
Thèse de doctorat

de l’Université Sorbonne Paris Cité

Préparée à L’université Paris Diderot

Ecole Doctorale de Sciences Mathématiques

de Paris Centre (ED 386)

Laboratoire de Linguistique Formelle

Natural language generation using
abstract categorial grammars

Par Raphaël Salmon

Thèse de Doctorat d’Informatique

Dirigée par Laurence Danlos

Présentée et soutenue publiquement à Paris le 10/07/2017

Président du jury : Pogodalla Sylvain, CR, LORIA

Rapporteurs : Saint-Dizier Patrick, DR, IRIT

Lapalme Guy, Professeur, Université de Montréal

Examinateurs : Pogodalla Sylvain, CR, LORIA

Meunier Frédéric, Consultant, SInequa

Directeur de thèse : Laurence Danlos, Professeur, Université Paris Diderot

i

Title : Natural language generation using abstract categorial

grammars.

Abstract : This thesis explores the usage of Abstract Categorial Grammars (ACG)

for Natural Language Generation (NLG) in an industrial context.

While NLG system based on linguistic theories have a long history,

they are not prominent in industry, which, for the sake of simplicity

and efficiency, usually prefer more “pragmatic” methods. This study

shows that recent advances in computational linguistics allow to con-

ciliate the requirements of soundness and efficiency, by using ACG to

build the main elements of a production grade NLG framework (doc-

ument planner and microplanner), with performance comparable to

existing, less advanced methods used in industry.

Keywords : NLG, ACG, microplanning, document planning

Titre : Génération automatique de texte avec des grammaires

catégorielles abstraites.

Résumé : Cette thèse explore l’usage des Grammaires Categorielles Abstraites

(CGA) pour la Génération Automatique de Texte (GAT) dans un con-

texte industriel. Les systèmes GAT basés sur des théories linguistiques

ont un long historique, cependant ils sont relativement peu utilisés en

industrie, qui préfère les approches plus “pragmatiques”, le plus sou-

vent pour des raisons de simplicité et de performance. Cette étude

montre que les avancées récentes en linguistique computationnelle per-

mettent de conciler le besoin de rigeur théorique avec le besoin de

performance, en utilisant CGA pour construire les principaux mod-

ules d’un système GAT de qualité industrielle ayant des performances

comparables aux méthodes habituellement utilisées en industrie.

Mots clefs : GAT, GCA, planification de document, microplanning

Acknowledgements

I would like to thank the following people for their help, support and guidance while

making this thesis:

• Laurence Danlos, for her unshakeable trust and her guidance throughout these

four years.

• Patrick Saint-Dizier and Guy Lapalme for their helpful comments and suggestions

for improving this work.

• Sylvain Pogodalla for being ever so kind to show interest in my work and putting

so much time and effort in giving me his precious advices regarding the topic of

my research.

• Alain Kaeser for his unshakeable support and trust as well as his ever present

enthusiasm.

• Lorie Den Os for building the English grammar used in this work and being so

kind and enthusiast while doing it.

• Yseop for financing this work and welcoming me into its team.

• Also the whole Yseop team, with all the people, too numerous to name here, with

whom I’ve had the great pleasure to work with.

• And last but not least, the ANRT for its generous financial contribution, which

made it all possible.

ii

Contents

Acknowledgements ii

Contents iii

List of Figures vi

1 Introduction 1

1.1 What is NLG ? . 1

1.1.1 NLG and NLU . 1

1.1.2 Choice management . 2

1.2 Context and goal of the thesis . 3

1.2.1 The context . 3

1.2.2 The goal . 4

1.3 Main results . 5

1.4 Plan . 6

I Natural Language Generation 7

2 Natural language generation system architectures 8

2.1 Software engineering . 8

2.1.1 The task-based pipeline architecture 9

2.1.2 A Reference Architecture for Generation Systems (RAGS) 12

2.2 Linguistically motivated architectures . 13

2.3 Combinatorial optimization . 15

2.3.1 Constraint satisfaction problems 15

2.3.2 NLG and constraint satisfaction 18

2.4 Machine learning . 19

2.4.1 Learning alignments . 19

2.4.2 Learning to generate . 20

2.4.3 Machine learning and generic architectures for NLG 21

3 Document planning 23

3.1 Content selection . 23

3.1.1 Domain representation and ontologies 23

3.1.2 Unstructured input data . 25

3.2 Document structure . 27

iii

Contents iv

3.2.1 Schemas . 27

3.2.2 RST . 28

3.2.3 SDRT . 31

3.3 Algorithms for document planning . 32

3.3.1 Top-down goal driven . 32

3.3.2 Bottom-up data driven . 33

3.3.3 Interleaved content selection and document structuring 34

3.4 Summary . 35

4 Microplanning 36

4.1 Structures and constraints . 36

4.1.1 The structures . 37

4.1.2 The constraints . 39

4.2 Lexicalisation and aggregation . 42

4.2.1 Lexicalisation . 43

4.2.2 Aggregation . 43

4.3 Semantic aggregation and composition-based methods 44

4.3.1 Semantic aggregation . 45

4.3.2 Complex mapping and composition 45

4.4 Referring expression generation . 47

4.4.1 Pronominalisation strategy . 48

4.4.2 Disambiguation strategy . 48

4.5 Realisation . 50

4.6 Summary . 51

5 Using ACG for natural language generation 53

5.1 Software quality in an industrial context 53

5.2 Using ACG for natural language generation 55

5.2.1 Theory neutral abstraction levels and transformation of structures 55

5.3 Comparison with other approaches . 57

5.3.1 Comparison with the task-based pipeline architecture 57

5.3.2 Comparison with RAGS . 60

II Abstract Categorial Grammars and Natural Language Genera-
tion 61

6 Abstract Categorial Grammars 62

6.1 Definitions . 62

6.1.1 The signatures . 62

6.1.2 The lexicon . 64

6.1.3 Abstract categorial grammar definition 64

6.1.4 Composition of grammars . 64

6.2 Tree adjoining grammars as abstract categorial grammars 65

6.2.1 Introduction to TAG . 66

6.2.2 Encoding TAG with ACG . 67

6.2.3 Encoding strings with ACG . 70

Contents v

7 Document planning with ACG 72

7.1 Using ACG in the context of a NLG framework 73

7.1.1 The static and dynamic aspects of NLG systems 73

7.1.2 ACG based NLG systems . 75

7.2 Basic document structures . 79

7.3 Complex document structures . 83

7.3.1 Describing larger sets of document plans 84

7.3.2 Improving context sensitivity . 90

7.4 Data-driven document structuring using RST 95

7.4.1 Bottom-up document structuring 95

7.4.2 Modelisation . 96

7.5 Conclusion . 101

8 Implementation 102

8.1 General architecture . 103

8.1.1 Lambda terms . 104

8.1.2 Signatures and lexicons . 106

8.1.3 Composed lexicons . 107

8.1.4 Summary . 109

8.2 Generation and transformation of structures 110

8.2.1 Example grammar . 110

8.2.2 Datalog prover . 112

8.2.3 Inversion of a lexicon . 117

8.2.4 Transferring and choosing solutions 121

8.2.5 Generation of λ-terms . 123

8.3 Linguistic resources . 125

8.3.1 Semantics . 127

8.3.2 English grammar . 129

8.3.3 Text variability . 132

9 Results and perspectives 138

9.1 Evaluation . 138

9.2 Business intelligence . 141

9.3 Argumentation . 145

9.3.1 Initialization . 147

9.3.2 Document planning and microplanning 149

9.3.3 Results . 150

9.4 Perspectives . 151

9.4.1 Evolution of the ACG kernel . 151

9.4.2 New linguistic resources . 152

9.5 Conclusion . 153

Bibliography 156

List of Figures

1.1 The three stages of natural language generation 3

2.1 The detailed task-based pipeline architecture 9

2.2 The meaning-text theory bidirectional pipeline architecture. 14

2.3 Alignments between a conceptual representation and text. 19

2.4 Hierarchical semi-markov model for alignments. 20

3.1 Simple database example from the car selling application domain. 24

3.2 Example of ontology fragment. 24

3.3 The extended task-based pipeline architecture 26

3.4 Schemas for document structure. 28

3.5 Example of rhetorical relationship from the RST 29

4.1 Input and output structures of a microplanner. 38

4.2 Floating constraints . 40

4.3 Example of semantic aggregation. 45

4.4 Example of ambiguous definite description generation problem. 49

5.1 An informal view of Abstract Categorial Grammars. 56

5.2 Pipeline of structure transformations. 56

5.3 Levels of abstraction for the task-based pipeline architecture. 58

6.1 The different compositions of abstract categorial grammars. 65

6.2 TAG substitution operation . 66

6.3 TAG adjunction operation . 67

6.4 Example of derivation tree. 68

6.5 Representation of a tree in ACG. 70

6.6 The string language of a TAG using an ACG 71

7.1 The general workflow of NLG systems creation. 74

7.2 Text template for a commercial email. 75

8.1 The general workflow of NLG systems creation using Yseop technology. . 103

8.2 Example composition of three lexicons. 112

8.3 A program derivation and its associated decomposition. 121

8.4 Linguistic resources. 126

8.5 Example microplanner input. 133

8.6 Example definitions for the microplanner. 135

8.7 Example variations. 137

vi

List of Figures vii

9.1 Business intelligence application example. 142

9.2 Results of the performance test of the framework. 144

9.3 Example input of the NLG module of the car selling application. 147

9.4 Example output of the car selling application. 150

Chapter 1

Introduction

Since the beginning of the field in the 60s, artificial intelligence (AI) has known series

of peaks of inflated expectations and troughs of disillusionment. The AI winter of the

90s, following the expert systems hype of the 80s, has fragmented the field into many,

relatively independent subfields, which have tried since then to solve specific problems

of perception, cognition or action separately. One of the main criticism against AI tech-

niques at the time was that they didn’t seem to be able to go into the real world, solving

real world problems, but were confined to toy problems in the laboratory. It is only

relatively recently that some of the subfields of AI born during this period have reached

a level of performance which allows to solve real world problems quite convincingly and

to use them in large scale industrial contexts. Probably the best example of this success

is the field of deep learning techniques, which has solved several pending problems in

image recognition, speech recognition and many others. But numerical techniques are

not the only one which have have evolved, and more classical symbolic computation

techniques also have their share of innovations. This thesis is about Natural Language

Generation (NLG), one of the subfields of AI traditionally more inclined to symbolic

approaches (especially in industrial contexts), and which have recently gained enough

stability and maturity in order to be used in commercial applications.

1.1 What is NLG ?

1.1.1 NLG and NLU

In a perception/reflection/action cycle, natural language generation comes at the end. A

NLG system takes as input an abstract representation of meaning, generally the product

of some inference mechanism, and transforms it into text. NLG can be seen as the mirror

1

Chapter 1. Introduction 2

of Natural Language Understanding (NLU), which takes as input surface text and try

to extract its meaning. However in practice, NLG and NLU systems often use quite

different approaches. While machine learning techniques are now predominant in NLU,

it is not yet the case in NLG, and many practical systems still use symbolic approaches.

This difference between NLU and NLG can be explained by several factors:

• The input of NLG is not well defined1. We can produce text from raw numerical

data, tables, databases, ontologies, etc.. Though formats for the representation of

meaning do exist, we cannot always convert from one to another, and there is no

definition for all possible concepts that a NLG system may receive.

• A consequence is that there is not a lot of data available and usable for training,

as compared for instance to NLU.

• Moreover, pragmatic factors which are ignored in NLU play an important role in

NLG. For instance, things like intention, media of communication, target of the

communication, or even psychological modelling of the speaker.

All these factors make NLG a very difficult task, and while attempts at building systems

which perform both text understanding and text generation have been made, the two

subjects are often considered as radically different matters (McDonald, 1986).

1.1.2 Choice management

The problem of NLG can be represented as a set of interdependent choices. For each

piece of meaning in the input, we must choose a text chunk which corresponds to this

meaning (if any), and assemble it with other text chunks in a coherent manner. The

choices are dependent on several external, pragmatic factors, but they are also made

interdependent by the rules of language: syntax, semantics and rhetorics.

The most basic way to handle all these constraints is to use conditional templates, which

allows to choose different textualisations for an input depending on any kind of condition.

While this method may seem simplistic, it has its importance in practice. It can be used

in pretty much every existing programming language and can be used by anyone with

minimal knowledge in these languages. Therefore it is probably the method of choice

for any NLG application which is simple enough, and this is the case of a non negligible

part of real world applications. However conditional templates quickly meet their limits

when the number of choices and their interdependencies grows.

1The input of a particular NLG system must be well defined, but there is no general consensus as to
what representation of meaning should be used, and different NLG system often use different approaches.

Chapter 1. Introduction 3

Document planning

Microplanning

Realisation

Figure 1.1: The three stages of natural language generation (Reiter and Dale, 2000).
First the document planning phase creates a document plan from a data source. Then
the microplanning phase transforms this document plan into a text structure. Finally,
the realisation phase produces the surface text and embeds it into a document or a web

page.

The usual strategy when the problem of NLG becomes more complex, is to limit the

number of dependencies between the different choices by isolating them in independent

modules. All the difficulty here is to regroup the choices in such a way that all known

important dependencies are handled, while limiting the number of dependencies. There

are a lot of different ways of doing this, which are not always compatible. However an

usually accepted modularization is the one by (Reiter, 1994, Reiter and Dale, 2000),

which distinguishes between a document planner, a microplanner and a realiser module,

organized into a pipeline (see Figure 1.1). The document planner regroups choices about

the conceptual representation of the problem, the microplanner about the syntactic

representation of the output and the realiser about the format of the output text. I use

these distinctions in Chapters 3 and 4 in order to present and compare different NLG

techniques.

1.2 Context and goal of the thesis

1.2.1 The context

This thesis has been funded by Yseop2, one of the few companies around the world

specialized in NLG3. Companies specialized in natural language generation must cope

2www.yseop.com, the thesis was co-financed by the “Association Nationale de la Recherche et de la
Technologie” (ANRT).

3Other companies include (but are not limited to) Narrative Science (www.narrativescience.com),
Arria (www.arria.com) and Automated Insight (www.automatedinsights.com).

www.yseop.com
www.narrativescience.com
www.arria.com
www.automatedinsights.com

Chapter 1. Introduction 4

with very different scenarios, and build NLG systems for different clients as quickly as

possible. These applications may be built in a few days by a single person with no

specific training in programming or linguistics for the simplest cases, or by a small team

of developers and NLG/Data Analysis experts in a few months for the more complex

ones. Therefore there are strong requirements on the technology to be both simple to

use in simple cases and powerful enough to handle complex scenarios.

Since a single system cannot cope efficiently with all potential scenarios, the technology

at the core of a NLG company takes the form of a framework, which offers predefined

behaviours, architectures, best practices, specific functions, perhaps a specific software

environment to easily develop NLG applications. In fact, many things can be thought

as being part of a NLG framework, and we may differentiate between purely technical

tools, from the environment surrounding these technical tools. By environment, I mean

for instance:

• A specialized IDE (Integrated Development Environment) with helpful functions

or data for NLG, like grammars, database access and data filtering tools, document

visualization, spell checkers, multilingual displays, etc..

• A deployment solution for accessing the NLG system from the internet, perhaps

specialized protocols or web services, backup facilities, cloud deployment and load

balancing facilities, etc..

• Documentation, teaching materials, tutorials, bootstrap applications, support ser-

vice, etc..

• Project management methods, procedures for specifying the solution, extracting

the knowledge from experts of the domain, etc.

The environment is heavily dependent on the core technology, and at least as important

in order to successfully and efficiently build NLG applications. Therefore it is indis-

pensable that the core technology be well designed in order to integrate smoothly in its

environment and allow for powerful extensions and easy to use tools.

1.2.2 The goal

The main goal of this thesis is to extend the core technology of Yseop, in order to be able

to handle complex problems more easily. In other words, the goal is to build a NLG

framework which copes with known NLG related problems and integrates smoothly

into an existing technology. Reflecting on the rich environment surrounding the Yseop

Chapter 1. Introduction 5

technology, the details of this goal are a mix of theoretical and pragmatic concerns,

which could be summarized as follows:

• The new system should be able to perform document planning and microplanning

tasks. The Yseop technology already provides several high level functionalities,

like a realiser module, referring expressions generation and a few other microplan-

ning functionalities, however it lacks dedicated functions for some tasks usually

associated with microplanning or document planning (see Chapters 3 and 4).

• It should be able to use existing resources, in particular linguistic ones, like dic-

tionaries or grammars.

• It should be integrated in the existing technology, in way which allows to access

simpler functionalities when the added complexity is not needed.

• It should be fast enough to be used in a production environment. To give an order

of magnitude, the time allowed for text generation for on-demand applications

usually varies between a few milliseconds and a few hundreds of milliseconds.

• The system should be as simple to use and configure as possible.

• It should be flexible and easy to maintain over a long period of time.

This work has been the occasion to reflect on the architecture of the overall technology,

and to propose new means of achieving the desirable properties of an ideal NLG system.

1.3 Main results

The proposition developped in this thesis is to use the formalism of Abstract Categorial

Grammars (ACG, De Groote, 2001) as a kernel system for natural language generation.

ACG is an abstract formalism which allows to represent different other formalisms. Using

it as a kernel means that we can develop different tools for natural language generation

using different formalisms, and use ACG as a low-level, canonical way to represent and

run these tools. This allows to focus on computational issues in the kernel, and on

pragmatic or ergonomic ones in the configuration of the system (i.e. the tools built on

top of the kernel).

To show the soundness of this approach, a prototype system has been built directly in the

core technology of Yseop. This prototype system has been evaluated on microplanning

and document planning tasks, in order to confirm that it satisfies the efficiency and ease

of use standards of an industrial NLG technology. This evaluation has been globally

Chapter 1. Introduction 6

successful and it has shown that the prototype meets most of the initial goals of this

thesis, and can be turned into a production system.

From an academic perspective, the main contributions of this thesis are: an analysis

of the usage of ACG in the context of a NLG framework, and more specifically for

performing the document planning task (Chapter 7), an implementation of ACG in an

industrial context (Chapter 8) and feedbacks on the usage of ACG as a NLG framework

in an industrial context(Chapter 9).

1.4 Plan

The first part of the thesis is dedicated to the state of the art in natural language

generation. As there are many different techniques, I focus in priority on methods related

to the tools implemented. Chapter 2 gives an overview of the different approaches to

NLG from a very high-level perspective. Chapter 3 presents the most common methods

for document planning and Chapter 4 the ones for microplanning. Finally, in Chapter 5,

I elaborate on the reasons to use ACG as a kernel system for NLG and compare this

approach with others.

In the second part of the thesis, I give a detailed presentation of ACG, the prototype

implementation and the developed tools. Chapter 6 gives the definitions for ACG.

Chapter 7 details how ACG can be used in the context of a NLG framework and develops

on the usage of ACG for document planning. Chapter 8 is a precise description of

the implementation of ACG into the Yseop technology, and Chapter 9 presents the

evaluation of the framework and concludes on the usage of ACG for natural language

generation and future work.

Part I

Natural Language Generation

7

Chapter 2

Natural language generation

system architectures

The field of NLG is at the crossways of several disciplines, which have influenced the

general architecture and details of many different NLG systems. In this chapter, I survey

four major influences in the design of NLG systems: software engineering, linguistics,

combinatorial optimization and machine learning.

In this chapter and the following ones, I use as a running example a car selling applica-

tion, which is one of the applications which have been used to test the technology in a

realistic environment (see Chapter 9). The context of this application is a recommender

system for an online car selling application. The user fills a form with information

about its needs and situation, and the system proposes ten cars which might correspond

to its needs. The text generation system writes the description of each car, using the

characteristics of the car and a user model built from the input the user.

2.1 Software engineering

The general problem of NLG is very complex, and generally involves a lot of different

structures and constraints. Organizing them in a coherent and efficient way is a challenge

in itself. Propositions of architectures for NLG systems are often based on software

engineering concepts, like extendibility, reusability, efficiency, etc., and present particular

modularizations which support these properties. A popular example of such architecture

is the task-based pipeline architecture from (Reiter and Dale, 2000), which focuses on

pragmatic concerns and has already been successfully used in an industrial context

8

Chapter 2. Natural language generation system architectures 9

Document
planning

Content selection

Document structuring

Micro
planning

Lexicalization

Aggregation

Referential expressions

Realisation

Linguistic realisation

Structure realisation

Figure 2.1: The detailed task-based pipeline architecture. The tasks of document
planning are content selection and document structuring. The microplanning phase
does lexicalisation, aggregation and referential expressions generation. Realisation can

be divided into linguistic realisation and structure realisation.

(Reiter, 2015)1. I also present in this section the RAGS project (Mellish et al., 2004),

another proposition of architecture which focuses on software quality and normalisation

of the NLG problem in a somewhat different manner than (Reiter and Dale, 2000).

2.1.1 The task-based pipeline architecture

Document planning, microplanning and realisation can be refined by defining sub-

modules, which encode additional independence assumptions (Reiter and Dale, 2000).

Figure 2.1 shows the detailed task-based pipeline architecture. Document planning is

divided into a content selection and a document structuring module. Microplanning is

divided into three sub-tasks: lexicalisation, aggregation and referring expressions gen-

eration. Finally, realisation can be divided into a linguistic realisation and structure

realisation module.

2.1.1.1 Content selection

The content selection module takes upon itself to build messages (i.e. representations

of meanings) from an input data source. Since it needs to connect to very different

1The industrial version uses the JAVA programming language and a more precise description of the
algorithms for each module. However most of the details of this implementation are private.

Chapter 2. Natural language generation system architectures 10

data sources, it is probably the most ill defined part of the NLG pipeline. Its main

concerns are segmentation of the messages, correction and inference on the input data

and filtering. Content selection is potentially a very complex problem in itself, and is

sometimes treated as a whole system with its own complex architecture, either as an

extension of the task-based pipeline architecture (Reiter, 2007), or as an external system.

2.1.1.2 Document structuring

The document structuring module builds a document plan from a set of messages pro-

duced by the content selection module. The simplest case of document structuring is to

simply order the messages based on a communication goal. However it may involve more

complex rhetorical reasoning and tree, or graph structures, as we will see in Section 3.2.

2.1.1.3 Lexicalisation

The lexicalisation module maps messages to their textualisation. The textualisation of a

message is often a syntactic structure, which associate syntactic information with words

and group them in syntactic constituents, like noun phrases, or prepositional phrases.

The choice of syntactic construction may be dependent on external factors, as the desired

level of detail, or some constraints on the vocabulary.

2.1.1.4 Aggregation

The goal of the aggregation module is to set the limits of sentences and paragraphs

and to pack information in order to avoid redundancies. For instance, if we have two

messages which can be textualised as:

The car has a GPS.

The car has an automatic transmission.

The aggregation module can take advantage of the fact that both messages talk about

the same car to pack the information into a single sentence:

The car has a GPS and an automatic transmission.

Chapter 2. Natural language generation system architectures 11

2.1.1.5 Referring expression generation

The referring expression generation module chooses the expressions which refer to en-

tities. Entities may be persons, objects or even abstract concepts. The problem of

referring to entities comes in two parts. First the entity must be introduced, the first

time it is referred to in the discourse. Then, if multiple references are made to the same

entity, the system should produce short expressions which unambiguously refer to our

entity. These expression may be noun phrase like “the car”, or pronouns, like “it” or

“she”. To produce the referring expressions, the module uses the discourse history and

some notion of salience, in order to compute what is ambiguous and what is not in the

current context.

2.1.1.6 Linguistic and structure realisation

It is possible to separate the realization module between a linguistic and a structure

realisation module. The linguistic realisation module makes all the choices which impact

only the text. The structure realisation module makes all the choices which involve all

other aspects of the document, namely formatting and specific document formats.

2.1.1.7 Advantages and limits

A good modular design is characterized by few, easily recognizable modules, connected

by interfaces, and there should be as few, weakly coupling, interfaces as possible. The

task-based pipeline fits this description relatively well. Each module can be described

rather succinctly, by the task it performs, and pipeline architectures minimize the num-

ber of interfaces between modules. The identified tasks all take their root in practical

applications and the architecture focuses on solving practical problems encountered dur-

ing the creation of NLG systems.

This pragmatic approach has been both a factor of success and a source of criticisms

for the task-based pipeline architecture. A common argument against this architecture

is that it makes independence assumptions which are too strong, and imposes a specific

order on decisions which should be done jointly (Appelt, 1985, Danlos and Namer, 1988,

Mellish et al., 2004). A related observation is that some of the identified tasks may

be distributed over several levels of abstraction. For instance, aggregation and sentence

boundary delimitation may take place at a conceptual level or at a syntactic level. These

remarks, as well as the fact that the modules of the task-based architecture are defined

informally and are sometimes hard to compare with other approaches, have been the

Chapter 2. Natural language generation system architectures 12

motivation for another proposition for a reference architecture for generation systems:

the RAGS project (Mellish et al., 2004).

The prototype we developed is closer in spirit to RAGS than the task-based pipeline

architecture (see Chapter 5 for a comparison between the three approaches). However,

since the task-based pipeline architecture has also a descriptive function ans has been

used as such extensively, I still use it to introduce the different techniques in Chap-

ters 3 and 4.

2.1.2 A Reference Architecture for Generation Systems (RAGS)

The RAGS project (Mellish et al., 2004), proposes an architecture whose purpose is to

compare existing systems and serve as a basis for the development of new NLG systems

within a common framework, with the possibility of sharing modules between researchers

and use some predefined components or data structures. Unlike the task-based pipeline

architecture, the RAGS central elements are the data structures, the processes or tasks

being left undefined (although some example functions are proposed). There are two

levels of data structures in RAGS:

• High level data types, describing the main linguistic abstraction levels and usual

data structures found in NLG systems. The proposed high-level structures are:

conceptual, rhetorical, document, semantic, syntactic and quote (string) struc-

tures. Each level is described formally by an abstract type definition.

• A low-level structure, defined as a typed directed graph, which can be used to

represent the high-level data types. This low-level structure is the concrete infor-

mation transmitted through the interfaces of the system. RAGS also provides an

XML specification for the low-level structures which allows to persist and transmit

data.

Apart from these definitions, the rest of the architecture is relatively unconstrained and

many scenarios are possible. One can create its own high-level data types as long as they

can be represented in the low-level structure. Modules can be arranged in any order

and perform any function (the goal still being to go from a conceptual representation

to a string representation). The formalisation of the different data structures and the

underlying directed graph representation allows to compose an architecture using differ-

ent existing systems, by only coding the glue code for the interface, and to use different

programming languages for different parts of an application (again with glue code). The

Chapter 2. Natural language generation system architectures 13

RAGS project still proposes a default implementation, based on a blackboard, event-

driven architecture, which can be used to simulate several other architectures (including

pipeline architectures).

The architecture of the RAGS project is very flexible. In particular, the formalisation of a

low-level structure shared between all modules of the system makes it particularly suited

for extensions and reusable parts management. It also has a great expressive power and

can be used to analyse most of the existing NLG systems. However this expressivity also

makes it complex. The authors voluntarily opened the architecture as much as possible,

in order to leave room for new architectures and theories. While this is precious in a

research environment, leaving the architecture too open may be problematic in industrial

contexts, because of the complexity it requires and the potential performance issues2.

The approach presented in this thesis is similar to RAGS in that it also uses a low-level

data type, but it makes much stronger assumptions on the architecture of the system

and the underlying algorithms (see Chapter 5).

2.2 Linguistically motivated architectures

Unlike the task-based pipeline architecture, which defines task oriented modules, lin-

guistic theories differentiate between different levels of abstraction. The description of

language using levels of abstraction may be compatible with a task-based view of NLG.

For instance, document planning may be viewed as solving issues at the rhetorical and

semantic level. Microplanning can be seen as implementing the semantic-syntax inter-

face, and realisation as making decisions about morphology and possibly phonology. In

the details however, the comparison does not necessarily hold.

Perhaps one of the best examples of the general mindset of linguistic approaches to

natural language generation is the Meaning-Text Theory (MTT, Polguère 1998, Kahane

2003), and its applications to NLG (Lavoie and Rambow, 1997, Coch, 1996). The

meaning-text theory is a formalism describing a bidirectional pipeline of six modules (see

Figure 2.2). Each module makes the connection between two levels of abstraction. The

seven levels of abstractions are semantic, deep-syntax, surface-syntax, deep-morphology,

surface-morphology, deep-phonology and surface-phonology. The architecture is generic,

and can be parametrized for different languages or applications by defining a lexicon and

correspondence rules. The lexicon defines the structures which compose the different

2It is hard to tell if an implementation of the RAGS project would really suffer from performance issues
in an industrial context. The performances can vary greatly between different implementations, and the
architecture is flexible enough to allow opportunistic limiting assumptions. However the proposed event-
based implementation, like any event-based architecture, is quite complex (as compared for instance to
a pipeline architecture).

Chapter 2. Natural language generation system architectures 14

Semantic representation (meaning)

Semantics

Deep syntax

Surface syntax

Deep morphology

Surface morphology

Phonology

Surface-phonological representation (text)

Deep-syntactic representation

Surface-syntactic representation

Deep-morphological representation

Surface-morphological representation

Deep-phonological representation

Figure 2.2: The meaning-text theory bidirectional pipeline architecture. Six modules
connect seven levels of abstraction, from the meaning of the text to the surface text.

levels of abstraction, while the correspondence rules define the possible transformations

between the levels of abstraction.

Other formalisms have been used as a basis, either for implementing particular mod-

ules of a task-based NLG pipeline or complete NLG systems. For instance FUF (El-

hadad, 1993) is presented as a syntactic realiser inspired from Functional Unification

Grammars (FUG, Kay 1979). It comes with SURGE (Systemic Unification Realiza-

tion Grammar of English, Elhadad and Robin 1996), a wide coverage grammar of En-

glish and produces text from thematic structures. Another example using TAG (Joshi,

1985) for microplanning is the G-TAG formalism (Danlos, 2000), which describes the

semantic-syntax interface. These systems also make independence assumption based on

the distinction between different levels of abstraction. For instance, G-TAG distinguish

between conceptual representations, semantic-syntactical representations and syntactic-

morphological representations (and surface text).

Chapter 2. Natural language generation system architectures 15

Linguistically motivated systems have been mainly used as independent modules for

syntactic realisation (Elhadad, 1993, Lavoie and Rambow, 1997). However, when they

include a semantic representation, they may do full or partial lexicalisation, aggregation

or referring expression generation. Although pipeline architectures are quite standard

for linguistically motivated systems, the justifications used for the modularization are

different from a task-based approach. This often results in different independence as-

sumption and makes the comparison between task-based and linguistically motivated

architectures harder (see Chapter 4 for more on this issue).

Using ACG can be considered as a linguistic approach to NLG. Like MTT, it uses

grammars in order to describe transformations between different levels of abstraction.

However in ACG no assumption on the number of levels of abstraction is made, and

there is a unique abstract data type used for every level of abstraction. This theory

neutral stance makes a big difference in practice, as it allows more flexibility.

2.3 Combinatorial optimization

The problem of choosing variants under some constraints can be formalized as a com-

binatorial optimization problem. Combinatorial optimization has a vast literature and

many subfields and is often used to represent the NLG process or some part of it.

Combinatorial optimization is the problem of finding an optimal solution in a set (finite

or infinite) of candidates. The optimality criterion is typically given by a cost function

which returns a single numerical value for each candidate solution. A solution is optimal

if no other solution is given a lower value by the cost function (or a higher value by a value

function, depending on the viewpoint). In some cases, simply finding viable candidate

solutions is a difficult task, and the optimality criterion has no importance or doesn’t

even exist. In these cases, the problem is rather called a constraint satisfaction problem,

or satisfiability problem (see Rossi et al. 2006 and Boyd and Vandenberghe 2004 for

detailed introductions on the subject).

2.3.1 Constraint satisfaction problems

The core concept behind all combinatorial problems is the concept of search space. A

search space defines the set of potential solutions to the problem. Once it is defined, we

may then browse it to look for actual solutions, optimal or not. A search space is defined

by two things: variables and constraints. A variable represents a choice that must be

made in order to characterize a solution to the problem. Any particular choice is called

Chapter 2. Natural language generation system architectures 16

a value and the set of all possible choices represented by a variable is called its domain.

A constraint is a limitation on the possible values that a group of variable can take.

Different classes of problems with different complexities and methods can be identified

based on the kind of variables and constraints which define the search space. Here are

some of the most well known classes:

• Real valued variables along with linear constraints (i.e. linear equations), are

solved by linear programming (LP, Dantzig, 1998) methods. These methods can

solve problems with up to millions of variables in reasonable time. If some or all

of the variables are integer valued, then the methods fall in the category of linear

integer programming (LIP).

• If the domains of the variables are convex sets and the constraints are convex func-

tions, then the problem can be solved using convex optimization techniques (Boyd

and Vandenberghe, 2004). Convex optimization techniques may also solve quite

sizeable problems, but offer less guaranties than linear programming techniques.

• If some of the domains of the variables are not convex sets or some of the con-

straints are not convex functions, then we fall in the general category of constraint

satisfaction problems.

The methods for solving general constraint satisfaction problems (with or without opti-

mization) can be divided into two broad categories: search and local search techniques.

Search techniques are adaptations on the brute force search algorithm. The idea is to

exploit the regularities and dependencies in the search space using inference techniques

in order to avoid checking most of the potential solutions. The local search techniques

on the other hand (often) use a less systematic approach. The general method is to

initialize variables with random values or a heuristic potential solution, and then make

small changes to the variable values in order to find better potential solutions around

the first one. This allows to quickly find good solutions in huge search spaces. However

in the case of optimization problems, local search techniques often give no guaranty

that the best solution found is indeed the best solution (but it guaranties that it is

the better one in some corner of the search space). There are many local search tech-

niques, among which: gradient ascent (and in general all gradient based techniques),

tabu search, simulated annealing, genetic algorithms, etc..

Most of the combinatorial problem solving techniques used in NLG are search techniques.

Therefore I will now introduce search related concepts in more details.

Constraint programming includes many techniques for searching efficiently through a

search space. It is sometimes presented as including local search techniques and some

Chapter 2. Natural language generation system architectures 17

specialized optimization techniques. Here I focus on classical search techniques only, as

most implementations of general purpose constraint programming solver are limited to

this case (see for instance Schulte et al. 2010 on the Gecode C++ solver).

Constraint programming techniques are based around two main concepts: search strate-

gies and inference methods (Rossi et al., 2006). A search strategy basically decides in

what order the choices should be made. The two broad categories of search strategies are

breadth-first search and depth-first search. A breadth first search will explore the search

space by listing all intermediary partial solutions to the problem, and build more and

more precise solutions at each iteration. On the other hand, depth-search techniques will

rush for complete solutions to the problem, forgetting along the way partial solutions

which have already been explored. Breadth-first search is typically good at finding all

possible solutions to a problem, but consumes a lot of memory. Solvers use in general

depth-first search techniques. The general process for depth first search is to choose

a variable, then choose a value for this variable and loop on another variable until all

variables have been assigned a value. The function which decides the order in which the

variables are selected is called the variable heuristic and the one which decides the order

in which the values for each variable are tested the value heuristic.

The other aspect of constraint programming is inference. Inference in constraint pro-

gramming is called constraint propagation. The basic idea is to use the choices made

during search to predict that some combinations of choices cannot lead to a viable so-

lution and remove them from the list of choices which are yet to be made. If at some

point a variable has no more viable values, then the search backtracks to the last choice

made in the search and tries another value.

Each type of constraint has its own inference procedures. Inference in itself is a method

for solving constraint satisfaction problems. However it is exponential both in time and

space. Constraint programming techniques have to trade-off between exhaustive search

on one side and full inference on the other. By combining the right level of inference

with the right level of search and good heuristics, one can check many potential solutions

in the most promising parts of the search space and solve hard problems which cannot

be solved by search or inference alone.

A technique similar to constraint programming, yet with a somewhat different view on

the way a search space should be defined, is logic programming and its extensions into

constraint logic programming techniques. This includes for instance the Prolog language

and its extensions or restrictions like Datalog systems. This last method is the one used

by the implementation presented in this thesis (see Chapter 8).

Chapter 2. Natural language generation system architectures 18

2.3.2 NLG and constraint satisfaction

Combinatorial optimization techniques give a natural framework for describing and solv-

ing hard combinatorial problems. Since NLG is a combinatorial problem, most of the

techniques developed for NLG can be seen through the lens of combinatorial optimization

(Piwek and Van Deemter, 2006), whether the techniques explicitly refer to combinatorial

optimization or not. The complexity of NLG is reflected by the numerous types of con-

straints which can be used. For instance, the definition of a search space for NLG may

include morphological, syntactic, semantic and discourse constraints, but also pragmatic

and style constraints, or other domain dependent constraints like the size of the text

and user/speaker model related constraints.

Although systems explicitly using combinatorial optimization techniques generally aim

at solving as much dependencies as possible, the systems often focus on particular mod-

ules of a task-based pipeline architecture. For instance, (Marcu, 1997) defines a con-

straint satisfaction problem for document structuring, (Elhadad et al., 1997) explore

“floating constraints” appearing during lexicalisation, (Callaway and Lester, 1997) use

constraints to control clause aggregation in a revision-based microplanner, (Gardent,

2002) defines a constraint satisfaction problem for referring expressions generation and

the linguistic realizer FUF (Elhadad, 1993) uses a breadth-first search algorithm. This

illustrates the fact that combinatorial optimization techniques are not incompatible with

a modularized architecture.

Different problems in NLG have been modelled using different kinds of structures, vari-

ables and constraints, giving search spaces with different properties and different as-

sociated solving methods. For instance, (Marciniak and Strube, 2005, Lampouras and

Androutsopoulos, 2013) use linear integer programming techniques to jointly solve sev-

eral sub-tasks of the NLG pipeline. Revision-based architectures, like (Inui et al., 1992),

could be seen as local search methods, with an initial guess (or draft) and then local

optimization by revision of the initial guess. Finally, classical search methods are the

default implementation for most linguistic formalisms, like unification-based grammars

(Elhadad, 1993) or tree-adjoining grammars (Meunier, 1997).

To conclude, combinatorial optimization techniques fit rather naturally in implemen-

tations of NLG systems, whether the systems makes strong independence assumptions

or not. They tend to be used when the problem is sufficiently complex to justify the

use of elaborate techniques and they are still limited by combinatorial explosion issues.

Approaches based on formal grammars are particularly compatible with combinatorial

optimization techniques, since they are defined precisely and can be described easily as

a search space. This is why it is used in the implementation presented in Chapter 8.

Chapter 2. Natural language generation system architectures 19

hasGPS()

hasAutomaticTransmission()

hasSpeedControl()

car(price=15000, mileage=20000)

Cheap car,

all equipped

with only 20,000 km on it.

