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by Mikhail Stolpovskiy

QUBIC is a ground-based experiment aiming to measure the primordial B-modes, cur-

rently under construction, that uses the novel bolometric interferometry technique. Thanks

to the fusion nature of QUBIC, it has very good sensitivity and excellent control of sys-

tematics. Moreover, the fact that the synthesized beam depends on the wavelength

allows us to treat QUBIC as a spectro-polarimeter. These factors together give sensitiv-

ity on tensor-to-scalar ratio r 0.012. The goal of this thesis is to describe the pipeline

of data analysis for QUBIC, from map-making of CMB from raw time-ordered data,

through component separation and power spectra estimation to cosmological parameter

estimation. The main accents of this work are: map-making, which is very unusual in

comparison with other experiments in the field, and the development of scanning strategy

for QUBIC.
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Développement du pipeline de mesure des modes B pour l’expérience

QUBIC

par Mikhail Stolpovskiy

QUBIC est une expérience au sol en cours de construction dont le but est de mesurer

les modes-B primordiaux du fond diffus cosmologique en utilisant la technique innovante

de l’interférométrie bolométrique. Grâce à la fusion entre interférométrie et imagerie,

QUBIC a une très bonne sensibilité et un excellent contrôle des effets systématiques

instrumentaux. De plus, du fait de la dépendance en fréquence du lobe synthétique,

QUBIC peut être utilisé comme un spectre-imageur. Ces points pris en compte, la

sensibilité globale de QUBIC au rapport tenseur/scalaire est 0.012. L’objectif de cette

thèse est de décrire le code d’analyse de données de QUBIC, depuis la fabrication de cartes

à partir des données temporelle jusqu’à la séparation de composantes astrophysique,

l’estimation du spectre de puissance angulaire et celle des paramètres cosmologiques.

Les aspects essentiels de ce travail sont les suivants: la fabrication de carte qui est très

inhabituelle vis à vis des autres projets du domaine et le développement de la stratégie

de couverture du ciel pour QUBIC.

Mots clés: cosmologie, fond diffus cosmologique, modes-B primordiaux, inflation, expérience,

interférométrie bolométrique
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Chapter 1

Cosmology: brief introduction

In this chapter we are briefly discussing the modern cosmology: from the historical point

of view, from the theoretical and observational points of view. We introduce the Big

Bang model and its problems and discuss the possible solution of them – the theory of

inflation.

1.1 Cosmology: historical view

From the philosophical point of view, science helps us to understand our role in the

World. Who we are, what is our past and future. All sciences try to approach these

questions from different sides and on various scales. While most of other sciences like

biology, geology, sociology, concentrate on studying the Universe at scales of Earth and

the life on Earth, physics takes an interest in all scales from elementary particles and

their possible composition to the biggest structures of the Universe and their possible

extension beyond the cosmic horizon. Cosmology, as a field of physics that studies the

Universe in its wholeness, is, probably, the most philosophical science of all. Let’s return

back to the beginnings of astronomy and track development of the modern cosmological

model of the Universe.

1.1.1 Archeoastronomy

Archeoastronomy is a domain of archeology that focuses on studying how people in the

past have understood the celestial phenomena. The most intriguing studies are dedicated

to prehistorical astronomy.

1
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According to the archeological studies, mankind has started to perform simple astro-

nomical observations around 8 – 7 thousands years B.C. [15] [16]. In most of the cases

archeologists find a kind of observational astronomical places, astronomical images and

lunar calendars. However there is also evidence that men were interested by astron-

omy even 20 thousands years B.C. For example of such evidence, the wand made of

mammoth’s tusk found near Siberian city Achinsk [17]. It was found in 1972 during

archeological investigations of one of the oldest Siberian neolithic settlements. The wand

is covered with a spiral ornament of little holes. On the first glance it is nothing but an

ornament. But careful counting of the holes tells that:

• One can derive a number 29.53 from number of holes in different groups, which is

equal to the number of days in the synodical month - the period between two new

moons.

• The numbers in the ornament could be split by three groups, number of holes in

which correspond to the number of days in the draconic year (period after which

the Sun returns to the same point of the lunar orbit), synodic and tropical year.

• Full number of holes in the ornament corresponds to the number of days in three

lunar years.

• There is a pattern in the ornament, that tells us that the wand could be somehow

used as a computational instrument.

These results could seem fantastical, considering the age of the founding if it would be

a single occurrence. There are more archeological discoveries in the same region, that

consist the same kind of astronomical information. The Achinsk wand shows that since

the dawn of time mankind had scientific interest on the world they live in.

1.1.2 Ancient Greece

The first attempts to build a cosmological model of the whole Universe are found in the

chronicles of court astronomers in China [18]. But the most interesting views are probably

to be found in the scientific poems On Nature of greek philosophers. These works are

especially interesting because they had major influence on the western civilisation during

many centuries.

Ancient greek philosophers tried to downgrade all variety of the observational world to

some few primordial elements. Later this principle was formulated by Willam of Ock-

ham, an english scholastic philosopher and theologian: "Among competing hypotheses,
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the one with the fewest assumptions should be selected", that was later called the Ock-

ham’s razor. This principle became one of the ruling principles in building theories and

sometimes was used to judge the validity of the theory.

Greek philosophers defined the following five primordial elements [18]. From the heaviest

to the lightest they are: earth, water, air, fire and ether. All the five form layers around

each other such that the most heavy elements lay in the centre.

The very appearance of the Universe was sometimes associated with the idea of the

primordial heat (ancient Greece and India). A remarkable model was invented by Anax-

imander (VII century B.C.). He imagined the origin of the Universe as the result of

overheating a central core – embryo – that broke apart to several rings ("cosmoses")

made of some opaque matter and filled with celestial fire. The celestial bodies are con-

sidered as holes in the cosmoses-rings, through these holes we are able to see the fire.

Figure 1.1: Anaximander’s model of the Universe with the flat cylindrical Earth in
the centre and several rings around it that contain the primordial fire inside.

Aristotle (384 – 322 B.C.) for the first time generalised all the knowledge about the

Universe at that time and wrote down the first ever observationally proved physical

picture of the World. At the centre of the Universe he places the spherical Earth. Around

it there are Sun, Moon and five known at that time planets (the only planets seen by a

naked eye): Mercury, Venus, Mars, Jupiter and Saturn. There is a sphere corresponding

to each of the body, that rotates around the Earth. The farthest, eighth sphere, that

embrace all other spheres, contains stars. Accordingly to Aristotle, celestial spheres and

bodies are made of ether, that has no mass and exists in eternal rotational motion.
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1.1.3 More modern views

Unfortunately, we are not able to cover the whole history of cosmological views from

prehistorical times to nowadays. One of the main steps in understanding the Universe

was the change of the geocentric system to the heliocentric. That allowed to realistically

estimate the sizes of the Earth, Sun and the Solar system, finding that the Earth is

much smaller than the size of the Sun and it is negligibly small relatively the Earth-

Sun distance. Later it was understood that even the orbit of the Earth around Sun is

relatively small in the scales of solar system.

Little by little, with accumulation of knowledge about the Solar System, interest of the

scientists moved to the study of our galaxy. In XVIII - XIX centuries scientists believed

that Milky Way was itself the Universe [19]. That’s why all the attempts of astronomers

at that time were pointed to study kinematics and composition of the galaxy. One of the

most active investigators of the galactic structure was William Herschel (1732 – 1822).

One of the scientific achievements of Herschel was building a model of our galaxy. He

imaged it as a lentil-shaped cloud of stars with the Sun in the centre.

By the end of XIX – beginning of XX century our galaxy was studied in details. The

galactic diameter was measured, various types of star population, star aggregates and

nebulae were studied. Spectral classification of stars led to the Hertzsprung-Russell

diagram, that has a deep evolutional meaning.

The question about true size of the Universe was especially keenly posed in the beginning

of twentieth century, when scientists started to think about the nature of numerous

nebulae that could be seen in telescopes. In 1920 a discussion between two authoritative

american astronomers Harlow Shapley and Heber Curtis arose. The discussion was about

the nature of nebulae. Shapley affirmed that all the nebulae were nothing but gas

formations situated in our galaxy. Meanwhile Curtis contended that many nebulae were

actually individual galaxies, containing billions of stars and are situated far away of our

galaxy. According to Curtis our world is the world of galaxies and its size by many orders

of magnitude surpasses the size of each of the galaxies. Both scientists gave observational

and theoretical arguments for their concepts, but couldn’t come to a conclusion.

We can consider Curtis’s point of view as a broadened Copernican principle: we should

never place ourselves at the centre of the macrocosm. Our planet is one of several rotating

around the Sun, our Sun is an ordinary star in the Milky Way. Extending this logic we

can expect, that our galaxy is nothing but an ordinary galaxy among billions of galaxies

in the Universe. Some speculative theories say that probably our Universe is one of many

universes. That’s how our view was extended thanks to the work of Nicolaus Copernicus
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Figure 1.2: That was a hot discussion!

(1473 – 1543), who for the first time ever placed the Sun rather than the Earth at the

centre.

Speaking about the possible centre of the Universe we could also remember a medieval

french philosopher Alain de Lille (1128 – 1202/1203), who said "God is an intelligible

sphere whose centre is everywhere and whose circumference is nowhere." Besides intel-

ligibility, it is also a very nice metaphor of the Universe. The Universe indeed has no

centre, or, in other words, has centre everywhere. And its circumference is, probably,

nowhere. Later, considering the expanding Universe, we will learn that it is actually

true.

1.1.4 Birth of relativistic cosmology

In 1916 Albert Einstein (1879 – 1955) published the general theory of relativity [20] and

a year later, in 1917, he published his first cosmological work [21] where he developed his

model of stationary Universe. At that time Einstein, as many others, believed that our

Universe is a cloud of billions of stars, Milky Way, being in stationary state. Surprisingly,

the developed general theory of relativity didn’t allow to get a stationary solution. So he

had to introduce in the equations a new term, that he called a cosmological constant Λ.

The Einstein’s Universe in his work of 1917 is eternal and at rest, without any evolution.

Its three-dimensional space is non-euclidean and is like a sphere (or, more precisely, a

hypersphere). Einstein thought that this space had to have a finite volume and be closed.

It seems that Einstein was not quite satisfied by his theory. At the end of his paper he

stated again that the cosmological constant is needed to allow quasi-statical distribution

of matter, that correspond to small peculiar velocities of stars. But the nature of this

constant was not understood.
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The very heart of the theory of general relativity is the idea, that the curvature of space

is related with the distribution of energy. It directly comes from the equivalence principle

which tells that the gravitational field is equivalent to acceleration. That is an observer

could not distinguish the gravitational field (that produces the force, let’s say, pointed

down) and acceleration of the frame (towards up) where he is in the rest. This relation

between curvature and energy is encoded in the Einstein equation:

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν , (1.1)

whereGµν is the Einstein tensor; G is Newton’s constant and Tµν is the energy-momentum

tensor that describes the distribution of energy and mass in space-time. The Rµν term

is the Ricci tensor which depends on the metric:

Rµν = Γα
µν,α − Γα

µα,ν + Γα
βαΓβ

µν − Γα
βνΓβ

µα, (1.2)

where Γ is Christoffel symbol, comma denotes derivative with respect to the noted com-

ponent of x and the usual convention of summation on repeated indexes is applied.

Finally R ≡ gµνRµν is the Ricci scalar.

So the left-hand side of the 1.1 equation is a function of the metric. The right-hand side

is a function of the energy and matter distribution. Einstein equation relates the two

[22].

In 1922 A. Friedmann (1888 – 1925) for the first time introduced the possibility of

cosmological expansion of the Universe. He considered the equations of general relativity

with Λ-term and has shown that they allow not only static world, but also an expandable

or shrinkable worlds. His conclusions were expressed in two papers [23] and [24] (see also

his popular science book "The World as Space and Time" [25]). Describing the behaviour

of the world in time he says that "The variable type of Universe gives us the big variety

of cases. It is possible that the radius of curvature of the Universe increases with time.

Or it is also possible that the curvature radius changes periodically: Universe shrinks to

a point (to virtually nothing), then expands its radius to some value, then again reduces

its radius to a point etc." [25].

1.1.5 Expanding Universe

In 1917 the Mount Wilson Observatory was equipped with the largest telescope at the

time with the main mirror diameter 2.5m. Edwin Hubble (1889 – 1953) started to work
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there. Using photographic method in 1923 – 1924 he resolved, for the first time ever,

three spiral nebulae to individual stars. Among the stars of the Andromeda nebula (M31)

he found some variable stars – cepheids. A strong direct relationship between a Cepheid

variable’s luminosity and pulsation period established Cepheids as important indicators

of cosmic benchmarks for scaling galactic and extragalactic distances [26]. According to

Hubble’s estimation, the distance to M31 (Andromeda nebula), was 9 × 105 light years

(according to the modern data it is about 2.4 millions light years. Thereby Hubble proved

that the Andromeda nebula is actually situated outside the Milky Way and constitutes

a giant star system, as big as our own galaxy. Thus, with the inauguration of a new

telescope, the size of the Universe was increased by orders of magnitude.

Later, in 1927 – 1929, Edwin Hubble discovered, that the galaxies don’t stay still, but

move away from each other. Ten years before, in 1917 an american astronomer V. M.

Slipher wrote about the moving away of the cosmic nebulae [27], [28] (it is the very year

of Einstein’s article on stationary Universe [21] !) Slipher discovered that 11 among 15

nebulae studied by him the spectroscopic lines are shifted to the red part of spectrum.

It appeared that the fainter the nebula the more it was red shifted. This kind of red

shift could be interpreted as a Doppler effect and points to the moving of nebulae away

from us. At that time neither the distances to the nebulae, nor their nature were known,

that’s why Slipher didn’t give any cosmological interpretation of his results.

In 1927 E. Hubble, thanks to his studies, already knew that many nebulae, observed

by telescope, are far galaxies. Moreover, observing cepheids he determined distances

to many of those galaxies. Using spectroscopic data, he deduced the dependence of the

receding speed of galaxies on the distance to them, see the figure 1.3. Thus he derived the

famous law [1] that bears his name: the receding speed of a distant galaxy is proportional

to the distance to it:

v = HR (1.3)

Modern value of Hubble constant is ∼ 70kms−1Mpc−1. Thus Hubble has empirically

proven that our Universe expands and has given a numerical characteristic of this ex-

pansion: the speed of expansion is proportional to the distance to the galaxy. Exactly

this type of Universe expansion was predicted by Friedmann’s cosmological theory.

Assuming the isotropic and homogeneous Universe one can derive the Friedmann equa-

tions from the 00-component of the Einstein equation:

H2 =

(

ȧ

a

)2

=
8πG

3
ρ+

Λ

3
− κ

a2
, (1.4)
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Figure 1.3: Velocity-Distance Relation among Extra-Galactic Nebulae. Radial veloc-
ities, corrected for solar motion, are plotted against distances estimated from involved
stars and mean luminosities of nebulae in a cluster. The black discs and full line repre-
sent the solution for solar motion using the nebulae individually; the circles and broken
line represent the solution combining the nebulae into groups; the cross represents the
mean velocity corresponding to the mean distance of 22 nebulae whose distances could
not be estimated individually. (Picture caption is cited from original paper by Hubble

[1])

ä

a
= −4πG

3c2
(ρ+ 3p) +

Λ

3
. (1.5)

Here H is the Hubble constant from 1.3, a is the scale factor that grows with the expan-

sion of the Universe, ρ is the energy density and κ is geometry constant, which is equal

to +1 if the Universe has a closed (spherical) geometry, 0 if the geometry of the Universe

is Euclidean and −1 if it is hyperbolic. The Friedmann equation describes the evolution

of the Universe in homogenous and isotropic case, which is a good approximation on the

large scales.

Independently from Friedmann, in 1927 Belgian astronomer G. Lemaitre (1894 – 1966)

learned about the Slipher and Hubble’s results gave his own explanation to the global

Universe expantion [29]. He built a model of changing of the space curvature radius with

time and considered evolution of perturbations. Actually, he was the first who wrote

the Hubble’s law 1.3 and he also made the first estimation of the Hubble’s constant. He

proposed an interesting idea, that as the Universe now expands, maybe before it was

just a point-size. He called this "hypothesis of the primeval atom" or the "Cosmic Egg".
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Later this model of hot Universe was ironically called the Big Bang model by Fred Hoyle,

who was an opponent of this idea.

It is important to mention that there is a common misunderstanding while speaking

about the Big Bang. Very often people think about it like an actual explosion happened

at the moment of time 0, when all the distances were 0 (virtually the Universe was just

a point) and the density was infinite. In fact, we know nothing about the Universe

before the end of the Planck epoch. Let’s consider it a bit more precise, as it has crucial

importance for all the cosmology.

The Planck epoch is the earliest epoch in the history of the Universe that we can describe

with our theories. It is characterised by the Planck mass density

ρP l ≡
c5

~G2
≈ 5.15 · 1096

kg

m3
, (1.6)

which is a value of units of mass density, obtained by the dimension analysis from

the three fundamental constants of Nature: the gravitational constant G, the special-

relativistic constant c, and the quantum constant ~. When the density is higher than

the Planck density, that is before the end of Planck epoch, the processes in the Universe

are ruled by the laws of quantum gravity. So far we don’t have any quantum gravity

theory which is not self-contradictory. Even if we would have such a theory, it is not yet

possible to falsify it, as the quantum gravity regime comes with very high energies, much

higher than possible for modern experiments:

EP l ≡
√

~c5

G
≈ 1.956 × 109J ≈ 1.22 × 1028eV ≈ 0.5433MWh (1.7)

This energy, called Planck energy – the energy scale that one is able to obtain with di-

mensional analysis of fundamental constants – is the scale of quantum gravity. Currently

we are absolutely unable to study the Universe before the end of the Planck epoch. It

took place before time 10−43 seconds (Planck time):

tP l ≡
√

~G

c5
≈ 5.39 106(32) × 10−44 s (1.8)

The Big Bang is the model of expansion of the Universe from some hot and dense state

after the Planck era.
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1.1.6 Big Bang model problems

The Big Bang model is a very successful model that explains many aspects of the obser-

vational Universe. However it has some issues. Let’s briefly discuss them.

1.1.6.1 Flatness of the Universe

The total energy density defines the geometry of space. If the total energy density of the

Universe is equal to the critical density

ρcrit ≡
3H2

8πG
≈ 10−26 kg m−3, (1.9)

then the Universe has flat Euclidean geometry. If the density if higher than the critical

value, the Universe becomes close. On the contrary, if the density is lower than the

critical value, then the Universe is open. Today the Universe seem to be flat, as the

measured value for the total density is very close to the critical one. We can introduce

the density parameter Ω, which is fraction of the density with respect to the critical

density of the Universe:

Ω ≡ ρ

ρcr
=

8πGρ

3H2
=

κ

a2H2
+ 1 (1.10)

where the last equality follows from the equation (1.4) with zero cosmological constant.

As we see, this density parameter Ω defines the geometry of the Universe: Ω − 1 =

κ/(a2H2). It is convenient to introduce another parameter Ωk ≡ Ω − 1, which is just

difference of the total energy density from the critical value. At the epoch of radiation-

domination the scale factor depends on time as a ∝ t
1

2 , the first derivative on time of

scale factor - as ȧ ∝ t−
1

2 and

|Ωk| ∝ t ∝ a2. (1.11)

Similarly, for matter-domination epoch we find a ∝ t
2

3 and ȧ ∝ t−
1

3 , so

|Ωk| ∝ t
2

3 ∝ a. (1.12)

Thus we find that the value of |Ωk| always increases with time. Today we measure it as

|Ωk,0| ∼ 6 × 10−3. Applying the laws of time dependence from the equations 1.11 and
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1.12 one can find that at the Planck time tP l ∼ 10−43s the value of Ωk must be about

8× 10−62, which means that our Universe looks like if it is fine tuned (the "Fine tuning"

problem): the initial value of energy density at Planck time must be so precisely tuned

to the critical value, that it is hard to believe that it just happened by chance. This is

called the flatness problem of the Big Bang model.

1.1.6.2 Horizon problem

One can define the cosmological horizon: It is the maximal distance at which two objects

may have influenced each other since the Big Bang. For a photon the distance that photon

covers for time dt in a flat Universe is

dr =
dt

a(t)
. (1.13)

Integrating this equation one can get the size of horizon for a photon emitted at time ti

in terms of comoving distance:

λhor(t0) =

∫ t0

tPl

dt′

a(t′)
=

∫ a(t0)

a(tPl)

d ln a

aH
. (1.14)

The size of the observed Universe today, as it was observed at some moment t, informally

introduced in the beginning of this section, is

l(t0, t) = a(t)λhor(t0) (1.15)

The figure 1.4 illustrates the horizon problem. The region that we observe today on

the CMB is almost as big as the horizon today. So the CMB contains many causally

disconnected regions: these regions at the moment of recombination could not share any

information since the Big Bang. The angular scale of causally connected regions on the

CMB today is about 1.1◦. And the statistical properties (as we will learn in more details

below) of the CMB on the scales more than one degree are almost constant. So it raises

a question: either the fluctuations in the early Universe went exactly same way in all the

different parts of the Universe, which looks supernatural to physicists, or there is some

better explanation, that puts all the different patches of CMB to causal connection.
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anti-particles in the Universe is very small. That poses a question: how the observed

matter-antimatter asymmetry could arise?

For the theory of Big Bang the observed B-asymmetry of the Universe is a serious

problem, as the primordial singularity, due to the model, must be perfectly neutral,

including perfect symmetry of matter and anti-matter. In 1967 A. Sakharov formulated

a list of necessary conditions for creating the C-asymmetric Universe [31]. It is

• Baryon number violation (B-violation),

• C- and CP-violation,

• State out of thermal equilibrium.

Let’s illustrate these conditions on one nice example (look at 1.5). Usual matter we will

illustrate with white grapes and white wine. Correspondingly, antimatter is illustrated

with red grapes and red wine. White and red wines should be never mixed together in

one glass – ask any Frenchman, if you doubt. Just as usual and anti-matter should not

be mixed, otherwise they explode.

You may know, that it is possible to produce white wine from red grapes – usually red

grapes have white juice and it is the skin that gives the color. It is the illustration of

B-symmetry violation. Correspondingly, there must be process to produce matter from

antimatter. In perfectly B-symmetric world it never happens, as the B-charge perfectly

conserves. Today we don’t observe yet any hint for B-violation. It is one of the most

important open questions for the modern physics.

C-conjugation changes the matter to antimatter. It is equivalent to symmetry of the

picture 1.5 on vertical axis. It means, that with perfect C-symmetry the B-violating

process that produced matter from antimatter will be counterbalanced by C-symmetric

process of antimatter production from matter. We need C-violation to prohibit this

process. It is exactly what happens with wine: the fact that we cannot produce red wine

from white grapes is analogous to C-asymmetric picture.

To illustrate the necessity for CP-violation, let’s include white and red plums to our

illustration. P-symmetry describes the symmetry of our world on spatial inverse. P-

conjugated matter remains to be matter, the same for antimatter. In our illustration

P-conjugation transforms grapes to plums, conserving their color. But we find that in

perfect CP-symmetric world, if we allow the production of white wine from red grapes,

then CP-conjugated red grapes are white plums, and white grape wine becomes red plum

wine. Thus again, in CP-symmetric world, the overproduction of white grape wine will
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Figure 1.5: Winery illustration for Sakharov conditions of matter-antimatter unbal-
anced Universe.
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be counterbalanced by production of red plum wine from white plums. To prevent it, we

need CP-symmetry violation. Similarly for matter and antimatter. The violation of C-

and CP-symmetries are experimentally observed phenomena [32–34].

Finally, the thermal non-equilibrium: imagine we have a machine, that produces wine.

This machine is able to produce white and red wine, depending on the color of fruits we

load to it. At the beginning, we load the machine with equal number of white and red

grapes and plums. It is logical, that in the output we have more white wine. So white

wine we bottle, while we have not enough red wine to make even a single bottle, so we

just pour it out. Our machine works only in one direction: it produces wine from fruits,

not the other way round. Otherwise we would be able to load it with equal amount of

white and red wines and produce more red fruits than white. Similarly, our Universe

is primordially "loaded" by equal number of particles and anti-particles. With all the

described processes we produce more matter than antimatter. But if our Universe would

be in thermal equilibrium, the processes of matter production would be counterbalanced

by time-reversed processes, and we end up with neutral Universe. The non-equilibrium

state is guaranteed by the Big Bang model.

