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Résumé de la Thèse

Le Calcul des Variations et son interprétation géométrique ont toujours joué un rôle crucial
en Physique Mathématique, que ce soit par le formalisme lagrangien, ou à travers les équations
hamiltoniennes, qui sont profondément liés à l’approche lagrangienne. Ce rôle a été confirmé
et renforcé au cours du siècle dernier, par exemple par le théorème de Noether, qui relie les
symétries et les quantités conservées, ainsi que par l’utilisation du Calcul des Variations faites
en Mécanique Quantique et en Théorie Quantique des Champs.

Pour les théories des champs, qui correspondent à des problèmes variationnels avec plusieurs
variables spatio-temporelles, l’approche Lagrangienne est maintenant bien-fondée et largement
utilisée. Cependant l’approche Hamiltonienne n’est sans doute pas si bien développée et utilisée
dans toute sa puissance. Afin de parvenir à une description Hamiltonienne de la théorie des
champs, qui amène à la quantification dite canonique, la plupart des physiciens utilisent un
fractionnement de l’espace-temps comme produit cartésien d’une variété spatiale par une droite
de temps. Ceci est bien sûr suffisant pour la plupart des calculs, mais il est clair que cela brise
la covariance relativiste et donc contribue à obscurcir la relation entre la théorie quantique et la
Relativité.

Plusieurs théories ont été développées pour remédier à cette situation : elles reposent toutes
plus ou moins sur le fait que l’espace de toutes les solutions d’un problème variationnel est doté
d’une structure symplectique, une observation qui remonte à Lagrange et qui fut précisée par
J.-M. Souriau. C’est le message fondamental véhiculé par la théorie dite de l’espace des phases
covariant. Le problème est de trouver les outils techniques les plus appropriés pour représenter
cette structure symplectique et faire des calculs avec elle. Des différentes approches existent, par
exemple : celle développée par Deligne et Freed dans [36] et basée sur la théorie de Takens,ou la
théorie de Vinogradov, développée par exemple par Vitagliano dans [147], ou encore l’approche
multisymplectique.

Le formalisme multisymplectique permet une description géométrique de dimension finie des
théories de champ classiques vues d’un point de vue hamiltonien. La géométrie multisymplectique
joue un rôle similaire à celui de la géométrie symplectique dans la description de la mécanique
hamiltonienne classique. De plus, l’approche multisymplectique fournit un outil pour construire
une structure symplectique sur l’espace des solutions de la théorie des champs et pour l’étudier.

Le formalisme multisymplectique

La généralisation des équations de Hamilton à un problème variationnel de premier ordre avec
plusieurs variables remonte à deux articles de V. Volterra de 1890, [150, 151], dans lequel deux
variantes différentes ont été proposées. Aujourd’hui, la première théorie proposée par Volterra
est connue sous le nom de théorie de Donder-Weyl parce qu’une version a été exposée par H.
Weyl en 1934, [160], et une autre par T. De Donder en 1935, dans [32], cette théorie est en
fait d’ordre supérieur et est reliée aux travaux de H. Poincaré, [123], et E. Cartan, [27], sûr la
théorie de "Invariants Intégraux", mettant en évidence son contenu géométrique. Des résultats
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viii RÉSUMÉ DE LA THÈSE

fondamentales ont été obtenues après par T. Lepage, [104], en 1936 et P. Dedecker en 1953, [33],
voir aussi [34].

Dans une série d’articles au cours des années 70, J. Kijowski seul, [94, 95], puis avec W.
Szczyrba [97, 98] et ensuite avec W. M. Tulczyjew [99] a donné naissance au point de vue mul-
tisymplectique sur ces théories. Le formalisme multisymplectique permet une géométrisation
complète et fournit un point de vue covariant sur les théories de champs hamiltoniennes. Les
idées de Kijowski permettent de construire une structure symplectique sur l’espace de toutes les
solutions d’une théorie de champ (qui est souvent appelé aujourd’hui l’espace des phases cova-
riant), d’une manière qui est dans une certaine mesure indépendante de tout choix de séparation
de l’espace-temps dans l’espace et le temps et qui est donc entièrement covariant.

Des idées similaires sur la structure symplectique de l’espace des phases covariant étaient
présentes, dans les années 50, dans les travaux pionniers de R. E. Peierls, voir [122], et I. Segal,
voir [144], et sont apparues de nouveau dans les années 80 dans des articles de E. Witten [161],
C. Crnkovic et Witten [28] et G. Zuckerman [164] qui ne connaissaient probablement pas les
travaux de Kijowski et de l’école polonaise.

Les articles de Witten ont provoqué un nouvel intérêt pour les théories hamiltoniennes cova-
riantes et sur l’approche de l’espace des phases covariant, tant dans la communauté des physiciens
que dans le communauté des mathématiciens. A partir de la seconde moitié des années 80, le
formalisme multisymplectique des théories de champs a été étudié et revisité par plusieurs au-
teurs et présenté dans de nombreuses variantes différentes. Des applications à la mécanique des
fluides et à l’hydrodynamique ont été proposées. Des méthodes numériques covariantes pour les
équations aux dérivées partielles, développées dans ou inspirées par le cadre multisymplectique,
ont été introduites. L’intérêt pour les théories multisymplectiques de champ a donné naissance
aussi à un certain nombre d’études sur la géométrie multisymplectique ou n-plectique. Dans
l’introduction de la première partie de cette thèse, je donne une courte liste de quelques-uns des
travaux les plus importants sur ces sujets.

Le lecteur peux consulter le papier de M. J. Gotay, J. Isenberg, J. Marsden, R. Montgomery, J.
Sniatycki et P. B. Yasskin, [63, 64], pour une présentation du formalisme multisymplectique pour
les théories de champ. On trouvera une introduction plus courte dans Román-Roy [135]. Pour une
introduction avec une section sur l’histoire des idées autour du formalisme multisymplectique,
leur origine et leur évolution, on peut lire Hélein [70].

Il est intéressant de noter que, jusqu’à aujourd’hui, presque aucune tentative d’adapter le
formalisme multisymplectique aux théories des super-champs (comme par exemple les théories
supersymétriques de champ) n’a pas été faite. Aussi les travaux qui pourraient être considérés
comme préliminaires à cette tâche, comme les papiers sur la formulation géométrique de la
supermécanique ou ceux sur la super-forme de Poincaré-Cartan pour les théories de super-champs
(que je citerai ci-après), sont très peu nombreux.

Dans cette thèse, je m’intéresserai principalement au formalisme multisymplectique pour
construire des théories de champ de premier ordre et j’espère pouvoir donner deux principales
contributions originales :

– Je montrerai que, dans certaines situations, la structure symplectique de l’espace des phases
covariant peut en effet dépendre du choix de la topologie du découpage de l’espace-temps
en l’espace et en le temps ;

– Je construis une extension du formalisme multisymplectique aux théories de super-champs.
En tant que «sous-produit», je présenterai une autre contribution originale :

– Je définirai des formes fractionnaires sur des supervariétés avec leur calcul de Cartan.
Ces formes fractionnaires seront nécessaires pour construire le formalisme multisymplectique
pour les théories de super-champs.
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J’utiliserai une version du formalisme multisymplectique qui rend minimale la dimension
des espaces impliqués, ce qui me semble approprié pour une première tentative d’extension aux
théories de super-champs. J’appelle cette version le cadre minimal pour le formalisme multisym-
plectique. L’ingrédient principal de ce cadre sera l’espace de multimoments de dimension finie P ,
lequel correspond à ce que Forger et Romero appellent l’espace des multiphases ordinaire, [53] et
ce que Román-Roy, [135], appelle le fibré des multimoments restreint.

Cette thèse est organisée en trois parties. Les principaux résultats originaux de la Prémière

Partie sont contenus dans le chapitre 3 et consistent en l’étude des structures symplectiques
non équivalentes sur l’espace des phases covariant.

Dans le Chapitre 1, je présenterai un cadre géométrique standard pour l’approche Lagran-
gienne des théories de champ au premier ordre.

Si E, X et F sont des variétés C∞ de dimension finie et (E, π,X, F ) est le fibré différentiel
d’espace totale E, de base X, de fibre type F et de projection C∞ π, de sorte que nous avons la
situation suivante :

E

π

y

X

nous appelons E le fibré des champs ou le fibré des configurations et un champ φ sur X est l’un
de ses sections C∞ : on peut donc appeler Γ

(
E
)

l’espace des champs.
Si X est n-dimensionnelle, le Lagrangien L est une n-forme différentielle π-horizontale définie

sur le premier espace des jets J1π ≡ J1E. Si U ⊂ X est une sous-variété n-dimensionnelle
(éventuellement avec un bord) de X, l’action AU sur un champ φ est l’intégral de L sur la
surface n-dimensionnelle j1φ(U) est :

AU (φ) := AU (j1φ) =
∫

j1φ(U)

L =
∫

U

j1φ∗L (1)

L’espace des solutions de la théorie est celui des points critiques.
Si, sur J1E, nous utilisons les coordonnées locales

(
xa, qi, q̇ia

)
, alors localement L = Lβ, où

β := dx1 ∧ · · · ∧ dxn et L est une fonction locale de
(
xa, qi, q̇ia

)
.

Chaque solution φ ∈ E vérifie les équations d’Euler-Lagrange :

φ est une solution ⇐⇒ sur chaque U, ∀x ∈ U,
d

dxa
∂L

∂q̇ia

(
j1φ(x)

)
−
∂L

∂qi
(
j1φ(x)

)
= 0 (2)

Dans le Chapitre 2, je présenterai ce que j’appelle le cadre minimal pour la description
multisymplectique des théories des champs. Je définis l’espace des multimoments P , avec les
coordonnées locales

(
xa, qi, pai

)
et la transformation de Legendre entre J1E et P :

FL :
(
xa, qi, q̇ia

)
7−→

(
xa, qi, pai

)
=
(
xa, qi,

∂L

∂q̇ia

(
xa, qi, q̇ia

))

L’hamiltonien H est alors défini par H(xa, qi, pai ) := q̇iap
a
i − L

(
xa, qi, q̇ia

)
et un champ φ est une

solution de la théorie si et seulement si z := FL ◦ j1φ vérifie le système covariant généralisé de
Hamilton-Volterra : 




∂qi

∂xa
(
FLj1φ(x)

)
=
∂H

∂pai

(
FLj1φ(x)

)

∂pai
∂xa

(
FLj1φ(x)

)
= −

∂H

∂qi
(
FLj1φ(x)

) (3)
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Sur P il est possible de définir la forme multisymplectique, qui est la n+ 1-forme globale :

ω := −dqi ∧ dpai ∧ βa − dH ∧ β

où βa = ∂
∂xa β.

Kijowski a montré dans [94] le résultat suivant :

Theorem 1. Une section z ∈ Γ (P ) est l’image d’une solution des équations d’Euler-Lagrange
(2) par la transformée de Legendre si et seulement si ∀u ∈ TP, z∗(u ω) = 0.