Figure 2.3: Alignments between a conceptual representation and text.

2.4 Machine learning

No matter how sophisticated the method is, the approaches for NLG presented until

now need human intervention to adapt to new domains of application. This involves

in particular defining or parametrizing the algorithms for each module, which requires

knowledge and experience. Machine learning techniques theoretically allow to automa-

tize the parametrization of modules and to adapt NLG architectures to several domains

without human intervention. The promises of learning NLG systems have led to a

growing interest in the field over the past decade.

Machine learning uses probabilistic models to represent the NLG problem. The model

can cover the whole NLG process or only specific modules. Learning can also be more

or less supervised. The strength of the supervision over the learning process is given by

the amount of information given in the training data. The more information there is in

the training data, the easier it is for the machine to learn dependencies. The drawback

is that the training data needs to be annotated with all the required information, which

makes the construction of big datasets harder. Unsupervised methods on the other hand

only require little information about the training data, and often have bigger training

data samples available. Since the size of the training dataset has a great impact on

the performance of learning, unsupervised methods may be competitive with supervised

methods on some tasks.

2.4.1 Learning alignments

The basic problem of NLG is to transform some input data into surface text. This can

be modelled by alignments between conceptual representations and surface text chunks.

Figure 2.3 gives examples of alignments between database entries, corresponding to the

conceptual representation, and surface texts for a car selling application. The text is

aligned with database records. A record is an object-field-value triplet. Each record

and each field of each record is associated with a type. The type of a record defines

the fields of the record and the type of a field the possible values for this field, like for

instance integer values or string values. A supervised method would use a dataset where

Chapter 2. Natural language generation system architectures 20

s

ri.

. . .fi1 fi|fi|

. . .w w . . .w w

rn

fn|fn|. . .

. . .w w|w|

r1

f11 . . .

. . .w w

c11 ci1 ci|fi| cn|fn|

Figure 2.4: Hierarchical semi-markov model for alignments, reproduced from (Liang
et al., 2009): first, records are chosen and ordered from the set s. Then fields are chosen
for each record. Finally, words are chosen for each field. The world state s and the
words w are observed, while (r,f ,c) are latent variables to be inferred (note that the

number of latent variables itself is unknown).

the alignments are given and would learn the correspondences between database records

and fields and surface text. However the precise alignments between text and fields of

database records are not always given. In this case, less supervised methods are needed.

Figure 2.4 shows an alignment model from (Liang et al., 2009), where the alignments are

decomposed between a database, records, fields and words. Records and fields are used

as latent variables and each level include markov dependency chains. The advantage of

using hidden variables for records and fields is to avoid supervision for the particular

alignments between words and fields. The model of Figure 2.4 can be trained on a

collection of scenarios (sets of records) paired with surface text without much more

information and learn to select the database records and fields, so to do content selection.

2.4.2 Learning to generate

Using alignments, the task of NLG can be modelled in different ways. Like for other

system architectures, the independence assumptions are key to define the general archi-

tecture. Probabilistic models have their own way of defining independence assumptions,

based on random variables independence rather than modules. Nevertheless, the same

kind of independence assumption, and therefore the same kind of architectures, can be

used with probabilistic models. For instance, some models explicitly refer to a pipeline

architecture (Angeli et al., 2010), by modelling a sequence of choices: choose a record in

the scenario, then choose a field in the record and choose a template to textualize the

field (and then loop). These choices can be seen as doing content selection, lexicalisation

Chapter 2. Natural language generation system architectures 21

and realisation. Each choice is made dependent on all previous choices by a set of feature

vector templates.

Since a NLG system based on a probabilistic model can be trained without human

intervention, it is tempting to complexify the system and add more dependencies. The

added complexity impacts the size of the training sets, but not the difficulty to use the

system. Therefore architectures which solve several parts of the NLG problem jointly

are more popular among learning systems than hand-crafted ones. This is the case for

instance of (Konstas and Lapata, 2012, 2013a,b), who use probabilistic grammars to

jointly model content selection, document planning, lexicalisation and realisation.

2.4.3 Machine learning and generic architectures for NLG

The above presentation and this thesis in general do not really do justice to machine

learning techniques for NLG. My focus is clearly on generic architectures for hand-crafted

NLG systems, with human intervention for the specialization of each module. This is

actually a general trend in the NLG industry, where probabilistic methods are not quite

as popular as for instance in the Natural Language Understanding (NLU) industry. I

can see two main reasons for that:

• The lack of data. Although machine learning techniques don’t theoretically need

human intervention, they do need data, preferably annotated. There may be

projects for which a high quantity of example texts along with their associated

input data are available, but this is not the most common situation. NLG may

be used to automate the generation of texts which where hand-written before, but

in most cases, NLG technologies are used to generate texts which could not be

written before, because of the quantity and regularity of the publications. Even

when examples are available, NLG technologies are used to augment the general

quality of the text produced, as well as automatize it, so the texts need to be

reviewed and adapted or normalized. The work needed to build a good training

dataset is not negligible in comparison with well formatted and efficient software

construction methods.

• The lack of control. In many domains, the quality of the generated text is a

necessity, especially for instance, if one of the goal of the application is to produce

better and more normalized texts than the ones produced by humans before, or

if end users are professional workers. Although great progress have been made,

probabilistic method still have a non-negligible margin of error in their output.

It is easier to predict and validate the output of a hand-crafted system than a

learning one.

Chapter 2. Natural language generation system architectures 22

For some situations, probabilistic methods for NLG are perfectly adapted and used,

even in industry. However the advantages of machine learning do not generalize enough

to all practical applications to be the default method for building NLG systems yet.

However this will undoubtedly be the case at some point, and learning methods are very

promising.

Chapter 3

Document planning

Document planning involves selecting the content to generate and produce a document

structure which contains the conceptual content of the text (Reiter and Dale, 2000).

Content selection and document structuring, the two sub-tasks of document planning,

can be viewed as separate tasks or may be done in an interleaved manner. Section 6.6

focuses on content selection and the input data of the NLG task. Section 3.2 gives

an overview of the different kinds of structure that a document planner may produce.

Section 3.3 presents in more details some algorithms for document planning.

3.1 Content selection

If data to natural language generation is considered as a module, then content selection

represents the interface between NLG and the rest of the world. One of the greatest

difficulties for building generic NLG systems is that there exists no precise and uni-

versal definition of the input. Content selection is directly impacted by this problem,

and therefore is probably one of the most ill defined task of the NLG pipeline. There

are, however, some representations or structures which are used in several applications.

Several standardization attempts have been made, in order to capture the regularities

in the potential inputs of NLG.

3.1.1 Domain representation and ontologies

Almost every NLG system has a conceptual representation or ontology of the domain.

An ontology is a structured representation of the concepts (entities, events, relations,

attributes, etc.) of the domain of application. This conceptual level of representation

can either be the input of the NLG system, or an intermediary representation in a more

23

Chapter 3. Document planning 24

id brand price color options

001 Mercedes $32,563 gray GPS,autolock,cruise control,. . .
002 Renault $23,802 black GPS,automatic transmission,. . .
003 Toyota $26,358 black cruise control,self parking,. . .
.

Figure 3.1: Simple database example from the car selling application domain.

vehicle

carplane

enginepower

is
a isa

com
pose co

m
po
se

hasProperty

Figure 3.2: Example of ontology fragment with three relations between some concept
in a vehicle ontology (isa is a shorthand for “x is a y”).

complex architecture. In either way, the content selection module is concerned by the

manipulation of ontologies. For this reason, most of the work on the standardisation of

content selection has focused on different kinds of ontologies.

One of the simplest and most broadly used kind of ontology is relational databases.

Figure 3.1 shows an toy database example. The table represents a concept of the do-

main (cars). Each line represents an existing entity in the domain and each column an

attribute of the concept of car. Since databases are used in many software, it is often

the case that NLG applications are plugged directly onto an existing one. Therefore,

many generic content selection applications assume an input in a simple tabular form.

This is especially true for machine learning-based approaches (see Section 2.4).

Other, more elaborate examples of standard formats for the conceptual representation

come from the semantic web, such as the OWL (McGuinness et al., 2004) or RDF

(Beckett and McBride, 2004) formats. Two examples of application of natural language

generation for the semantic web are: explain concepts in an ontology for an end user,

and help the designer of the ontology to understand quickly the structure of the ontology

(see for instance Bontcheva 2005, Galanis and Androutsopoulos 2007). The general form

of an ontology is a graph, where nodes are concepts and edges are relations between

concepts (see Figure 3.2). It also has a logical form which can be used for inference.

Chapter 3. Document planning 25

Even in the case where a structured representation exists for the domain of application,

this representation needs to be adapted for natural language generation. The reason is

that a pure logical form does not usually contains all the information which allow to

select a content to be expressed. There is usually a gap between the concepts of the

domain and the logical forms which correspond to the messages which must be generated

(Mellish and Pan, 2008). External factors may also impact content selection. In details,

the issues which may arise in the content selection module are the following:

• If a precise goal drives the content selection, the conceptual representation may

need to be adapted in order to be able to compare the utility of each concepts

relative to this goal. Such modification may also be needed for instance if a notion

of quantity of information is used.

• Some concepts that should be communicated may be implicit in the conceptual

representation of the domain. In this case they must be inferred from the existing

data.

• The opposite situation may happen, where there are too many concepts, and they

should be merged into higher level concepts, which summarize the situation.

• The conceptual representation used may consider equal several representations

which are not equal in regards to their textual form. These synonymous represen-

tations need somehow to be differentiated.

• All conceptual representations may not all be equally textualizable. In general, lin-

guistic concerns may arise in the selection of concepts, as well as other constraints,

such as the output size of the text.

• External factors may come into play, such as the discourse history and the user

model.

Methods for content selection using ontologies include inference-based methods (Mellish

and Pan, 2008, Bouayad-Agha et al., 2011, 2012, Bouttaz et al., 2011), and graph-based

methods (O’Donnell et al., 2001, Dannélls, 2009, Demir et al., 2010). Each one exploits

different forms of the structure of the information, either its logical structure or its graph

structure, but in both cases, search and optimization methods are used to find the best

subsets of concepts to select (see Section 3.3 for different approaches of this problem).

3.1.2 Unstructured input data

The input of a NLG system is not necessarily a fully structured ontology of the domain of

application. Different degrees of structure exist, and unstructured input data involves

Chapter 3. Document planning 26

Numeric input dataEvents input data

Signal analysis

Data interpretation

Document planning

Microplanning
and realisation

Text

Patterns

Messages and relations

Document plan

Figure 3.3: The extended task-based pipeline architecture. Adapted from (Reiter,
2007). Includes two new modules on top of the document planning module: signal
analysis for raw numerical data and data interpretation for the creation of messages

and merging of different data sources.

additional problems to be solved for the content selection module. In particular the

system may need to preform new tasks, including:

• Pattern detection. In the case of a continuous raw input or low level numerical

series, the system may need to perform signal analysis and pattern detection on

the input data.

• Concept creation and relation detection. Several low-level patterns may be repre-

sented by a higher level concept. Relation between concepts may arise from long

range dependencies between patterns or contextual knowledge. This problem is

not specific to unstructured input data. Structured data can also have missing or

redundant information (see Section 3.1.1).

An extension to the generic task-based pipeline architecture has been proposed in (Re-

iter, 2007), which includes processing of unstructured (or semi-structured) data. Fig-

ure 3.3 shows the extended architecture. The two new modules are signal analysis and

data interpretation. The signal analysis module is in charge of detecting the patterns in

the input data. Then the data interpretation module infers on these patterns to build

concepts (or messages) which describe the data and relations between the concepts. This

step may also involve the combination of several data sources, which can be more or less

Chapter 3. Document planning 27

structured. For instance the system may receive timed events in a structured format

which add to the contextual knowledge. The other steps of the pipeline are the same

as before. Other systems which include raw numerical data analysis are for instance

(Wanner et al., 2010, Yu et al., 2004).

Another kind of unstructured data is text. For example, in dialogue applications, the

input of the system is raw text entered by the user. In this case, the system must first

analyse the text in order to understand it. This analysis part is similar to a signal analysis

module. However in this case it involves natural language understanding rather than

signal processing. Natural language understanding may also connect the NLG system

to other kinds of inputs, like sentiment analyses from blog posts, or article summaries.

Although content selection needs to be adapted to very different inputs in very different

domains, some regularities allow to reuse some of the components from one application to

the other. Pattern analysis algorithms may be reused for different domains, some generic

inference methods over ontologies also exist. Some generally applicable data format for

the conceptual representation are available, like OWL. However, a lot of human expertise

is still needed to build the domain knowledge necessary for natural language generation.

This human expertise bottleneck is the same than for expert systems and is yet to be

resolved. Machine learning helps a lot, but has some disadvantages (see Section 2.4), and

the general issue of a global adaptive conceptual representation, which is akin to general

artificial intelligence, is still unsolved. The tests realized for this work (see Chapter 9)

limit the input to structured data in a format close to OWL.

3.2 Document structure

The structure of the document, or document plan, is the output of the document planner

and involves the conceptual representation of the text, but also rhetorical relationships

and formatting related concepts, like chapters, paragraphs, bullet lists, figures, etc..

3.2.1 Schemas

Schemas (McKeown, 1985), encode fixed patterns in the structure of documents. They

define a tree structure where internal nodes are either objectives (e.g. “describe some

object”), rhetorical relationships or structuring elements, and leaves are messages. Fig-

ure 3.4 shows some example of possible schemas. In essence, schemas are context-free

grammars for document plans. They often use the Kleene star and plus symbols (zero

or more and one or more respectively), and conditional nodes (nodes which may be

removed depending on some condition).

Chapter 3. Document planning 28

describe-car ->

describe-brand-and-price

describe-options +

describe-other-advantages *

describe-disadvantages *

descriptive-sequence ->

identification

[elaboration] +

[contrast] *

descriptive-paragraph ->

introduction

options-list

conclusion

(1) (2) (3)

Figure 3.4: Examples of schemas for the definition of fixed document structure pat-
terns. Each rule defines a sequence of elements, where each element is another schema
(potentially a recursive definition) or a message. The rules allow conditional nodes and

Kleene star/Kleene plus notation.

Conditional nodes associated with a context-free like grammar definition gives the schemas

formalism a great expressibility (actually the expressibility of a general purpose program-

ming language). Therefore there are many ways to use schemas, and often several ways

to achieve the same result. In Figure 3.4, different global schemas for the description of

a car are presented. The first one uses goals, with a main goal being decomposed into

several sub-goals. The second uses rhetorical relationships, and describes the structure

of the text in terms of rhetorical concepts. Finally, the third one simply describes the

structure of the text with simple descriptive structures, like introduction or conclusion.

Including text templates into schemas, one could even do the whole NLG process us-

ing only schemas. This illustrates the expressive power of schemas, which makes it a

very popular technique for document planning (see for instance Reiter and Dale 2000,

Bontcheva 2005). The downside of this expressive power is that schemas are less sus-

ceptible to be reused between different applications. The problem is similar to the one

with text templates. When there are many ways to do the same thing, part of the

architectural conception effort is reported on the organisation of the schemas. This

configuration favours domain specific structures. In environments with variable inputs

and goals, schemas may also be too rigid to cope for the diversity of document plans

needed (again there is a similar problem with text templates). That said, schemas are

the default choice for many practical applications. Their flexibility and simplicity make

them suitable for many situations and more elaborate methods do not necessarily give

more reusable or easy to use components. In the example application of Chapter 9,

the formalism of RST is preferred to schemas, but this choice should not be taken as a

definitive judgement on schemas.

3.2.2 RST

The decomposition of documents into goal descriptions or organisational structures like

chapters, introduction, conclusion, etc., are often based on conventions rather than

precise formalisms. Formalisms exist, however, which describe the structure of the

text at a multisentencial level, linking communicative intentions to specific order of

Chapter 3. Document planning 29

Evidence relation

constraints on N: The reader might not believe N to a degree satisfactory to the writer.
constraints on S: The reader believes S or will find it credible.

constraints on N and S: The reader’s comprehending S increases its belief of N.
effect: The reader’s belief of N is increased.

Figure 3.5: The evidence relation from the RST (adapted from Mann and Thompson
1988). N stands for nucleus and S stands for satellite.

presentation for the concepts. The conceptual structure of the text at a multisentencial

level is called the rhetorical structure of the text. Theories about the rhetorical structure

of text have been used extensively for document planning, either as an inspiration or as

the core concept.

A popular theory about rhetorical structures for NLG is the Rhetorical Structure Theory

(RST, Mann and Thompson 1988). RST describes relations between parts of the text.

A relation between two parts holds if some condition on the meaning of each part is

satisfied. A relation also defines an effect which is achieved by using the relation. The

effect of a relation can be for example how the relation impacts the beliefs or sentiments

of the person reading the text. More precisely, the relationships are binary relations

defined to hold between two non-overlapping text spans. One text span is called the

nucleus of the relation while the other is called the satellite of the relation (sometimes

however relation may have two nuclei). A relation is defined by four fields:

1. A set of constraints on the nucleus of the relation

2. A set of constraints on the satellite (or the second nucleus) of the relation

3. A set of constraints on the combination of the satellite and the nucleus (or two

nuclei).

4. An effect that the relation has, generally on the reader.

Figure 3.5 shows an example relation from Mann and Thompson 1988, the evidence

relation. This relation describes a situation were the writer of the text provides some

support to a claim. The following example illustrates a text with an evidence relationship

between two sentences:

Evidence
Indeed, it has all the options that you requested and is within your budget.

This car is perfect for you.

Chapter 3. Document planning 30

The thick branch of the relation represents the nucleus and the other one the satellite.

The nucleus of a relation represents the salient part of the text, i.e. the one that matters

most. The general rule of thumb is that the nucleus has a meaning independent from the

satellite, but that the satellite cannot be understood without the nucleus. Sometimes

no salient part can be found. In this situation, the convention is for the relation to have

two nuclei. The arguments of rhetorical relations can be other rhetorical relations. The

overall structure forms a tree with rhetorical relationships as internal nodes, and text

spans (or messages) as leaves.

The RST is intended as a descriptive formalism. The definitions of the relations are

informal (see Figure 3.5), and there is no closed set of relations which are intended to

encompass all possible rhetorical relationships. Although rather comprehensive sets of

relations exist, these sets are intended as a basis for further extensions and specializations

for each domain of application (Mann and Thompson, 1988, Hovy and Maier, 1992).

3.2.2.1 RST and NLG

RST is more often used in NLG as a descriptive framework rather than a core concept

of the document planner. For instance, a schema based document planner will often

include rules with labels inspired from the RST, without any formal external definition

of the relations. However there have been several successful use of RST with precise

definitions for the relations and explicit manipulation of RST based rhetorical trees

(Moore and Paris, 1993, Marcu, 1996, 1997).

The informal approach of RST makes it very adaptable, but also ambiguous. Some as-

pects of the theory may have several interpretations when it comes to an implementation.

In particular, the following problems may arise (Marcu, 1996):

• There may be ambiguities between several relationships applicable to the same

content. It is possible that an analysis of a text finds several relationships between

a particular part of the text and several other parts. RST describes tree structures

and cannot have a leaf element involved in more than one relation. Therefore we

need some decision mechanism to disambiguate between several possible relations.

• There is no clear definition of the composition mechanism of rhetorical relations.

The problem comes as follows: if there are two relations, each one on two text

spans, what relations hold between these two relations ? Since relations are defined

between text spans or messages, we need a mechanism to apply recursively the

relations on themselves.

Chapter 3. Document planning 31

Marcu gives a formal definition of valid rhetorical structures. The problem of relations

composition is solved by considering that a relation is represented by its nucleus, follow-

ing the principles of Mann and Thompson (1988). In this set up, a relationship between

a relation and other elements of the rhetorical structure is defined by the relationships

between the nucleus of this relation and other elements of the rhetorical structure.

Most of the RST structures used in NLG do not include the effect of the relations.

Often the intention is left implicit in the rhetorical structure. The developer of the

document planner defines the structures with the intention in mind and there is no

need to add any particular representation1. However, the effect or intention behind the

relations can be made explicit. This is the case for instance in (Moore and Paris, 1993),

who build document plans based on RST relations with explicit intentions. An explicit

representation of the intention opens the way to more elaborate document planning. For

instance it can be used to differentiate between different candidate structures. It is also

almost indispensable if one is to revise the document plan based on new evidence. For

instance (Moore and Paris, 1993) build a dialogue system, where the intention behind

each document plan is remembered between consecutive calls in order to assess if the

intended goals have been achieved in regards to the response of the user.

RST gives a good compromise between practical concerns and formalisation, and has

been chosen to implement a document structuring module (see Chapter 7). Since di-

alogue situations were not in the scope of the tests (see Chapter refchap:results-and-

perspectives), I used as a bootstrap the formalisation of (Marcu, 1996), without an

explicit encoding of the intention or effect.

3.2.3 SDRT

A majority of NLG systems use RST like trees for representing the rhetorical structures.

However some attempts have been made, which use other formalisms for representing

the structure of discourse. One of these formalism is the Segmented Discourse Repre-

sentation Theory (SDRT, Lascarides and Asher 2007).

Unlike the RST, the SDRT does not include any effect or intention related information.

However it includes by default a representation for the semantic content of the text,

where the RST is only concerned with the rhetorical relationships. The SDRT repre-

sents the interface between the rhetorics and the semantics of a text. Interleaving the

rhetoric and semantic layers allows to make some inferences on the discourse structure

1An intention is any effect (generally on the reader) which is intended by using a particular relation.
For instance the intention behind a relation may be to persuade someone that something is true, or to
motivate someone to do something. Here I use the terms “effect of a relation” and “intention behind a
relation” as synonyms.

Chapter 3. Document planning 32

and discover relationships (Roze, 2013), which can be useful for building document plans

dynamically from a semantic representation of the text. The SDRT is also a slightly

richer representation, as its underlying structure can be represented by a directed acyclic

connected graph rather than a tree (Danlos et al., 2001). More generally, using a formal

semantic representation as a basis for the definition of rhetorical relationships makes

them more universally applicable, but also implies a specific semantic representation,

which can be harder to use. While formal approaches are attractive in theory, the prac-

tical problems encountered in document planning (at least in the context of this thesis)

usually do not justify the added complexity, and the semi-formal approach of RST has

been preferred over SDRT.

3.3 Algorithms for document planning

Algorithms for document planning can be roughly separated between top-down and

bottom-up algorithms. The top-down approach generally puts the focus on some goal

and builds the structure iteratively from this starting point. On the other hand, bottom-

up algorithms will focus on global coherence or more diffuse goals either to select the

content or build the document plan. Another distinction which can also be made is

between algorithms that perform content selection and document structuring as two

separate tasks or as a single task.

3.3.1 Top-down goal driven

Top-down algorithms for document planning take as a starting point a communicative

goal or a high level objective. This overarching goal is then refined into more and more

precise sub-goals, until a set of atomic goals that achieve the initial goal is found. As an

example, take a car selling application where the goal is to present arguments in favour

or against some car with respect to the user needs. The overall goal of the application

can be used as a basis to select which arguments should or shouldn’t be included in the

text as well as the order of presentation of the arguments (see Carenini and Moore 2006

for an example of goal oriented argumentation generation).

Schemas are a natural implementation of the top-down approach. A schema is a high

level construct which is defined by lower level (or recursive) structures. Therefore,

simply expanding a schema top-down left to right creates a document plan in a goal-

driven manner. By creating different global schemas and using conditional branching,

one can attain a fairly good variability. However schemas are sometime too rigid and

cannot adapt to very different situations.

Chapter 3. Document planning 33

More flexible algorithms based on hierarchical planning have been used (Hovy, 1993,

Young and Moore, 1994, Carenini and Moore, 2006, Paris et al., 2010). Planning al-

gorithms are used to build plans based on a set of actions in order to achieve one or

several goals. An action operator is typically composed of a set of preconditions that

must be true before the action is performed, and a set of postconditions which define

what is true after the action has been performed. A hierarchical plan decomposes plans

into higher level and lower level actions, the lower level actions composing the higher

level ones. Document planning usually involves intermediary goals based on RST-style

rhetorical relationships and atomic actions which represent speech acts, or messages.

Dynamic planners have the possibility of revising existing plans, which is of particular

interest in dialogue situations, given that the plan has explicit intentional content (Young

and Moore, 1994). Planners also have the advantage of having specialized modelling

languages, like STRIPS (Fikes and Nilsson, 1971), which helps in the definition and

adaptation of the document planner to different domains.

3.3.2 Bottom-up data driven

Unlike top-down techniques, bottom-up techniques for document planning are focused on

the interactions between low level elements, rather than an overarching communicative

goal. There still may be a goal in a data-driven approach, but it will typically be more

diffuse and not necessarily explicit. In general the goal of data driven approaches is akin

to global coherence, or low energy configurations.

An example of data-driven content selection is the ILEX system (O’Donnell et al., 2001).

In this system the content selection module explores a graph from a starting point

using a heuristic defining the relevance of items and a beam-search algorithm. Another

example of graph-based bottom-up approach to content selection uses the page rank

algorithm (Demir et al., 2010). With content selection based on the logical form of

the conceptual representation, a data-driven approach algorithm is forward-chaining

(breadth-first inference from initial facts) and variations on that basis (Mellish and Pan,

2008).

For document planning, bottom-up approaches generally assume that a set of messages

have been selected and focus on building the document plan or rhetorical structure

based on these messages. The task of building a rhetorical structure from a set of

messages is similar to text parsing, except that the input symbols are unordered. The

possible structures are typically defined by a set of rhetorical relations on the initial set of

messages. The relations are either defined extensionally by a given set, or intentionally

by formal definition of the relations relative to the conceptual representation of the

Chapter 3. Document planning 34

messages. The goal of the document structuring module is then to select the appropriate

relations and compose them together. This can be done for instance by a depth-first

search with pruning algorithm (i.e. constraint programming, Marcu 1996, 1997). More

generally search or optimization algorithms can be used to explore the set of all possible

structures.

Data-driven techniques are good at building coherent texts in various situations. This

is especially useful when the input of the NLG system varies a lot and many situations

must be handled. However bottom-up strategies have trouble converging toward a single

overarching goal. Therefore using a bottom-up or a top-down approach often depends

on how the problem is naturally expressed: either as a goal oriented planning process,

or as a global coherence problem.

The document planner developed for this thesis (see Chapter 7) uses the bottom-up

approach. This choice comes from the domain of the application which has been used

as a test bed, which is better represented as a global coherence problem (see Chap-

ter 9). However a top-down implementation is also possible, and even desirable in other

contexts.

3.3.3 Interleaved content selection and document structuring

Choices concerning content selection and document structuring can be interleaved into

a single algorithm. This configuration is more natural with top-down strategies. Indeed,

in a goal driven approach, the goal is used as basis for decisions in both content selection

and document structuring. Therefore it is rather natural in this case to not differentiate

between these two kinds of decisions. The typical algorithm for a goal oriented inter-

leaved approach to document planning builds the structure of the document from the

text in a top-down fashion and selects the content to be expressed in order to complete

the structure when a leaf is reached.

Another possibility, which can be used with both goal-driven and data-driven systems is

revision of the document plan (Rambow, 1990). Document plan revision is a structure

optimization process which applies on a complete document plan rather than some initial

structures or goal. Such system may revise some of its previously made choices (either

for content selection or document structuring) in order to improve the quality of the

initial document plan. This technique is not common for document planning, but has

been used extensively for microplanning, which is the topic of Chapter 4.

Chapter 3. Document planning 35

3.4 Summary

The document planning module takes as input some data and uses a conceptual rep-

resentation of the domain to complete, select or create messages, and organizes them

into a document plan. The input data may be more or less structured. From the less

structured to the more structured, we may have: raw numerical input, text, tables, re-

lational databases and full-fledged ontologies. Unstructured data like numerical data or

text is more often processed before document planning, in a module either considered

as an extension of the NLG pipeline or as a separate system. Therefore the input to

the document planner is often considered to be an ontology with more or less internal

structure. The output of the document planner, the document plan, is typically a tree

(e.g. a schema), which may or may not be based on a linguistic rhetorical theory like

RST or SDRT. To bridge the gap between the initial conceptual representation and the

document plan, the two main approaches are top-down, goal oriented algorithms and

bottom-up data-driven algorithms. Formalisms exist, which describe the data used by

the document planner, like OWL, RDF, RST, SDRT, etc.. The algorithms are generally

described using a general purpose programming language. However some specialized

languages exists for systems using planners, like STRIPS.

Most of the techniques presented in this chapter use classical search to find suitable

structures. For instance, schemas search through dynamic structures, while planners

search through the space of possible plans. All inference-based methods also use classical

search to browse the space of valid logical expressions. The search may be depth first

or breadth first, with or without heuristic. Data-driven approaches may also optimize

an objective function.

Depending on the data involved and the algorithms used, the developer of the document

planning module may have more or less decisions to make. The number of decisions

which have to be made has a direct impact on the extendibility, reusability and ease of

use of the module. For instance, schemas have a great expressibility and allow custom

conditional branching mechanisms, which allow to control precisely the flow of execution.

While being simpler to learn and to use, such an approach also requires great care and

a lot of knowledge to be able to build generic, reusable schemas. On the other hand,

other techniques based on more constrained formalisms, like SDRT, are harder to learn

and to use, but allow some generic treatments and inference mechanisms, applicable to

all systems based on this formalism. RST is generally accepted (in NLG) as a good

compromise between formalisation and simplicity.

Chapter 4

Microplanning

The microplanning module transforms a conceptual representation of the text, embod-

ied by the document plan, into a precise syntactic representation. While the conceptual

representation involves concepts, fields and rhetorical relations, the syntactic represen-

tation of the text involves less abstract elements, like words and sentences. Section 4.1

introduces the structures manipulated by the microplanner, as well as the constraints

involved in the transformation from conceptual to syntactic representation. Then I

present algorithms for lexicalisation and aggregation in Sections 4.2 and 4.3. The refer-

ring expressions generation module is treated separately in Section 4.4. Finally, I give

an overview of techniques for realisation in Section 4.5.

4.1 Structures and constraints

The input of the microplanner is the output of the document planner. Therefore it is a

document plan, which is typically a tree whose internal nodes are rhetorical relationships

or structuring elements and leaves are messages (Reiter and Dale, 2000). Depending on

the level of granularity of the document plan, messages can themselves be seen as simple

attribute-value pairs or more complex graph structures (Nogier and Zock, 1992).

The output of the microplanner is a precise representation of the sentences of the text.

This representation is often a syntactic tree structure based on, or at least inspired from

some linguistic theory, but it could also be more basic representations, like orthographic

strings or a relatively flat template representation. A flat output representation means

less decisions to be made by a potential realiser module and shifts the boundary between

microplanning and realisation. Several situations in between are possible. In this chap-

ter, I assume the standard situation where the output of the microplanner is a syntactic

36

Chapter 4. Microplanning 37

tree, and where all decisions concerning morphology and function words are undertaken

by a realisation module.

4.1.1 The structures

The output structure of the microplanner embodies several choices that have to be made

in order to express the document plan as surface text. These choices can be expressed

as follows:

• What are the sentence boundaries ? The sentence is the main organisational

unit for the microplanner. Actually the job of the microplanner could be seen as

designing sentences (microplanning is sometimes called sentence planning). The

difficulty here is to determine what is the right amount of information to convey

in each sentence.

• Which words should be used ? Words are the atomic pieces of the output structure,

and the microplanner needs to determine which words to use in each sentence.

Each word or group of words may include some structure itself, depending on the

language and the syntactic category. For instance, a French noun will always have

a gender associated with it.

• What is the tense and mood of each sentence ? More generally, several choices

about the form of each sentence or phrase can be made. For instance, some

information may be written either as an independent clause or a subordinate clause.

• In what order the words should be arranged inside each sentence ?

These choices are interdependent. For instance, if a message is expressed as a subordinate

clause rather than a sentence, which is a choice about the form of the clause associated

with the message, then the boundaries of sentences are impacted. Other choices may

convey information implicitly, impacting the number of words needed to convey the

information. The order of the words is also generally heavily impacted by the mode

of the sentences. The dependencies between different choices are represented by the

constraints which apply on the sentence planning process.

Figure 4.1 shows examples of structures for the input and the output of a microplan-

ner. Although the representations vary, matrix representation in one case and graph

representation in the other, the example structures are relatively similar. The structure

underlying the matrix representation is a tree or a graph, depending on whether the ma-

trix contains shared references or not. The second example shows a graph structure for

Chapter 4. Microplanning 38

type : RainEventMessage

period :

[
month : 05
year : 1996

]
day :

day : 27
month : 05
year : 1996

rainType : heavy

type : PPSAbstractSyntax
head : fall
features :

[
tense : past

]
subject :

type : PPSAbstractSyntax
head : rain
features :

[
definite : false

]
modifier : heavy

modifier :

type : PPSAbstractSyntax
head : on

object :

type : ReferringNP

object :

day : 27
month : 05
year : 1996

Example of message (input of the microplanner) and its associated proto-phrase spec-
ification (output of the microplanner), reproduced from Reiter and Dale 2000. The
corresponding text is: “Heavy rain fell on January, 27th”. This is an example of
coarse grained representation, with a message associated as a whole to a proto-phrase
specification.

AI

classAssignt

AIAssignt

assigntType

programming

[lex = have]

[lex = AI]

[lex = assignment]

deleted

[lex = programming]

class

as
si

gn
t

assignt

ac
ti

vi
ty

h
ea

d

pr
oc

es
s roles

ca
rr

ie
r

attribute

he
ad

m
odifier

pr
oc

es
s roles

id
en

tifi
ed

identifier

Example of mapping between a conceptual graph (input of the microplanner) and
a simplified syntactic structure (output of the microplanner), adapted from Elhadad
et al. 1997. The corresponding text is: “AI has programming assignments”. This is an
example of fine grained representation, with each unit of the message being mapped
to small syntactic structures which compose the representation of a clause.

Figure 4.1: Example of input and output structures for the microplanner. The rep-
resentation can either be coarse grained or fine grained.

Chapter 4. Microplanning 39

both the input and the output. Aside from the nature of the structures, tree or graph,

all labels are either application or theory dependent. For instance, the labels of the

output structure of the second example are associated with the FUF realiser (Elhadad,

1993).

An important property of the structures used by a microplanner is their granularity. The

granularity of the structures corresponds roughly to the size of the text associated with

the smaller conceptual units manipulated as such by the microplanner. For instance, if

the smaller conceptual units of the input are messages which are associated with whole

sentences, then the representation is said to be coarse grained. If on the other hand,

the microplanner maps precise concepts to words or group of words, as in the second

example, then the representation is said to be fine grained.

4.1.2 The constraints

Constraints decide, among all the combinations of words, sentences, etc., which ones are

valid representations of the document plan (and possibly rank them). We can group

constraints into four broad categories: semantic, grammatical, pragmatic and stylistic

constraints.

4.1.2.1 Semantic constraints

Semantic constraints ensure that all the information contained in the document plan, and

only this information, is expressed by the syntactic representation of the text. Semantic

constraints are directly dependent on the document plan, and more generally on the

conceptual level of representation. For instance, if the document plan contains a message

describing the color of a car, then the text should contain at least a word for the car

and a word for the color: if the car is black, then a semantic constraint could be that

the words “car” and “black” appear in the text, with “black” referring to “car”. This

constraint may include several surface forms, like “The car is black.”, “the black car”,

“the car, which is black by the way”, etc..

Most of the semantic constraints involved in microplanning are of the form “this concept

can be expressed by these words”. Therefore, they could be seen as simple set mem-

bership constraints, defining a one-to-many mapping between conceptual forms and

syntactic forms. However this is generally not enough to describe the interface between

the concepts and the syntactic forms. The first problem is that the mapping between

conceptual and syntactic forms is generally many-to-many, i.e. a single expression may

Chapter 4. Microplanning 40

(1) Wall Street indexes opened strongly.
(time in verb, manner as adverb)

(2) Stock indexes surged at the start of the trading day.
(time as prepositional phrase, manner in verb)

(3) The Denver Nuggets beat the Boston Celtics with a narrow margin, 102-101.
(game result in verb, manner as prepositional phrase)

(4) The Denver Nuggets edged out the Boston Celtics 102-101.

(game result and manner in verb)

Figure 4.2: Floating constraints. Examples from the stock exchange market and
basketball games description domains, reproduced from Elhadad et al. 1997

convey multiple meanings. Second, some concepts may sometimes be realized as sen-

tences and sometimes as words in different syntactic roles. Therefore the mapping is

generally not a simple concept to sentence or concept to word mapping, but something

in between. This kind of variability is sometimes referred to as “floating constraints”

(Elhadad et al. 1997, see Figure 4.2).

Along with these mapping difficulties, there may also be some subtle interdependencies

between the words chosen for a particular concept, and the other concepts in the docu-

ment plan. For example, the word “love” generally implies an interaction between two

human beings, while the word “like” is more general. If a concept can be expressed by

one or the other, then the chosen verb may sometimes be incompatible with the other

concepts in the document plan (e.g. if the entity which loves is not human). Another

example from (Danlos, 1987) is the verb “assassinate”, which should be used to describe

the event of killing only when the killed is a famous person (in news reports). In both

cases, the word chosen is dependent on properties at the conceptual level (the humanity

or fame of the participants), and these properties are not directly associated with the

core concept (loving or killing).

Last but not least, are semantic constraints which involve long range dependencies and

domain knowledge. For instance, when choosing words to refer to an entity in the

document plan. A reference can be ambiguous, depending on the previous words used

to refer to this entity or other ones. An ambiguous reference prevents the transmission

of the information. Therefore there is a constraint on the expression of the meaning

of a referent, which involves other entities in the document plan, and possibly implicit

knowledge about these entities. This particular problem is typically treated separately

in a referring expression generation module.

Chapter 4. Microplanning 41

4.1.2.2 Grammatical constraints

Grammatical constraints define, in a particular language, which sentences are valid

and which ones are not, independently from their meaning. There are several theories

which result in different kinds of grammars. Each theory makes assumptions about the

underlying structure of text (word types and properties, constituents or dependencies,

etc.). The structures manipulated by the microplanner, and the constraints attached

to them, are therefore dependent on the theory which has been chosen to represent the

syntactic structure of the text. Grammatical constraints are theoretically independent of

the domain of application. Moreover they are often represented explicitly in a grammar.

Therefore this is probably the type of constraint which is the most likely to be reused

from one application to the other. The catch is that the constraints are still dependent

on the representation used for the syntactic structure of the text.

4.1.2.3 Pragmatic constraints

Pragmatic constraints are constraints relative to the environment and situation in which

the NLG system is. These constraints may involve several external factors:

• Who the system is talking to. For instance, (Mahamood and Reiter, 2011) use

affect modelling to adapt the discourse in very affect intensive environments. An-

other example is (Janarthanam and Lemon, 2014) who adapt the generation of

referring expression to the level of expertise of the reader.