Nowadays we reached energies of order 1013eV on the LHC accelerator [35], which cor-

responds to the energies during the quark epoch of the early Universe, when the quarks

were not yet bound to the nuclei. The physics we study on LHC is well described by

the Standard Model of particle physics (SM), which doesn’t include explanation of the

baryogenesis. The B-asymmetry problem of cosmology remains unsolved. Probably, we

should search the solution of this problem in earlier epochs.

1.1.6.4 Magnetic monopoles

The Grand Unified Theory (GUT) is the theory that predicts the merge of the gauge

interactions (strong and electro-weak) into one single force. The simple motivation for

this theory is the coincidence of absolute values of electron and proton electric charges,

which is not explained by SM. If GUT is actually correct, then probably in the early

Universe there was an epoch of grand unification. GUT predicts existence of magnetic

monopoles – elementary particles with magnetic charge [36]. They appear as topological

defects in the early Universe. These monopoles are stable, thus they had to remain until

the present days. The appearance of the magnetic monopoles is causal process, that is

the distance between to neighbour monopoles must not be larger than the horizon at the

epoch of grand unification. Today the horizon is much larger than then, with the same

reasoning as described in 1.1.6.2 section. But no observations proove the existence of the

magnetic monopoles.
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1.1.7 Inflation

When we considered the horizon and flatness problems of the Big Bang model, the source

of these problems was the fact that the product of a(t)H(t) decreases fast with time in

the hot expanding Universe. The main idea of inflation as a way to solve those problems

is to introduce an epoch in the early Universe when the product of a(t)H(t) is a fast-

growing function of time. Note, that aH = ȧ, so the increase of a(t)H(t) means positive

ä. In other words, the Universe should expand with acceleration [37].

In 2002, the fathers of the theory of inflation: Alan Guth, Andrei Linde and Paul Stein-

hardt, were awarded the Dirac Prize "for development of the concept of inflation in

cosmology".

Let’s see, how the accelerated expansion can solve the problems of the Big Bang model,

listed above. First let’s consider the size of horizon by the end of inflationary stage. If

inflation lasts from about tP l till tend, the present size of the region under horizon by the

end of inflation is

a0λ(tend) = a0

∫ tend

tPl

d log a

aH
. (1.16)

Since the aH grows fast with time, this integral is defined mainly by the lower limit and

assuming H ≈ const

a0λ(tend) ≈ a0
a(tP l)H(tP l)

. (1.17)

This value does not depend on tend, which means it is larger or of the same order as the

observable Universe today. It means that inflation epoch puts causal connection to all

observed Universe. The ratio of the size from equation (1.17) to the size of the observable

Universe today is

a0λ(tend)

a0λ(t0)
≈ a(t0)H(t0)

a(tP l)H(tP l)
& 1. (1.18)

Note that to solve the flatness problem we need

Ωk(tP l)

Ωk(t0)
=

a2(t0)H
2(t0)

a2(tP l)H2(tP l)
& 1, (1.19)

which is satisfied in the equation (1.18). Thus the high rate expansion during the inflation

epoch solves both horizon and flatness problems of Big Bang model. Roughly speaking,
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if we have any curvature in the early Universe by the end of Planck era, it would be

blown away during inflation stage.

The inflation theory could also be solution for baryon asymmetry and magnetic monopoles

problems. Tiny perturbations that happened during inflation could create little volumes

of baryon asymmetric and monopole-free regions. This little regions expanded very fast

to huge volumes. One of these volumes became our observed Universe.

Considering the second Friedmann equation (1.5) and assuming the positive acceleration

ä we have p < −1
3ρ. That is the inflation requires the negative pressure. Let’s assume

that the inflation potential V depends only on one homogeneous time-dependent scalar

field φ called inflaton. There are other models for inflation, but here we consider only

the very basic one. Density and pressure depending on the potential V (φ) are:

ρ =
1

2
φ̇2 + V (φ), (1.20)

p =
1

2
φ̇2 − V (φ), (1.21)

If we have

1

2
φ̇2 ≪ V (φ) (1.22)

then the requirement to have the negative pressure is fulfilled.

If the kinetic term 1
2 φ̇

2 of equations (1.20, 1.21) is zero, then the inflation lasts forever.

To exit the inflationary epoch one needs a non-zero kinetic term, but to have inflation

lasting long enough we also need the derivative of the kinetic term to be small. This could

be satisfied with an almost flat potential, where the field φ rolls slowly. The potential

should also have a minimum where inflation stops. This approximation is called the slow-

roll approximation and it is the simplest model for inflation, see figure 1.6. Considering

Klein-Gordon equation

φ̈+ 3Hφ̇ = −dV
dφ

, (1.23)

we can write the requirement of small derivative of the kinetic term of (1.20, 1.21) as:

φ̈≪ 3Hφ̇. (1.24)
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The Friedmann equation of an expanding scalar field, ignoring the curvature and Λ terms,

is:

H2 =
8π

3m2
P l

[

V (φ) +
1

2
φ̇

]

. (1.25)

Together with the Klein-Gordon equation (1.23) it consitutes the system of equations of

motion. Taking into account the requirements (1.22, 1.24) the equations of motion turn

to

H2 =
8πG

3
V (φ), (1.26)

φ̇ = − 1

3H

dV (φ)

dφ
. (1.27)

We can define the inflation parameters for the slope of potential

ǫ(φ) ≡ m2
P l

16π

(

1

V

dV (φ)

dφ

)2

, (1.28)

and for its curvature

η(φ) ≡ m2
P l

8π

1

V

d2V (φ)

dφ2
, (1.29)

where mP l =
√

~c
G is the Planck mass. Then the necessary conditions (1.22, 1.24) for

the slow-roll approximation are:

ǫ≪ 1, |η| ≪ 1. (1.30)

Figure 1.6: The slow roll potential
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The inflation epoch could seed also the inhomogeneities of the Universe. If we introduce

the space-dependent term to the inflaton, such that

φ(~x, t) = φ(0)(t) + δφ(1)(~x, t), (1.31)

where the homogenous term φ(0)(t) is what we told about above, then these perturbative

term δφ(1)(~x, t) generates necessary fluctuations that grow after to all the structures of

the present Universe. These quantum fluctuations perturb both matter distribution

and space-time metric. The first arise from the scalar perturbations, while the second

are from the tensor. The scalar perturbations, coupled to the density of radiation and

matter, make the Universe inhomogeneous. While the tensor fluctuations make the

primordial gravitational waves. These gravitational waves were pretty significant in the

early Universe, while today, due to the redshift, they are hardly detectable. But they

leave a specific imprint on the CMB polarisation as B-modes, which we will discuss below

[38].

The spectra for the scalar and tensor inflationary perturbations are:

PS(k) = A2
Sk

nS−1, (1.32)

PT (k) = A2
Tk

nT , (1.33)

where nS,T are spectral indices and AS,T are amplitudes of the fluctuations.

As it is shown in [39],

PS(k = aH) =
1

24π2m4
P l

V

ǫ
, (1.34)

PT (k = aH) =
2

3π2
V

m4
P l

, (1.35)

One can define the tensor-to-scalar ratio r as

r =
A2

S

A2
T

. (1.36)

From (1.34, 1.35) we get:
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during inflation, they remain frozen until they re-enter the horizon at late time. Thus

one can deduce the power spectrum of perturbations from the inflationary potential,

because the potential defines the way the perturbations exit the horizon. The slow-roll

inflation predicts ns to be slightly less than 1. The COBE experiment and later Planck

mission measured the ns parameter and its modern value is 0.9667± 0.0040, in excellent

agreement with the inflationary predictions.

That’s probably the most strong reason why inflation is the leading paradigm today. But

it’s not all. We told that one of the motivations for inflation was the observed flatness of

the Universe. But in fact physicists in late 70’s – early 80’s didn’t know yet whether the

Universe is flat or not. It seemed flat, that’s true. However, the total observed matter in

the Universe gave the density which is about 4 times lower than the critical density. Only

with discovery of the dark energy (see paragraph 1.2.4) it was finally understood that

the Universe is indeed flat, as predicted by the inflationary model. As we already said,

the trace of tensor perturbations is not found yet. However, even without it inflation

seems rather successful theory.

1.2 Observations in cosmology

In this section we will briefly discuss the observations in cosmology. One can roughly

classify the cosmological observations as the purely cosmological, i.e. dedicated to the

measurements of the properties of the Universe in the whole, and the complementary

studies of processes closely related to cosmology. The "purely cosmological" studies com-

prise cosmic microwave background observations, large-scale structures (LSS), measure-

ments of light elements abundances and elementary particles abundances, dark matter

and dark energy studies. Also cosmologists are interested in the results of accelerator-

based studies of early Universe physics and others. The cosmic microwave background,

as it is the subject of this work, deserves a separate chapter. Other subjects will be

briefly covered below.

1.2.1 Large-scale structures

The basic cosmological principle says that on the large scales the Universe becomes

homogeneous and isotropic. In fact, it is nothing but extreme extension of the Copernican

principle. If the Universe is not homogeneous and isotropic on the large scales, the place

we live in could become privileged, while Copernicus said that the Earth has no privileged

place in the Universe.
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However, our Universe is homogenous only on average, on very large scales L & 200 Mpc

[42]. On smaller scales the hierarchical structure becomes evident like planets and stars,

star clusters (L ∼ 1 pc), galaxies (L ∼ 10 ÷ 100 kpc), clusters of galaxies (L ∼ 10 Mpc)

and super-clusters of galaxies (L ∼ 100 Mpc). The lasts form so-called cosmic web of

clusters, filaments and voids.

This hierarchical structure was produced by gravitational instability of some small per-

turbations of density. They are grown from physical processes on the early inflationary

stage and thus the large scale structures of the Universe are bound to the physics of

elementary particles. The large scale structures are often studied using the two-point

correlation function 〈δ(x1)δ(x2)〉. The power spectrum P (k) being the Fourier transform

of such function:

〈δ(x1)δ(x2)〉 =

∫

d3k

(2π)3
eik(x1−x2)P (k). (1.39)

The physics of the large-scale distribution is described by the Boltzmann equation, which

is dependent on Ωm, ΩDE and other cosmological parameters. Thus by measuring the

power spectrum we can constrain those parameters [43]. The measurements of P (k) are

summarised on the figure 1.8.

Figure 1.8: Power spectrum of large-scale structures
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is called with the same word as used for the steel hardening, like the Universe is a huge

blacksmith‘s shop. Current results on studies of the light element abundances are shown

on the figure 1.9. The picture shows that these studies could constraint the baryonic

density in the Universe, though not all the measurements are consistent, which raises

one of the most intriguing questions in the modern cosmology.

1.2.3 Dark matter studies

In 1932 american astronomer Fritz Zwicky noticed, that besides the luminous bary-

onic matter of galaxies there are invisible hidden masses in the Universe, that manifest

themselves only through the gravitation [45]. Zwicky studied the galaxy cluster in the

constellation of Berenice’s Hair. And he discovered, that the speeds of the galaxies in

this cluster are very large, up to few thousand kilometres per second. To hold down

such fast moving galaxies within the cluster the huge gravitational force is needed, much

higher than the gravitational force from the galaxies themselves. Later, in 1970’s it was

discovered that the hidden masses present not only in cluster of galaxies but in the iso-

lated galaxies as well. Invisible Dark Matter (DM) forms spherical halo around galaxies.

The radius of the halo is typically 5-10 times bigger than the radius of the galaxy.

Dark Matter manifests itself in the following phenomena:

• Galactic motion in the clusters (v ≥ 1000 km/s),

• Rotation of galaxies (flat rotation curves),

• Hot gaz (T ∼ 108 K) in the galaxy clusters,

• Gravitational lensing of the light of far galaxies by the gravitational field of near

cluster,

• Motion of double and triple galaxies etc.

It is remarkable that all the different observations of DM phenomena give the same

estimation to the relative amount of DM. It is about 5 times more massive than the

baryonic matter.

One explanation of these effects could be a difference of the gravity law on big distances

from that on smaller scales. But so far the modifications of the theory of gravitation

could not explain completely the observations.
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Another possibility for DM is the model of weak interacting massive particles (WIMP).

Many experiments around the globe are trying to detect the signal of such particles when

they pass through the detector volume, but yet unsuccessfully.

The existence of DM in the Universe and its leading role in determination of the Uni-

verse structure also manifests itself in the baryonic acoustic oscillations (BAO): acoustic

oscillations of baryonic matter in the potential wells of DM before the recombination.

BAO studies is a rich field in the modern cosmology, which helps to constrain the physics

of DM and LSS [46].

1.2.4 Dark energy

The observations of the supernova stars of type Ia show that today the Universe expands

with acceleration. This fact could be explained by the presence of some form of energy,

called Dark Energy (DE). In 2011 the Nobel Prize in physics was awarded to Saul Perl-

mutter, Brian P. Schmidt and Adam G. Riess for their leadership in the discovery of the

accelerated expansion of the Universe and hence DE.

There is at least two more evidences for the presence of DE:

• The evolution of galaxy clusters, studied with X-ray astronomy on different red-

shifts and in milimetric astronomy by the Sunyaev–Zeldovich effect. The growth of

galaxy clusters is defined by two counteracting processes: gravitational contraction

and repulsion due to the DE. By fitting the dependence of galaxy clusters mass on

the redshift we obtain the value of ∼ 70% for the relative presence of the DE in

the total energy-density budget of the Universe [47].

• The effect of gravitational lensing of the cosmic microwave background gives an

independent evidence for the presence of DE [48].

1.2.5 Results of accelerator experiments in application for cosmology

Cosmology is really bound to the processes on the subatomic scales. The phase tran-

sitions in the early Universe could be studied on the accelerators up to the energies of

order of TeV (on LHC). This energy corresponds to the time after the Big Bang about

0.1 ns. On the accelerators we can perform experiments in well controlled conditions and

study the physics of the early Universe in details.

Recent discovery of the Higgs boson has also significant meaning for cosmology [49]. As

we said in the section 1.1.7, the inflation is driven by some scalar field, called inflaton.
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Higgs boson is the only scalar boson in the framework of the SM, and thus Higgs field is

a good inflaton candidate [50].

There are also accelerator-based searches for DM-particles, but so far these studies didn’t

lead to detection.

1.2.6 Other cosmological observations

Among other areas of inquiry for cosmology we can mention the followings:

• Primordial black-holes studies, which include models for their formation and evo-

lution. Recently observed gravitational waves (GW) [51] opens new amazing op-

portunity for these studies [52].

• Sometimes the astrophysical observations could give a clue to cosmological parame-

ters, like the recent paper of measuring baryon density in the intergalactic medium

using the radio signal from a fast radio burst [53].

• Testing theoretical basis, like, for example, the equivalence principle of general rel-

ativity [54]. Although it is not a cosmological observation, it is crucially important

foundation of cosmology.

We tried to list all the main tendencies in the modern cosmology. However this list

could never be complete, as in any scientific research a significant result may come from

completely unexpected area. As researchers, we should be always open for new insights

and interpretations and try to figure out the nature of our Universe.

In this chapter we briefly summarised the progress in cosmology from prehistorical times

until the present days. Unlike the neolithic people, we dispose so many sophisticated

instruments and theories to study and describe the Universe. And unlike them we un-

derstand so clearly how big the Universe is and how little we know about it.



Chapter 2

Cosmic microwave background and

its fluctuations

This chapter is dedicated to the physics of the cosmic microwave background (CMB).

We briefly discuss the historical points of the discovery and observations of CMB, the

physics of the CMB temperature and polarization fluctuations, introduce the

power-spectrum of these fluctuations and discuss the issue of foregrounds and secondary

anisotropies. In this chapter we mainly stress the problematics of primordial B-modes

observations.

2.1 Cosmic microwave relic background radiation

The cosmic microwave background radiation (CMB or CMBR) is one of the most im-

portant evidence for the theory of the hot Universe and takes an outstanding role in the

modern cosmology. It is the oldest light in the present Universe and encodes information

about all the epochs. This information is currently available for studying due to the

progress in observational techniques.

Let’s first naively describe the physics of CMB emission. When the Universe was young

and hot, the photons were energetic enough to break the hydrogen atoms to protons and

electrons. The Universe was ionised and thus opaque. With expansion, the temperature

decreased and at some point the energy of photons became not enough high to keep the

plasma ionized. The protons and electrons bound to the neutral hydrogen and the space

became transparent. The light, freed from the plasma, started to travel through the

space. Now we observe it redshifted due to expansion. The redshift of CMB is about

1000.

27
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2.1.1 History of CMB discovery

Before scientists started to understand the physics of hot Universe and predicted the

relic radiation, there were some observations of CMB. At that time these observations

were not explained.

In 1941 W. Adams [55] performed observations of interstellar absorption in the light of ξ

of Ophiucus in the CN spectrum and discovered, that the molecules absorb light not only

in the main state but also in the first excited rotating state. McKellar, assuming that

the relative population of energetic states follows the Boltzmann formula estimated the

temperature of the radiation that excites the CN molecules as ∼ 2.3K [56]. The source

of the radiation remained unknown for long time. But the observations of spectra of

other stars proved that the source is isotropic. Only in 1966 the source of the molecules

excitation was identified as CMB [57].

Direct observation of CMB was performed on the horn antenna on the wavelength 3.2

cm in USSR by T. Shmaonov in 1957 [58]. The measured temperature of radiation is

4 ± 3K and doesn’t change with time. In the popular science book "Black Holes and

the Universe" [59] I. Novikov writes: "In the fall of 1983 a scientist of the Prokhorov

General Physics Institute in Moscow T. Shmaonov called me and said that he’d like to

speak with me about the cosmic background radiation discovery. We met the same day

and Shmaonov told me that in the middle of 50’s under supervision of famous soviet

radioastronomers S. Khaikin and N. Kaidanovsky he worked on his PhD thesis... Unfor-

tunately, neither T. Shmaonov himself, neither his supervisors or any radioastronomer

who knew about these measurement, knew nothing about possibility to detect the relic

radiation and didn’t pay much attention to these results. And soon they were forgotten.

It is funny to mention that even the author of the discovery didn’t attach any importance

to it, not only in 50’s, which would be easy to explain, but even after the publication of

the CMB discovery in 1965 by A. Penzias and R. Wilson. To say the truth, at that time

Shmaonov worked on another area. Only in 1983, in some occasional conversation he

drew his attention on the old measurements and gave a talk on Bureau of Department

of General Physics and Astronomy of Academy of Sciences of USSR."

And later Novikov writes: "And even this is not the end of the story. When the author

was about to finish the book, he got to know that there were some measurements by the

Japanese radioastronomers in the beginning of 50’s, who – supposedly – discovered the

background radiation. These work, as well as Shmaonov’s work, neither then or later

never drew any attention and were completely unknown".
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In the spring of 1964 A. Penzias and R. Wilson from the Crawford Hill Laboratory

in Holmdel, NJ, prepared to the measurements of continuous galactic radiation on the

wavelength 20 cm (near to the line of neutral hydrogen 21 cm) [44, 60].

The equipment was very sensitive, with very low noise level. Originally, they intended

to use this equipment to receive the signal reflected by satellites. The scientific program

was to study whether the antenna and receiver noises allow to make absolute measure-

ments. But they found the registered noise on the wavelength 12.5 cm exceeded the noise

observed in the laboratory. At first they supposed that the noise was comming from the

Earth. But D. Wilkinson, who was invited to judge the reasoning, said that it might

be the relic radiation, that astronomers expect due to the model of the hot Universe.

Detailed history of CMB discovery one can find in the J. Peebles’ book [61].

Not a long time before this A. Doroshkevich and I. Novikov [3] computed the spectrum

of radiation that might be observable in the present Universe and was emitted by early

galaxies. On the theoretically computed spectra of galaxies they overplotted the equi-

librium Planck spectrum with temperature 1K, showing that in the range of frequencies

below 5×1011 Hz this radiation dominates (see figure 2.1). At the end of this short paper

they point, that the radio observatory in Holmdel would be an ideal site to measure the

relic radiation.

Penzias and Wilson didn’t know about possibility to explain the observed noise as CMB.

All the instrumental noises were studied in the laboratory, except the noise in the antenna

– the horn reflector with aperture about 6 m. To study this noise in details they tuned

the receiver on the wavelength 7.35 cm and the antenna was pointed on the dark part of

the sky outside the Milky Way. The observed signal was very large – 3.5 ± 1 K.

They spent about a year to check the instrumental equipment. This signal had unusual

properties: it didn’t depend on time, on direction, on the Sun position on the sky, neither

on the position of the antenna in respect to the Earth surface. This behaviour would be

easily explained by a noisy resistance, but after careful check of all systems they made

sure that it was not so. Penzias and Wilson proved that the source of the signal is neither

in the antenna nor in the receiver.

They made the following assumptions for the nature of the source: either it is on the

Earth, or in the Solar System, or in the Galaxy, or, finally, outside the Galaxy. The

first three possibilities were excluded, mainly because the signal was isotropic. For the

extragalactic sources they first assumed some distant discrete radio-sources. But the near

radio-sources were already well studied at that time. Supposing that the distant radio-

sources has the same nature, the observed radiation had to have different properties.
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get the speed of the Local Group relative the CMB which is 627 ± 22 km/s towards

l = (276 ± 3)◦, b = (30 ± 3)◦.

2.1.2 CMB temperature fluctuations

CMB temperature anisotropy takes place from the heterogeneity of matter distribution

in the early epochs of Universe expansion. The heterogeneity is small on the early

stages. Some of distribution fluctuations grow, which results in forming the large scale

structures of the Universe and reflects on the CMB. The fluctuations of mass distribution

is smoothed out in the early epochs, when the Universe is hot. But as it cools down to

temperatures of order 3000 K (time from the beginning of the expansion ∼ 105 years),

when the redshift is 1500 . z . 1000, the recombination of matter happens. The

freed radiation doesn’t interact with matter as actively as before, and it maintains the

fluctuations matter had before and during recombination.

Thus the epoch of recombination is the last period of history of the hot Universe, when

photons scattered on the free electrons. The light from the epoch of recombination comes

to us from a spherical shell around us called Last Scattering Surface (LSS, do not confuse

with Large Scale Structures, which have the same abbreviation; usually it is clear from

context what is meant). From this zone CMB carries the information about matter

conditions in the early Universe. The anisotropy of CMB temperature is expressed in

ratio of temperature fluctuations to the mean temperature: δT = ∆T/T .

2.1.2.1 Power spectrum

As we observe the CMB as a spherical surface, the anisotropy δT is considered as a func-

tion of direction ~n (~n is a unit vector). To study the statistical properties of CMB fluc-

tuations the function δT (~n) is decomposed to the spherical harmonic functions Yℓm(θ, φ)

where θ and φ are zenith angle and azimuth of the vector ~n:

δT (~n) =

∞
∑

ℓ=1

m=ℓ
∑

m=−ℓ

aℓmYℓm(θ, φ), (2.1)

where ℓ is the multipole moment and m is the phase [22, 67]. The multipole moment is

related to the angular size on the sky via ℓ ≃ 180◦/α. The set of complex parameters

aℓm contains full information of δT (~n) function. From basic statistics we know that

for Gaussian random field the average and variance is enough to study the statistical

properties of the field. In case of aℓm the average vanishes and the variance is given by:
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The power spectrum is measured in the units of µK2. One can show that the CMB

angular power spectrum is related to the matter distribution during the epoch of recom-

bination:

Cℓ = 4π

∫

dk

k
T 2(k, ℓ)P (k), (2.4)

where T (k, ℓ) is the angular transfer function which convert spatial fluctuations of matter

to angular fluctuations of CMB [68]. The 2.4 equation relates the cosmological parame-

ters and the Cℓ. This relation is implemented in the CAMB code [69].

The illustration of how the Dℓ can describe the statistical properties of CMB fluctuations

is shown on the figure 2.3. The monopole moment corresponds to the mean temperature.

