Np, as shown by Eqs. (4.25) and (4.26).

In the case with no filtering at all the matrix, A>F TA, reduces to the well-known A>MA, which,
for the diagonal weights assumed here, is block diagonal with 2-by-2 blocks describing the (weighted)
coupling between Q and U Stokes parameters in each pixel. The off-diagonal elements of these blocks
will typically be negligible for pixels observed with a sufficiently homogeneous distribution of polarization
angles, while the diagonal elements will be approximately equal to the eigenvalues of the 2-by-2 block.
These are essentially given by the number of observations per pixel and their corresponding eigenvectors
are spatial modes equal to zero everywhere but in the given pixel. Departure from such behaviour would
then indicate the presence of strong off-diagonal coupling in some of the pixels.

The spectrum of A>MA can, therefore, be used as a good reference for assessing the impact of the
filtering on the map-domain noise spectrum. We compare the eigenstructure of the matrices, A>F TA
and A>MA, in Fig. 6.4. In both cases, A>F TA and A>MA have very similar spectra with the
exception of tens of poorly constrained modes, defined as those with eigenvalues smaller by at least
five orders of magnitude than the maximum eigenvalue. The corresponding eigenvectors, Fig. 6.6, are
long modes and, in many cases, they exhibit a striped structure close to the boundaries. We interpret
these modes as the result of the ground signal filtering discussed in Sec. 4.2.4 as their number roughly
corresponds to the number of bins in the ground-bin. Indeed, following the discussion of Sec. 4.2.4,
we expect that with every ground-template bin there should be an associated ill-constrained mode,
corresponding to an offset of the constant declination strip swept by the azimuth range of the bin during
the time of a single constant elevation scan. The fact that the recovered eigenvalues are not numerically
zero demonstrates that these degeneracies are weakly broken as expected given that the presence of
sky pixels observed with the telescope orientation corresponding to two different ground-template bins.
Consequently, this leads to only one truly degenerate mode per each Stokes parameter map, see Fig. 6.5.

We also see that the two most singular eigenvalues of the polarized case are significantly larger than
the most singular eigenvalue in the case of temperature. The difference is at least in part due to the
numerical precision of the Computations, however it is also consistent with our earlier expectation that
the polariser angle change across the constant elevation sweep can break the degeneracy between the sky
signal offset for each strip and the amplitude of the ground template in the corresponding bin. In the
case under study, given the limited primary mirror chop, the effect is very weak.

While regularizing the inversion of the matrix, A>F TA, we remove these modes from the solution
together with all the modes which are smaller than 10−6 of the maximal eigenvalue. This still leaves a
significant number of ill-constrained modes in the estimated maps. Although they do not give rise to any

3We set the tensor-to-scalar ratio, r to zero, for definiteness, as the value of r is not relevant in the case considered here,
given the focus of the first Polarbear campaigns on sub-degree angular scales.
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Figure 6.4: Eigenvalues of the blocks of the A>F TA and A>MA matrices. The spectra of the two
matrices are very similar in both temperature (left) and polarization (right). The qualitative difference is
the presence of few degenerate modes and tens of poorly constrained modes. Temperature has a formally
degenerate mode corresponding to the offset of the map. Polarization too is expected to have two nearly
degenerate modes, one for each Stokes parameter. Though they are treated as singular because of
numerical reasons, their degeneracy is partially broken, as explained in Sec. 4.2.4. In addition to these
qualitative differences, filtering also produce a general decrease in sensitivity (see the legend), evaluated
as the average over the whole observed area.

discernible artefacts in the case of the noiseless results as shown Fig. 6.8, when noise is included in the
time-domain data, these modes may dominate the maps visual appearance. However, despite being noisy
these modes are correctly estimated, and are neither artefacts of the estimator or its implementation,
nor remnants of any incompletely-filtered parasitic signal, such as the atmosphere. Rather they reflect
the actual uncertainty that the observation and filtering incur. These modes are typically missing in
the unbiased maps derived with the iterative solver as well as in the biased maps. This is because these
modes are either the most difficult to converge (in the case of the iterative solver) or are explicitly filtered
out (in the biased map-maker). Consequently, although these maps may occasionally – and somewhat
deceptively – look better, they will nonetheless be missing information which is correctly included in the
unbiased map computed using the explicit solver.

The main sequence of eigenvectors are “pixel-like” modes, Fig. 6.7, in the sense that in each of these
modes the most relevant structure involves a very limited number of pixels. As one intuitively expects,
these pixels move from the boundary towards the centre of the patch as the eigenvalue of the mode
grows (i.e. as the mode is better constrained). If there were no filtering, A>F TA would be block
diagonal (it would be equal to A>MA) and therefore each eigenvector would correspond to exactly one
pixel. Setting a threshold on the magnitude of the eigenvalues would be then equivalent to performing
a selection of the best observed (here innermost) pixels. In the presence of filtering, the main effect of
setting a threshold is still selecting the innermost pixels. However, because of the correlations that the
filtering introduces, some signal is also removed from all over the map, affecting areas relatively far from
the boundary pixels removed. This effect is visible at map-level in the lower panel of Fig. 6.7 and it
is investigated at the power-spectrum level in Section 7.3 : removing modes that mainly involve pixels
outside of the power-spectrum mask has an important impact on the power spectrum uncertainty and
bias.

6.6.2 Reconstructed map
We assess the maps from the point of view of the fidelity with which they reconstruct the actual sky
signal. Then, we also compare the maps reconstructed using both the biased and iterative unbiased
estimators.

In Fig. 6.8 we show the reconstructed map as well as the residual with respect of the input map Fig.
6.3. The bottom panel of Fig. 6.8 shows the residual once the singular modes are removed from the input
map and prove that the residual in the reconstructed map is only due to the presence of singularities
in the system matrix, A>F TA. As expected from our earlier discussion, Sec. 4.2, and confirmed by
our results in Sec. 6.6.1, there are two such singular modes for polarization and one for temperature.
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Figure 6.5: The degenerate modes (the parenthesis in the title reports the corresponding eigenvalue
divided by the largest eigenvalue). The degenerate mode of the temperature (left) map reconstruction
is the global offset. The Q and U maps on the left are one of the two singular modes of polarization,
the other mode is very similar: Q and U maps are swapped and the sign of one of them is flipped. The
degenerate modes of the polarization are more complex because of the modulation of the polarization
angle during the observation (see Sec. 4.2.4). For the same reason the degeneracy of these modes is
partially broken (though they have to be treated as singular in order to preserve the numerical stability
of the inversion of the A>F TA matrix).

The inversion regularization procedure removes these two modes from the estimated map, even if they
contain actual sky signal. These singular modes result from the interplay between the scanning strategy
and the filtering. They make the filtered data insensitive to these modes, which are unavoidably lost.
Therefore, the map estimated from the unbiased estimator using the explicit solver may not be strictly
speaking unbiased but provides an unbiased representation of all the modes that can be constrained from
the available data given the chosen filtering.

Unbiased maps via the iterative solver

We compare these results with the those produced by the iterative implementation already available for
the Polarbear data analysis.

In the case of the iterative solver, the system matrix, A>F TA, is never explicitly constructed.
Instead, we follow the general blueprint of maximum likelihood map-making code implementations (e.g.
Cantalupo et al., 2010) and apply the factors defining the matrix from right to left. The filtering operator
is applied as described above, again without being ever explicitly constructed.

We use a preconditioned conjugate gradient (PCG) technique (e.g., Golub and van Loan, 1996) with
the preconditioner set to be (A>MA)−1, which is either diagonal, for the total intensity, or block-
diagonal, for the polarization, and can therefore be straightforwardly computed, stored in the memory,
and applied to a vector whenever needed. This is again the standard choice (e.g. Cantalupo et al., 2010).
To quantify the convergence one typically uses the norm of the map level residuals,

r(i) ≡ |A
>F TAm

(i) −A>F Td|
|A>F Td|

, (6.23)

where m(i) stands for the solution after the ith iteration. Notice that r is a dimensionless quantity. A
typical requirement for convergence would then be r(i) ≤ 10−6.

Unlike the explicit implementation, the iterative solver is not applied to the full dataset. The constant
elevation scans are divided into 267 nearly even groups and, using the iterative solver, one map ŝα is
obtained independently for each group α. Afterwards we coadd the maps as follows

ŝ =

[∑
α

(A>MA)
∣∣
α

]−1∑
α

(A>MA)
∣∣
α
ŝ|α, (6.24)
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Figure 6.6: Examples of nearly degenerate modes (the parenthesis in the title reports the corresponding
eigenvalue divided by the largest eigenvalue). These modes are composed of some prominent feature at
the boundaries and a (usually) weaker long mode. The structures at the boundaries correspond to sets of
pixels that are heavily affected by filtering. For polarization the dominant effect is the ground removal.
At the high and low declination ends of the observed area the redundancy of the observations is low and
therefore the degeneracy breaking effects discussed in Sec. 4.2.4 are mild. For temperature, the high
order of the polynomial filtering plays a significant role, adding prominent features at the boundaries at
intermediate declinations and increasing the complexity of the long modes. Notice that the prominent
features at the boundaries saturate the colour scale.

where as before |α denotes a quantity computed using only the data belonging to subset α.
This divide-and-conquer approach is necessary because of the intrinsically serial implementation of

the code: the estimation of the unbiased map for different α groups can be done in parallel but each
of them has to take place on a single processor. This poses serious constraints on the volume of data
that can be analysed simultaneously. The data and the map-making related objects have to be kept
in the memory of a single processor, working with 24 CESs typically required to use only two of the
processors available on the computational node. Moreover, in this case each iteration takes ∼5 minutes,
setting a lower bound of ∼10 hours to the runtime of the program. This is typically a limitation on the
modern supercomputers, which prefer short and massively parallel jobs. These features reflect the fact
that the efficiency in the computation and the memory management was not the priorities of its design:
iterative map-maker was devised to be well integrated within the whole Polarbear pipeline, which is
intrinsically serial and written in python.

The product of this map-maker is shown in Fig. 6.9. The residual in this case is clearly more
pronounced and complex (middle panel). One might expect that the result of the unbiased map estimator
should be the same, whichever solver is applied. However, the result shown in the figure corresponds to
an incompletely converged iterative solution. Indeed, we have found that the iterative solution residuals,
(6.23), do not decay to zero, see the left panel of Fig. 6.10, but instead asymptote to between 1× 10−4

and 1× 10−3, which is roughly ∼ 3 orders of magnitude above our fiducial convergence criterion of 10−6.
This is the case even if we allow as many as a few thousand iterations. Such a behaviour is indeed
expected in linear systems for which the system matrix is (numerically) nearly singular (Hanke, 1995;
Szydlarski et al., 2014).

To understand the effects of this lack of convergence of the solver on the estimated maps, we have
computed the (pseudo) power spectra of the estimated map after ith iteration, centre and right panels
of Fig. 6.10. We see that although the very low ` part of the spectrum does indeed fail to converge,
convergence is quickly reached in the intermediate and high `-range. This again is consistent with the
singular modes found in the explicit solver having only large angular scales. If the singular modes are
known, we could readily remove them from the solution, and thus from the residuals, at each step
of the iteration and restore the proper convergence. However, this typically would require as many
computations as the explicit solver, undermining the most important advantage of the iterative one.