• The media. This may include restrictions on the size of the output text. The text

may also be embedded in complex graphical representation, like annotations in

graphs (Mahamood et al., 2014).

• Any other external factor. There could be for instance a requirement imposing

dynamically a particular level of detail on the text.

4.1.2.4 Stylistic constraints

Stylistic constraints are preferences which do not impact the informational content of the

text or its grammaticality. A text which does not satisfy stylistic constraints should still

be understandable and grammatically correct. Yet stylistic constraints may be almost

mandatory. For instance, let’s take the example of repetitions. A general simplistic rule

about repetitions might be something like: “Thou shall not repeat the same word twice”.

Failing to satisfy this constraint may result in unacceptable texts in some situations. For

Chapter 4. Microplanning 42

example, generating the description of a car without taking care of repetitions might

end up in texts such as the following:

The car is black. The brand of the car is Peugeot. The car has GPS, automatic

transmission and cruise control. The car costs $15,000. The car is good.

While being perfectly understandable and grammatically correct, this text is just not

acceptable for a car selling application, because it fails to apply the simplest stylistic

constraints. Like repetitions, some stylistic constraints are generally applicable, but are

often hard to formalize. Sometimes repetitions are needed, sometimes not. The line

between texts which are “styled” and those which are not is often difficult to draw.

Style constraints may apply on about any choice point in the microplanner (Paiva and

Evans, 2005) and may be dependent on both internal or external factors. For instance,

an application generating text for particular media, like graph annotations (Mahamood

et al., 2014) or SMS, may apply some stylistic constraints (independently from the size

requirements). More generally application domains often impose some preferences over

word choices or sentence structures. Other internal factors may include personality or

psychological models (Mairesse and Walker, 2011).

4.2 Lexicalisation and aggregation

Several independence assumptions can be made in order to modularize the microplanner.

The independence assumption which is probably the most current is between referring

expressions generation on one side and the rest of the decisions, corresponding to lexical-

isation and aggregation in the task-based pipeline architecture, on the other. Referring

expression generation is treated in Section 4.4. This section and Section 4.3 present

techniques for solving the lexicalisation and aggregation tasks, whether this particular

modularisation is used or not. This section focuses on the task-based pipeline architec-

ture.

The task-based pipeline architecture splits the creation of the output structure into two

independent tasks (ignoring for now referring expressions generation): lexicalisation and

aggregation (Reiter and Dale, 2000). The principle of this modularization is to separate

between the creation of a draft structure, which is a textualisation of the document plan,

and an optimization phase which optimizes the fluency and readability of the text, while

(usually) keeping the same informational content.

Chapter 4. Microplanning 43

4.2.1 Lexicalisation

The lexicalisation module maps the messages of the document plan to sentence specifi-

cations (or proto-phrase specifications). This mapping is typically done using templates.

Each message is associated with one or more templates, and the lexicalisation module

chooses a template for each message, while instantiating the variable inside each tem-

plate using the properties of the messages. The instantiation of the variable may be

handled by specific algorithms, or generic ones based on the types of the properties of

the messages and a given property-to-variable correspondence.

A simple way to choose between concurrent templates for a message is to simply pick

one at random. However, there are often many constraints which rule over the possible

choices. Therefore choosing at random is often not possible, without breaking some

constraints. A typical implementation is then a conditional mapping, which can rule

out templates based on internal and external factors.

The complexity of the lexicalisation module also heavily depends on the granularity of

the internal representation (see Figure 4.1). Fine grained representations will necessitate

a mapping between smaller units with many dependencies between the individual units.

The dependencies between small conceptual or syntactic units is added to the complexity

of the mapping between conceptual and syntactic units. In this case, some kind of

of advanced search algorithm is often needed. Handling “floating constraints”, which

amounts to implement a many-to-many mapping between conceptual and syntactic units

can also complexify the lexicalisation module (see Elhadad et al. 1997 for an example of

algorithm that handle this case).

4.2.2 Aggregation

Once the lexicalisation module has selected the structures associated with the messages

in the document plan, the job of the aggregation module is to remove redundancies and

to optimize the fluency of the text. While the lexicalisation module typically works at

the sentence level, the aggregation module works with multiple sentence representations,

merging them together and potentially changing the order of presentation.

The configuration of an aggregation module is centered around the definition of aggre-

gation operators, or rules1. An aggregation rule is a transformation rule which detects

a pattern in the given structures and applies a transformation when this pattern is de-

tected (Callaway, 2003). Different sets of operators, arranged in different categories,

1Some authors use the term “revision” instead of aggregation. See (Shaw, 1998) for a discussion on
the difference between the two terminologies.

Chapter 4. Microplanning 44

have been proposed (Robin, 1994, Shaw, 1998, Dalianis, 1999, Callaway, 2003). As an

example, (Reiter and Dale, 2000) differentiate between different kinds of aggregations

based on their complexity. We can group aggregation rules into four categories, from

the simpler to the more elaborate:

• Simple conjunction, which concatenates two independent sentences, potentially

using a connective such as “and”, or “but”.

• Conjunction via shared participants. Merges two sentence with the same main

predicate that share a syntactic constituent, such as the subject of the verb.

• Conjunction via shared structure. Merges two sentences which do not necessarily

share the main predicate.

• Syntactic embedding. Merge syntactic structures, potentially by modifyin the

nature of the elements which are merged.

Aggregation, like other microplanning modules, involves both the conceptual represen-

tation and the syntactic representation. Aggregation is subject to constraints in both

domains. Constraints on the syntactic structure of the text ensure that the structures

are still valid sentences once they have been merged. This involves low level structures,

like punctuation, or some addition to the structure, like connectives. In order to enforce

the constraints on the syntactic structure, only relatively shallow syntactic structures

are needed. However, aggregation rules are subject to more subtle, semantic constraints.

In this case, a deeper structure for the syntactic level, potentially with some semantic

information, is often needed. These semantic constraints prevent to reuse all aggrega-

tion rules from one domain to another. Some reusability can be achieved by reusing

only parts of the aggregation operators (either the detection part or the action part, see

Callaway 2003). A generic algorithm for aggregation is possible, but some assumptions

on the syntactic structure have to be made (Harbusch and Kempen, 2009).

4.3 Semantic aggregation and composition-based methods

NLG systems may not use any module dedicated to aggregation, and yet achieve results

similar to what can be done with an aggregation module. The modularization between

lexicalisation and aggregation solves the microplanning problem by drafting the output

structure, and then optimize this structure. But the choices handled by the aggrega-

tion module may be handled by different modules, either during document planning or

lexicalisation, by shifting the complexity upward. There are three broad categories of

Chapter 4. Microplanning 45

january below mean

february below mean

temperature

temperature

january

february

period below mean

sub-period

sub-period
temperature

aggregate

Figure 4.3: Example of semantic aggregation corresponding to the aggregation of
“January was colder than average” and “February was colder than average” into “Jan-
uary and February were colder than average”. The two month concepts are embedded
into an abstract period concept, which can then be textualized. Semantic aggregation
only manipulates symbols at the conceptual level and no syntactic structure is involved.

alternative methods to (syntactic) aggregation: semantic aggregation, complex mapping

and composition.

4.3.1 Semantic aggregation

Semantic aggregation, as opposed to syntactic aggregation, is focused on packing the

information at a conceptual level. One of the choices made by the aggregation module,

is whether any particular redundancy should be removed or left as is. The problem

of redundancy and information packing is distributed among document planning and

microplanning. Therefore depending on the situation it may be more appropriate to

handle redundancies during document planning. For instance, most conjunctions by

shared participants (or shared structure) could be handled at the conceptual level. Fig-

ure 4.3 shows an example of aggregation that uses only symbols at the conceptual level.

In this case, since the conceptual representation can change dynamically depending on

the possible aggregations, the lexicalisation module must be adapted too, in order to

lexicalise all possible input concepts.

4.3.2 Complex mapping and composition

One may also remove some redundancies by using a more complex mapping between

conceptual and syntactic structures. Usually, each message or concept is associated to

a syntactic structure in a rather straightforward manner. For example, if a concept

is used twice in the document plan, then each version of the concept will be mapped

to its own syntactic structure. This could be seen as a one-to-one or one-to-many

mapping between conceptual and syntactic structures. On the other hand, if one was

Chapter 4. Microplanning 46

to decide that two concepts were to be associated to the same output structure, then

the redundancy would disappear automatically. A many-to-many mapping also includes

cases where output structures express the meaning of several input structures. Here

the complexity is shifted from the aggregation rules to the lexicalisation module, which

must handle more constraints in order to produce a valid mapping between input and

output structures (Elhadad et al., 1997).

Independently from the redundancy problem, the choices relative to the informational

content of the text and the choices relative to its fluency can be done jointly, using

composition of small syntactic structures instead of aggregation of coarse grained struc-

tures. For instance, the configuration of the lexicalisation module could include different

syntactic realisations with different syntactic roles for a message, such as the verb “to

increase” and the noun phrase “the increase” for the concept of augmentation. These

realisations could then be used in different contexts to produce “The price of the car

increased”, or “There was an increase in the price of the car”. Similarly, one may as-

sociate both a clause form and a subordinate clause form to a message and use either

one depending on the situation, thereby removing the need for embedding aggregation

rules. Instead of using aggregation, which transforms a draft structure, a composition

method controls the composition of structures using constraints to build directly the

final structure. Composition of structures is often used when the system uses a lin-

guistic formalism. For instance, the system G-TAG (Danlos, 2000, Meunier, 1997) uses

composition of TAG trees that represent fine grained syntactical constructs.

The difference between aggregation and what we call here the composition method can

be understood from a combinatorial optimization perspective, as the difference between

classical search and local search (see Section 2.3). Messages or concepts can be viewed

as the variables of the problem, and the sets structures that lexicalise them as the the

domains of the variables. Constraints on the compositions of variables then define the

set of valid output structures. This setup corresponds to the classical search approach.

On the other hand, aggregation rules define transformations from syntactic structures to

other syntactic structures. Therefore they act as local moves2 that transform solutions

to the lexicalisation problem into other “close by” solutions. This set up corresponds to

local search.

Although classical search and local search are different methods, they do not define

search spaces that are different in essence. For complex problems, it is actually often

the case that both classical search and local search are used in combination on the same

search space, a classical search being used to provide a heuristic solution which serves

2In a search space, a solution is close to another solution if one can be transformed into the other
by a small number of transformations, called local moves. Exploring a search space by listing solutions
close to an initial solution using local moves is called local search (see Section 2.3.1).

Chapter 4. Microplanning 47

as the starting point of a local search. So the difference between an architecture using

an aggregation module and one that uses a complex lexicalisation module (potentially

with semantic aggregation), is more a matter a perspective on the problem, rather

than contradicting assumptions on what the problem is. However this claim should

be tempered. It is not clear how all kinds of aggregation rules could be expressed by

different kinds of choices or constraints, particularly if they involve reordering and long

range aggregations. Also, different perspectives on the same problem can make a huge

difference when it comes to the configuration of the system, and the two approaches are

not equivalent on that matter.

The position taken in this thesis is to use semantic aggregation along with a composition

method (see Chapter 8) for microplanning. While aggregation is well suited in some

situations, using it as a default technique for microplanning doesn’t seems right, as it

forces a particular algorithmic approach where it doesn’t seem to be needed. Moreover,

a composition-based approach is more in line with what is done during the document

planning and realisation phases, and allows a better unification of the text generation

process (see Chapter 5).

4.4 Referring expression generation

The generation of referring expressions is usually handled once the structure of the

sentences has been decided (Reiter and Dale, 2000). This independence assumption is

justified by the fact that it is generally possible to restrict the set of possible referential

expression to the ones with the syntactic category of noun phrase. By fixing the syntactic

category of referential expressions one can build sentences without knowing exactly what

the lexicalisation of the different entities will be, making the decisions of a lexicalisation

and aggregation module independent from the referring expressions generation module.

However, the reverse is generally not true. Referring expressions are very dependent

on the context in which they are generated. For instance, the syntactic structure of

previous utterances, and the particular lexicalisation of previously generated referential

expressions may impact the generation of a new referential expression. This makes the

referring expression generation module dependent on the decisions of previous modules.

Inside the referring expression generation module, we can distinguish between two kinds

of decisions: whether to use a pronoun or a definite description, and when the choice

is to use a definite description, which one to select. These choices are embodied by a

pronominalisation strategy and a disambiguation strategy.

Chapter 4. Microplanning 48

4.4.1 Pronominalisation strategy

A simple example of pronominalisation strategy is to use a pronoun if the previous

sentence has mentioned the entity we want to refer to, and to use a definite description

otherwise (Reiter and Dale, 2000). This method, however, is rather limited and usually

results in ambiguities, like in the following example:

We have selected a blue car and a red car for you. It (the blue car) has an automatic

transmission.

A notion of salience (i.e. most noticeable or important) is necessary to distinguish be-

tween entities that can be pronominalized and the others. Frameworks like the centering

theory (Grosz et al., 1995), can be used to compute the salience of the different previous

entities in the discourse, in order to decide whether pronominalisation should be used

or not. Computing the salience requires information about the syntactic structure of

previous utterances, for instance the syntactic role of the different entities. Once the

salience of previous entity has been calculated, one can decide to use a pronoun only if

the entity to express is the most salient of its type.

4.4.2 Disambiguation strategy

Once it has been decided that a pronoun should not be used, the next step is to build a

definite description. The problem here comes from potential distractors that can make

the reference to an object ambiguous. Figure 4.4 shows an imaginary visual set up,

where we have to refer to geometrical shapes. It is clear from this set up, that referring

to an object as “the square” is ambiguous. The job of the disambiguation strategy is to

find the set of properties that unambiguously refer to the object we want. For instance,

if we want to refer to the shape S4, a possible definite description could be “the filled

square”, or “the thick large square”.

Here the model of the problem is rather simple. One need to search through the set

of all possible sets of properties that can be used to refer to the object, and select one

that unambiguously refer to it. The fact that a set of properties refers to an object

in an unambiguous manner is derived from a property matrix such as the one in Fig-

ure 4.4: a set of properties is unambiguous iff one single row contains all the properties

in the set. For instance, the sets {square, thick, large, filled}, {square, thick, large},
{thick, large}, {square, filled}, etc., all unambiguously refer to the shape S4. One

Chapter 4. Microplanning 49

S1 S2

S3
S4

type thickness size filled

S1 circle thin large empty
S2 square thin large empty
S3 square thick small empty
S4 square thick large filled

Figure 4.4: Example of ambiguous definite description generation problem. We have
a visual scene with several geometrical shapes (on the left), and we can refer to these

entities using their properties (table on the right).

possible (inefficient) algorithm is to brute force breadth-first3 search the set of sets of

properties of our entity, until one is found to unambiguously refer to it.

The set of properties that describe our entity should unambiguously refer to it, but

it should also be as small as possible. These two desirata correspond to the Gricean

Maxims of Quantity (Grice et al., 1975):

1. Make your contribution as informative as is required.

2. Do not make your contribution more informative than is required.

It rules out strategies that systematically take the full set of properties of the object

to refer to it. On the other hand, systematically generating the shortest possible un-

ambiguous description is both computationally hard (c.f. the breadth first algorithm

above) and not necessarily “human-like”. A good trade-off is a heuristic search on the

model of Algorithm 1.

Algorithm 1: Basic referring expression generation algorithm. Uses a heuristic func-
tion nextProperty to select the next property to include in the description until the
description is unambiguous.

function getDescription(entity, context)
D ← ∅
while D is ambiguous given the context do

p← nextProperty(entity, context)
remove distractors that do not have property p from the context
add p to D

end
return D

end

This algorithm is a depth-first heuristic search on the set of possible description: the

description is built iteratively by adding one property at the time to the description;

3Here, a breadth-first search builds all sets of one property, then all sets of two properties, then all
sets of three properties, etc., until it finds a solution.

Chapter 4. Microplanning 50

and at each step, the property to add to the description is given by a heuristic function.

Changing the heuristic function gives different behaviours. Some example heuristic

functions are:

• Take the property that maximizes the number of distractors removed from the

context (Dale, 1989). This corresponds to a greedy search driven by the objective

of a minimal description.

• Use a preference order on the properties of the entity. At each iteration take the

first preferred property in the list of properties that exclude at least one other

entity from the context (Dale and Reiter, 1995). The preference order is given by

the designer of the system, depending on the domain of the application.

In the implementation and setup presented in Part II, I assume that referring expres-

sion generation is handled by the existing Yseop technology, in a manner similar to

Algorithm 1.

4.5 Realisation

The role of the realisation module varies, depending on the structures it is expected

to realise. The input structures of a realiser may range from a semantic or thematic

description of the clauses to generate, to surface strings with almost no syntactic infor-

mation. Different levels of abstraction for the input structure means different kinds of

decisions to be made:

• Decide word order. The input structure may contain the words contained in each

sentence, but let the realiser put them in order. The order generally depends on

the diathesis of the sentences (e.g. active or passive). It may also depend on more

subtle rules, like rules for ordering modifier in “the beautiful big red car”.

• Apply Inflections. Apply the morphological rules to the words depending on their

properties, like number or gender (e.g. verb conjugation).

• Decide whether to include non-mandatory words or not (e.g. “the car over here”

and “the car that is over here”).

• Map semantic representations to syntactic representations, if the input is described

using semantic entities and relations.

Chapter 4. Microplanning 51

The possible choices and constraints that apply on the problem are often represented

using a grammar in a linguistic formalism. For instance, the realiser FUF (Elhadad

and Robin, 1996) is based on functional unification grammars and KPML (Bateman,

1997) on systemic-functional grammars. The generation of surface strings from an input

structure using a grammar uses classical search algorithms, like chart generation (Kay,

1996), which corresponds to a breadth-first search through possible textualisations of

the input.

Precise rules that generate all the possible correct sentences and only them are hard

to come up with, especially if some pragmatic or stylistic constraints come into play.

Some realiser, like HALogen (Langkilde-Geary and Knight, 2002) or OpenCCG (White

et al., 2007) use an “overgeneration and ranking” method. The principle of this method

is to use a relatively small set of grammar rules that loosely define the set of possible

sentences, but allow to generate invalid or awkward sentences. Then, for a particular

input, the set of all possible sentences for this input is generated and ranked using a

statistical language model. The output of the realiser is then the best sentence according

to the language model. In order to keep all the possible sentences for a particular input

into memory, compact data structures, like lattices or forests (sets of trees with shared

nodes) are used. A typical language model for ranking sentences is a simple n-grams

model.

Other realisers assume an input4 at a rather low level of abstraction, and only assume

the role of checking for valid syntactic structures and doing some inflections/reordering

operations. An example of such a realiser is simpleNLG (Gatt and Reiter, 2009), and

its extensions for French (Vaudry and Lapalme, 2013), German (Bollmann, 2011) and

Brazilian (De Oliveira and Sripada, 2014).

Like for referring expression generation, in the implementation and setup presented in

Part II, I assume that realisation (mainly morphology related operations, like inflections,

contractions, etc.) is handled by the existing Yseop technology.

4.6 Summary

The microplanner takes as input a document plan and outputs a specification for sen-

tences in natural language. It involves a lot of constraints that range from conceptual

or application specific ones to general grammatical rules and fuzzy stylistic concerns. In

the task-based view of microplanning, these constraints are handled by three different

modules, namely lexicalisation, aggregation and referring expression generation.

4In the case of simpleNLG, which is a JAVA library, the term “input” is a bit fuzzy, since the
structures are provided by the library and used at wish anywhere in the program.

Chapter 4. Microplanning 52

Between these three tasks, referring expression generation is probably the most stud-

ied as an independent, well defined module. Some systems, in particular those based

on linguistic formalisms, do not make a clear distinction between lexicalisation and ag-

gregation and compose complex structures together to build the output in one go. In

these systems, the constraints usually handled by the aggregation component are some-

how handled by the document planner and/or the lexicalisation module, shifting the

complexity of the system upward in the pipeline. However, given the rather different

perspectives on the problem, it is hard to make a precise comparison between the two

approaches.

The three task-based modules use rather different approaches to solve their particular

problem. Lexicalisation uses simple templates and mappings, with potentially some rules

for automatically mapping elements or filling templates. Aggregation uses transforma-

tion operators and solves an optimisation problem, which could be seen as a local search

in the space of sentence structures. Referring expression generation often uses classical

search algorithms to disambiguate references, and rules for computing the salience of

elements. Non task-based methods usually use classical search methods for exploring

the space of valid structures, using some kind of grammar. This method is also used

for grammar based realisation modules, potentially combined with a statistical language

model for ranking solutions. Because there are realisers of different complexity, the fron-

tier is a little blurry between what should be handled by the microplanner and what

should be handled by the realiser.

There are several parts of a microplanner that can be reused from one application to

the other. For instance, grammars encode the grammatical rules of a language once and

for all, and can be reused in any context. Some aggregation rules are also applicable in

most cases, and referring expression disambiguation can be applied on any object with

properties. The developer in charge of configuring a microplanner usually has access to

some libraries in a general purpose programming language, which provide algorithms

and predefined behaviours and give access to grammars. The knowledge needed to

configure a microplanner depends, as for a document planner, on the complexity of the

structures manipulated. Systems based on a particular formalism need knowledge about

this formalism to be used efficiently. It is also necessary to understand the purpose of

the different modules/algorithms, and more abstract and powerful mechanisms often

need more skills and knowledge to be used.

Chapter 5

Using ACG for natural language

generation

In Chapters 2, 3 and 4, I gave an overview of the problems encountered in natural

language generation and the principal methods used to solve them. Among all the

possibilities, the final choice for achieving the initial goal of the thesis has been to im-

plement the ACG formalism. In this chapter I elaborate on the reasons of this choice.

Section 5.1 first reminds some basic software quality concepts, in relation to the goal of

the thesis. Then Section 5.2 shows how an ACG based architecture answers the prob-

lematic. Finally Section 5.3 compares this solution with other approaches introduced in

the previous chapters.

5.1 Software quality in an industrial context

Software quality is a vague notion. It is generally expressed as a set of desirable proper-

ties that a system should have. In the case that interests us, a list of desirable properties

of a system could be1:

• Correctness: the ability of a system to perform the task it has been created for.

• Extendibility: the ease with which a system may be modified as a result of a

change of specification.

• Reusability: the ability of the system to be reused, in whole or parts for new

applications.

1The definitions are from Meyer, 1988.

53

Chapter 5. Using ACG for natural language generation 54

• Compatibility: the ease with which the system can be combined with other soft-

ware.

• Robustness: the ability of a system to function in abnormal or unusual conditions.

• Ease of use: the ease of learning how to use a system, prepare the input data,

operate the system, interpret the result and recover from usage errors.

• Efficiency: the appropriate use of hardware resources.

• Verifiability: the ease of creating test or proof procedures for validating the cor-

rectness of the system.

Most of these properties only make sense for an evolving system, in a context where

people use it and adapt it to their needs over months or years. A NLG system for

a particular application may only be concerned with correctness and efficiency, but a

NLG framework embedded in a rich environment should be concerned with all of these

properties. They embody somehow the vague notions of simplicity and quality of a

system, as opposed to the notions of complexity and poor design. These desirable

properties are achieved through a good modular design. Modules allow to encapsulate

dependencies into well defined regions of a program and to control precisely the flows

of information in the system. A general rule of thumb is to have only a few, easily

identifiable modules, with as few interfaces as possible between them, the interfaces

being as weakly coupling as possible.

A perfect design is of course not possible, the reason being that some of the desirable

properties of a system are incompatible and impose trade-offs. A trade-off which seems

particularly important in the design of a NLG framework is the one between extendibility

and reusability on one side and ease of use on the other. The problem is the following: if

one wants to build a powerful system, which includes many constraints and is at the same

time easily extendible and has reusable component, one is bound to use very abstract

concepts and complex theories. Abstractness is the natural answer for the combined

pressure of the complexity and the concision requirements. However abstract concepts

are also more difficult to use, and require a longer training in order to be usable in

practice. This training time is a major obstacle to the scalability of the framework, and

should be left to a minimum.

The position on this trade-off adopted in this thesis is to maximize extendibility and

reusability, at the expense of usability. The strength of a linguistic approach to NLG,

embodied here by an ACG based architecture, is to provide a unified view of NLG, with

only a few key, abstract concepts. While this approach positively impacts extendibility

and reusability, it also impacts negatively the “ease of use” of the system, as one needs

Chapter 5. Using ACG for natural language generation 55

to master very abstract mechanisms to develop within the framework. This position

is justified by the fact that ACG is used as a kernel, on which different less abstract

systems can operate. For instance, one could decide to implement a simple template-

based system using this kernel, the template based system would be as easy to use as

any other. The important thing is to be able to build different systems based on different

assumptions in a unique, efficient framework.

5.2 Using ACG for natural language generation

Linguistic approaches to NLG, like MTT (see Section 2.2 and Figure 2.2), split the gen-

eration process between different levels of abstraction. Each theory defines its own levels

of abstraction (although some consensus exist for the main levels), using grammars that

encode the different structures at each level and their interactions. Some theories con-

centrate on a single level of abstraction, like syntactic theories, or rhetorical structure

theories, while other describe relations between levels, like the syntax-semantic interface,

or the relations between the height levels of the MTT. Pretty much all formal linguistic

theories have been used at some point or another to generate text, even sometimes in

an industrial context (Coch, 1996). The problems often encountered by linguistically

motivated architectures is that an advanced linguistic knowledge is needed to operate

the system and that implementations are often slow, compared to template-based ap-

proaches.

The common elements in the different linguistic theories have recently pushed the field

toward more and more abstract formalisms, which can represent several other formalisms

and apply generic algorithms for parsing or generation. Examples of such abstract for-

malisms include Hyperedge Replacement Grammars (Feder, 1971, Pavlidis, 1972, Drewes

et al., 1997) and Abstract Categorial Grammars (De Groote, 2001). By taking a theory

neutral stance, abstract formalisms open the way to the formalisation of very different

theories, or even pragmatic approaches, within a single coherent architecture.This allows

to separate more clearly between computational concerns and linguistic or ergonomic

issues, and to optimize the system independently of the chosen formalism. This allows

to overcome the speed issue usually associated with linguistically motivated systems.

5.2.1 Theory neutral abstraction levels and transformation of struc-

tures

Like RAGS, ACG relies on a generic low-level data type in order to represent different

high-level constructs. An abstraction level is a set of these low-level structures. The

Chapter 5. Using ACG for natural language generation 56

A B
A

B

a b
a

b

Figure 5.1: Each level of abstraction is a set of structures. In each set, structures can
be composed to build bigger structures. A mapping between the atomic structures of

each set recursively defines a mapping between the two sets.

concepts

syntax

strings

Figure 5.2: A Pipeline of structure transformations, with three levels of abstraction
and two transformations. concepts contains conceptual structures, syntax syntactic
structures and strings output strings. Generation is done by transforming structures

from the concepts level of abstraction to the strings level of abstraction.

set is defined recursively from a few atomic structures that can be composed together

to build bigger structures. Two abstraction levels can be connected through a mapping

between the atomic structures of each level. This defines a morphism between the two

sets of structures, which allow to convert any structure from one of the abstraction level

to its image(s) in the other abstraction level (see Figure 5.1).

Levels of abstraction can be stacked to form a pipeline. Then using the mappings

between the different levels, one can transform a structure from any level to a structure in

another level2. This mechanism can be used to generate text, by transforming structures

at a high level of abstraction (for instance conceptual representations) into structures at

a lower level of abstraction (see Figure 5.2). The fact that each level of abstraction uses

low-level theory neutral structures allows to use a single algorithm for every step of the

generation process, which implies a great lot of simplifications and optimizations.

To summarize, the features of an architecture based on ACG are:

2Note here that a transformation may refer to the computation of the image or the inverse image of
an element by a functional mapping (see Chapter 6).

Chapter 5. Using ACG for natural language generation 57

• Theory neutral structures organized into different levels of abstraction. Levels of

abstraction can be used to represent structures like syntactic trees or rhetorical

structures.

• Levels of abstraction are connected by mappings, which constitute the interfaces

between the different levels.

• Generic operations to transform structures of one level of abstraction into struc-

tures of another level of abstraction.

This responds to the goals of this thesis as follows:

• The NLG process is normalized using a low-level data type, a standard interface

throughout the system, normalized transformations. This simplifies the implemen-

tation of the system and has a significant impact on the extendibility, reusability

and maintainability of the system.

• ACG has enough expressivity to perform document planning and microplanning.

• Many existing linguistic resources can be represented using ACG.

• The separation of the computational and linguistic concerns makes it more efficient

in practice and allows to use it in production systems.

5.3 Comparison with other approaches

As the ACG based architecture responds to practical problems in a rich environment,

it is best compared with pragmatic approaches to NLG, like the task-based pipeline

architecture and the RAGS project.

5.3.1 Comparison with the task-based pipeline architecture

As an exercise for comparison purposes, the task-based pipeline architecture could be

described in terms of transformations of structures. Figure 5.3 shows an example ar-

chitecture which could be used to simulate the task-based architecture. Based on these

levels of abstraction, we can interpret the different modules of the task-based pipeline

architecture as follows.

Chapter 5. Using ACG for natural language generation 58

raw data

document

syntax

syntax with references

surface

Figure 5.3: Possible levels of abstraction for the task-based pipeline architecture.
The raw data level represents the input (database, signal, etc.), the document level
contains document plans, the syntax level proto-phrase specifications or other syntactic
constructs, the syntax with references level contains the same syntactic constructs, but
augmented with the textualisation of referents, and the surface level contains the output

strings.

5.3.1.1 Document planning

The overall document planning process could be seen as building a structure in the

document level of abstraction. This operation could be done in different ways. For

instance as a single interleaved content selection and document structuring process.

Another possibility is to consider content selection as a transformation from a set of

structures in an external source, the raw data level of abstraction, into another set of

structures in the document level, as shown in Figure 5.3. The resulting set of structures

can then be composed (potentially using rhetorical relationships) in order to build a

document plan.

Since the content selection process is relatively ill defined, in practice it is safer to

assume that this operation is done by an external system (i.e. not with the same struc-

ture transformation or generation process than the other modules). However document

structuring can be expressed naturally as a structure generation process in a level of

abstraction (or eventually, as a transformation between two levels of abstraction, see

Chapter 7).

Chapter 5. Using ACG for natural language generation 59

5.3.1.2 Microplanning

Lexicalisation is naturally expressed by a transformation of document plans of the doc-

ument level, into syntactic structures. Aggregation on the other hand is a bit different.

Once the structures have been transformed from the document level to the syntax level,

the aggregation module aggregates the resulting structures into new syntactic struc-

tures. The couple lexicalisation/aggregation can therefore be seen as a transformation

from document to syntax, which first finds a heuristic solution, and then does a local

search inside the the surface abstraction level from this heuristic solution.

This interpretation of the aggregation module shows a bias of the task-based architecture

toward a specific method of resolution of the problem of microplanning. By choosing

to represent a step of a particular method (local search) as a module, the architecture

rules out other methods and mixes modules describing static mappings with modules

describing dynamical processes, which is not ideal.

Another interpretation of the aggregation module within an architecture based on levels

of abstraction would be to see the presence of an aggregation module as a property

of the mapping between the document level and the syntax level. If the mapping is a

straightforward one-to-one mapping between the structures in both levels, then there

is no aggregation. If, however, several structures in the document level happen to be

mapped to a single one in the syntax level, then the system can be said to perform

aggregation3. Interpreting aggregation this way allows to handle cases were aggregation

is distributed over several levels of abstraction. This still allows to use local search

techniques, but the decision would then be only motivated by computational concerns.

Finally, the referring expression generation module transforms the structures of the

syntax level to structures in the syntax with references level by mapping referents to

their textualisation. The transformation is of course non-trivial and involves long range

dependencies and domain knowledge. It is not clear yet how one could use the same

transformation process for this module and the other modules. Since the technology

used for prototyping the architecture already includes a referring expression generation

module, this issue has been left for future research.

5.3.1.3 Realisation

The realisation process is a transformation from the syntax with references level to the

surface level. Like referring expression generation, the Yseop technology already includes

3We take some liberties here with the ACG formalism for the purpose of the discussion. It is not
clear how this could actually be achieved in the proposed framework. In the current implementation of
the architecture, a composition-based method is used, which sidesteps the issue.

Chapter 5. Using ACG for natural language generation 60

a realisation module. The details on how the transformation from the syntax with

references level to the surface would be done in practice using the proposed architecture

have been left for future research4.

5.3.2 Comparison with RAGS

The proposed architecture shares with RAGS the principle of formalisation and normal-

isation of the data types. However, unlike RAGS, it takes a strong position on the way

to articulate the different modules and to process the information. This position has the

advantage of simplifying the implementation and allows for better optimizations, which

is an important feature to have in an industrial contexts. The downside is that it makes

the architecture less flexible than RAGS.

4Using a grammar based realiser, the problem would be relatively straightforward, since ACG allows
to represent many existing formalisms. However the main issue here is performance, and a lot of not-
so-linguistic concerns, like special symbols, dates and numbers generation, special punctuation, bullet
lists, etc.. Therefore an implementation is needed to validate the concept in practice.

Part II

Abstract Categorial Grammars

and Natural Language Generation

61

Chapter 6

Abstract Categorial Grammars

The formalism of Abstract Categorial Grammars (ACG, De Groote 2001) is a formal-

ism based on typed λ-calculus (see for instance Barendregt and Barendsen, 1984) which

generalizes several other formalisms, like context-free grammars, or mildly context sen-

sitive formalisms. Section 6.1 presents the ACG formalism in details. Then Section 6.2

presents the representation of the TAG formalism in ACG, which is used for developing

linguistic resources (see Chapter 8).

6.1 Definitions

6.1.1 The signatures

An abstract categorial grammar (De Groote, 2001, Pogodalla, 2009) defines two lan-

guages called the abstract language and the object language. Each language is a set of

typed λ-terms defined by a higher-order signature Σ = (A,C, τ), where:

• A is a finite set of atomic types.

• C is a finite set of constants.

• τ : C → T (A) is a function associating a type built on A to every constant in C.

The set of types built on A, T (A), is defined recursively as follow:

– If a ∈ A, then a ∈ T (A);

– If α, β ∈ T (A), then (α→ β) ∈ T (A).

Each type in T (A) can be assigned an order. The order o(α) of a type α in T (A) is

defined recursively as follows:

62

Chapter 6. Abstract Categorial Grammars 63

• o(α) = 1 if α ∈ A

• o(α→ β) = max(o(β), o(α) + 1)

The set of λ-terms built on Σ, Λ(Σ), is defined recursively as follows:

• If c ∈ C, then c ∈ Λ(Σ) (constant).

• If x ∈ X, then x ∈ Λ(Σ), where X is a set of variables (variable).

• If x ∈ X, t ∈ Λ(Σ) and x is a free variable (see below) of t, then (λx.t) ∈ Λ(Σ)

(abstraction).

Any variable which appears in an abstraction (here x) is sayed to be bound. Any

variable which is not bound is sayed to be free. For instance, in the term cxy, the

variables x and y are free, and in the term λx.cxy, x is bound and y is free.

• If t, u ∈ Λ(Σ), then (tu) ∈ Λ(Σ) (application).

To be more precise, abstract categorial grammars only use linear λ-terms, and possibly

almost linear λ-terms. A linear λ-term is also called a non-erasing, non-duplicating λ-

term. A λ-term of the form λx.t is linear if and only if the variable x appears exactly

once in t. A λ-term of the form λx.t is almost linear if and only if x appears exactly

once in t or x appears several times in t and has an atomic type. In other words, almost

linear terms can only duplicate variables of atomic type. The relation between λ-terms

and their type is defined by a set of inference rules:

• `Σ c : τ(c) (constant)

• x : α `Σ x : α (variable)

•
Γ, x : α `Σ t : β

Γ `Σ (λx.t) : (α→ β)
(abstraction)

•
Γ `Σ t : (α→ β) Γ `Σ u : α

Γ `Σ (tu) : β
(application)

The first rule defines the type of a constant as the type which is assigned to it by

the function τ of the signature. The second rule simply states that variables have a

type. The third rule defines the type of an abstraction (a λ-term of the form λx.t) as

α → β, where α is the type of the variable (x) and β is the type of the body (t) of the

abstraction. Finally, the fourth rule defines the type of an application (a λ-term of the

form tu), where the left-hand side (t) has a complex type of the form α → β and the

right-hand side (u) has the type α, as β.

Chapter 6. Abstract Categorial Grammars 64

6.1.2 The lexicon

A lexicon L : Σ1 → Σ2 between two higher order signatures Σ1 = (A1, C1, τ1) and

Σ2 = (A2, C2, τ2) is a mapping from λ-terms built on Σ1 to λ-terms built on Σ2. It is

defined as a pair L = (F,G) such that:

• F : A1 → T (A2) is a function that associates a type of Σ2 to every atomic type

of Σ1. The extension of F to all types in T (A1) is noted F̂ .

• G : C1 → Λ(Σ2) is a function that associates (almost linear) λ-terms built on Σ2

to the constants of Σ1. The extension of G to all λ-terms in Λ(Σ1) is noted Ĝ.

• The type of the image of a constant c by G is the image by F̂ of the type of c,

G(c) : F̂ (τ(c)).

6.1.3 Abstract categorial grammar definition

Finally, an ACG is a quadruple G = (Σ1,Σ2,L , s), where Σ1 and Σ2 are the higher-

order signatures of the abstract language A(G) and object language O(G) respectively,

L is a lexicon from Σ1 to Σ2 and s is a type of Σ1 called the distinguished type of the

grammar. The terms of the abstract language are required to be of type s:

A(G) = {t ∈ Λ(Σ1) | t : s}

The λ-terms of the object language must have an inverse image by L in A(G):

O(G) = {t ∈ Λ(Σ2) | ∃u, u ∈ A(G) ∧ t = L (u)}

The order of an ACG is the maximum order of the types assigned to the constants of

the abstract language. The order of a lexicon L = (F,G) is the maximum order of the

images of its abstract atomic types by F . An ACG G of order n with a lexicon of order

m is denoted G (n,m).

6.1.4 Composition of grammars

Two abstract categorial grammars G1 and G2 may be composed in three different way:

• G1 and G2 both have the same abstract signature.

Chapter 6. Abstract Categorial Grammars 65

Λ(Σ1)

Λ(Σ2) Λ(Σ3)

L1 L2

G1 G2

Λ(Σ1)

Λ(Σ2) Λ(Σ3)

L1 L2

G1 G2

Λ(Σ1)

Λ(Σ2)

Λ(Σ3)

L1

L2

G1

G2

Figure 6.1: The three different ways to compose abstract categorial grammars to-
gether: either by shared abstract signature (top), by shared object signature (middle),
or by the abstract signature of one being the object signature of the other (bottom).