The dipole, as already discussed in the section 2.1.1, corresponds to the peculiar velocity

of an observer relative the CMB. The higher multipoles describe the proper anisotropy

of CMB.

Let’s consider the physics of the CMB fluctuation formation. First consider some over-

dense region on the LSS. The gravitational field is stronger in such region, so for photons

it is like a potential well. It means that the CMB photons observed from the correspond-

ing direction would be colder than the other. The blue regions on the map 2.7 appeared

indeed like that. Vice versa, the red regions correspond to the regions on the LSS with

density lower than the mean density at that time.

The density fluctuations on the LSS are have particular angular sizes, defined by the

acoustic oscillations of plasma. The peaks on the power-spectrum correspond to the

extrema of the fluid oscillations at the time of decoupling, therefore over-dense regions

or under-dence regions [70].

Although the CMB anisotropies are almost perfectly gaussian, the non-Gaussianities

are studied as well [71]. It is proved that CMB anisotropies don’t follow the gaussian

statistics, the study of non-Gaussianities opens the room for new physics beyond the

standard cosmological model.

There are also some anomalies on the CMB. The detailed overview is given in the Planck

collaboration paper [72]. The deviations from statistical isotropy and Gaussianity is

robust. Citing the mentioned overview, "a satisfactory explanation based on physically

motivated models is still lacking."

We observe the CMB, emitted from the LSS, which is a spherical surface with the radius

almost 〈age of the Universe〉 light years around an observer. That is the spherical surface

we observe is nothing but a spherical slice of continuous last-scattering-space. This
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The Relikt-1 experiment operated in 1983-1984. It was orbiting the Earth on orbit with

apogee 700000 km and period about 27 days. It was the first satellite-born experiment for

CMB observations. The discovery of CMB temperature anisotropy was announced on the

Moscow Astrophysical Seminar in January 1992 in GAISh and the paper, cited above,

went out in September 1992. The Relikt program was planned to continue with the

Relikt-2 experiment, which had to have much better sensitivity, operate on the Lagrange

2 point (L2) and be launched in 1993. Due to the lack of funding the experiment was

never launched.

The next experiment, analogous to Relikt-1, was COBE. The FIRAS instrument, placed

on the COBE satellite, was already discussed in the section 2.1.1. The DMR instrument,

placed on the same satellite, was dedicated to measure the CMB anisotropy on three

frequencies: 31.5, 53 and 90 GHz, see figure 2.5 [74]. The Nobel Prize in Physics was

awarded to the COBE leader scientists G. Smoot and J. Mather in 2006 "for their

discovery of the blackbody form and anisotropy of the cosmic microwave background

radiation".

After COBE the task of measuring the anisotropies of CMB became one of the most pop-

ular domains in cosmology. Here we don’t have the goal to list all the experiments in the

field. But there are some, that we could not avoid to mention. The BOOMERanG (Bal-

loon Observations Of Millimetric Extragalactic Radiation ANd Geophysics) a balloon

born experiment, flew twice in 1998 and 2003, made the best for that time measurement

of the angular power spectrum of CMB temperature fluctuations (see figure 2.6) [5]. The

obtained spectrum was fitted with 5 parameters model, thus were defined: baryon den-

sity Ωb, matter density Ωm, dark energy density ΩΛ, the primordial scalar index ns and

a parameter h, that defines the Hubble constant as H = 100h km sec−1 Mpc−1. The

obtained values are: (Ωb,Ωm,ΩΛ, ns, h) = (0.05, 0.31, 0.75, 0.95, 0.70), determining the

Universe geometry as flat.

The next important experiment was the satellite-born Wilkinson Microwave Anisotropy

Probe (WMAP) [75]. It operated from 2001 to 2010. The WMAP measurement of the

CMB angular power spectrum (see figure 2.8) established the ΛCDM model, which tells

that the major form of energy, about 70% of total energy budget of the Universe, is

some Dark Energy (DE) of unknown nature and the main form of matter is some non-

relativistic (Cold) Dark Matter (CDM or just DM), of also unknown nature. The DE

replaces the cosmic constant Λ, introduced by Einstein to his cosmological equations to

get a stationary solution. The total energy density matches with high precision the crit-

ical density which is necessary to have the flat geometry of the Universe. The measured

curvature of the space is consistent with zero: (Ωk) = −0.0027+0.0039
−0.0038.
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Figure 2.5: The DMR maps on three frequencies: 31.5, 53 and 90 GHz after the
dipole anisotropy removing.
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Table 2.1: Results of full Planck mission on the main cosmological parameters.

Parameter Symbol Value

Baryon density Ωbh
2 0.02230 ± 0.00014

Cold dark matter density Ωch
2 0.1188 ± 0.0010

Thomson scattering optical depth due to reionization τ 0.066 ± 0.012
Scalar spectral index ns 0.9667 ± 0.0040
Hubble’s constant (km Mpc−1 s−1) H0 67.74 ± 0.46
Dark energy density ΩΛ 0.6911 ± 0.0062
Matter density Ωm 0.3089 ± 0.0062

Redshift of reionization zre 8.8+1.2
−1.1

Age of the Universe (Gy) t0 13.799 ± 0.021

Figure 2.7: CMB temperature map, measured by the Planck experiment.

It is common to define the major stages of CMB anisotropy observations by the number

of sensitive elements of the instrument (detectors). Each next stage has roughly an order

of magnitude more detectors than the previous stage. The approximate sensitivity for

each stage is shown on the figure 2.9 [78]. Nowadays we start the Stage III experiments.

The Stage IV experiments, that should answer the main questions of the origin of the

Universe and its nature, are planned to start observations in about 10 years.
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Clearly, the Q and U parameters depend on the reference frame. When we change the

reference frame with basis (~ex;~ey) to another frame with base vectors rotated by an angle

θ around ~k, then the Q and U rotate to Q′ and U ′ by an angle 2θ:

Q′ = Q cos 2θ + U sin 2θ, (2.8)

U ′ = −Q sin 2θ + U cos 2θ, (2.9)

or also:

Q′ ± iU ′ = e∓2iθ(Q± iU), (2.10)

which means the Q and U are spin-2 quantities.

As we know from basic optics, the polarisation of light appears due to reflection [80].

Similarly, CMB polarisation originates from rescattering of primordial photons on the hot

electrons on the last scattering surface. After scattering the outgoing photon carries the

polarisation orthogonal to the scattering plane. Thus, as the photon flux from different

directions is not isotropic, the polarisation of CMB photons carries information about

the density distribution on the last scattering surface.

The cross-section of the Thompson scattering is proportional to the square scalar product

of incoming ǫ1 and outgoing ǫ2 photon polarisations. It means that only monopole and

quadrupole remain. The Q and U polarisations measure the quadrupole part of radiation.

Let’s consider, how the polarisation could depend on the matter distribution in the

early Universe. The acoustic oscillations in hot plasma create fluxes of photon baryon

fluid from hot spots to cold ones (that is from under-dense regions to over-densed ones)

and reversely. In first case the velocities of neighbour particles tend to be diverged

radially to the vector of flux. In the second case the velocities are diverged orthogonally.

This induces a quadrupole flux anisotropy. Thus we can expect that the polarisation

anisotropies of CMB photons are correlated with the temperature anisotropies, as they

both originate from the same processes: from density fluctuations.

2.1.4.1 E-modes

As Q and U Stokes parameters depend on the reference frame, they are not the best

choice for studying the CMB polarisation fluctuations. Q and U are spin 2 objects, so
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Figure 2.10: Upper third – polarisation for Q and U Stokes parameters. Below –
typical E- and B-mode polarisation patterns.

their decomposition to the spherical harmonics must be developed on spin 2 spherical

harmonics [81]:

(Q± iU)(~n) =
∑

ℓ≥2,|m|≤ℓ

a±2ℓm ±2Y
m
ℓ (~n). (2.11)

Two real scalar quantities could be constructed from these spin 2 objects [82]:

E(~n) =
∑

ℓ≥2,|m|≤ℓ

aEℓmY
m
l (~n), and (2.12)
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e -

Figure 2.11: Polarization from Thompson scattering.

B(~n) =
∑

ℓ≥2,|m|≤ℓ

aBℓmY
m
l (~n), (2.13)

where

aEℓm = −a2ℓm + a−2ℓm

2
, and (2.14)

aBℓm = i
a2ℓm − a−2ℓm

2
. (2.15)

These scalar quantities are called E and B modes of polarisation. They have the opposite

behaviour under parity transformations: the E-modes have positive parity and B-modes

have negative parity. This fact is illustrated in the figure 2.10.

The CMB temperature fluctuations arise from the perturbations on the last scattering

surface of density and metric. Depending on the transformation properties under rotation

the metric perturbations could be classified as scalar, vector and tensor. Because of
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expansion the vector perturbations get dumped and only scalar and tensor perturbations

remain. The scalar perturbations arise from the density perturbations.

cold 

spot

hot 

spot

cold 

spot

hot 

spot

Figure 2.12: Polarization direction depends on the velocity gradient on the last scat-
tering surface and hence correlates with temperature fluctuations. Polarization direc-
tion (shown in green thick line) is defined by the fact that the fluid velocities (thin
black arrows) are not isotropic in respect to the scattering point (little black circle).
The fluid motion from a hot spot to a cold one on the left plot (or from a cold spot to

a hot one on the right plot) is shown with dashed arrows.

The scalar perturbations of metric could only generate positive parity polarisation pat-

terns, which are described with E-modes of CMB polarisation fluctuations. The mecha-

nism of generation of E modes from the density perturbations is illustrated on the figure

2.12. The density fluctuations bring forth the flows in the plasma fluid. When the fluid

is accelerated from a hot spot (density deep) to a cold one (density peak), each scattering

point in between the spots experience a higher flow from the direction orthogonal to the

direction of the flow. Thus the polarization is preferably oriented parallel to the flow

direction. In case the fluid is accelerated towards a hot spot, the situation is reversed

and the polarization is oriented orthogonal to the flow direction. It means that E-modes

must correlate with temperature fluctuations. The correlation of E modes with temper-

ature is described by the TE spectrum which is not zero. It is well verified with WMAP

experiment.

2.1.4.2 B-modes

We already discussed the inflationary paradigm in the section 1.1.7 and told that infla-

tion necessarily produces tensor fluctuations of metric. Tensor fluctuations of metric,

propagating through space, are called gravitational waves. The gravitational waves from
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inflation are called primordial, to distinguish with other gravitational perturbations in

later Universe.

The tensor metric fluctuations provide both E and B-modes. While the E-modes are

also created by the scalar perturbations, the only possible source of B-modes is tensor

perturbations. The B-modes of CMB, created by the primordial gravitational wave,

are called also primordial. The primordial B-modes are often called "smoking gun of

inflation": the measurement of B-modes allows to measure the ǫ parameter of inflation,

due to the equation 1.37.

The power spectrum of B-modes is characterised by the main peak at around ℓ = 100.

The only parameter that defines the height of the peak is r. The slope of the spectrum

on higher multipoles is fitted with parameter nT . But for the current stage of CMB

experiments we only hope to measure the r, that is the main peak. To measure nT

the measurement of the second peak is required, and such a measurement is absolutely

beyond the current sensitivity level of experiments, especially because of leakage of E-

signal to B due to imperfect decomposition of the sky polarisation signal to E and B

modes and because of the lensing foregrounds (both these issues will be discussed below).

The current status of the B-mode power spectrum measurements is shown on the picture

2.14.

In 2014 a very loud discussion arose about the reported detection of primordial B-modes

by BICEP2/Keck collaboration [9]. The measured value of r was 0.2, barely compatible

with the upper limit set by Planck experiment. The measured maps of E and B-modes

are shown on the figure 2.13. The value r = 0.2 leads to a very strong inflation, this

was surprising in this result. However, it was met by the scientific collaboration with a

great enthusiasm as an experimental detection of the primordial gravitational wave and

hence a confirmation of the theory of inflation. Unfortunately, as it found out later, the

detected B-mode signal was not the primordial one. Later that year another article was

published [11], claiming that the galactic dust contamination in the region of BICEP2

is quite large and concluding that the measured B-modes are consistent with the null

hypothesis. The bad luck of BICEP2 gave an important lesson to other teams: the dust

contamination should be accurately controlled. Particularly, after these publications the

QUBIC concept was changed to have a dual band instrument in order to achieve the

good dust signal separation (the QUBIC instrument will be discussed in details in the

chapter 3).
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Figure 2.16: Atmospheric transmission from the Atacama plateau at the zenith for
different amounts of precipitable water vapour.

the thermal and kinetic SZ effect. The thermal SZ effect is characterised by the photons

scattering by the thermal motion of free electrons. The thermal SZ effect changes the

frequency spectrum of CMB photons. The kinetic SZ, also called Ostriker-Vishniac effect

is due to the common motion of the electrons [85]. The final spectrum remains to be

Planck black body spectrum because it is just the Doppler shift of the incident spectrum.

On the figure 2.17 the changes from the thermal and kinetic SZ effects are shown.

One can count the galaxy clusters through their SZ effect. It is a very important mea-

surement for the cosmological and cluster properties. But for the CMB observations the

SZ effect is a foreground and we need to correct for it. There are different methods of

such corrections. Generally they benefits from the specific spectral signature of the SZ

effect. The additional constraints are usually used like for example matched filters.

2.1.6.2 Cosmic Infrared Background

The low frequency tail of the cosmic infra-red background (CIB) provide an appreciable

foreground for the CMB observations. It is the light of all the galaxies ever existed, an

expected relic of structure formation processes. Its far tail is shown on the picture 2.1.

Inhomogeneities in the epoch of reionisation also lead to a polarized signal. This signal

is weak, amounting to no more than 10 percent of the primary signal, but could be

important when studying the B-modes of CMB [12].
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The Rees-Sciama (RS) effect is somewhat similar to the ISW. It is due to CMB photons

traversing a non-linear gravitational potential, for example from a gravitational collapse.

The relevant scales are the same as for galaxy clusters and superclusters, corresponding

to angular scales of 5-10 arc minutes.

Figure 2.18: The illustration of the integrated Sachs-Wolfe effect

2.1.6.4 Lensing

When the CMB photons pass the large-scale structures, they could be affected by the

gravitational lensing effect. It does not change the total power in the fluctuations. But

the fluctuations are redistributed by the lensing effect towards smaller scales. The effect

is significant on the scales below few arc minutes.

The lensing effect is especially important when detecting the B-modes. The primordial

B-modes from the inflationary gravitational waves fall off rapidly on scales smaller that

the horizon at the last scattering surface, which angular scale is of order a degree. The

lensing contributes to the B-mode generation from E-modes on smaller angular scales

and is a major foreground for B-modes from inflation [86].



Chapter 3

Bolometric interferometry and

QUBIC experiment

This chapter introduces to the concept of bolometric interferometry – novel promising

technique for CMB observations, which inherits the high sensitivity of imagers and

great systematics control due the self-calibration of interferometers. We present the

QUBIC instrument – Q and U bolometric interferometer for cosmology.

3.1 The concept of the bolometric interferometer

Before introducing the bolometric interferometer concept lets consider the standard ap-

proaches so far used in CMB studies. There are two major kinds of experiments in the

CMB field: imagers and interferometers.

3.1.1 Imagers and interferometers

The imager instruments, such as Planck (a reflector, [7]), or BICEP (a refractor, [87]),

form a sky image on the focal plane as in a classical telescope. The focal plane is tiled with

high sensitivity detectors. In recent years the bolometric detectors have become popular

as a very good solution because of their low intrinsic noise, lower than the photon noise

of the CMB radiation. Detectors with such property are called background limited.

Bolometer (from greek βoλo- meaning of thrown things; and -µǫτρoν, measurer) is a

detector that measures the intensity of radiation by monitoring the heating of a material

by measuring its electric resistance. The transition edge sensor bolometers (TES) explore

the strong drop in the resistance on the transition to the superconductivity (for QUBIC

53
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detectors it is about 0.5K). The temperature of such detector is set to the temperature of

the transition and even very low change of its temperature leads to the strong change of

the resistance. TES bolometers are very popular now in the area of CMB measurements.

Another novel technique is KID – kinetic inductance detector – which are easier to

manufacture and read out. A KID detector is a superconducting resonator, for which

the absorbed photons change the inductance and hence the resonant frequency. The last

is measured and related to the absorbed power [88] (however, the performance of KID

detectors is not quite proven yet). The imager instruments have an advantage of high

sensitivity due to the usage of the background limited detectors. Another advantage of

imagers is their ability to handle a broad band. It will be discussed in the next chapters

why handling a broad band is not trivial for a bolometric interferometer. But for an

imager it is easy: the parallel rays of light from all the frequencies come to the same

point on the focal plane of the telescope, forming an integrated image of the sky on the

frequencies of the band. Thus an imager is able to collect more light and hence has lower

photon noise.

The interferometers, on the other hand, work on a different principle. They use the

correlations between spacially distributed antennas to reconstruct directly the Fourier

modes of I, Q and U skipping the map-making step, which is necessary for imagers.

The interferometer technic was heavily used for CMB observations: some well known

experiments are VSA, which measured the temperature anisotropies [89], CBI and DASI

which measured the E-mode polarisation anisotropies [90, 91]. The main disadvantage of

interferometers is that the sensitivity is reduced: the signal of CMB which is of frequency

about from tens of GHz to few hundred of GHz must be amplified and down-converted

to the lower frequencies to be detected. During this process the noise level raises and

the detector is no longer background limited. The main advantage of interferometers is

the ability to control systematics due to observation of interference fringes. But even

this advantage turns to additional complexity. To interfere the signals from different

antennas a special device called correlator is used. One correlator is required per each

antenna pair. Thus the instrumental complexity of an interferometer grows as a square

of number of channels. That’s why no one builds interferometers for the current stage

of the CMB observations.

3.1.2 Bolometric interferometry

The idea of bolometric interferometry is a fusion between the imager and interferometer

concepts. Like imagers, bolometric interferometers use focal plane covered with highly

sensitive detectors. They are interferometers with the optical analog of correlator. Let’s





Chapter 3. Bolometric interferometry and QUBIC experiment 56

the instrument is pointed to some direction, it observes photons not only from that

direction, but also from multiple directions around it. Or, vice versa, when observing a

point source we got multi-peaked pattern on the focal plane.

3.1.3 Self-calibration

The interferometric nature of QUBIC allows us to do the self-calibration: a technique

that significantly reduces the systematics of the instrument. The basic idea of the self-

calibration is that, in a perfectly manufactured instrument, the interferometric pattern

from any pair of open horn pairs (a couple of horns is called a baseline) with relatively

equal position of horns (redundant baselines) must be identical. The self-calibration is

the following process: one observes an artificial point source with one baseline. Then

we repeat the observation with all the baselines redundant to the first one. Then the

process is repeated with all the possible baselines. After we fit the imperfections due

to the recorded interferometric fringes. Thus we are able to reduce systematics on such

factors as:

• Horn position,

• Transmission of horns, half-wave plate, polarising grid,

• Horn and half-wave plate cross-polarisation,

and many others. Detailed description of the self-calibration technique for a bolometric

interferometer and its application for QUBIC instrument can be found in the work [92].

The method of self-calibration is inspired by the classical interferometry, where the same

term is used to denote a slightly different technique. While in bolometric interferometry

we use an artificial source for calibration, in radio-interferometry the object of scien-

tific interest itself plays a role of calibration source. The self-calibration involves the

evaluation of so-called closure quantities. One has to find a null combinations of these

quantities. By observing these quantities by the real instrument one can fit the uncer-

tainties in the instrument [93].

In order to use self-calibration we have to model the instrument. For this purpose we

use the formalism of Jones matrices. The electric field collected by the detector q is:

[

Ex
q

Ey
q

]

= J

[

Ex

Ey

]

(3.1)
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parameter No Self Cal. 1 day / year 100 days / year

σnominal−real σreal−recovered ratio σreal−recovered ratio

Horn location error 100.× 10−6 9.26 × 10−5 1.1 4.67 × 10−8 2141
Horn transmission 0.0001 2.84 × 10−6 35 3.50 × 10−8 2858
Horn cross-polarization 0.0001 2.47 × 10−6 40 2.68 × 10−8 3729
HWP transmission 0.01 1.88 × 10−4 53 1.31 × 10−5 763
HWP cross-polarization 0.01 1.85 × 10−4 54 1.04 × 10−5 962

Table 3.1: Results of self-calibration simulations for the QUBIC instrument with
400 horns, 992 bolometers array, 1000 pointings and all baselines measurements. The
column "No Self. Cal." shows the values for standard deviations between the ideal and
corrupted parameters. Columns "1 day / year" and "100 days / year" give the values
of standard deviation on the parameters after, respectively, 1 day per year spent for
self-calibration and 100 days. The ratio subcolumns show the ratio of reduce of the

systematic due to the self-calibration.

where

[

Ex

Ey

]

is the incoming radiation and J is the Jones 2 × 2 matrix, that describes

how the instrument transforms the polarisation components of the incoming radiation.

If an instrument has several components, its Jones matrix is the product of the Jones

matrices for each of the component:

JQUBIC = JhornJpJ
T
rotJhwpJrot. (3.2)

where Jrot is the rotation matrix, Jp, Jhwp and Jhorn are Jones matrices for polarising

grid, half-wave plate and one horn respectively. To model the systematic errors for a

bolometric interferometer the Jones matrices for each of the component of the instrument

could be described as following:

J =

[

1 − gx ex

ey 1 − gy

]

(3.3)

where gx,y are complex gain parameters and ex,y are complex coupling parameters.

Thus the systematic errors arising from each of the instrument components can be

parametrised.

By doing self-calibration for all the baselines of the instrument, for all bolometers and

by scanning the artificial source one can build a system of linear equations with the

unknowns, listed above. As one can see, the number of unknowns grows linearly with

number of horns. However, the number of constraints grows proportionally to the number

of baselines, which is nh(nh − 1)/2, where nh is number of horns. Thus the problems

becomes easily overdetermined and could be solved with a least square method.
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As shown in the work [92], self-calibration applied for QUBIC results in very significant

reduce of the systematics, see table 3.1. The very idea of bolometric interferometry was

motivated by the opportunity to combine the advantage of high sensitivity of imagers

together with the ability to handle instrumental systematics effects of interferometers.

It is a pretty common question to QUBIC, if this advantage to use self-calibration is

really crucial. Nowadays we challenge the measurement of primordial B-modes, one

of the most demanding observations in the modern cosmology. And yet no team in

the world succeeded in this task. For the current level of sensitivity of imagers the

systematics effects are not quite important1. But we know also that this sensitivity level

is insufficient for B-modes. Thus we face the need to think ahead and foresee the growing

importance of systematic effects for future CMB observations. The concept of bolometric

interferometer, incarnated in the QUBIC instrument, achieves an excellent handling of

systematic effects, unprecedented by any imager.

3.2 QUBIC instrument

3.2.1 QUBIC instrument subsystems

The 3-D model of the QUBIC instrument if shown on the figure 3.3 (you may also refer

to the picture 3.1). The size of the instrument is 1.547 m high, 1.42 m diameter and it

weigths about 800 kg. All the subsystems of the instrument are described in details in

the technical design report [14]. Here we list them briefly.

3.2.1.1 Mount system and baffling

QUBIC instrument explores rather standard way for mount an astronomical instrument

called alt-azimuthal mount. The mount system is shown on the figure 3.4. It allows

the rotation of the instrument on three axes: on azimuth, on elevation and around the

optical axis.

The instrument window is protected from undesired radiation by the radiation shielding

composed of the forebaffle and the ground shield, see figure 3.5. This baffling reduces

the possible contamination from such sources as Sun, Moon and ground.

1This statement is correct for the ground-based and balloon-born experiments which usually use more
advanced technologies than the space missions.
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light that modulates its polarisation, is made of metamaterials. The metamaterials

are developed using the embedded metal mesh filters technology. This technology was

already used in the past for CMB experiments such as NIKA and NIKA2 [88]. Rotation

of the half-wave plate is allowed by a stepper motor mounted outside the cryostat shell

and the motion is transmitted to the half-wave plate by magnetic friction. Thus the

half-wave plate of QUBIC is on step rotation.