Un des principaux intérêts de la construction géométrique de dimension finie de l’espace
des multimoments avec sa structure multisymplectique (n-plectique selon la terminologie la plus
recente) est qu’il fournit un moyen de construire une structure symplectique sur l’espace des
phases covariant (l’espace des solutions de la théorie des champs). Il existe alors un lien direct
entre la théorie des champs multisympléctique et la formulation canonique classique de la théorie
des champs. Ce lien relie la géométrie multisympléctique aux travaux des physiciens théoriciens
sur la théorie canonique des champs, initiés par les travaux de Peierls, [122], et Segal, [144]
et développés par B. DeWitt [40, 41, 42], par García et Pérez-Rendón in [56, 57, 58] et par
Goldschmidt et Sternberg dans [62].

Ici, je suivrai [70] pour montrer comment à l’aide de la forme multisymplectique ω, il est
possible de construire une forme symplectique Ω sur l’espace des n-courbes hamiltoniennes de la
forme G = z (X) où z est solution de la théorie.

Appelons G l’espace des surfaces hamiltoniennes ; nous avons que G ∼= E et donc nous pouvons
identifier ces deux espaces. Soit G ∈ G et soit δuG ∈ TGG un vecteur sur G : il est associé a
un champ champ de Jacobi u ∈ Γ (i∗ (V P )), id est une section sur G du tiré en arrière du fibré
tangent vertical (par rapport à la projection πP de l’espace total P sur la base X) V P par
l’immersion i : G −→ P . La section u peut être vue intuitivement comme un champ vectoriel
sur G, "suivant" lequel chaque point g ∈ G est envoyé sur un point g′ ∈ G′, où G′ ∈ G est
une autre n-courbe hamiltonienne. La n-courbe hamiltonienne G est ainsi déformée de façon
infinitesimale par u dans une autre n-courbe hamiltonienne G′.

Soit Σ une sous-variété de co-dimension 1 dans P , avec la propriété que, pour tout n-courbe
hamiltonienne G ∈ G , l’intersection de Σ avec G est transversal. Alors, nous pouvons définir :

ΩΣ

∣∣
G

(δ1G, δ2G) :=
∫

Σ∩G
u1 ∧ u2 ω (4)

et, dans certaines conditions de régularité du Lagrangien, ΩΣ est une 2-forme symplectique sur
G .

Une question naturelle se pose alors : la forme symplectique Ω dépend-elle du choix de la
sous-variété Σ ? Kijowski a déjà prouvé que si Σ et Σ′ sont deux sous-variétés compactes dans la
même classe d’homologie, alors ΩΣ = ΩΣ′ .

Dans le Chapitre 3 je montre, sur quelques exemples de théories de champ construites sur
un tore bidimensionnel, que lorsque Σ et Σ′ sont dans différentes classes d’homologie, il peut
arriver que ΩΣ 6= ΩΣ′ . Il semble que ce résultat n’ait pas encore été remarqué.

De plus, je présente quelques exemples où Σ et Σ′ ne sont pas compacts et je montre que
dans ce cas, la situation est certainement plus délicate. L’homologie standard des sous-variétés
de P n’est plus appropriée pour déterminer la structure symplectique sur G . J’étudie le champ
scalaire libre et massif sur R2 et j’explique ce qui se passe quand on choisit Σ et Σ′ tels qu’ils
restent sur deux côtés différents du cône de lumière. Je vais montrer le résultat que, dans ce cas,
ΩΣ 6= ΩΣ′ .

Dans le Chapitre 4, qui est le dernier de la première partie, je montrerai comment la struc-
ture symplectique sur l’espace des solutions est liée aux crochets de champs utilisés par les
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physiciens. En suivant J. Kijowski et W. Szczyrba [97, 98], je montrerai que la forme symplec-
tique Ω peut être utilisée pour obtenir une structure de Poisson sur E ∼= G ; ceci fixera les bases
pour l’extension de la même construction aux théories de super-champ.

Le formalisme multisymplectique n’a pas encore été appliqué à la description des théories de
champs supersymétriques. La principale difficulté à laquelle nous devons faire face pour l’adapter
aux super-champs est à mon avis le fait que la généralisation des formes différentielles au cadre su-
persymétrique conduit à deux types différents d’objets. Pour tirer pleinement parti du formalisme
multisymplectique, on aimerait plutôt utiliser les mêmes objets pour pour l’intégration (comme
dans (1) et (4)) et pour effectuer le calcul de Cartan (comme par exemple dans le théorème 1).
A cet effet, je crois que les objets les plus appropriés à utiliser sont les superformes définies par
Th. Voronov et A. Zorich dans leurs papiers à la fin des années 80, [155, 156, 157, 158]. Plus
précisément, j’utiliserai une classe de superformes de Voronov-Zorich, que j’appelle les formes
fractionnaires.

Dans la Deuxième Partie de ma thèse, je vais introduire les notions de formes fraction-
naires, de coformes fractionnaires et de formes fractionnaires mixtes sur des supervariétés et
je proposerai une nouvelle notation, adaptée aux calculs. Les formes fractionnaires seront un
ingrédient essentiel pour la définition d’une théorie de super champs et pour le formalisme su-
permultisymplectique qui est le principal objet de la troisième partie de cette thèse.

Dans le Chapitre 5, après avoir brièvement présenté l’approche concrète de Rogers-DeWitt
aux supervariétés, je définirai les formes fractionnaires et je fixerai les règles pour exécuter avec
elles un calcul de Cartan.

Les formes fractionnaires sont des exemples des r|s-formes introduites par Th. Voronov et
A. Zorich comme analogues naturels sur les supervariétés des formes classiques sur les variétés
classiques. En désignant par T0X et T1X respectivement l’espace tangent pair et impair d’une
supervariété X, nous avons :

Definition 2 (Voronov and Zorich). Une forme de degré r|s sur un point x ∈ X, supervariété de
dimension n|m, est une fonction ω de classe G∞ définie sur un ouvert O de Tx,0X × · · ·Tx,0X︸ ︷︷ ︸

r

×Tx,1X × · · ·Tx,1X︸ ︷︷ ︸
s

et à valeurs dans RS, qui vérifie la suivante condition : ∀v ∈ O ⊂ Tx,0X × · · ·Tx,0X︸ ︷︷ ︸
r

×Tx,1X × · · ·Tx,1X︸ ︷︷ ︸
s

:

∀g ∈ GL(r|s), ω(g · v) = ω(v) Berr,s(g) (5)

∂2ω

∂vBG∂v
A
F

+ (−1)|G||F |+(|G|+|F |)|A| ∂2ω

∂vBF ∂v
A
G

= 0 (6)

où A,B = 1, · · · , n + m sont les indices dans l’espace TxXet donc aussi dans les deux espaces
Tx,0X et Tx,1X avec leur degré habituel ; vAF est la A-ième coordonnée de vF dans la base locale
(∂A|x)A ; F va de 1 à r + s et vF ∈ Tx,|F |X, où nous posons |F | = 0 quand F = 1, · · · , r et
|F | = 1 quand F = r + 1, · · · , r + s.

Dans la section 5.2.2, je présenterai une extension originale des r|s-formes, de sorte que le
domaine de définition des premiers r arguments devienne tout l’espace tangent TX, au lieu d’être
juste sa partie paire.

Puis, dans les sections 5.3 et 5.4, je donne une preuve directe que les fonctions θ et µ ∧ θ,
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définies comme suit :

∀x ∈ U, ∀v := (v1, · · · , vr; ṽ1, · · · , ṽs) ∈ Tx,0U × · · ·Tx,0U︸ ︷︷ ︸
r

×Tx,1U × · · ·Tx,1U︸ ︷︷ ︸
s

:

θ(v) := sdetr,s




vA1
1 · · · vAr

1 vα1
1 · · · vαs

1
...

. . .
...

...
. . .

...

vA1
r · · · vAr

r vα1
r · · · vαs

r

ṽA1
1 · · · ṽAr

1 ṽα1
1 · · · ṽαs

1
...

. . .
...

...
. . .

...

ṽA1
s · · · ṽAr

s ṽα1
s · · · ṽαs

s




et :

∀x ∈ U, ∀w := (v1, · · · , vr+1; ṽ1, · · · , ṽs) ∈ Tx,0U × · · ·Tx,0U︸ ︷︷ ︸
r+1

×Tx,1U × · · ·Tx,1U︸ ︷︷ ︸
s

;

∀µ ∈ T ∗
xU, si nous décomposons µ = dxAµA :

µ ∧ θ(w) := sdetr+1,s




vA1 µA vA1
1 · · · vAr

1 vα1
1 · · · vαs

1
...

...
. . .

...
...

. . .
...

vAr µA vA1
r · · · v

Ar−
r vα1

r · · · vαs
r

vAr+1µA vA1
r+1 · · · vAr

r+1 vα1
r+1 · · · vµs

r+1

ṽA1 µA ṽA1
1 · · · ṽAr

1 ṽα1
1 · · · ṽαs

1
...

...
. . .

...
...

. . .
...

ṽAs µA ṽA1
s · · · ṽAr

s ṽα1
s · · · ṽαs

s




sont en effet de superformes de Voronov-Zorich.
Ces exemples de superformes de Voronov-Zorich seront importants pour nous. Il est souhai-

table d’avoir une notation plus compacte et intuitive pour les définir. Je propose dans cette thèse
les notations suivantes :

dxA1 ∧ · · · ∧ dxAr

dxα1 ⊙ · · · ⊙ dxαs
:= θ

µ ∧
dxA1 ∧ · · · ∧ dxAr

dxα1 ⊙ · · · ⊙ dxαs
:= µ ∧ θ =

µ ∧ dxA1 ∧ · · · ∧ dxAr

dxα1 ⊙ · · · ⊙ dxαs

Je vais aussi définir des objets comme :

ω =
Θ1 ∧ · · · ∧Θr

θ1 ⊙ · · · ⊙ θs

Où Θ1 . . .Θr sont des 1|0-formes de parité générique et θ1 . . . θs sont des 1|0-formes impaires.
Ce genre d’objets, que j’appelle des formes fractionnaires, était déjà utilisé dans la littérature

mathématique et physique, avec une notation différente, mais, à ma connaissance, une preuve
directe qu’ils sont en effet des superformes de Voronov-Zorich, n’avaient pas encore été publiée.

Dans la section 5.4 j’expliquerai les règles pour effectuer le calcul de Cartan avec des formes
fractionnaires, y compris des produits intérieurs et extérieurs par vecteurs et covecteurs de toute
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parité, la dérivation extérieure et des combinaisons de ces opérations avec les commutateurs cor-
respondants. Je donnerai également une formule originale utile pour des calculs efficaces utilisant
des superdéterminants. Ceux-ci seront utilisés dans la troisième partie de la thèse ; en fait, le cal-
cul de Cartan avec les formes fractionnaires s’avère plus commode que le calcul de Cartan pour
les r|s-formes génériques.