• G1 and G2 both have the same object signature.

• The object signature of G1 is the abstract signature of G2 (or the object signature

of G2 is the abstract signature of G1).

The three possibilities are depicted in Figure 6.1.

6.2 Tree adjoining grammars as abstract categorial gram-

mars

The linguistic resources developed in parallel of the ACG implementation presented in

Chapter 8 use Tree Adjoining Grammars (TAG, Joshi 1985) for representing the syn-

tactic level of the text (see Section 8.3). This choice has been made for various reasons:

Chapter 6. Abstract Categorial Grammars 66

x↓

x

x

Figure 6.2: The TAG substitution operation. A non-terminal leaf node marked with
the substitution symbol ↓ is substituted by a tree whose root is the same non-terminal

symbol (here the non-terminal symbol is x).

Firstofall, TAG is a popular formalism in NLG, with several existing microplanner sys-

tems using it (Danlos, 2000, Gardent and Kow, 2007), including in an industrial context

(Meunier, 1997, Danlos et al., 2011). Moreover, TAG is one of the formalism for which

the encoding in ACG has been described in details (De Groote, 2002, Pogodalla, 2009).

G-TAG (Danlos, 2000), an extension of TAG specialized in NLG has also been en-

coded in ACG (Danlos et al., 2014, Maskharashvili, 2016)1. Finally, there are existing

grammars for different languages (for instance X-TAG, XTAG Research Group 2001,

for English) which can be converted into the ACG formalism and used in our system.

Grammars such as X-TAG cover many linguistic phenomenons, which ensure us that the

microplanning module can represent the texts that we might want to produce in realistic

applications. Section 8.3.3 shows some examples of textual variations of a conceptual

representation using TAG, which are typically hard to represent with template based

approaches (though even more elaborate syntactic constructs are possible).

6.2.1 Introduction to TAG

Like context-free grammars, TAG uses a set of non-terminal symbols and a set of terminal

symbols. However, unlike context free grammars, the basic unit of TAG is a tree. The

nodes of a tree are non-terminal symbols and the leaves are either terminal or non-

terminal symbols. Trees do not need to contain a terminal symbol. A tree which

contains at least a terminal symbol is called a lexicalised tree, and the terminal(s) lexical

anchor(s). By extension, a TAG containing only lexicalised tree is called a lexicalised

TAG, or LTAG.

There are two basic operations which allow to combine trees, namely substitution and

adjunction. Figure 6.2 shows the substitution operation, which allow to substitute a

non-terminal leaf node by another tree with the same non-terminal at the root. The

1The linguistic resources presented in Section 8.3 do not use G-TAG, however it probably should (see
the perspectives in Section 9.4).

Chapter 6. Abstract Categorial Grammars 67

x

x

x∗

x

x

x

x∗

x

x

Figure 6.3: The TAG adjunction operation. A tree is inserted inside another tree.
A β-tree with a non-terminal symbol (here x) at the root and the same non-terminal
symbol at a leaf node marked with the adjunction symbol ∗ (the foot node) replaces
a node with the same non-terminal symbol inside another tree. First the tree which
receives the adjunction is split at the node with the non-terminal symbol (middle).
Then the β-tree is inserted at the location of the split and the detached subtree is

substituted at the foot node of the β-tree.

nodes where substitutions can happen are marked with the symbol ↓. Figure 6.3 shows

the adjunction operation, which allows to insert a tree inside another one. Trees which

can be adjoined to other trees are called auxiliary trees or β-trees. Non-auxiliary trees

are called initial trees. The auxiliary trees all contain a leaf called the foot node of the

tree, which is the same non-terminal symbol than the root node of the tree, marked

with the symbol ∗. This node indicates the substitution site for the subtree of the tree

on which it is adjoined (see Figure 6.3). The sequence of substitutions and adjunctions

which lead to particular tree is called a derivation, and is represented in the form of a

derivation tree (see Figure 6.4).

6.2.2 Encoding TAG with ACG

In the ACG representation of TAG (De Groote, 2002, Pogodalla, 2007), the abstract

signature represents derivation trees and the object signature the trees themselves. The

object signature defines a set of trees with no constraints, and the abstract signature

controls the possible substitutions and adjunctions. The initial and auxiliary trees are

defined in the lexicon.

More formally, let G = {Σ, N, I, A, S} be a tree adjoining grammar, where Σ is a

set of terminal symbols, N is a set of non-terminal symbols, I a set of initial trees,

A a set of auxiliary trees and S the distinguished non-terminal symbol. The ACG

G = {Σ1,Σ2,L , s} which defines the same tree language than G is defined as follows.

Let Σ1 = {A1, C1, τ1} be the abstract signature, with A1 being a set of atomic types,

C1 a set of constants and τ1 a function mapping constants from C1 to types built on A1

defined as follows:

Chapter 6. Abstract Categorial Grammars 68

(α1)

S

VP

sleep

NP↓

(α2)

NP

ideas

(β1)

VP

furiouslyVP∗

S

VP

furiouslyVP

sleep

NP

ideas

α1

β1α2

Figure 6.4: The sequence of substitutions and adjunctions which have been performed
in order to build a tree is represented by a derivation tree. Top-left are the trees
which are combined in order to give the tree on the top-right. Plain arrows represent
substitutions and dashed arrows are adjunctions. The sequence of substitutions and
adjunctions to perform in order to obtain the tree on the top-right is encoded in the
derivation tree at the bottom. The nodes of a derivation tree are initial or auxiliary
trees and the arcs represent substitutions and adjunctions operations (plain arc for

substitution and dashed arc for adjunction).

• A1 is the union of N (the non-terminal symbols) and N ′, the non terminal symbols

with subscript A (for “Adjunction”). For instance, if N = {S,NP, V P}, then

A1 = {S,NP, V P, SA, NPA, V PA}

• C1 is the union of I and A (i.e. the set of all trees, initial or auxiliary), plus a set

of identity tree for each non-terminal symbol in the grammar {Iα1 , . . . , Iαn}.

• The type of a constant encodes all possible substitutions and adjunctions opera-

tions on the tree it represents:

– The type of a constant cTi , with Ti being an initial tree is:

cTi : β1A → · · · → βmA → α1 → · · · → αn → γ

The atomic types β1A → · · · → βmA represent adjunctions on interior nodes

(nodes with non-terminal symbol) of Ti, where m is the number of interior

nodes which can receive an adjunction in Ti. The atomic types α1 → · · · → αn

represent substitutions on leaves of Ti marked with the symbol ↓, where n is

Chapter 6. Abstract Categorial Grammars 69

the number of such leaves. Finally γ is the non-terminal symbol at the root

of Ti.

– The type of a constant cTa , with Ta being an auxiliary tree is:

cTa : β1A → · · · → βmA → α1 → · · · → αn → γ → γ

The βi and αi subtypes represent adjunction and substitutions respectively,

like for Ti. The auxiliary tree in itself is represented as a function which

takes a tree and returns a tree. The two last subtypes γ → γ encode this

representation. γ is the non-terminal symbol at the root and foot of Ta. One

could see the first γ as the foot node, and the last γ as the root node, the

effect of the function being to substitute the argument at the foot node and

return the resulting tree (see the description of L below).

Now let Σ2 = {A2, C2, τ2} be the object signature, with A2 being a set of atomic types,

C2 a set of constants and τ2 a function mapping constants from C2 to types built on A2

defined as follows:

• A2 contains only one atomic type τ (which stand for “tree”).

• C2 contains the terminals of G (Σ), plus a set of constants for each non-terminal

in N (see below).

• The the type of the constants associated with terminals is τ . The set of constants

associated with a non-terminal α is:

cαi : τ → · · · → τ︸ ︷︷ ︸
i times

→ τ

for 1 ≤ i ≤ k, where k is the maximal number of children of the interior nodes

labelled with α in all the trees of G. For instance, if the non-terminal symbol S

is used in different trees with one, two or three child nodes, then C2 will contain

cS1 : τ → τ , cS2 : τ → τ → τ and cS3 : τ → τ → τ → τ .

The lexicon L between Σ1 and Σ2 is defined as follows:

• L (α) = τ for every non-terminal symbol (without subscript) in A1 and L (αA) =

τ → τ for all non-terminal symbols with subscript A in A1. So initial trees are

simply interpreted as trees (type τ) and auxiliary trees are interpreted as functions

taking a tree and returning a tree (type τ → τ).

Chapter 6. Abstract Categorial Grammars 70

S

VP

sleep

NP↓ VP

furiouslyVP∗

csleep : SA → V PA → NP → S cfuriously : V PA → V P → V P

L (csleep) = λsavpanp.sa(S2 np vpa(V P1 sleep)) L (cfuriously) = λvpafoot.vpa(V P2 foot furiously)

Figure 6.5: The representation of trees in ACG. The first line shows an initial tree
and an auxiliary tree, the second line the constants in the abstract signature that
represent the trees and on the last line the image of these constants by L in the object
signature. The variables representing adjunctions (sA, vpA) are second order variables
of type τ → τ , and the variable representing substitution (np) is a first order variable
of type τ . The variable foot of type τ represents the argument of the auxiliary tree

and placed at the foot of the tree.

• The image of the constants of C1 are built by combining the constants in C2 in

order to form the corresponding tree, and every argument of the tree, representing

substitutions and adjunctions, are represented as first order variables and second

order variables for substitution and adjunction respectively (see Figure 6.5). The

identity trees {Iα1 , . . . , Iαn} are all mapped to the identity λx.x (they represent

the “no adjunction” operation, used to fill the gaps in the arguments of the trees

when combining them).

Finally, the distinguished type s of G is the distinguished non-terminal symbol S of G.

This completes the definition of a TAG using ACG.

6.2.3 Encoding strings with ACG

It is also possible to represent the string language associated with a tree adjoining

grammar using ACG (De Groote, 2002, Pogodalla, 2007). A string is represented by a

second order λ-term of type o → o. For instance, a terminal symbol t of G (which is a

string) is represented by a constant st : o → o. Several strings can be concatenated to

form a longer string. For instance, three constants s1, s3 and s3 of type o → o can be

concatenated to form the string: λx.s1 (s2 (s3 x)) : o→ o. Strings can be concatenated

using concatenation operators, which take strings (type o→ o) as arguments and return

a string. For instance, the operator for concatenating two strings is: λxyz.x (y z) : (o→
o)→ (o→ o)→ o→ o.

Chapter 6. Abstract Categorial Grammars 71

derivations

trees

strings

L

L ′

G

G ′

Figure 6.6: The composition of two abstract categorial grammars G and G ′ repre-
senting the tree and string languages of a tree adjoining grammar.

We can represent the string language of G by adding a new ACG G ′ = {Σ′1,Σ′2,L ′, s′},
whose abstract signature is the object signature of G (see Figure 6.6). The object

signature of G ′, Σ′2 = {A′2, C ′2, τ ′2} is defined as follows:

• A′2 only contains the atomic type o, used to build string of type o→ o.

• C ′2 contains a constant st for each terminal symbol t in C2.

• The type of all constants in C ′2 is o→ o.

The lexicon L ′ of G ′ is defined as follows:

• The type τ of A2 is mapped to the type o→ o.

• Each terminal t in C2 is mapped to the constant st in C ′2. The other constants cαi

which represent non-terminals are mapped to concatenation operators, depending

on the number of arguments they have. For instance, the constants cS1 : τ → τ ,

cS2 : τ → τ → τ and cS3 : τ → τ → τ → τ , which represent the non-terminal S

with one, two and three child nodes respectively, are mapped as follows:

L ′(cS1) = λx.x

L ′(cS2) = λxyz.x (y z)

L ′(cS3) = λwxyz.w (x (y z))

By combining G and G ′ we obtain the string language of G. One can then either generate

strings from derivation trees or find the derivation trees of input strings.

Chapter 7

Document planning with ACG

The goal of the document planning module is to produce a precise description of the text

to generate at the conceptual level, also called document plan, or document structure

(see Chapter 3). This document plan may be built from many different kinds of input,

depending on the application. A typical input for an industrial application can be

represented as set of objects in an object oriented programming language. These objects

may represent various kind of information, such as boolean values, numerical values,

strings, which may represent for instance the name of the interlocutor, or more structured

representations such as events, messages or rhetorical relationships. This diversity of

situations of varying complexity causes some problems when one tries to build a general

purpose NLG framework1. In the context of an ACG based NLG framework, the main

issue revolves around the question of what level of abstraction should be used to represent

the document planning process, and how the input information should be represented

as a λ-term.

This chapter explores a general approach to document planning using ACG, which can

be used in scenarios of very different complexities. This approach can be summarized

as follows: The level of abstraction of document plans is represented by a signature (say

Σdocs), containing constants for relations and messages in such a way that the set of

second order λ-terms which can be built on this signature is finite. For the input infor-

mation, I distinguish between the information representing some text (e.g. a name, an

event which should be textualized, a numerical value), and the information representing

the context in which the text is generated (usually represented as boolean values). This

distinction may be seen as the distinction between the conceptual and pragmatic aspects

of the generation process. The first kind of input information is represented as constants

in the signature Σdocs, the second kind of information is represented as different types

1A NLG framework is a set of tools which are used to create NLG systems (see Chapter 1).

72

Chapter 7. Document planning with ACG 73

which can be used to select a subset of the document plans built on Σdocs. The set of

second order λ-term which can be built on Σdocs for a particular input is then the set of

document plans for this input.

Section 7.1 provides the details of the problem of document planning using ACG and

the rationale for using the method described above. In Sections 7.2 and 7.3 I show how

to represent schemas, a technique often used in an industrial context, using an ACG

based NLG framework. Finally, Section 7.4 goes all the way to data-driven document

structuring, by showing how to build RST rhetorical trees (Mann and Thompson, 1988)

using ACG. This last document planning technique has been implemented in a test

application presented in Chapter 9. Note that the main focus of this chapter is on the

document structuring part of document planning, all data analysis and filtering being

considered as handled for the most part by some external system.

Discourse modelling using ACG has been studied in (Maskharashvili, 2016) in the con-

text of D-STAG (Danlos, 2011), an extension of TAG using SDRT. There is to my

knowledge no system based on ACG using RST, as described in Section 7.4 and imple-

mented in Chapter 9. Schemas (Sections 7.2 and 7.3) are close to context free grammars,

which have been studied extensively in the context of ACG (Maskharashvili, 2016), how-

ever the processing of schemas given here differs from the usual processing of context

free grammars in ACG, as they cannot be easily associated with a string language (see

Section 7.1). The examples of document plans used in this chapter are deliberately

simplified for the sake of the demonstration. Being able to represent the equivalent of

schemas, which is the most common method for document planning, ensures that we

cover the needs of most applications in practice, including complex ones. Still many of

these applications do not need elaborate document planning methods. One of the main

interest in using ACG for document planning in this case is to be able to use the same

internal formalism for modules which are usually thought as separate (Reiter and Dale,

2000), thereby simplifying implementation and maintenance, and making a ground for

more advanced methods, ACG allowing to represent existing formalisms such as RST in

the context of more elaborate document planning techniques as shown in Section 7.4.

7.1 Using ACG in the context of a NLG framework

7.1.1 The static and dynamic aspects of NLG systems

A NLG framework allows to build NLG systems for a large variety of applications. A

NLG system built for an application is a program which receives an input and outputs

text. The range of inputs that the NLG system can receive is specific to the application.

Chapter 7. Document planning with ACG 74

Code base
NLG

system

Input

Text

compilation

Figure 7.1: The general workflow of NLG systems creation. The code base specifies
the set of texts that can be produced and all the operations realized by the NLG system
(described for instance as functions in a general purpose programming language, such
as JAVA or C++). The code base is then compiled into a program which accepts a
particular input (depending on the application), and outputs texts. Definitions in the
code base are said to be static definitions, while the objects created by functions in the

compiled NLG system are said to be dynamically created.

The workflow for creating NLG systems using a NLG framework is described in Fig-

ure 7.1. A code base describes the NLG system. This code base is generally written in

a general purpose programming language, such as JAVA or C++. In this case the NLG

framework takes the form of code libraries and resource files, such as dictionaries (along

with a dedicated programming environment, see Chapter 1). The code describing the

NLG system is then compiled into a program, which can be used, for instance as a web

service or as a command line tool.

It is important to distinguish between the information which is known before the NLG

system is compiled, and the information which is computed each time the NLG sys-

tem is called on some input. The information known before the compilation is said to

be statically defined, or known at compilation time. On the other hand, information

computed by the NLG system is said to be dynamic or known at runtime. A simple

example is shown in Figure 7.2. This example shows the output of a NLG system which

generates a commercial email for a sales campaign. The text in bold font is the part

of the output which has been computed at runtime, and the rest of the text is defined

statically. One can create such a NLG system by using a text template, i.e. a string

with slots for variables. Here the variables are the name of the recipient of the email, the

maximum discount of the sales campaign and the date of the end of the sales campaign.

Once the text template is compiled, it becomes a program which accepts a string (the

name of the recipient), an integer (the maximum discount) and a date (the end date,

here we assume it is given in some numerical format). These three variables are used to

generate dynamically text such as the ones in bold font, and the rest of the text never

changes. While being simplistic, this example clearly shows the difference between the

Chapter 7. Document planning with ACG 75

Dear John,

Come at our store to enjoy an exceptional discount (up to 40% !) on all our products.

This promotion ends on Friday 25th. Hurry up !

Sincerely,

The Shop Team

Figure 7.2: Text template for a commercial email. The bold text is computed dy-
namically, while the rest of the text is defined statically.

static information, which is known before the NLG system is even compiled, and the

dynamic information, which depends on the input, and is computed by the NLG system

at runtime (here the computation mainly revolves around converting numbers for the

discount and the date into strings).

7.1.2 ACG based NLG systems

Using the terminology introduced in Figure 7.1, we can describe an ACG based NLG

framework as follows: The code base is a grammar, i.e. signatures and lexicons2. The

NLG system is a program using the compiled grammar in order to convert input λ-

terms, built on one of the signatures of the grammar, into λ-term built on another

signature of the grammar. This conversion might be a simple mapping using one of the

lexicons of the grammar, or might involve the inversion of a lexicon, in order to parse

an input λ-term built on the object signature of a lexicon into a λ-term built on its

abstract signature (the operation might also be a composition of mappings and inverse

mappings, see Chapter 8). Since we are in the context of NLG, I assume that an ACG

always contains a signature Σstrings, which defines a string language (see Section 6.2.3),

and that the NLG system built from an ACG is always used to translate a λ-term built

on some signature in the ACG into a λ-term of Σstring, this λ-term constituting the

output of the NLG system.

This description constitutes what might be called a “pure” ACG based NLG framework.

In practice, the code base might contain other definitions than signatures and lexicons,

and the NLG system might perform other operations than converting λ-terms between

signatures. For instance, the input of the NLG system might not be a λ-term, and some

conversion operation might be needed, or there might be other modules which perform

operation not handled by the ACG module, such as referring expressions generation.

2For simplicity, here and in the following, the term ACG or grammar also encompasses the compo-
sition of several lexicons.

Chapter 7. Document planning with ACG 76

Here I assume that the code base, containing both the ACG definitions and the other

definitions is written in a general purpose programming language, such as JAVA or C++.

In the following, I call the language used to write the code base the NLG framework

language. Also, the term NLG system refers to the program described by the whole code

base, including the code which is not specific to ACG. Saying that some computation

is performed by the wrapping NLG system (as opposed to computation performed by

the ACG module) means that this computation is described in the code base using the

NLG framework language independently from the definition of the ACG.

A natural way of using ACG to build a NLG system is to define the object signature of a

lexicon as the input signature (i.e. the signature on which the input λ-terms are built).

The abstract signature of the lexicon represents an infinite set of structures, and the

input λ-term built on the object signature is used to select a subset of these structures.

For instance, for a microplanner, we might have an input signature corresponding to

the semantic level of abstraction, and an abstract signature corresponding to the set

of derivation trees of a natural language. A set of output texts, represented by their

derivation trees, are selected using the input λ-term built on the signature representing

the semantic level of abstraction (see Section 8.3). By analogy, for a document planner,

we might have an input signature corresponding to the level of abstraction used for

the input of a particular application (e.g. events, rhetorical relations, numerical values,

etc.), and an abstract signature corresponding to document plans for this application.

This way of approaching the definition of a NLG system using ACG has been adopted

for microplanning, but another approach is used in this thesis for document planning.

The main problem here resides in the fact that there often is no formalised structure in

the input of a NLG system. For instance, a typical input might be represented as an

finite, unordered, set of variables {V1, . . . , Vn} (possibly with complex domains, such as

objects in an object oriented programming language). Using the approach above, we

might want to build a λ-term from this input, which could then be parsed in order to

find document plans associated with it. However by representing the input as a λ-term,

we give it an order, or structure, which caries no meaning. Following this logic, we

also need to interpret the constants of the signature representing document plans into

the input signature, but this interpretation must then be coherent with the arbitrary

structure given to the input, which adds to the complexity of the definitions without

adding any valuable information. While in some situations, the input, or part of the

input, might be given a meaningful structure, it doesn’t seem to be the case for the

inputs observed in many real world applications.

For this reason (see also the discussion Section 7.4.2.3), the general approach adopted for

document planning in this thesis is not to select a subset of structures from an infinite

Chapter 7. Document planning with ACG 77

set using the input information, but to directly define a finite set of structures (i.e.

document plans) which can be generated by the NLG system as the set of second order

λ-terms which can be built on the input signature. The general approach is to define

constants corresponding to the document structure and constants corresponding to the

input information, and to generate second order λ-terms from the signature resulting

from these definitions (see the examples below).

This leads us to another problem that an ACG based NLG system might face, namely

the representation of input information at different levels of abstraction. This problem

might arise in the context of microplanning as well as document planning and can be

summarized as follow: Some of the input information might represent a portion of the

output text that the NLG system must generate, but not be represented at the level

of abstraction of the input signature. For instance, the input of a NLG system might

contain numerical values, dates, or surface strings, that need to be represented as λ-terms

in the input signature, whether the input signature represents the semantic level for the

microplanner, or document plans for the document planner. Ideally, every possible input

information should have its λ-term representation at the level of the input signature and

its associated grammar describing the conversion of this information into text. This is

easy for input information such as a strings, which only needs to be “copy-pasted”, but

it might become more complex when converting numerical values (e.g. an integer using

the signed magnitude representation) into their textual counterparts (“one”, “forty-

two”, etc.) or other more complex information such as dates. While interesting, this

problem still requires a fair amount of research, and has been left for future studies.

In this thesis I use the fact that the ACG based NLG framework is embedded into

an existing NLG framework. This NLG framework already possesses efficient methods

for converting such input information into text. Therefore I use placeholders for the

input information which cannot be easily represented in the input signature, and let the

existing NLG framework convert this information into text in a post precessing module.

As a minimal illustration of the method used for document planning and the manipula-

tion of placeholders in the ACG module of a NLG system, we may generate the text of

Figure 7.2 using basic text template structures. Let Gemail = {Σtemplates,Σstrings,L , S}
be an abstract categorial grammar, where Σtemplates is the abstract signature and Σstrings

Chapter 7. Document planning with ACG 78

the object signature of L , and we have3:

Σtemplates = {S,Xname, Xdiscount, Xdate,

temail : Xname → Xdiscount → Xdate → S,

tVrecipient : Xname,

tVmaxDiscount
: Xdiscount,

tVendDate
: Xdate}

Σstrings = {o,

s1 = “Dear” : o→ o,

s2 = “,
Come at our store to enjoy an exceptional discount (up to ” : o→ o,

s3 = “ !) on all our products.
This promotion ends on ” : o→ o,

s4 = “. Hurry up !
Sincerely,
The Shop Team” : o→ o,

sVrecipient = “John” : o→ o,

sVmaxDiscount
= “40” : o→ o,

sVendDate
= “Friday 25th” : o→ o}

L = {S,Xname, Xdiscount, Xdate : o→ o,

temail : λv1v2v3z.s1 (v1 (s2 (v2 (s3 (v3 (s4 z)))))),

tVrecipient : sVrecipient ,

tVmaxDiscount
: sVmaxDiscount

,

tVendDate
: sVendDate

}

At the abstract level, the structure of the document is represented by a single text

template: temail, which takes as parameter three input variables, Vrecipient, VmaxDiscount

and VendDate, represented by the constants tVrecipient , tVmaxDiscount
and tVendDate

of type

Xname, Xdiscount and Xdate respectively. The signature Σstrings contains the predefined

texts used by the template and the placeholders for the input variables4. Here for clarity,

3For the sake of concision, here and in the following definitions of signatures, I simply list the types,
represented as standalone symbols, followed by constants associated with their type using the convention
constant : type. In the definition of lexicons, type mappings and constant mappings are listed in
this order using the convention abstract type : object type and abstract constant : object constant
respectively. The convention type1, . . . , typen : type means that the all the abstract types type1 through
typen are mapped to the object type type.

4In the definition of this signature, the notation s = “text” : o → o means that the symbol s is
used as a placeholder for the string “text”, and that the string is associated with the type o → o.
More generally, since we are in the context of a NLG system written in a general purpose programming
language wrapping the ACG, s might represent any kind of object.

Chapter 7. Document planning with ACG 79

I used the HTML tag
 to indicate a line break. The bold text associated with the

constants sVrecipient , sVmaxDiscount
and sVendDate

represents text generated dynamically

by the wrapping NLG system, using existing functions for converting strings, numbers

and dates into the right format. These texts correspond to the input {Vrecipient =

“John”, VmaxDiscount = 40, VendDate = Date(day : 25,month : 12, year : 2016)}5 and

change for each input of the NLG system.

From this definition, the ACG module generates text by generating all λ-terms of type S

in the abstract signature and getting their image by L . In this simple example, the ACG

module always generates a single λ-term: λz.s1 (sVrecipient (s2 (sVmaxDiscount
(s3 (sVendDate

(s4 z)))))),

the interesting part of the computation being the conversion of the input variable values

into text, which is handled by the wrapping NLG system. In the rest of this chapter,

this method for document planning, i.e. generating second order λ-terms from an input

signature containing constants representing the document structure and placeholders

for input variables, is used in more elaborate scenarios, up to the point where we are

able to simulate the existing document planning methods used in most of the practical

applications today.

7.2 Basic document structures

For a particular application, the structure of the document is often rigid and predictable.

In such cases, the usual technique for representing the structure of a document in a NLG

system is schemas (McKeown, 1985, see Section 3.2.1). The concept of schema is a bit

fuzzy, the specifics depending on the implementation. In this section, we will first work

with a very simple definition of schema, and enrich it bit by bit in the next sections in

order to cover the most common usages of schemas in practice.

A schema has a name, a type and a body, which is an ordered list of schema types6,

and messages (see Chapter 3). The messages represent chunks of text and can be

parametrized using an input variable. As an example, let’s use the following schemas to

describe the structure of the text of Figure 7.2:

5Here Date(day : 25,month : 12, year : 2016) designates an object (for instance in JAVA), with class
Date and fields day, month and year initialized with the values 25, 12 and 2016 respectively. Most
language have their own representation for dates, which might substitute for this example.

6For now, the examples assume that recursive definitions, i.e. schemas containing their own type in
their body, are not allowed. This case is treated separately in Section 7.3.2.1.

Chapter 7. Document planning with ACG 80

Email commercialEmail

Greetings(Vrecipient)

Content

Signature ()

Content defaultContent

ExceptionalDiscount(VmaxDiscount)

DiscountLimit(VendDate)

These two schemas are nested to form a tree structure. The first one gives the overall

structure of an email, by dividing it between a greeting formula, a content section and a

signature. The second one further divides the content section between a presentation of

the discount on one side and a warning on the time limit of the discount on the other.

Greetings, Signature, ExceptionalDiscount and DiscountLimit, are the messages of

our document plan and are parametrized using the three input variables of our example.

At this level, we do not need to define precisely what messages are. They could be

implemented for instance as text templates, semantic representation or custom functions

in the programming language used to implement the NLG system. We can represent

the document plans defined by our schemas and messages as second order λ-terms as

follows:

• The types of the schemas, and the names of the messages and input variables are

used as atomic types.

• A constant is created for each schema. The return type of the constant associated

with a schema is its type. The arguments of a schema are the elements of its body.

• A constant is created for each message. The return type of the constant associated

with a message is the atomic type representing this message. The arguments of a

message are the input variables which parametrize it

• A constant is created for each input variable, and its type is the atomic type

representing the input variable.

• These types and constants constitute a signature. The document plans defined by

our schemas and messages are the second order λ-terms built on this signature.

If there is a root schema, i.e. an initial schema which is used to build all possible

schemas, then the atomic type associated with this root schema defines the set of

λ-terms built on the above signature which represent the valid document plans.

For instance, if the root schema is the first schema in our example, then the λ-

terms representing the valid document plans are of type Email, from the name of

the root schema (see below for a complete example).

Chapter 7. Document planning with ACG 81

As an illustration, let’s build an ACG with example textualisations7 for our schemas

and messages. Let Σdoc be the signature built from our two example schemas. Σdoc is

defined as follows:

Σdoc = {Email, Content,

Greetings, Signature,ExceptionalDiscount,DiscountLimit,

Vrecipient, VmaxDiscount, VendDate,

tcommercialEmail : Greetings→ Content→ Signature→ Email,

tdefaultContent : ExceptionalDiscount→ DiscountLimit→ Content,

tGreetings : Vrecipient → Greetings,

tSignature : Signature,

tExceptionalDiscount : VmaxDiscount → ExceptionalDiscount,

tDiscountLimit : VendDate → DiscountLimit,

tVrecipient : Vrecipient,

tVmaxDiscount
: VmaxDiscount,

tVendDate
: VendDate}

A simple way to associate a textualisation with the document plan defined by Σdoc is to

add a signature Σstrings representing text templates, and link the two signatures through

7Here for the sake of the illustration I use basic textualisations which corresponds to text templates,
with no complex microplanning involved. Other textualisations are possible (and usually preferable),
such as logical sentences, which describe the text at a semantic level and can be processed by a mi-
croplanning module (see for instance the definitions in Chapter 8).

Chapter 7. Document planning with ACG 82

a lexicon (say Ldoc-str) as follows:

Σstrings = {o,

s1 = “Dear” : o→ o,

s2 = “,” : o→ o,

s3 = “Come at our store to enjoy an exceptional discount (up to ” : o→ o,

s4 = “ !) on all our products.” : o→ o,

s5 = “This promotion ends on ” : o→ o,

s6 = “. Hurry up !” : o→ o

s7 = “Sincerely,
The Shop Team” : o→ o

s8 = “
” : o→ o

sVrecipient = text(Vrecipient) : o→ o

sVmaxDiscount
= text(VmaxDiscount) : o→ o

sVendDate
= text(VendDate) : o→ o}

Ldoc-str = {Email, Content,

Greetings, Signature,ExceptionalDiscount,DiscountLimit,

Vrecipient, VmaxDiscount, VendDate : o→ o,

tcommercialEmail : λgreetings content signature z.greetings (s8 (content (s8 (signature z)))),

tdefaultContent : λdiscount limit z.discount (limit z),

tGreetings : λrecipient z.s1 (recipient (s2 z)),

tSignature : s7,

tExceptionalDiscount : λdiscount z.s3 (discount (s4 z)),

tDiscountLimit : λdate z.s5 (date (s6 z)),

tVrecipient : sVrecipient

tVmaxDiscount
: sVmaxDiscount

tVendDate
: sVendDate

}

Let Gdoc = {Σdoc,Σstrings,Ldoc-str, Email} be the ACG used by a NLG system to gener-

ate emails such as the one in Figure 7.2. Like in the example of Section 7.1.2, the textu-

alisations of the input variables use placeholders whose values are computed at runtime.

The runtime computation is represented in the definitions by the calls text(Vrecipient),

text(VmaxDiscount) and text(VendDate) (in the definition of the signature Σstrings), where

text() is a function written in the NLG framework language that converts the value of

Chapter 7. Document planning with ACG 83

an input variable into a string. Given these definitions, a possible general algorithm for

the wrapping NLG system is the following:

1. Given an input (for instance {Vrecipient = “John”, VmaxDiscount = 40, VendDate =

Date(day : 25,month : 12, year : 2016)}), complete Gdoc by replacing the calls to

the function text() by their dynamic value.

2. In the resulting ACG, generate all the λ-terms of type Email (the distinguished

type of the grammar, which represents the root schema) on the signature Σdoc. In

our example, there is only one λ-term of type Email:

tcommercialEmail (tGreetings tVrecipient)

(tdefaultContent (tExceptionalDiscount tVmaxDiscount
)(tDiscountLimit tVendDate

))

tSignature

This λ-term corresponds to a document plan, so the the second step can be consid-

ered here as a document planning (more precisely document structuring) module.

3. Get the image of the generated λ-terms by Ldoc-str. The image of the example

λ-term of the previous step gives us the text of Figure 7.2.

This example illustrates the most basic document planning technique: simply define

one static document plan, which will be used for every possible input. The next step

is to define a set of document plans, in which case we also need to implement some

selection mechanism for choosing a subset of the possible document plans given the

input information.

7.3 Complex document structures

There are two main forces driving the complexity of the structures generated by the

document planner. The first one is the range of outputs it is expected to produce. This

factor varies depending on the range of things the NLG system is expected to talk about

and on the number of ways it is expected to talk about the same thing. The second one

is the dependence of the system on the context of execution. This factor is linked to

the first one, as a NLG system which need to talk about a lot of things needs a way to

select somehow what it will talk about in a given situation (i.e. for a given input). But

this second factor also varies on the number of interactions the NLG system is expected

to have with the external world. For instance, a NLG system involved in dialogues

with humans has to be very sensible to the context of execution. In this section, I

Chapter 7. Document planning with ACG 84

explore different methods for handling these two aspects in the case of an ACG based

NLG system. The only practical way to introduce these methods is through simplified

examples, but it should be kept in mind in the following that most of these methods

only make sense for sizeable systems, with an evolving code base, and that their goal

is to respond in the simplest manner possible to the needs which arise when building

realistic complex NLG systems.

7.3.1 Describing larger sets of document plans

7.3.1.1 Synonyms

The first way to introduce variations in the document structure is to add synonyms. Syn-

onymous elements can be substituted freely without changing the informational content

of the text. From the perspective of schemas, synonyms correspond to different schemas

with the same type, or to groups of messages or input variables organized into classes of

objects. For instance, we could redefine the schemas of the previous section as follows:

Email commercialEmail

Greetings(Vrecipient)

Content

Signature ()

Content defaultContent

ExceptionalDiscount(VmaxDiscount)

DiscountLimit(VendDate)

Content reversedContent

DiscountLimitAlt(VendDate)

ExceptionalDiscountAlt(VmaxDiscount)

Here we have one schema of class Email (commercialEmail), and two schemas of class

Content (defaultContent and reversedContent). The schema reversedContent in-

troduces two new messages: DiscountLimitAlt and ExceptionalDiscountAlt, which

represent alternative phrasing for the two sentences of the content of our commercial

email. Using the schema reversedContent instead of the schema defaultContent

might result for example in the following text:

Dear John,

You have until Friday 25th to come at our store to enjoy an exceptional discount.

All our products are on promotion (up to 40%) !

Chapter 7. Document planning with ACG 85

Sincerely,

The Shop Team

Where the two main pieces of information of the text are presented in reverse order.

While this text is not exactly synonymous to the text in Figure 7.2 from a reader per-

spective, as long as the NLG system is concerned they are indeed synonymous, as there

is no way to distinguish between the two structures at the level of schemas. In a similar

manner, one may introduce variability in the potential output texts by having classes of

messages, representing different equivalent phrasings for a particular piece of informa-

tion, or classes for the input variables, representing different possible textualisation of

the input information. For instance, the variable VmaxDiscount may be textualized as a

number or as text such that the input VmaxDiscount = 40 may be textualized as “40” or

“fourty”.

Synonyms have a straightforward representation in ACG. Different elements with the

same class are represented as different constants with the same return type. For instance

the three schemas commercialEmail, defaultContent and reversedContent can be

represented by the following constants (in the signature Σdoc):

tcommercialEmail : Greetings→ Content→ Signature→ Email

tdefaultContent : ExceptionalDiscount→ DiscountLimit→ Content

treversedContent : DiscountLimitAlt→ ExceptionalDiscountAlt→ Content

The same principle applies if we use classes of messages and classes of input variables.

With the new definitions, there are now two λ-terms of type Email, which represent the

two possible structures of our commercial email. Since there are now several possibilities

when generating λ-terms, the NLG system must choose a variant for the output8. Here

and in the following, we will assume that all the variants are equivalent and that the

NLG system uses a uniform distribution to choose at random one of the possible output.

This is not mandatory, in more advanced systems, one might use other distributions, for

instance based on a language model.

As an alternative way of representation for synonyms using ACG, one might also mod-

ify slightly the definition of a lexicon in order to allow different textualisations for the

8Eventually, the NLG system might return all the possible variants. This could be interesting for
instance in the context of a development environment, where the designer of the NLG system needs to
know all the possible outputs of the system. In this thesis I assume that the NLG system always choose
a single output text.

Chapter 7. Document planning with ACG 86

same constant. For instance, let number() and text() be two functions of the wrap-

ping NLG system taking an integer variable and returning a string, with the first

one simply converting the integer to string and the second one spelling the number

(e.g. number(40) = “40” and text(40) = “fourty”). We might have two constants

tV number
maxDiscount

: VmaxDiscount and tV text
maxDiscount

: VmaxDiscount in Σdoc for the input vari-

able VmaxDiscount, with L (tV number
maxDiscount

) = number(VmaxDiscount) and L (tV text
maxDiscount

) =

text(VmaxDiscount). But another possibility is to have a single constant tVmaxDiscount
in

Σdoc with two images by the lexicon: L (tVmaxDiscount
) = {number(VmaxDiscount), text(VmaxDiscount)}.

This second notation can be viewed as a shorthand for the first one, where the two con-

stants tV number
maxDiscount

and tV text
maxDiscount

are left implicit. While equivalent in principle, the

two notations have different usages in practice. If we regroup several constants behind

a single label, as in the second notation, then we cannot access the individual constants

when building λ-terms in the signature, and therefore we assume that the group of

constants (here tV number
maxDiscount

and tV text
maxDiscount

) are perfect synonyms and can always be

substituted for each other. In the first notation, we allow explicit references to either one

of the constants in the group (and therefore we need to define the individual constants).

Therefore the second method might be seen here as syntactic sugar for manipulating

sets of constants in a simplified manner. Going further along this line of thinking, we

can extend the type system of ACG with features in order to represent and manipulate

sets of constants more easily.