The polarising grid is a 10 µm period wired photolithographic polariser. Note that both

half-wave plate and polarising grid are cooled down to 4 K.

Let’s consider how the polarimeter part of the instrument work – i.e. half-wave plate

and polarising grid. For this we can write down the Jones matrix for the combination of

rotating half-wave plate and polarising grid:

J = JpolJrot hwp =

[

1 0

0 0

][

cos(2φ(t)) sin(2φ(t))

sin(2φ(t)) −cos(2φ(t))

]

, (3.4)

where φ(t) is an angle of rotation of HWP at time t.

Thus the two component electric field

[

Ex

Ey

]

, passed through the system of a half-wave

plate and a polariser becomes

J

[

Ex

Ey

]

=

[

Excos(2φ(t)) + Eysin(2φ(t))

0

]

. (3.5)

It is a mixture of polarisations of the incoming photon with known coefficients, defined

by the angle of rotation of the HWP φ(t). Writing down the intensity of the light after

the polarising grid we get

IPG = (Excos(2φ(t)) + Eysin(2φ(t)))2 (3.6)

= I +Qcos4φ+ Usin4φ, (3.7)

where I, Q and U are Stokes parameters of the incoming radiation.

The polarising grid reduces the total intensity by factor two. It may seem unreasonable

to loose half of incoming photons. But the chosen configuration has the significant

advantage of having no dependence on the cross-polarisation in the inner part of the

instrument. Whatever is going in between the polarizing grid and the focal planes, the

total intensity exposed to the detectors is defined only by the expression 3.7, that is only

by the angle of rotation of the HWP. Of course it puts strong requirements to the design
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φ 2IPG

0 φ
16 I +Q

1 φ
16 I + Q+U√

2

2 φ
16 I + U

3 φ
16 I − Q−U√

2

4 φ
16 I −Q

5 φ
16 I − Q+U√

2

6 φ
16 I − U

7 φ
16 I + Q−U√

2

Table 3.2: Signal, passing through the half-wave plate and polarizing gird as a function
of the half-wave plate rotation angle φ.

and manufacturing quality of QUBIC polarimeter. But it also cancels a significant part

of possible systematics.

From the equation (3.7) we see that the Stokes parameters are modulated as sine and

cosine of 4φ(t). Which means that all the angles φ that differ by π
2 give exactly the same

signal IPG. IPG(φ = 0) = 1/2(I +Q) and IPG(φ = π
4 ) = 1/2(I −Q). That is with steps

of rotation of the half-wave plate equal π
4 we never reach measurement of U . In contrary,

for φ = π
8 and φ = 3π

8 the signal is IPG = 1/2(I±U). Thus with steps of half-wave plate

by π
8 we observe either I ± Q or I ± U . To obtain their mixture the angle of rotation

must be stepped by π
16 = 11.25◦ (or even smaller steps). The signals passing towards the

horn array in dependence from the angle of rotation of the half-wave plate are shown in

the table 3.2. We conclude that the reasonable stepping for half-wave plate rotation is

11.25◦.

3.2.1.4 Horn array

The next important element of the instrument accounted by the incoming radiation is

the horn array, which is the array of 400 pairs of horn waveguides. The map of horns

is shown on the picture 3.2. Horns are located on the orthogonal grid. The horn array

is made of thin aluminium plates, which allows to shape the horn profile with a great

accuracy: there are holes drilled in the plates according to the cross-section of horn, then

the plates are stacked together to form the horn array. The picture of the 8 × 8 horn

array, produced for the technological demonstrator, is shown on the left plane of figure

3.6. The corrugation on the horns and their profile allows to select spatial modes, makes

beam gaussian and reduces cross-polarisation [94].

The switches in the middle of each horn pair are shutters that operate independently for

each channel. They are used only during the calibration phase.
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Figure 3.6: Picture of the horn array, produced for the technological demonstra-
tor of QUBIC (left). Close picture of a horn cut (center). Mirror, produced for the

technological demonstrator (right).

3.2.1.5 Mirrors

The light from the horns is focused by two off-axis mirrors on the focal planes. Mirrors

act as an optical equivalents of the correlator devices in usual interferometer concept.

The picture of the mirror, produced for the technological demonstrator is shown on the

right plane of the figure 3.6. The mirrors have supports with 6 degrees of freedom,

allowing to correct the alignment for some possible errors in manufacturing process that

may make additional aberration.

3.2.1.6 Dichroic and filters

After the mirrors the light is separated into two bands by the dichroic – 150 and 220

GHz. Thus QUBIC is a dual band experiment, which allows an efficient control of dust

contamination. Dichroic is an optical element that lets pass light with one frequency

and reflects light with another. So it transmits more than 90% of the 220 GHz band and

reflects more than 90% of the 150 GHz band. It is manufactured using the technique of

hot pressure, which provides good performance and flatness at cryogenic cycling.

The filters are designed to cut the off-band light. The filters are used on different tem-

perature stages from the half-wave plate down to the focal planes.

3.2.1.7 Focal planes

QUBIC has two focal planes, one for the 150 GHz band and another is for 220 GHz

band. One of the focal planes is shown on the bottom centre of the image 3.3, an-

other one is not shown. The focal planes are covered, as already been said, with TES

bolometers, which are background limited. Thus QUBIC inherits the main advantage of

the imager instruments – high sensitivity, which is absolutely necessary for primordial
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Figure 3.8: Transition edge for four detectors distributed far from each other on one
quarter of the focal plane.

Figure 3.9: Two SQUID boards stacked (left) to finally obtain a SQUID box composed
of 4 PCBs, and thus 128 SQUIDs (center). TES thermo-mechanical structure showing

the 2 SQUIDs boxes near the TES array.

• Seasonal changes,

• Scanning strategy,

• Logistic.

The weather differences are illustrated on the figure 3.10. In Argentina we have to deal

with a higher level of water vapour, leading to a higher emissivity of atmosphere. The

seasonal changes are also stronger in Argentina, which reduces the observational efficiency

of experiment. On the other hand, the seasonal dead time, when the observations are

impossible due to the poor weather conditions, is indeed very comfortable time to perform

any instrument upgrades. And the daily dead time, when the field of interest is outside

the elevation range of the instrument, could be used for self-calibration and for recycling

fridges.











Chapter 4

Map-making in monochromatic case

In this chapter we discuss the basics of map-making for bolometric interferometers,

using the simplest case of monochromatic light. To make the introduction smoother we

first describe the imager map-making and then consider bolometric interferometer as an

imager that observes the sky with a complex synthesized beam. We introduce the

approximation of the synthesized beam that allows to make the map-making problem

computationally trackable. Then we elaborate the acquisition model by introducing the

fusion acquisition. Besides participating to the implementation of the map-making an

important contribution of the author was to refine the synthesized beam approximation

by taking into account some minor features of it and to test the map-making with

Monte-Carlo simulations.

4.1 QUBIC pipeline

The overall process of data handling of an experiment is called a pipeline. The input

for the pipeline is so-called time-ordered data (TOD): time-ordered array of signals from

each of the detectors on the focal plane. TOD contains one number (4 bytes) per each

detector (1984 detectors for two focal planes) for each sample (if the rate of taking

samples is 100 Hz, then there are 8640000 samples per day), so the computer memory

needed to keep 1 day of data is more than 60 Gb. Then we reconstruct sky map from

TOD. Map is a healpix three component map (see description of healpix package in [95]

), for 3 Stokes parameters. If we use maps with nside parameter equal 128, then number

of covered pixels is around 3000-4000, so around 40 kb of data. From data we reconstruct

power spectra, several binned arrays, so just few numbers. The last step in pipeline is

to estimate cosmological parameters, among which the most interesting is r. Generally,

the pipeline of any experiment tends to reduce amount of data and increase the physical

71
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where x is the three component pixelized sky map (for I, Q and U Stokes parameters), y

is the TOD, n is the noise on the detectors and H is the acquisition model operator, that

includes the instrument beam, polarisation modulation and pointing information. This

equation could be simplified: instead of modelling the instrument beam and including it

to the acquisition matrix, one can convolve the sky x with the instrumental beam and

model the observation as if the instrument beam is infinitely narrow. The convolved sky x̃

is equal to Cx, where C is the beam convolution operator. Of course, this approximation

is valid only if the beam is the same for all the detectors of an instrument.

H is a sparse matrix operator of shape np × ndnt (in case of polarization sensitive ob-

servations it is 3np × ndnt, where factor 3 is for 3 Stokes parameters I, Q and U), it

puts correspondence between sky pixels and detectors. Each row of such matrix holds

information about a pixel observed by one particular detector at given time sample. In

the discussed approach with TOD modeled as

y = Hx̃ + n. (4.2)

each row of H contains only one number 1: each detector at every time sample observes

only one convolved sky pixel.

The equation (4.2) is a matrix equation where matrixH is not square. Thus this equation

could not be simply inverted. Instead the method of pseudo-inversion is used:

HTHx̃ = HTy. (4.3)

The matrix HTH is square and thus this equation could be inverted in the usual way.

The obtained solution is optimal (that is it maximizes the likelihood) and unbiased, but

only in case of uncorrelated uniform noise.

In the general case, the noise has a non-diagonal covariance matrix N :

N =
〈

nnT
〉

. (4.4)

It has shape ndnt × ndnt. On practice the noise for ground-based CMB observations is

defined mostly by the atmosphere. And the atmospheric noise is not white. It is high on

low frequencies and has a long "white" tail. Noise with such properties is called brown or

1/f -noise: on the low frequencies its intensity is proportional to the inverse of frequency.

On the frequency range upper some frequency the noise becomes white. This frequency

is called the knee frequency. The low frequency noise induces striped structures on the
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reconstructed maps along the lines of scans of the instrument. The low frequency noise

can be filtered out from the TOD, making the noise covariance matrix diagonal:

N =















σ21Int

σ22Int

. . .

σ2nd
Int















, (4.5)

where σ2i is the noise variance for ith detector and Int is an identity matrix of dimension

nt. But then some part of the signal is also removed during the filtering.

To find the maximum likelihood solution of the equation (4.2) we use the Bayes’ theorem:

L(y|x̃) = P (x̃|y) =
P (y|x̃)P (x̃)

P (y)
. (4.6)

The denominator describes the probability of taking data and does not change the posi-

tion of the maximum of likelihood function. Let’s consider a simple example of flat-prior

observations: P (x̃) = const. Then the probability of CMB sky given the data is propor-

tional to the probability of taking data having a CMB, which is obviously proportional

to the noise probability distribution: we expect that the data deviate from the noise-

less CMB by the gaussian noise. The noise probability distribution is a nt-dimensional

gaussian distribution:

P (n) =
1

√

|(2π)ntN |
exp

[

−1

2
nTN−1n

]

. (4.7)

Using the equation (4.2) we obtain:

P (x̃|y) ∝ P (y|x̃) ∝ 1
√

|(2π)ntN |
exp

[

−1

2
(y −Hx̃)TN−1(y −Hx̃)

]

. (4.8)

And the χ2 is

χ2 = −2 logL = (y −Hx̃)TN−1(y −Hx̃)

= yTN−1y − yTN−1Hx̃− x̃THTN−1y + x̃THTN−1Hx̃.
(4.9)

Terms yTN−1Hx̃ and x̃THTN−1y are equal scalars, so yTN−1Hx̃ + x̃THTN−1y =

2x̃THTN−1y.
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We are looking for the minimum of χ2 function:

∂χ2

∂x̃
=
∂χ2

∂x̃T
= 0. (4.10)

Let’s take the derivative on ∂x̃T . For this we need some rules for matrix derivatives [97]:

∂xTAx

∂x
= 2Ax (4.11)

and

∂xTA

∂x
= A (4.12)

where x is a vector and A is a matrix. Applying these rules to take a derivative from (4.9)

and taking into account that ∂
∂x̃(yTN−1y) = 0, we get the following matrix equation:

HTN−1Hx̃ = HTN−1y. (4.13)

And finally the least square solution of the equation (4.2):

x̃ = (HTN−1H)−1HTN−1y, (4.14)

Here the N matrix weighs the measurements from different detectors according to their

noise level. In case of the noise covariance matrix proportional to the unity matrix,

solution (4.14) is equivalent to the simplified one (4.3).

The acquisition model for each time sample associates each of the detectors of the focal

plane with a certain direction on the sky and it is possible to solve the equation (4.2)

to reconstruct the input CMB emission x̃. In case of bolometric interferometer the

procedure is not that straightforward, though it is pretty similar.

4.3 QUBIC map-making

4.3.1 Initial assumptions for QUBIC simulation pipeline

At the moment of this thesis writing the QUBIC instrument is still in the construction

phase. Though we are trying our best to implement the instrument in the most realistic
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way, we still have to make some assumptions as long as the real instrument does not

exist. Our assumptions are:

• The centre of the reference frame of the instrument is placed right in the centre of

the horn array.

• The two focal planes are considered as absolutely identical, with equivalent optical

path to both. Thus in simulations we always consider QUBIC as a single-banded

instrument with one focal plane: the TOD is always constructed for only one focal

plane, the map-making is made only for one focal plane TOD etc. To consider the

difference between two frequency bands we run two separate simulations.

• We assume a perfect half-wave plate.

• And a perfect polarizing grid.

• We assume that both primary and secondary beams for each pair of back-to-back

connected horns are purely gaussian with full width at half maximum (FWHM)

13◦.

• We neglect optical aberrations in the mirrors.

• We adopt a simplified model for detector acquisition which assumes that the in-

tensity of the synthesized beam is always constant within the area of the detector.

Thus the detector response, which is the flux integrated in the surface of the de-

tector, is calculated simply as the synthesized beam intensity in the center of the

detector times the area of the detector.

First we consider a simple monochromatic case: we suppose that the frequency filter of

the instrument passes only a δ-function of the continuous frequency range.

4.3.2 Synthesized beam

As already described in the chapter 3, a bolometric interferometer concept implies obser-

vation of the sky with a complex synthesized beam, which is formed due to the interfer-

ence of individual beams from each of the horn pair. A similar synthesized beam could

be demonstrated for the optical light, using two orthogonal diffractive gratings (see figure

4.2). Remember that for one diffractive grating the interferometry pattern looks like a

fender of lines, each line corresponds to a certain order of diffraction. When we observe

the point source through 2D grating, we can consider it as if the pattern produced by the

first grating is modulated by the second one and what lefts is a number of bright spots
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exactly on the positions where the interferometry lines from individual gratings would

intersect.

Figure 4.2: Diffraction of the beam of the green laser on the 2D diffractive grating.
Multi-peaked interferometry pattern resembles the synthesized beam of QUBIC.

Let’s consider how the synthesized beam is formed. The signal on the point r of the focal

plane at wavelength λ is the electric field from the sky E(n) re-emitted by the horns each

with its proper phase-shift:

S(r, λ) =

∫

∣

∣

∣

∣

∣

∑

i

E(n)Bprim(n)Bsec(r)exp

[

i2π
xi

λ

(

r

Df
− n

)]

∣

∣

∣

∣

∣

2

dn, (4.15)

where Bprim(n) is the primary beam – the input beam for horns that acts in sky-direction

n space; Bsec(r) is the secondary beam, or the output beam from each horn, that acts in

focal-plane space r; xi is position of horn i; Df is the focal distance. The exponential term

under the integral is responsible for the interference between the beams from different

horns. Equation (4.15) could be re-written as

S(r, λ) =

∫

|E(n)|2BS(n, r, λ)dn, (4.16)

where BS(n, r, λ) is the synthesized beam (SB):
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4.3.2.1 Synthesized beam approximate model

Neglecting the minor features between the main peaks one can approximate the synthe-

sized beam of QUBIC as a sum of gaussian peaks distributed on the focal plane according

to the SB peaks. In other words, SB could be considered as a convolution of a narrow

gaussian with a 2D Dirac brush, modulated by the horn primary beam. For detector d

at time t the signal y is

yd,t = BT
d,tx, (4.19)

where x is the sky (here we assume noiseless observation) and Bd,t is the synthesized

beam for the detector d at time t. We approximate Bd,t as

Bd,t = Φd,tCDd,t, (4.20)

where Φd,t is primary beam, C is gaussian convolution operator with FWHM equal to

that of the peaks on synthesized beam and Dd,t is Dirac 2D brush which is equal to 1 in

the centres of the synthesized beam peaks and 0 everywhere else. Applying this model

to the equation (4.19) we get:

yd,t = (Φd,tDd,t)
T Cx = P̃d,tx̃, (4.21)

where P̃d,t is projection operator that operates from sky pixel domain to the time domain.

And x̃ = Cx is the sky convolved due to instrument resolution. Applying this model

we neglect all the minor features of SB between the main peaks. Thus the acquisition

operator becomes sparse and the acquisition model becomes computationally tractable.

The picture 4.5 shows a radial cut of the SB, as modeled due to interferometry and the

gaussian approximation.

Taking into account the noise the equation (4.21) turns to

yd,t = P̃d,tx̃ + nd,t, (4.22)

where nd,t is noise level at detector d at time moment t.
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sky pixel p(n0) with the central peak, pixels p(n1,2,3,4) with the first order of diffraction

etc. Coefficients P̃d,t are equal to the SB values for these pixels. The zeros in H appear

due to the neglecting of the minor features of the SB.

4.3.3.2 QUBIC acquisition model

One can build the acquisition model for QUBIC implementing the components of the

instrument one by one exactly in the sequence as they are in the instrument: the half-

wave plate, then the polarising grid and the horn array. Let’s consider the shapes of such

operators, if they go exactly in this order:

• The rotation of the instrument due to the scanning strategy: S is an operator of

shape 3np × 3npnt responsible for this rotation.

• The half-wave plate operator W operates in from-sky-to-sky domain: it converts

the three component sky into a sky-like array with rotated polarisation. And W

also handles the rotation of the hwp, thus we must introduce the dependence on

time, so its shape is 3npnt × 3npnt.

• The polarising grid operator G removes one component of polarisation. If also has

to keep the dependence on time, introduced for W so it is 3npnt × npnt operator.

• The projection operator P is almost the same as the acquisition operator H for

temperature-only observations, introduced in the equation (4.24), but it is "fed"

with a sky, which is dependent on time. So the shape of P is npnt × ndnt

Thus the full acquisition model is

H = PGWS. (4.25)

One can easily notice that implemented like that the acquisition operator would be

extremely heavy: although the operators are mostly sparse, their dimensions are large.

Let’s consider the signal on detector d at time t for QUBIC. The CMB sky, rotated due

to the scanning strategy and convolved by the instrumental beam, is









Ĩ(n)

Q̃(n)

Ũ(n)









(4.26)
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If we consider only one particular moment, then the half-wave plate operator is:

W =









1 0 0

0 cos(4ω) sin(4ω)

0 sin(4ω) −cos(4ω)









(4.27)

and the polarising grid operator is

G =
[

1 1 0
]

(4.28)

So the full acquisition operator for one detector and one time sample is:

yd,t = Hd,tx̃

= Φd,tDd,tGW x̃ =

= Φd,tDd,t

[

1 1 0
]









1 0 0

0 cos(4ω) sin(4ω)

0 sin(4ω) −cos(4ω)

















Ĩ(n)

Q̃(n)

Ũ(n)









= Φd,tDd,t(Ĩ + cos(4ω)Q̃+ sin(4ω)Ũ)

(4.29)

where D is the Dirac brush and Φ is the horn primary beam. Note again that the effect

of the synthesized beam is completely indifferent to polarisation: the signal that passes

towards the focal planes is defined only by the HWP and polarising grid. But here we

can use another application of this fact: we can painlessly rearrange the operators in the

acquisition model. We can move the projection operator in front and combine it with

the rotation operator (remember that we cannot rearrange the W and G operators: it

is forbidden by the fact that they both operate with the polarisation). The acquisition

model then becomes

H = GWP (4.30)

where

• P is the projection operator of shape 3np × 3ndnt.

• W is the HWP operator of shape 3ndnt × 3ndnt. Note that now it operates in the

TOD domain and thus it is much more compact than it was before the rearrange-

ment of the operators.

• G is the polarizer operator of shape 3ndnt × ndnt
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Thus the H operator becomes more compact and easier to handle. Let’s consider the

operators P , W and G more closely.

P operator is a sparse operator of shape 3ndnt × 3np with sparsely distributed terms

P̃d,tR(φd,t), P̃
′
d,tR(φd,t) etc. Here coefficients P̃d,t are the same as the ones introduced for

a bolometric interferometer acquisition in general (4.24). Angle φd,t describes rotation

of the instrument relative to the sky due to the scanning strategy. R is the rotation

operator:

R(φ) =









1 0 0

0 cos(φ) sin(φ)

0 sin(φ) −hecos(φ)









. (4.31)

The HWP operator W is a 3ndnt × 3ndnt block diagonal sparse matrix:

W =

































R(4ω1) · · · 0

0
. . . 0 0

0 · · · R(4ωnt)
. . .

R(4ω1) · · · 0

0 0
. . . 0

0 · · · R(4ωnt)

































(4.32)

Here ωt is the rotation angle of the half-wave plate and Thus it is clear that HWP

modulates the polarisation signal.

The polarising grid operator G is a ndnt × 3ndnt block diagonal sparse matrix:

G =
1

2









1 1 0
. . .

1 1 0









(4.33)

The meaning of one block of
[

1 1 0
]

is that the polarizing grid passes the intensity of

incoming radiation and one orientation of polarization and blocks another polarization,

perpendicular to the one that passes.

Here we omitted many other constituents of the acquisition model. Let’s list them:

• The unit conversion operator which converts the temperature of the sky into units

of the radiation flux density W

m2Hz
,

• Aperture integration operator integrates flux density in the telescope aperture.

Converts signal from W

m2Hz
into W

Hz
,
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• Frequency filter operator converts units from W

Hz
to W according to the filter trans-

parency on the given frequency,

• Detector integration operator integrates flux density in detector solid angles,

• Instrument transmission operator,

• And atmosphere transmission operator.

Currently in the QUBIC data analysis package these operators are implemented as just

constants. Later, when we will discuss the QUBIC acquisition model for more complex

cases, we will always omit these operators to make explanation shorter and more clear.

But they are always present in the model. Starting from the moment of technological

demonstrator tests these operators should be revised and replaced with more realistic

ones.

4.3.4 Map-making

The QUBIC map-making involves the solution of a matrix equation, similar to the one

introduced for an imager:

HTN−1Hx̃ = HTN−1y. (4.34)

The solution for this equation is computed iteratively using the preconditioned conju-

gate method (PCG) [99]. It is a very useful method for the case of sparse systems of

linear equations (will be discussed in more details in the chapter 5). QUBIC acquisition

operator H for one full day of observations using one focal plane with sampling rate 100

Hz requires 880 GB of memory. Thus it is hard to run the QUBIC simulations on a

desktop computer and we are obliged to use supercomputers. Of course, this problem

will be even more important when the real data will come. The computing facilities used

for QUBIC map-making will be discussed in the following subsection.

To complete the comparison with an imager we show on the figure 4.6 the results of map-

making for QUBIC in the similar fast Monte-Carlo (see the next section for explanations),

as on the figure 4.4. Now, this result is much more satisfactory: the residual map is almost

zero, which means that we reconstruct the sky correctly. There are still some large scale

residual fluctuations. These fluctuations arise from the fact that the synthesized beam

is very wide and, when the instrument is pointed to the edge of the field, some signal

comes from very poorly observed pixels of the sky. This issue will be discussed in the

section 4.3.5. Let us just mention here that these induced fluctuations have the angular

scale larger than the fluctuations we are looking for with QUBIC.
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of map-making (4.34). With random pointings we simulate observations which can define

the measured fluctuations in the best possible way (however, it is not realistic).