Dans la section 5.5 je présenterai la théorie de l’intégration des superformes (et donc des
formes fractionnaires) développée par Voronov et Zorich. Je proposerai aussi une petite modifi-
cation de la définition standard de l’intégrale de Berezin, basée sur le concept de corps immergé
d’une supervariété que je définirai. Cela sera utile pour les sujets traités au chapitre 9.

Dans le Chapitre 6 je définirai les coformes fractionnaires et les formes mixtes fractionnaires
du premier et du second type. Les coformes fractionnaires sont des exemples de ce que Voronov
appelle twisted covariant dual Lagrangians satisfying the fundamental equations ou plus briève-
ment twisted dual forms dans [153] et [154], et ils sont à la base de la définition de ses formes
stables. Les formes mixtes fractionnaires sont des exemples de ce que Voronov a appelé les formes
mélangées, [153], [154].

Un exemple de coforme fractionnaires sera la coforme w localement écrite comme suit :

w =
∂At+1

∧ ∂A1
∧ · · · ∧ ∂At

∂α1
⊙ · · · ⊙ ∂αq

ou la coforme u localement écrite comme suit :

u =
v1 ∧ · · · ∧ vt
ṽ1 ⊙ · · · ⊙ ṽq

où v1, . . . , vt sont des champs vectoriels de n’importe quelle parité et ṽ1 . . . ṽq sont des champs
vectoriels impairs.

Un exemple d’une forme mixte fractionnaire sera :

v1 ∧ · · · ∧ vt
ṽ1 ⊙ · · · ⊙ ṽq

Θ1 ∧ · · · ∧Θr

θ1 ⊙ · · · ⊙ θs
(7)

Je vais montrer comment effectuer un calcul de Cartan avec des coformes fractionnaires et
des formes mixtes fractionnaires, ce qui me permettra de donner un sens aux formules comme
(19) ou comme :

Θ1 ∧ · · · ∧Θl

θ1 ⊙ · · · ⊙ θd
∂A1
∧ · · · ∧ ∂At

∂α1
⊙ · · · ⊙ ∂αq

(8)

aussi quand, dans (8), l > t et d < q ; ou quand, dans (7), t > r et q < s.
Par exemple nous donnerons un sens à :

dξ1 1
∂
∂ξ1

et par symétrie à :
1
∂
∂ξ1

dξ1 := dξ1 1
∂
∂ξ1

ou encore à :
∂

∂ξ1

1
dξ1

où ξ1 est une coordonnée locale impaire sur une supervariété.
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Dans la section 6.3 je montre comment intégrer des coformes et des formes mixtes sur des
supervariétés.

Le chapitre 6 est en effet indépendant du reste de cette thèse et, contrairement au chapitre 5,
il n’est pas nécessaire de le lire pour comprendre la troisième partie de la thèse. Par conséquent,
le matériel présenté ici n’est pas traité en détail. Il peut être considéré comme un complément
naturel du chapitre 5 et comme un travail préliminaire pour des études futures, en particulier pour
des études sur les théories de super-champs de Batalin-Vilkovisky et Bechi-Rouet-Stora-Tyutin.

Les principales contributions originales dans la Troisième Partie de ma thèse sont : la
construction d’un formalisme multisymplectique pour les théories de super-champs ; la formu-
lation du théorème de comparaison (entre la formulation en composantes et celle des super-
champs,voir plus bas) avec les outils offerts par les formes fractionnaires et l’intégrale sur un
immersed body ; la formulation du traitement géométrique des symétries et des supersymétries
des théories de superchamps en utilisant le langage des formes fractionnaires et en exploitant la
forme fractionnaire de Poincaré-Cartan.

Les théories des superchamps ont commencé à être étudiées abondamment à la fin des années
70 avec le développement de la supersymétrie en Physique.

Une théorie de champ supersymétrique peut être habituellement présentée de deux façons
différentes : soit comme une théorie de champs sur une variété classique, avec des composantes
fermioniques et bosoniques, soit comme une théorie définie sur une supervariété. La première
approche est parfois appelée approche en composantes, tandis que la seconde est parfois appelée
l’approche de superchamps propre. Dans les deux cas, la théorie est définie par les équations de
la dynamique que les champs doivent satisfaire.

Quand on utilise l’approche en composantes, les équations des champs peuvent être dérivées
à partir d’un principe variationnel avec une action définie comme l’intégrale sur la variété de
base classique d’une densité lagrangienne. L’action implique évidemment l’usage à la fois de
composantes bosoniques (commutantes) et fermioniques (anticommutantes) des champs, traitées
selon les parités respectives.

Pour exprimer le principe d’action dans un langage géométrique, il est utile de formuler un
calcul variationnel pour les densités lagrangiennes définies en termes de formes différentielles.
Puisque la densité lagrangienne dépend en général de la dérivée des composantes des champs
(qui peut être bosonique ou fermionique), même si la théorie est définie sur une variété classique
(bosonique), il est clair qu’il est nécessaire de développer un calcul pour les formes différentielles
valable également pour le secteur fermionique. Ce n’est pas du tout simple et cela a été fait par
D. Hernández Ruipérez and J. Muñoz Masqué pendant les années 80, précisément dans le cas où
la variété de base est classique. Dans [76, 77, 78, 118, 119] ils ont en effet développé un calcul
variationnel gradué pour les densités lagrangiennes définies en termes de formes différentielles
graduées de Kostant et ils ont obtenu le formalisme lagrangien correspondant (équations d’Euler-
Lagrange, forme de Poincaré-Cartan, invariants de Noether, etc.).

Lorsque la variété de base n’est pas classique et qu’il s’agit d’une supervariété, comme dans
l’approche des superchamps aux théories supersymétriques, alors la tâche est encore plus difficile.
La théorie peut toujours être dérivée d’un principe variationnel, mais l’action dans ce cas est
définie comme l’intégrale berezinienne (réalisée à l’aide d’une densité de volume berezinienne)
d’une densité lagrangienne, qui doit donc être une densité de volume berezinienne.

En 1987, dans [80], Hernández Ruipérez et Muñoz Masqué notent : «l’absence d’une définition
intrinsèque d’une notion appropriée de densités intermédiaires de Berezin avec leur calcul exté-
rieur de Cartan, nous empêche de développer un formalisme lagrangien ...», ce qui signifie qu’il
manque un formalisme lagrangien valide également pour le cas où la variété de base st une super-
variété. Néanmoins, dans [79] et [80] ils sont parvenus à une formulation intrinsèque de la notion
de densité lagrinienne-berezinienne et de sections critiques Bereziniennes. En outre, dans le cas
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où une théorie peut être exprimée à la fois ens composantes et avec l’approche des superchamps,
ils ont montré comment relier les sections critiques de la densité lagrangienne-berezinienne, dé-
finie sur la supervariété, aux sections critiques du Lagrangien gradué correspondant, défini sur
une variété bosonique avec des formes différentielles graduées. Ils ont obtenu ce résultat via une
première version de ce que l’on appellera ultérieurement le Théorème de Comparaison.

En 1992 J. Monterde, dans [113], a montré que les sections critiques berezinienne, d’une
action définie avec une densité larangienne-berezinienne, doivent satisfaire une version "super"
des équations d’Euler-Lagrange. A l’époque, le formalisme des superformes défini par Voronov
et Zorich existait déjà mais il ne l’a pas utilisé, peut-être en raison du fait que le système de
notations qui était nécessaire à cet effet est un peu lourd. Malheureusement il semble que ses
résultats n’aient pas été beaucoup exploités, ni par des mathématiciens ni par des physiciens.

Par la suite, pendant les années 90 et durant la première décennie du nouveau millénaire,
certains auteurs ont travaillé à l’élaboration d’une approche géométrique des théories des super-
champs d’un point de vue lagrangien et hamiltonien. Des idées importantes ont été recueillies
dans les articles sur la mécanique mécanique de Monterde et Muñoz Masqué, [114, 115] ; par L.
A. Ibort et J. Marín-Solano [83] ; par J. F. Cariñena et H. Figueroa [26] ; par Monterde and J. A.
Vallejo, dans [117].

En 2006, Monterde, Muñoz Masqué et Vallejo ont publié un article [116], dans lequel ils
ont proposé un formalisme de Hamilton-Cartan pour des problèmes variationnels berezinien de
premier ordre valide pour des champs définis sur des supervariétés de dimension quelconque.
Ils ont atteint leur objectif en étudiant, à l’aide du théorème de comparaison, un problème
variationnel associé, d’ordre supérieur, défini sur une variété de base bosonique. Ils ont obtenu
une super-forme de Poincaré-Cartan valable pour des théories sur des bases de n’importe quelle
dimension. Cependant ils utilisent une notation qui ne me semble pas très adaptée aux preuves
générales, ni aux calculs réels. Ils ont également obtenu un très beau et important résultat, qui
est la généralisation du premier théorème de Noether aux théories de super champs (théorème
8.2 dans [116]) ; au prix d’une hypothèse plutôt technique que nécessaire.

À ma connaissance, aucun mathématicien n’a utilisé les résultats sur les super-formes de
Poincaré-Cartan pour décrire les théories des superchamps avec l’approche multisymplectique.

Indépendamment des résultats obtenus par l’école espagnole, il n’y a eu, à ma connaissance,
qu’une tentative pour étendre le formalisme multisymplectique à des super-champs. S. P. Hrabak
dans [81, 82] a étudié la formulation de la symétrie BRST classique dans le cadre d’une théorie
multisymplectique. Pour ce faire, il a eu besoin d’étendre le formalisme multisymplectique pour
qu’il fonctionne aussi pour les théories de champ dont la base est une variété bosonique classique,
mais dont l’espace des champs est une supervariété, avec secteurs bosonique et fermionique (en
raison de la présence des fantômes). Il accomplit cette tâche dans [82]. Il n’a cependant pas
montré comment étendre éventuellement le formalisme aussi au cas où la base elle-même est une
supervariété.

Ici, dans la troisième partie de ma thèse, je présenterai une version multisymplectique com-
plète des théories de superchamps valables pour toute dimension (pair et impair) de l’espace de
base et de l’espace des champs. Mes résultats sont une généralisation de ceux obtenus par Hrabak
dans [82] et ils sont fondés sur une pleine exploitation du potentiel de la théorie des superformes
de Voronov et de Zorich. Elles peuvent aussi être considérées comme une généralisation naturelle
des résultats obtenus dans les présentations géométriques de la supermécanique à dimension finie,
qui comprennent l’utilisation d’une superforme symplectique, comme les présentations dans [83]
et [26].