7.3.1.2 Types with features

Adding synonyms is the basic tool for increasing the variability of the output of the

document planner (and more generally the NLG system). However it does not scale

very well, as it doesn’t offer any tool for manipulating and structuring large sets. Such

control can be obtained by extending ACG using types with features. Using types with

features is not equivalent to using types without features in general, and the properties

of ACG do not hold any more. For this reason we restrict ourselves here to features

with finite extension only, which can always be reduced to the usual types.

Features can be viewed as a compact way of representing a set of types. An atomic type

α with feature f is noted:

α[f]

A feature has a (finite) extension or domain (i.e. a set of values). Let the domain of f

be {v1, v2, v3}. Each value represents a variant of the atomic type which is associated

with the feature. In the case of α[f], the variants are:

{αf=v1 , αf=v2 , αf=v3}

Chapter 7. Document planning with ACG 87

Following this principle, a constant associated with a type with feature represents a set

of constants, each one being associated with a different variant of the type. If c is a

constant of type α[f], then it represents the following set of constants:

{cf=v1 : αf=v1 ,

cf=v2 : αf=v2 ,

cf=v3 : αf=v3}

There may be several features associated with one atomic type. In this case the atomic

type associated with the features represents a set containing one type for each element

in the Cartesian product of the domains of the features. For instance, let g and h be

two features with domain {v1, v2}. The type β[g, h] represents the set:

{βg=v1,h=v1 , βg=v1,h=v2 , βg=v2,h=v1 , βg=v2,h=v2}

The same principle applies for complex types containing several atomic types with fea-

tures, i.e. such a complex types represent a set of complex types, one for each element

in the Cartesian product of the domains of all the features in all the atomic types of the

complex type. For instance, the type α[g]→ β[h] represents the set:

{αg=v1 → βh=v1

αg=v1 → βh=v2

αg=v2 → βh=v1

αg=v2 → βh=v2

Using types with features allows to easily represent and manipulate sets of constants.

However as we have described it, it does not do much except giving an alternative

representation for synonyms as described in Section 7.3.1.1. When used in a lexicon,

a constant associated with a type with feature represents a set of constants which all

have the same image by the lexicon, as in the second method for representing synonyms

of Section 7.3.1.1. However, types with features allow to go further and give a precise

control over the sets of constants by allowing to easily select subsets of sets defined

through types with features. The selection mechanism works by adding constraints to

the types. The simplest kind of constraint is the equality constraint. For instance, we

Chapter 7. Document planning with ACG 88

can add an equality constraint f = v1 to the type α[f], which is written as follows9

α[f = v1]

Since there is only one possible value for the feature f which satisfies the constraint,

this type represents a set with a single variant : {αf=v1}. equality constraint may also

concern two different features. For instance, the type β[g = h] represents the set:

{βg=v1,h=v1 , βg=v2,h=v2}

It is also possible to add constraints in complex types. In order to link features from

different atomic types, it is possible to introduce new variables as follows:

α[g = x]→ β[h = x]

Here x is a variable introduced for the purpose of adding an equality constraint between

the features g and h (the constraint g = h is inferred from the constraints g = x and

h = x). Beyond equality constraints, pretty much any constraint can be used, including

arithmetic constraints or global constraints10. For instance, another typical constraint

is the set membership constraint, which allows to restrict a feature to a subset of its

domain (such as in α[f ∈ {v1, v2}]).

Using features in combination with constraints allows a great expressivity. Using terms

from the constraint programming world (see Section 2.3.1), features (which correspond

to variables) and constraints form a search space. Since the domains of the features are

finite, any constraint can ultimately be represented as a finite set of tuples of values.

This scenario is called finite domain constraint programming. Even being limited to

finite domains, the framework of constraint programming allows to represent a large

class of problems and gives us a powerful tool for representing and manipulating sets of

constants.

Types with features can be used in the static definition of an ACG in order to or-

ganize the constants into coherent groups. For instance, let’s take the two constants

tV number
maxDiscount

: VmaxDiscount and tV text
maxDiscount

: VmaxDiscount from Section 7.3.1.1, which

represent different textual variants of the input variable VmaxDiscount. We might use,

9I use the following method for the notation: if the feature does not appear in any constraint, then the
“naked” feature is added in the brackets. If it appears in a constraint, then it is considered as introduced
by the constraint and is not added independently in the bracket. Naked features and constraints are
separated by commas.

10In this last case, it might be interesting to differentiate between the type on one side, which introduces
the variables of the problem (i.e. the features), and constraints on the other. This would probably require
a different notation though.

Chapter 7. Document planning with ACG 89

instead of the these two constants, the following definition:

tVmaxDiscount
: VmaxDiscount[format ∈ {number, text}]

Where format is a feature with domain {number, text}. This definition combines

the two variants of the input variables into one constant, parametrized by the feature

format. Each variant still needs to have a different textualisation. To define the image

of each variant by a lexicon, I will use the following notation (here with our example

lexicon Ldoc-str):

Ldoc-str(tVmaxDiscount
[format = number]) = number(VmaxDiscount)

Ldoc-str(tVmaxDiscount
[format = text]) = text(VmaxDiscount)

Here the notation c[constraint], where c is a constant associated with a type with feature,

represents the subset of the constants represented by c where constraint is a constraint

added to the return type of c (i.e. constraint is a restriction on the set of constants

represented by c). Given these definition, we can then select different textual variants

of the input variable VmaxDiscount directly in the definition of the constants representing

messages as follows:

tExceptionalDiscount : VmaxDiscount[format = number]→ ExceptionalDiscount

tExceptionalDiscountAlt : VmaxDiscount[format = text]→ ExceptionalDiscount

While this example might seem simplistic, it actually shows the usage of ACG and of the

types with features in a realistic context. Indeed, the concept of format is used in many

situations in practice, usually associated with low-level data types such as: integers

(as numbers, cardinals or spelled out), floating point precision numbers (use the notion

of precision, scientific notation, etc.), numbers associated with units (currency, time,

mass, etc.), dates and many others. Therefore it is important to be able to represent

and manipulate these concepts in an efficient way. The types with features allow us to

build parametrized sets of constants easily and to handle these scenarios. Of course the

problem of formats is only one example, and the types with features can be used in other

contexts, in order to build parametrized sets of messages or schemas (see for instance

the example of Section 7.3.2). In any case, it is a powerful tool for managing large sets

of document structures (and text structures).

In the case of types with features, the comparison with the method of schemas is not

easy. Schemas usually tend to be parametrized with dynamic parameters, where the

parametrization described in this section only uses information known at compilation

Chapter 7. Document planning with ACG 90

time. The two methods which resemble the most to the one described in this section are

probably the following:

• Schema templates (in the sense for instance of C++ templates). Some languages

allow to use static parameters in order to describe generic functions or classes

which can be adapted to different scenarios. Implementations of schemas in such

languages can make use of these static parameters to describe different versions of

a schema.

• Inheritance is the basis of the organisation of information in object oriented lan-

guages. Using inheritance in combination with schemas allows to give a compact

representation of several schemas, the different classes of the inheritance tree be-

ing the different variants. The comparison however is somewhat abusive, as the

specialisation of classes usually involve dynamic mechanisms, such as initialization

mechanisms (e.g constructors). A full comparison of the two approaches is outside

of the scope of this thesis.

As a conclusion, we remark that many languages are not designed to provide advanced

mechanisms for using the information available at compilation time (such mechanisms

are sometimes called metaprogramming). Using ACG, which is a declarative formalism,

to describe statically the structure of our documents, gives an advantage, as it offers

much of the power of a general purpose programming language (in particular when

augmented with types with features), and can be computed at compilation time, leaving

the dynamic part of the NLG system to the minimum necessary. It is of course not

a specificity of ACG, but rather of declarative formalisms. Imperative formalism also

usually provide some metaprogramming facilities. However in such languages, it is more

natural (and easier) to control the flow of execution using imperative style programming.

Conversely, it is not natural for a declarative formalism to control the flow of execution

at runtime (for example using the cut operator in Prolog). However any practical system

still needs ways of doing so

7.3.2 Improving context sensitivity

Until now, the examples only showed how to create sets of synonymous document plans.

In this section I explore ways of dynamically selecting a subset of the statically defined

document structures. Using schemas, the typical way of introducing context sensitivity

is to use conditional statements. For instance, let’s adapt the commercial email example,

so it can be used to generate a SMS instead of an email:

Chapter 7. Document planning with ACG 91

Document commercialDocument(media)

if(media = SMS)

ShortContent(Vrecipient, VmaxDiscount, VendDate)

else

Greetings(Vrecipient)

Content

Signature ()

endif

This schema replaces the schema commercialEmail of Section 7.3.1. It is parametrized

by a variable media which contains the target media of the NLG system (which is given

for instance in the input of the NLG system). This variable is used in a conditional

statement in order to switch between two different structures. ShortContent is a mes-

sage which represents a condensed version of the email. For instance, given the input

{Vrecipient = “John”, VmaxDiscount = 40, VendDate = Date(day : 25,month : 12, year :

2016)}, the text associated with ShortContent could be:

John, The Shop Team invites you to an exceptional discount event (up to 40% !)

until Friday 25th.

The behaviour of the schema commercialDocument can be simulated using ACG by

creating two constants, one for each structure described in commercialDocument:

tSMS : ShortContent→ Document[media = SMS]

temail : Greetings→ Content→ Signature→ Document[media = email]

The return type of these two constants is Document[media], where the domain of the

feature media is {SMS, email}. This static definition represents the different variants

of the document. A particular variant can then be chosen at runtime, by choosing

to generate either λ-terms of type Document[media = SMS] or Document[media =

email] (i.e. by choosing dynamically the distinguished type of the grammar). This

decision can be taken by the wrapping NLG system, depending on the input information.

This example can be generalized into the following procedure for representing dynamic

variations using ACG:

• All the dynamic variants are represented statically. Each variant has a different

return type in order to be able to distinguish it from the others.

• The distinguished type of the grammar is chosen dynamically and λ-terms are

generated using this type. This restricts the possible λ-terms to the ones of the

chosen distinguished type.

Chapter 7. Document planning with ACG 92

Types with features are useful in this context, as they allow to represent variants in a

compact way, and to use different kinds of constraints to restrict the possible structures.

For instance, if the SMS and email variants of our commercial document had the same

structure, but different messages, the information about the media could be encoded

into a feature and passed down to the messages as follows:

tdocument : Greetings[media = x]→ Content[media = x]

→ Signature[media = x]

→ Document[media = x]

tdocument represents the schema commercialDocument in the event of the two variants

SMS and email having the same general structure (the impacts on the other schemas

and messages are omitted). Here the feature media is used to propagate the information

about the media to the arguments of tdocument. Each argument, either representing a

schema or a message, is then restricted depending on the input information about the

media. This information can even be transmitted deeper into the structure, to input

variables. In this setup, the different variants of every input variable, message or schema

can be exposed through the distinguished type of the grammar. A precise selection can

then be performed by constraining the different features at runtime. As an illustration,

we could imagine a complex document structure selected dynamically using the following

type:

Document[media = email, recipientType = customer,

numberFormat = number, dateFormat = standard-US, . . .]

With the different features impacting the document structure, the textualisation of the

messages or the textualisation of the input variables representing output text. It may

become cumbersome to systematically expose all the variants of all schemas, messages

and input variables through the distinguished type, since it forces us to report the

information about the potential variants on the types of all the constants. In some cases,

it might be interesting to restrict a set of constants simply by restricting the domain

of a feature at runtime. For instance, a feature dateFormat, associated with the types

of constants representing date objects might be restricted globally, without relying on

the propagation of features through the whole document structure. Another way to

say the same thing is that we could remove dynamically some of the constants which

have been defined statically in the ACG. We are then left with the document structures

that don’t contain these constants. For instance in the case of constants representing

date objects, removing all the variants but the one corresponding to a particular format

(say standard-US which would write dates in the format mm/dd/yyyy) results in texts

Chapter 7. Document planning with ACG 93

where only the chosen format is used. It is of course of the responsibility of the designer

of the NLG system to make sure that there will always be at least one possible document

structure left, no matter which constants are removed at runtime.

To summarize, we have to complementary mechanisms here: the dynamic selection of

the distinguished type of the grammar, and the modification of the grammar itself at

runtime. The selection of the distinguished type may be seen as a parametrization of

the grammar, while the modification of the definitions at runtime might be useful for

more transversal dynamic behaviours, such as selecting formats. Both methods play the

same role than the parsing of an input λ-term for selecting a subset of an infinite set of

structures in the situation described in Section 7.1.2, i.e. they select the right subset of

document plans that might be generated given the input information.

7.3.2.1 Recursive definitions

Schemas often include recursive definitions, using for instance the Kleene star symbol

(∗, zero or more) or the + symbol (one or more). For instance, staying on a commercial

email application, part of the input could be given as a list of product descriptions,

with the size of the list being known only at runtime. This could result in the following

schema

Document commercialDocument

Greetings(Vrecipient)

Product+

Signature ()

For this example, we will assume that the NLG system builds one message of class

Product for each product description of the input. The schema commercialDocument

simply lists the input product descriptions (there should be at least one) between a

greeting formula and a signature. This schema can be represented by the following

constant:

tcommercialDocument : Greetings→ Product→ Signature→ Document

The problem comes with the definition of the constants associated with the product

descriptions of the input. We let aside for now the constraint that there should be at

least one product description. For each product description Pi of the input, we could

associate a constant tPi of type Product→ Product, and add a constant tstop : Product

as a stop element. For instance, for the input product descriptions {P1, P2, P3}, we

Chapter 7. Document planning with ACG 94

would have:

tP1 : Product→ Product

tP2 : Product→ Product

tP3 : Product→ Product

tstop : Product

However, there is a hidden assumption with the notation Product+ in the schema

commercialDocument, which is that any particular product description should appear

only once in the document. In other words, when we build the structure of the docu-

ment, we consume the input product description. To model the consumption of input

elements, we need to use a feature and a few constraints as follows:

tP1 : Product[set = x]→ Product[set = x ∪ {P1}, P1 /∈ x]

tP2 : Product[set = x]→ Product[set = x ∪ {P2}, P2 /∈ x]

tP3 : Product[set = x]→ Product[set = x ∪ {P3}, P3 /∈ x]

tstop : Product[set]

The feature set represents the set of consumed input product description and its domain

is the set of sets of product descriptions. Each input product description Pi is associated

with a constant tPi : Product[set = x] → Product[set = x ∪ {Pi}, Pi /∈ x], which keeps

tabs on the consumed product descriptions on one side and verifies that a product

description is not used twice using the constraint Pi /∈ x on the other. Now the constant

associated with the our initial schema can be rewritten as follows:

tcommercialDocument : Greetings→ Product[|set| > 0]→ Signature→ Document

The constraint |set| > 0 ensures that there is one or more product description listed.

We can see here that we are at the limit of content selection, as one could perfectly

limit the number of listed product description, thereby doing some basic filtering on the

input, as follows:

tcommercialDocument : Greetings→ Product[|set| > 0, |set| < 3]→ Signature→ Document

In this case, a maximum of two input product descriptions can be listed, the other

ones being filtered out. This however is very limited. A true filtering strategy would

most probably need some mean of ranking the different elements in order to filter out

only the least interesting ones (among other criteria). The analysis of content selection

techniques using ACG is outside the scope of this thesis.

Chapter 7. Document planning with ACG 95

To summarize, the treatment of recursive definition given here relies on the dynamic

definition of a search space in the way of logic constraint programming, using the input

information to define constants, features and constraints which define a set of document

plans. The constraints are used to keep the set of document plans finite, and it relies on

the fact that the domains of the features are finite sets, which ensures that the properties

of ACG still hold (all the definitions using constraints above can be rewritten using a

finite number of constants and mappings).

7.4 Data-driven document structuring using RST

With the description of recursive document structures, we have now seen a sufficient

panel of techniques for document structuring using ACG for simulating schemas. The

general approach is to describe the set of document structures that the NLG system

may produce, and select a subset of the potential document structures by restricting the

choices either by removing constants or selecting dynamically the distinguished type of

the grammar. Being able to simulate schemas, the default document planning technique

for most NLG systems, shows that ACG can be used in the context of a NLG framework

to perform document planning in a large variety of applications. By pushing the notion

of consumption of input elements in order to build document structures using recursive

definitions a little further, we can describe yet another method for document structuring:

bottom-up, data driven document structuring. More precisely, in this section I focus on

data-driven document structuring using rhetorical relationships from RST (Mann and

Thompson, 1988), as it is the most popular rhetorical structure theory for NLG (Reiter

and Dale, 2000).

7.4.1 Bottom-up document structuring

In the bottom-up setup, the input of the document structuring module is composed of

two sets: a set of messages, and a set of rhetorical relationships between these messages.

Here we assume that these two sets are computed from the input information by the

wrapping NLG system (for instance in a content selection module). At this level, mes-

sages can be considered as simple symbols, which represent text spans. The goal is to

build a rhetorical tree from the input relations. For instance, in the context of an online

car selling application (see Section 9.3 for a detailed description of this application), we

Chapter 7. Document planning with ACG 96

could have the following input:

messages : M1 ∼ ”the power is 160hp”

M2 ∼ ”the car is not as powerful as you required”

M3 ∼ ”the car is the most powerful of its category”

relations : Concession(M1,M2)

Support(M1,M3)

Which could correspond to the following text:

Despite being not as powerful as you wished, this car has 160hp, which makes it the

most powerful car in its category.

In the formalisation of RST (Marcu, 1996), the relations are composed together through

their most salient part, the nucleus (a relation may have two nucleus, see below). The

general principle is that a relation can be composed with another relation if the nucleus

of the first one is either the nucleus or the satellite of the second one. In the example

above, M1 is the nucleus of both relation Concession(M1,M2) and Support(M1,M3),

and the trees that can be built are:

Concession

M2Support

M3M1

N S

N S

Support

M3Concession

M2M1

N S

N S

In order to compose the relations together to obtain trees, the nucleus (or the two nu-

cleus) is said to be promoted (Marcu, 1996). The relation as a whole is then represented

by its promoted element and can be composed with other relations.

7.4.2 Modelisation

Let Σrhetorics be the signature representing our document structures (i.e. rhetorical

trees). Since the set of rhetorical trees is defined by the input messages and relations,

which are assumed to be computed at runtime by the wrapping NLG system, all the

definitions below are also assumed to be added at runtime.

Chapter 7. Document planning with ACG 97

7.4.2.1 Messages and relations with one nucleus

We have two types of constants: constants representing messages and constants repre-

senting relations (which we will call simply messages and relations from now on). Like

for tree adjoining grammars (see Section 6.2.2), we can represent trees using the type

τ . Messages are always the leaves of the trees, so their type is simply τ . Relations are

nodes with two children, so their type is τ → τ → τ . There are two main constraints

which define a valid rhetorical tree:

• A node cannot have two parents. We need somehow to enforce this constraint while

composing the relations together, and in particular make sure that the leaves (the

messages) are not used twice.

• The rhetorical relationship of a particular node of the tree must hold between the

two promoted elements of the children of this node.

These constraints are represented as two features of the type τ : span and promotion

(which makes the type τ [span, promotion]). The span feature represents the set of leaves

of a tree. Its domain is the power set of the set of messages in the input. The feature

promotion represents the promoted element of a tree. If relations can only have one

nucleus, then the domain of the feature promotion is simply the set of messages in the

input. The set of constants of the signature rhetorics is defined from an input as follows.

Let I = {M ,R} be an input, where M = {M1, . . . ,Mn} is a set of messages and

R = {R1(A1
1, A

2
1), . . . , Rm(A1

m, A
2
m)} is a set of relations on the messages in M . For

each message Mi in M , we add the following constant to the signature Σrhetorics
11

Mi : τ [sp = {Mi}, prom = Mi]

In other words, since a message is a leaf, it only spans itself and promotes itself. For

each relation Rj(A
1
j , A

2
j), we add the following constant to the signature rhetorics:

Rj : τ [sp = x, prom = A1
j]→ τ [sp = y, prom = A2

j]→ τ [sp = union(x, y), prom = A1
j]

Where union(x, y) is the union of two disjoint sets (so sp = union(x, y) is equivalent to

sp = x ∪ y ∧ x ∩ y = ∅). The span of the arguments of the relation are merged only if

merging them results in a tree. The promoted message is simply the promoted message

of the nucleus of the relation (here A1
j by convention). Finally, the set of valid rhetorical

11 span is abbreviated by sp and promotion by prom.

Chapter 7. Document planning with ACG 98

trees in the signature rhetorics is the set of second order λ-terms of type:

τ [sp = {M1, . . . ,Mn}, prom = x]

Namely, the trees which span all the messages of the input. As an example, applying

these rules to the input of Section 7.4.1 yields:

M1 : τ [sp = {M1}, prom = M1]

M2 : τ [sp = {M2}, prom = M2]

M3 : τ [sp = {M3}, prom = M3]

Concession : τ [sp = x, prom = M1]→ τ [sp = y, prom = M2]→ τ [sp = union(x, y), prom = M1]

Support : τ [sp = x, prom = M1]→ τ [sp = y, prom = M3]→ τ [sp = union(x, y), prom = M1]

7.4.2.2 Relations with two nucleus and semantic aggregation

For some relations, none of its arguments can be flagged as the most salient part. In

this case the relation has two nucleus. For instance, relation of contrast, as in “this car

has an integrated GPS, but it has no sunroof ” has two nucleus. In this case, we need to

modify the types in order to allow the promotion of multiple messages. The basic idea is

to change the domain of the feature promotion, so to represent sets of messages instead

of messages (in fact the same domain than the feature span). If we allow a relation to

promote several messages, we also need relations to take sets of messages as arguments

(else we could not combine a relation with two nucleus to any other relation). If we have

a relation Rj(A
1
j , A

2
j), where A1

j and A2
j are sets of messages, then we add the following

constant to the signature rhetorics:

Rj : τ [sp = x, prom = A1
j]→ τ [sp = y, prom = A2

j]→ τ [sp = union(x, y), prom = A1
j∪A2

j]

The effect of the relation with two nucleus (independently of its meaning) is to aggregate

several messages, which can be then used as a whole as an argument of another relation.

More generally, allowing sets of messages as arguments of relations allow to perform

semantic aggregation. We can directly create constants corresponding to sets of mes-

sages and then use them as arguments of relations. The constant associated with a set

{M1, . . . ,Mn} of messages is:

M1..n : τ [sp = {M1, . . . ,Mn}, prom = {M1, . . . ,Mn}]

Using these aggregates as arguments of relations is a way of performing semantic aggre-

gation. If the relations of the input do not directly allow aggregates as arguments, we

Chapter 7. Document planning with ACG 99

can generate new relations which do. For instance, if we have these three relations in

the input:

R1(M1,M2)

R1(M1,M3)

R1(M1,M4)

Which only differ by their second argument. Then we can create the following relation-

ships which allow for the aggregation of arguments:

R1({M1}, {M2})

R1({M1}, {M3})

R1({M1}, {M4})

R1({M1}, {M2,M3})

R1({M1}, {M2,M4})

R1({M1}, {M3,M4})

R1({M1}, {M2,M3,M4})

Depending on which relation is chosen while building a rhetorical tree in the signature

Σrhetorics, the arguments of the relation are aggregated or not. Since the number of

aggregates grows very rapidly with the number of messages in the input, this method is

limited to relatively small sets of messages.

7.4.2.3 Discussion

Again, with the given definition, we are at the limit of content selection. By varying

the type representing a valid rhetorical tree, we could potentially perform some content

selection. For instance the type: τ [sp = x, prom = y] selects all rhetorical trees, even if

they don’t span all the input messages. By using a heuristic search on the trees of the

signature rhetorics, one could combine document structuring and content selection in

order, for instance, to maximize the number of messages in the tree while minimizing

some cost function (or use a heuristic based on some kind of equilibrium definition).

An interesting result of using ACG for describing both top-down schema-like document

structuring and bottom-up data driven document structuring, is that we can now com-

bine the two approaches. We can see the bottom-up approach defined in this section

as an extreme case of the recursive structure definitions described in Section 7.3.2.1.

Chapter 7. Document planning with ACG 100

Therefore we could theoretically combine statically defined top-down goal-oriented def-

initions and dynamic definition describing a bottom-up document structuring problem.

The detailed analysis of this approach however is out of the scope of this thesis.

The document structuring method described in this section relies heavily on definitions

which are computed dynamically. Indeed, in this section I have assumed that not only

the textualisation of the different messages, but also all the constants of the signature

Σrhetorics are defined at runtime by the wrapping NLG system. This scenario assumes

that we have no information whatsoever about the input messages and relations at com-

pilation time. In practice however this is not true. NLG systems usually accept a limited

number of messages, which can be described statically. In this case the definitions rela-

tive to the messages are defined statically and restricted at runtime to include only the

definitions relative to the input messages. The textualisation of the rhetorical relation-

ships are also known at compilation time, and the job of the wrapping NLG system is

simply to create the constants associated with the input relations and link them to their

textualisation.

Alternative approaches The general approach to document planning described in

this chapter uses ACG in an unconventional way. The input information is not rep-

resented as a single λ-term but as constants in a signature, and the definitions of

the grammar may be modified depending on the input information (e.g. by remov-

ing constants, for instance for selecting a format, or by adding definitions from input

objects). This makes the definitions of the grammar used for text generation depen-

dent on the input and therefore it cannot be used for reversing the generation pro-

cess, as the properties of ACG would normally allow. A more standard approach

would require to define a lexicon Ldoc-in with an abstract signature Σdoc represent-

ing the document plans and an object signature Σin representing the input. For in-

stance, in the context of our bottom-up document structuring example, the input

{{M1,M2,M3}, {Concession(M1,M2), Support(M1,M3)}} could be represented as the

conjunction:

M1 ∧M2 ∧M3 ∧ Concession(M1,M2) ∧ Support(M1,M3)

Which could then be represented as a λ-term in the signature Σin. However λ-terms

cannot represent commutative and transitive relations such as the conjunction relation,

so we would probably need to represent the input using several λ-terms for the different

permutations.

In the context of document planning with schemas, where the input can be represented

as a set of variables {V1, . . . , Vn}, we could again represent the input in the form of a

Chapter 7. Document planning with ACG 101

conjunction:

V1 ∧ · · · ∧ Vn

Which could then be represented as a λ-term in the signature Σin. In this case, the

schemas, represented as constants in the signature Σdoc could be interpreted in Σin in

the same way nodes of TAG trees are interpreted into a string language (i.e. as con-

catenation operator). The input would simply need to be ordered so that it is accepted

by the grammar. In the case where no schema is defined recursively, which concerns a

non negligible part of industrial applications, there is only one λ-term accepted by the

grammar and we perform a lexicon inversion (a costly operation, see Chapter 8), for the

sake of this single λ-term.

Given these problems and the fact that we are in the context of an existing industrial

NLG framework whose sole purpose is to generate texts, the approach based on the

definition of a finite set in the signature Σdoc has been chosen, this alternative method

being both efficient in simple cases and powerful enough to represent more complex

scenarios. However this choice depends on contextual factors, and alternative approaches

should be tested and compared more thoroughly in order to find a more general method.

This question has been left for future researches.

7.5 Conclusion

In order to use ACG as a kernel technology of a NLG framework (see Chapter 5), we

need to be able to perform both document planning and microplanning. The linguistic

resources used for microplanning are presented in Chapter 8. In this chapter I explored

different techniques for document planning and how they could be represented using

ACG. In particular, we can show that the technique of schemas can be simulated using

ACG, and that RST based data driven document structuring can also be represented

using ACG. With these two techniques, we cover most of the document planning used

by NLG applications in practice. In summary, by showing that besides text structures,

we can also represent realistic document structures, this chapter confirms that we can

use ACG as a kernel technology for a NLG framework.

Chapter 8

Implementation

In Chapter 7, I have shown how ACG could theoretically be used as the core technology

of a document planner, and more generally as the core technology of a NLG system, for

building applications in the context of a NLG framework. In this Chapter, I present

an actual implementation of an ACG based NLG framework. This implementation has

been developed as an extension of the existing NLG framework of the Yseop company.

The implementation does not (yet1) cover all the propositions of Chapter 7. In particu-

lar it does not handle types with features. However it covers all the basic usages of ACG

plus the manipulation of sets of constants as presented in Section 7.3.1.1. The main

interest of the work presented in this chapter is to show that ACG can be successfully

implemented in an industrial context and integrated into an existing NLG technology,

with the possibility of delegating some parts of the NLG process not yet handled by

ACG to the existing technology. For instance, in the current implementation, ACG is

used to handle document structuring, lexicalisation and aggregation, but delegates con-

tent selection, referring expressions generation and realisation to the existing technology.

Having a smooth integration of ACG in the existing technology is an important aspect

for the conciliation of the imperatives of simplicity, flexibility and efficiency inherent to

practical applications on one side, and the possibility of exploration and research neces-

sary in order to find the best possible usage of ACG for NLG on the other. Section 8.1

first presents the existing Yseop technology and the general architecture of the ACG im-

plementation within this technology. The Section 8.2 dives into the internal mechanisms

for generating and transforming structures using ACG. Finally Section 8.3 presents the

linguistic resources which have been developed in parallel of the ACG kernel, mainly

for microplanning purposes. The usage of theses linguistic resources in the context of

realistic NLG applications is presented in Chapter 9.

1Yseop has shown an interest in developing the prototype implementation further, so a future version

of this work will probably include the aspects which have been left aside here by lack of time.

102

Chapter 8. Implementation 103

Code base
(YML)

Compiler Binaries

Virtual machine

NLG system

Input (XML)

Output (Raw text, XML)

Figure 8.1: The general workflow of NLG systems creation using Yseop technology.
The code base is written using a proprietary language similar to JAVA: Yseop Modelling
Language (YML). The code base is compiled by a program written in C++ into a
binary format. At runtime, the binaries are loaded by a virtual machine (also written
in C++), which executes the code base on a XML input and outputs either raw text

on the standard output or XML through sockets.

8.1 General architecture

The Yseop technology follows the general architecture for NLG frameworks of Figure 7.1,

with a code base describing the NLG system being compiled into a program which

accepts a given range of input and outputs natural language. The code base is written

in a proprietary language called Yseop Modelling Language (YML), which resembles

JAVA. The compilation is handled by a compiler program written in C++. The output

of the compiler is a file in a custom binary format which is loaded at runtime by a virtual

machine, which is also written in C++ (see Figure 8.1).

The ACG extension of the Yseop technology is provided as a set of predefined classes.

Predefined classes are classes which are available in all applications written in YML,

similar to classes from the standard libraries in JAVA or C++. However, unlike them,

the predefined classes of YML are not written in YML, but have a C++ implementation

in the virtual machine. This configuration allows to provide high level concepts in the

YML language with an efficient C++ implementation (since it is interpreted, the code

written in YML is usually a bit slower than the same code written directly in C++,

hence the custom C++ implementation for critical components). The ACG extension

of YML provides predefined classes for the basic components of ACG: lambda terms,

signatures and lexicons. Additionally, a class for composed lexicons is added, which

encapsulates the composition of several lexicons.

Chapter 8. Implementation 104

8.1.1 Lambda terms

λ-terms are represented using an abstract class LambdaTerm, which is specialized into

three subclasses: Constants, Variable and Abstraction. The class LambdaTerm holds

the type of a λ-term, and the logic of the β-reduction process2:

class LambdaTerm

Collection type

static LambdaTerm betaReduce(Abstraction lhs , LambdaTerm rhs [, Symbol arg])

A type is represented by an ordered collection, were the last element of the collec-

tion is the return type and the other elements are the arguments (which can also be

collections). For instance, the collection [alpha, [alpha, beta], beta] represents

a type α → (α → β) → β. An atomic type is represented by a collection with the

symbol of this atomic type as its only element (the symbols used for atomic types

can be any object). The implementation also includes the notion of named argu-

ments. Any argument of a type can be associated with a name symbol, which can

be used to refer to this argument. This association is done using a map. For in-

stance, the collection [{x : alpha}, {y : [alpha, beta]}, beta] still represents a

type α → (α → β) → β, but the first and the second arguments can be referred as x

and y respectively. This feature is used for declaring variables in λ-abstractions and for

specific β-reduction operations (see below).

The function betaReduce takes two λ-terms lhs (left hand side) and rhs (right hand

side) and returns the result of applying lhs on rhs (the operation has no side effect).

The function betaReduce also includes a slight modification of the usual β-reduction

process by allowing to select the argument of the left hand side which is used in the

operation. For instance, if we have a constant c and a λ-term λxy.xy, then the function

betaReduce allows to apply λxy.xy on c such that the result is the λ-term λx.xc (the

second argument y is consumed instead of the first one x as it should be the case in normal

β-reduction). This behaviour is available through an optional argument of the function

betaReduce, noted here as [, Symbol arg] (the brackets represent the optionality).

arg is the named argument of lhs which should be used for the β-reduction3.

The class LambdaTerm is never instantiated (it is the equivalent of an abstract class in

JAVA, or a virtual one in C++). Instead, it is specialized into the three basic building

blocks of λ-term: constants, variables and λ-abstractions. Constants and variables do

2Here and in the following, I use a simplified JAVA-like syntax, with line breaks replacing semicolons

and fewer brackets. Ordered lists are noted [] and maps {}. Other syntactic specifics are explained

where they occur.
3This is only syntactic sugar, the same behaviour can be achieved using a combinator.

Chapter 8. Implementation 105

not add any field or functions to the base class, and are simply used to instantiate the

basic building blocks of a λ-term:

class Constant extends LambdaTerm

class Variable extends LambdaTerm

λ-abstractions however, have a body field, which represents the body of the λ-abstraction:

class Abstraction extends LambdaTerm

LambdaTerm body

As indicated above, the variables of a λ-abstraction are declared directly in its type (see

the example below). The syntax of the YML language does not enforce any particular

constraint on the λ-terms that can be built. However, the compiler and the virtual

machine (for dynamically created objects) include checks which enforce almost-linear

λ-terms (non deleting and non duplicating for variables with non-atomic type). Also,

any λ-term which is built explicitly must have a type. The following shows an example

of creation and manipulation of λ-terms:

Constant a([alpha]) // a : α

Constant b([alpha , beta]) // λx.bx : α→ β

Abstraction term ([{[alpha , beta]: x}, {alpha: y}, alpha], x(y))

LambdaTerm result = LambdaTerm :: betaReduce(term , a, y) // result = λx.xa

result = result(b) // result = ba

There are a few things to explain about this example. First, objects are created using

a constructor (in the previous definitions, the constructor has been left implicit). All

classes which inherit from LambdaTerm take a type as their first constructor argument

(for instance a([alpha])). Additionally, objects of the class Abstraction require a

second argument, their body. Second, on the third line, the variables x and y are

implicit declarations, which means that x and y are objects of class Variable. Finally,

a special syntax allow to use objects of class LambdaTerm to be used as functions. Using

such an object as function is equivalent to using the function betaReduce on the object

and its argument. The implicit declarations and special syntax are possible thanks to

modifications of the compiler.

In details, the two first lines of the examples create two constant objects a and b of

type α and α → β respectively. Note that the internal representation of b is λx.bx.

More generally, all λ-terms are represented internally in their η-long form. The internal

representation of λ-terms uses term graphs (Plump, 1999) as in (Kanazawa, 2011)4. The

4The details of the internal representation of λ-terms are very dependent on the specific architecture

of the compiler and virtual machine, and are not developed in this thesis. However the implementation

follows closely the representation described in the given papers.

Chapter 8. Implementation 106

third line creates a λ-abstraction, corresponding to λxy.xy : (α → β) → α → β. The

fourth line is an example of β-reduction using a named argument, and the last line a

classical β-reduction, using the object result as a function.

In summary, λ-terms are implemented in a relatively straightforward way in YML,

using object oriented programming concepts. However a few modifications have been

included in order to ease development as much as possible. In particular, the fact that

the code of the compiler is available allows to add some syntactic sugar, for instance

for implicit variable declarations or using objects as functions. The possibility of using

named arguments for β-reduction also adds some flexibility to the way λ-terms can be

built. In particular, it is very useful for manipulating resources such as a grammar, as

shown in Section 8.3.

8.1.2 Signatures and lexicons

The predefined classes for signatures and lexicons follow closely the formal definitions

of these concepts. The class Signature contains a set of atomic types and a set of

constants:

class Signature

Collection atomicTypes

Collection constants

Collection generate(Symbol type)

bool checkType(Collection type)

bool checkTerm(LambdaTerm term)

It also provides a function generate, which takes a type built on the set atomicTypes

and returns the set of terms of this type in the signature (an error is thrown if the set is

infinite), and two function checkType and checkTerm, which check respectively if a type

or a λ-term is in the signature or not. In practice, the goal of the function generate is

to generate document plans, such as described in Chapter 7. The other two functions

are mainly used internally and for debugging purposes.

The class Lexicon, contains an abstract signature, an object signature and a mapping

of constants from the abstract signature to λ-terms of the object signature. Note here

that it is allowed to map a constant from the abstract signature to several λ-terms of

the object signature:

class Lexicon

Signature abstractSignature

Signature objectSignature

Map mapping

Chapter 8. Implementation 107

Collection realize(LambdaTerm term)

Collection parse(LambdaTerm term)

Collection translate(LambdaTerm term , Signature origin , Signature target)

Collection generate(Symbol type , Signature origin , Signature target)

There are four functions which can be used on a lexicon object. The function realize5

takes a λ-term from the abstract signature and returns its images in the object signature.

The basic behaviour of this function is to substitute each constant in the input λ-term

by its image, using the mapping object (and then β-reduce the result). However it is

a bit different from the usual mapping function, as it needs to handle constants with

several images and therefore returns a collection instead of a single λ-term (the collection

may still contain a single image). If several constants in the input λ-term have multiple

images, then the result contains one λ-term for each possible combination of constant

substitution.The size of the resulting collection is the size of the Cartesian product of

all the image sets of the constants of the input λ-term.

The function parse takes a λ-term from the object signature, and returns its inverse

images by the lexicon. This inverse mapping procedure is the detailed in Section 8.2.

The functions translate and generate are only introduced in order to be able to

manipulate lexicons and composed lexicons, in a transparent way and are described in

Section 8.1.3.

8.1.3 Composed lexicons

The predefined class ComposedLexicon allows to manipulate several lexicons composed

together in a transparent way. The class only contains a set of lexicons (of class Lexicon)

and two functions:

class ComposedLexicon

Collection lexicons

Collection translate(LambdaTerm term , Signature origin , Signature target)

Collection generate(Symbol type , Signature origin , Signature target)

The function translate takes as argument a λ-term from the signature origin and

translates it into one or several λ-terms of the signature target. The preconditions of

the function are:

• The origin and target signatures must be the object signature or the abstract

signature of at least one lexicon in the set lexicons.