We can still use the PCG solver in such circumstances by using this practical workaround: instead
of monitoring a single residual as given by (6.23), we track the behaviour of residuals at the scales of
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Figure 6.7: Examples of pixel-like modes (the parenthesis in the title reports the corresponding eigenvalue
divided by the largest eigenvalue). These modes involve mainly a “ring” composed of a very limited
number of pixels (see the first row). In the second row, the same eigenvectors are displayed with a colour
scale squeezed by roughly two orders of magnitude, emphasizing structures inside and outside of the
ring. Outside of the ring the structures quickly fade away. Also moving inwards the structures decrease
their amplitude. However, compared to the outward structure, their typical length is much larger and,
most important, they do not completely disappear: they have a relevant amplitude in the whole inner
region. We emphasize that the “horizontal” structures represent the correlations induced by the ground
template filtering.

interest for the power spectrum, as shown in Fig. 6.9. Nevertheless, we have to be aware of the fact that
some of the power in the final solution may be compromised.

In the case of the map shown in the figure, convergence can indeed be reached in fewer than 100
iterations in the so-called science band defined in Polarbear Collaboration (2014a), which was the
band of interest for the first round of the Polarbear papers.

Biased map-maker

An important term of comparison is the biased map estimator, Eq. (4.32). Because of its simplicity
of implementation and low computational cost, this estimator is very popular in the analysis of current
experiments. Also in Polarbear we implement this estimator, it is part of the fiducial pipeline adopted
in the derivation of the results in Polarbear Collaboration (2014b); The Polarbear Collaboration
(2014); Polarbear Collaboration (2014a, 2015). However, in the following comparison we will use a
dedicated implementation of this estimator instead. The estimator we use strictly implements Eq. (4.32)
given the data model in Sec. 6.2. The reason is that we want to compare the difference inherent to the
unbiased and biased estimators, not on the extra small differences that the Polarbear implementation
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has.
In our biased estimator Eq. (4.32) we adopt the very same A>F Td computation of our unbiased

estimator and then compute and apply (A>MA)−1. All these operations pose no issues given the block-
diagonal structure of the matrix and the pixel selection procedure applied to the data beforehand, which
ensures that each block of A>F TA is invertible. The computational cost is then driven by the con-
struction of the kernel K (∼ 1013− 1014 operations). As mentioned earlier, this kernel is block-diagonal
and can be constructed and inverted efficiently on a single modern processing unit. Consequently, the
entire estimator can be implemented and executed using serial or embarrassingly parallel programming
models.

The biased map estimator, as expected, leads to the largest residuals (Fig. 6.11). These are particu-
larly pronounced in the outskirts of the map, where the pixels crossing (and thus the filtering) may be
highly anisotropic, but are still readily visible in the central part of the map, where the cross-linking and
pixel sampling are better.

6.7 Summary

The new map-making formalism of Chapter 4 has been implemented in a flexible, massively parallel
numerical code, which has been applied and validated on simulations mimicking all the important features
of the Polarbear data set from the first and second observational campaigns. The applications of the
code to real data is described in the next chapter.
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Figure 6.8: Maps derived with the explicit implementation of the unbiased map estimator. Top row:
reconstructed maps. Middle row: difference between the reconstructed and the input maps. Bottom
row: difference between the reconstructed and the input maps with the singular modes removed from
the input maps.
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Figure 6.9: Results from the iterative implementation of the unbiased map estimator. Top row: recon-
structed maps. Middle row: difference between the reconstructed and the input maps.
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Figure 6.10: Visualization of different convergence criteria used in our iterative solver. The left panel
shows that the standard residual, (6.23), saturates and does not converge to our fiducial 10−6 level in
as many as 100 iterations. The middle and right panels show that this lack of convergence is due to the
largest angular modes as the fractional difference between the power spectrum of the input map and
the power spectrum of the ith map estimate in the multipole range ` ∈ [500, 2100] becomes quickly very
small and reaches the level of better than 0.1% in fewer than ∼ 100iterations. This last observation has
been used to set the convergence criterion used in the analysis of the first year Polarbear data set
(Polarbear Collaboration, 2014a).
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Chapter 7

Analysis of the Polarbear first and sec-
ond season data

In this chapter I discuss the ongoing analysis of the Polarbear data from the first and second season
of observation. The analysis should be concluded shortly, however at this time the results are not public.

The technique adopted in the analysis of the first season (Polarbear Collaboration, 2014b; The
Polarbear Collaboration, 2014; Polarbear Collaboration, 2014a, 2015) employed a biased map esti-
mator similar to Eq. (4.32) followed by a power spectrum estimator analogous to the MASTER procedure
illustrated in Sec. 4.3.2. Because of its flexibility and low computational cost, in the current analysis the
TOD selection and calibration are still performed with this pipeline. However, the actual data reduction
(map-making and power spectrum estimation) is also performed using an independent pipeline devised
by current and former members of the Polarbear APC team. This pipeline—subject of this chapter—
combines the unbiased map-maker described in the previous chapter with X2PURE, a pure-pseudo-power
spectrum estimator. My contribution to this stage of the project consisted in the development of the
infrastructure around these two stand-alone codes. I also led the exploitation of the pipeline, validating
its suitability for the analysis of the real data. As explained below, this required substantial amendments
to the simple chaining of the two stand-alone codes.

The data set we are analysing is the one described in Sec. 5.4. The map-maker was described and
validated in the previous chapter, I therefore start by briefly describing X2PURE and its validation in the
Polarbear context. I then show two studies related to the power-spectrum estimation. The first one
shows that the map domain correlations severely affect the power-spectrum uncertainty at large scales.
In the second I discuss the need for a power-spectrum estimation based on the use of cross-spectra. The
whole framework is validated by performing null studies on the real data. The focus of the described
analysis is on the RA23 patch, the best observed of the Polarbear patches.

7.1 The Polarbear blindness policy

A distinctive feature of the Polarbear analysis workflow is that it conforms with the rules of the
blindness policy. Blind analyses are popular in the particle physics community and were adopted in the
CMB context by QUIET Collaboration (2011) and by Polarbear in the analysis of the first season.
In blind analyses scientists are not allowed to look at the science product before the data sets has been
defined, its quality assessed and the data analysis tools validated. The goal is to mitigate the observer
bias: if the researcher has both access to the science products and the freedom to adjust some aspects
of the analysis, he may subconsciously tune the free parameters to push the results towards his prior
knowledge or some theoretical expectations.

The main science product of Polarbear is the BB power spectrum. The blind analysis is imple-
mented with the help of the so-called null tests, which enable to assess the quality of the data set without
ever looking at the BB spectrum of the data. A null test consists in deriving from the candidate science
data set a quantity that has no expected contribution from the signal and check its compatibility with
the expectation from the noise model.

In Sec. 8 we will describe in detail how this paradigm is implemented in Polarbear. Currently, the
data set of the first and second season analysis has been defined, we are finalising the null test analysis
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(a) (b)

Figure 7.1: Example of polarization auto-spectra blocks of the mixing kernel M``′ for the hybrid (a) and
the standard (b) formalisms.

and we are expected to unblind the BB spectrum soon. As a consequence, we did not yet look at any
preliminary scientific results and they cannot be reported in the present work.

7.2 X2PURE

The power spectrum estimation code that we adopt is X2PURE (Grain et al., 2009). It implements
the pure and hybrid formalism described in Sec. 4.3.1 and extends the approach of Smith (2006) to
cross-spectra. This tool was already validated, tested and exploited in several works (e.g., Grain et al.,
2012; Ferté et al., 2013, 2015; Planck Collaboration, 2016b; Krachmalnicoff et al., 2015). In this section
we provide more details about our set-up and a brief demonstration of the code performances.

The weight function,W , that we adopt is the map of the temperature weights, i.e. the diagonal of the
temperature block of A>MA. The pure formalism requires the weight function to satisfy the Neumann-
Dirichlet boundary condition and therefore we multiply W by an analytic apodisation function. The
expression for the resulting window function at pixel i is

W
(apod)
i =

{
Wi

(
δi
δc
− 1

2π sin(2π δiδc

)
δi < δc

Wi δi ≥ δc
(7.1)

where δi is the angular distance of pixel i from the boundary and δc is the apodisation length. Given
the small sky area observed, we found δc = 30 arcmin to be appropriate.

X2PURE allows using both the pure and the hybrid formalism. In this work we make use of the
latter. As a demonstration of the consequences of this formalism, in Fig. 7.1 we show an example of
the polarization auto-spectra blocks of the mixing kernel Eq. (4.82) and, for comparison, we report the
same matrix for the standard (i.e. non-pure) formalism.

As expected by the pure formalism, theMBB,EE
``′ matrix in Fig. 7.1a has very small (mostly negligible)

values: the BB pseudo-power spectrum doesn’t receive contribution from the EE power spectrum. On
the contrary, in the standard case (Fig. 7.1b) the same block has notable values, especially at large
scales. This is due to the non-orthogonality between the B and the E pseudo-basis. As discussed in Sec.
4.3.1, this effect is taken into account and corrected for, but the estimated spectrum will be affected by
an uncertainty coming from the cosmic variance of the leaked E component. In Fig. 7.2b we show that
the uncertainty on the BB power spectrum of the standard estimator is considerably higher than the
hybrid case.

The MBB,EE
``′ block of the hybrid case is computed even if it should be analytically zero. The non-

zero values typically involve the large scales and are due to the imperfect orthogonality between the B
pseudo-basis and the E modes caused by pixelisation effects. As in the standard case, this effect increases
the variance of the BB spectrum. However, for reasonably regular sky regions and properly apodised
window functions the effect is by far subdominant.
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Figure 7.2: Example of the performances of X2PURE. (a) Fractional difference between the mean BB
spectrum of 100 signal only simulations and the assumed theoretical power spectrum. (b) Standard
deviation of the 100 signal only simulations, as an estimation of the cosmic variance, for different apodi-
sation lengths. For comparison we report the same quantities for the standard pseudo-power spectrum
estimator: they are severely affected by the cosmic variance due to E-to-B leakage. For reference, we
report the theoretical BB power spectrum.

In the pure formalism, analogous statements can be made about the MEE,BB
``′ block. However, in the

hybrid formalism the E pseudo-basis is not pure: it is the same pseudo-basis of the standard formalism
and this block is indeed equal in the two cases.

7.2.1 Reconstruction of signal only simulations

In this section we show an example of the performances of X2PURE. We adopt a theoretical power
spectrum defined by the Planck best-fit parameters (Planck Collaboration, 2015j) and use it for sim-
ulating 100 CMB realisations. We want to assess the performances of the tool in terms of fidelity of
the reconstruction and E-toB leakage, in comparison to the standard formalism. Trying to test realistic
conditions of our usage, we adopt the mask and the window function actually employed for the analysis
of the Polarbear RA23 patch.