We also use more complicated simulations, which we call realistic. The simulated period

of observations is usually one day – consistent with what we expect to have with the

actual QUBIC data analysis: we plan to analyze TOD day by day, then combine daily

maps into one. This approach is valid since the observational time is fragmented by 8-10

hours as described at the end of the 3, thus we don’t expect any correlations of the noise

for the daily observations. The noise is scaled down, as it is for the fast simulations. The

scanning strategy is the realistic one, though in the most cases we use reduced sampling

frequency: instead of 100 Hz of sampling we often use much lower values, down to 10 Hz

and below. The issue of sampling frequency will be discussed in the chapter 8. To run

the realistic simulations the power of a desktop computer is not enough and one has to

turn to the computations on super-computers. For QUBIC we use computing facilities

of NERSC and CURIE:

• The National Energy Research Scientific Computing Center (NERSC) is the pri-

mary scientific computing facility for the Office of Science in the U.S. Department

of Energy [100]. It serves for many scientists around the globe to run their sim-

ulations and data analysis. The QUBIC software is setup on Edison system of

NERSC, which is a Cray XC30 with 133,824 compute cores, 357 TB of memory,

7.56 PB of disk, and the Cray "Aries" high-speed internal network.

• The Curie supercomputer, owned by GENCI and operated into the TGCC by CEA,

is the first French Tier0 system open to scientists through the French participation

into the PRACE research infrastructure [101]. It is a system of 5040 B510 bullx

nodes, for each node there are 2 eight-core 2.7 GHz processors (80640 cores in total)

and 64 GB of operative memory. Global memory is 5 PB with 100 GB per second

bandwidth.

The third type of simulations is what we call pseudo Monte-Carlo. The idea of pseudo

Monte-Carlo is based on the fact that in case of absence of 1/f noise the noise on the map

is almost uncorrelated between different pixels. In fact there could be some correlation

at the angular distance of the separation of the peaks of synthesized beam (8.5◦ for 150

GHz band). But these scales are too large and we can neglect this effect and assume the

noise on the map to be uncorrelated. Then after running just one simulation (fast or

realistic with no 1/f noise) we can do the following:

• Get the coverage map: the coverage map COV is the map of number of hits to

each pixel. It is defined as
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COV = HTe (4.35)

where e is a matrix of ones with a shape equal to that of the TOD and the acqui-

sition operator H here acts on the one component sky map.

• Divide the coverage map on bins with almost constant coverage. On our experience

bin width equal to 5% of maximum coverage is fine.

• Take the noise standard deviation from the residual map on each coverage bin.

• Put gaussian noise to the pixels of a new map according to the bin mask and to

the standard deviation taken on the previous step.

The number of pixels is usually big and estimation of standard deviation of the noise

on each bin is well determined. Thus the maps built this way have noise of realistic

level, distributed in the same way as on the original map. This procedure is very easy

and fast and allows to have as many sky and noise realizations as one might want. We

have proven that the maps simulated in this way have the same power-spectrum as the

original one within the errorbars, see picture 4.7. However, the pseudo Monte-Carlo is

not assigned to work with 1/f noise.

4.3.5 QUBIC-Planck fusion acquisition

As already been told, each detector of QUBIC sees a large fraction of the sky because of

the synthesized beam. The distance between the central (zero order interference) peak

and the second order peak is about 16 degrees at 150 GHz band. That means each

detector sees sky at 16 degrees around the central peak of the synthesized beam. Thus

when the instrument is pointed to the edge of the coverage field, its detectors see the

poorly observed pixels of the sky, which contribute as noise to the central pixels. The

PCG solver is poorly constrained on the periphery of the field.

This problem is solved by using data of another instrument as an additional constraint

for PCG. We choose Planck maps as such a constrainer, because it is the most recent

full-sky mission, but it could be data from any instrument, that observed a broad field

around the field of interest of QUBIC.

We introduce so called fusion QUBIC-Planck acquisition model:

[

yQUBIC

yP lanck

]

=

[

HQUBIC

HP lanck

]

x̃ +

[

nQUBIC

nP lanck

]

(4.36)
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To model the frequency dependence of the shape of the rippled peak we make the spline

fitting of its window function and evaluate the spline on the different array of multipoles.

However, it turns out that the shape of the window function is not exactly the same for

different frequencies. We compare the modeled window function with the measured one

for different frequencies on the figure 4.13, left plot. On the multipole range 50 < ℓ < 300

the deviation of the modeled window function from the real one is almost perfectly linear.

We fit this deviation with a linear function and find the frequency dependence of the

coefficient of the linear function. Then we can introduce the correction to the modeled

window function:

C = aℓ+ b. (4.38)

According to the fit,

a(ν) = 1.65 · 10−2 − 2.24 · 10−4ν + 9.71 · 10−7ν2 − 1.40 · 10−9ν3, (4.39)

and

b(ν) = −3.81 · 10−1 + 4.76 · 10−3ν − 1.84 · 10−5ν2 + 2.38 · 10−8ν3, (4.40)

where ν is in the units of GHz. The deviation of the modeled window function from the

real one after this simple correction is shown on the right plot of figure 4.13.

Thus we model the peaks of the synthesized beam together with two ripples around each

peak and the deviation of the modeled window function from the realistic one is below

few per cents for all the frequencies in the QUBIC frequency range. This approximation

is much more precise than the formerly used gaussian approximation. However, there is

still a room for making even better approximation.

4.3.7 Simulations

We check the map-making process (4.36) with realistic simulations that include: realistic

scanning strategy for 1 day from the Concordia station; noise level is scaled down to

match 1 month of observations, the knee frequency of the 1/f noise is set to 1 Hz; syn-

thesized beam is modelled as a Dirac, modulated with the primary beam and convolved

with QUBIC peak shape with two ripples. Results are shown on the figure 4.14. It is ev-

ident that the map-making process is able to handle the multi-peaked synthesized beam







Chapter 5

Map-making in polychromatic case

This chapter is dedicated to the development of the map-making in case of non-zero

bandwidth. We discuss the way to model the polychromatic synthesized beam and obtain

the parameters for the synthesized beam approximation. This part of work inherits from

the conclusions made by F. Incardona and extends them to the approximation with the

rippled peaks. We develop the map-making for QUBIC-only and QUBIC-Planck

acquisition models and discuss the choice of the preconditioner for the conjugate

gradient method. Finally we verify the map-making algorithm in simulations and check

the consistency of the analytic formula for the effect of the bandwidth smearing of the

polychromatic synthesized beam.

Turning to the more complicated polychromatic case we have to deal with the fact that

the QUBIC frequency bandwidth is not a δ-function at all. The relative bandwidth of

each of the bands is 0.25, meaning that the 150 GHz band ranges from 131 to 169 GHz

and the 220 GHz band is from 193 to 248 GHz. In the framework of this thesis we assume

that the bandpass has a top hat shape. This is not quite correct, hence the results of

the following chapters should be revised later. However, the bandpass, due the QUBIC

design, is almost top hat.

5.0.1 Polychromatic synthesised beam

The polychromatic synthesised beam is an integral over the frequency range of a band:

Bpoly(n) =

∫ νmax

νmin

Bmono(n, ν)J(ν)dν, (5.1)

97
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where Bmono(n, ν) is a monochromatic synthesised beam, its dependency on the fre-

quency is highlighted in the section 4.3.2; J(ν) is the frequency bandpass of the filter

and νmin,max are the boundary frequencies of the band.

5.0.1.1 How to model the wide frequency band?

We use an approximation of the integral in the equation (5.1) as a sum over a frequency

sample νi:

B̃poly(n) =

Nf
∑

i=1

Bmono(n, νi)J(νi), (5.2)

where Nf is the number of frequency samples. Then a question arises: what is the

appropriate number of frequencies and how to sample the continuous frequency band?

For a very useful discussion of this issue see the master thesis of Federico Incardona [103].

Here we assume that the bandpass has a top hat profile, that is all the J(νi) are equal.

We already mentioned before that the width of the peaks of the synthesized beam as

well as the distance between them depend on the wavelength. To recall, the peak width

at half maximum is FWHM = λ/(P∆x) and the distance between the central peak and

the peak in the n-th order of interference is θ = nλ/∆x, where ∆x is the spacing of the

horn array and P is the number of horns on one side of a horn array in case the horn

array is square packed. This is illustrated on the figure 5.1. For QUBIC ∆x = 1.4 cm

and P is approximately 20.

We need to sample the continuous frequency band with a finite number of frequencies in

such a way that at the end the modeled synthesized beam has smooth shape. If the fre-

quency band is not well sampled, the modeled synthesized beam becomes discontinuous.

On the other hand if the frequency band is oversampled, the computation complexity

grows without purpose.

In order to have a uniform frequency sample it is reasonable to set the following re-

quirements on the frequency sample: the distance between the peaks of two synthesised

beams of two close frequencies must be some fraction k of the sum of their widths. For

n-th order of interference this requirement reads:

∆θ1,2 =
n∆λ1,2

∆x
= k

(

λ1
P∆x

+
λ2
P∆x

)

. (5.3)

As a consequence
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Hpoly =

Nf
∑

i=0

JνiHνi , (5.6)

and assuming that the convolved signal is independent of frequency, the map-making

equation could be approximated as:

HT
polyN

−1Hpolyx̃ν1 = HT
polyN

−1y, (5.7)

where we attempt to reconstruct the CMB sky, convolved by the lowest frequency beam

(that is the widest one).

One also can define the QUBIC-Planck fusion acquisition in polychromatic case. The

fusion TOD is just a combination of the QUBIC TOD with Planck map at the closest

frequency, convolved by the lowest frequency beam.

The polychromatic acquisition operator is much less sparse than the monochromatic one:

for the monochromatic case the acquisition operator matrix contained only few numbers

per line correspondent to the number of synthesized beam peaks seen by detector at a

time sample. Now with polychromacity the number of peaks has grown according to

the equation (5.6). Thus the requirements to the convergence of the PCG method have

grown and we need to introduce the preconditioner to succesfully solve the equation

(5.7).

5.0.2.1 Preconditioned conjugate gradient method

The conjugate gradient method is a numerical method to solve systems of linear equations

like

Ax = b, (5.8)

where matrix A is symmetric, positive definite and sparse. The method works with not

sparse matrices too, but then it gives no gain in comparison with other methods. The

conjugate gradient method minimizes the quadratic function of x [104]:

f(x) =
1

2
xTAx− bTx → min. (5.9)

The function f(x) is scalar and its gradient is
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∇f(x) = Ax− b. (5.10)

Thus to solve the equation (5.8) we can find instead the minimum of its quadratic

function.

Very often we need some preconditioning in order to solve the equation (5.8). The

preconditioned conjugate gradient method is equivalent to the usual cojugate gradient

method applied to solve the equation

ETAEx̂ = ETb (5.11)

where we apply linear change of coordinates x = Ex̂ and EET = M is a symmetric

positive-definite matrix called preconditioner. The preconditioner helps to define the

minimum of the quadratic function more clearly and can significantly boost the conver-

gence of the method. The preconditioned conjugate algorithm is the following:

• Pick an initial assumption x0. Calculate the residual r0 = b−Ax0;

• z0 = Mr0 and the direction of descent is p0 = z0;

• Then for each k-th step we

– calculate the coefficients to define the next optimal position αk =
rT
k
zk

pT
k
Apk

;

– then the optimal position is xk+1 = xk + αkpk;

– the new residual is rk+1 = rk − αkApk;

– zk+1 = Mrk+1;

– we calculate the coefficients to define the next optimal direction of descent:

βk =
zT
k+1

rk+1

zT
k
rk

;

– and the optimal direction is pk+1 = zk+1 + βkpk;

– repeat the iterations while the residual is not sufficiently small.

What is the efficient preconditioner M that would point the algorithm directly to the

minimum of quadratic function? We are on the minimum when the vector p is a zero

vector. Considering the 0-th step

p = z = Mr = Mb−MAx = 0 (5.12)

hence
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MAx = Mb (5.13)

and so the good choice for the preconditioner is A−1, because then the last equation

turns to the inversion of 5.8. However, in most applications the direct use of A−1 is not

possible, so usually people use some approximation to it.

Let’s see what should we use as a preconditioner for QUBIC map-making problem. For

this let’s first try to understand the meaning of the left-hand side of equation (5.7). We

can neglect the matrix N−1 as it is just diagonal and approximately proportional to the

identity matrix. So we can concentrate on the product of HTH. Let’s imagine that H is

H =















1 0 0

0 0 1

0 1 0

0 0 1















. (5.14)

It is oversimplified and naive example that should help us understand the thing. Here

the "sky" consists only 3 pixels, it is observed with, let’s say, two detectors in two time

samples. On the first sample the first detector sees pixel 1 and the second detector sees

pixel 3. On the second sample it is, respectively, pixels 2 and 3. Now it is easy to

calculate that

HTH =









1 0 0 0

0 0 1 0

0 1 0 1























1 0 0

0 0 1

0 1 0

0 0 1















=









1 0 0

0 1 0

0 0 2









(5.15)

Clearly the diagonal of the result is the coverage vector (we remind that coverage COV is

defined in (4.35) as a hit map): we observed first two pixels ones and the third one twice.

So, according to the conclusions we made before, the good choice for a preconditioner for

the QUBIC map-making is the diagonal matrix with the diagonal equal to the inverse

of coverage vector. Actually, this conclusion is valid for imagers too. In case of QUBIC

use of coverage as a preconditioner allows the map-making process to converge 5-6 times

faster than without a preconditioner.

The conclusion made above is valid for QUBIC-only acquisition, where the N−1 ≈
1/σ2noiseI. Here σnoise is the noise standard deviation for QUBIC in the map domain.

In fact, if we want M = (HTN−1H)−1, then we should choose the preconditioner
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M = σ2noise/COVdiag, where COVdiag is the diagonal matrix with the diagonal equal

to the coverage vector COV. The coefficient σ2noise doesn’t change the position of the

minimum of the quadratic function, so we can neglect it. However, for the fusion acqui-

sition the N−1 can not be approximated as proportional to identity matrix. For fusion

acquisition we have:

[

HT
Q I

]

[

N−1
Q

N−1
P l

][

HQ

I

]

= HT
QN

−1
Q HQ + IN−1

P l I

≃ COVdiag

σ2Q
+

I

σ2P l

=

=
σ2P lCOVdiag + σ2QI

σ2Qσ
2
P l

,

(5.16)

where the index Q is for QUBIC and Pl is for Planck and we take the Planck acquisition

equal to identity matrix. We can forget about the denominator and take the following

preconditioner:

M = (σ2P lCOVdiag + σ2QI)−1. (5.17)

The meaning of this result is pretty clear: we should weight QUBIC and Planck acqui-

sitions according to their noise level. However, we don’t know the level of noise for the

QUBIC reconstructed map: we can measure the noise level on the TOD in the units

of radiation power exposed to the bolometers, but the translation of this TOD noise to

the map noise is not obvious. It depends on scanning strategy, effective observational

period and on the choice of map-making method. For the moment we suggest using an

approximate preconditioner M = (COVdiag + kI)−1. The noise on the QUBIC map is

supposed to be much lower than the Planck map, so k must be small. We ran several

simulations trying to find the value for k that would allow the PCG converge faster and

finally decided on k = 0.001 for both frequency bands of QUBIC. But we admit that this

choice is probably not optimal. It should be revised after choosing the scanning strategy.

And k should depend on the observational period.

5.0.3 Simulations

We check the polychromatic map-making with fast simulations for CMB observations

with no foregrounds, 15 frequencies at 150 GHz band and 20 frequencies at 220 GHz,

the peaks of the synthesised beam are with ripples. The detector noise is down scaled to
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band and 1.12 for 220 GHz band. This deviation seems to be huge. However it can be

probably mitigated in the future by taking into account more and more details of the

synthesised beam. Another issue that must be tested in the future simulations is: what

is the reduce of the sensitivity on r one can expect, having a certain level of inaccuracy

on the definition of the synthesised beam? An answer to this question would require

the simulation of the TOD with a realistic synthesised beam. Then, by reconstructing

the map with an approximated beam, we would be able to resolve this issue. But the

involved simulations are very heavy.

Another question, that arises while studying the polychromatic acquisition model is: why

the fusion acquisition does not work properly in polychromatic case for 220 GHz band?

Most likely, the problem is in the preconditioner. But one can try also to mask or weight

the Planck acquisition. In principle, the fusion acquisition should only improve the map

resolution, so most likely the matter is in some numerical effects of convergence of PCG.



Chapter 6

QUBIC as a spectro-polarimeter

In this chapter we explore the possibility to reconstruct multiple sub-bands within each

of the broad bands of QUBIC, which allows us to have an unprecedented frequency

resolution. We introduce the multi-band acquisition model and the fusion version of it.

Then we discuss what is the appropriate number of sub-bands. At the end we introduce

the internal linear combination method implemented for QUBIC pipeline.

6.1 Multifrequency map-making

The fact that the synthesised beam changes with frequency gives an amazing opportunity,

unique to bolometric interferometer, to reconstruct several maps in narrow frequency

ranges within each one of two wide frequency bands, making a bolometric interferometer

act like a spectro-imager.

As we said in the chapter 4, the TOD for QUBIC is:

y = Hx̃ + n, (6.1)

where x̃ is monochromatic sky, n is noise with covariance matrix N and H is monochro-

matic acquisition function, specific for this frequency. This model could be extended

to apply for the polychromatic input signal. In polychromatic case the continuous fre-

quency spectrum of CMB could be estimated as a sum of monochromatic bands. Then

the TOD is constructed as:

y =

νNf
∑

νi=ν1

JνiHνi x̃νi + n, (6.2)
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where x̃νi is the sky map at frequency νi and Hνi is acquisition model for that frequency.

Coefficients Jνi weight the frequencies according the bandwidth. This equation could be

approximated as

y = Hpolyx̃ + n, (6.3)

whereHpoly is a polychromatic acquisition operator which is a weighted sum of monochro-

matic operators for frequencies νi. This equation is invertible. However using this ap-

proximation we neglect the frequency modulation of the input signal and reconstruct

only an average map over each of the two wide frequency bands.

Instead one can use another approximation:

y =
[

Hpoly,1 Hpoly,2 . . . Hpoly,Nb

]















x̃1

x̃2

...

x̃Nb















+ n, (6.4)

where the indeces 1, 2 etc. up to Nb denote the number of sub-band. We say it is

an approximation because each x̃i is an average map over some frequency sub-range

[νi,min; νi,max], where νi,max = νi+1,min and ν1,min is the minimal frequency of the wide

band, νNb,max is the maximal frequency. This is the same kind of approximation we

do when we invert the equation (6.3), but here we reconstruct the average maps over

narrow frequency sub-bands. Here we explore the fact that the shape of the synthesised

beam depends on the frequency. Exactly this feature of the synthesised beam allows us

to reconstruct multiple subbands within each of two wide bands of QUBIC.

Figure 6.1 demonstrates how the inversion of the equation (6.2) works on practice: the

simulated sky contains two point sources, each is monochromatic with frequencies 140

GHz and 159 GHz (which corresponds to two sub-bands within QUBIC 150 GHz band).

Each of the reconstructed maps contains only one of two sources. To understand how

the method works imagine the synthesized beams from these two sources. The one on

the left will be more stretched, while the right one will be more shrunk. One can naively

interpret the map-making process as following: we have templates of the synthesized

beam and we try these templates on the TOD. The shrunk template for higher subband

does not fit for the left source and vise versa.
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where s is the CMB signal, fν is foreground map at frequency ν and nν is the noise

contribution. We suppose that the CMB is the same for all the frequencies. Here,

to make the formulas less cumbersome, we omit the tildes which we used before to

distinguish the maps convolved with the instrument beam. We are looking for the CMB

estimator ŝ as a linear combination of observed maps on different frequencies:

ŝ =
∑

ν

wνxν , (6.7)

where wν are the weights for the linear combination, wν is a single number for each

map xν . The problem is to find the weights that maximise a certain criterion about ŝ

and keep
∑

ν wν = 1. The simplest choice for the criterion is that the weights have to

minimise the variance of ŝ. Let’s denote a vector of maps [x1,x2, ...] as y. Then we can

define the covariance matrix C = yyT . It is shown in [106] that the minimum of the

variance is obtained with

wi =

∑

j C
−1
ij

∑

ij C
−1
ij

. (6.8)

which is the solution of the Lagrange multiplier method. The indexes i, j stand for the

frequency channels. The variance of the ILC estimation is

σ2 = wTCw, (6.9)

where w is a vector of weights wν .

We apply ILC to the maps of QUBIC obtained on different frequencies, hence these maps

have different resolution due to the width of the synthesized beam peaks, which depends

on the frequency of light as c
ν∆xP . The input maps for ILC must be of equal resolution

otherwise the method will attempt to remove the CMB signal difference due different

resolution. We apply additional convolution to the reconstruced maps with convolution

operator equal Cν1/Cν where Cν is the synthesized beam peak convolution operator at

frequency ν and ν1 is the minimal frequency.

6.2.1 Dust emission

Polarized dust emission is the main source of foregrounds that prevents the observation

of primordial B-modes. And it is the main reason to measure the sky at more fre-

quency channels. As measured by Planck collaboration [11], the dust polarization power
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Thus when we sum up different frequencies, the central peak of the synthesised beam

becomes the sum of central peaks for all the frequencies, while the surrounding peaks

don’t match the same places, rather forming ray-shaped structures around the central

peak.

Two synthesised beams at two close frequencies could be resolved if their peaks are

separated enough. That is the difference in peak positions in the first order of interference

∆θ = (λ2 − λ1)/∆x = ∆λ/∆x is greater than the width of the peaks:

∆λ

∆x
≥ λ

P∆x
⇒ λ

∆λ
= P ⇒ ∆ν

ν
=

1

P
(6.11)

where λ and ν are the geometrical means of λ1,2 and ν1,2 respectively.

Thus the spectral resolution of a bolometric interferometer ∆ν
ν is equal to 1/P . In

case of QUBIC the bandwidth of each of wide bands is ∆bwν/ν = 0.25. Thus the

number of sub-bands is 0.25ν
∆x / ν

P∆x = 5. With two wide bands we have 10 sub-bands

centred at frequencies: [134.6, 141.6, 148.9, 156.5, 164.6] GHz for 150 GHz band and

[197.5, 207.6, 218.3, 229.6, 241.4] GHz for 220 GHz channel. This gives a unique opportu-

nity for spectra-imaging of CMB with a good spectral resolution, which allows to control

the foreground contamination much more efficiently.

Five sub-bands within each wide band for QUBIC is the ultimate limit, we are unable to

do any more sub-bands due to the spectral resolution equal to P . There are several other

issues. First, the spectral resolution is limited by the spatial resolution, that is by the

angular size of detectors which is equal to d√
πF

, where d ≈ 3mm is the size of detectors

and F is the focal length. Then the observed sky is convolved with the top-hat function

correspondent to the integration over the detector area. Thus the angular separation of

the peaks of two sub-bands should be

c∆ν

ν2∆x
≥

√

( c

Pν∆x

)2
+

(

d√
πF

)2

(6.12)

leading to ∆ν
ν |ν=150×109 ≥ 0.055 and ∆ν

ν |ν=220×109 ≥ 0.060. Thus the estimation for the

number of sub-bands reduces to 0.25/0.055 = 4.5 and 0.025/0.060 = 4.2 for 150 and 220

GHz band respectively.

Second, the amount of light for each sub-band reduces when increasing the number of

sub-bands, thus increasing the noise on the map. In the case of a uniform bandwidth

the noise scales as 1/∆ν or in other words as square root of number of sub-bands
√
Nb

and hence the errorbars on the CBB
ℓ grow as Nb in the limit of no B-modes on the CMB.
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Assuming that the noise is not correlated for the different frequency sub-bands and that

all the sub-bands have equal bandwidth, the noise on the ILC map is proportional to the

inverse of square root of number of maps. Thus at the end the noise on the map should

be the same, independently from the number of sub-bands. (Although it is a very naive

estimation).

Finally the third effect is related to the component separation. Ideally, ILC method

works better with a higher number of sub-bands, but this also depends on the noise on

the maps. All these effects we study with Monte-Carlo simulations.

6.3.1 Noise increase

To study the dependence of the multi-band maps noise on the number of sub-bands we

run fast Monte-Carlo simulations. The input map is a linear combination of CMB and

dust emissions, where CMB is the simulated maps with input spectrum that does not

contain B-modes and the dust is modeled according [11], as described in the section

6.2.1. TOD is modeled according to (6.2) and reconstructed with multiple sub-bands

according to (6.4). Figure 6.3 presents the dependence of the noise in the reconstructed

maps on the number of sub-bands.