Si l’on veut construire une théorie de superchamps multisymplectique, on doit utiliser des
objets (par exemple la forme multisymplectique) qui peuvent être intégrés sur une supervariété et
qui, en même temps, peuvent être utilisés pour un calcul de Cartan, y compris une contraction par
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des supervecteurs, un produit extérieur par une 1-forme et une dérivée extérieure. C’est le point
difficile. En fait, avant les articles de Voronov des années 90, [153, 154], aucun objet de ce genre
n’existait. Avant l’apparition des superformes de Voronov et de Zorich, les meilleurs candidats
pour jouer le rôle que jouent dans la théorie des champs classiques les formes différentielles
étaient les formes de Kostant ou les formes pseudodifférentielles et intégrales. Malheureusement,
les formes de Kostant ne peuvent être intégrées que sur des variétés de base pairs. D’autre part,
les formes pseudodifférentielles et intégrales conviennent à l’intégration mais n’admettent pas
une version simple et naturelle du calcul de Cartan. Afin de trouver un moyen de contourner
cette difficulté fondamentale, Hernández Ruipérez, Muñoz Masqué, Monterde et Vallejo furent
obligés dans leurs travaux de traiter les théories définies sur une superbase, en les rapportant à
des théories correspondantes (d’ordre supérieur) qui peuvent être comprises comme définies sur
une base paire.

Dans mon travail, j’utilise une approche différente. Je crois que les superformes de Voronov et
Zorich sont les objets naturels à utiliser pour construire une théorie multisymplectique. En effet
ils peuvent être intégrés et ils admettent un calcul de Cartan complet. De plus, j’essaie d’utiliser
autant que possible des superformes fractionnaires. De cette manière, toutes les preuves et tous
les calculs deviennent plus transparents et directement comparables avec ceux de la théorie des
champs classiques.

Dans le Chapitre 7 je vais montrer comment définir des théories de superchamps basées sur
un principe d’action, quand le Lagrangien est une superforme berezinienne fractionnaire :

L = L
(
xA; qI ; q̇IA

) dx1 ∧ · · · ∧ dxn

dxn+1 ⊙ · · · ⊙ dxn+m

J’obtiendrai la même super version des équations d’Euler-Lagrange que celle déjà obtenue
dans [113] :

(−1)|A||I| d

dxA
∂L

∂q̇IA

(
j1Φ(x)

)
−
∂L

∂qI
(
j1Φ(x)

)
= 0 (9)

Ils sont une généralisation de (2). En particulier nous verrons qu’il n’est pas nécessaire d’uti-
liser un Lagrangien d’ordre supérieur en composantes pour une théorie qui peut être décrite par
un Lagrangien Berezinien de premier ordre.

Le Chapitre 8 est la partie que je juge la plus importante de ma thèse : il contient les
idées que je juge les plus originales et les principaux résultats de ce travail. Il consiste en la
présentation de l’approche multisymplectique des théories de superchamps réalisée à l’aide de
formes fractionnaires.

Dans la section 8.1, je définis l’espace des super-multimoments P comme un sous-fibré
de Homπ(VπE,Bn−1|mX) ; où VπE est le fibré tangent vertical du fibré de configurations E,
Bn−1|mX est un sous-fibré du fibré de n−1|m-formes sur la supervariété de baseX etHomπ(VπE,Bn−1|mX)
est un fibré sur X dont la fibre sur un point x ∈ X est la collection de toutes les fonctions RS-
linéaires entre les supermodules VeE et Bn−1|m

x X, pour tout e tel que π(e) = x.

SurHomπ(VπE,Bn−1|mX) nous pouvons utiliser comme coordonnées locales
(
xA, qI , pAI , p̃

A
I

)

et alors la version super de la transformée de Legendre est :

FL :
(
xA, qI , q̇IA

)
7−→

(
xA, qI , pAI , p̃

A
I

)
=
(
xA, qI , (−1)|A| ∂L

∂q̇IA

(
xA, qI , q̇IA

)
,
∂L̃

∂q̇IA

(
xA, qI , q̇IA

))

Dans la section 8.2 je définis sur P le super-Hamiltonien :

H(xA, qI , pAI ) := q̇IAp̃
A
I + (−1)|A|q̇IAp

A
I − L

(
xA, qI , q̇IA

)
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Puis je présente la version super des équations de Hamilton-Volterra, qui, quand L = L est
pair prennent la forme :





(−1)|I| ∂q
I

∂xA
(z(x)) =

∂H

∂pAI
(z(x))

(−1)|A|(−1)|A||I| ∂p
A
I

∂xA
(z(x)) = −

∂H

∂qI
(z(x))

(10)

et quand L = L̃ est impair sont :





∂qI

∂xA
(z(x)) =

∂H̃

∂p̃AI

(z(x))

(−1)|A||I| ∂p̃
A
I

∂xA
(z(x)) = −

∂H̃

∂qI
(z(x))

(11)

Ils sont une généralisation de : (3).
Dans la section 8.3 j’introduis la superforme de Poincaré-Cartan et la super forme multisym-

plectique :

θ :=dqI ∧ pAI βA −Hβ

ω :=− dqI ∧ dpAI βA − dH ∧ β

Où β = dx1∧···∧dxn

dxn+1⊙···⊙dxn+m ; et je montre qu’ils sont globalement bien définis.
Ensuite je prouve ce qui suit, qui est une généralisation du théorème 1 :

Theorem 3. Soit L une fonction lagrangienne régulière ou impaire-régulière sur J1E et H sa
fonction hamiltonienne correspondante sur l’espace des super-multimoments P , alors une section
z ∈ Γ

(
FL(J1π)

)
, est une solution de la théorie si et seulement si ∀U carte local de P , munie de

la n+ 1|m-forme multisymplectique locale correspondante ω et ∀u ∈ Γ (TU) :

z∗(u ω̂) = 0

où ω̂ est l’extension pour le premier argument à tout TU de la super-forme multisymplectique ω.

Dans la section 8.4 je construis une structure super-symplectique sur le super-espace des
phases covariant (l’espace de solutions de la théorie), d’une manière qui est complètement ana-
logue à celle utilisée pour le cas classique, intégrant la superforme multisymplectique étendue ω̂
sur une sous-variété Σ ⊂ P qui est une supervariété de codimension 1|0. On obtient la forme
symplectique Ω̂Σ, qui est une 2|0-forme étendue sur l’espace des solutions E ≡ G et qui, comme
dans le cas classique, peut dépendre de la sousvariété Σ choisie.

Dans le Chapitre 9 Je vais montrer comment le théorème de comparaison peut être vu du
point de vue du formalisme introduit dans les deux chapitres précédents. L’approche concrète
choisie permettra de clarifier les relations existant entre les théories dites en composantes et les
théories de superchamps. Tout le traitement sera basé sur le diagramme suivant, qui est expliqué
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dans ce chapitre :

Jm+1π

J1|mπ b∗ (Jm+1π
)

J0|mπ J1π b∗ (J1|mπ
)

E b∗ (J0|mπ
)

b∗ (J1π
)

b∗ (E)

X X

jm+1
1|m

π

j
1|m

0|m
π j

1|m

1 π

j
0|m

0 π j1
0π

π

ǫ

b

Dans la section 9.2, je regarde la Comparaison du point de vue hamiltonien et je ferai une pre-
mière comparaison de structures symplectiques sur les espaces de solutions de théories exprimées
dans le formalisme des superchamps et dans le formalisme en composantes.

Dans le Chapitre 10 j’explique comment le formalisme supermultisymplectique peut être
utilisé pour définir des super crochets de Poisson pour les superchamps. En particulier dans la
section 10.1, je étudie plus en détail le cas le plus simple de la supermécanique ; je montrerai com-
ment, sur l’espace des solutions d’une théorie de supermécanique, on définit naturellement une
structure super-symplectique et je comparerai mes résultats aux résultats déjà publiés obtenus
par Khudaverdian, voir [91], et par Monterde et Muñoz Masqué, [115].

Si G est l’espace des solutions de la théorie et si f, g ∈ F(G ), alors nous définissons les
champs vectoriels uf , ug ∈ Γ (TG ) avec :

Ω̂Σ (·, uf ) = df(·) (12)

nous posons
{f, g} := Ω̂Σ (uf , ug)

et nous obtenons :

{f, g} = (−1)(|I|+|L|)(|f |+1) ∂f

∂pI

∂g

∂qI
− (−1)(|I|+|L|)(|g|+1) (−1)(|f |+|L|)(|g|+|L|) ∂g

∂pI

∂f

∂qI

Ce crochet de Poisson est pair ou impair selon la parité du Lagrangien L.
Une autre question est de construire de façon covariante une structure super symplectique

sur l’espace G des solutions d’une théorie de superchamps et généraliser ainsi les travaux de
Monterde, Muñoz Masqué et Vallejo, cités ci-dessus, qui concernaient le cas spécial des variétés
de base de dimension 1|1 (qui donne lieu à une théorie de supermécanique). Dans la section 10.2,
je montre comment les constructions exposées dans le chapitre 4 pour les théories de champs
classiques, peuvent être directement étendues au cas super pour les super théories de champs
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définies sur une supervariété de base X de toute dimension paire et impaire . L’espace G acquiert
ainsi une structure de super-espace des phases covariant.

Si A et B sont des fonctionnelles définies sur l’espace des phases covariant G , nous avons :

{A,B} (G) =
∫

ΣX

[
(−1)(|I|+|L|)(|A|+1) δA

δπI

∣∣∣∣
G

(~x)
δB

δqI

∣∣∣∣
G

(~x) +

− (−1)(|I|+|L|)(|B|+1) (−1)(|A|+|L|)(|B|+|L|) δB

δπI

∣∣∣∣
G

(~x)
δA

δqI

∣∣∣∣
G

(~x)
]
d~x

=
∫

ΣX

[
(−1)(|I|+|Λ|+|L|)(|A|+1) δA

δπΛ
I

∣∣∣∣
G

(~x)
δB

δqIΛ

∣∣∣∣
G

(~x) +

− (−1)(|I|+|Λ|+|L|)(|B|+1) (−1)(|A|+|L|)(|B|+|L|) δB

δπΛ
I

∣∣∣∣
G

(~x)
δA

δqIΛ

∣∣∣∣
G

(~x)
]
d~x

où ΣX est une variété de Cauchy dans X de codimension 1|0, (~x) sont la restriction des co-
ordonnées sur la surface de Cauchy sur la supervariété n − 1|m dimensionnelle ΣX , d~x est la
n − 1|m-forme fractionnaire canonique de volume définie par les coordonnées sur la surface de
Cauchy sur ΣX ; ΣX est le body de ΣX , (~x) sont les coordonnées sur la surface de Cauchy sur
ΣX et d~x est la n − 1-forme volume canonique définie par les coordonnées sur la surface de
Cauchy sur ΣX ; et où des dérivées fonctionnelles sont utilisées et πI est le moment canonique
associé à la sous-variété Σ. Notez que si Σ est définie par l’équation x1 = 0, alors πI = p1

I . Les
moments πΛ

I seront définis par intégration sur la partie impaire de la supervariété. Notez que∣∣πΛ
I

∣∣ = |I|+ l(Λ) + |L|+m.
De la super structure de Poisson construite sur G , je dérive les règles de super commutation

auxquelles les champs Fermioniques et Bosoniques doivent obéir et je montre que ces règles sont
exactement celles attendues d’un point de vue physique. Ceci donne une justification géométrique
à l’utilisation de l’anticommutateur pour les champs fermioniques.