In Fig. 7.2a we show that the mean BB reconstructed spectrum is compatible with the theoretical
spectrum assumed in the simulations, demonstrating that the estimator is unbiased. Notice that the
points present some correlations due to the fact that the size of the patch is too small for the binwidth of
∆` = 150 that was adopted here, for demonstration purposes. Consequently, for the actual Polarbear
analysis we use broader bins, with ∆` = 400, and the estimated bin power are essentially uncorrelated. In
Fig. 7.2b we show the standard deviation of the same spectra. Since every simulation is an independent
sky realisation, the dispersion of the reconstructed spectra represents the cosmic variance of the single
spectrum estimation. This cosmic variance includes both the BB intrinsic cosmic variance—due to
the finite number of modes available—and the EE cosmic variance, which affects the BB estimation
whenever the B pseudo-basis is not pure. This effect is visible in the figure: especially at large scales the
standard estimator has higher variance than the hybrid formalism. This effect persists if larger sky areas
are considered (see e.g. Grain et al., 2009; Ferté et al., 2013). In Fig. 7.2b the analysis is performed also
varying the apodisation length of the window function (10, 30 and 50 arcmin). The performances of the
estimator vary but, in all these cases, the difference is negligible compared to the total uncertainty level
of Polarbear (as we discuss later). We therefore do not explore further possible optimisations related
to the window function and its apodisation and adopt an apodisation length of 30 arcmin.
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7.3 Computing the spectrum of biased maps

As it will be explained later, we have to be able to compute the spectrum of biased maps. In principle,
we could implement the MASTER framework illustrated in Sec. 4.3.2. However, the iterative procedure
for the computation of the F` functions and their integration in the power spectrum estimation require
to modify X2PURE, which produces binned estimated power spectra from unbiased maps. In order to
avoid this, we modify slightly the formalism. The key idea is simply to move the transfer functions at
the level of the binned power spectrum instead of incorporating them in the computation of the binned
mixing kernel.

We denote the power spectrum estimated by X2PURE as Ĉbiased
b . It is biased because we assume

that we are applying the power spectrum estimator on a biased map. We then assume that the following
relation holds 〈ĈTT,biasedb 〉

〈ĈEE,biasedb 〉
〈ĈBB,biasedb 〉

 =

 FTT,TTb

FEE,EEb FEE,BBb

FBB,EEb FBB,BBb

 CTTb
CEEb
CBBb

+

 〈NTT
b 〉

〈NEE
b 〉

〈NBB
b 〉

 (7.2)

Compared to the MASTER framework of Sec. 4.3.2, we are making an ansatz equivalent to Eq. (4.83).
The transfer functions have to be estimated using noise-free Monte Carlos. Similarly to the previous

case, the temperature transfer function is estimated as FTT,TTb = 〈ĈTT,biasedb 〉MC/C
TT
b where the 〈· · · 〉MC

means average over a set of simulations with (known) theoretical power spectrum CTT . For polarization,
in order to evaluate FX,Yb , where X and Y can be either EE or BB, we perform simulations of CMB con-
taining only the Y component and the transfer function is estimated as FX,Yb = 〈ĈX,biasedb 〉Y -only MC/C

Y
b .

Also, the expected value of the noise bias 〈NX
b 〉 is evaluated as the average of noise-only MC. The unbi-

ased estimator of the power spectrum can be finally obtained as ĈTTb
ĈEEb
ĈBBb

 =

 FTT,TTb

FEE,EEb FEE,BBb

FBB,EEb FBB,BBb

−1  ĈTT,biasedb

ĈEE,biasedb

ĈBB,biasedb

−
 〈NTT

b 〉
〈NEE

b 〉
〈NBB

b 〉

 (7.3)

7.4 Filtering-induced correlations and the map-domain mode re-
moval

In the following analysis we devise a power spectrum estimation procedure for the maps produced by
our map-maker. For comparison, our analysis is conducted in parallel on the biased map estimator.

7.4.1 Set-up

Power spectrum estimation. The Ĉbiased` spectra are evaluated using X2PURE, the bins in `
are the official Polarbear first season and second season bins, with ∆` = 400 and centred at ` =
700, 1100, 1500, 1900, plus a low ` and a high ` bins, which respectively have ∆` = 200 centred at ` = 400
and ∆` = 400 centred at ` = 2300. These two bins are considered just in the simulation studies of this
section and will be excluded in the subsequent analyses of the real data.

As discussed before, the window functionW that we use is the entire map of the temperature weights.
However, the actual sky area retained for the power spectrum estimation is smaller than the full patch.
As we explain later, we introduce a map-domain filtering that effectively selects the inner part of the
map. The portion of the map considered by X2PURE is tailored on the most aggressive filtering. This
pixels selection discards ∼ 50% of the observed sky area but retains ∼ 95% of the integrated weight.

Simulations. Our analysis, as well as the estimation of the transfer functions, requires signal and noise
simulated maps. We assume the same model and simulated data set as in Chapter 6.

As before, for the simulations of the CMB sky signal, we assume the power spectrum defined by the
Planck best-fit parameters Planck Collaboration (2015j). We set the tensor-to-scalar ratio, r to zero,
for definiteness, as the value of r is not relevant in the case considered here, given the focus of the first
Polarbear campaigns on sub-degree angular scales. We synthesize the ’true sky’ maps, denoted here
as ssim, using the synfast tool of the HEALPix package (Górski et al., 2005). To simulate the CMB-
only sky maps as reconstructed with the explicit implementation of the unbiased map-maker we take the
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simulated true sky maps, ssim and remove from the simulated realization of the sky maps the eigenvectors
corresponding to the eigenvalues set to zero in the A>F TA inversion regularization. We have validated
that this is equivalent, algebraically and numerically, to first projecting the sky signal, ssim, to the time-
domain, Assim, and then running the map-making procedure on the derived time-ordered data (see
Sec. 6.6.2 and Fig. 6.8). For the biased map estimator we apply the operator, (A>MA)−1A>F TA,
directly to the generated, true sky maps, ssim. Again this is algebraically and numerically equivalent to
first producing the signal-only data streams, Assim, and then applying the biased map-making operator,
(A>MA)−1A>F , to them.

The noise-only maps reconstructed with the explicit implementation of the unbiased map estimator
are computed directly in the pixel-domain as n̂ = V z, where z is a pixel-domain vector of Gaussian
random variables with variance given by the corresponding entry of ẽ, and V and ẽ are defined in
Eq. (6.20). This assumes that the weight matrix, M , provides a correct description of the TOD noise,
i.e., M = Cn

−1. Were this not the case, we would have to start from simulating a noise timestream,
n, with the desired noise properties and then process it with the map-making algorithm. For the biased
map-making we follow the latter path even if the noise is uncorrelated. We therefore start by generating
a timestream of uncorrelated Gaussian numbers of appropriate variance and projecting it into the pixel-
domain using the corresponding map-making procedure.

Simulations containing both signal and noise are obtained by summing directly in the map-domain
a signal-only and a noise-only simulation. Again, this is equivalent to summing noise and signal in the
time domain and then applying the map estimator, it is a trivial consequence of the linearity of all map
estimators considered.

7.4.2 Noise spectrum of unbiased maps

The maps generated by the different map-makers have different noise properties, in terms of both the
noise amplitude and its correlations.

Fig. 7.3 shows the mean of the spectra produced by X2PURE from the noise-only simulations,
measuring the noise bias. We then take the noise simulations in pairs and evaluate the uncertainty on
the noise bias as the standard deviation of the cross-spectrum of the two noise maps within a pair.

In order to interpret these results, consider the unbiased map estimator (labelled with 10−6 in the
figure). In Sec. 6.6.1 we illustrated the properties of the eigenstructure of A>F TA—which is the
covariance matrix of the map estimator—and have shown that the noise is correlated between pixels. In
particular, in Fig. 6.7 we show that the typical uncorrelated mode has most of its power concentrated in
few pixels and some minor contribution from a non-trivial structure that involves the whole inner part
of the map. This latter feature is the most significant difference between the eigenstructure of A>F TA
and the one of A>MA, whose eigenmodes involve only one pixel at a time. Consider a mode belonging
to the noisy end of the spectrum of A>F TA, most of the power carried by the mode is concentrated
in some pixels at the boundaries of the patch. These pixels have huge statistical fluctuations but these
are reasonably predicted by the A>MA matrix. The window function of X2PURE is based on the
eigenstructure of A>MA and in Sec. 4.3.1 we explained that the window function acts as a pixel-based
weighting. Therefore, our power spectrum estimator properly handles the pixel-like component of the
noisy mode but its correlated part is not downweighted by the power spectrum estimator. Therefore, even
though it carries a minor fraction of the power of the noisy mode, it can be particularly pernicious because
our estimator is suboptimal with respect to its statistical fluctuations. We identify this suboptimality as
the cause of the noise increase at large scales compared to the usual `2 trend.

Most of the cosmological information contained in the noisy mode is nevertheless carried by the pixel-
like component of the mode, which is downweighted by the power spectrum estimator. Therefore, the
contribution of the mode to the power spectrum signal is marginal while it substantially increases the
uncertainty, because of the correlated component, thus suggesting to discard the mode completely. The
reasoning above is purely qualitative but suggests exploring the following mode removal procedure. We
filter our unbiased map, progressively removing the noisiest eigenvectors of the A>F TA matrix: if the
eigenvalue of a given eigenvector is less than α times the maximum eigenvalue, the mode is filtered out
of the map. We consider several values of α: 10−6, 10−5, 10−4, 10−3, 10−2, 0.05, 0.08, 10−1. The 10−6

case corresponds to our unbiased estimator because the regularisation procedure of the A>F TA matrix
effectively removes the modes that are below the 10−6 threshold. Notice that this procedure is similar
to the rejection of the noisiest pixels in a map, the only difference is that we remove modes, because our
noise is correlated.

Looking again at Fig. 7.3, as the noisiest modes are removed from the unbiased map (i.e. as α
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Figure 7.3: Mean (left) and standard deviation (right) of the B-mode power spectra (as computed by
X2PURE) of 100 noise only simulations for different input maps. “Biased” refers to the biased map
estimator defined in Eq. (4.32). The other lines refer to different maps derived from the unbiased map
estimator Eq. (4.29). The value in the legend is the α parameter that quantifies the amount of map
domain filtering applied to the unbiased map. Higher values of α correspond to more aggressive filtering,
see Sec. 7.4.2 for more details

increases) the power spectrum slowly converges to `2 behaviour. Notice that this low ` noise increase is
not caused only by the “long modes” related to the ground template, it is actually dominated by poorly
constrained “pixel-like modes”: using the 10−4 threshold the long modes are removed but we still observe
an important noise excess. This suggests that the cause is not the ground template marginalization but
the polynomial filtering (or a combination of the two).

On the contrary, in the biased map the way noise is correlated does not cause any noise increase at
large scales, both the mean and the standard deviation of the noise power spectra follow the usual `2
behaviour. Qualitatively speaking, we interpret this as a result of the presence of (A>F TA)−1 in the
unbiased estimator, compared to (A>MA)−1: while the latter matrix only increases the power in pixels
we little observations, the former also increases the power of the (correlated) modes that lost power
because of the time-domain filtering.

We stress that in this section both the spectra derived from the biased map estimator and the ones
derived from filtered unbiased maps are biased: we have to debias them as described in Sec. 4.3.2 before
making quantitative statements about the uncertainty on their spectra.

7.4.3 Comparison of the performances

In Sec. 7.4.2, we consider the spectrum of noise-only simulations as computed by X2PURE. The quali-
tative results support filtering the noisiest modes from maps produced with the unbiased map estimator.
This causes a bias that percolates to the power spectra estimated by X2PURE and, therefore, these
spectra have to be debiased with the same procedure necessary for the maps issued by the biased map
estimator.