As you can see on the figure 6.3, the noise on the 220 GHz band maps follows the

predicted dependence ∝
√
Nb pretty well up to Nb = 4. This law for noise comes from

the shrinking of the bandwidth and hence the reduced incoming light per sub-band and

it does not take into account the spectral resolution of QUBIC. Thus it is not surprising

that the points for Nb > 4 go higher: it just means that we attempt to resolve sub-

bands beyond the capabilities of the instrument. For the 150 GHz band the picture

is completely different. One can fit the 150 GHz points and find that they follow the

power law with power about 1.15. This means that for lower frequencies the multi-band

reconstruction does not work well. We suspect that it is because the detectors on the

periphery see the beam from the horns under angle ∼ 9.5◦ and the distance between zero

and first order peaks of the synthesized beam for 131 GHz (the lowest frequency for 150

GHz band) is about 9.4◦ (see figure 6.4 for explanation). That is the synthesized beam

for low frequency band hardly fits to the focal plane. (Note, that it does not cancel our

conclusions about the necessary number of frequencies we made in the previous chapter:

the third order peaks still play role.) The multi-band acquisition model explores the

fact that the synthesized beam is different for different frequencies. When we use a focal

plane too small for the broad low frequency synthesized beam we effectively imitate an

imager and the spectral resolution of an imager is obviously null. That’s why we have

so poor spectral resolution for the 150 GHz band. The synthesized beam for 220 GHz
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]

(6.15)

where n is number of frequency sub-bands.

We implement the code for the multiband-QUBIC-Planck acquisition model. The result

of the simulations, using this fusion map-making, is shown on the figure 6.8.

Then we can run the component separation with ILC. The results of it are shown on the

figure 6.9. The ratio of the variances for the residual map and the true CMB map is 14%

(we remind that for the QUBIC-only map-making it was only 6%). Thus, for the moment,

we cannot recommend to use the fusion acquisition with multi-band approach. However,

the future progress in development of the map-making and component separation can

probably fix this problem.

6.6 Possible CMB space-born instrument

Imagine an instrument, similar to QUBIC, but space-born. An amazing opportunity to

resolve frequency spectrum and map the fluctuations at the same time gives a strong

favor to the bolometric interferometry technique among the other possible instruments

for CMB observations. In space we don’t have the atmospheric emission lines. Thus we

are not limited by narrow atmospheric windows (we called our frequency bands "wide",

but in fact they cover only a small region of a broad black-body spectrum of CMB). It

means that we can use only one focal plane. This is a huge advantage: any experiment

needs cryogenic system for detectors and making multiple focal planes is particularly

difficult for space-born experiments. A bolometer interferometer would have the same or

better spectral resolution, while maintaining the simplest single focal plane configuration.

Let’s consider a the instrument configuration with a bandwidth from 60 GHz to 600 GHz

to cover a large fraction of CMB spectrum. The horns for QUBIC with ∆x = 1.4 cm,

designed for 150 GHz frequency, should be rescaled for 60 GHz frequency thus giving

∆x ≈ 4 cm. If we assume the diameter of horn array being 1.2 m, we can have about

700 horns. The optics of this instrument could be either reflective like in QUBIC or

reflective. Assuming the focal length 2.5 m we have the dependence of ∆ν
ν from the

frequency shown on the figure 6.10. One can see that the resolution strongly depends on
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satisfactory.



Chapter 7

Spectra reconstruction

This chapter is dedicated to the discussion about the power spectra reconstruction. We

introduce Xpol, Xpure and Spice methods and compare their performance.

7.1 Spectra reconstruction problems

The ultimate goal of cosmological studies is to reconstruct the cosmological parameters.

These parameters define the statistics of the CMB temperature and polarisation fluc-

tuations. Thus to recover the cosmological parameters from the measured fluctuations

one has to study the statistical properties of those fluctuations. A handy instrument

to describe this statistics is the the decomposition of the CMB anisotropies in the ba-

sis of spherical harmonics, which is analogous to the usual Fourier transform, but on a

spherical surface.

For the true CMB temperature anisotropies we have (here n is the direction in the sky):

T (n) =
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

aTℓmYℓm. (7.1)

where aTℓm are the coefficients of the decomposition. If the CMB temperature fluctuations

T (n) are assumed to be gaussian, then the coefficients aTℓm are gaussian variables with

mean zero (
〈

aTℓm
〉

= 0) and covariance

〈

aTℓma
T∗
ℓ′m′

〉

= δℓℓ′δmm′CTT
ℓ

cosmo
, (7.2)

131
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where CTT
ℓ

cosmo
is called the temperature power spectrum and the angle brackets stand

for ensemble average over all the possible realizations of the Universe. This power spec-

trum is defined by the true cosmological parameters. We are trying to estimate it from

the only realization of the Universe we dispose:

CTT
ℓ =

1

2ℓ+ 1

ℓ
∑

m=−ℓ

|aℓm|2, (7.3)

which is distributed according a χ2 distribution with 2ℓ+1 degrees of freedom. It deviates

from CTT
ℓ

cosmo
with standard deviation CTT

ℓ
cosmo√

2/(2ℓ+ 1) (compare with equation

2.5).

7.1.1 Noisy sky with realistic resolution

Now the measured map contains noise and the resolution of the map is limited by the

beam resolution and the map pixelization, so the measured map is equal to T̃ (n)+N(n),

where T̃ (n) is the CMB true sky, convolved by the instrumental beam and pixelized (it

is what we called x̃ in the 4th chapter) and N(n) is the noise map. Here we consider an

experiment that observes the full-sky with uniform coverage. The map T̃ (n) could be

expressed in the spherical harmonics as

T̃ (n) =

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

aTℓmpℓBℓYℓm. (7.4)

where pℓ and Bℓ are the pixel and beam window functions respectively (this approxima-

tion is correct only if the beam is axisymmetric and the pixels are much smaller than

the beam resolution). Assuming that the noise is not correlated with the signal, the

covariance matrix of the measured map is

〈

(

T̃ (n1) +N(n1)
)(

T̃ (n2) +N(n2)
)T
〉

=
〈

T̃ (n1)T̃ (n2)T
〉

+
〈

N(n1)N(n2)T
〉

=
∑

ℓ

2ℓ+ 1

4π
Cℓ(pℓBℓ)

2Pℓ(n1,n2) +N,
(7.5)

where N is the noise covariance matrix and Pℓ(n1,n2) are the Legendre polynomials.

Thus the observed power spectrum is (pℓBℓ)
2Cℓ. Note, that the functions pℓ and Bℓ are

known, so we can correct for them.
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7.1.1.1 Pixel and beam window functions

Unlike other instruments, QUBIC observes the sky with a complex synthesized beam.

And the synthesized beam is clearly not axisymmetric. We already mentioned in the

previous section that the beam window function Bℓ could be used only in case of the

axisymmetric beam. Otherwise the convolution of a map with a not-axisymmetric beam

leads to the need to rotate the convolution kernel of the beam in aℓm space. In other

words, convolution with an asymmetric beam is not equal to the multiplication in ℓ-space.

And it is true for QUBIC. But we do the deconvolution from the axi-asymmetric features

of the synthesized beam on the map-making stage (the map-making could be considered as

an effective deconvolution from the multi-peaked features of the synthesized beam). After

that the reconstructed sky remains convolved only by an axisymmetric peak function.

When observing the sky with a finite resolution beam, the sky map is effectively convolved

by the beam window function. Thus the beam function multiplies the input spectra

and to recover true spectra from reconstructed ones we have to divide them by the

spectrum of the instrument beam. In case of gaussian beam the beam window function

is approximated as

Bℓ(σ) = exp[−1

2
ℓ(ℓ+ 1)σ2] (7.6)

where σ is the width of the beam [107].

In case of QUBIC we use approximation of the peaks of the synthesized beam, described

in the chapter 4. The QUBIC beam is not axisymmetric and hence its window function

is very nontrivial. But what we call a QUBIC beam window function Bℓ is not the

spherical harmonic representation of the synthesized beam, but the window function of

only one peak of the synthesized beam. And precisely from this window function we

deconvolve our spectra.

The pixelization of the sky acts in the similar way as the beam. It smoothes the CMB:

we have no access to the angular scales below the pixel resolution [95]. By definition

p2ℓ =
Cpix
ℓ

Cunpix
ℓ

(7.7)

where Cpix
ℓ is the spectrum, measured from the pixelized sky map and Cunpix

ℓ is an ideal

unpixelized spectrum. The pixel window function pℓ is approximated as an average of

window functions for all the pixels on the map. Pixel window function for several nside

parameters are shown on the figure 7.1.
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ãTℓm =

∫

T̃ (n)Yℓm(n)dn =

∫

T (n)W (n)Yℓm(n)dn, (7.9)

where W (n) is the instrument window function. The pseudo-aℓm relate to the real ones

as

ãTℓm =
∑

ℓ′m′

Kℓm,ℓ′m′aTℓ′m′ , (7.10)

where Kℓm,ℓ′m′ =
∫

W (n)Yℓ′m′Y ∗
ℓmdn is the convolution kernel due the window function.

It induces coupling between different angular scales.

Now it is possible to construct so-called pseudo-spectrum as a direct decomposition of an

experimental map to spherical harmonics:

C̃TT
ℓ =

1

2ℓ+ 1

ℓ
∑

m=−ℓ

ãTℓmã
T∗
ℓm. (7.11)

Using equation (7.10) this turns to

C̃TT
ℓ =

1

2ℓ+ 1

ℓ
∑

m=−ℓ

∑

ℓ′′m′′

∑

ℓ′m′

Kℓm,ℓ′m′K∗
ℓm,ℓ′′m′′aTℓ′m′aT∗

ℓ′′m′′ . (7.12)

To get the estimator of a true power-spectrum from here we use the frequentist approach:

let’s calculate the ensemble average of the pseudo-spectrum:

〈

C̃TT
ℓ

〉

=
1

2ℓ+ 1

ℓ
∑

m=−ℓ

〈

ãTℓmã
T∗
ℓm

〉

=
1

2ℓ+ 1

ℓ
∑

m=−ℓ

∑

ℓ′m′

∑

ℓ′′m′′

Kℓm,ℓ′m′K∗
ℓm,ℓ′′m′′

〈

aTℓ′m′aT∗
ℓ′′m′′

〉

=
1

2ℓ+ 1

ℓ
∑

m=−ℓ

∑

ℓ′

CTT
ℓ′

ℓ′
∑

m′=−ℓ′

|Kℓm,ℓ′m′ |2

=
∑

ℓ′

CTT
ℓ′ Kℓℓ′ ,

(7.13)

where



Chapter 7. Spectra reconstruction 136

Kℓℓ′ =
1

2ℓ+ 1

ℓ
∑

m=−ℓ

ℓ′
∑

m′=−ℓ′

|Kℓm,ℓ′m′ |2. (7.14)

is the convolution kernel that describes the effect of partial sky coverage. Kℓℓ′ mixes

spectra at different multipoles. This mixing is explained by the fact that the spherical

harmonics Yℓm are not orthogonal on a cut sky.

It is evident that for a real experiment we are not able to take an ensemble average since

we observe only one sky. Instead we define an estimator ĈTT
ℓ

C̃TT
ℓ =

∑

ℓ′

Kℓℓ′Ĉ
TT
ℓ′ . (7.15)

This estimator is unbiased, that is
〈

ĈTT
ℓ

〉

is equal to the true underlying spectrum CTT
ℓ .

Taking into account the conclusions made for the full noisy sky in (7.5) we can finally

write down the equation that defines the estimator for the CMB power-spectrum

C̃TT
ℓ =

∑

ℓ′

Kℓℓ′(pℓ′Bℓ′)
2ĈTT

ℓ′ +Nℓ, (7.16)

where Nℓ is the noise power spectrum. The CMB estimator ĈTT
ℓ can be obtained by

inverting this equation. This estimator is debiased from the noise and from the beam and

pixel window functions. To avoid the multipole mixing one has to invert the kernel Kℓℓ′ .

Below we will consider the power-spectrum reconstruction methods Xpol and Xpure

which are based on this approach.

The first step to estimate the power spectrum is the pseudo-spectrum. From equation

(7.16) it is evident that the pseudo-spectrum is biased by noise. If the noise is gaussian

with constant amplitude over the map, then it cancels out on the large scales, but gives

a significant bias on the lower scales. This is illustrated on the figure 7.2.

7.1.3 Leakage problem

When we measure the polarization fluctuations of CMB, we describe it in terms of

Q and U Stokes parameters. However, the Q and U parameters have not much of

cosmological meaning and it is more convenient to represent the sky in terms of E and B

modes of polarization, because those are directly linked to the primordial cosmological

preturbations, see chapter 2. To obtain a spherical harmonics decomposition of E and

B fields we first introduce the spin-(±2) fields [110] as
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From the measured sky Q and U polarization we have direct access only to the ±2aℓm.

In the similar way as we did for the temperature fluctuations, we can define spin-2

pseudo-aℓm:

±2ãℓm =

∫

P̃±2(n) ±2Yℓm(n)dn =

∫

W (n)P±(n) ±2Yℓm(n)dn. (7.21)

Where W (n) is the observation window function defined in (7.9). Now we can define the

E and B pseudo-aℓm:

ãEℓm = −1

2
( 2ãℓm + −2ãℓm)

= −1

2

∫

[

P̃2(n) 2Yℓm(n) + P̃−2(n) −2Yℓm(n)
]

dn

= −1

2

∫

W (n) [P2(n) 2Yℓm(n) + P−2(n) −2Yℓm(n)] dn,

(7.22)

ãBℓm =
i

2
( 2ãℓm − −2ãℓm)

=
i

2

∫

[

P̃2(n) 2Yℓm(n) − P̃−2(n) −2Yℓm(n)
]

dn

=
i

2

∫

W (n) [P2(n) 2Yℓm(n) − P−2(n) −2Yℓm(n)] dn.

(7.23)

Using decomposition of P±2 into spherical harmonics (7.18) one can finally write

ãEℓm =
∑

ℓ′m′

[

K+
ℓm,ℓ′m′a

E
ℓ′m′ + iK−

ℓm,ℓ′m′a
B
ℓ′m′

]

, (7.24)

ãBℓm =
∑

ℓ′m′

[

−iK−
ℓm,ℓ′m′a

E
ℓ′m′ +K+

ℓm,ℓ′m′a
B
ℓ′m′

]

, (7.25)

where

K±
ℓm,ℓ′m′ = −1

2

∫

W (n) [ 2Y
∗
ℓ′m′ 2Yℓm ± −2Y

∗
ℓ′m′ −2Yℓm] dn. (7.26)

Thus for the pseudo-aℓm for E and B modes we have a mixture of the real E and B aℓm.

Defining the convolution kernels
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K±
ℓℓ =

1

2ℓ+ 1

ℓ
∑

m=−ℓ

ℓ′
∑

m′=−ℓ′

|K±
ℓm,ℓ′m′ |2, (7.27)

we can relate the pseudo-spectra to the real ones:





〈

C̃EE
ℓ

〉

〈

C̃BB
ℓ

〉



 =
∑

ℓ′

[

K+
ℓℓ′ iK−

ℓℓ′

−iK−
ℓℓ′ K+

ℓℓ′

][

〈

CEE
ℓ′
〉

〈

CBB
ℓ′
〉

]

. (7.28)

Finally, for the case of realistic noisy observations

[

C̃EE
ℓ

C̃BB
ℓ

]

=
∑

ℓ′

(pℓ′Bℓ′)
2

[

K+
ℓℓ′ iK−

ℓℓ′

−iK−
ℓℓ′ K+

ℓℓ′

][

ĈEE
ℓ′

ĈBB
ℓ′

]

+

[

NEE
ℓ

NBB
ℓ

]

. (7.29)

This is called the leakage problem: the pseudo-spectra for polarization are some mixture

of the real EE and BB spectra. Since the B signal is much lower than E, it is often

called "E-to-B leakage", because the leakage of B modes into E is negligible. In principle

it is possible to invert the last equation and obtain an unbiased estimator ĈEE,BB
ℓ . But

event then the variance of the E modes leaks to the variance of B [111].

7.1.4 Errorbars on the reconstructed spectra

Let’s estimate the idealistic errorbars which one would obtain using the most optimal

estimator from a noisy sky. And let’s do it by introducing the likelihood function [112]:

− 2 lnP (x̃|Cℓ) =
∑

ℓ

(2ℓ+ 1)

[

log

(

ℓ(ℓ+ 1)

2π
(Cℓp

2
ℓB

2
ℓ +Nℓ)

)

+
C̃ℓ

Cℓp
2
ℓB

2
ℓ +Nℓ

]

, (7.30)

that defines the probability to measure the map x̃ having the underlying CMB power

spectrum Cℓ. You may recognize here the beam and pixel window functions pℓ and Bℓ,

the noise spectrum Nℓ and the power-spectrum C̃ℓ. The maximum of the likelihood is

at Ĉℓ = (C̃ℓ − Nℓ)/(pℓBℓ)
2 and the errors of this solution are defined by the inverse of

square root of the likelihood second derivative, which is

∂2logP (x̃|Cℓ)

∂Cℓ∂Cℓ′
=

2ℓ+ 1

2
(Cℓ +

Nℓ

(pℓBℓ)2
)−2δℓℓ′ , (7.31)

so the spectra errorbars are
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∆Cℓ =

√

2

2ℓ+ 1
(Cℓ +

Nℓ

(pℓBℓ)2
). (7.32)

Note that the square root that multiplies the formula is similar to what we have for the

cosmic variance. So it is quite natural to introduce here the effect of incomplete sky

coverage and finally get

∆Cℓ =

√

2

(2ℓ+ 1)fsky
(Cℓ +

Nℓ

(pℓBℓ)2
). (7.33)

where fsky is the fraction of observed sky. This formula is the ultimate limit of sensitivity

of any method of spectra reconstruction since it ignores the effect of leakage.

7.2 Xpol

The Xpol method mainly dedicated to estimate the power spectra using cross-power spec-

tra between different input maps of the same experiment or from different experiments

[111]. Assuming that noise is uncorrelated between maps, which is a fair assumption, the

estimation built with Xpol is not biased by noise. The cross-power spectra are combined

using a Gaussian approximation for the likelihood function.

If aA,B
ℓm are temperature aℓm’s of two independent maps, one can build a cross-spectrum

of them:

CAB
ℓ =

1

2ℓ+ 1

ℓ
∑

m=−ℓ

aAℓma
B∗
ℓm. (7.34)

The pseudo-cross-spectrum takes into account the noise and window function bias of the

measured cross-spetrum:

C̃AB
ℓ =

∑

ℓ′

KAB
ℓℓ′ p

′2
ℓ B

A
ℓ′B

B
ℓ′

〈

ĈAB
ℓ′

〉

(7.35)

The noise cross-spectrum NAB
ℓ does not appear here because of the reasons explained

in the beginning of this section. From this one can derive the estimator for the cross-

spectrum ĈAB
ℓ . If we have N maps and hence N(N − 1)/2 different cross-spectra, we

can combine them making use of the likelihood approach. Approximating the likelihood

function as a gaussian we have
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− 2 logL =
∑

ij

[

(Ĉj
ℓ − Ĉℓ)|Ξ−1

ℓℓ′ |ij(Ĉ
j
ℓ − Ĉℓ)

]

(7.36)

where indexes i, j are for the different pairs of maps and Ξij
ℓℓ′ is the cross-correlation

matrix, which is analytically computed. Maximizing this likelihood function we obtain

an estimator Ĉℓ of the power-spectrum of the sky.

Currently we use Xpol method to estimate the power spectra from the QUBIC simula-

tions for only one band, so we don’t use the main advantage of the method and apply

it to only one map. Thus the obtained result is biased by noise. But the Xpol can be

useful to take the cross-spectra for two bands. The problem is that then we should do

the component separation severally for each band. The component separation works well

when the input maps are measured on much different frequencies. Thus the advantage

of using Xpol will be mitigated by the worse component separation.

Also Xpol can be useful when we will have data from the RA12 PolarBear field. Then

we will be able to correlate maps of two experiments and improve the power-spectra

resolution. However, to combine two data sets with to different scanning strategies and

different TOD filtering is very not trivial task. Moreover, PolarBear experiment is mainly

concentrates on the region of high multipoles (we remind that PolarBear aims to measure

the lensing effect on BB spectrum). So it is hard to know now whether this analysis will

be useful or not.

7.3 Xpure

Both in pseudo-spectrum approach and Xpol we attempted to define the coefficients

of the spherical harmonics decomposition on a cut sky. The spherical harmonics are

orthogonal only on the full sky, so the definition of aℓm’s on a cut sky necessarily leads to

the leakage of E to B. The Xpure method use another approach – to weight the spherical

harmonics themselves by the window function, thus defining a pure basis to define the

E and B modes [110]. If ð is the spin-raising and ð̂ is the spin-lowering operators, then

we can define the pure pseudo-aℓm’s as

ãEℓm = −1

2

√

ℓ− 2

ℓ+ 2

∫

[

P2(n)(ððW (n)Yℓm(n))∗ + P−2(n)(ð̂ð̂W (n)Yℓm(n))∗
]

dn, (7.37)
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ãBℓm =
i

2

√

ℓ− 2

ℓ+ 2

∫

[

P2(n)(ððW (n)Yℓm(n))∗ − P−2(n)(ð̂ð̂W (n)Yℓm(n))∗
]

dn, (7.38)

In such definition the pure pseudo-aE,B
ℓm ’s contain only E and B modes correspondingly.

Thus the power spectrum estimator is completely free of the leakage. To allow the

decomposition on the pure basis the window function mush satisfy a sufficient condition

of having W = 0 and ðW = 0 on the edge of the field. Therefore the Xpure method

requires the apodization of the binary mask on the sky under which we measure the CMB

anisotropies. Apodization length is the angular distance on which the mask changes from

0 to 1. The shorter the apodization length is the worse the method works (means, more

leakage remains on the reconstructed spectrum). But the increase of the apodization

length means reduce of the sky coverage and thus increase of the sample variance. When

dealing with the Xpure method we have to adjust the apodization length carefully to

achieve a balanced solution between these two counteracting effects. The choice of the

apodization length for QUBIC analysis is shown on the figure 7.3. It is evident that

the effect of apodization is the most important on the low multipoles. The increase of

the errorbars due the sample variance is included on the figure, though it is relatively

small: it is two orders of magnitude lower than the Xpure proper errorbars. On the

multipoles from around 60 and higher the difference is negligible. Remember that the

peak of primordial B-modes is expected on ℓ ∼ 70. So we are free to pick any value for

apodization length. We choose 90′ since it gives slightly better result on ℓ = 50 than the

sharper apodizations.

7.4 Spice

The Spice method [13] differs from Xpol and Xpure by introducing the angular correlation

function of the signal at distance θ:

ξ(θ) =
∑

ℓ

2ℓ+ 1

4π
CℓPℓ(θ), (7.39)

where Pℓ(θ) is the ℓ-th Legendre polynomial. Thus the recipe to extract power spectra

from map is the following: at first, we measure the two-point correlation function. Next,

we smooth it with Gaussian kernels centered on the roots of Legendre polynomials and

integrate to obtain the Cℓ. The full sky Cℓ is given by
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where coefficients fij = 0 unless pixels i and j belong to particular bin in θ and
∑

ij fij =

1. This estimator is unbiased:
〈

ξ̃(θ)
〉

= ξ(θ), where the angle brackets are for the

ensemble averaging.

Figure 7.4: Cℓ calculated with Spice in 1298 BOOMERanG-like simulations and then
rebinned into flat Cℓ bands with a width of 50. The small points show the individual
measurements, with the error bars representing the standard deviations in each band.
The theoretical error bars of equation 7.33 are displayed and shifted to the right for

clarity. The arrows point to the effective beam and pixel scales [13].

The noise contribution and sample variance contribute to the errors of the method.

Figure 7.4 demonstrates good efficiency of the method. This figure shows the errorbars

of the method itself together with the theoretical errors, obtained by the formula (7.33).

It is clear, that the result is unbiased and has nearly optimal errorbars.