Dans le Chapitre 11 j’étudierai les symétries et les supersymétries des théories de super-
champs avec les techniques offertes par le formalisme des formes fractionnaires mixtes et du
point de vue de l’approche super multisymplectique exposée dans les chapitres précédents.

Quelques auteurs ont déjà donné une version "super" du premier théorème de Noether valide
pour la supermécanique : Ibort et Marín-Solano [83] et Cariñena et Figueroa [25].

L. Fatibene et M. Francaviglia, dans [48] et L. Fatibene, M. Ferraris, M. Francaviglia et R.
G. McLenaghan, dans [47], ont exploré la manière de donner une interprétation géométrique
des supersymétries en utilisant les versions classiques de la forme de Poincaré-Cartan et des
champs vectoriels généralisés définis sur une variété bosonique pour des théories de champ dont
les espaces des champs sont le produit des puissances extérieures de certains espaces vectoriels,
de sorte que les spineurs anticommutants peuvent être inclus dans la théorie.

Comme déjà cité ci-dessus, en 2006, Monterde, Muñoz Masqué et Vallejo, [116], ont obtenu
une version du premier théorème de Noether valable pour les super théories génériques, sous une
hypothèse technique supplémentaire.

Ici, dans la section 11.2, je montrerai que mon approche permet d’avoir une version super du
théorème de Noether qui est rélativement plus naturelle et simple à prouver avec mon formalisme,
et plus générale, puisqu’elle n’exige aucune hypothèse technique spécifique du genre utilisé dans
[116].

Theorem 4. Considérons une théorie de champs définie par un fibré des configurations E, avec,
comme fibre-type, la supervariété F et avec base la supervariété X, et par une forme lagrangienne
L qui est localement de la forme L = Lβ. Soit E l’espace des solutions de la théorie des champs.
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Soit χ un champ vectoriel projetable sur E tel que :

∀Φ ∈ E ∃αΦ ∈ Ωn−1|mX : ∀U ⊂ X :
∫

U

j1Φ∗ Liej1χ L =
∫

U

dαΦ

alors on a :

∀U ⊂ X, ∀Φ ∈ E :
∫

U

d

{
j1Φ∗

[
j1χ

(
L+ (−1)|A|(|A|+|L|)

cI ∧
∂L

∂q̇IA
βA

)]
− αΦ

}
= 0

Bien entendu, dans le théorème 4, des formes fractionnaires apparaissent.
Dans la section 11.3, je présenterai une extension super de la fonction multimoment introduite

par Gotay, Isenberg, Marsden, Montgomery, Sniatycki et Yasskin dans [63].

Corollaire 5. Soit G un supergroupe de Lie agissant sur P avec une action covariante relevée,
c’est à dire de sorte que à chaque élément k ∈ g (la superalgèbre), correspond une action cor-
respondante sur E générée par le champ vectoriel χ, tel que LieχP

ω = 0. Supposons qu’il existe
J ∈ Hom

(
g,Ωn−1|m (P )

)
, tel que pour chaque k ∈ g :

χP ω = d [J(k)]

alors, ∀Φ ∈ E :
j1Φ∗ Liej1χ L = d [J(k) + χP θ]

Dans ce cas nous disons que la fonction :

J : g −→ Ωn−1|m (P )

k −→ J(k)

est la super fonction comoment covariante de l’action.

Le théorème super-Noether et la super fonction multimoment seront présentés avec une for-
mulation qui se révélera très proche de celle correspondante pour les théories classiques.

Enfin, dans le Chapitre 12, je vais présenter quelques exemples montrant comment toute la
théorie peut être mise en œuvre pour certains Lagrangiens spécifiques. L’étude du superoscilla-
teur dans la section 12.1 et celle de la superparticule dans un espace courbe dans la section 12.2
montreront comment les outils présentés dans cette thèse peuvent être efficaces pour étudier la
supermécanique d’un point de vue qui n’était pas disponible auparavant, exploitant au mieux
la potentialité du formalisme des superchamps. Dans la section 12.3 je présenterai le modèle σ
3-dimensionnel.

Je veux conclure cette introduction à ma thèse en commentant une remarque qui a paru
dans un article très récent sur la quête d’un cadre géométrique pour la supermécanique Lagran-
gienne d’un point de vue catégorique, par A. J. Bruce, K. Grabowska et G. Moreno, [18]. Les
auteurs écrivent : "... À notre connaissance, le formalisme de la théorie des champs géométrique
- structures multisymplectiques et ainsi de suite - n’a pas été appliqué à la théorie des champs su-
persymétriques. En partie, nous pensons que cela est dû au manque d’appréciation des méthodes
catégorielles appliquées à la supergéométrie au sein de la communauté de la mécanique géomé-
trique... ". Je ne suis pas d’accord avec cette remarque. Certains auteurs, par exemple D. S. Freed
dans certaines passages de [54], écrivent que l’utilisation de la notion de foncteur de points est
nécessaire pour une présentation mathématique efficace d’une théorie des superchamps. Encore
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une fois je suis en désaccord, même si toutes ces notions mènent certainement à des points de vue
intéressants. Dans toute cette thèse, j’utilise l’approche concrète à la supergéométrie, au sens de
DeWitt-Rogers, travaillant toujours avec des supervariétés concrètes définies à partir de l’algèbre
de Grassmann infiniment générée RS . Je ne fais pas usage de la notion de foncteur de points.
Il est vrai qu’un point de vue catégorique des théories de superchamps peut aide à comprendre
le fait qu’il n’y a probablement pas de distinction physique possible entre les théories définies à
partir des différentes algèbres de Grassmann. Mais je ne pense pas que le point clé pour déve-
lopper une théorie géométrique, multisymplectique, des superchamps significative soit l’adoption
d’un point de vue catégorique, ni d’un point de vue algébro-géométrique. Comme je l’ai écrit
plus haut, la difficulté cruciale à surmonter est de trouver des objets qui peuvent être intégrés
et qui permettent à la fois un calcul de Cartan. Cette tâche peut être entreprise aussi bien avec
une approche concrète et c’est exactement ce que je veux présenter ici. De plus, à mon avis, le
choix de l’approche concrète a l’avantage d’aider à une compréhension plus intuitive du cadre
géométrique, en évitant certains niveaux d’abstraction qui ne sont pas strictement nécessaires.
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Introduction

The Calculus of Variations and its geometric interpretation always played a key role in Mathe-
matical Physics, either through the Lagrangian formalism, or through the Hamiltonian equations,
which are deeply linked with the Lagrangian. This role has been confirmed and reinforced during
the last century, for example by the Noether theorem, which connects symmetries and conserved
quantities, and by the use of the Calculus of Variations made in Quantum Mechanics and in
Quantum Field Theory.

For fields theories, which correspond to variational problems with several space-time vari-
ables, the Lagrangian approach is now well-founded and widely used. However the Hamiltonian
approach is not so well developed and used. In order to achieve a Hamiltonian description of
fields theory, which is the road to the so-called canonical quantization, most physicists use a
splitting of the space-time as a Cartesian product of a space manifold by a time line. This is
of course sufficient for most purpose, but it clearly breaks the relativistic covariance and hence
contributes to obscure the relationship between the quantum theory and Relativity.

Several theories have been developed to care this situation: they all rest more or less on the
fact that the space of all solutions of a variational problem is endowed with a symplectic structure,
an observation which somehow goes back to Lagrange. This is the fundamental message carried
by the so-called covariant phase space theory. The problem is to find the most suitable technical
tools to represent this symplectic structure and to do computations with it. Some approaches
exist, for example: the one developed by Deligne and Freed in [36] and based on Takens’ theory,
or Vinogradov’s theory, as developed for example by Vitagliano in [147], or the multisymplectic
approach.

The multisymplectic formalism allows a finite dimensional geometric description of classical
field theories seen from an Hamiltonian point of view. Multisymplectic geometry plays the same
role played by symplectic geometry in the description of classical Hamiltonian mechanics. More-
over the multisymplectic approach provides a tool for building a symplectic structure on the
space of solutions of the field theory and for investigating it.

The generalization of Hamilton equations to a first order variational problem with several
variables dates back to two papers of V. Volterra of 1890, [150, 151], in which two different
variants were proposed. Today the first theory proposed by Volterra is mostly known as De
Donder-Weyl theory because one version was expounded by H. Weyl in 1934, [160], and another
one by T. De Donder in 1935, in [32], where he extended it to higher order theories and related
it to H. Poincaré, [123], and E. Cartan, [27], theory of "Invariants Intégraux", giving it a strong
geometrical flavor. Fundamental insights were obtained subsequently by T. Lepage [104] in 1936
and P. Dedecker in 1953 [33], see also [34].

In a series of papers during the 70’s, J. Kijowski, [94, 95], with W. Szczyrba [97, 98] and then
with W. M. Tulczyjew [99] gave birth to the multisymplectic point of view on all these theories.
The multisymplectic formalism allows a complete geometrization and provides a full covariant

xxiii
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point of view on Hamiltonian field theories. Kijowski ideas allows to build a symplectic structure
on the space of all solutions of a field theory (which is then called the covariant phase space) in
a way which is to some extent independent from any choice of splitting of spacetime in space
and time and which is therefore fully covariant.

Similar ideas on the symplectic structure of the covariant phase space were present, during
the 50’s, in the pioneering works of R. E. Peierls, see [122], and I. Segal, see [144], and appeared
again in 80’s in papers by E. Witten [161], C. Crnkovic and Witten [28] and G. Zuckerman [164]
who probably did not know about the works of Kijowski and the Polish school.

Witten papers gave birth to a new interest on the then called covariant Hamiltonian theories
and on the covariant phase space approach, both in the physical and in the mathematical com-
munities. From the second half of 80’s on, the multisymplectic formalism for field theories was
studied and revisited by several authors and presented in many different variants. Applications
to continuum Mechanics and hydrodynamics have been proposed. Covariant numerical methods
for partial differential equations, developed in or inspired by the multisymplectic framework,
have been introduced. The interest in multisymplectic field theories gave birth also to a number
of studies on the so called multisymplectic or n-plectic geometry. In the introduction to the first
part of this thesis I will give a short list of some of the most important works on these subjects.

The paper of M. J. Gotay, J. Isenberg, J. E. Marsden, R. Montgomery, J. Śniatycki and P.
B. Yasskin, [63, 64], can be read for a presentation of the multisymplectic formalism for field
theories. For a shorter introduction one can read Román-Roy [135]. For an introduction with
a report on the history on how the ideas around the multisymplectic formalism originated and
evolved, one can read Hélein [70].