As described in Sec. 7.3, in order to debias the spectra, signal only simulations are used to evaluate
the transfer functions fXY (Fig. 7.4) and noise only simulations for evaluating the noise bias Fig. 7.3.

We use these quantities to get an unbiased power spectrum estimator for each map estimator and
apply it to 3 sets of 100 simulations:

• E modes only for evaluating the uncertainty due to E to B leakage;

• B modes only for evaluating the uncertainty B mode cosmic variance;

• noise only for evaluating the uncertainty due to the noise;
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Figure 7.4: Transfer functions of the different map estimators. For the explanation of the legend, see
Fig. 7.3

• E and B modes and noise for evaluating the total uncertainty on the BB spectrum (E to B leakage,
BB cosmic variance and noise uncertainty).

When the simulations do not contain noise, the uncertainty is evaluated as the standard deviation of the
simulations. When they contain noise, they are grouped in pairs and the uncertainty is evaluated as the
standard deviation of the cross-spectrum of the two simulations of each pair.

E-to-B leakage and B-modes cosmic variance

Fig. 7.5a shows that, as expected from the pure formalism implemented in X2PURE, the unbiased map
estimator has basically no E-to-B leakage (the leakage is only due to pixelization effects).

However, the filtering operation that we apply on unbiased maps partially mixes E and B modes.
When we filter a map containing only E modes, the result contains also a fraction of B modes. This
effect is quantified by the off-diagonal blocks of the transfer functions in Eq. (7.2), reported in Fig.
7.4. The departure from zero is relevant for the biased map estimator only for the first bin and it is
considerably more pronounced for α ≥ 0.001.

Eq. (7.3) account for this effect and yields an unbiased estimation of the spectrum. Nevertheless,
this E-to-B leakage increases the uncertainty of the estimator. As shown in Fig. 7.5a, the leakage
becomes relevant at large scales for any threshold higher than 0.001. The biased map estimator too has
a significant amount of leakage at large scales but performs better than any threshold greater than 0.001.

As far as the BB cosmic variance is concerned, all the estimators considered perform equally well.
In principle using a low threshold retains more sky area compared to the cases of with high threshold,
thus they should have smaller sampling variance. However, in this analysis the sky area considered
for the power spectrum estimator is always the same. Therefore the fact that the cosmic variance is
roughly the same for all the values of α quantitatively confirms a qualitative statement made in Sec.
7.4.2: the correlated component of the pixel-like noisy modes does not carry any significant cosmological
information while, as we show in the next section, adds substantial noise uncertainty to the power
spectrum estimator.

Noise uncertainty

In Sec. 7.4.2 we have shown that, for different map estimators and different thresholds α, we get different
dispersions of the raw spectra of noise simulations. However, the BB,BB transfer function in Fig. 7.4
shows that they also have different loss of BB power. Restoring this power boosts the spectrum of the
noise too. The interplay between the two effects can be non-trivial.

However, Fig. 7.5c shows that the latter effect has minor impact: the dispersion of the unbiased
spectrum of noise only simulations is still the higher the lower the threshold α and the lowest for the
biased map estimator.

Because of the correlated nature of the noise in the estimated maps, the power spectrum estimator
cannot properly down-weight the noisy modes. Their large fluctuations dominate the power at large
scales, boosting the noise uncertainty. Filtering these modes out of the map alleviates this noise excess
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at large scales and the lowest noise uncertainty is reached by the most aggressive filtering (α = 0.1). The
biased map estimator performs extremely well in this respect: despite the fact that its noise is correlated
too, the uncertainty due to noise is comparable with the `2 trend expected by the uncorrelated noise
case. We stress that the unbiased and biased map estimators preserve the same amount of information
(we can convert one into the other anytime using an invertible linear operator). The disparity in their
power spectrum noise uncertainty is purely due to the fact that we are using a suboptimal weighting for
the power spectrum estimation.

Total uncertainty

Finally we consider the total uncertainty on the BB spectrum for the different map estimators. In Fig.
7.5d we show its spectrum while in Fig. 7.6 we express it as ratio of the lensing BB spectrum and total
uncertainty.

As far as the unbiased map estimator is concerned, given the specific noise level of these simulations,
the noise plays a dominant role. Controlling its large-scale excess is more important than controlling the
E to B leakage and, consequently, we find that the higher the threshold on the eigenvalues the lower the
overall uncertainty is. We note that the most aggressive threshold removes more than 50% of the modes
but retains more than 90% of the information (computed as the sum of the eigenvalues retained over the
sum of all the eigenvalues)

The biased map estimator has good noise level over the entire spectrum and, even if the estimator
produces E to B leakage at large scales, the resulting uncertainty is below the noise level. As a result it
performs substantially better than any other estimator studied here in the low ` part of the spectrum.

We also investigate how the situation would change if the noise level was lower by extrapolating the
total uncertainty assuming the observation time was x times longer. For each power spectrum bin, this
total uncertainty is evaluated as √

σ2
S +

(σN
x

)2

+ 4
N

x
S, (7.4)

where S and N are the mean power of the signal only (E and B) and noise only simulations respectively
and the σs are their standard deviations. For the biased map estimator the uncertainty due to E to B
leakage is smaller than the BB cosmic variance (see Fig. 7.5b). Therefore, the unbiased map estimator
has superior leakage control but it is not the limiting factor in the case we are considering. Consequently,
the factor x required for the unbiased map estimator to have better performance then the biased one
is very large (about 10). We emphasize that this statement depends strongly on the specific case we
are considering. The situation might be very different if the E to B leakage were to provide a more
significant contribution to the overall uncertainty, as can happen when larger scales are probed. In such
cases the unbiased map-making approach may be more readily favoured also from the power spectrum
perspective.

Conclusions

The time domain filtering produces map-domain correlations. In particular, poorly constrained modes
tend to have most of their power concentrated in boundary pixels but have nevertheless some power
in the inner part of the map. The pseudo-spectrum-based methods can be significantly affected by the
presence of such modes because they typically rely on the window functions which weight different sky
pixels and are not capable of weighting such noisy modes. The result is a noise excess at low multipoles
if they are left in the map, or enhanced E-to-B leakage if they are excised. We have developed a
practical approach to compensate for such deficiency but found out that, at best, we can only match the
performance of the quicker and simpler biased map-making. This approach consists in taking advantage
of the eigendecomposition of A>F TA and deprojecting from the map all the eigenmodes smaller than
0.1 times the larger eigenvalue.

We stress that these results are solely caused by the time-domain filtering adopted, and are not due
to some incorrect data model. Indeed these results were derived only from simulations that assume the
same data model adopted to devise the map estimator.
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Figure 7.5: Uncertainty on the unbiased estimation of the B-mode power spectra based on 100 simulations
containing E only (a), B only (b), noise only (c), E, B and noise (d). They respectively estimate the
uncertainty due to E-to-B leakage, the B sample variance, the noise uncertainty and the total uncertainty
on the BB power spectrum estimation. When containing noise, the spectra are estimated with help of
cross-spectra of simulated pairs of maps. For the explanation of the legend, see Fig. 7.3. In the case
of simulations containing noise we also display the “No filters” case, in which the simulated white noise
TOD are not filtered: the simple map-making Eq. (4.5) is adopted.
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Figure 7.6: Ratio between the signal and the total uncertainty for B-mode power spectra derived with
the different power spectrum estimation choices. The results are quoted relative to the highest ratio
obtained for the biased map. The loss of precision of the spectra derived from the unbiased map is
apparent and related to the strong correlated noise modes present in the map. The loss can be mostly
recovered with help of a progressively more aggressive removal of the noisiest modes as expressed by the
increasing value of parameter α as defined in the text and given in the legend.
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7.5 The noise-bias problem and the cross-spectrum approach

In this section we use the Polarbear data to probe if our noise model is adequate for the Polarbear
power spectrum estimation. We show that, while our noise model captures all the major features of the
true noise in the data, it may not be sufficient to model the noise bias on the power spectrum level.
We therefore resort to the cross-spectrum technique which bypasses this issue at some loss of statistical
precision.

7.5.1 Probing the noise bias

The power spectrum estimation procedure described in Sec. 7.3 relies on the estimation through simu-
lations of the expected value of the noise bias. Since Polarbear is still in the noise dominated regime
(i.e. the expected lensing BB power spectrum is much smaller then the expected power spectrum of the
noise), the accuracy of the noise bias subtraction is crucial for our BB power spectrum estimation.

In this section, we produce null maps from the data and from noise simulations, compute their
spectra and show indications that the simulation-based noise-bias estimation might underestimate the
actual noise bias of the data.

Data splitting

We divide our timestreams into 8 parts with approximately equivalent statistically weight. While split-
ting, we preserve the chronological order of the data (for example, all the data taken is split 3 were
acquired before those of split 4). The actual metric adopted for assessing the equivalence of the slicing is
the volume of the data set on disk. This choice is based on four motivations. First, we found it to be a
good proxy (at 10% level) of the depth of the map produced by so-selected data. Second, the criterion is
easily applicable a priory, without performing involving statistical studies on the data set. Third, it is not
sensitive to the chronological density of observations and the medium-term yield variations, unlike more
standard criteria like the number of days or the number of CESs per split. Last, this criterion ensures a
good balance of the computational burden necessary to process the different splits, an operation that is
performed in parallel.

Null maps

An unbiased map-making run is performed on each of the timestream splits, obtaining 8 unbiased maps
mi. Then four null maps are derived from the 8 unbiased maps. We do this according to two different
schemes. A first one, that we call “first v.s. second” subtracts from the maps of the first half the ones of the
second half of the data: the four noise maps n are computed as n0 = (m0−m4)/2, n1 = (m1−m5)/2,
etc. In a second scheme the null maps are produced from a map i and i+ 1, we refer to this scheme as
“even v.s. odd”. Notice that the null maps can be obtained only thanks to the unbiased map-making: if
two maps were differently biased their difference would have some leftover signal.

Noise simulations

We produce 100 noise only simulations of each null map. We actually simulate noise only maps of each
of the eight splits and combine them in the same fashion as the real data. As explained in Sec. 7.4, the
noise-only simulations of each of the splits are produced directly in the map domain by taking advantage
of the eigendecomposition of the expected covariance matrix—obtained from our unbiased map-making
code.

Power spectrum estimation

Before computing the power spectrum of the null maps, we have to perform the map-domain filtering
described and justified in Sec. 7.4. In principle, we should construct the covariance matrix of each null
map, compute its eigenstructure and use it to filter the null map. In order to save on the (expensive)
singular value decomposition of other four large matrices, we compute the A>F TA matrix (the inverse
covariance matrix) for the full data set and use its eigenstructure to filter the four null maps with a
threshold equal to 0.1. Thus, we perform only one extra singular value decomposition instead of four,
also building the matrix is cheap, since we compute it by summing the (already computed) A>F TA
matrices of each of the 8 splits. We decide to adopt this approximation not only for computational
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Figure 7.7: Comparison of the noise power in the four null maps derived with the “first v.s. second”
scheme and the corresponding noise simulations.

convenience, but also for consistency with our final power spectrum estimation procedure (see Sec. 7.5.2
and Sec. 7.6).

We then use X2PURE to compute the auto-spectrum of all the filtered maps.