The PolSpice method is an extension of Spice to reconstruct the polarization spectra of

the CMB. Here we call it just Spice.

7.5 Choosing coverage threshold

An important step for the spectra reconstruction is the choice of the map mask under

which we attempt to reconstruct the spectra. The mask should exclude the unseen
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pixels as well as the noisy ones. In the framework of this thesis we use only these two

criteria, but in principle the bright point sources on the sky should be also masked. The

uncertainty on the power spectrum is defined by the formula (7.33). Omitting the sample

variance, it is proportional to NET 2/
√

fsky, where NET is the noise equivalent power

on the reconstructed map.

The noise in a pixel is roughly proportional to the square root of number of hits to

this pixel. It is not an exact dependence since for bolometric interferometer we observe

a mixture of signals from different directions. Some of these directions correspond to

well observed pixels and some correspond to the poorly observed ones. Moreover, the

noise depends on the filtering, that is on scanning strategy. However, we can apply the

mask based only on the coverage map, since the noise variance on the pixels with equal

coverage is almost the same. The NET, estimated on the reconstructed map under the

mask, is smaller if we take a tighter mask, because then we take only well observed pixels

and reject the poorly observed ones. On the other hand tight mask means high sample

variance. On our experience, one should use the coverage threshold 0.2 to reconstruct

the power spectra from individual sub-bands and 0.05 for the ILC map. The coverage

threshold t defines the mask as COV > t ·max(COV).

7.6 Choosing method

To choose the proper method we run Monte-Carlo simulations of 24 hours of QUBIC

performance at Dome-C site, as this site allows to observe the sky field of interest all day

long. The noise level is normalised to simulate 2 years of data taken. Knee frequency

of 1/f -noise is set to 1 Hz, which is a realistic value, see the value used for BICEP-2

experiment in [113]. Simulated no-foreground CMB sky with r = 0. Observations are

simulated at 150 GHz monochromatic band. We use gaussian approximation for the

peaks of the synthesized beam (we recall that we model the peaks of the synthesized

beam either as gaussians or as more precise "rippled shape". The second one is more

precise, but it anyway doesn’t change the results of spectra reconstruction in simulations).

Number of realizations is 8. After reconstruction, spectra are corrected for the QUBIC

beam and pixel window function. Reconstructed spectra for all listed methods are shown

on the figure 7.5. It is clear that in average all the methods give good results. We

estimate errorbars of reconstructed spectra as the standard deviation between different

realizations. One should take these results with care, since the number of realization is

quite small. The errorbars are shown on the figure 7.6.

It is clear, that Xpol gives the worst errorbars for BB-spectrum (however don’t forget

about little number of simulations used to plot this result). Xpure and Spice errorbars
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are much tighter, although Xpure has increased errors at low ℓ for BB-spectrum. It

is also remarkable that Spice errorbars are much lower for EB-spectrum, which is of

crucial importance for the B-modes detection: since E and B modes arise from different

physical effects they should be uncorrelated and the EB spectrum must be zero. So, we

certainly won’t use Xpol. Actually, Xpol is not designed to measure the auto-spectra

(spectra from a single map), so it is not surprising that it gives bad result.

The choice between Xpure and Spice is more difficult since they give almost the same

results. The errorbars of Spice are better than those of Xpure for almost all the spectra.

However, Spice gives a strange bias for TT and BB spectra. One technical difference

between the methods: Xpure is implemented and deployed on NERSC supercomputer,

while Spice could be ran on a personal computer, which is much more convenient. It

does not mean that Xpure code is more heavy and Spice is lighter. Both the codes have

complexity of O(N3/2), where N is the number of pixels. The Xpure code we use is

originally implemented for PolarBear data analysis. Since PolarBear works with CMB

maps of much higher resolution, they need to run the code on NERSC. For us it is not

crucial.

This study does not allow to choose between Xpure and Spice, so we keep using both

methods. However, anticipating we can say that only Xpure is good for realistic simula-

tions of multi-band observations of QUBIC.

7.7 Conclusions

In this chapter we considered the problem of spectra reconstruction as a whole and exam-

ined three spectra reconstruction methods: Xpol, Xpure and Spice. All three methods

give excellent results with preference to Spice and Xpure. These methods we pick for

later use.
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Scanning strategy

In this chapter we discuss the issues concerning the scanning strategy. We run a scan

over the scanning strategy parameter space and find an optimal set of parameters that

allows to mitigate the 1/f noise and observational efficiency loss due to the dead time.

Scanning strategy is the way to orientate the instrument in time. By optimisation of the

scanning strategy one can hope to achieve better sensitivity of the experiment. It may

help to: mitigate the 1/f noise, reduce the sample variance, reduce the noise variance,

improve systematics, avoid noisy parts of the sky, reduce the E-to-B leakage by adjusting

the shape of the observed patch. In this chapter we consider ways to optimise the

scanning strategy, what results we can obtain, what are the limitations of the scanning

strategy and finally will propose a baseline scanning strategy for the QUBIC experiment.

8.1 Sensitivity of an imager

The sensitivity of an experiment depends on the parameters of scanning strategy. We

start the examination of this dependence from a simpler case of an imager. This question

is considered in the works [114] and [115].

We already introduced the formula (7.33) for the errorbars on the estimated power spec-

trum. Let’s repeat it:

∆Cℓ =

√

2

(2ℓ+ 1)fsky
(Cℓ +

Nℓ

(pℓBℓ)2
). (8.1)

Here fsky is the observed fraction of the sky, Cℓ is the true underlying power spectrum,

Nℓ is the noise power spectrum and pℓ and Bℓ are the pixel and beam window functions,

148
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as described in 7.1.1.1. Here we already see one parameter that depends on the scanning

strategy: the sky fraction fsky. From (8.1) the errors on the Cℓ are proportional to the

inverse of square root of fsky. From this point of view it is better to have a large fraction

of the sky observed, as it minimized the sample variance.

However, by increasing the fraction of the observed sky we also increase the noise vari-

ance. Broadly speaking, we have the number of time samples defined by the observational

time. We can distribute these samples as we want: either by observing a tiny patch of

the sky, but very deep, then the noise will be apparently reduced on this patch. Or we

can spread our samples over a large patch, but then each pixel will be measured only few

times and the noise will be increased. The noise variance arises from the instrumental,

atmosphere and foregrounds noises. While the first one is irreducible by other methods

but instrumental ones, the foregrounds and atmosphere contaminations depend on the

sky coverage. Naively, the noise variance in each pixel is inversely proportional to the

square root of number of hits to that pixel. Or, in other words, proportional to the

square root of sky fraction fsky. Thus by adjusting the sky coverage one can achieve the

minimum, balanced between the sample and noise variances.

The noise power spectrum Nℓ is equal [105]:

Nℓ =
2ηNET2Ω

tǫim
, (8.2)

where NET is the noise equivalent temperature of the detectors, that is the signal tem-

perature which is needed to match the noise level; t is the observation time; Ω is the solid

angle of the observed field, equal to
∫

cnd(n), where cn is the hit map, normalized to have

1 at the maximum, Ω is equal to 4πfsky; η is called the apodization factor and is equal

to
∫
cn(n)dn∫
c2n(n)dn

; ǫim is the optical efficiency. Thus finally the errorbars on the reconstructed

spectrum for an imager are defined as

∆Cim
ℓ =

√

2

(2ℓ+ 1)fsky∆ℓ

(

Cℓ +
8πηNET2fsky
p2ℓB

2
ℓ tǫim

)

, (8.3)

where ∆ℓ – bin width for the binned reconstructed spectrum. The optimal choice for the

bin width is the multipole that corresponds to the angular scale of the observed field of

the instrument. For QUBIC we use ∆ℓ = 20. In the equation (8.3) one can clearly see

that the sensitivity of the CMB imager is the sum of sample variance (first term in the

brackets) and noise variance (second term). The sample variance term behaves as O(f
− 1

2

sky )

and the noise variance as O(f
1

2

sky). Thus apparently there might be minimum between

these two factors. With a strong signal this minimum tends towards the high coverage.
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And with the increase of noise and reduce of observational efficiency the minimum moves

towards the low fsky. Since fsky depends on the scanning strategy, this minimum can be

achieved by adjusting the scanning strategy parameters.

On practice we are looking for the minimum between noise variance which is known

and the sample variance which is unknown. The sample variance is unknown because

it depends on the true power spectrum, which, on its turn, depends on the value of the

tensor-to-scalar ratio r, which is unknown. We are trying to find the optimal scanning

strategy for two cases: one with zero sample variance, that is zero r (here we don’t

account for the lensing signal). And another case is for the r = 0.02 which is twice

of target sensitivity of QUBIC. After all we will be able to propose a scanning strategy

depending on the value of r. Anticipating, we can say that the optimal scanning strategy

is almost indifferent on the exact value of r.

Another parameter that depends on the scanning strategy in the formula (8.3) is η. It

describes the the shape of the coverage field. In the ideal case of uniform coverage with

top-hat profile η = 1. The worst possible value of η is 2. In case of a realistic experiment

the apodization factor η has value between 1 and 2.

8.2 1/f noise

The formula (8.3) is obtained assuming the absence of correlations of the noise between

the pixels of the sky. But we know that the electronic and, especially, atmospheric noise

is characterised as a pink, or 1/f noise. The low frequencies of such noise are dominant.

To get rid of the low frequency component of the noise we apply the high-pass filter

to the data, but if the low frequencies of the noise are not completely removed, they

manifest themselves as stripe-looking features on the reconstructed map. Moreover, the

filtering not only reduces noise but also removes some signal.

1/f noise is characterised by the noise-equivalent power NEP of the background white

noise, the slope of the low-frequency part of spectrum and the knee frequency, where

the 1/f noise turns to white noise. The knee frequency fknee has typical value of order

1-2 Hz; for reference see [116] for Atacama desert atmospheric conditions (Atacama is a

Chilean name for the same desert as Puna), [117] for the South Pole and [118] for the

general information on the subject of atmospheric contamination. Because the 1/f noise

is not accounted in the formula (8.3) we might expect that the minimum of the spectrum

variance will move towards even smaller fsky.
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8.3 General approach to the scanning strategy and instru-

mental constraints

Taking into account all the factors listed above we derive the general approach to the

QUBIC scanning strategy. The manner we construct it is pretty common for the ground-

based CMB experiments. Scanning strategy could be written as an array of four functions

on time: (az(t), el(t), ψ(t), φ(t)), where az and el are azimuth and elevation of the in-

strument, ψ is angle of rotation around the optical axis and φ is angle of rotation of the

half-wave plate.

8.3.1 Azimuthal and elevation rotations

The atmospheric noise strongly depends on the thickness of the air through which we are

observing the sky. Thus the noise level depends on the elevation el(t). Since the 1/f noise

is partly removed by high-pass filtering of data, we don’t want the noise characteristics

to change fast, that is we want to keep elevation constant during a long period of time.

Thus we come to the general approach for az(t) and el(t): we scan back-and-forth on

constant elevation within range of ±1
2∆az around the centre of the field which is constant

in the galactic coordinates. One back-and-forth scan will be called a sweep. In horizontal

coordinates the centre of the field is slowly moving due to the day rotation of the Earth.

The azimuth of the centre of the field is always kept on the centre of each sweep. During

number of sweeps N at constant elevation the field of interest moves away from the field

of view of the instrument, so we change elevation to match the centre of the field and

start sweeping again. This approach allows to filter out the 1/f -noise: during each sweep

we observe each point in the field of view twice with time interval of order the period of

azimuth sweeping. If the noise is strong on low frequencies, the noise component for these

two measurements will be correlated. Let’s return for a moment to the map-making. We

remind that the CMB map is reconstructed using this estimator:

x̃ = (HTN−1H)−1HTN−1y. (8.4)

We are now interested in the noise covariance matrix N . In the approximation of a

perfectly stationary noise it is a Toeplitz matrix where each row describes covariance

of noise in time for each detector. Due to the reason explained above the TOD y

is also implies some time correlation. The multiplication of N−1y effectively makes

prewhitening of the noise – makes the noise on TOD white. Thus we project out in

average the low frequency component of the noise. The trick works more efficiently if
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8.3.2 Rotations around the optical axis of the instrument

As we said in chapter 3, the QUBIC mount system allows the rotation of the instrument

on azimuth, elevation and around the optical axis (see figure 3.4). But there is no point

to use ψ (around the optical axis) rotation of the instrument while scanning the sky.

The reasoning is following: let’s call angles of the instrument pitch on two subsequent

half-sweeps ψ1,2. If ψ1 6= ψ2 then the same directions on the sky are observed with

different detectors and data filtering doesn’t work. It only works if ψ1 = ψ2, that is

while sweeping back the instrument should repeat its own path of ψ. But then there is

no point to rotate the instrument on ψ, because it does not improve anything. Moreover,

due to the mechanical vibrations the angles ψ1,2 back and forth sweeps will be always

slightly different. So instead of rotating on ψ we should keep the angle ψ constant

during a long period of observations. Another reason to keep ψ constant is the fact that

otherwise the airmass for each detector varies during a sweep, and that is exactly what

we try to avoid by keeping the instrument on constant elevation during some long time.

On the other hand it is recommended to rotate the instrument on ψ from time to time

to observe the same sky with different detectors, as it allows to reduce the systematics

effects. One of the important characteristics of the scanning strategy quality is the

overlap of detectors in per cents:

λ = nd

∫ (
∏nd

i=1 c
i
n(n)

)
1

nd dn
∫
∑nd

i=1 c
i
n(n)dn

× 100% (8.5)

where nd is the number of detectors, the numerator is the geometrical mean of the

coverages of different detectors cin, each normalized to one and the denominator is the

arithmetic mean of it. If the overlap is zero it means that each detector looks on its own

path on the sky. Low overlap of detectors leads to additional systematics due to the

construction differences between detectors. Figure 8.2 presents the overlap for several

different scanning strategies, which differ one from another by different ∆az.. One can

clearly see that the overlap for QUBIC is always more than 99%. Moreover, rotation of

the instrument on ψ from time to time allows to increase the overlap even more. Since

the overlap for QUBIC is almost perfect anyway, we don’t consider the overlap as a

crucial criterium for the scanning strategy.

Also we are planning to use the rotation around the optical axis for self-calibration. To

remind: the self-calibration implies observation of a point source with different horn

baselines. During self-calibration we have a background noise from the ground. To

mitigate it we can rotate the instrument on ψ and thus modulate the self-calibration

observations. After that the noise from the ground could be efficiently removed.
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edges of a sweep with the same reasoning: when the instrument changes the the direction

of azimuthal rotation, that is it moves with angular acceleration, we have the vibrations

of the whole instrument. These vibrations are not very strong and don’t influence the

QUBIC cryogenics. However, it spoils the pointing and we should better not take data

at the both end of the sweep. The dead time for QUBIC is about 1 second per sweep

edge and probably should be increased when we rotate the HWP. For our simulations we

use the dead time equal 1s. Long dead time in combination with fast azimuthal rotations

and narrow azimuthal range reduces the observational efficiency.

8.4 Sensitivity of a bolometric interferometer

In the section 8.1 we considered the sensitivity of an imager instrument and already de-

rived several important conclusions for the scanning strategy from it. Now let’s consider

the sensitivity of a bolometric interferometer. The fact that we observe the sky with a

synthesized beam, formed as an interferometric pattern between the beams of each pupil

(horn), changes the noise variance (in K) as [105]:

σ2noise =

√
Nh

Neq(ℓ)

4πNETfsky√
t

, (8.6)

where NET, fsky, t, as defined in the section 8.1, are, respectively, noise equivalent

temperature (in the units of µK · s 1

2 ), sky coverage fraction and observation time. Nh

is the number of horns and Neq(ℓ) is the number of equivalent baselines. Let’s discuss

these two last factors more precisely.

The synthesized beam was defined in the equation (4.15) as an interference of signals

from Nh horns. We said in section 3.1.3 that the interferometric pattern from all the

equivalent baselines should be the same, since all the equivalent baselines make the same

phase shift (we recall that the term baseline denotes a pair of horns; equivalent baselines

means the baselines with equal relative positions of horns). This is precisely the idea on

which the self-calibration technique is based. When the signals from all the equivalent

baselines are sumed up, the sinusoidal fringe pattern from each baseline is multiplied in

amplitude by Neq. This is what is called a coherent summation. It is shown in [119] that

in this case the noise variance scales as Nh/N
2
eq. Each baseline has its own narrow range

in ℓ, which corresponds to the spatial period of the sinusoidal pattern for this baseline.

So the number of Neq is a function of ℓ.
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Another effect, that we already briefly discussed in the chapter 5, is the bandwidth

smearing, described by the factor κ1 =

√

1 + (∆ν/ν)2

σ2
ℓ

ℓ2. Finally, the sensitivity of a

bolometric interferometer is [98]:

∆Cbi
ℓ =

√

2κ1(ℓ)

(2ℓ+ 1)fsky∆ℓ

(

Cℓ +
8πηNhNET2fsky
p2ℓB

2
ℓN

2
eq(ℓ)tǫbi

κ1(ℓ)

)

. (8.7)

where ǫbi is the optical efficiency of a bolometric interferometer. Just like in the case of

an imager, the formula could be divided into sample variance and noise variance parts.

One can identify several parameters dependent on the scanning strategy in the formula

(8.7): the total fraction of the sky coverage fsky and the apodization factor η directly

depend on the scanning strategy. The noise-equivalent temperature on the reconstructed

map becomes higher with increasing the coverage (therefore depends indirectly on the

scanning strategy).

We want to test the validity of the formula (8.7) in order to use it for optimizing the

scanning strategy parameters and avoid too heavy Monte-Carlo. We run 100 noise-

only simulations (with zero CMB signal) for the 4 sets of scanning strategy parameters:

azimuth angular speed is 2.6◦/s and delta azimuth has values 15, 25, 35 and 45◦. The

value for the angular speed was chosen because, as it will be shown in the next section,

the minimum for ∆CBB
ℓ is situated close to this angular speed. Note that each simulation

requires approximately 10 CPU hours and more than 100 Gb of operative memory, thus

it could be done only on a supercomputer: NERSC or CURIE. The QUBIC simulations

are really heavy and this is precisely the reason why we insist on using the formula

instead of Monte-Carlo.

For practical use the noise term of the (8.7) is replaced with deviation of noise measured

from reconstructed Q and U maps, weighted by the coverage. It is necessary because in

case of the realistic scanning strategy direct application of the formula is not trivial: the

NET is the noise equivalent temperature on the reconstructed map and we don’t really

know how it depends on the scanning strategy and map-making. It is easier to deal with

it using the Monte-Carlo simulations that includes all those factors. We estimate the

noise term in formula (8.7) as

8πηNhNET2fsky
N2

eq(ℓ)t
κ1(ℓ)w

−1
pix(ℓ)ǫ−1

bi = σ2noiseSpix (8.8)

where Spix is the pixel area and σnoise is the noise deviation weighted by the normalized

coverage cn(n). The noise map is the residual map (which is equals to the reconstructed

map when the input sky is just zero).
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8.6 Pointing accuracy

It is crucially important to know the pointing correctly. However, due to the mechanical

imperfections the planned pointing could be spoiled. In practice in means the angles of

azimuth and elevation rotations az(t) and el(t) are known with some errors. If the error

for az(t) and el(t) is larger than the resolution of the map, then the acquisition operator

H does not correspond to reality and the correct reconstruction of the map becomes

impossible.

We study the pointing accuracy problem with fast simulations in monochromatic case

for 150 GHz band. We simulate the noiseless observations with a given error in az(t) and

el(t). The error is a gaussian error with a given standard deviation. The results of this

study are shown on the figure 8.14. We plot the standard deviation on the residual Q and

U maps (input convolved map of CMB minus the reconstructed one) under the coverage

mask COV > 0.2max(COV) as a function of pointing error. The planned pointing

accuracy of the mount system is 3 arcminutes, but it could be reduced to 20 arcseconds

using a stellar sensor. This will be done offline while analyzing the data. Both values

are shown on the figure 8.14 with vertical dashed lines. One can see that the pointing

inaccuracy on the planned level of 20 arcseconds does not spoil the reconstruction of the

maps. It is perfectly understood by the fact that the angular resolution of QUBIC is

about 20 arcminutes – 60 times larger than the pointing error. Thus the pointing error

does not change much the signal.

Even if the residuals on the reconstructed maps are not big, the pointing inaccuracy

can induce additional E-to-B leakage. We study it building the power spectra of the

reconstructed maps for the simulations, described above. The results are shown on the

figure 8.15. Again, the pointing accuracy of 20 arcseconds gives a satisfactory result –

the increase of the leakage is much smaller than the spectrum errorbars. It means that

the systematics from the pointing inaccuracy is very low. Later in this thesis we don’t

account for it, assuming a perfect pointing.

8.7 Conclusions

In this chapter we discussed how the sensitivity of a bolometric interferometer in general

and of QUBIC particularly changes with the scanning strategy parameters. We adopt

the common approach of constant elevation scans and try to adjust the angular speed,

azimuthal ranges and other parameters to achieve the best choice that allows to mitigate

the sample and noise variances. The 1/f noise puts very strong limitations to the scan-

ning strategy. To effectively filter out the low frequency component of the noise with







Chapter 9

Sensitivity of QUBIC

This chapter is dedicated to the discussion about the cosmological parameter

reconstruction from the power spectra. We run the realistic simulations for QUBIC and

predict the sensitivity on r.

9.1 Cosmological parameter estimation

In the previous chapters we described how to analyze the raw TOD data of QUBIC and

reconstruct the maps of the sky on various frequencies, how to distinguish the CMB

signal from other components of microwave emission and how to reconstruct the power

spectra from the measured CMB maps. On each step we reduced the amount of data

significantly. Now the last step that establishes the goal of any physical experiment

is the estimation of the parameters of physical laws. In QUBIC experiment we are

interested in the tensor-to-scalar ratio r. Let’s consider the techniques used to estimate

the cosmological parameters from the power spectra.

9.1.1 Likelihood approach to the parameter estimation problem

9.1.1.1 From CMB map to the cosmological parameters

The cosmological models predict the statistical properties of the temperature and polar-

ization fluctuations of CMB. Thus is seems straightforward to estimate the cosmological

parameters directly from the measured map.

We can construct a likelihood function which describes the probability to measure the

CMB temperature and polarization maps, which we write as a vector of data d, given a

vector of cosmological parameters Θ. In case of gaussian fluctuations it reads [120]
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L(Θ) ≡ P (d|Θ) ∝ 1√
C

exp

[

−1

2
dTC−1d

]

, (9.1)

where C is the pixel covariance matrix with elements

Cij = 〈d(ni)d(nj)〉. (9.2)

As described in (7.5), this covariance matrix depends on the power spectrum of fluc-

tuations. The power spectrum, in it’s turn, depends on the fundamental cosmological

constants: Ω, H0 etc. Thus in principle it is possible to reconstruct the cosmological pa-

rameters directly from the measured maps. However the direct application of likelihood

is extremely cumbersome as one has to handle really heavy matrices of size npix×npix. In

fact, the estimation of cosmological parameters from maps have only been done for few

experiments, for example see [121]. People used to use the tool of power spectra which

is much more illustrative and easy to handle than the plain maps of CMB fluctuations.

9.1.1.2 From Cℓ to the cosmological parameters

Another approach divides the data analysis in two steps: first we reconstruct the power

spectra from maps, then estimate the cosmological parameters from the power spectra.

This is possible, because, for gaussian fluctuations, the power spectrum contains the

complete information about the statistical properties of the fluctuation field. Thus the

power spectrum does not loose information in comparison with the maps.

An often used approach to estimate the parameters Θ explores the Monte-Carlo simula-

tions of spectra with use of Markov chains (MCMC – Monte-Carlo Markov chain) using

the Metropolis-Hastings algorithm [122, 123]. An algorithm of search for Θ is following:

let’s suppose we have a starting point Θ1 in the Θ space. It could be obtained from the

previous experiments, theoretical expectations or other prior information available. The

method is based on creating the sequence of parameter estimators Θn, called a chain

with probability density function

p(Θ|Cℓ,M) = L(Θ)
p(Θ|M)

p(Cℓ|M)
, (9.3)

where M is the cosmological model in which framework we estimate the cosmological

parameters. One can show that the Markov chain converges to a stationary state, thus

giving the set of parameters Θ according the data d.
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The code CosmoMC is a standard tool for cosmological parameter inference from the

given spectra [124]. The CosmoMC package uses the CAMB library [69] to compute the

power spectra from given set of parameters.