It is worth noting that, until today, almost any attempt to adapt the multisymplectic for-
malism to theories of super-fields (like for example supersymmetric field theories) hasn’t been
made. Also the works which could be considered preliminary to this task, like the papers on
the geometrical formulation of supermechanics or those on the super Poincaré-Cartan form for
super-field theories (which I’ll quote in the following), have been very few.

In this thesis I will be mainly concerned with the multisymplectic formalism to build first
order field theories and I hope to give two main original contributions:

– I will show that, in some situations, the symplectic structure on the covariant phase space
may indeed depend from the choice of splitting of spacetime in space and time;

– I will extend the multisymplectic formalism to superfield theories.
As a "byproduct", I will present another original contribution:

– I will define fractional forms on supermanifolds with their relative Cartan Calculus.
These fractional forms will be necessary to build the multisymplectic formalism for superfield
theories.

I will use a version of the multisymplectic formalism which minimizes the dimension of the
spaces involved, which seems suitable to me for a first attempt of extending to super-field the-
ories. I call it the minimal setting for the multisymplectic formalism. The main ingredient of
this setting will be the finite dimensional multimomenta space P , which corresponds to what
Forger and Romero call the ordinary multiphase space, [53] and what Román-Roy, [135], calls
the restricted multimomentum bundle.

This thesis is organized in three parts. The main original results of the First Part are
contained in Chapter 3 and consist in the study of non equivalent symplectic structures on the
covariant phase space.

In Chapter 1 I will introduce a standard geometrical framework for the Lagrangian approach
to first order field theories.
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If E, X and F are finite dimensional C∞ manifolds, we let (E, π,X, F ) be a differential fiber
bundle with total space E, base X, type-fiber F and bundle C∞ projection π, so that we have
the following situation:

E

π

y

X

We call E the fields bundle or the configurations bundle and a field φ over X is one of its C∞

sections: so we can call Γ
(
E
)

the space of fields.
If X is n-dimensional, the Lagrangian L is a π-horizontal differential n-form defined on the

first jet space J1π ≡ J1E. The action AU over a field φ is the integral of L on the n-dimensional
surface j1φ(U), where U ⊂ X is a n-dimensional submanifold (possibly with boundary) of X:

AU (φ) := AU (j1φ) =
∫

j1φ(U)

L =
∫

U

j1φ∗L (13)

The space of solutions of the theory E is determined by the principle of critical action.
If on J1E we use the local coordinates

(
xa, qi, q̇ia

)
, then locally L = Lβ, where

β := dx1 ∧ · · · ∧ dxn. Every solution φ ∈ E satisfies the Euler-Lagrange equations:

φ is a solution ⇐⇒ on every U, ∀x ∈ U,
d

dxa
∂L

∂q̇ia

(
j1φ(x)

)
−
∂L

∂qi
(
j1φ(x)

)
= 0 (14)

In Chapter 2 I will introduce what I call the minimal setting for the multisymplectic de-
scription of field theories. I define the multimomenta space P , with local coordinates

(
xa, qi, pai

)

and the Legendre transform between J1E and P :

FL :
(
xa, qi, q̇ia

)
7−→

(
xa, qi, pai

)
=
(
xa, qi,

∂L

∂q̇ia

(
xa, qi, q̇ia

))

The Hamiltonian H is then defined by H(xa, qi, pai ) := q̇iap
a
i − L

(
xa, qi, q̇ia

)
and a field φ is a

solution of the theory if and only if z := FL ◦ j1φ satisfies the generalized covariant Hamilton-
Volterra system: 




∂qi

∂xa
(
FLj1φ(x)

)
=
∂H

∂pai

(
FLj1φ(x)

)

∂pai
∂xa

(
FLj1φ(x)

)
= −

∂H

∂qi
(
FLj1φ(x)

) (15)

On P it is possible to define the multisymplectic form, which is the global n+ 1-form:

ω := −dqi ∧ dpai ∧ βa − dH ∧ β

where βa = ∂
∂xa β.

Kijowski proved in [94] the following:

Theorem 6. A section z ∈ Γ (P ) is a solution of the theory if and only if ∀u ∈ TP, z∗(u ω) =
0.

One of the main interests of the finite dimensional geometric construction of the multimo-
menta space with its multisymplectic (n-plectic in the most up to date terminology) structure
is that it provides a way to build a symplectic structure on the covariant phase space (the space
of solutions of the field theory). There is then a direct link between the multisymplectic field
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theory and the classical canonical formulation of the field theory. This link connects the works
on multisymplectic geometry to the works of Physics and Mathematical Physics communities on
canonical field theory, pioneered by the papers of Peierls, [122], and Segal, [144] (already cited
above), continued and developed by B. DeWitt [40, 41, 42], by García and Pérez-Rendón in
[56, 57, 58] and by Goldschmidt and Sternberg in [62].

Here I will follow [70] to show how with the help of the multisymplectic form ω, it is possible
to build a symplectic form Ω on the space of Hamiltonian surfaces G = z (X) with z solution of
the theory.

Let’s call G the space of Hamiltonian surfaces; we have that G ∼= E so we can identify these
two spaces. Let be G ∈ G and δuG ∈ TGG be a vector over G: it is associated to a so called
Jacobi field u ∈ Γ (i∗ (V P )), id est a section over G of the pull-back image of the vertical (with
respect to the projection πP of the total space P onto the base X) tangent bundle V P by the
embedding map i : G −→ P . The section u can be seen as a vector field on G, "following" which
each point g ∈ G is sent to a point g′ ∈ G′, where G′ ∈ G is another Hamiltonian n-curve. An
Hamiltonian n-curve G is deformed by u into another Hamiltonian n-curve G′.

Let Σ be a slice of co-dimension 1 in P , with the property that for any Hamiltonian n-curve
G ∈ G the intersection of Σ with G is transverse. Then we can define:

ΩΣ

∣∣
G

(δ1G, δ2G) :=
∫

Σ∩G
u1 ∧ u2 ω (16)

and, under certain regularity conditions of the Lagrangian, ΩΣ is a symplectic 2-form on G .
A natural question then arises: does the symplectic form Ω depend on the choice of the slice

Σ? Kijowski already proved that if Σ and Σ′ are two compact slices in the same homology class,
then ΩΣ = ΩΣ′ .

In Chapter 3 I show, with some examples of field theories built on a 2-dimensional torus,
that when Σ and Σ′ are in different homology classes, then it may happen that ΩΣ 6= ΩΣ′ . It
seems that this result has not been noticed yet.

Moreover I study some examples where Σ and Σ′ are non compact and I show that in that
case the situation is definitely more delicate. The standard homology of submanifolds of P is not
anymore suitable to determine the symplectic structure on G . I study the free and the massive
scalar field on R2 and I explain what happen when one chooses Σ and Σ′ such that they stay
on two different sides of the light-cone. I will prove the original result that also in that case
ΩΣ 6= ΩΣ′ .

In Chapter 4, which is the last one of the First Part, I will show how the symplectic struc-
ture on the space of solutions is linked with the field brackets used by physicists. Following J.
Kijowski and W. Szczyrba [97, 98], I will show that the symplectic form Ω can be used to obtain
a Poisson structure on E ≡ G ; this will fix the bases for the extension of the same construction
to super-field theories.

The multisymplectic formalism has not yet been applied to the description of supersymmetric
field theories. The main difficulty one has to face, to adapt it to super fields, is in my opinion
the fact that the differential forms can be naturally integrated in classical geometry, whereas in
supergeometry integral forms and differential forms are usually defined as two different kind of
objects. To take fully advantage of the multisymplectic formalism, one would like instead to use
the same objects to integrate (as in (13) and (16)) and to perform Cartan calculus (as for example
in theorem 6). To this purpose I believe that the most suitable objects to use are the superforms
defined by Th. Voronov and A. Zorich in their papers during late ’80-s, [155, 156, 157, 158].
More precisely I will use a subclass of Voronov-Zorich superforms, which I call fractional forms.
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In the Second Part of my thesis I’ll introduce the notions of fractional forms, fractional
coforms and fractional mixed forms on supermanifolds and I will propose a new notation, suitable
for computations. The fractional forms will be an essential ingredient for the definition of a
superfield theory and for the supermultisymplectic formalism which is the main object of the
third part of this thesis.

In Chapter 5, after having very briefly introduced the Rogers-DeWitt concrete approach to
supermanifolds, I will define fractional forms and I will set the rules to perform with them a
Cartan calculus.

Fractional forms are good examples of the r|s-forms introduced by Th. Voronov and A. Zorich
as the natural analogous on supermanifold of classical forms on classical manifolds. Denoting by
T0X and T1X respectively the even and the odd tangent space of a supermanifold X, we have
that:

Definition 7 (Voronov and Zorich). A form of degree r|s over a point x ∈ X, supermanifold of
dimension n|m, is a G∞ map ω : O ⊂ Tx,0X × · · ·Tx,0X︸ ︷︷ ︸

r

×Tx,1X × · · ·Tx,1X︸ ︷︷ ︸
s

−→ RS, which

satisfies the following: ∀v ∈ O, open subset of Tx,0X × · · ·Tx,0X︸ ︷︷ ︸
r

×Tx,1X × · · ·Tx,1X︸ ︷︷ ︸
s

:

∀g ∈ GL(r|s), ω(g · v) = ω(v) Berr,s(g) (17)

∂2ω

∂vBG∂v
A
F

+ (−1)|G||F |+(|G|+|F |)|A| ∂2ω

∂vBF ∂v
A
G

= 0 (18)

where A,B = 1, · · · , n + m are the indices in the space TxX and so also in both spaces Tx,0X
and Tx,1X with their usual degree; vAF is the A-th coordinates of vF in the local base (∂A|x)A; F
runs from 1 to r + s and we have vF ∈ Tx,|F |X, where we set |F | = 0 when F = 1, · · · , r and
|F | = 1 when F = r + 1, · · · , r + s.

In section 5.2.2 I will present an original extension of r|s-forms, such that the domain of the
first r arguments become all the tangent space TX, instead of its even part.

Then, in sections 5.3 and 5.4, I will give a direct proof that the maps θ and µ∧ θ, defined as
follows:

∀x ∈ U, ∀v := (v1, · · · , vr; ṽ1, · · · , ṽs) ∈ Tx,0U × · · ·Tx,0U︸ ︷︷ ︸
r

×Tx,1U × · · ·Tx,1U︸ ︷︷ ︸
s

:

θ(v) := sdetr,s




vA1
1 · · · vAr

1 vα1
1 · · · vαs

1
...

. . .
...

...
. . .

...

vA1
r · · · vAr

r vα1
r · · · vαs

r

ṽA1
1 · · · ṽAr

1 ṽα1
1 · · · ṽαs

1
...

. . .
...

...
. . .

...