Results

For each null map, we compare the auto-spectrum of filtered null maps from the data and from simu-
lations. The mean of the latter corresponds to the evaluation of the noise bias and we expect it to be
compatible with the auto-spectrum of the real-data null maps, within the scatter of the simulations. For
each null map we report this comparison in Fig. 7.7 for the “first v.s. second” case and in Fig. 7.8 for the
“even v.s. odd case”. Considering each case individually, the discrepancy between data and simulations
is not very significant. However, a global look at all the plots suggests that the data noise spectrum
might be systematically higher than the one of the simulations.

Given the stringent requirements we have on the noise bias estimation, we resort to the cross-spectra
technique as introduced in the next section.
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Figure 7.8: Comparison of the noise power in the four null maps derived with the “even v.s. odd” scheme
and the corresponding noise simulations.

7.5.2 Power spectrum estimation with the help of cross-spectra
The typical solution to the noise bias problems is to use cross-spectra. Instead of computing one single
map from the entire data set, we can divide the data set into subparts and compute a map for each of
them. The cross-spectrum of different maps is free from noise bias. This is easy to show for two maps Y
and X with same signal and uncorrelated noise nX and nY : using the simplified cross-power spectrum
estimator of Eq. (3.39)

〈ĈBB(XY )
` 〉 =

∑̀
m=−`

BX
∗
`m BY`m
2`+ 1

(7.5)

=
∑̀
m=−`

〈Ba∗`m Ba`m〉+ 〈(BnX`m)∗ Ba`m〉+ 〈Ba∗`m Bn
Y
`m〉+ 〈(BnX`m)∗ BnY`m〉

2`+ 1

=
∑̀
m=−`

〈Ba∗`m Ba`m〉
2`+ 1

= CBB` , (7.6)
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where a key role is played by the assumption of no correlation between noise in the two maps:
〈(BnX`m)∗ BnY`m〉 = 0.

In the case of the pseudo-power spectrum estimators the formalism is more complicated. In particular,
it has to allow for a different pseudo basis for each map because, in general, they have different sky
coverage and observation depth. However, in the Polarbear first and second season observations the
sky area is very small and we have a huge redundancy in our scanning strategy. Therefore, two reasonably
large subsets of the data have similar sky coverage and observation depth. We therefore continue to use
the window function of the full data set to define the pseudo basis of any map produced from a subset of
the data. This has a considerable computational advantage because it allows computing only one mixing
matrix instead of one for each pair of maps. Consequently, we continue using the pseudo-power spectrum
formalism illustrated in Sec. 4.3.1, the only difference is that in the pseudo spectrum, Eq. (4.75), X
and Y refer to different maps. For the general treatment see Tristram et al. (2005) for the standard
formalism, Grain et al. (2009) for the pure formalism and Grain et al. (2012) for the hybrid formalism.

We want to divide the data set into disjoint subsets, compute a map for each of them and use the
average of their cross-spectra as the estimator of the power spectrum Ĉ`. One further complication
comes from the map-domain filtering procedure and the consequent map and power spectrum bias. In
principle, each map has to be filtered using the eigenstructure estimated during the map-making. The
formalism of Sec. 7.3 can be applied to each cross-spectrum if we estimate dedicated transfer functions
for each pair of maps. Once all the unbiased cross-spectra are computed with the use of the transfer
functions, they can be averaged. However, this procedure is quite costly because it requires a full set
of simulations for each map in order to compute the transfer functions. Therefore we decide to apply
the same filtering to every map, this allows to use the same transfer function for all the cross-spectra,
similarly to how using a single window function allowed to use only one mixing matrix. As mentioned
in the previous section, the common mode removal operator is based on the A>F TA matrix of the full
data set and keep the usual 0.1 threshold on the eigenvalues. Using a common filtering for all the maps
allows computing only one set of transfer functions in the auto-spectrum framework illustrated in Sec.
7.4.

The division of the data set in subsets is the same described in Sec. 7.5.1. The number of data splits
that we use is driven by our computational resources, since for each data split we need a map-making run.
As discussed in Sec. 6.3, the expensive parts of the algorithm are the computation of theA>F TA matrix
and its inversion. The former scales linearly with the number of observations and, therefore, dividing the
observations into subsets does not change the total cost. However, the cost of a single inversion depends
only on the number of pixels, regardless of the volume of data involved in the computation of the matrix
to be inverted. Therefore the global cost of this step of the map-making is proportional to the chosen
number of subsets.

We decide to split the data set into 8 parts because it provides a good balance between the additional
map-making computational cost and the extra uncertainty we get on our power spectrum estimation
(compared to the auto-spectrum case). This latter can be estimated as follows. We are in the noise
dominated regime, therefore C` � N`, where N` is the power-spectrum of the noise on the full-data set
map. Assuming an even division of the data set in k split, the noise power spectrum in each split is
kN`. The variance of the power spectrum estimator using the auto-spectrum of the full-data set map
is 2N2

` /(2`+ 1), while if we use the cross-spectra of k splits the variance is 2N2
` k/[(2`+ 1)(k − 1)] (see

Polenta et al., 2004, Eq. (10) and (17)). Therefore, using k cross-spectra the variance increases by a
factor k/(k − 1). For k = 8, the increase in the error bars is

√
k/(k − 1) ∼ 7%.

The uncertainty on the power spectrum estimation is evaluated using signal+noise simulations. Sim-
ilarly to Sec. 7.4, a set of 100 simulations analogous to the data is created and processed in the same
fashion. For each signal simulated map, eight maps are created by adding on the top of the signal map a
noise simulation produced using the eigenstructure specific to each data split. These 8 maps are filtered
and their cross-spectra are computed and averaged. These 100 biased cross-spectra are then debiased
using the transfer functions. The error-bars are estimated as the standard deviation of this set of 100
unbiased spectra.

As a last remark, the average that compresses the cross-spectra into a single power spectrum estimate
is actually weighted. We assign to a map i a weight wi equal to the trace of its A>MA matrix. The
cross-spectrum Ĉijb —produced by X2PURE—between maps i and j receives a weight equal to √wiwj .
Summarising, the power spectrum is estimated as follows

Ĉb = Fb
1∑

i 6=j
√
wiwj

∑
i 6=j

Ĉijb
√
wiwj . (7.7)
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7.6 Recap: the standard Polarbear analysis set-up

We now summarise the analysis set-up described and justified in the previous sections and chapters.
Starting from raw data samples, the information is compressed into angular power spectra through the
following steps.

1. Low level data processing (Sec. 5.5):

• pointing reconstruction;
• beam characterisation (estimation of B`);
• timestream calibration;
• polarization angle reconstruction.

2. Division of the data set into 8 parts (Sec. 7.5).

3. Map-making on each of the 8 parts (Chapter 6), which produces:

• 8 reconstructed maps (to be used for power spectrum estimation);
• 8 map covariances (to be used for efficiently producing noise simulations).

4. Map-making run on the full data set

• reconstructed map (used just for displaying purposes);
• map covariance (defines the mode removal);
• map depth (the window function for the power spectrum estimation).

5. Map-domain mode removal: we retain only the modes that, in the full data set map, have a variance
smaller then 10 times the one of the best observed mode (Sec. 7.4).

6. Trimming of the window function to the area retained by the mode removal (Sec. 7.4).

7. Biased power spectrum estimation: X2PURE cross-spectra of the 8 filtered maps (Sec. 7.5.2).

8. Estimation of the transfer functions (Sec. 7.4)

• E-only and B-only map simulations;
• application of the mode removal;
• auto-spectrum estimation using X2PURE;
• average of the spectra issued by the different types of simulations.

9. Transfer function inversion and unbiased power spectrum estimation (Sec. 7.4).

10. Error-bar estimation from signal+noise simulations processed with the same analysis procedure of
the data (Sec. 7.5.2).

7.7 Foreground treatment in the Polarbear analysis

The current Polarbear data sets consist of measurements in a single frequency band centred at
∼150 GHz. The CMB power spectra are then directly derived from the single frequency map produced
via the map-making procedure, implicitly assuming that no appreciable foreground signal is present. In
this section I argue that this is indeed the case for the analysis of the current Polarbear patches.

The angular power spectrum of both dust and synchrotron can be approximated with a power law∝ `α
with a negative α (see, for example, Fig. 5.9c and Fig. 3.13). Consequently, foregrounds are not a major
issue for Polarbear first and second seasons because we probe intermediate/small angular scales (` >
500) of very small patches, which were moreover selected for their low intensity of foreground emission.
Currently we handle the foregrounds by using publicly available multi-frequency data sets (Planck and
WMAP) to derive upper bounds on the contaminating power in our patches. The preliminary estimates
find the amplitude of the foregrounds in our patches consistent with zero, where the limiting factor in
these constraints come from the sensitivity of Planck and WMAP on the very small sky regions probed by
Polarbear. This analysis is coordinated by our Polarbear collaborators in SISSA. In the analysis of
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the first season (Polarbear Collaboration, 2014a), conservative upper bounds on dust and synchrotron
were respectively derived from the Planck sky model and the measurements of the QUIET experiment.

As far as radio galaxies are concerned, resolved sourced were masked during the power spectrum
estimation and an upper bound is set on the contribution of unresolved sources using simulations—
based on number counts from de Zotti et al. (2005). The total upper bound on the foregrounds power
spectrum `(`+ 1)C`/2π is 50, 48, 57 and 64 ×10−4µK2 respectively at ` = 700, 1100, 1500 and 1900. All
these values are well below the expected lensing B mode signal (see e.g. Fig. 3.13) and the statistical
uncertainty of our BB measurement (see Fig. 5.7).



Chapter 8

Validation of the data set

In the previous chapter I have described the Polarbear analysis set-up and the studies that led to
it. As mentioned in Sec. 7.1, we cannot look at the products of the analysis before we validate the
data set and the pipeline. This is implemented in practice with the help of the so-called null tests and
involves testing signal-free combinations of the data. These are obtained by first dividing the data sets
into two subsets with similar statistical power and producing from them maps of the same sky area. The
signal-free combinations of their spectra are then tested for consistency with the data noise model.

The predefined data splitting criteria are the following.

• First v.s. second half of the data set

• First v.s. second season of observation

• Rising v.s. setting

• Far v.s. close to the moon

• Far v.s. close to the sun

• Sun above v.s. below the horizon

• High elevation v.s. low elevation

• Good v.s. bad weather

• High v.s. low gain

• Left v.s. right side of the focal plane

• Focal plane pixel types (the antennas of one group are rotated by 45◦ with respect to those of the
other group)

• Left- v.s. right-going subscans

The splits are chosen to be sensitive to different systematics that were considered particularly pertinent
to the Polarbear measurements, see Polarbear Collaboration (2014a) for more details.

For the pipeline described in this thesis, the full null test suite is not computationally feasible due
to the hundreds of unbiased map-making runs that it requires. Especially, the pipeline is not suitable
because the data set definition is an iterative procedure and the full suite has to be run many times.
This procedure is indeed performed by the other Polarbear pipeline: thanks to the use of biased maps,
it avoids the computationally intensive parts of map-making and, roughly speaking, the cost of the full
null test suite is of the order of a single unbiased map-making run.

Once the data set is defined we validate it using our pipeline. In this chapter I describe this validation.
In the subsequent sections we describe other three types of tests, two of them are still power-spectrum-

based while the other is map-based. These tests take advantage of our unbiased map-making and are
therefore specific to our pipeline. In this sense this data validation is complementary to the data selection
and validation process performed with the other pipeline.