9.2 Realistic Monte-Carlo of QUBIC

We run the realistic simulations for QUBIC with the following conditions: 2 years of

observations from the Puna desert site, the observational efficiency is reduced by the

factor 3
4 due the summertime, which is too wet for CMB observations (see figure 3.10).

Observational daily time is about 7 hours 30 minutes, which is equal to the time when

the field of QUBIC (see figure 3.12) is within the QUBIC allowed elevation ranges (see

figure 3.13) minus the dead time of 1 second on each edge of each sweep. The scanning

strategy is the one defined in the previous chapter and summarized in the table 8.1.

The relative bandwidth is 0.25 and the centers of two frequency bands of QUBIC are at

150 GHz and 220 GHz. Observations on each band are modeled as a sum of monochro-

matic observations as described in chapter 5 and the number of frequencies to sample

the polychromatic wide band is 15 for 150 GHz band and 20 for 220 GHz. After that we

reconstruct the simulated TOD as described in chapter 6, building 2 sub-band maps for

150 GHz band and 3 for 220 GHz band. Finally, we disentangle the CMB signal from

the 5 reconstructed maps using ILC method, introduced in chapter 6.

The observed sky is modeled according the theoretical CMB power spectra with the

latest measured values for cosmological parameters [6]. The value for r is set to zero

and the lensing is zero too. We also model the dust foreground as described in 6.2.1.

The noise is modeled according the values of atmospheric noise for Puna desert and the

intrinsic noise of QUBIC detectors. The value of the knee frequency for 1/f noise is set

to 1Hz.

The true full simulations of QUBIC imply taking data from the detectors at frequency

100 Hz (we call it sampling frequency). Unfortunately, when writing this thesis, it was

impossible to run such simulations because of some hardware problems of NERSC. We

managed to run lighter simulations with sampling frequency 10 Hz and then we scale

down the reconstructed residuals by factor
√

100Hz

10Hz
. Let’s consider the TOD for one

detector and for only the central peak of the synthesized beam. We take data from the

sky from the directions, separated by angle ω
f , where ω is the azimuth angular speed and

f is sampling frequency. In our case this ratio is equal 18 arcminutes. And the resolution

of the map, that is the size of the map pixels, is ∼ 14 arcminutes. That is we don’t hit
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each pixel in the sky and hence these simulations are slightly suboptimal. One can hope

to get a better result with full simulations of QUBIC with f = 100 Hz.

9.2.1 Map-making

We run 4 realizations of sky and noise and reconstruct 5 maps on different frequencies.

The results are shown on the figure 9.1. One can see that all the sub-bands are nicely

reconstructed with flat residuals. Again, we see the badly reconstructed features on the

I residual maps. This strange behavior of the map-making algorithm is not understood

yet. However the Q and U maps are nicely flat. The Q input, output and residual maps

are shown on the figure 9.2 for clearer view. The noise on reconstructed the Q and U

maps corresponds to 1.4 µK for the 140 GHz sub-band, 1.6 µK for 159 GHz,

9.2.2 Component separation

As described in chapter 6, we use internal linear combinations method (ILC) to desan-

tangle the CMB signal from the foregrounds. The result of ILC, applied to the maps

from the figure 9.1 is shown on the figure 9.3. We’d like to mention again that though

the results are very satisfactory, one still can hope to get a better result using some other

methods of component separation. The ILC code, implemented in the framework of this

thesis, is very sketchy and it might be quite suboptimal.

9.2.3 Spectra reconstruction

Now having pure CMB map we can run the spectra reconstruction, as described in the

chapter 7. The results of spectra reconstruction with Xpure method are shown on the plot

9.4. The BB spectrum is biased due to noise and residuals after component separation.

In chapter 7 we said that both Xpure and Spice are good. However when we apply Spice

to the full simulations, we get very bad results, much worse than Xpure. We don’t show

Spice here, but the bias for Spice is approximately 5 times higher and the errorbars are

jumping strangely from bin to bin.

9.2.4 Parameter estimation

In the section 9.1.1.2 we discussed the general approach to the parameter estimation

from the power spectra. However in case of primordial B modes observations we care on

only one single parameter – tensor-to-scalar ratio r. This fact simplifies the whole thing
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Table 9.1: Summary of the main ground and balloon projects aiming at measuring
B modes [14].

Project
name

Country
and type

Location Status
Freq.
(GHz)

ℓ range Reference
σ(r)
No fg. With fg.

QUBIC
France,
ground

Puna 2018
140, 159,
201, 219,
238

30-200 [14] 0.01 0.012

BICEP3
/Keck

U.S.A.,
ground

South Pole Running
95, 150,
220

50-250 [125] 0.0025 0.013

CLASS
U.S.A.,
ground

Atacama ≥ 2016
38, 93,
148, 217

2-100 [126] 0.0014 0.003

SPT3G
U.S.A.,
ground

South Pole 2017
95, 148,
223

50-3000 [127] 0.0017 0.005

AcvACT
U.S.A.,
ground

Atacama Starting
90, 150,
230

60-3000 [128] 0.0013 0.004

Simons
Array

U.S.A.,
ground

Atacama ≥ 2017
90, 150,
220

30-3000 [129] 0.0016 0.005

LSPE
Italy,
balloon

Arctic 2017
43, 90,
140, 220,
245

3-150 [130] 0.03

EBEX10K
U.S.A.,
balloon

Antarctica ≥ 2017
150, 220,
280, 350

20-2000 [131] 0.0027 0.007

SPIDER
U.S.A.,
balloon

Antarctica Running 90, 150 20-500 [132] 0.0031 0.012

PIPER
U.S.A.,
balloon

Multiple ≥ 2016
200, 270,
350, 600

2-300 [133] 0.0038 0.008
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9.3 Physical problematic and QUBIC experiment

The standard model of modern cosmology is based on the concept of the Big Bang, which

implies expansion of the Universe from a hot and dense state. The earliest known epoch

of expansion took place approximately 13.8 billion years ago. This model explains very

well the properties of the large scale structures of the Universe, of the relic background

radiation and the light element abundances. However, there are many unanswered ques-

tions: what is the nature of dark matter, what is the nature of dark energy, what is the

physics of neutrinos and others. One of the main issues of the Big Bang model is that

it does not explain the flatness of the Universe and the fact that it is so homogeneous

(horizon problem). One possible solution for these problems is cosmic inflation – a pe-

riod in the very early Universe, when it expanded with acceleration. The accelerated

expansion necessarily generates the gravitational waves which, propagating through the

expanding Universe, leaves a particular imprint on the polarization of the CMB – the B

modes. It is often said, the B modes are a “smoking gun" of inflation.

QUBIC is a very promising project for measuring the primordial B modes. It explores a

novel concept of bolometric interferometry. It images the sky using a complex synthesized

beam formed by interference of beams from multiple pupils. It inherits advantages of

both imagers and interferometers – two kinds of instruments for CMB observations. From

imagers it inherits high sensitivity thanks to the usage of bolometric detectors, and from

interferometers QUBIC takes the self-calibration technique which allows to decrease the

systematics significantly. Moreover, thanks to the fact that the shape of the synthesized

beam depends on the frequency of light, we are able to reconstruct multiple subbands

within each wide band of QUBIC, thus improving significantly the ability of QUBIC for

component separation.

The QUBIC project is currently on construction phase. The first light is expected to

be seen in 2018. QUBIC is a ground based experiment in Puna desert in Argentina.

The frequency bands are 150 and 220, each with a flat bandwidth and 0.25 relative
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bandwidth. The sky is observed through an array of 400 corrugated horns. The incoming

light polarization is modulated by the rotating half-wave plate, then it passes through

the polarizing grid. Thus the total power signal that passes towards the inner part of the

instrument is defined only by the angle of rotation of the half-wave plate and does not

change even if the inner parts affect the polarization. After passing the horns the light

is focused by two mirrors on the focal planes, tiled with highly sensitive photon noise

limiter bolometer detectors.

In the framework of this thesis we worked on the definition of the scanning strategy

parameters which would allow to increase the sensitivity of QUBIC. The parameters of

the optimal scanning strategy are shown in the table 8.1. We also have proven that the

target pointing accuracy for QUBIC is good enough to measure B modes.

9.4 Overview of QUBIC data analysis pipeline

The QUBIC data analysis pipeline starts from the time-ordered data (TOD). The TOD

of QUBIC will be probably filtered with a high-pass filter, in the framework of this thesis

we don’t analyse this possibility. We model the synthesized beam of QUBIC as a sum of

peaks, distributed on a Dirac 2-D comb and modulated with the primary gaussian beam.

Using this model for the synthesized beam the acquisition operator becomes sparse and

thus the map-making problem becomes computationally trackable.

The multi-band map-making explores the fact that the synthesized beam is different on

different frequencies. Thus the total acquisition operator for each focal plane can be

written as a sum of narrow frequency band acquisition operators and therefore we are

able to reconstruct multiple maps for these narrow bands. The idea of fusion acquisition

helps to solve the problem of poor constraint for the pixels on the edge of the field of

view.

The component separation is done by the internal linear combinations method (ILC).

The refining of the synthesized beam model. The development of map-making for the

polychromatic case and the implementation of ILC were done in the framework of this

thesis.

The next step in the pipeline is the reconstruction of the power spectra. We analyze

the efficiency of Xpole, Xpure and Spice methods and conclude that Xpure is good for

QUBIC needs.

The last step of data analysis is the estimation of the cosmological parameters among

which the most interesting one for us is the tensor-to-scalar ratio r. We run the realistic
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simulations and conclude that QUBIC is capable to detect the primordial B-modes with

sensitivity on r 0.012. QUBIC is a competitive experiment in the third generation of

CMB observations and will certainly play an important role in constraining the primor-

dial B modes amplitude and unraveling the mystery of inflation. As the first bolometric

interferometer it will demonstrate exceptional abilities of this novel technique and will

likely inspire other experiments, like one proposed in section 6.6 – satellite-born bolomet-

ric interferometer with a wide frequency band from 60 to 600 GHz and unprecedented

frequency resolution.

9.5 For future studies and development

There are some known questions yet unsolved for QUBIC. The synthesized beam approx-

imation should be revised. The approach we currently use does not allow to model any

more features of the beam than we are already taking into account. Particularly, it does

not allow to simulate the TOD with a complete synthesized beam and analyse it using

an approximated one in order to check the validity of our approximation. To be honest,

it means we don’t know whether the approximation we use is valid or not. The only way

we can propose to simulate the TOD with the realistic synthesized beam, at least for a

very short observational period, is to use the synthesized beam as it is, without building

any model of it. However, computationally this problem is extremely heavy.

The synthesized beam for the polychromatic case differs from the realistic one (see figures

5.6 and 5.7). Probably, the reason is the same – that we neglect the minor features of

the synthesized beam in between the peaks. This issue requires further study.

The problem with poor frequency resolution for 150 GHz band is not completely un-

derstood (see figure 6.3). We propose a possible explanation for this, saying that the

angular size of the focal plane is too little for low frequency, but we don’t check it with

Monte-Carlo.

We are trying to develop a QUBIC-Planck fusion acquisition that should help to recon-

struct the map at the edge of the field of view of QUBIC. But the systematics which

could present on the Planck map may induce the E-to-B leakage for the QUBIC results.

This needs to be explored. Another question concerning the fusion acquisition is the

fact that it does not work well for multi-band acquisition. Hopefully, if the induced

systematics effect is negligible and the code is developed, the fusion map-making would

increase QUBIC sensitivity even more.
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The problem with poor reconstruction of the temperature maps remains unsolved, see

figure 9.1. Probably, one can mitigate this effect by applying the QUBIC-Planck acquisi-

tion model. If it will turn out that Planck can induce a significant amount of systematics

to the QUBIC maps of Q and U , but solves the problem for I one can try to use the

fusion acquisition only for the temperature maps.

In the framework of this thesis we didn’t mention an important step in the data analysis

pipeline when we combine the daily maps into one. Certainly, this should be studied

attentively.

The component separation, as it is implemented for QUBIC now, seems to be suboptimal.

At least, one should check the performance of ILC more carefully and try out other

methods of component separation. Further work on this subject may give better results

in disentangling the CMB signal from total sky emission in microwave. At least with

proper component separation the bias seen on the reconstructed BB-spectrum and thus

on the estimation of r should vanish: we believe that the source of this bias is our

rudimentary implementation of ILC.

The scanning strategy may be adjusted when the systematics will be know more precisely:

the noise from atmosphere and from ground etc. We give the ranges within which one

can change the scanning strategy parameters, so now it is easy to pick another set of

parameters without ruining the sensitivity.

The noise power spectrum should be estimated and subtracted from the QUBIC power

spectra. Together with better component separation it should remove the bias from the

BB power spectrum. Only then the detection of the B modes is possible.
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9.6 Problématique physique et l’expérience QUBIC

Le modèle standard de la cosmologie moderne est basé sur le concept du Big Bang, qui im-

plique l’expansion de l’Univers à partir d’un état chaud et dense. L’époque d’expansion

la plus ancienne connue a eu lieu il y a environ 13,8 milliards d’années. Ce modèle

explique très bien les propriétés des structures à grande échelle de l’Univers, du ray-

onnement de fond et des abondances des éléments lumineux. Cependant, il existe de

nombreuses questions sans réponse: quelle est la nature de la matière noire, quelle est la

nature de l’énergie noire, quelle est la physique des neutrinos et d’autres? L’un des prin-

cipaux problèmes du modèle du Big Bang est qu’il n’explique pas la planéité de l’Univers

et le fait qu’elle soit si homogène (problème d’horizon). Une solution possible pour ces

problèmes est l’inflation cosmique - une période dans l’univers très précoce, lorsqu’elle

s’est développée avec une accélération. L’expansion accélérée génère nécessairement les

ondes gravitationnelles qui, en se propagant à travers l’Univers en expansion, laissent

une empreinte particulière sur la polarisation de fond diffus cosmologique - modes B.

On dit souvent, les modes B sont un “smoking gun" de l’inflation.

QUBIC est un projet très prometteur pour mesurer les modes B primordial. Il explore

un nouveau concept d’interférométrie bolimétrique. Il fait les images du ciel en util-

isant un faisceau synthétique complexe formé par l’interférence des faisceaux à partir de

plusieurs pupilles. Il hérite des avantages des images et des interféromètres - deux types

d’instruments pour les observations CMB. De l’imageur, il possède une grande sensibilité

grâce à l’utilisation de détecteurs bolométriques, et des interféromètres QUBIC prend

la technique d’auto-étalonnage qui permet de réduire considérablement la systématique.

De plus, grâce au fait que la forme du faisceau synthétisé dépend de la fréquence de la

lumière, nous sommes en mesure de reconstruire de multiples sous-bandes dans chaque

large bande de QUBIC, améliorant ainsi significativement la capacité de QUBIC pour la

séparation des composants.

183
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Le projet QUBIC est actuellement en phase de construction. La première lumière devrait

être vue en 2018. QUBIC est une expérience basée sur le sol dans le désert de Puna en

Argentine. Les bandes de fréquences sont de 150 et 220, chacune avec une bande passante

plate et 0.25 bande passante relative. Le ciel est observé à travers une série de 400 cornes

ondulées. La polarisation de la lumière entrante est modulée par la plaque à demi-onde

rotative, puis elle traverse la grille de polarisation. Ainsi, le signal de puissance total qui

passe vers la partie interne de l’instrument n’est défini que par l’angle de rotation de la

plaque à demi-onde et ne change pas même si les parties internes affectent la polarisation.

Après avoir passé les cornes, la lumière est focalisée par deux miroirs sur les plans focaux,

carrelés avec des détecteurs de bolomètre à limiteur de bruit photonique très sensibles.

Dans le cadre de cette thèse, nous avons travaillé sur la définition des paramètres

de la stratégie de balayage qui permettrait d’augmenter la sensibilité de QUBIC. Les

paramètres de la stratégie de balayage optimale sont affichés dans le tableau 8.1. Nous

avons également prouvé que la précision de pointage cible pour QUBIC est suffisante

pour mesurer les modes B.

9.7 Vue d’ensemble du pipeline d’analyse de données QUBIC

Le pipeline d’analyse de données QUBIC commence à partir des données ordonnées dans

le temps (TOD). L’TOD de QUBIC sera probablement filtré avec un filtre passe-haut,

dans le cadre de cette thèse, nous n’analysons pas cette possibilité. Nous modélisons

le faisceau synthétique de QUBIC comme une somme de pics, distribués sur un peigne

Dirac 2-D et modulés avec le faisceau gaussien primaire. À l’aide de ce modèle pour

le faisceau synthétique, l’opérateur d’acquisition devient discret et, par conséquent, le

problème de la cartographie devient analytique.

La cartographie multi-bandes explore le fait que le faisceau synthétique est différent sur

différentes fréquences. Ainsi, l’opérateur d’acquisition total pour chaque plan focal peut

être écrit comme une somme d’opérateurs d’acquisition de bande de fréquence étroite

et, par conséquent, nous sommes en mesure de reconstituer des cartes multiples pour

ces bandes étroites. L’idée d’acquisition de fusion aide à résoudre le problème de la

contrainte médiocre pour les pixels au bord du champ de vision.

La séparation des composants se fait par la méthode des combinaisons linéaires internes

(ILC). Le raffinage du modèle de faisceau synthétique, le développement de la cartogra-

phie pour le cas polychrome et la mise en oeuvre de la CIT ont été réalisés dans le cadre

de cette thèse.
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L’étape suivante dans le pipeline est la reconstruction du spectre de puissance. Nous

analysons l’efficacité des méthodes Xpole, Xpure et Spice et concluons que Xpure est

bon pour les besoins QUBIC.

La dernière étape de l’analyse des données est l’estimation des paramètres cosmologiques

parmi lesquels le plus intéressant pour nous est le ratio tensor-à-scalaire r. Nous exécutons

les simulations réalistes et concluons que QUBIC est capable de détecter les premiers B

-modes avec une sensibilité de r 0.012. QUBIC est une expérience compétitive dans la

troisième génération d’observations CMB et jouera certainement un rôle important dans

la contrainte de l’amplitude des modes B primordiale et dévoile le mystère de l’inflation.

En tant que premier interféromètre bolométrique, il démontrera des capacités exception-

nelles de cette nouvelle technique et inspirera probablement d’autres expériences, comme

l’a proposé dans la section 6.6 - l’interféromètre bolométrique sur satellite avec une large

bande de fréquences de 60 à 600 GHz et une résolution de fréquence sans précédent.
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QUBIC data analysis package

documentation

The QUBIC pipeline was developed up to some quite advanced point by Pierre Chanial

[134]. It is a package, written in Python programming language, based on the packages

Pyoperators [135] and Pysimulators [136], developed also by Pierre. The Pyoperators

package provides tools for using the operators notations in a simple way in Python.

And Pysimulators is a set of basic tools to simulate a CMB instrument and its data

acquisition.

The basic structure of the qubic package [137] is shown on the figure A.1. The main

class of the package is the QUBIC acquisition class, called QubicAcquisition. In order

to create an instance of QubicAcquisition, one needs to provide it with instances of

QubicScene, QubicSampling and QubicInstrument classes, see figure A.1. The Qubic-

Scene class combines the general information about the observations, like the used sky

pixelization and whether we do or not assume for the polarized signal. The QubicSam-

pling keeps information about the pointing. And the QubicInstrument class contains the

complete information about the instrument: its optical geometry, noise characteristics,

parameters for the synthesized beam model etc.

Exhaustive information about the installation process of the qubic package you can find

on the [137]. The documentation for each class and function of the package is easily

accessed via the interactive Python shell iPython [138].

Now let consider some examples as a tutorial. Here is a simple code to simulate the

time-ordered data (TOD) and reconstruct the CMB maps from it:

1 from __future__ import d i v i s i o n

2 from qubic import (
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QubicScene
• Healpix map parameters 
• Polarized signal or not 

QubicSampling
• Complete pointing information

QubicInstrument
• Each component of the 

instrument is implemented as 
an operator 

• Bandwidth 
• Primary and secondary 

beams for each horn 
• Synthesised beam model

QubicAcquisition

Simulation of 
observations

Map-making

Figure A.1: Sketch of the qubic package structure

3 create_sweeping_point ings , equ2gal , QubicAcquis i t ion , QubicScene ,

4 tod2map_all )

5 import healpy as hp

6 import numpy as np

7 from qubic . data import PATH

8 from qubic . i o import read_map

9

10 x0 = read_map(PATH + ’ syn256_pol . f i t s ’ )

11

12 # parameters

13 ns ide = 256

14

15 # get the sampling model

16 np . random . seed (0 )

17 sampling = create_sweeping_point ings ( )

18 scene = QubicScene ( ns ide )

19

20 # get the a c q u i s i t i o n model

21 a c q u i s i t i o n = QubicAcquis i t ion (150 , sampling , scene ,

22 synthbeam_fraction =0.99 ,

23 detector_tau =0.01 ,

24 detector_nep=1.e−17,

25 detector_fknee =1. ,

26 de t e c to r_ f s l ope =1)

27

28 # simulate the t ime l i n e

29 tod , x0_convolved = a c qu i s i t i o n . get_observat ion (

30 x0 , convo lut ion=True , n o i s e l e s s=False )

31

32 # recon s t r u c t i on
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33 map, cov = tod2map_all ( a c qu i s i t i o n , tod , t o l=1e−2)

The first line is just to prevent the errors with confusion between the float and integer

numbers. Then we import the necessary components from qubic library, as well as

numpy [139] and healpy [140] packages. Note that qubic library disposes some necessary

data, for example a map of one realization of CMB according to the theoretical spectrum

(in agreement with Planck results [6]) and with r = 0. Note that the notion of the CMB

map always implies 3 component map: I, Q and U . Also there are two useful functions

for input and output: qubic.io.read_map and qubic.io.write_map. These functions

allow to easily read (write) 3 component maps in to (out of) fits files. Moreover, the files

written in this way take less disk space than standard healpix fits files. The input CMB

sky is read from the file in the line 10.

The parameter nside is set to match the nside of the map. It is needed below, in the

line 18, when we create the QubicScene object. The random seed is fixed (line 16) to

have the same realization of noise each time we run the script. The pointing object is

created with function create_sweeping_pointings. The default parameters are set to

the best scanning strategy, as discussed in chapter 8. Pointing is defined usually only

for one day of observations. We assume that the noise is uncorrelated between two daily

observations, so there is no point to simulate the time-line for observational duration

longer than one day.

Then we create the acquisition model. Note that we omitted the step of creation of the

instrument model. Here it is not needed since we take all the parameters by default. If

some custom configuration is needed one can either create the instrument model using

class QubicInstrument, and then put it as an input to the QubicAcquisition initialization,

or change the parameters of the acquisition.instrument object afterwards. In this

example the QubicAcquisition object is provided with the following parameters:

• 150 – band of QUBIC. Note that it is not frequency, rather kind of notation.

Allowed values are 150 and 220. This number could be replaced with an instance

of QubicInstrument class.

• sampling and scene – instances of QubicSampling and QubicScene classes.

• Parameters of the noise.

A useful keyword parameter for QubicAcquisition is effective_duration. With it one

can specify the observational time in years (100% observational efficiency is assumed).

Then the noise is scaled down to match efficient level of noise for the specified duration

of observations.
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The simulation of noisy TOD is in the lines 29-30 and the map-making is in the line 33. As

an output we have the reconstructed map and the coverage map cov. The reconstructed

map should be compared with the convolved input map x0_convolved. Note, that unlike

the healpy convention, in qubic we use the shape for maps (npix, 3), where npix is the

number of pixel of the map.

Note also that this script is not feasible on a personal computer, because the required

amount of memory and CPU is huge. Instead one should use the supercomputers: either

CURIE or NERSC. The qubic package has very good documentation for every function

and class and it disposes some example scripts, so it won’t be difficult of any user to

grasp the package.
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