ṽA1
s · · · ṽAr

s ṽα1
s · · · ṽαs

s



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and:

∀x ∈ U, ∀w := (v1, · · · , vr+1; ṽ1, · · · , ṽs) ∈ Tx,0U × · · ·Tx,0U︸ ︷︷ ︸
r+1

×Tx,1U × · · ·Tx,1U︸ ︷︷ ︸
s

;

∀µ ∈ T ∗
xU, if we decompose µ = dxAµA :

µ ∧ θ(w) := sdetr+1,s




vA1 µA vA1
1 · · · vAr

1 vα1
1 · · · vαs

1
...

...
. . .

...
...

. . .
...

vAr µA vA1
r · · · v

Ar−
r vα1

r · · · vαs
r

vAr+1µA vA1
r+1 · · · vAr

r+1 vα1
r+1 · · · vµs

r+1

ṽA1 µA ṽA1
1 · · · ṽAr

1 ṽα1
1 · · · ṽαs

1
...

...
. . .

...
...

. . .
...

ṽAs µA ṽA1
s · · · ṽAr

s ṽα1
s · · · ṽαs

s




are indeed Voronov-Zorich superforms.
These examples of Voronov-Zorich superforms will be important for us. It is desirable to have

available a more compact and intuitive notation for defining them. I propose in this thesis the
following notations:

dxA1 ∧ · · · ∧ dxAr

dxα1 ⊙ · · · ⊙ dxαs
:= θ

µ ∧
dxA1 ∧ · · · ∧ dxAr

dxα1 ⊙ · · · ⊙ dxαs
:= µ ∧ θ =

µ ∧ dxA1 ∧ · · · ∧ dxAr

dxα1 ⊙ · · · ⊙ dxαs

I will also define objects like:

ω =
Θ1 ∧ · · · ∧Θr

θ1 ⊙ · · · ⊙ θs

Where Θ1 . . .Θr are 1|0-forms of generic parity and θ1 . . . θs are odd 1|0-forms.
These kind of objects, which I call fractional forms, were already used in the Mathemathical

and Physical literature, with a different notation, but, to my knowledge, a direct proof that they
are indeed Voronov-Zorich superforms, had not been published yet.

In section 5.4 I will explicit the rules to perform the Cartan calculus with fractional forms,
including interior and exterior products by vectors and covectors of any parity, exterior derivation
and combinations of these operations with the corresponding commutators. I will also give some
original useful formula for effective computations using superdeterminants. These will be used
in the third part of the thesis; in fact Cartan calculus on fractional forms turns out to be more
manageable than the Cartan calculus for generic r|s-forms.

In section 5.5 I will present the theory of integration of superforms (and hence fractional
forms), developed by Voronov and Zorich. I will also propose a little modification to the standard
definition of Berezin integral, based on the concept of immersed body of a supermanifold, which
I will define. This will be useful for the matter treated in Chapter 9.

In Chapter 6 I will define fractional coforms and fractional mixed forms of the first and of
the second type. Fractional coforms are examples of what Voronov calls twisted covariant dual
Lagrangians satisfying the fundamental equations or shortly twisted dual forms in [153] and [154],
and they are the basis for the definition of his stable forms. Fractional mixed forms are examples
of what Voronov called mixed forms, [153], [154].

An example of a fractional coform will be the coform w locally written as:

w =
∂At+1

∧ ∂A1
∧ · · · ∧ ∂At

∂α1
⊙ · · · ⊙ ∂αq
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or the coform u locally written as:

u =
v1 ∧ · · · ∧ vt
ṽ1 ⊙ · · · ⊙ ṽq

where v1, . . . , vt are vector fields of any parity and ṽ1 . . . ṽq are odd vector fields.
An example of a fractional mixed form will be:

v1 ∧ · · · ∧ vt
ṽ1 ⊙ · · · ⊙ ṽq

Θ1 ∧ · · · ∧Θr

θ1 ⊙ · · · ⊙ θs
(19)

I will show how to perform a Cartan Calculus with fractional coforms and fractional mixed
forms, and this will allow me to give sense to formula like (19) or like:

Θ1 ∧ · · · ∧Θl

θ1 ⊙ · · · ⊙ θd
∂A1
∧ · · · ∧ ∂At

∂α1
⊙ · · · ⊙ ∂αq

(20)

also when, in (20), l > t and d < q; or when, in (19), t > r and q < s.
For example I can give sense to:

dξ1 1
∂
∂ξ1

and by symmetry:
1
∂
∂ξ1

dξ1 := dξ1 1
∂
∂ξ1

or:
∂

∂ξ1

1
dξ1

where ξ1 is an odd local coordinate on a supermanifold.
In section 6.3 I show how to integrate coforms and mixed forms on supermanifolds.
Chapter 6 is indeed independent of the rest of this thesis and, unlike Chapter 5, it is not

necessary to read it in order to understand the third part of the thesis. Therefore the material
presented there is not treated in detail. It can be considered as a natural complement of Chapter
5 and as a preliminary work for future studies, especially in the direction of Batalin-Vilkovisky
and Bechi-Rouet-Stora-Tyutin superfield theories.

The main original contributions in the Third Part of my thesis are: the construction of a
multisymplectic formalism for super-field theories; the formulation of the Comparison Theorem
with the tools offered by the fractional forms and the integral over an immersed body; the for-
mulation of the geometrical treatment of symmetries and supersymmetries of superfield theories
using the language of fractional forms and exploiting the super Poincaré-Cartan fractional form.

The theories of superfields began to be studied extensively at the end of 70’s with the devel-
opement of supersymmetry in Physics.

A supersymmetric field theory can be usually presented in two different ways: as a field
theory on a classical manifold, with fermionic and bosonic components of the field, or as a theory
defined on a supermanifold. The first approach is sometime referred to as the components
approach, whereas the second one is sometime referred to as the proper superfield approach. In
both cases the theory is defined by the equations which the fields have to satisfy.

When one uses the components approach, the field equations can be derived by a variational
principle with an action defined as the integral on the classical base manifold of a Lagrangian
density. The action obviously involves both the bosonic (commuting) and the fermionic (anti-
commuting) components of the fields, treating them accordingly to the respective parities.
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To express the action principle in a geometric language requires the formulation of a vari-
ational calculus for Lagrangian densities defined in terms of differential forms. Since the La-
grangian density typically depends on the derivative of the components of the fields (which can
be bosonic or fermionic), even if the theory is defined on a classical (bosonic) manifold, it is clear
that it is necessary to develop a differential forms calculus valid also for the fermionic sector.
This is not simple at all and it has been done by D. Hernández Ruipérez and J. Muñoz Masqué
during 80’s, exactly for the case when the base manifold is classical. In [76, 77, 78, 118, 119]
they have indeed developed a graded variational calculus for Lagrangian densities defined in
terms of graded Kostant differential forms and they have obtained the corresponding Lagrangian
formalism (Euler-Lagrange equations, Poincaré-Cartan forms, Noether invariants, etc.).

When the base manifold is not classical and it is a supermanifold, like in the superfield
approach to supersymmetric theories, then the task is even more difficult. The theory can still
be derived by a variational principle, but the action in this case is defined as the Berezinian
integral (performed with the help of a Berezinian volume density) of a Lagrangian density, which
must be therefore a Berezinian volume density.

In 1987 in [80] Hernández Ruipérez and Muñoz Masqué recognize: "the lack of an intrinsic def-
inition of a suitable notion of intermediate Berezinian densities with its Cartan exterior calculus,
prevents us from developing a Lagrangian formalism...", meaning a full Lagrangian formalism
valid also for the case when the base manifold is a supermanifold. Nonetheless, in [79] and
[80] they arrived to an intrinsic formulation of the notion of Berezinian Lagrangian density and
Berezinian critical sections. Moreover, in the case where a theory can be expressed both with the
components and with the superfield approach, they showed the way to relate the critical sections
of the Berezinian Lagrangian density, defined on the supermanifold, to the critical sections of the
corresponding graded-Lagrangian, defined on a bosonic manifold with graded differential forms.
They did this via a first version of what will be then called the Comparison Theorem.

In 1992 J. Monterde, in [113], showed that the Berezinian critical sections of an action de-
fined with a Berezinian Lagrangian density must satisfy a super version of the Euler-Lagrange
equations. When he wrote his paper, he had at his disposal the formalism of superforms defined
by Voronov and Zorich during 80’s. Nevertheless, perhaps because of the fact that the system
of notations which was needed for this purpose is (to my opinion) a bit heavy, unfortunately it
seems that his results have not been exploited much nor by mathematicians neither by physicists.

After that, during the 90’s and during the first decade of the new millennium, some other
steps had been made by some authors in building a geometric approach to superfield theories
from a Lagrangian and from an Hamiltonian point of view. Important insights were in the
papers on supermechanics by Monterde and Muñoz Masqué, [114, 115]; by L. A. Ibort and J.
Marín-Solano [83]; by J. F. Cariñena and H. Figueroa [26]; by Monterde and J. A. Vallejo, [117].

In 2006 Monterde, Muñoz Masqué and Vallejo published a paper, [116], in which they pro-
posed a Hamilton-Cartan formalism for first-order Berezinian variational problems valid for fields
defined on supermanifolds of any dimension. They achieved their purpose by studying, with the
help of the Comparison Theorem, an associated higher-order graded variational problem, defined
on a bosonic base manifold. They obtained a super Poincaré-Cartan form valid for theories on
bases of any dimension. However they chose a notation which I judge not very much adapted to
general proofs, neither to actual calculations. They also obtained a very beautiful and important
result, which is the generalization of first Noether theorem to super field theories (theorem 8.2
in [116]); but they obtained it using a rather technical assumption needed in the hypothesis.

To my knowledge neither Monterde, Muñoz Masqué or Vallejo, nor any other mathematician,
tried to use the results on super Poincaré-Cartan forms to describe the general superfield theories
with the multisymplectic approach.

Independently from the results obtained by the Spanish school, there has been, to my knowl-
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edge, only one attempt to extend the multisymplectic formalism to superfields. S. P. Hrabak in
[81, 82] initiated a study of the formulation of the classical BRST symmetry within the frame-
work of a multisymplectic theory. To do so, he needed to extend the multisymplectic formalism
so that it works also for field theories whose base is a classical bosonic manifold, but whose space
of fields is a supermanifold, with bosonic and fermionic (because of the presence of the ghosts)
sectors. He accomplished his task in [82]. He didn’t however show how to eventually extend the
formalism also to the case when the base itself is a supermanifold.

Here in the third part of my thesis I will present a full multisymplectic version of the superfield
theories valid for any dimension (even and odd) of the base space and of the space of fields. My
results are a generalization of those obtained by Hrabak in [82] and they are based on a full
exploitation of the potential of the theory of superforms of Voronov and Zorich. They can also
be considered a natural generalization of the results obtained in the geometrical presentations
of finite dimensional supermechanics, which include the use of a super symplectic form, like the
presentations in [83] and [26].