119
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Figure 8.1: Null spectra of the “focal plane pixel type” (top) and the “high v.s. low gain” (bottom). The
annotations next to each point correspond to the p-value of the point, assuming normal distribution and
sigma given by the error bar.

8.1 Null power spectra analysis

We compute and discuss here null spectra from the cross-spectrum of null maps. This is made possible
thanks to a capability of our pipeline to produce unbiased maps of the sky. Indeed, the null power
analysis based on the biased sky maps can be only attempted on the power spectrum level, with help
of a signal free combinations of cross-spectra of pairs of the maps. This approach has been used in the
first Polarbear paper Polarbear Collaboration (2014a). Our map-based approach is more direct,
requires fewer assumptions and its results are easier to interpret. We describe it here.

Given a null test type, we divide the data set of each of the two splits into 8 parts. We get a total
of 16 splits and we run the map-making for each of them. We then compute 8 null maps by subtracting
the first map of the two groups, and so on for the second, third, etc. We then apply the map domain
mode removal based on the eigenstructure of the full data set. Finally, we compute the null spectrum as
the weighted average of the cross-spectra of the 8 null maps. Then we use the eigenstructure of each of
the 16 maps to produce 100 noise simulations that are processed in the same fashion as the real data.
We then compute the standard deviation of the 100 simulated noise spectra and use it as error bar for
the null spectrum computed from the data. In summary, we are running the same procedure of the real
analysis on 8 null maps instead of 8 unbiased maps.

We perform two null tests of this kind: the “high v.s. low gain” and the “focal plane pixel type” null
tests. The resulting spectra are reported in Fig. 8.1.
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Figure 8.2: Null spectra extracted from the standard analysis set-up. The eight maps are combined into
four null maps, which are exploited for additional null tests. The null maps calculation is done either
according to the “fist v.s. second half” (top) or the “even v.s. odd” (bottom) schemes. The annotations
next to each point correspond to the p-value of the point, assuming normal distribution and sigma given
by the error bar.
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Figure 8.3: Normalised histogram of the p-values of all the points of the null spectra (4 Tests × 3 Spectra
× 4 Bins = 48 Entries)

In order to exploit further the products of our analyses, we also use the run of the real analysis to
perform two further types of null tests. From the 8 unbiased maps we obtain 4 null maps using the
“first v.s. second half” and the “even v.s. odd scheme”, described in Sec. 7.5.1. The rest of the null test
procedure is completely analogous to the tests of the previous paragraph: the only difference is that we
have 8 unbiased maps to start with, instead of 16. The null spectra are reported in Fig. 8.2.

We have to define how to quantify the compatibility of the null spectrum with the noise only simu-
lations. As a first approximation we assume as null hypothesis that the spectra points have a Gaussian
distribution centred at zero and with sigma given by the standard deviation of the noise simulations.
The p-value (also referred to as probability to exceed, PTE) of a given point of the null spectrum Ĉnull

b

is given by

p-value = 1−
∫ Ĉnull

b

−Ĉnull
b

dx√
2πσb

exp

(
x2

2σ2
b

)
(8.1)

We report the p-value of each of the null spectrum points in the Figs. 8.1 and 8.2.
The null spectra are generally compatible with zero. Nevertheless, some individual null spectra points

have quite low p-value. In order to assess if they represent a null test failure or a statistical fluke, we
study the distribution of all the p-values and assess its compatibility with the flat distribution (Fig. 8.3).
The Kolmogorov-Smirnov test gives a p-value of 11%, meaning that globally our data are statistically
compatible with the null hypothesis.

8.2 Detailed study of the outliers

Each null test is in principle sensitive to different systematics and a given outlier might indicate the
presence of some systematics. The results of the global analysis proposed in the previous section are
reassuring but require some complementary investigation. If we suppose that an outlier is indeed some
systematics and we combine it with a large number of other points that are insensitive to the systematic
effect, the outlier might become statistically insignificant and incapable to affect the global p-value,
which is driven by the much larger set of points. For this reason we probe the outliers also individually.
In particular, we study the behaviour of the cross-spectra that, once averaged, give the offending null
spectrum point.

Since the cross-spectra are computed from null maps, they are also expected to be individually
compatible with zero and we can assess this with the set of 100 noise simulations of the same cross-
spectrum. Therefore, instead of computing cross-spectra, combining them and checking the compatibility
with zero signal, we compute the cross-spectra and directly study their distribution and individual
compatibility with the zero-signal hypothesis.

As an example of this procedure, we show the investigation on the second bin ` = 1100 of the BB
spectrum of the “high v.s. low gain” null test, which has a particularly low p-value: 0.4%.
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Figure 8.4: Detailed study of the second bin of the BB “high v.s. low gain” null spectrum, the leftmost
point in the left panel. (a) All the cross-spectra Cij` that are coadded into the null spectrum point
being investigated (only i < j are displayed). The error bars are the standard deviation of the simulated
Cij` cross-spectra. No particular index is responsible for the behaviour of the combined point. (a) The
right panel is a histogram of the p-values of the individual cross-spectra, it is compatible with the flat
distribution.

In Fig. 8.4a we report all the cross-spectra with their individual error bars. First of all, the outlying
combined spectrum does not seem to be dragged by the cross-spectra involving a specific split, which
would suggest a problem in a portion and trigger investigation at the TOD level. Secondly, the distri-
bution of the p-values of the individual cross-spectra is compatible with the flat distribution, with an
excellent p-value of 72% from the Kolmogorov-Smirnov test. This test ensures that the error bars are
not underestimated, otherwise the single cross-spectra would scatter more than what is expected from
their error bars and produce an excess of low p-values in the histogram.

Concluding, we do not find particular indications of a systematics or error bar underestimation: it is
compatible with a statistical fluke.

8.3 Robustness of null power with respect to the threshold

The threshold defining the mode removal is a free parameter of our analysis. Its value is defined before
any analysis on the real data and, especially, before seeing the BB power spectrum produced for different
thresholds.

We can use the threshold to define an additional null test. The test is based on another null test, the
“first v.s. second” in this example. We filter the unbiased null maps that produced the null spectrum
with a threshold equal to 0.05, 0.2 and 0.5, we compute their null spectrum and finally we take the
difference with the null spectrum obtained with the 0.1 threshold. We do the same analysis on 100
noise simulations and check that the shifts obtained from the data and simulations are compatible. The
results are reported in Fig. 8.5 and show a general good agreement: when we vary the threshold the
change in the power spectrum is consistent with the expectations from our noise model. These results
also support that, as expected, the threshold of our choice—based on completely different and a priori
arguments—has no special advantage in passing the null power tests.

8.4 Map-domain null test

The previous studies checked the compatibility of our data with the noise model at the power spectrum
level. Since we are capable of both producing null maps and estimating their covariance matrix according
to our data model, the null test can be performed directly at the map level, potentially providing more
comprehensive diagnostic than the null power test. The map-level test is again made only possible within
the unbiased pipeline.

This analysis is performed using the 8 map-making runs of the standard Polarbear analysis. We
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build a global null map as follows

mnull = m0 −m1 +m2 −m3 +m4 −m5 +m6 −m7 (8.2)

We report both the complete map and its filtered version in Fig. 8.6. While the temperature map shows
in both cases clear signs of atmospheric contamination, the polarization map does not show any apparent
residual and is compatible with noise from a visual inspection.

In order to make this statement more quantitative, we perform the following analysis. For each map
mi we have the estimated covariance matrix, (A>F TA)−1

i , from which we can compute the covariance
matrix of the null map and its eigendecomposition

〈mnullm
>
null〉 =

7∑
i=0

(A>F TA)−1
i = V diag(e)−1V >. (8.3)

The choice of diag(e)−1 instead of diag(e) is done for consistency with Eq. (6.19): the large entries of
e correspond to the well-observed modes. In order to test if this covariance matrix, based solely on the
data model, actually describes the statistical properties of the null maps, we compute the vector of the
prewhitened mode amplitudes

diag(e)1/2V >mnull. (8.4)

Its entries are expected to have Gaussian distribution with zero mean and unit sigma. From their
histogram in Fig. 8.7a we see that they follow very closely the predicted normal distribution. The K-S
test gives indeed a p-value of ∼ 3%, which is extremely satisfactory given the sensitivity of the K-S test
with such a large number of data points. In Fig. 8.7b we show how this value evolves if we discard all
the amplitudes beyond a given threshold on the eigenvalues. Above the ∼0.2 threshold, the p-value are
always above 10% and, in particular, for the 0.1 threshold it is equal to 81%, implying that the filtered
null map is fully compatible with the expected map-domain noise.

8.5 Maps from the validated data set

As of late summer 2016, the validation of the analysis of the first and second season is being finalised and
we will soon unblind our power spectrum. The preliminary maps produced from the current validated
data set are shown in Fig. 8.8 (top panel). These are the first unbiased maps produced by the Polarbear
experiment. They have only three missing modes, which we identified and described in Sec. 6.6.1. In
the same section we also described the large-scale noisy modes, clearly visible in the reconstructed map.
In the middle panel we show that most of them are removed if we apply a mild threshold of 10−5 on the
eigenvalues. Any trace of long modes disappears if we apply our fiducial 0.1 threshold (bottom panel).
This mode filtering also removes the noisy pixels at the boundaries, leaving only the inner core, which
clearly shows a “grid”-like pattern, horizontal from Q and diagonal from U : the signature of the E modes.

In Fig. 8.9 we focus on the 3◦-by-3◦ centre of the patch and show the good visual agreement between
the temperature map of Polarbear and the Planck full mission map recovered with the SMICA method
(Planck Collaboration, 2015c). Even though the Polarbear map has a somewhat better resolution—3.5
arcmin v.s. an effective 5 arcmin of the Planck SMICA map—and the Planck maps have some small-scale
artifacts, probably attributable to the SMICA algorithm, the agreement between the two maps is truly
excellent, emphasizing at the same time the quality of our map-making algorithm and the Polarbear
data. We also note that a similar comparison of the polarized signals is hampered by the high-level of
noise on the pixel-scales in Planck maps and it is therefore not shown here.
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Figure 8.5: Threshold null test for the “first v.s. second” null test. Each point of the power spectrum is
computed for different thresholds. The plots show the difference with respect to the reference threshold
0.1. The same procedure is performed on simulations, their standard deviation defines the error bars.
The p-value of each point is reported next to the marker.



126 CHAPTER 8. VALIDATION OF THE DATA SET

T

-2e-05 2e-05
K

Q

-1e-05 1e-05
K

U

-1e-05 1e-05
K

T

-2e-05 2e-05
K

Q

-1e-05 1e-05
K

U

-1e-05 1e-05
K

Figure 8.6: Null map of the RA23 patch. The top panel is the full unbiased map while in the bottom
panel the 0.1 threshold is applied
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Figure 8.7: Study of the prewhitened amplitudes of the eigenmodes in the null maps. (a) Histogram
of the amplitudes, the over-plotted red line is the Gaussian with µ = 0 and σ = 1. (b) p-value of the
Kolmogorov-Smirnov test when only the best observed fraction of the modes is considered.
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Figure 8.8: Map of the RA23 patch. The top panel shows the actual map produced by the unbiased
mapmaker. In the middle panel a mild threshold on the eigenvalues is applied (10−5). The bottom panel
shows the actual map utilised for the power spectrum estimation, produced with a threshold of 0.1 on
the eigenvalues. (Notice that in the top and middle panel some sky areas saturate the colour scale)
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Figure 8.9: The 3◦-by-3◦ centre of the Polarbear RA23 temperature map (threshold 5× 10−4) com-
pared to the same sky area reconstructed from the Planck full mission using the SMICA component
separation method. The two maps have respectively a 3.5 and 5 arcmin resolution.