5The names “realize” and “parse” come from the ACG implementation of the Sémagramme team

(LORIA).

Chapter 8. Implementation 108

• The argument term is a λ-term built on the signature origin.

• There exists a path between the origin and target signatures.

A path here is defined as a sequence of signatures, where two consecutive signatures are

connected by a lexicon of the set lexicons. So a path must have at least two members,

and each arc in the path represents either a mapping operation or an inverse mapping

operation6. For instance, Let lex1 be a lexicon with abstract signature sig1 and object

signature sig2 and lex2 be a lexicon with abstract signature sig1 and object signature

sig2 (so that lex1 and lex2 share their abstract signature sig1). Now let lexComp be

the composed lexicon containing the set { lex1, lex2 }. Then the possible paths in

lexComp are:

{

[sig1 , sig1], [sig2 , sig2], [sig3 , sig3],

[sig1 , sig2], [sig2 , sig1], [sig2 , sig3], [sig3 , sig2],

[sig1 , sig2 , sig3], [sig3 , sig2 , sig1]

}

Which correspond to the following usages of the function translate of lexComp:

lexComp.translate(t, sig1 , sig1) // identity(t)

lexComp.translate(t, sig2 , sig2) // identity(t)

lexComp.translate(t, sig3 , sig3) // identity(t)

lexComp.translate(t, sig2 , sig1) // L1(t)

lexComp.translate(t, sig1 , sig2) // L −11 (t)

lexComp.translate(t, sig2 , sig3) // L2(t)

lexComp.translate(t, sig3 , sig2) // L −12 (t)

lexComp.translate(t, sig1 , sig3) // L2(L −11 (t))

lexComp.translate(t, sig3 , sig1) // L1(L −12 (t))

The path is computed automatically from the arguments of the function each time the

function is called, and an error is thrown if more than one path is possible7. To sum-

marize, the function translate provides a convenient way to manipulate sets of lexicons,

but delegates most of the logic to the mapping and inverse mapping functions (i.e. the

function realize and parse of the class Lexicon). The job of the function translate

is to compute the path between the origin and target signatures and to transfer the

results of one operation to the next operation in the path.

6An arc of a signature to itself is considered as the identity operation. Except from this kind of basic

loop, no loops are allowed in a path.
7This is a limitation of the implementation. The user should be allowed to specify a path when an

ambiguity exists.

Chapter 8. Implementation 109

The function generate is a shorthand which allows to compose the function Signature::generate

(the function generate of the class Signature) with the function translate. The pre-

conditions of the function generate are the same as the precondition of the function

translate, except that the first argument is now a type which must belong to the origin

signature. A call to lex.generate(type, origin, target), where lex is a (composed)

lexicon is strictly equivalent to lex.translate(origin.generate(type), origin, target)

(assuming that translate is overloaded in order to allow collections of λ-terms for its

first argument). The purpose of this function is to generate text from the result of the

document planning phase.

8.1.4 Summary

Together, the predefined classes LambdaTerm, Constant, Variable, Abstraction, Signature,

Lexicon and ComposedLexicon form the ACG kernel implemented in the Yseop tech-

nology. These classes allow to build grammars and to perform document planning as

described in Chapter 7, and microplanning (see Section 8.3). The objects instantiating

these classes can be defined in the code base, in which case they form a static definition

of the output texts, but they can also be created dynamically either by using the new

keyword, like in JAVA or C++, or by definitions given in the input of the NLG sys-

tem (the Yseop technology allows to complete the code base at runtime using the XML

input). This gives us all the flexibility needed in order to handle the different kinds

of inputs and contexts introduced in Chapter 7; i.e. it is possible to define structures

statically, and to either complete, restrict or modify these static definitions at runtime,

depending on the input. This flexibility comes mainly from the fact that the kernel is

embedded in a general purpose programming language (YML).

While the predefined classes described so far are available in the YML language, the

functions they provide are all implemented as C++ functions in the virtual machine.

As explained earlier, the critical components of the Yseop technology, which are available

through predefined classes, benefit from a low level optimized implementation, in order

to balance the fact that YML is an interpreted language. There are ten functions

implemented in C++ in the virtual machine:

LambdaTerm :: betaReduce

Signature :: generate

Signature :: checkType

Signature :: checkTerm

Lexicon :: realize

Lexicon :: parse

Lexicon :: translate

Lexicon :: generate

Chapter 8. Implementation 110

ComposedLexicon :: translate

ComposedLexicon :: generate

Section 8.2 explains in more details the functions Signature::generate, Lexicon::parse

and ComposedLexicon::translate. The other functions do not pose any particular

problem to implement. While being a bit involved, the function LambdaTerm::betaReduce

is heavily dependent on the internal representation of λ-terms, which have been left

aside in this thesis8. The functions Signature::checkType and Signature::checkTerm

are trivial recursive membership checks. The function Lexicon::realize only in-

volves simple substitutions and β-reductions. The functions Lexicon::translate and

Lexicon::generate are introduced for compatibility reasons and are basically overloads

of the functions of the class ComposedLexicon. Finally, ComposedLexicon::generate is

a utility function which can be reduced to a composition of the functions Signature::generate

and ComposedLexicon::translate.

8.2 Generation and transformation of structures

8.2.1 Example grammar

In order to illustrate the following explanations, I will use a toy grammar example.

Here and in the rest of the chapter, I use a more compact mathematical notation for

the λ-terms, signatures and lexicons, but all definitions can also be defined using the

predefined classes of Section 8.1.

Let’s say we have four signatures: Σlogics, Σderivations, Σtrees and Σstrings, with the

following constants:

Σlogics = {clove : e→ e→ t,

cJohn, cMary : e}

Σderivations = {dlove : NP → NP → S,

dJohn, dMary : NP}

8See Section 8.1.1. The β-reduction process has simple and well known specification. The implemen-

tation uses term graphs, and the basic idea of the implementation of the β-reduction is to merge the

nodes of the two input graphs to produce a new graph which represents the result of the β-reduction of

the input λ-terms.

Chapter 8. Implementation 111

Σtrees = {S2, V P2 : tree→ tree→ tree,

NP1 : tree→ tree,

loves, John,Mary : tree}

Σstrings = {“loves”, “John”, “Mary” : o→ o}

And that we have three lexicons: a lexicon Lder-log with abstract signature Σderivations

and object signature Σlogics, Lder-tag with abstract signature Σderivations and object

signature Σtrees, and Ltag-str with abstract signature Σtrees and object signature Σstrings,

these three lexicons being defined as follows:

Lder-log = {S : t,

NP : e,

dlove : clove,

dJohn : cJohn,

dMary : cMary}

Lder-tag = {S,NP : tree,

dlove : λxy.S2 x (V P2 loves y),

dJohn : NP1 John,

dMary : NP1 Mary}

Ltag-str = {tree : o→ o,

S2, V P2 : λxyz.x (y z),

NP1 : λx.x,

loves : “loves”,

John : “John”,

Mary : “Mary”}

Figure 8.2 shows Lcomp, the composition of the three lexicons Lder-log, Lder-tag and

Ltag-str. Since we are in the context of a NLG framework, we are only interested here

in transforming λ-terms built on the signature Σlogics to λ-terms built on the signature

Σstrings. This translation corresponds to the path [Σlogics,Σderivations,Σtrees,Σstrings]

of Lcomp, which itself corresponds to the three consecutive transformations L −1
der-log,

Chapter 8. Implementation 112

Σderivations

Σtrees

Σstrings

Σlogics

Lder-tag Lder-log

Ltag-str
Lcomp

Figure 8.2: Example composition of three lexicons: Lder-log, Lder-tag and Ltag-str.
The lexicon Lcomp represents the composition of these three lexicons in an instance of
the class ComposedLexicon. The path of the composed lexicon which is used to generate
text from a logical sentence l is [Σlogics,Σderivations,Σtrees,Σstrings] and corresponds

to the operation Ltag-str(Lder-tag(L −1der-log(l))).

Lder-tag and Ltag-str. For instance, we can translate the λ-term clove cJohn cMary to a

λ-term built on Σstrings using Lcomp as follows:

Lcomp.translate(clove cJohn cMary,Σlogics,Σstrings) = Ltag-str(Lder-tag(L
−1
der-log(clove cJohn cMary)))

= λz.“John”(“loves”(“Mary” z))

Sections 8.2.2 and 8.2.3 explain in details the operation of inversion of a lexicon, cor-

responding to the function parse of the lexicon Lder-log of our example (noted L −1
der-log

above). Section 8.2.4 gives more details on the inner workings of the function

ComposedLexicon::translate, here corresponding to the composition Ltag-str(Lder-tag(L
−1
der-log(. . .))).

Finally, Section 8.2.5 describes the function Signature::generate.

8.2.2 Datalog prover

The implementation of the inversion of a lexicon (function Lexicon::parse) follows the

algorithm given in (Kanazawa, 2007), which reduces the inversion of a lexicon to Datalog

querying9. This Section gives a quick introduction to Datalog and describes the Datalog

prover implemented.

9This method is limited to abstract categorial grammars of order two (the constants of the root

signature of the grammar can have a type of order at most two), with almost-linear λ-terms (the image

of a constant by a lexicon cannot contain duplicated variables, unless the type of the variable is atomic).

Therefore the implementation is also limited to almost-linear second order ACG. The method can be

generalized to any ACG using linear logic programming (De Groote, 2015).

Chapter 8. Implementation 113

8.2.2.1 Quick introduction to Datalog

Datalog (see for instance Abiteboul et al., 1995), is a logic programming language, or

deductive database, which is a subset of Prolog (Clocksin and Mellish, 2003). In logic

programming, the program is defined as a database of facts and implication rules, which

can be queried, in order to retrieve existing facts or deduce new ones.

A Datalog program is divided between an extensional database and an intentional database.

An intentional database is a set of rules of the form

p0(~v0) :- p1(~v1), . . . , pn(~vn)

where p0, . . . , pn are predicates of fixed arity and ~v0, . . . , ~vn are tuples of variables. A

predicate together with its argument is called an atom, the atom on the left hand side

of a rule (here p0(~v0)) is called the head of the rule and the atoms on the right hand

side of a rule (here p1(~v1), . . . , pn(~vn)) the body of the rule. The individual atoms in the

body are called subgoals. A rule may have no body, in which case it is called a bodyless

rule.

An extensional database is a set of ground facts or extensional facts of the form

p(~c)

where p is is a predicate of fixed arity and ~c a tuple of constants10. Predicates which

appear in the head of a rule are called intensional predicates. The other predicates are

called extensional predicates.

A query is a conjunction of facts (grounded or not). A query q is said to be derivable

from a program P if P ` q (i.e. if q can be deduced from P). A derivation of P given

q is a proof of q in P (i.e. the sequence of rules and facts which proves the query). A

Datalog solver takes a query and a program, checks if the query is derivable from the

program, and returns true if it is the case and false otherwise. If the query is indeed

derivable from the program, it also usually gives the range of values that the variables

of the query can take in order to be derivable from the program (i.e. the different values

that the variables can take in every possible derivations of P given q). A typical toy

example is the ancestor program, whose intentional database contains the rules:

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- parent(X,Y), ancestor(Z, Y).

10In the following, unless stated otherwise, facts always refer to ground facts.

Chapter 8. Implementation 114

These rules recursively define the notion of ancestor as one’s parent, or ancestor of one’s

parent (parent(X,Y) represents the fact that Y is a parent of X, and ancestor(X,Y)

the fact that Y is an ancestor of X). An associated extensional database might be:

parent(pierre, paul).

parent(paul, jacques).

Given this program, we might for instance have the following queries:

?- ancestor(pierre, jacques).

?- ancestor(paul, pierre).

?- ancestor(pierre,X).

The first query returns true since jacques is the grand-father of pierre, but the second

one returns false. The last query introduces a variable X which holds for any possible

ancestor of pierre. Since there are values of X for which a derivation of the program

exists, the query returns true. Additionally, we can get the the set of values of X for

which the program has a derivation: X = {paul, jacques} (i.e. X can be the father or

grand-father of pierre).

8.2.2.2 Implementation

Datalog solvers only return true or false given a query (plus the bindings of the variables

of the query). However, in our case we also need to get the actual derivations which

prove the query (see Section 8.2.3). So rather than a Datalog solver, we actually need a

Datalog prover. Since there are no C++ Datalog prover which can easily be integrated

in an existing proprietary software, I have implemented a Datalog prover from scratch.

It uses a depth-first search algorithm (backward chaining) and an independent solver,

which holds the equality constraints generated by the unification process (see below).

Algorithm 2 is a slightly simplified version of the implemented proving procedure11. The

main function takes a list of goals (initially, the list of atoms in the query), a database and

a solver. The algorithm is recursive: it first checks the stopping condition which is that

no more goals need to be proven, in which case it returns the list of rules and facts which

have been expanded until this point. If there are still goals which need to be proven,

it tries to prove the next goal (i.e. atom) in the goal stack. A goal can be extensional

or intentional, depending on its predicate. For extensional goals, the algorithm tries

11This algorithm stops as soon as it finds a valid derivation. The implemented algorithm continues

until all possible valid derivations are found or no more derivation can be found.

Chapter 8. Implementation 115

Algorithm 2: The Datalog prover main algorithm.

function prove(goals, solver, database)
if goals is empty then

return current derivation
end
currentGoal ← goals.top
goals.pop()
if currentGoal is extensional then

for fact ← nextFact(currentGoal, database) do
if unify(currentGoal, fact, solver) then

branch(goals, solver, database)
end

end
backtrack()

else
for rule ← nextRule(currentGoal, database) do

if unify(currentGoal, rule, solver) then
goals.append(rule.body)
branch(goals, solver, database)

end

end
backtrack()

end
return false

end

to unify (see below) the goal with all grounded facts with the same predicate in the

database. For each successful unification, the algorithm recursively branches on the rest

of the goals. When all possible facts have been tested (i.e. no proving fact could be

found), the algorithm backtracks to a previous state in order to continue the search. The

procedure for intentional goals is similar. The only difference is that the algorithm now

tires to unify the head of the rules with the same predicates than the goals, and adds

the body of the rule to the pending goals if the unification is successful. Overall, this

algorithm is a classical depth first search algorithm. The part specific to Datalog is the

unification algorithm, which feeds a constraint satisfaction solver with new constraints

while the search goes on.

The unification procedure applies on two atoms: the current goal, and a ground fact, or

the head of a rule, depending on whether the current goal is extensional or not. It returns

true if the two atoms can be unified and false otherwise. Two atoms can be unified if

they have the same predicate, and all their arguments (variables and/or constants) can

be unified two by two (the first argument of the first atom with the first argument of

the second atom, the second argument of the first atom with the second argument of

Chapter 8. Implementation 116

the second atom, etc.). The rules for the unification of two arguments, depending on

their type are the following:

• Two constant unify if they are equal.

• A constant c and a variable x unify if the constraint c = x (added to the solver) is

satisfied.

• A variable x and a variable y unify if the constraint x = y (added to the solver) is

satisfied.

So the unification mechanism produces constraints, which are added to the solver, which

in turn checks that all constraints are compatible (for instance, if we have the constraints

x = 1 and y = 2 in the solver and we try to add the constraint x = y during an

unification, then all constraints cannot be satisfied at the same time and the unification

fails). The solver keeps the constraints in memory during the search12, so the effect

of Algorithm 2 is actually to build a constraint satisfaction problem (only containing

equality constraints), while unifying atoms and branching in the search tree.

As it is usually presented, the unification mechanism does not include an external solver.

Using an external solver is only used in the case of constraint logic programming, where

we have the possibility of adding different constraints and build more complex constraint

satisfaction problems. While the current implementation does not support other con-

straints than equality constraints, I expect that using ACG with types with features

would require such capacity. Therefore the implementation has been built using an

architecture fit for constraint logic programming in this perspective.

Since the implementation is custom made and the time for building it was relatively

short, many parts are implemented using naive approaches. In particular, the equality

constraint solver simply holds a collection of constraints and browses it each time a new

constraint is added. A (much) better way would involve an indexed graph structure.

Overall, the Datalog prover is usable in a prototype application, but would require some

work in order to be adapted to a production environment. As we will see in Chapter 9,

this situation makes it a bit difficult to evaluate with precision the performances that

we should expect of the ACG kernel in realistic situations. However the tests carried

out are encouraging, even with the shortcomings of the current implementation.

12The constraints are local to a derivation, so when the algorithm backtracks, it also removes the

constraints added during the last step.

Chapter 8. Implementation 117

8.2.3 Inversion of a lexicon

The inverse image of a λ-term by a lexicon can be obtained using a reduction of the

problem to Datalog querying (Kanazawa, 2007). The principle is to build an intentional

database from the lexicon and an extensional database from the input λ-term. The

resulting program can then be queried in such a way that the derivations proving the

query correspond exactly to the inverse images of the input λ-term (each valid derivation

is isomorphic to a λ-term over the abstract signature of the lexicon if and only if the

image of this λ-term by the lexicon is the λ-term that we want to inverse).

8.2.3.1 Reduction of a lexicon to an intentional database

A lexicon L is reduced to an intentional database as follows. For each constant c in

the abstract signature, we build a rule πc from the type of c, the image of c by L ,

L (c), and the principal type of L (c)13. The principal type of a term is the most general

type that can be associated with a λ-term. When we compute the principal type of

L (c), we consider the constants and variables as free variables14. This operation gives

us typing judgements on the λ-term and its constants and variables. For instance, using

the example of Section 8.2.1, the typing judgements obtained from λxy.clove x y are:

clove : α1 → α2 → α3

x : α1

y : α2

clove x y : α3

Using these typing judgements, we can build a Datalog rule as follows:

• For each atomic type in the type of c, and for each constant in L (c), build an

atom, using a predicate named after this atomic type or this constant.

• Fill each atom with variables using the following procedure:

– Take the typing judgement of the constant or variable associated with the

atom (for the return type of the interpretation type, use the typing judgement

of the whole term).

13In the case where we have multiple images for a constant, a rule is created for each image of the

constant. Another way to say it is that we duplicate the abstract constant in order to have pairs of

abstract constant/object λ-term, and use these pairs in order to build the rules of our program.
14The λ-term must be in η-long form. In our case, the typing judgement can be obtain directly from

the term graph representation of a λ-term, see (Kanazawa, 2011).

Chapter 8. Implementation 118

– For each atomic type in this typing judgement, add a variable to the predicate.

This operation is done from left to right, and the variables should be coherent

between the different predicates (for instance, the atomic type α1 should

always be replaced by the same variable X1).

• The head of the rule is the atom associated with the return type of the type of c.

The other atoms go in the body of the rule.

For example, let’s build the intentional database associated with the example lexicon

Lder-log. This lexicon maps the abstract constant dlove of type NP → NP → S to the

λ-term λxy.clove x y (i.e. the η-long form of the constant clove). The rule associated with

this constant contains four atoms: the atoms NP (), NP () and S() built from the atomic

types of the type of dlove, and the atom clove() from the constants of Lder-log(dlove). These

atoms are filled with variables, using the typing judgements obtained from λxy.clove x y

described above: the first NP () atom (corresponding to the variable x in λxy.clove x y)

is filled with the variable associated with the type α1 (X1), the second NP () atom

(corresponding to the variable y) is filled with the variable associated with the type

α2 (X2) and the atom S() associated with the return type is filled with the variable

associated with the type α3 (X3). Finally, the atom clove() is filed using the type

α1 → α2 → α3. Putting all the atoms together gives us the rule:

S(X3) :- clove(X1, X2, X3), NP (X1), NP (X2).

Note that the atoms associated with the constants (here clove(X1, X2, X3)) are put before

the other atoms in the body of the rule. This is important since the Datalog prover uses a

depth first search algorithm and needs to avoid recursion as much as possible (predicates

associated with constants are always extensional predicates, which cannot have recursive

definitions). Applying the same logic to the other mappings of our example lexicon

Lder-log gives us the intentional database:

S(X3) :- clove(X1, X2, X3), NP (X1), NP (X2).

NP (X1) :- cJohn(X1).

NP (X1) :- cMary(X1).

To summarize, the reduction process could be interpreted as follows. In order to get the

inverse image of a λ-term by a lexicon, we need to take into account both the structure of

the λ-terms built over the object signature, and the types of the constants of the abstract

signature, which constrain the possible combinations of the λ-terms built over the object

Chapter 8. Implementation 119

signature. The reduction to Datalog combines these two constraints into Datalog rules.

The principal type of a λ-term gives us the information about its structure, and it is

combined with the type of an abstract constant which gives us the information about

the allowed combinations.

8.2.3.2 Reduction of an input λ-term to an extensional database

The reduction of the input λ-term to an extensional database follows approximately

the same process as the reduction of an abstract constant and its image to a Datalog

rule. First we need to associate a type with the input λ-term (corresponding to the

type of the abstract constant in the reduction described previously). By default, we

take the distinguished type of L 15. Using the distinguished type, we can apply the

same procedure than in Section 8.2.3.1 for building a set of atoms, with the following

differences:

• the atoms are ground facts, so instead of variables, the atoms are filled with con-

stants (e.g. integers).

• Instead of building a rule, we take all the atoms built from constants in order

to make an extensional database, which is associated with the previously built

intentional database.

• Since the distinguished type is always an atomic type, there is only one atom left

after building the database. This atom is used as a query.

Let S be the distinguished type of our example lexicon Lder-log, which represents sen-

tences. Using this type to reduce the λ-term clove cJohn cMary to a set of atoms, we

obtain the following extensional database:

clove(1, 2, 3).

cJohn(1).

cMary(2).

And the query:

?- S(3).

There is a slight complication when the input λ-term contains more than once the same

constant. Since the reduction to Datalog rules of Section 8.2.3.1 sees duplicate variables

15This type can also be given as a parameter of the function Lexicon::parse. This allows for instance

to interpret input concepts using different syntactic types (e.g. noun phrase or sentence).

Chapter 8. Implementation 120

with atomic type as a unique variable, we need also to see duplicate constants with

atomic type as a unique constant when we reduce the input λ-term. Therefore in this

case the computation of the principal type is modified to see duplicate constants with

atomic type as one single constant.

8.2.3.3 From derivations to inverse images

The reductions described in Sections 8.2.3.1 and 8.2.3.2 give us a program and a query.

Running the program against the query gives us a set of program derivations. Kanazawa

(2007) shows that, under the condition that the program and query have been built from

a lexicon L and input λ-term using the procedure given in the previous sections, the

set of derivations of the program is isomorph to the set of inverse images of the input

λ-term, where each derivation corresponds exactly to one of these inverse images. The

inverse images are recovered by substituting the rules in the derivations by constants

of the abstract signature of L . For instance, let’s continue with our input λ-term

clove cJohn cMary. The intentional database, extensional database and query are:

intentional : S(X3) :- clove(X1, X2, X3), NP (X1), NP (X2). π1

NP (X1) :- cJohn(X1). π2

NP (X1) :- cMary(X1). π3

extensional : clove(1, 2, 3). f1

cJohn(2). f2

cMary(3). f3

query : ?- S(3).

Figure 8.3 shows the derivation of a solution to the query and the associated inverse

image. First we prune the leaves of the derivation (i.e. the facts), then we substitute

the rules by the abstract constants which have been used to build them. The result is

an intermediary internal structure, which is a tree of λ-terms, called a decomposition

of the input λ-term in terms of the abstract constants of the lexicon. The inverse

image associated with a decomposition is obtained simply by applying each node of the

decomposition to its children and β-reducing the resulting expression.

To summarize, the function Lexicon::parse has three main steps:

1. Build an intentional database from the lexicon mapping.

2. Build an extensional database from the input λ-term. This steps also gives us a

query.

Chapter 8. Implementation 121

π1{X1 = 1, X2 = 2, X3 = 3}

π3{X1 = 2}

f3

π2{X1 = 1}

f2

f1

λxy.clove x y

cMarycJohn

Figure 8.3: A program derivation (on the left) and its associated decomposition (on
the right). The derivation contains the sequence of rules and facts which have been
unified during the search. For the rule nodes π1, π2 and π3, the final result of the
unification of the variables is indicated. On the right, the decomposition is obtained
by pruning the leaves of the derivation and substituting the rule nodes by the abstract

constants which have been used to build them.

3. Run the program against the query, and convert the derivations of the program

into λ-terms built on the abstract signature of the lexicon. The resulting set of

λ-terms is returned by the function.

The first step does not depend on the input of the function Lexicon::parse and is

cached by the instances of the class Lexicon (i.e. the intentional database is only

computed once, during the first call to the function parse of a particular instance of the

class Lexicon). An input λ-term may have an infinity of inverse images by a lexicon.

In this case the function Lexicon::parse throws an error16.

8.2.4 Transferring and choosing solutions

The job of the function ComposedLexicon::translate is to compose different trans-

formations (mapping or inverse mapping). This operation involves the transfer of

the results of a transformation to another one. The basic workflow of the function

ComposedLexicon::translate is the following:

1. Compute the path from the origin signature to the target signature (see Sec-

tion 8.1.3). This gives us a sequence of transformations (each element in the

sequence corresponds to a call to either Lexicon::realize or Lexicon::parse).

2. Apply the first tranformation in the sequence to the input λ-term. Since the

implementation allows to define a constant with several images by a lexicon,

both Lexicon::realize and Lexicon::parse may return a collection of λ-terms.

Therefore the result of the first transformation can always be considered as a

collection of λ-terms.

16Allowing an infinite number of inverse images complexifies the implementation and the added com-

plexity could not be justified by concrete use cases.

Chapter 8. Implementation 122

3. Apply the second transformation in the sequence (if any) to all elements of the

previously computed collection of λ-terms. This involves multiple calls to either

Lexicon::realize or Lexicon::parse, each one of these calls returning a col-

lection of λ-terms. All the collections thus computed are concatenated. The

collection of λ-terms resulting from this concatenation is the result of the second

transformation in the sequence.

4. The last step is repeated for each transformation left in the sequence, using the

results of the previous transformation in the sequence, until the last transformation

is reached. The result of the last transformation is the result of the function

ComposedLexicon::translate.

8.2.4.1 Merging lexicons

Some sequences of transformation can be merged into a single transformation. Indeed,

when we have two consecutive calls to the function Lexicon::realize or two consecutive

calls to the function Lexicon::parse, we can create a new lexicon, whose function

realize or parse is the composition of the two consecutive calls. For instance, in our

example we have the composition Ltag-str(Lder-tag(L
−1
der-log(. . .))). The lexicons Lder-tag

and Ltag-str can be merged into a lexicon Lder-str as follows:

Lder-str = {S,NP : o→ o,

dlove : λxyz.x (“loves” (y z)),

dJohn : “John”,

dMary : “Mary”, }

Using this new lexicon gives us the composition of transformations: Lder-str(L
−1
der-log(. . .)).

Merging lexicons allows to precompute intermediate results, and only needs to be done

once for all calls of the function ComposedLexicon::translate (in the case of two con-

secutive inverse mappings, it also allows to build only one extensional database instead

of several ones). This optimization is done systematically, and the new lexicons are

chached by the instances of the class ComposedLexicon. Note that the optimization

applies recursively to sequences of more than two similar transformations. By applying

this optimization, we ensure that we have the following property: in a sequence of trans-

formations, a mapping (i.e. call to the function Lexicon::realize) is alway followed by

an inverse mapping (i.e. call to the function Lexicon::parse), and an inverse mapping

is always followed by a mapping.

Chapter 8. Implementation 123

8.2.4.2 Choosing a solution

In practice, we only need to generate a single text, so we need to choose among the

different solutions returned by the functions Lexicon::realize, Lexicon::parse and

ComposedLexicon::translate. Each of these function implements a choice mechanism

which is active by default (i.e. by default these functions only return a single λ-term).

The functions Lexicon::realize and Lexicon::parse simply choose at random among

all the solutions, using a uniform distribution17. The function ComposedLexicon::translate

has a different behaviour, which depends on the sequence of transformations used. There

can be two kinds of composition:

• A mapping (Lexicon::realize) followed by an inverse mapping (Lexicon::parse).

• An inverse mapping followed by a mapping.

In the second case, the results of the inverse mapping operation are passed to the map-

ping operation, which may therefore be called several times. Since the mapping operation

is fast, this does not raise any particular problem, and we can simply gather all the results

of the mapping operation and then choose at random among these results using a uniform

distribution. However in the first case, calling repeatedly the inverse mapping operation

using the results of a mapping operation is very expensive. Therefore the default be-

haviour of the function ComposedLexicon::translate is to “cut” the accumulation of

solutions in this case. When there is a mapping followed by an inverse mapping, the func-

tion ComposedLexicon::translate first chooses at random a solution of the mapping

operation using a uniform distribution, and then apply the inverse mapping operation

to this unique solution only. In this case, the final solution is not chosen uniformly on

the set of all possible solutions of the function ComposedLexicon::translate, but an

independence assumption is made in order to avoid too much computation. In prac-

tice, this independence assumption usually corresponds to the independence assumption

between the document planner and microplanner modules (see Section 8.3).

8.2.5 Generation of λ-terms

The last function to analyse is the function Signature::generate, which takes a type

and generates λ-terms of this type on a signature. In practice, the purpose of this

17In a complex scenario, we might imagine using other distributions, as for instance a distribution

based on some language model. In practice, most industrial applications do not require such model

and we can consider all alternative solutions as equivalent. Moreover the variability of the text is often

an important factor, and using a distribution which favours only a few solutions by default would be

counter-productive (although it might be the right choice in some particular cases).

Chapter 8. Implementation 124

function is to generate document plans (see Section 8.1.2). It only generates second-

order λ-terms and throws an error if an infinite number of λ-terms of the given type

can be built. Internally, the function is based on the same Datalog prover used for

the inversion of the lexicon. The basic idea is a simplification of the reduction of the

inversion of the lexicon to Datalog querying, and the function follows the same main

steps:

1. Build an intentional database.

2. Build an extensional database.

3. Query the program thus built and convert the derivations of the program to λ-

terms.

Since we only have to combine constants without any constraint coming from a mapping

to λ-terms in an object signature, the construction of the program is much simpler.

The only constraint on the combinations of λ-terms comes from their type. For each

constant c of type α in the signature, we add a rule πc to the intentional database using

the following procedure:

• Create an atom for each atomic type in α and an atom for c. The arity of all

predicates is zero.

• Create a rule by using the atom associated with the return type of α as the head,

and the other atoms as the body of the rule.

The extensional database only contains an atom for each constant in the signature (again

using predicates of arity zero). The input type is used to create an atom that is used

as query. For example the intentional database, extensional database and query built

when calling the function generate(t) on the signature Σlogics is:

intentional : t :- clove, e, e. π1

e :- cJohn. π2

e :- cMary. π3

extensional : clove. f1

cJohn. f2

cMary. f3

query : ?- t.

Chapter 8. Implementation 125

And the result of the call is the set of λ-terms:

{clove cJohn cMary,

clove cJohn cJohn,

clove cMary cJohn,

clove cMary cMary}

Using a Datalog prover in order to list second-order λ-terms built on a signature is

probably a bit too complex, given simplicity of the task (we do not need the unification

mechanism of Datalog). However it allows to reuse the same indexation mechanism and

the same search strategy in both Signature::generate and Lexicon::parse, which

simplifies the implementation and is easier to optimize and maintain. Moreover, choosing

to use a solver for the function Signature::generate might be justified in the case of

types with features, which will probably need to be implemented at some point.

This concludes the detailled description of the functions Lexicon::parse, ComposedLexicon::translate

and Signature::generate, which constitute the core functionalities of the implemented

ACG based NLG framework. The focus of the implementation of this kernel is efficiency

(although much is yet to be done on that point) and concision. However, a lot of lin-

guistic knowledge is still needed in order to use the kernel for practical applications. As

explained in Section 5.1, the position taken in this thesis is that ACG should be used

as a kernel technology upon which other abstractions can be built in order to provide a

simple and usable tools as possible for the developers of NLG systems. For instance, in

Chapter 7, I have shown that we may use a schema-like representation as an overlay ab-

straction over an ACG kernel. Before building overlay abstractions, a simpler approach

is to provide linguistic resources in the form of predefined grammars, which can be used

in all applications, or in specialized fields. Such resources have been developed along

with the ACG kernel and are presented in Section 8.3.

8.3 Linguistic resources

The prototype implementation provides signatures and lexicons corresponding to docu-

ment planning and microplanning for English and French. The main reusable resource

developed in this context is an English grammar based on X-TAG (XTAG Research

Group, 2001). The other resources have been developed mainly for testing purposes and

are application specific, although some have been thought as libraries which could be

adapted to other applications.

Chapter 8. Implementation 126

Σrhetorics

Σlogics

Σen
derivations Σfr

derivations

Σen
derived Σfr

derived

Σstrings

Lrhe-log

L en
der-log L fr

der-log
L en
der-der L fr

der-der

L en
der-str L fr

der-str

Figure 8.4: The signatures and lexicons provided along with the ACG kernel.

Figure 8.4 shows all the signatures and lexicons. The signature Σrhetorics is meant for

describing document plans based on RST relationships as defined in Section 7.4. The

set of atomic types of Σrhetorics contains a single atomic type τ . The constants of the

signature, as well as the lexicon Lrhe-log are defined on a per application basis (see

Chapter 9 for an example application using this signature). The signature Σlogics de-

fines logical sentences at the semantic level. The details of this signature are exposed

in Section 8.3.1. The signatures Σen
derivations, Σen

derived and the lexicon L en
der-der represent

the X-TAG grammar. These objects and the associated resources are described in Sec-

tion 8.3.2. The French grammar, represented by the signatures Σfr
derivations, Σfr

derived and

the lexicon L fr
der-der is a custom made toy grammar, built on the same model than their

English counterparts only for the purpose of testing a multilingual setup. A true French

grammar still needs to be developed. The signature Σstrings is the signature defined

in Section 6.2.3, and the lexicons L en
der-str and L fr

der-str map the derived trees of their

abstract signature as described in the same section. Finally, examples of the English

syntax-semantics interface represented by the lexicon L en
der-log are given in Section 8.3.3.

In addition to these signatures and lexicons, three composed lexicons have been created

for testing purposes (see Chapter 9):

• L en
micro, which contains the lexicons L en

der-log, L en
der-der and L en

der-str and can be used

to translate logical sentences to strings, thereby performing microplanning tasks

for the English language.

• L en
doc, which contains the same lexicons than L en

micro plus the lexicon Lrhe-log. It

is used to translate document plans to strings in English.

• L fr
doc, which contains the lexicons Lrhe-log, L fr

der-log, L fr
der-der and L fr

der-str. It is

used to translate document plans to strings in French.

These resources are by no means complete, and a lot is yet to be done in order to provide

robust general purpose resources for microplanning and document planning. However

Chapter 8. Implementation 127

they allowed to conduct a few tests, described in Chapter 9, in order to show the validity

of the general approach in realistic situations.

8.3.1 Semantics

The semantic resources were built in a particular context. Since the signature Σlogics

corresponds to the input of the microplanner, it means that one needs to build λ-terms on

this signature in order to use the microplanner. Therefore, this signature is particularly

“visible” from a user perspective (i.e. from the perspective of someone building a NLG

system using the framework). In the long run, the goal here is to provide libraries of

concepts for different specialized fields, in such a way that building an application in this

domain does not require anything else but manipulating the concepts provided by the

library in order to describe the output texts at a conceptual level. The constraint on the

design of the semantic level is therefore to be as simple as possible, in order to require as

little linguistic knowledge as possible (in other words, the usability requirement is very

high). As a consequence, some expressivity has been sacrificed in order to simplify the

signature Σlogics, as compared for instance to Montague semantics.

Σlogics contains only one atomic type c (for concept). Relations are represented as func-

tions taking two arguments and action and state predicates (i.e. predicates textualized

by verbs), take both their usual arguments (e.g. agent and patient) and their modifiers.

For instance, take the following λ-term

ccontrast (cdecrease cturnover (cin cdecember))(cimprove cturnover (cin c2015) (cto c600,000))

This conceptual representation may be textualized as: “The turnover decreased in De-

cember, but it improved during 2015 to $600,000.” (see Section 8.3.3 for the complete

definition of the constants and their textualisations). The constant ccontrast : c→ c→ c

represents the contrast relationship (textualized by the connector “but”). The constants

cdecrease : c → c → c → c and cimprove : c → c → c → c are both textualized by an

intransitive verb and take one main argument, plus a time modifier and a value modifier.

Modifier concepts, such as the constant cin representing a time period modifier, are tex-

tualized by prepositions and take the concept textualized by the rest of the modifying

clause as their argument. Ultimately, the conceptual representation used in the tested

applications follows closely the derivation tree of their textualisation (see Section 8.3.2).

Note here that in the example above, the constant cdecrease only takes two arguments

instead of three, as its type suggests. In order to improve readability, the implementation

includes a mechanism called default λ-terms, which allows to skip unused arguments

when building a λ-term on a particular signature. This mechanism works as follows:

Chapter 8. Implementation 128

in the signature used to build our λ-term (here Σlogics), we can declare a map which

associates each atomic type of the signature to a default λ-term. When a λ-term is built

on this signature, the constructor can use these default λ-terms in order to complete

missing arguments using the default λ-term associated with the type of this missing

argument18. This feature can only be used where we can deduce the signature on which

the λ-term is built from the context (for instance if the λ-term is declared in a lexicon,

or as an argument of a ComposedLexicon::translate function). In Σlogics, the atomic

type c is mapped to the default λ-term cid, which has an empty textualisation. The

complete λ-term built from the example above is therefore (the constants cin and cto

take two arguments, see Section 8.3.3):

ccontrast (cdecrease cturnover (cin cdecember cid) cid) (cimprove cturnover (cin c2015) (cto c600,000 cid)

Another mechanism used to improve readability and ease of use is the mechanism of

named arguments (see Section 8.1.1). Each argument of a concept is associated with

a name, which can be used to refer to this argument when building a λ-term. This

allows not to rely solely on the order of the arguments, which can be hard to re-

member (especially if a lot of modifiers are possible). As an example, the λ-term

cdecrease cturnover (cin cdecember) will most often be written as follows in the code base19:

decrease ({

QUANTITY: turnover ,

TIME: in(december),

VALUE: to(dollars600000)

})

The named arguments mechanism is combined with the default λ-term mechanism, in

order to complete the missing arguments. Together they allow to manipulate concepts

with less effort than the usual λ-term manipulation.

A last mechanism provided at the semantic level is the thing function. This function

is used to dynamically create placeholders from a surface string representation. This

is used when some parts of the conceptual representation are only known at runtime

(see Chapter 7). For instance, in the example above, the constants cdecrease, cin and

cto represent relatively general concepts, while the constants cturnover, cdecember and

c600,000 are very specific and represent values which are usually given in the input of the

application. For this kind of values, we can use the function thing in order to build the

constants from the input information as follows:

18In the implementation, only atomic type can have default λ-terms, but this could be extended to

complex types as well.
19I use here a JAVA-like syntax with a function taking a map as argument. The syntax of YML allows

to use named arguments by default, so the brackets are not necessary in practice.