Chapter 9

Conclusions

In this thesis I address the problem of producing high-fidelity CMB maps from the data of current and
forthcoming, ground-based CMB polarization experiments. I describe relevant methodological develop-
ments, their implementation and application to data sets of the Polarbear experiment. I also discuss
what impact these map-making techniques may have for further stages of data analysis, focusing specif-
ically on the power spectrum estimation. This again is done in the general context as well as in the
specific one of the Polarbear data analysis. Last but not least, I present the Polarbear experiment,
its first and second season data set and the current status of its analysis.

In spite of years of development, the map-making continues providing significant challenges to data
analysis for modern CMB experiments. The time-ordered data they produce are typically composed
of 1011-1013 samples, which have to be compressed into maps typically composed of 105-107 pixels,
depending on the experiment. This has to be done in a way that the cosmologically-relevant information
remains as intact as only possible. Achieving this is exacerbated by the presence of low-frequency noise
and contaminating signals, for example due to atmospheric emission or ground pickup. These components
are typically removed with some filtering operation that, if not properly devised and accounted for,
produces a bias or some contaminant leftover in the reconstructed maps.

In this thesis, following on Poletti et al. (2016), I present a new perspective on the unbiased map-
making formalism in the presence of filtering. In particular, the formalism proposed is capable of naturally
incorporate arbitrary sets of filters and handle them in a statistically sound manner. It also encompasses
previous techniques in a more general framework.

A key problem in the high-fidelity reconstruction of sky maps is the interplay between filters and sky
signal. In this work I discuss when it leads to degeneracies in the formalism and how to handle them in
practice. Moreover, as a concrete example, I study the problem of ground-pickup filtering, ubiquitous
in the ground-based observations, I investigate the degenerate sky modes that it produces and what are
the possible degeneracy-breaking effects.

I have implemented the proposed map-making formalism as a massively-parallel C++/MPI code.
The implementation not only delivers an outstanding accuracy in the map reconstruction, but also pro-
vides the full covariance matrix of the map-estimator, which enables to identify both the degeneracies
and the map-domain correlations induced by the time-domain filtering.

Since the beginning of my PhD training, I have been a member of the Polarbear Collaboration, a
CMB B-mode dedicated experiment located in the Chilean Atacama desert. The main motivation for the
map-making methodological and technical developments was indeed their application to the Polarbear
first and second season observations. The developed method and code have met successfully the challenges
the data set has posed.

The map-maker was instrumental in producing (nearly) unbiased maps of all the three Stokes param-
eters, which were obtained together with a precise characterization of their noise correlation structure.
These maps have been used to estimate the polarized power spectra using pure pseudo-spectrum meth-
ods. This step has been shown to be compromised by the non-trivial correlation structure of the map
noise and stimulated a development of a practical approach to compensate for such deficiencies. I have
shown that when properly applied this approach allows matching the performance of the quicker and
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simpler biased map-making, based on a simple, noise-weighted binning of the filtered time-domain data.
This emphasizes that a full exploitation of the potential of unbiased maps requires the help of more
involved and resource consuming techniques—–such as those based on maximum likelihood principles.

These results, though obtained in the context of the Polarbear data sets, are expected to be more
general and should apply to all the ground-based experiments.

As a member of the Polarbear experiment I have led the development, validation and exploitation
of an entire data analysis pipeline that, starting from the calibrated time-ordered data, produces the
final power spectra by exploiting unbiased maps. This pipeline incorporates the map-making and power-
spectrum estimation techniques and codes described earlier.

Because of the blindness policy that the Polarbear Collaboration adopts, we are not allowed to see
our BB spectrum—–our main science product—–before having defined and validated both the tools and
final data set. Instead, the pipeline I have developed has been validated in a series of null tests. Some of
them reproduce those performed in the first season results (Polarbear Collaboration, 2014a), others
are novel and exploit the new unbiased map-making approach.

As of today, the data set validation is being finalised. The power spectrum will be soon unblinded
and we expect that it will bring improvements on the current constraints on the lensing peak of the
BB power spectrum. From one hand this will confirm our understanding of structure formation in the
Universe and on the other will bring us a step closer to exploiting the cosmological constraints that can
be deduced from the measurements of the lensing potential.



Appendix A

Block-wise GLS estimator

In this section we provide more details about the equations in Sec. 4.1.4. We derive the unbiased map
estimator in the presence of time domain filtering or, more in general, we write the GLS estimator in a
block-wise fashion.

We report here for completeness the data model

d = As+ Ty +w

= [A,T ] [ sy ] +w, (A.1)

of which we want to estimate the parameters s and y. For simplicity we assume a unitary weight matrix
M = 1. With this assumption, we remind that the filtering operator reads

FX = 1−X(X>X)−1X>. (A.2)

As in Sec. 4.1.4, we are assuming that the there is no degeneracy: [A,T ] is full rank.

A.1 The direct approach

The GLS estimator can be written as[
ŝ
ŷ

]
=

[
A>A A>T
T>A T>T

]−1 [
A>

T>

]
d. (A.3)

The following matrix[
(A>F TA)−1 −(A>F TA)−1A>T (T>T )−1

−(T>FAT )−1T>A(A>A)−1 (T>FAT )−1

]
(A.4)

is the block-wise inverse of the system matrix. To show this we only need to apply this matrix on the
system matrix and check that we get the identity (it is trivial, one just need to perform the block-wise
multiplication and remind Eq. (A.2)). We can use this matrix in the expression of the estimator and
obtain the direct estimates of ŝ, Eq. (4.29), and ŷ, Eq. (4.30),[

ŝ
ŷ

]
=

[
(A>F TA)−1 −(A>F TA)−1A>T (T>T )−1

−(T>FAT )−1T>A(A>A)−1 (T>FAT )−1

] [
A>

T>

]
d (A.5)

=

[
(A>F TA)−1A>F T

(T>FAT )−1T>FA

]
d. (A.6)

A.2 The two-step approach

Also the following matrix is inverse of the system matrix,[
(A>A)−1 + (A>A)−1A>T (T>FAT )−1T>A(A>A)−1 −(A>A)−1A>T (T>FAT )−1

−(T>FAT )−1T>A(A>A)−1 (T>FAT )−1

]
. (A.7)

131



132 APPENDIX A. BLOCK-WISE GLS ESTIMATOR

Again, simply apply this matrix on the system matrix to find the identity.
Notice that just the first line has changed. Of course, the expressions are different but the two

matrices are equal. The blocks of this matrix can be derived from the former block-wise inverse, Eq.
(A.4). The Sherman–Morrison–Woodbury formula says that

(S −RP−1Q)−1 = S−1 − S−1R(P −QS−1R)−1QS−1 (A.8)

where S, R, P and Q are matrices of the correct sizes. Choosing S ≡ A>A, R ≡ A>T , P ≡ T>T
and Q ≡ T>A we get exactly the conversion from the first diagonal block of Eq. (A.4) to the one of Eq.
(A.7). To demonstrate the equivalence of the two off-diagonal blocks we can equivalently multiply both
by (A>F TA) from left and show that (A>F TA)(A>A)−1A>T (T>FAT )−1 is equal toA>T (T>T )−1,
which is indeed demonstrated with the following simple steps,

[A>F TA](A>A)−1A>T (T>FAT )−1 =
[
A>A−A>T (T>T )−1T>A

]
(A>A)−1A>T (T>FAT )−1

= A>T (T>T )−1
[
T>T − T>A(A>A)−1A>T

]
(T>FAT )−1

= A>T (T>T )−1. (A.9)

Adopting this new block-wise inverse in the GLS estimator we get the two-step map estimator[
ŝ
ŷ

]
=

[
(A>A)−1 + (A>A)−1A>T (T>FAT )−1T>A(A>A)−1 −(A>A)−1A>T (T>FAT )−1

−(T>FAT )−1T>A(A>A)−1 (T>FAT )−1

]
×

(A.10)

×
[
A>

T>

]
d

=

[
(A>A)−1A> − (A>A)−1A>T (T>FAT )−1T>FA

(T>FAT )−1T>FA

]
d

=

[
(A>A)−1A>d− (A>A)−1A>T ŷ

(T>FAT )−1T>FAd

]
. (A.11)



Appendix B

Filtering the ground-synchronous signal

In this appendix we study in detail the filtering of ground-synchronous signals, elaborating on and
justifying the conclusions presented in Sec. 4.2.4.

We start by considering the data recorded from a single detector, d, during a constant elevation scan,
s. According to the data model in Eq. (4.50), the data recoded in a given azimuthal bin, ψ, is

d|d,s,ψ = A|d,s,ψ s|d,s,ψ + G|d,s,ψ g|d,s,ψ + n|d,s,ψ
= A|d,s,ψ s|d,s,ψ + 1|d,s,ψ gψ + n|d,s,ψ , (B.1)

where 1|d,s,ψ is a vector of ones of the appropriate length and gψ denotes a ground template amplitude
common to all selected samples.

Let us now focus on the shape of the sky patch corresponding to s|d,s,ψ. The geometry of the problem
is depicted in Fig. 4.3 and, for the time being, we neglect the role of the sky pixels. We consider a small
azimuthal change of the pointing direction at a point on the sky at which the parallactic angle is η.
The change in horizontal coordinates ∆(Az,El) = (δ, 0) corresponds to an interval in the equatorial ones
given by,

∆(RA,Dec) = (−δ cos η,−δ sin η) (B.2)

In particular, at the South Pole the horizontal coordinates correspond to the equatorial ones after flipping
the y (El) axis, thus we have always η = π and ∆(RA,Dec) = (δ, 0). For a given elevation, the parallactic
angle is always the same for a given azimuth but depends on the azimuth’s value, so although it changes
across a single ground template bin the changes are very small. Consequently, each constant elevation
scan crossing a bin will draw a line interval on the sky given approximately by Eq. (B.2). Because of
the Earth’s rotation, if we keep on crossing the bin multiple times the intervals will cover a trapezoidal
shape in sky coordinates, as shown in Fig. 4.3. The size of the trapezoid depends on the bin width but
also on the parallactic angle, Eq. (B.2). However, the lines traced by the azimuthal bin end always follow
the constant declination direction on the sky. Note that if | sin η| = 0 , which is always the case at the
South Pole or whenever the instrument is pointed straight to the South or the North, the width of the
trapezoid in declination is zero.

These patches, narrow in declination and elongated in azimuth, are degenerate (or ill-conditioned)
modes. In the following we discuss this statement in detail for both temperature and polarization and
investigate possible degeneracy-breaking effects.

B.1 Total intensity measurements.