Chapter 8. Implementation 129

decrease ({

QUANTITY: thing ("the turnover"),

TIME: in(thing(" December ")),

VALUE: to(thing ("600 ,000 dollars "))

})

The strings "turnover", "december" and "600,000 dollars" are input values of the

NLG system. These input values are integrated into the conceptual representation using

the function thing which creates new λ-terms and mappings in such a way that the λ-

term returned by the function is a constant of type c with the string given as a parameter

as its textualisation. Of course, this mechanism is not ideal, and a lot still needs to

be done in order to have a smooth integration of input information into conceptual

representations. Placeholders should be created at compilation time. Also, the function

thing only takes a string. Ideally, there should be a function for each different kind of

input. In this example for instance, we have a date (December), and an integer value

with a unit ($600,000), which should have their own integration mechanism, without

having to first textualise them. A good target mechanism would be to allow any kind

of object as arguments of a constant (and more generally a λ-term), and automatically

convert the objects into constants using their type information (i.e. whether it is an

object of type Date or Integer). This possibility has been left for future developments.

Definitions at the semantic level have been used in two test applications (see Chapter 9).

A special effort has been made for one of these applications, in order to build a small

library of about forty concepts20, reusable in all applications in the domain of business

intelligence (Den Os, 2015). These concepts have been aggregated from the analysis

of half a dozen existing application in the domain. However to this day the resulting

library has only been tested on a single application (though a very complex one), so

some work is probably still to be done in order to produce a stable library.

8.3.2 English grammar

The signatures Σen
derivations, Σen

derived and the lexicon L en
der-der follow the ACG representa-

tion of TAG defined in Section 6.2.2: Σen
derivations contains syntactic types corresponding

to substitutions and adjunctions ({S, Sa, NP,NPa, V P, V Pa, V, Va, . . . }), and constants

corresponding to specific words or expressions. Σen
derived only contains the atomic type τ ,

and constants for the different possible nodes of a syntactic tree ({S1, S2, NP1, NP2, N1, V P2, . . . }).
20Most entities, such as dates, numbers, etc., are application specific, and even specific to a particular

input. Therefore most of the reusable concepts correspond to actions such as “increase” or “decrease”

and modifiers.

Chapter 8. Implementation 130

The abstract constants of L en
der-der are mapped to (λ-terms representing) syntactic trees

built on Σen
derived.

The predefined English grammar is a set of tree templates built on Σen
derived. A tree

template is a tree where the leaf corresponding to the anchor of the tree has been

replaced by a variable. A tree template can be instantiated by applying it on a leaf node

(i.e. a constant of type τ). For instance, one of the tree templates for an intransitive

verb is:

λx np1 sa vpa.sa (S2 np1 (vpa (V P1 (V1 x))))

This template can be instantiated by applying it on the constant timproved : τ represent-

ing a past participle anchor for the verb “to improve”, resulting in the tree:

λnp1 sa vpa.sa (S2 np1 (vpa (V P1 (V1 timproved))))

The grammar has been adapted from X-TAG (Den Os, 2015)21. It contains about one

thousand tree templates, divided into 57 verbal tree families and 123 non verbal isolated

trees. The grammar is defined using a metagrammar (Candito, 1999), using the tool

XMG (Crabbé et al., 2013). This tool outputs a grammar in XML format, which is then

translated into YML λ-terms using a custom converter written in JAVA.

While the metagrammar contains information about features, this information is ignored

by the converter. This is a limitation of the actual implementation, as types with

features have not been implemented yet. The result is that some phenomenons, in

particular morphological ones like agreements and tense, are not handled by the YML

version of the grammar. This didn’t pose a problem for the example application used

to test the prototype. In those cases the tense is fixed, and there were no agreements

that could not be hard coded. However it is not sufficient in the general case, and in

particular when generating French, which has more agreement rules than English. While

the ideal approach would be to include all the features in the grammar, an alternative

solution can be used. The signature Σstrings contains constants which are associated

with YML objects22. Usually, these objects are strings, but we may use any other kind

of object. For instance, one could use a textualisable reference, in order to apply a

referring expression generation algorithm in post treatment. In general, the “string”

which results from calling the ACG module can be considered as a linked list of objects,

which can then be processed by other modules down the line. This can be used in

21The grammar follows closely the X-TAG definitions. The adaptation concern some technical features,

plus a few trees for discourse level syntactic trees. The metagrammar, as well as the JAVA converter

and the semantic library of the last section have been created by Den Os (2015).
22All constant are associated with a symbol which identifies them. This symbol can be any YML

object.

Chapter 8. Implementation 131

particular to apply agreement rules. This shows that although the ACG module does

not copes with all the phenomenons we might need yet, the fact that it is integrated in

a larger NLG frameworks allows to delegate some problems to existing functions in a

relatively simple way.

In an application, the grammar is used by creating constants in the signature Σen
derivations

and linking them to tree templates instantiated with an anchor. For instance, an applica-

tion may define the constant dimproved : NP → Sa → V Pa → S with L en
der-der(dimproved) =

λnp1 sa vpa.sa (S2 np1 (vpa (V P1 (V1 timproved)))). So using the grammar still involves

a lot of linguistic knowledge, as one need to define the vocabulary and instantiate the tree

templates of the grammar that correspond. In the tested applications, the vocabulary

has been created from scratch. However, one could create a general purpose dictionary

from an existing linguistic resource such as the Lefff (Sagot, 2010), which could then be

used in any application. This possibility has been left for future research.

In order to ease the creation of the vocabulary of an application and to integrate input

information, a few dynamic mechanisms have been added to the grammar. First, a few

function allow to instantiate several tree templates at once by grouping them in families.

For instance, we have the function transitiveVerb, which takes a string, and returns

a collection tree templates (for instance active and passive forms) instantiated with the

input string. This mechanism is not ideal, and has been implemented temporarily in

order to compensate for the lack of types with features. Indeed, there is no particular

reason to define tree families dynamically, and a better mechanism would be to use

types with features in order to defined static parametrized sets of tree templates, which

could then be specialized for different usages. Another dynamic mechanism, which is

more justified, is the possibility of creating constants and mappings dynamically, in

order to incorporate input information into the grammar. There are two functions used

for this purpose in practice: createAnchor and createNP. The first function takes a

string and returns a constant of the signature Σen
derived of type τ , where the image of

this constant by L en
der-str is a constant of type o → o associated with the input string.

This function is used to dynamically create anchors from input information, or in the

case of the dynamic tree families described above from user specifications. The function

createNP is a wrapper of createAnchor which takes a string returns a constant d of the

signature Σen
derivations where L en

der-der(d) = createAnchor(s) (where s is the input string).

This function is in turn used by the function thing described in the Section 8.3.1 on

semantics. Together, the three functions thing, createNP and createAnchor represent

the dynamic aspect of the grammar, and allow to include input information into the

ACG module.

Chapter 8. Implementation 132

8.3.3 Text variability

Building a NLG system using the linguistic resources described so far includes two

separate tasks:

• First, one needs to define the concepts used in the application. This involves

declaring the right constants at the semantic level and at the derivation level and

adding the right mappings in the lexicons. This task is subject to automation

or semi-automation in several ways (e.g. by defining a predefined vocabulary or

library of concepts).

• Second, one needs to associate λ-terms built on the the signature Σsemantics with

the different messages of the application (for now we consider that the document

planning phase is done by an external module). This step is done dynamically,

using the NLG framework language.

Ideally, the ACG definitions allow a faithful representation of the different messages of

the application, while associating many textual variations with these representations.

However in practice such situation would require very high level concepts. The choice

made here (though it is by no means a definitive one), is to use a relatively low level

semantic representation. Therefore the semantic level only allows limited textual varia-

tions for a particular concept. This implies that some of the effort for defining textual

variations may be reported on a higher level, which correspond here to the second task,

where the NLG system builds the semantic representation of a particular message (i.e.

the NLG system may build several “synonymous” semantic representation for a par-

ticular message in order to improve variability). While this situation is not ideal, it

seems that in practice most applications have simple enough needs in terms of output

variability, for it to be a good compromise between expressivity and simplicity. As an

illustration of some possibilities of textual variation using the ACG definition of the con-

cepts, let’s use the λ-term shown in Figure 8.5 from the business intelligence domain,

corresponding to the meaning of “In December the turnover decreased, but it improved

to 600,000 dollars during the year.”.

In this example, we have six concepts defined statically: contrast, decrease, improve,

in, during and to, that we shall note ccontrast, cdecrease, cimprove, cin, cduring and cto

respectively. The other concepts are built dynamically using the function thing. Note

that here this function takes as parameter the object turnover which is not a string.

This illustrates how one can mix referring expression generation with the ACG module.

Here the object turnover is an object of an existing YML framework which is recognized

by the referring expression generation module as an entity. Therefore it will be processed

Chapter 8. Implementation 133

contrast(

decrease ({

QUANTITY: thing(turnover),

TIME: in(thing (" December ")),

}),

improve ({

QUANTITY: thing(turnover),

TIME: during(thing("the year")),

VALUE: to(thing ("600 ,000 dollars "))

})

)

Figure 8.5: Example microplanner input from the business intelligence domain. The
object turnover is an YML object recognized processed by the existing NLG framework
as a reference to an entity, and is used to perform referring expressions generation, after

the execution of the ACG microplanner.

by this module wherever it is positioned in the text after the ACG module has done

its job, resulting either in the textualisation “the turnover” or “it”. In details, given a

string s (or any object that can be textualized), the function thing creates the following

constants and mappings:

cs : c→ c→ c

ds : NPa → Na → NP

ts : τ

ss : o→ o

L en
der-log(ds) = cs

L en
der-der(ds) = NXN(ts)

L en
der-str(ts) = ss

Where NXN = λa npa na.npa (NP1 (na (N1 a))) is the noun phrase tree template of

the grammar23. Figure 8.6 shows the definitions associated with the concepts contrast,

decrease, in, and to (the definitions for the concept improve are similar to the ones

for the concept decrease and the definitions for the concept during are similar to

the definitions for the concept in). These definitions illustrate different kinds of varia-

tions. The concepts ccontrast and cdecrease both have several inverse image by the lexicon

23The names of the tree follow the X-TAG notation. Note here that according to the grammar, when

the noun phrase contains a determinant, the determinant should be anchoring another tree and then be

adjoined to the tree NXN. This can be done relatively easily by separating the determinant and the noun

in two strings anchoring two trees combined together (the combination of the two trees forms a new

tree template, which has two anchors; named arguments are very useful for building new tree templates

from existing ones). However the input information may provide strings already containing both the

determinant and the noun, in which case we simply treat it as a noun as in the example.

Chapter 8. Implementation 134

L en
der-log, representing synonymous wordings. The textualisations of cdecrease are “per-

fect” synonyms because they all use the same tree template returned by the function

intransitiveVerb24 (see the tree template in Section 8.3.2). The textualisations of

ccontrast however, use two different tree templates. The function conjunction returns

the tree template λa s1 s2.S4 (s1 tcomma a s2), which concatenates two sentences with

a comma and a conjunction and the function adverbSentence does the same thing but

with a period and an adverb. The concept cin uses a different kind of variation, playing

on the position of the complement (left or right). The function sentenceModifier re-

turns two tree templates, one adjoining a complement on the left of a sentence node and

the other one the right. For the concept cto, the function prepositionalComplement

returns a tree template adjoining a complement on the right of a verbal phrase node.

To summarize, we have three different wordings for the concept cdecrease, two for the

concept ccontrast, two different positions for the concept cin and only one for the concept

cto. Additionally, not shown on the Figure 8.6, we have three different wordings for the

concept cimprove (“improved”, “bettered” and “progressed”) and two positions for the

concept cduring. The possibilities multiply out to give 72 textual variant for our original

logical sentence. More interesting variations are possible by adding a variant to the

concept ccontrast as follows:

ddespite : NP → S → S

L en
der-log(ds) = ccontrast

L en
der-der(ds) = commaSentenceModifier(“despite”)

This variant allows to generate sentences like: “Despite the decrease of the turnover

in December, it improved to 600,000 dollars during the year”. in order to use this

variant, one needs first to add variants to the concepts cdecrease, cin and to the function

thing in order to be able to express them either as a noun phrase or as a modifier

of a noun phrase. For this purpose we add the following constants to the signature

Σderivations: dthe decrease : NP → NPa → NPa → NP , din np : NP → NPa → NPa

and dto np : NP → NPa → NPa and map them to their respective tree templates

(the function thing is modified in order to return concepts with two variants, one

being a noun phrase and the other a noun phrase modifier with the preposition “of”).

Using three different wordings for the textualisation of the concept cdecrease (e.g. “the

decrease”, “the reduction”, “the diminution”), we arrive at a total of 90 variants for

our example conceptual sentence. Figure 8.7 shows two of these possible variants, along

24As indicated before, in practice there should be several trees in a family, and the function

intranstiveVerb should allow to select different subsets of the family. For now, only the variants

of passive and active forms for the transitive verbs have been tested.

Chapter 8. Implementation 135

contrast

ccontrast : c→ c→ c

dbut : S → S → S

dhowever : S → S → S

L en
der-log(dbut) = ccontrast

L en
der-log(dhowever) = ccontrast

L en
der-der(dbut) = conjunction(“but”)

L en
der-der(dhowever) = adverbSentence(“however”)

decrease

cdecrease : c→ c→ c→ c

ddecreased : NP → Sa → V Pa → S

dlowered : NP → Sa → V Pa → S

ddiminished : NP → Sa → V Pa → S

L en
der-log(ddecreased) = cdecrease

L en
der-log(dlowered) = cdecrease

L en
der-log(ddiminished) = cdecrease

L en
der-der(ddecreased) = intransitiveVerb(“decreased”)

L en
der-der(dlowered) = intransitiveVerb(“lowered”)

L en
der-der(ddiminished) = intransitiveVerb(“diminished”)

in

cin : c→ c→ c

din : NP → Sa → Sa

L en
der-log(din) = cin

L en
der-der(din) = sentenceModifier(“in”)

to

cto : c→ c→ c

dto : NP → V Pa → V Pa

L en
der-log(dto) = cto

L en
der-der(dto) = prepositionalComplement(“to”)

Figure 8.6: Example definition for the microplanner. The functions
conjunction, adverbSentence, intransitiveVerb, sentenceModifier and
prepositonalComplement are tree family functions. They return one or several trees
templates instantiated with the given parameter. These functions create constants in

the signatures Σderived and Σstrings corresponding to the anchors of the trees.

Chapter 8. Implementation 136

with their corresponding intermediary λ-terms built on Σen
derivations and Σen

derived. The

kind of variation shown in this example (expressing a concept either as a sentence or as

a noun phrase) is typically difficult to model correctly using template based approaches,

but have a natural expression using a grammar based NLG framework.

Other variations are possible, such as the variation between the active and passive form

for a transitive verb. However we are rapidly limited by the fact that the semantic

representation is very close to the level of derivation trees, and do not allow rewritings

more complex than basic words reordering. Also the syntax-semantic interface does not

handle recursivity, and problems arise when concepts have many possible modifiers. In

this case, the solution adopted here is to artificially augment the number of arguments

of the tree templates in order to be able to receive the different modifiers25.

Overall, the possible variations still allow a good variability, especially when compared

with more “templatized” systems, where variability based on words reordering is already

considered complex (though still possible). When using linguistic resources, once iden-

tified the possible variations can be applied very easily to many situations. Two people

with advanced linguistic knowledge, but no prior knowledge about ACG have used the

linguistic resources in order to generate sentences using the ACG kernel. The main feed-

backs are that it takes much to learn the basics, but that it is rather efficient once it is

done. Note that we have only used a small fraction of the grammar, and a lot is yet to be

done both in exploring the possibilities offered by linguistic resources in practice and the

methodology and tools for adapting the linguistic resources to particular applications.

25The problem here is very specific to the way the semantic level has been designed, and comes from

the fact that the modifiers of the concepts are not built in a recursive manner, but all apply directly

to the main predicate. This choice has been made in order to simplify the construction of λ-terms at

the semantic level, but it implies a lot of rigidity. An alternative is to use Montague semantics such as

described in (Pogodalla, 2009).

Chapter 8. Implementation 137

“the turnover decreased in December, but it improved to 600,000 dollars during the year”

dbut

dimprove

dto

dVPad“600,000 dollars”

dduring

dSad“the year”

dturnover

ddecrease

dVPadin

dSad“December”

dturnover

S4

S2

PP2

NP1

N1

t“the year”

P1

tduring

S2

VP2

PP2

NP1

N1

t“600,000 dollars”

P1

tto

VP1

V1

timproved

NP1

N1

tturnover

tbuttcommaS2

PP2

NP1

N1

t“December”

P1

tin

S2

VP1

V1

tdecreased

NP1

N1

tturnover

“despite the decrease of the turnover in December, it improved to 600,000 dollars during the year”

ddespite

dimprove

dto

dVPad“600,000 dollars”

dduring

dSad“the year”

dturnover

dthe decrease

dNPadin np

dNPad“December”

dturnover

S4

S2

PP2

NP1

N1

t“the year”

P1

tduring

S2

VP2

PP2

NP1

N1

t“600,000 dollars”

P1

tto

VP1

V1

timproved

NP1

N1

tturnover

tcommaNP2

PP2

NP1

N1

t“December”

P1

tin

NP2

PP2

NP1

N1

tturnover

P1

tof

NP2

N1

tdecrease

Det1

tthe

tdespite

Figure 8.7: The derivation tree and derived tree of two possible output variants of the
inpur λ-term of Figure 8.5. They represent λ-terms built on Σen

derivations and Σen
derived.

The strings shown for each example are the output of the micropanner after being
processed by the referring expression generation module.

Chapter 9

Results and perspectives

The ACG based NLG framework presented in Chapter 8 has been evaluated in realistic

situations, in order to validate that the approach is indeed a good candidate for being

the core technology of a general purpose NLG framework. The evaluation is presented

in Section 9.1. Sections 9.2 and 9.3 present the two applications which have been used

for evaluating the implementation and the conclusions drawn from this evaluation. Sec-

tion 9.4 presents the perspectives for future research, and Section 9.5 concludes this

thesis.

9.1 Evaluation

Evaluating a NLG framework is different from evaluating a NLG system. The evalua-

tion of a NLG system usually relies on the comparison between automatically generated

text and hand written ones against a particular goal or metric. For instance, Reiter

et al. (2003) compare automatically generated text and hand written ones as to their

effectiveness for persuading people to stop smoking. This kind of task based or goal

based evaluation is specific to a domain (here public healthcare), and involves humans

in real world experiments or in more controlled environments (Portet et al., 2009). Al-

ternatively, human ratings can be used in order to measure metrics such as readability,

coherence, etc. (Hunter et al., 2012). Machine learning based NLG tend to use auto-

mated metrics measurements, such as BLEU (Papineni et al., 2002) or METEOR (Lavie

and Agarwal, 2007).

All of these evaluation methods can only be used on a particular NLG system. They

measure how well a NLG system achieves its purpose, which is to generate human-like,

useful texts. On the other hand, the purpose of a NLG framework is to allow users

138

Chapter 9. Results and perspectives 139

to build such NLG systems easily. It is generally possible to achieve a similar NLG

system using different NLG frameworks, the difference being in the amount of effort

needed to achieve this result1. Therefore the evaluation of NLG systems, which only

evaluates the resulting NLG system, is not very helpful for evaluating and comparing

NLG frameworks.

It is not easy to evaluate a NLG framework, as it is expected to handle many different

scenarios, and a large part of the advantages it might have over another framework in

terms of simplicity are somewhat based on subjective appreciations, and fuzzy concepts

such as the amount of knowledge needed in order to use the framework effortlessly.

The metrics used for evaluating a NLG framework often come from the software design

world. For instance, Reiter and Dale (2000) defend a particular modular architecture

as both correct (i.e. including all the tasks needed to perform NLG) and efficient, and

Mellish et al. (2004) describe their approach using software architecture concepts such

as genericity and flexibility. The difficulty here lies in the fact that different authors will

often rely on different sets of software quality metrics. In order to keep the evaluation as

neutral as possible, the choice made in this thesis is to rely on a standard set of software

quality metrics introduced by Meyer (1988), and introduced in Section 5.1, namely:

correctness, extendibility, reusability, compatibility, robustness, ease of use, efficiency

and verifiability.

Correctness, the ability of the software to perform the task it has been created for, can

be interpreted in the context of a NLG framework as expressivity. Indeed, the broad

specification of a NLG system is to be able to define NLG systems for any kind of ap-

plication, and therefore to be able to express many different situations. We know, from

the research done in formal linguistics, that the framework will be able to represent

pretty much anything we might need to represent in practice. The sentences generated

in commercial applications are usually relatively common ones in terms of syntactic con-

struction, therefore the goal in this thesis is not to show that we can represent complex

linguistic phenomena using ACG. We have already seen some simple examples of mod-

elisation of output texts in Chapter 8, and we know that more elaborate representations

can be used if ever needed. On this point, an ACG based NLG framework does not

particularly distinguish itself from a “classical” NLG framework2.

1Some NLG frameworks may be intrinsically limited, or have a poor expressivity, which may impact

the NLG systems built from it. However any useful NLG framework has enough expressivity to represent

pretty much anything that might be needed by a realistic NLG system.
2Here and in the following, a “classical” NLG framework means a framework based on an imperative

programming style, with the power of expressivity of a general purpose programming language, and

following (more or less) the architecture from (Reiter and Dale, 2000). The classical NLG framework

archetype, also including the actual Yseop technology, is used to compare the advantages and drawbacks

of an ACG based NLG framework.

Chapter 9. Results and perspectives 140

Extendibility here means the ease with which a NLG system built using the implemented

framework can be modified, whenever there is a change in the specifications of the sys-

tem. In practice, extendibility comes from a good modular design. An ACG based NLG

framework forces a modular design, by using levels of abstractions as its basic compo-

nent. In this aspect, it therefore results in NLG systems which are easily extendible.

The same property also ensures a good reusability. The principle of using linguistic

resources in order to describe the output texts ensures that most of the definitions (at

least the ones up the syntactic level) are not application specific and can be reused in

other applications (for instance the vocabulary). The modularity of an ACG based NLG

framework gives it an advantage in terms of extendibility and reusability over a more

classical NLG framework. A classical NLG framework also use a modular design, but

the fact that all levels of abstraction use the same underlying representation pushes the

modularity of an ACG based NLG framework beyond what can be done with a classical

NLG framework. However it is not clear yet, as to how one could better benefit from

this advantage in terms of processes and development tools.

It is not very meaningful to evaluate the compatibility and robustness properties in

our particular context. For these properties, we rely on the fact that the framework

has been implemented in an existing technology, which already has them, as any other

industrial software. A similar remark can be made about the verifiability requirement,

which mostly depends on the test environments and debugging tools made available by

the existing technology.

Now we come to the properties which usually cause problems in linguistically motivated

systems: ease of use and efficiency. There is no way around the fact that an ACG based

NLG framework is hard to use in practice. Manipulating λ-terms in order to define

linguistic knowledge requires a long formation. The bet made in this thesis, is that we

can use ACG as a kernel technology, and build layers of abstraction over this kernel in

order to allow users to develop NLG systems without ever having to manipulate any

λ-term and with having as little linguistic knowledge as possible. This goal is far from

being achieved yet, and would require much more time and resources than what has

been allowed for this work. For the time being, the objective is to allow people with

sufficient knowledge (i.e. with a formation in computational linguistics or computer

science) to use the “raw” framework in order to evaluate if it can be used in a useful

way for practical application. In other words, we are not at the point where we want to

compare the ACG based NLG framework to the existing technology3, but at the point

3As an example evaluation, one could develop the same application with the implemented framework

and with the existing technology, and compare the time spent for developing the application, the com-

plexity of the resulting code, etc.. A full evaluation would require several participants and metrics for

the productivity and simplicity of the resulting code.

Chapter 9. Results and perspectives 141

where we want to know if the implemented framework has any chance of competing with

it. For this purpose, we want to check that there are no crippling problems associated

with the ACG based NLG framework and in particular:

• We want to check that we can use the ACG based NLG framework in realistic

applications, without involving too many workarounds and edge case scenarios, and

without specializing the linguistic resources so much that we loose the possibility

of reusing them from one application to the other. On the other hand, we also

need to check that if the linguistic resources do not allow to easily represent part

of the text of the application, we always have a way to fall back on alternative

solutions.

• A crippling problem which often comes along linguistically motivated systems is

the efficiency problem. We need to make sure that we can generate text fast

enough for the framework to be usable in real time applications.

Sections 9.2 and 9.3 present two setups which have been used to check whether the

implemented framework satisfies the above conditions. The answer to these questions

do not come in a simple yes or no answer, but are subject to interpretation. This comes

from the following reasons: about the efficiency of the framework, there are known

optimizations which can be implemented and can change in a significant manner the

results of the tests. The expectations about the efficiency of the framework as it is

implemented is that it should be slower than the existing technology, but not so much

slower that it would seem impossible to make it fast enough with the known possible

optimizations. A similar remark applies to the ease of use of the framework. There may

be difficulties and workarounds needed in order to build a realistic application with the

framework, but we should take into account the possible evolutions of the framework

and the linguistic resources which could solve these problems4.

9.2 Business intelligence

For the first evaluation, we use an existing application in the business intelligence do-

main. The application receives the data of a graphical representation along with data

analysis results, and generates a description of the graph. Figure 9.1 shows an example

descriptive text along with a graph. This application is a Yseop product and forms

a good basis for testing the speed of the implemented framework, as it is a real time

4Checking that the framework does not contain any inherent crippling problem is also a way experi-

menting in order to find what would be the most useful evolutions of the framework, so we are not in a

context where we want to assess the value of a definitive, stable version of the software.

Chapter 9. Results and perspectives 142

Figure 9.1: Business intelligence application example. The data of the graph on top
is analysed by the NLG system in order to produce the descriptive text below it.

application with response time constraints. The general workflow of the application is

the following:

• First the input data is analysed using a numerical analysis and pattern detection

module, which detects events like maximums, peaks, stagnations, etc..

• The detected events are then filtered and organized into a document plan by a

document planning module.

• Finally the events are textualized by a microplanning (and realisation) module.

The evaluation is only on the last step, the microplanning module, which involves the

most computation for the text generation part of the system (the document planner

for this application is relatively simple). The test consists in comparing the execution

speed of the existing NLG system and the implemented prototype for generating the

text corresponding to one particular document plan. A possible text corresponding to

the chosen document plan is the following:

Chapter 9. Results and perspectives 143

This graph shows sales by country within the month range 1 - 12.

Overall Trend Sales fluctuated, oscillating between 154,134 and 364,471. All

the contributors followed the same trend as the total of all sales. Do note that

the lowest trough took place in 9, at 154,134. A sharp peak took place in 10, at

334,918. Lastly, the strongest period of decline happened between 8 and 9, from

360,927 to 154,134.

Breakdown per country Now that we have looked at the overall trend, let’s

look at each country separately.

The United States’ sales frequently vary. A notable trough took place in 9, at

86,531. A sharp peak took place in 10, at 258,498. Lastly, the minimum point

in sales was reached in 11, at 80,434.

Canada’s sales represented 13.15 % of the total. The minimum point in sales

was reached in 7, at 22,986. The strongest period of decline happened between

5 and 7, from 43,986 to 22,986. Lastly, the longest period of growth happened

between 7 and 12, rising from 22,986 to 48,312.

Mexico’s sales represented 8.18 % of the total. The lowest trough took place in

2, at 16,834. The highest peak took place in 8, at 29,434. Lastly, the strongest

period of decline happened between 8 and 10, from 29,434 to 19,438.

The last country (Nicaragua) only accounts for 7.31 % of the total.

The sentences in italic font are sentences dynamically generated, the other ones being

static, and are the only ones concerned by the test. There is a total of 19 dynamic

sentences. The relative order of the sentences does not change between two consecutive

calls, and each sentence has between 2 and 10 possible variations (with a mean of 4

possible variations per sentence). For the evaluation, the semantic representation of each

of these sentences has been created by hand (more precisely, the semantic representation

of the messages corresponding to these sentences). The composed lexicon L en
micro (see

Figure 8.4) is used in order to translate these semantic representations into text. So

the test NLG systems performs 19 calls to the function ComposedLexicon::translate,

with the origin signature being Σlogics and the target signature being Σstrings. The

time spent by the test NLG system is compared in Figure 9.2 with the time spent by

the existing NLG system for generating the same text (modulo local variations) from

a document plan5. The time spent by the implemented framework is further divided

between the time spent in the function of inversion of a lexicon (Lexicon::parse), in

the mapping function (Lexicon::realize) and in the rest initialization phase (here I

count the creation of the the database for the inversion of the lexicon as an initialization
5All the tests have been realized on a Ubuntu 16.04 LTS virtual machine, with an Intel i7-6700HQ

CPU (2.6 GHz) and 8 Go RAM.

Chapter 9. Results and perspectives 144

BI system ACG framework

1102 ms 570 ms

Figure 9.2: Results of the performance test of the framework. The time spent for
generating 19 sentences is compared between the existing NLG system for business
intelligence and the implemented framework. The pie chart shows the decomposition
of the time spent by the ACG framework between the initialization of the system
(creation of objects, composition of lexicons, creation of the databases for the inversion
of a lexicon, etc.), the operation of inversion of a lexicon and the mapping operation.

step, since it is done only once for all calls to the function Lexicon::parse). For the

inversion of the lexicon step, the mean number of derivations found by the Datalog

prover is 2.5 (ranging between 1 and 6).

Surprisingly, the result of the evaluation is that the implemented framework is about

twice faster than the existing technology on this particular test. However this result

should be taken with precaution, as several factors can explain it. There are several

ways of doing the same thing using the existing Yseop technology, and there could be

inefficiencies in the way the application has been built which can explain a large part of

the difference in performance. On the other hand, there is still room for improvement

for the ACG framework. If we look in more details the time spent by the implemented

framework on different operations, we find that the operation of inversion of a lexicon

takes three quarters of the overall time spent. This comes as no surprise, since this

operation involves the Datalog prover, which is the component with the larger margin

for improvement. The initialization phase, which includes the creation of the databases

takes also some time (about a fifth). Part of the initialization effort can certainly be

reported during the compilation phase, so there is also room for improvement here.

The current estimation is that we could probably cut the response time of the ACG

framework by two or three by applying the right optimizations.

While being subject to caution, the result of this test is still very positive. Overall, what

this result shows for sure is that the ACG framework is definitely in the same order of

magnitude than the existing technology when it comes to microplanning, and that it

is elligible for being used in production application (as it is the case with the business

intelligence application used for this test). This clears the common apprehension that

Chapter 9. Results and perspectives 145

linguistically motivated systems cannot compete with more “pragmatic” ones. The next

step would be to build a benchmark of applications in order to test more systematically

the ACG framework against the existing technology, while making sure that both are as

optimized as they can.

Another interesting “side effect” of this test, is that it has been realized by an employee

of Yseop with no particular knowledge about ACG (but with formation in computa-

tional linguistics). His task was to create the constants of the signatures Σen
logics and

Σen
derivations, build the lexicons L en

der-log and L en
der-der using the provided TAG for english

(see Section 8.3.2), and to build the input λ-terms for generating the output shown

above. This was the occasion of checking the (subjective) difficulty of using the frame-

work. The result is that it needs a lot of bootstrap knowledge, but becomes quite efficient

after enough effort has been invested into it. In practice, it seems that there are still

a few workarounds which need to be used in order to use the framework in realistic

applications. In particular, the tree templates of the grammar often need to be adapted

in order either to add arguments (the problem comes from the rigidity of the semantic

representation, see Section 8.3.3) or to combine tree templates together in order to have

coarser grained syntactic representations6. Research is still to be done in order to find

the appropriate processes and tools for easing the creation of linguistic resources.

9.3 Argumentation

The purpose of the second evaluation is to explore the usage of the ACG framework

for building a complete application, including document planning and multilingual mi-

croplanning. For this evaluation, an existing application has been rebuilt using the

implemented framework and the linguistic resources presented in Section 8.3. The ap-

plication that has been rebuilt is a car selling application, which recommends cars for

potential buyers on a second hand car selling web site. This application has been chosen

because it seemed to justify the use of the document planning technique described in

Section 7.4. The car selling application uses a recommender system in order to suggest

cars to a user. The general workflow of the application is as follows:

• The user is prompted through a web based interface for information about itself

(age, number of children, favourite color and brand, number of kilometers per year,

etc.).

6fine grained representations add unnecessary complexity for applications with relatively poor syn-

tactic complexity. In this case, noun phrases could always be manipulated as a whole without having to

manipulate nouns and determiners separately.

Chapter 9. Results and perspectives 146

• The information is stored in a user model, along with additional information that

the system can infer from the context.

• The user model is used to filter a database of cars. The filtering is done as a multi-

objective optimization problem, by attributing a set of scores to each vehicle.

Each score can be positive or negative and is based on a combination of a user

need (from the user model) and a characteristic of the vehicle. The scores are

combined through a weighted sum and the vehicles are sorted according to the

total score. The ten best cars are then selected.

• Each one of the ten best cars is passed to the NLG module, along with its scores.

Each car description is considered as independent from the others. A short intro-

ductory text is added to introduce the ten cars, including information such as “We

have selected 5 Renault, 4 Peugeot and 1 Ferrari.”. Here I focus on the description

of a single vehicle.

More precisely, the input of the NLG module responsible for the description of a vehicle

is modelled as a set of arguments. An argument is defined by four elements:

• A symbol identifier representing the argument, generally named after a user need,

such as “preferred color” or “required option”.

• A characteristic of the vehicle, such as its color or its price (or eventually an

inferred property, such as the difference between the price of the vehicle and the

budget of the user).

• A score between -1 and 1, which is one of the scores used by the recommender

system to rank the different cars.

• A topic symbol, which is used to infer rhetorical relationships between the argu-

ments.

The set of all possible arguments has been defined by the developper of the application.

The set of arguments associated with a particular vehicle is computed using rules such as

“if the user asked for a black car and the car is black, then add the argument {“Chosen

color”, color, +0.2, APPEARANCE}”, where “Chosen color” is the identifier of the

argument, color is the characteristic of the vehicle, +0.2 is the score of the argument

and APPEARANCE the topic symbol. These rules are applied either by the filtering

algorithm, which then uses the score of the arguments to rank the vehicles, or just at the

end of the filtering phase, for the arguments which should not be used by the filtering

algorithm (e.g. “this car is the best of the selection”, such arguments have no vehicle

Chapter 9. Results and perspectives 147

Id Characteristic Score Topic

1 “Price below budget” price +0.8 ECONOMIC

2 “Chosen color” color +0.2 APPEARENCE

3 “Easy resell” manual gearbox +0.3 RESELL

4 “Easy resell” popularity +0.3 RESELL

5 “Powerful for category” horsepower +0.1 POWER

6 “Missing option” option sunroof -0.2 OPTIONS

7 “Bonus option” option alloy wheels +0.2 OPTIONS

8 “Bonus option” option reversing radar +0.2 OPTIONS

9 “Bonus option” integrated GPS +0.2 OPTIONS

10 “Guaranty” guaranty +0.1 DEFAULT

11 “Availability” availability +0.1 DEFAULT

12 “Best of selection” none +0.1 DEFAULT

Figure 9.3: Example input of the NLG module of the car selling application. An
argument can be reused several times on different vehicle characteristics, in which case
the arguments can be aggregated together to be expressed through a single argument.

characteristic associated with them). For each car selected during the filtering phase,

the systems calls the NLG module with the set of arguments computed for this car as

argument. Figure 9.3 shows a complete example of an input of the NLG module.

Internally, the NLG module is decomposed into three submodules: initialization, docu-

ment planning and microplanning.

9.3.1 Initialization

The initialization phase creates the constants and mapping necessary for document

planning using the input information.

Each argument is represented by a constant dynamically created in the signature Σrhetorics.

Additionally, constants for the rhetorical relationships are created using the method

described in Section 7.4, and the method described in the same section for semantic

aggregation is used in order to aggregate arguments when possible, in order to build

a richer text7. The image by Lrhe-log of the constants associated with the arguments

are defined statically, for each type of argument (i.e. each argument identifier) and the

aggregation of several arguments are mapped to the conjunction of the images of their

components. In details, the constants of the signature Σrhetorics and the lexicon Lrhe-log

are completed using the following procedure:

• First, new arguments are created, which represent the aggregation of several ar-

guments (see Section 7.4.2.2). Two arguments can be aggregated when they have

7For the sake of conciseness, these methods are not reproduced here. The NLG module follows closely

the procedures described in the mentioned section.

Chapter 9. Results and perspectives 148

the same identifier. For instance, the two arguments “Easy resell” of Figure 9.3,

are aggregated into a new argument.

• Then rhetorical relationships are created. The application uses one type of rhetor-

ical relationship, the contrast relationship8, which has two nucleus. A contrast

relation is created for every pair of arguments which have the same topic but

where one of the arguments has a positive score and the other a negative score.

The purpose of the contrast relation is to balance negative arguments with posi-

tive ones. The notion of topic ensures that the arguments in the contrast are not

on subjects too different from each other, in order to avoid weird transitions (for

instance balancing an argument on the price with an argument on the color of

the vehicle). The topic associated with each argument has been defined by the

developer of the application, based on domain knowledge.

• For each argument and rhetorical relationship, one or several constants are created

in the signature Σrhetorics, following the procedure described in Section 7.4. Each

constant is mapped to a λ-term in the signature Σlogics. This mapping is defined

statically for each possible argument in the application (i.e. for each argument

identifier symbol) and for each kind of rhetorical relationship (here only the con-

trast relation). So in our case, all constants representing the contrast relationship

are mapped to the same λ-term in the signature Σlogics, and several constants

representing arguments with the same identifier may also be mapped to the same

λ-term in the signature Σlogics (for instance, all constants representing arguments

with the identifier “Bonus option” in Figure 9.3).

• The constants are divided into buckets, where all constants in a bucket are either

connected to another one in the bucket through a rhetorical relationship (whose

constant is also in the bucket) or have the same identifier as another argument in

the bucket. The separation into buckets ensures that a spanning rhetorical tree

can be built for each separate bucket, as it is generally not possible to build a

spanning rhetorical tree for all the input arguments.

• Finally each bucket is used in turn as the configuration of the document planner

in order to generate the text for this bucket.

This procedure creates a lot of constants for the input of Figure 9.3. For the sake of

concision, the following only shows the constants of the signature Σrhetorics generated

8The decision to use this unique rhetorical relation has been made after an analysis of a small corpus

of texts written by humans for the application. The fact that only one useful rhetorical relation could

be found is somewhat problematic for the evaluation of the ACG framework, but the fact that the

application needs semantic aggregation makes it complex enough that it is still useful for the purpose of

evaluating the implemented framework.

Chapter 9. Results and perspectives 149

from the arguments 6, 7, 8 and 99:

A6 : τ [sp = {A6}, p = {A6}]

A7 : τ [sp = {A7}, p = {A7}]

A8 : τ [sp = {A8}, p = {A8}]

A9 : τ [sp = {A9}, p = {A9}]

A7,8 : τ [sp = {A7, A8}, p = {A7, A8}]

A7,9 : τ [sp = {A7, A9}, p = {A7, A9}]

A8,9 : τ [sp = {A8, A9}, p = {A8, A9}]

A7,8,9 : τ [sp = {A7, A8, A9}, p = {A7, A8, A9}]

Contrast1 : τ [sp = x, p = {A6}]→ τ [sp = y, p = {A7}]→ τ [sp = x ∪ y, p = {A6, A7}]

Contrast2 : τ [sp = x, p = {A6}]→ τ [sp = y, p = {A8}]→ τ [sp = x ∪ y, p = {A6, A8}]

Contrast3 : τ [sp = x, p = {A6}]→ τ [sp = y, p = {A9}]→ τ [sp = x ∪ y, p = {A6, A9}]

Contrast4 : τ [sp = x, p = {A6}]→ τ [sp = y, p = {A7, A8}]→ τ [sp = x ∪ y, p = {A6, A7, A8}]

Contrast5 : τ [sp = x, p = {A6}]→ τ [sp = y, p = {A7, A9}]→ τ [sp = x ∪ y, p = {A6, A7, A9}]

Contrast6 : τ [sp = x, p = {A6}]→ τ [sp = y, p = {A8, A9}]→ τ [sp = x ∪ y, p = {A6, A8, A9}]

Contrast7 : τ [sp = x, p = {A6}]→ τ [sp = y, p = {A7, A8, A9}]→ τ [sp = x ∪ y, p = {A6, A7, A8, A9}]

9.3.2 Document planning and microplanning

The document planning and microplanning phases are done by calling the function

generate of either the lexicon L en
doc or L fr

doc, depending on whether the output language

is English or French respectively. The origin target parameter of the function generate is

Σrhetorics, which is used to generate document plans, and the target signature parameter

is Σstrings. For instance, the constants shown above can only be combined to give a single

valid rhetorical tree in the signature Σrhetorics:

Constrast7({A6}, {A7, A8, A9}) : τ [sp = {A6, A7, A8, A9}, prom = {A6, A7, A8, A9}]

Since the current implementation doesn’t support features, this rhetorical tree is actually

represented as a set of rhetorical trees, representing the possible permutations of the

leaves. Each rhetorical tree is mapped to a λ-term built on the signature Σlogics, one of

9constants built from the argument x are noted Ax. Constant representing the aggregation of two

arguments x and y are noted Ax,y For concision, the feature prom has been shortened here to p. In

order to avoid unnecessary memory consumption, constants for the aggregation of several arguments

(for instance A7,8) are created only when they may be used in a rhetorical relationship. The rest of the

procedure follows exactly the one described in Chapter 7.

Chapter 9. Results and perspectives 150

At 27 499e, which is more than 2 500e below your budget, the price of this Peugeot
508 is unbeatable. It is gray, your favourite color. It has a manual gearbox and it is
popular among our clients, which is best if you want to resell. This car has a powerful
engine (160 hp) for a sedan, which suits well a vigorous driving. The sunroof is missing,
but it has a built-in GPS, a reversing radar and alloy wheels. It has a 24 months guaranty
and is available immediately. Of all our vehicles, this offer is the best suited to your needs

À 27499e, soit plus de 2500e en dessous de votre budget, le prix de cette Peugeot 508
est imbattable. Elle est grise, votre préférence. Elle a une bôıte manuelle et elle jouit
d’une bonne popularité parmi nos autres clients, ce qui est meilleur en cas de revente.
Elle est dotée d’une puissante motorisation (160 ch) pour une berline, qui conviendra
bien à une conduite énergique. Elle n’a pas le toit ouvrant demandé, cependant elle a
un GPS intégré, un radar de recul ainsi que des jantes alliage. Elle est garanti 24 mois
et est disponible immédiatement. De tous nos véhicules, cette offre est la plus adaptée à
vos besoins.

Figure 9.4: Examples of output texts for the car selling application in English and
French.

which is:

CONTRAST (BE SUNROOF MISSING)

(HAS CAR (AND ALLOY WHEELS (AND GPS REV ERSING RADAR))) : t

The other possible λ-terms built on the signature Σlogics for this example are only permu-

tations of the constants ALLOY WHEELS, GPS and REV ERSING RADAR. The

concepts used to build the logical sentences follow the guidelines presented in Section 8.3

and are mapped to derivation trees in the same way than described in the same section.

Figure 9.4 shows an example output text generated by processing the input of Figure 9.3

through the document planner and microplanner. Since the miroplanning phase was not

very important for this evaluation, the textualisation of the different concepts has been

left to the minimum, and each output sentence has only one possible variant.

9.3.3 Results

The results of this evaluation are somewhat mixed. The fact that only one rhetorical

relationship is used to build the document plans makes the evaluation a bit weak. On

the other hand, it shows how a real world application actually uses the framework, and

the fact that semantic aggregation is needed makes it more interesting. There were no

particular problem encountered while building the linguistic resources for this evaluation

(other than the ones already encountered in the first evaluation), which confirms that

the framework is suited for building realistic applications. The performances are also

rather good, with the document planning phase taking around one hundred milliseconds

Chapter 9. Results and perspectives 151

in the same conditions than the first evaluation. Overall, the objective to show that

the implemented framework can be competitive with the existing technology both in

terms of execution speed and expressivity is achieved. However, more tests need to be

performed in order to explore the usage of the ACG framework for document planning,

and the evaluation performed here have only scratched the surface on that matter.

9.4 Perspectives

There are many ways in which the prototype NLG framework presented in this thesis can

be improved. These improvement can be classified in two broad categories: evolutions

of the ACG kernel, written in C++, and new linguistic resources.

9.4.1 Evolution of the ACG kernel

On the short term, several optimizations can be made:

• The Datalog prover uses a backward chaining algorithm. Given the fact that we

often need all possible derivations for a particular query, it would make more sense

to use a forward chaining algorithm, which would be more efficient.

• The unification algorithm has a naive implementation and needs to be rewritten.

• Other optimizations such as answer set programming need to be studied.

Aside from the possible optimizations, several major modifications to the framework are

possible. First, implementing types with features seems to be a very important step in

order to make the framework more usable in practice. The basic idea here would be

to modify the type system so as to include features, and upgrade the Datalog prover

so as to perform constraint logic programming, thereby including the different kinds of

constraints introduced by the type system. Another interesting evolution, would be the

ability to specify a probabilistic distribution over the elements defined by a grammar.

This could be done for instance by adding weights to the constants, and use a ranking

algorithm in order to select the most probable output texts. The weights can also be

used in heuristic search, thereby improving the speed of the generation when the space of

possible output texts is huge. Finally, a more technical, while probably very important

evolution would be to have a better integration of the ACG module with the rest of the

application, by allowing automatic conversion of objects into λ-term based on their type

in the NLG framework language.

Chapter 9. Results and perspectives 152

9.4.2 New linguistic resources

The semantic level described in Section 8.3.1 has many limitations, and it would probably

be a good idea to provide a more theoretically sound resource for the syntax-semantic

interface at some point. A research which has only been mentioned in this thesis, but

which is very relevant is the G-TAG theory (Danlos, 2000), which describes the syntax-

semantic interface and is specialized for text generation. A big advantage of this theory

is that it has already been adapted to ACG (Danlos et al., 2014, Maskharashvili, 2016).

The reason for not using a full fledged theory for the syntax-semantic interface in this

thesis has to do with the ease of use requirement and the wish to provide access to the

semantic level to end users, so some experimentations are still to be done in order to

compare the cost-benefit ratio of this approach (though it seems pretty clear that it will

be needed at some point).

On the side of the creation of new linguistic resources, the most obvious evolution

is to add syntactic grammars for different languages, and in particular the languages

already supported by the existing technology: French, Spanish, German and Japanese.

Associated with these syntactic grammars, the creation of a dictionary of words for each

language seems also to be an interesting path. This kind of dictionary can be created

automatically using rich lexicons such as Lefff (Sagot, 2010). Going even further up

in the levels of abstraction, the creation of resources for the semantic level should be

considered. At this level, the only solution is to specialize the libraries to a particular

domain of application (e.g. reporting, business intelligence, sales, etc.).

Another interesting path for the creation of new linguistic resources is to go down in the

levels of abstraction in order to cover the realisation module. First the syntactic gram-

mars can be augmented with features in order to cover morphological phenomenon.

Second, resources can be created for generating strings from different data types. In

practice, the textualisation of specific data types, such as integers, dates, floating num-

bers, etc., represents an important part of the complexity of the realisation module.

Having linguistic resources dedicated to them would unify the text generation process

and probably simplify the maintenance of the realisation module as well. Finally, new

linguistic resources can be created or the existing ones modified in order to cope for

the referring expression generation module. Since referring expression generation usu-

ally involves long range dependencies, it is not very clear how the linguistic resources

should be adapted in order to include this module efficiently. Research also need to be

done in order test different means of representation for the document planning module

and to explore how the content selection module could be represented using the ACG

framework.

Chapter 9. Results and perspectives 153

For the long term, we may ask ourselves how ACG could be combined with machine

learning approaches. Building linguistic resources for a symbolic artificial intelligence is

indispensable given the current knowledge and the requirements imposed on the technol-

ogy, but it can only take us so far. At some point, machine learning seems unavoidable

in order to scale to multiple domains and to get closer to human level performances. A

first step could be to build linguistic resources directly from corpora, or to adapt them

to specific domains automatically from a small corpus. It is interesting to note that the

recent advances in machine learning use a representation made of “theory neutral” or

generic levels of abstraction (e.g. layers in deep neural nets), which are not so far from

what we get by abstracting levels of abstractions out of symbolic computation system.

Bridging the gap between symbolic systems and numerical ones is probably one of the

important challenge of the AI field in the next decade.

9.5 Conclusion

The initial goal of the thesis was to extend the Yseop technology in order to include

both microplanning and document planning techniques, while satisfying a number of

constraints:

• The solution needs to be integrated into an existing NLG framework.

• It must satisfy industrial standards of software quality, and in particular in terms of

efficiency and ease of use (other important properties include expressivity, reusabil-

ity and maintainability).

• A particular attention should be paid to the management of external resources,

such as linguistic resources.

Chapters 2, 3 and 4 were dedicated to the state of the art in NLG. Many different tech-

niques and architectures exist, both for document planning and microplanning, however

there are not so many systems whose goal is to provide a framework for the creation of

NLG systems. Most of the existing NLG systems follow what we could call the standard

NLG architecture, described in (Reiter and Dale, 2000) (another notable concurrent at-

tempt being the RAGS project Mellish et al., 2004). While being certainly suitable for

the project at hand, the standard architecture suffers from several drawbacks (mainly

fuzziness, limited reusability and a modularization which introduces different kinds of

low level data structures). Chapter 5 introduced a promising alternative found in the

formalism of abstract categorial grammars, to deal with some drawbacks of the stan-

dard architecture. One of the main advantages of ACG over the standard architecture

Chapter 9. Results and perspectives 154

is its ability to represent different formalisms with a unique low level data type, thereby

unifying the different aspects of the generation process. Another important aspect is its

theoretical efficiency and its ability to manipulate existing linguistic resources.

In the second part, I detailed the realization of the idea of using ACG as the kernel of a

NLG framework. Chapter 6 introduced the definitions for ACG and the representation

of TAG in ACG. The Chapter 7 was dedicated to bridging the gap between the ACG

formalism and the different aspects of NLG in the context of a NLG framework, and

in particular document planning. This analysis constitutes one of the contributions of

this thesis, and has shown how ACG can be used in the context of a NLG framework

(especially how the distinction between static and dynamic definitions impact ACG),

in particular for performing document planning: I have shown how schemas could be

represented, and how to perform RST based document structuring using ACG. In Chap-

ter 8, I presented in details the implementation of an ACG based NLG framework in

the existing Yseop technology. I also presented the linguistic resources developed for

this project. The description of the implementation is the second contribution of this

thesis, and gives insights in how the ACG formalism meets the constraints of industrial

software. Finally, in Chapter 9, I presented an evaluation of the implementation against

standard software quality properties. The main results can be summarized as follows:

• The ACG formalism has a good modular architecture “by design”, which results

in a good expressivity, reusability and maintainability of the system. This was one

of the main reasons for choosing ACG in the first place.

• The current implementation is complex to use, but it allows to build realistic

applications in an efficient way. The idea to build layers of abstraction over the

ACG framework in order to allow end users to use it effortlessly is still pending, and

the resources allowed to this work did not permit to go further in that direction.

This constitutes a limitation in this work, as the ease of use requirement is not

met. This however was expected, and the result, though mixed, is still positive as

the framework meets its purpose in a satisfying manner, and has proven to be a

good basis for further research.

• The framework is faster than the existing technology on standard microplanning

tasks. This result was not expected and is very positive, though it is to be taken

with caution, as there are still a lot of uncertainty about the overall efficiency of

the framework (the framework still need to be optimized, and benchmark tests to

be performed).

Overall, the conclusion of this thesis is very positive. The initial goals have been (mostly)

met and the risk taken by taking a non-standard approach to practical NLG seems to

Chapter 9. Results and perspectives 155

have paid off, sometimes even more than what was expected. The results are sufficiently

promising to justify to put even more efforts into it, and prompt future work in this

vein.

Bibliography

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases: the logical

level. Addison-Wesley Longman Publishing Co., Inc., 1995.

Gabor Angeli, Percy Liang, and Dan Klein. A simple domain-independent probabilistic

approach to generation. In Proceedings of the 2010 Conference on Empirical Meth-

ods in Natural Language Processing, pages 502–512. Association for Computational

Linguistics, 2010.

Douglas E. Appelt. Planning English referring expressions. Artificial intelligence, 26(1):

1–33, 1985.

Henk P. Barendregt and Erik Barendsen. Introduction to lambda calculus. Nieuw archief

voor wisenkunde, 4(2):337–372, 1984.

John A. Bateman. Enabling technology for multilingual natural language generation: the

kpml development environment. Natural Language Engineering, 3(01):15–55, 1997.

Dave Beckett and Brian McBride. RDF/XML syntax specification (revised). W3C

recommendation, 10, 2004.

Marcel Bollmann. Adapting SimpleNLG to german. In Proceedings of the 13th Eu-

ropean Workshop on Natural Language Generation, pages 133–138. Association for

Computational Linguistics, 2011.

Kalina Bontcheva. Generating tailored textual summaries from ontologies. In The

Semantic Web: Research and Applications, pages 531–545. Springer, 2005.

Nadjet Bouayad-Agha, Gerard Casamayor, and Leo Wanner. Content selection from an

ontology-based knowledge base for the generation of football summaries. In Proceed-

ings of the 13th European Workshop on Natural Language Generation, pages 72–81.

Association for Computational Linguistics, 2011.

156

Bibliography 157

Nadjet Bouayad-Agha, Gerard Casamayor, Simon Mille, Marco Rospocher, Horacio Sag-

gion, Luciano Serafini, and Leo Wanner. From ontology to nl: Generation of mul-

tilingual user-oriented environmental reports. In Natural Language Processing and

Information Systems, pages 216–221. Springer, 2012.

Thomas Bouttaz, Edoardo Pignotti, Chris Mellish, and Peter Edwards. A policy-based

approach to context dependent natural language generation. In Proceedings of the 13th

European Workshop on Natural Language Generation, pages 151–157. Association for

Computational Linguistics, 2011.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university

press, 2004.

Charles Callaway. Multilingual revision. In EACL 2003, page 15, 2003.

Charles B. Callaway and James C. Lester. Dynamically improving explanations: A

revision-based approach to explanation generation. In IJCAI (2), pages 952–958.

Citeseer, 1997.

Marie-Hélène Candito. Organisation modulaire et paramétrable de grammaires

électroniques lexicalisées. PhD thesis, Université Paris 7, 1999.

Giuseppe Carenini and Johanna D. Moore. Generating and evaluating evaluative argu-

ments. Artificial Intelligence, 170(11):925–952, 2006.

William Clocksin and Christopher S Mellish. Programming in PROLOG. Springer

Science & Business Media, 2003.

Jose Coch. Overview of Alethgen. In Demonstrations and Posters of the Eighth Inter-

national Natural Language Generation Workshop (INLG’96), pages 25–28, 1996.

Benoit Crabbé, Denys Duchier, Claire Gardent, Joseph Le Roux, and Yannick Par-

mentier. Xmg: extensible metagrammar. Computational Linguistics, 39(3):591–629,

2013.

Robert Dale. Cooking up referring expressions. In Proceedings of the 27th annual

meeting on Association for Computational Linguistics, pages 68–75. Association for

Computational Linguistics, 1989.

Robert Dale and Ehud Reiter. Computational interpretations of the Gricean maxims in

the generation of referring expressions. Cognitive science, 19(2):233–263, 1995.

Hercules Dalianis. Aggregation in natural language generation. Computational Intelli-

gence, 15(4):384–414, 1999.

Bibliography 158

Laurence Danlos. The linguistic basis of text generation. Cambridge University Press,

1987.

Laurence Danlos. G-TAG: A lexicalized formalism for text generation inspired by tree

adjoining grammar. Tree Adjoining Grammars: Formalisms, Linguistic Analysis, and

Processing. CSLI Publications, 2000.

Laurence Danlos. D-STAG: a formalism for discourse analysis based on SDRT and using

synchronous TAG. In Formal Grammar, pages 64–84. Springer, 2011.

Laurence Danlos and Fiammetta Namer. Morphology and cross dependencies in the

synthesis of personal pronouns in romance languages. In Proceedings of the 12th

conference on Computational linguistics-Volume 1, pages 139–141. Association for

Computational Linguistics, 1988.

Laurence Danlos, Bertrand Gaiffe, and Laurent Roussarie. Document structuring à la

sdrt. In Proceedings of the Eigth European Workshop on Natural Language Generation,

pages 11–20, Toulouse, France, 2001. CNRS, Institut de Recherche en Informatique

de Toulouse and Université des Sciences Sociales.

Laurence Danlos, Frédéric Meunier, and Vanessa Combet. EasyText: an operational

NLG system. In Proceedings of the 13th European Workshop on Natural Language

Generation, pages 139–144. Association for Computational Linguistics, 2011.

Laurence Danlos, Aleksandre Maskharashvili, and Sylvain Pogodalla. An ACG analysis

of the G-TAG generation process. In INLG 2014-8th International Natural Language

Generation Conference, pages 35–44. Association for Computational Linguistics, 2014.

Dana Dannélls. Improving information access to cultural content through discourse

strategies. In Proceedings of the eleventh in a series of international scientific Confer-

ences on Advances in Artificial Intelligence held bi-annually by the Italian Association

for Artificial Intelligence (AI* IA). Reggio Emilia, Italy, 2009.

George B. Dantzig. Linear programming and extensions. Princeton university press,

1998.

Philippe De Groote. Towards abstract categorial grammars. In Proceedings of the

39th Annual Meeting on Association for Computational Linguistics, pages 252–259.

Association for Computational Linguistics, 2001.

Philippe De Groote. Tree-adjoining grammars as abstract categorial grammars. In

TAG+ 6, Proceedings of the sixth International Workshop on Tree Adjoining Gram-

mars and Related Frameworks, pages 145–150, 2002.

Bibliography 159

Philippe De Groote. Abstract categorial parsing as linear logic programming. In Pro-

ceedings of the 14th Meeting on the Mathematics of Language (MoL 2015), pages

15–25, Chicago, USA, July 2015. Association for Computational Linguistics. URL

http://www.aclweb.org/anthology/W15-2302.

Rodrigo De Oliveira and Somayajulu Sripada. Adapting SimpleNLG for brazilian por-

tuguese realisation. INLG 2014, page 93, 2014.

Seniz Demir, Sandra Carberry, and Kathleen F. McCoy. A discourse-aware graph-based

content-selection framework. In Proceedings of the 6th International Natural Language

Generation Conference, pages 17–25. Association for Computational Linguistics, 2010.

Lorie Den Os. Génération automatique de textes d’analyse financière avec une gram-

maire FB-LTAG. Master’s thesis, Université Paris VII, 2015.

Frank Drewes, Hans-Jörg Kreowski, and Annegret Habel. Hyperedge replacement, graph

grammars. Handbook of Graph Grammars, 1:95–162, 1997.

Michael Elhadad. FUF: The universal unifier user manual version 5.2. Columbia Uni-

versity. Computer Science Department, June, 1993.

Michael Elhadad and Jacques Robin. An overview of surge: A reusable comprehen-

sive syntactic realization component. Technical report, Technical Report 96-03, Ben

Gurion University, Dept. of Computer Science, Beer Sheva, Israel, 1996.

Michael Elhadad, Jacques Robin, and Kathleen McKeown. Floating constraints in lexical

choice. Computational Linguistics, 23(2):195–239, 1997.

Jerome Feder. Plex languages. Information Sciences, 3(3):225–241, 1971.

Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the application of

theorem proving to problem solving. Artificial intelligence, 2(3-4):189–208, 1971.

Dimitrios Galanis and Ion Androutsopoulos. Generating multilingual descriptions from

linguistically annotated OWL ontologies: the NaturalOWL system. In Proceedings

of the Eleventh European Workshop on Natural Language Generation, pages 143–146.

Association for Computational Linguistics, 2007.

Claire Gardent. Generating minimal definite descriptions. In Proceedings of the 40th

Annual Meeting on Association for Computational Linguistics, pages 96–103. Associ-

ation for Computational Linguistics, 2002.

Claire Gardent and Eric Kow. A symbolic approach to near-deterministic surface reali-

sation using tree adjoining grammar. In 45th Annual Meeting of the Association for

Computational Linguistics-ACL 2007, pages 328–335. Association for Computational

Linguistics, 2007.

http://www.aclweb.org/anthology/W15-2302

Bibliography 160

Albert Gatt and Ehud Reiter. Simplenlg: A realisation engine for practical applications.

In Proceedings of the 12th European Workshop on Natural Language Generation, pages

90–93. Association for Computational Linguistics, 2009.

H Paul Grice, Peter Cole, Jerry Morgan, et al. Logic and conversation. 1975, pages

41–58, 1975.

Barbara J. Grosz, Scott Weinstein, and Aravind K. Joshi. Centering: A framework for

modeling the local coherence of discourse. Computational linguistics, 21(2):203–225,

1995.

Karin Harbusch and Gerard Kempen. Generating clausal coordinate ellipsis multilin-

gually: A uniform approach based on postediting. In Proceedings of the 12th European

Workshop on Natural Language Generation, pages 138–145. Association for Compu-

tational Linguistics, 2009.

Eduard H. Hovy. Aggregation in natural language generation. In In the Proceedings of

the Fourth European Workshop on Natural Language Generation. Citeseer, 1993.

Eduard H. Hovy and Elisabeth Maier. Parsimonious or profligate: how many and which

discourse structure relations? Technical report, DTIC Document, 1992.

James Hunter, Yvonne Freer, Albert Gatt, Ehud Reiter, Somayajulu Sripada, and Cindy

Sykes. Automatic generation of natural language nursing shift summaries in neonatal

intensive care: Bt-nurse. Artificial intelligence in medicine, 56(3):157–172, 2012.

Kentaro Inui, Takenobu Tokunaga, and Hozumi Tanaka. Text revision: A model and its

implementation. In Aspects of automated natural language generation, pages 215–230.

Springer, 1992.

Srinivasan Janarthanam and Oliver Lemon. Adaptive generation in dialogue systems

using dynamic user modeling. Computational Linguistics, 40(4):883–920, 2014.

Aravind K. Joshi. Tree adjoining grammars: How much context-sensitivity is required

to provide reasonable structural descriptions? 1985.

Sylvain Kahane. The meaning-text theory. Dependency and Valency. An International

Handbook of Contemporary Research, 1:546–570, 2003.

Makoto Kanazawa. Parsing and generation as datalog queries. In ACL, volume 7, pages

176–183, 2007.

Makoto Kanazawa. Parsing and generation as datalog query evaluation. To appear,

2011.

Bibliography 161

Martin Kay. Functional grammar. In Annual Meeting of the Berkeley Linguistics Society,

volume 5, pages 142–158, 1979.

Martin Kay. Chart generation. In Proceedings of the 34th annual meeting on Associ-

ation for Computational Linguistics, pages 200–204. Association for Computational

Linguistics, 1996.

Ioannis Konstas and Mirella Lapata. Unsupervised concept-to-text generation with

hypergraphs. In Proceedings of the 2012 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies, pages

752–761. Association for Computational Linguistics, 2012.

Ioannis Konstas and Mirella Lapata. A global model for concept-to-text generation.

Journal of Artificial Intelligence Research, 48(1):305–346, 2013a.

Ioannis Konstas and Mirella Lapata. Inducing document plans for concept-to-text gen-

eration. In EMNLP, pages 1503–1514, 2013b.

Gerasimos Lampouras and Ion Androutsopoulos. Using integer linear programming

for content selection, lexicalization, and aggregation to produce compact texts from

OWL ontologies. In 14th European Workshop on Nat. Lang. Generation, 51st Annual

Meeting of ACL, pages 51–60. Citeseer, 2013.

Irene Langkilde-Geary and Kevin Knight. Halogen statistical sentence generator. Pro-

ceedings of the ACL-02 Demonstrations Session, Philadelphia, 2002.

Alex Lascarides and Nicholas Asher. Segmented discourse representation theory: Dy-

namic semantics with discourse structure. In Computing meaning, pages 87–124.

Springer, 2007.

Alon Lavie and Abhaya Agarwal. METEOR: An automatic metric for MT evaluation

with high levels of correlation with human judgments. In Proceedings of the Second

Workshop on Statistical Machine Translation, pages 228–231. Association for Com-

putational Linguistics, 2007.

Benoit Lavoie and Owen Rambow. A fast and portable realizer for text generation

systems. In Proceedings of the fifth conference on Applied natural language processing,

pages 265–268. Association for Computational Linguistics, 1997.

Percy Liang, Michael I. Jordan, and Dan Klein. Learning semantic correspondences with

less supervision. In Proceedings of the Joint Conference of the 47th Annual Meeting

of the ACL and the 4th International Joint Conference on Natural Language Process-

ing of the AFNLP: Volume 1-Volume 1, pages 91–99. Association for Computational

Linguistics, 2009.

Bibliography 162

Saad Mahamood and Ehud Reiter. Generating affective natural language for parents of

neonatal infants. In Proceedings of the 13th European Workshop on Natural Language

Generation, pages 12–21. Association for Computational Linguistics, 2011.

Saad Mahamood, William Bradshaw, Ehud Reiter, and NLG Arria. Generating anno-

tated graphs using the nlg pipeline architecture. INLG 2014, page 123, 2014.

François Mairesse and Marilyn A. Walker. Controlling user perceptions of linguistic

style: Trainable generation of personality traits. Computational Linguistics, 37(3):

455–488, 2011.

William C. Mann and Sandra A. Thompson. Rhetorical structure theory: Toward a

functional theory of text organization. Text-Interdisciplinary Journal for the Study of

Discourse, 8(3):243–281, 1988.

Tomasz Marciniak and Michael Strube. Discrete optimization as an alternative to se-

quential processing in nlg. In Proceedings of the 10th European Workshop on Natural

Language Generation (ENLG 2005), Aberdeen, UK, 2005.

Daniel Marcu. Building up rhetorical structure trees. In The Proceedings of the Thir-

teenth National Conference on Artificial Intelligence, volume 2, pages 1069–1074,

Portland, Oregon, August 1996. American Association for Artificial Intelligence.

Daniel Marcu. From local to global coherence: A bottom-up approach to text planning.

In The Proceedings of the Fourteenth National Conference on Artificial Intelligence,

pages 629–635, Providence, Rhode Island, July 1997. American Association for Arti-

ficial Intelligence.

Aleksandre Maskharashvili. Discourse Modelling with Abstract Categorial Grammars.

PhD thesis, Université de Lorraine, 2016.

David D. McDonald. Natural language generation: complexities and techniques. Tech-

nical report, DTIC Document, 1986.

Deborah L. McGuinness, Frank Van Harmelen, et al. OWL web ontology language

overview. W3C recommendation, 10(10):2004, 2004.

Kathleen R. McKeown. Discourse strategies for generating natural-language text. Arti-

ficial Intelligence, (27):1–41, 1985.

Chris Mellish and Jeff Z. Pan. Natural language directed inference from ontologies.

Artificial Intelligence, 172(10):1285–1315, 2008.

Chris Mellish, Mike Reape, Donia Scott, Lynne Cahill, Roger Evans, and Daniel Paiva.

A reference architecture for generation systems. Natural Language Engineering, 10

(3-4):227–260, 2004.

Bibliography 163

Frédéric Meunier. Implantation du formalisme G-TAG. PhD thesis, Université Paris

VII, 1997.

Bertrand Meyer. Object-oriented software construction. Prentice hall New York, 1988.

Johanna D. Moore and Cécile L. Paris. Planning text for advisory dialogues: Capturing

intentional and rhetorical information. Computational Linguistics, (19):651–695, 1993.

Jean-François Nogier and Michael Zock. Lexical choice as pattern matching. Knowledge-

Based Systems, 5(3):200–212, 1992.

Mick O’Donnell, Chris Mellish, Jon Oberlander, and Alistair Knott. Ilex: an architecture

for a dynamic hypertext generation system. Natural Language Engineering, 7(03):

225–250, 2001.

Daniel S. Paiva and Roger Evans. Empirically-based control of natural language gener-

ation. In Proceedings of the 43rd Annual Meeting on Association for Computational

Linguistics, pages 58–65. Association for Computational Linguistics, 2005.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method

for automatic evaluation of machine translation. In Proceedings of the 40th annual

meeting on association for computational linguistics, pages 311–318. Association for

Computational Linguistics, 2002.

Cécile Paris, Nathalie Colineau, Andrew Lampert, and Keith Vander Linden. Discourse

planning for information composition and delivery: A reusable platform. Natural

Language Engineering, 16(01):61–98, 2010.

Theodosios Pavlidis. Linear and context-free graph grammars. Journal of the ACM

(JACM), 19(1):11–22, 1972.

Paul Piwek and Kees Van Deemter. Constraint-based natural language generation: A

survey. Technical report, Technical Report 2006/03, Computing Department, The

Open University, 2006.

Detlef Plump. Term graph rewriting. Handbook of Graph Grammars and Computing by

Graph Transformation: Applications, Languages and Tools, 2:3–61, 1999.

Sylvain Pogodalla. Ambigüıté de portée et approche fonctionnelle des TAG. In Traite-

ment Automatique des Langues Naturelles-TALN 2007, pages 325–334, 2007.

Sylvain Pogodalla. Advances in abstract categorial grammars: Language theory and

linguistic modeling. esslli 2009 lecture notes, part ii. 2009.

Alain Polguère. La théorie sens-texte. Université de Montréal URL: http://olst. ling.

umontreal. ca/pdf/PolgIntroTST. pdf, 1998.

Bibliography 164

François Portet, Ehud Reiter, Albert Gatt, Jim Hunter, Somayajulu Sripada, Yvonne

Freer, and Cindy Sykes. Automatic generation of textual summaries from neonatal

intensive care data. Artificial Intelligence, 173(7-8):789–816, 2009.

Owen Rambow. Domain communication knowledge. In Fifth International Workshop

on Natural Language Generation, pages 87–94, 1990.

Ehud Reiter. Has a consensus NL generation architecture appeared, and is it psycholin-

guistically plausible? In Proceedings of the Seventh International Workshop on Natu-

ral Language Generation, pages 163–170. Association for Computational Linguistics,

1994.

Ehud Reiter. An architecture for data-to-text systems. In Proceedings of the Eleventh

European Workshop on Natural Language Generation, pages 97–104. Association for

Computational Linguistics, 2007.

Ehud Reiter. Method and apparatus for configurable microplanning, September 15 2015.

US Patent 9,135,244.

Ehud Reiter and Robert Dale. Building Natural Language Generation Systems. Cam-

bridge University Press, 2000.

Ehud Reiter, Roma Robertson, and Liesl M. Osman. Lessons from a failure: Generating

tailored smoking cessation letters. Artificial Intelligence, 144(1-2):41–58, 2003.

Jacques Robin. Revision-Based Generation of Natural Language Summaries Providing

Historical Background. PhD thesis, Columbia University, 1994.

Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint programming.

Elsevier, 2006.

Charlotte Roze. Vers une algèbre des relations de discours. PhD thesis, Université Paris

Diderot - Paris 7, 2013.

Benôıt Sagot. The LEFFF, a freely available and large-coverage morphological and

syntactic lexicon for French. In 7th international conference on Language Resources

and Evaluation (LREC 2010), 2010.

Christian Schulte, Guido Tack, and Mikael Z. Lagerkvist. Modeling and programming

with Gecode. http://www.gecode.org/doc/4.2.0/MPG.pdf, 2010. (Online, accessed

19 July 2016).

James Shaw. Clause aggregation using linguistic knowledge. Proceedings of the Joint

17th International Conference on Computational Linguistics 36th Annual Meeting of

the Association for Computational Linguistics (COLING-ACL’98), 1998.

http://www.gecode.org/doc/4.2.0/MPG.pdf

Bibliography 165

Pierre-Luc Vaudry and Guy Lapalme. Adapting SimpleNLG for bilingual English-French

realisation. In Proceedings of the 14th European Workshop on Natural Language Gen-

eration, pages 183–187, 2013.

Leo Wanner, Bernd Bohnet, Nadjet Bouayad-Agha, François Lareau, and Daniel Nick-

laß. MARQUIS: Generation of user-tailored multilingual air quality bulletins. Applied

Artificial Intelligence, 24(10):914–952, 2010.

Michael White, Rajakrishnan Rajkumar, and Scott Martin. Towards broad coverage

surface realization with CCG. In Proc. of the Workshop on Using Corpora for NLG:

Language Generation and Machine Translation (UCNLG+ MT), 2007.

XTAG Research Group. A lexicalized tree adjoining grammar for English. Technical

Report IRCS-01-03, IRCS, University of Pennsylvania, 2001.

Michael R. Young and Johanna D. Moore. Dpocl: A principled approach to discourse

planning. In Proceedings of the Seventh International Workshop on Natural Language

Generation, pages 13–20. Association for Computational Linguistics, 1994.

Jin Yu, Ehud Reiter, Jim Hunter, and Somayajulu G. Sripada. A new architecture for

summarising time series data. ITRI-04-01 INLG04 Posters: Extended, page 49, 2004.

	Acknowledgements
	Contents
	List of Figures
	1 Introduction
	1.1 What is NLG ?
	1.1.1 NLG and NLU
	1.1.2 Choice management

	1.2 Context and goal of the thesis
	1.2.1 The context
	1.2.2 The goal

	1.3 Main results
	1.4 Plan

	I Natural Language Generation
	2 Natural language generation system architectures
	2.1 Software engineering
	2.1.1 The task-based pipeline architecture
	2.1.2 A Reference Architecture for Generation Systems (RAGS)

	2.2 Linguistically motivated architectures
	2.3 Combinatorial optimization
	2.3.1 Constraint satisfaction problems
	2.3.2 NLG and constraint satisfaction

	2.4 Machine learning
	2.4.1 Learning alignments
	2.4.2 Learning to generate
	2.4.3 Machine learning and generic architectures for NLG

	3 Document planning
	3.1 Content selection
	3.1.1 Domain representation and ontologies
	3.1.2 Unstructured input data

	3.2 Document structure
	3.2.1 Schemas
	3.2.2 RST
	3.2.3 SDRT

	3.3 Algorithms for document planning
	3.3.1 Top-down goal driven
	3.3.2 Bottom-up data driven
	3.3.3 Interleaved content selection and document structuring

	3.4 Summary

	4 Microplanning
	4.1 Structures and constraints
	4.1.1 The structures
	4.1.2 The constraints

	4.2 Lexicalisation and aggregation
	4.2.1 Lexicalisation
	4.2.2 Aggregation

	4.3 Semantic aggregation and composition-based methods
	4.3.1 Semantic aggregation
	4.3.2 Complex mapping and composition

	4.4 Referring expression generation
	4.4.1 Pronominalisation strategy
	4.4.2 Disambiguation strategy

	4.5 Realisation
	4.6 Summary

	5 Using ACG for natural language generation
	5.1 Software quality in an industrial context
	5.2 Using ACG for natural language generation
	5.2.1 Theory neutral abstraction levels and transformation of structures

	5.3 Comparison with other approaches
	5.3.1 Comparison with the task-based pipeline architecture
	5.3.2 Comparison with RAGS

	II Abstract Categorial Grammars and Natural Language Generation
	6 Abstract Categorial Grammars
	6.1 Definitions
	6.1.1 The signatures
	6.1.2 The lexicon
	6.1.3 Abstract categorial grammar definition
	6.1.4 Composition of grammars

	6.2 Tree adjoining grammars as abstract categorial grammars
	6.2.1 Introduction to TAG
	6.2.2 Encoding TAG with ACG
	6.2.3 Encoding strings with ACG

	7 Document planning with ACG
	7.1 Using ACG in the context of a NLG framework
	7.1.1 The static and dynamic aspects of NLG systems
	7.1.2 ACG based NLG systems

	7.2 Basic document structures
	7.3 Complex document structures
	7.3.1 Describing larger sets of document plans
	7.3.2 Improving context sensitivity

	7.4 Data-driven document structuring using RST
	7.4.1 Bottom-up document structuring
	7.4.2 Modelisation

	7.5 Conclusion

	8 Implementation
	8.1 General architecture
	8.1.1 Lambda terms
	8.1.2 Signatures and lexicons
	8.1.3 Composed lexicons
	8.1.4 Summary

	8.2 Generation and transformation of structures
	8.2.1 Example grammar
	8.2.2 Datalog prover
	8.2.3 Inversion of a lexicon
	8.2.4 Transferring and choosing solutions
	8.2.5 Generation of -terms

	8.3 Linguistic resources
	8.3.1 Semantics
	8.3.2 English grammar
	8.3.3 Text variability

	9 Results and perspectives
	9.1 Evaluation
	9.2 Business intelligence
	9.3 Argumentation
	9.3.1 Initialization
	9.3.2 Document planning and microplanning
	9.3.3 Results

	9.4 Perspectives
	9.4.1 Evolution of the ACG kernel
	9.4.2 New linguistic resources

	9.5 Conclusion

	Bibliography