Let us start with the total intensity measurements and consider a data subset that has the same ground
contribution. It is described by (B.1), with the pointing matrix, A, merely composed of ones and zeros.
For this single scan the sky modes, s̃, that are degenerate with the ground template signal have to fulfil
the following relation, stemming from (4.45),

A|d,s,ψ s̃ = G|d,s,ψ g̃ = 1|d,s,ψ gψ. (B.3)
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Thus for this subset of measurements, the ground template can only give rise to a constant offset in the
time-domain for all samples of the scan. Given that A here simply assigns the pixel amplitudes to the
respective time samples without changing their values, there is only one sky mode that reproduces this
behaviour: a constant offset in the corresponding sky map, i.e.,

s̃ ∝
[

1
...
1

]
≡ 1s|(d,s,ψ)

(B.4)

This demonstrates that, as intuitively expected, the absolute offset of the map produced from these
measurements is unavoidably lost as it is degenerate with the ground signal, gψ.

Let us consider another data subset taken by detector d′, during scan s′ and with the azimuth
coordinate corresponding to bin ψ′. The data for this scan can be expressed by a relation analogous
to (B.1). If either the scan, the detector or the azimuthal bin is different between these two data subsets,
then the subsets will have independent, and a priori different, ground-pickup amplitudes gψ and gψ′ . If
the sky observed during these scans overlaps, then the combined data set, d{d,s,ψ}∪{d′,s′,ψ′}, will have
again only one degenerate mode pair,

s̃ ∝
[

1
...
1

]
= 1s|(d,s,ψ)∪s|(d′,s′,ψ′) and g̃ ∝

[
1
...
1

]
= 1g|(d,s,ψ)∪g|(d′,s′,ψ′) . (B.5)

This reflects the fact that the relative offset of the two sky maps recovered from each of the subsets can
be constrained internally owing to the fact they overlap on the sky and have to recover the same sky
signal in each common pixel.

Otherwise, if no overlap exists, the data set made of two subsets will have two degenerate pairs of
modes, which can be cast as either the absolute offsets of both of the sky patches or as an absolute offset
of both of them and a relative offset between them.

This latter situation can happen if the two subsets correspond to the same detector, d, and the same
scan, s, but to two different though adjacent azimuthal bins. As described above, their corresponding sky
areas will be indeed strictly speaking disjoint. However, as the sky maps are necessarily pixelized, there
will be some pixels on the border between two patches which will straddle both of them, constraining
their relative offset. The constraint will not be very strong though, and the corresponding degeneracy
only weakly broken. An upshot of this is that a map produced from the single constant elevation scan
data of a single detector will have as many ill-constrained modes as there are azimuthal bins used to
represent the ground pick-up. These modes will become even more ill-constrained if the number of
bins increases because the relative offset uncertainty for sky patches corresponding to two extreme bins
increases in proportion to

√
nψ, while the uncertainty on the offset of two adjacent bins remains roughly

unchanged. This scaling reflects the fact that the relative offset between two non-overlapping sky patches
with n intermediaries is a result of a random walk of the adjacent patches’ offsets, each subject to the
same uncertainty (Stompor and White, 2004). Consequently, ill-constrained modes can be suppressed
if fewer azimuthal bins are used. Similarly, the uncertainty on the offset of two adjacent bins can be
decreased if larger sky pixels are adopted, and more samples from both azimuth bins fall into them.
However, the pixel size is typically set by the beam size, while the size of the azimuthal bins is driven
by our preconceptions about the ground signal and the structure of the far side lobes. Consequently,
whatever freedom is left should be used with care, as potential improvements in statistical uncertainty
can be translated into increased ground pick-up residual.

There are two reasons why these ill-constrained modes may be further suppressed in the final maps,
combining the data of all the detector and all of the scans. First, for a single scan the additional
constraints on the relative offsets of these patches typically also come from the data collected by different
detectors. This is because the azimuthal bins are often defined differently for different detectors so the
sky patch corresponding to an azimuthal bin of one detector will often overlap with two sky patches
corresponding to two different bins of the other detector, thus providing an extra leverage on their
relative offset. Second, the sky patches corresponding to fixed azimuthal bins of different scans can have
different width because the parallactic angle is different in the two scans (see the previous section). This
introduces additional overlaps between the patches of different scans, helping to constrain their relative
offsets.

In general the global offset of the final map is expected to be the only truly degenerate mode in the
total intensity maps derived from data that are contaminated by ground pickup that requires explicit
filtering. Notwithstanding this, the constraints that can be set between the relative offsets of different
patches with the same ground pickup are usually inferior to those between different parts of the same
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patch, and some ill-constrained large-scale modes should be expected, predominantly in the declination
direction.

We note that these conclusions apply qualitatively to any observational site on Earth, including the
poles, with the difference that as the single ground bin patches become very narrow in declination the
relative offset degeneracies in this direction are broken only by the pixel effects. By contrast, the bin
size only plays a role in breaking the degeneracies in the azimuthal direction.

It is important to appreciate the role of the assumptions in breaking these (near) degeneracies. The
choices made about the sky pixel size, the pixelization itself, the binning, and the size of the bins, all
impact the degeneracies and can be used, or abused, to break them. In addition, the offset degeneracies
can be broken if a less flexible model for the ground signal is used, for instance if we impose a prior
constraint on the relative change of the ground signal from one bin to the next. The key parameter in
such cases would be the assumed coherence length for the ground signal.

B.2 Polarization-sensitive measurements.

The situation for polarization-sensitive observations is potentially more complex due to the more com-
plex form of the pointing matrix. However, it is qualitatively similar to the total intensity case. For
concreteness, we discuss the case with three Stokes parameters contributing to the measurements, and
thus with the pointing matrix as defined in (4.1). As the polarization orientation may change during the
operations, i.e., if some polarization modulator is employed, we will introduce a different ground pick-up
amplitude not only for each azimuthal orientation of the instrument but also for each different position
of the polarizer, as defined in the instrument coordinates. For simplicity, we will however keep on using
a single azimuthal bin number, ψ, to distinguish between the ground signal amplitudes.

We again focus on a single constant elevation scan and a single detector. Our data model is then again
given by (B.1), where the same ground pickup is added to each measurement. The major qualitative
difference from the total intensity case is that in the polarization-sensitive case the pointing matrix
elements may be different from sample to sample, even for samples falling into the same sky pixel on a
single crossing, as could be the case if fast rotating half-wave plate were employed to modulate the signal.
However, for the data subset selected above the angle of the polarizer is fixed in the instrument frame, so
the change of the pointing matrix elements, defined by the polarizer orientation but with respect to the
sky coordinates, can be only related to the parallactic angle change with the azimuth of the observation.
Typically the angle change within a range of azimuths corresponding to a single sky pixel can be safely
neglected and we may assign a single polarizer angle as measured with respect to the sky coordinates
for each pixel observed with the data subset. These angles may be somewhat different for two different
pixels if these are observed at different azimuths, but as the latter have to fall within a single ground
template bin, the bins would need to be rather broad to make such an effect important. Nonetheless,
henceforth we assume that for the data subset as defined earlier and characterized by the same ground-
pickup amplitude, the polarizer’s angle in the sky coordinates, and thus the mixing matrix elements,
may at most depend on the observed sky pixels and will have a unique value for all observations falling
within the same pixel. We note that such small angle variations do not appear if the observations are
conducted from the Earth’s poles.

As in the total intensity case, the degenerate sky modes have to be able to mimic an offset in time-
domain data. This can be the case for three linearly independent sky defined as,

s̃I ∝


1

0

0
...
1

0

0

 , s̃Q ∝



0

c−1
0

0
...
0

c−1
np−1

0

 , s̃U ∝



0

0

s−1
0

...
0
0

snp−1

 , (B.6)

where,

sp ≡ sin 2ϕp (B.7)
cp ≡ cos 2ϕp, (B.8)

and ϕp stands for a polarizer angle in the sky coordinate in pixel p (= 0, . . . , np − 1). Each of these sky
modes is a vector of np triples where the elements of each triple correspond to the I, Q, and U Stokes
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parameters. We note that if the sky rotation is negligible across the sky patch covered by the scan these
three modes correspond to map offsets of the maps of the respective Stokes parameters.

Within our data subset, each pixel is observed with only a single orientation of the polarizer and
we thus cannot estimate all three Stokes parameters separately, but merely their linear combination,
I+Q cos 2ϕp+U sin 2ϕp, even if no ground pickup is considered. The corresponding two-dimensional de-
generacy space is a sub-space of the three-dimensional space spanned by the vectors defined in Eq. (B.6).
Consequently, adding the ground pick-up merely adds one degenerate vector to the map-making prob-
lem, corresponding to the the total offset of the linear combination of the Stokes parameters, i.e.,
I +Q cos 2ϕp + U sin 2ϕp

1.
To recover all the Stokes parameters from data modeled as in (4.1), we need at least three visits to

each pixel with a different orientation of the polarizer. These can be provided by other detectors in the
focal plane during the same or different constant elevation scans, or come from the same detector if its
polarizer direction is modulated either on short or long timescales. In all these cases the new data will
have not only a different polarization angle but also potentially a different ground-pickup. Each of these
extra data sets can likewise have up to three degenerate sky modes, which for data subset i (= 0, 1, 2),
we denote as s̃I (i), s̃Q(i) and s̃U (i), respectively. For these data sets considered together, however only
the intensity offset, s̃I = s̃I

(0) = s̃I
(1) = s̃I

(2), always leads to degeneracy, while s̃Q(i) and s̃U (i) will
only do so if the polarizer angles for each data subset are effectively the same for all observed pixels, and
therefore

s̃Q
(i) ∝ s̃Q ≡


0

1

0
...
0
1

0

 , s̃U
(i) ∝ s̃U ≡


0

0

1
...
0
0

1

 , for i = 0, 1, 2. (B.9)

In this case each of the recovered maps of the Stokes parameters will have an arbitrary offset correspond-
ing to three degenerate vectors, s̃I , s̃Q, and s̃U , as defined.

If the angles do change somewhat from pixel to pixel within a single data subset, i.e., when the change
of the parallactic angle within the azimuthal bin is not negligible, only the total intensity map will have
an arbitrary offset. This is because in this case A(i) s̃Q

(j) and A(i) s̃U
(j) are time-domain vectors with

elements which depend on time in a non-trivial way. Here, A(i) is a pointing matrix specific to subset i,
while the combined pointing matrix for the three subset is given by,

A ≡

 A(0)

A(1)

A(2)

 . (B.10)

We therefore also see that the time-domain vectors, As̃Q(j) and As̃U (j), are non-trivial and therefore
cannot typically be mimicked by three ground template offsets and the degeneracy condition in (4.45)
can not be fulfilled.

However, as the angle change due to the sky rotation is typically small, s̃Q and s̃U may be potentially
ill-constrained, even if not strictly singular, and the offsets of the Q and U maps may be very uncertain.

The offsets between sky patches corresponding to adjacent ground template bins during the same
constant elevation scan can be further constrained as in the case of the total intensity only measurements.
The potential degeneracies can then be suppressed with the help of data from the other detectors and/or
different scans, although again a natural expectation is that there will be long sky modes in the declination
direction which may be ill-constrained.

If the observation is taken from the Earth’s poles, the maps recovered from the three subsets of the
data taken at the same elevation will have all three degenerate offsets, which will propagate to the final
maps combining all the data. In addition, the relative offsets between the sky patches taken at different
elevation will only be set by the presence of pixels common to both patches and therefore will lead to
long modes in declination which will be ill-constrained.

1We also note that even if one of the cosines, cp, or sines, sp, happens to be zero, and therefore only two of the three
modes in (B.6) are indeed degenerate, the latter statement remains true and the loss of information is the same in all these
cases.
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