If one wants to build a multisymplectic superfield theory, he has to use objects (for example
the multisymplectic form) which can be integrated on a supermanifold and which in the same time
can be used for a Cartan calculus, including contraction by supervectors, external product by one
forms and external derivation. This is the difficult point. In fact, before the articles of Voronov of
the 90’s, [153, 154], no such object did exist. Before the appearance of superforms of Voronov and
Zorich, the best candidates to play the role which in classical field theory is played by differential
forms were Kostant forms or pseudodifferential and integral forms. Unfortunately Kostant forms
can be integrated only on even base manifolds. On the other hand, pseudodifferential and
integral forms are suitable for integration but do not admit a simple and natural version of
Cartan calculus. In order to to find a way to bypass this fundamental difficulty, Hernández
Ruipérez, Muñoz Masqué, Monterde and Vallejo were obliged, in their works, to treat theories
defined on a superbase, relating them to corresponding theories (of higher order) which can be
understood as defined on an even base.

In my work, I use a different approach. I believe that Voronov Zorich superforms are the
natural objects to use to build a multisymplectic theory. Indeed they can be integrated and
they admit a full Cartan calculus. Moreover, I try and use, as far as possible, only fractional
superforms. In this way all the proofs and calculations become more transparent and directly
comparable to the corresponding ones of classical field theory.

In Chapter 7 I will show how to found superfield theories based on an action principle, when
the Lagrangian is a Berezinian fractional superforms:

L = L
(
xA; qI ; q̇IA

) dx1 ∧ · · · ∧ dxn

dxn+1 ⊙ · · · ⊙ dxn+m

I will obtain the same super version of Euler-Lagrange equations already obtained in [113]:

(−1)|A||I| d

dxA
∂L

∂q̇IA

(
j1Φ(x)

)
−
∂L

∂qI
(
j1Φ(x)

)
= 0 (21)

They are a generalization of (14) and I will obtain them using a notation lighter than the
one used in [113] and a formalism which I judge more natural and which allows simpler and
shorter proofs. In particular I will show that there is no need to use an higher order Lagrangian
in components for a theory which can be described by a first order Berezinian Lagrangian.

Chapter 8 is the most important part of my thesis: it contains the ideas that I judge the most
original and the main results of this work. It consists in the presentation of the multisymplectic
approach to superfield theories made with the help of fractional forms.
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In section 8.1 I define the super-multimomenta space P as a subbundle ofHomπ(VπE,Bn−1|mX);
where VπE is the vertical tangent bundle of the configurations bundle E, Bn−1|mX is a subbun-
dle of the bundle of n − 1|m-forms over the base supermanifold X and Homπ(VπE,Bn−1|mX)
is a fiber bundle over X whose fiber over a point x ∈ X is the collection of all RS-linear maps
between the supermodules VeE and B

n−1|m
x X, for all e such that π(e) = x.

On Homπ(VπE,Bn−1|mX) we can use as local coordinates
(
xA, qI , pAI , p̃

A
I

)
and then the

super version of the Legendre transform is:

FL :
(
xA, qI , q̇IA

)
7−→

(
xA, qI , pAI , p̃

A
I

)
=
(
xA, qI , (−1)|A| ∂L

∂q̇IA

(
xA, qI , q̇IA

)
,
∂L̃

∂q̇IA

(
xA, qI , q̇IA

))

In section 8.2 I define on P the super Hamiltonian:

H(xA, qI , pAI ) := q̇IAp̃
A
I + (−1)|A|q̇IAp

A
I − L

(
xA, qI , q̇IA

)

Then I present the super version of the Hamilton-Volterra equations, which, when L = L is
even are: 




(−1)|I| ∂q
I

∂xA
(z(x)) =

∂H

∂pAI
(z(x))

(−1)|A|(−1)|A||I| ∂p
A
I

∂xA
(z(x)) = −

∂H

∂qI
(z(x))

(22)

and when L = L̃ is odd, are:





∂qI

∂xA
(z(x)) =

∂H̃

∂p̃AI

(z(x))

(−1)|A||I| ∂p̃
A
I

∂xA
(z(x)) = −

∂H̃

∂qI
(z(x))

(23)

They are a generalization of (15).
In section 8.3 I introduce the super Poincaré-Cartan form and the super multisymplectic

form:

θ :=dqI ∧ pAI βA −Hβ

ω :=− dqI ∧ dpAI βA − dH ∧ β

where β = dx1∧···∧dxn

dxn+1⊙···⊙dxn+m ; and I show that they are globally well defined.
Then I prove the following:

Theorem 8. Let L be an even-regular or an odd-regular Lagrangian function on J1E and H
be its corresponding Hamiltonian function on the super-multimomenta-space P , then a section
z ∈ Γ

(
FL(J1π)

)
, is a solution of the theory if and only if ∀U local chart of P , with corresponding

local super-multisymplectic n+ 1|m-form ω, and ∀u ∈ Γ (TU):

z∗(u ω̂) = 0

where ω̂ is the extension in the first argument to all TU of the super multisymplectic form ω.
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It is a generalization of theorem 6 and and I consider this result as the most important
theorem proved in this thesis.

In section 8.4 I build a super symplectic structure on the super covariant phase space (the
space of solutions of the theory), in a way that is completely analogous to the one used for the
classical case, integrating the extended super multisymplectic form ω̂ over a slice Σ ⊂ P which
is a supermanifold of codimension 1|0. I obtain the symplectic form Ω̂Σ, which is an extended
2|0-form on the space of solutions E ≡ G and which, as in the classical case, may depend on the
chosen slice Σ.

In Chapter 9 I will show how the Comparison Theorem can be seen from the perspective of
the formalism introduced in the two previous chapters. The chosen concrete approach hopefully
will clarify the relations existing between the so called components theories and the so called
superfield theories. All the treatment will be based on the following diagram, which is explained
in this chapter:

Jm+1π

J1|mπ b∗ (Jm+1π
)

J0|mπ J1π b∗ (J1|mπ
)

E b∗ (J0|mπ
)

b∗ (J1π
)

b∗ (E)

X X

jm+1
1|m

π

j
1|m

0|m
π j

1|m

1 π

j
0|m

0 π j1
0π

π

ǫ

b

In section 9.2, I will look at the comparison from the Hamiltonian point of view and I will
make a first comparison of symplectic structures on the spaces of solutions of theories expressed
in the superfield and in the components formalisms. These results are, up to my knowledge,
original.

In Chapter 10 I will explain how the supermultisymplectic formalism can be used to define
super Poisson brackets for super fields. In particular in section 10.1 I will study in more detail
the simplest case of supermechanics; I will show how on the space of solutions of a supermechanic
theory is naturally defined a super symplectic structure and I will relate my results to the already
published results obtained by Khudaverdian, see [91], and by Monterde and Muñoz Masqué, [115].

If G is the space of solutions of the theory and if f, g ∈ F(G ), then we define the vector
fields uf , ug ∈ Γ (TG ) with:

Ω̂Σ (·, uf ) = df(·) (24)

and we pose:

{f, g} := Ω̂Σ (uf , ug)
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obtaining:

{f, g} = (−1)(|I|+|L|)(|f |+1) ∂f

∂pI

∂g

∂qI
− (−1)(|I|+|L|)(|g|+1) (−1)(|f |+|L|)(|g|+|L|) ∂g

∂pI

∂f

∂qI

This Poisson bracket is even or odd depending on the parity of the Lagrangian L.
To my knowledge, nobody has tried yet to build covariantly a super symplectic structure on

the space G of solutions of a superfield theory; excepted Monterde, Muñoz Masqué and Vallejo,
in [115] and [117] quoted above, who did it for the special case of base manifold of dimension
1|1, which give rise to a supermechanics theory. In section 10.2 I show how the constructions
expounded in chapter 4 for classical field theories, can be directly extended to the super case for
super field theories defined on base supermanifold X of any even and odd dimension. The space
G becomes then a truly super covariant phase space.

If A and B are functionals defined on the covariant phase space G , we have:

{A,B} (G) =
∫

ΣX

[
(−1)(|I|+|L|)(|A|+1) δA

δπI

∣∣∣∣
G

(~x)
δB

δqI

∣∣∣∣
G

(~x) +

− (−1)(|I|+|L|)(|B|+1) (−1)(|A|+|L|)(|B|+|L|) δB

δπI

∣∣∣∣
G

(~x)
δA

δqI

∣∣∣∣
G

(~x)
]
d~x

=
∫

ΣX

[
(−1)(|I|+|Λ|+|L|)(|A|+1) δA

δπΛ
I

∣∣∣∣
G

(~x)
δB

δqIΛ

∣∣∣∣
G

(~x) +

− (−1)(|I|+|Λ|+|L|)(|B|+1) (−1)(|A|+|L|)(|B|+|L|) δB

δπΛ
I

∣∣∣∣
G

(~x)
δA

δqIΛ

∣∣∣∣
G

(~x)
]
d~x

where ΣX is a Cauchy slice in X of codimension 1|0, (~x) are the restriction of the Cauchy
coordinates on the n−1|m dimensional supermanifold ΣX , d~x is the canonical volume fractional
n − 1|m-form defined by the Cauchy coordinates on ΣX ; ΣX is the body of ΣX , (~x) are the
Cauchy coordinates on ΣX and d~x is the canonical volume n − 1-form defined by the Cauchy
coordinates on ΣX ; and where functional derivatives are used and πI is the canonical momentum
associated to the slice Σ. Note that if Σ is defined by the equation x1 = 0, then πI = p1

I . The
momenta πΛ

I will be defined by integration over the odd part of the supermanifold. Note that∣∣πΛ
I

∣∣ = |I|+ l(Λ) + |L|+m.
From the super Poisson structure built on G , I derive the super commutation rules to which

Fermionic and Bosonic fields have to obey and I demonstrate that these rules are exactly those
expected from a physical point of view. This will give a justification, in a natural way, to the
use of anticommutator for Fermionic fields.

In Chapter 11 I will study the symmetries and supersymmetries of super field theories with
the techniques offered by the formalism of fractional mixed forms and from the point of view of
the super multisymplectic approach expounded in the previous chapters.

Some authors have already given a "super" version of the first Noether theorem valid for
supermechanics: Ibort and Marín-Solano [83] and Cariñena and Figueroa [25].

L. Fatibene and M. Francaviglia, in [48] and L. Fatibene, M. Ferraris, M. Francaviglia and R.
G. McLenaghan, in [47], have explored the way to give a geometric interpretation of supersym-
metries using the classical tools of classical Poincaré-Cartan form and generalized vector fields
defined over a bosonic manifold for field theories whose field spaces are product of exterior powers
of some vector spaces, such that anticommuting spinors can be included in the theory.

As already quoted above, in 2006 Monterde, Muñoz Masqué and Vallejo, [116], obtained a
version of the first Noether theorem valid for generic super field theories, but with the help of a
rather technical assumption needed in the hypothesis.
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Here in section 11.2, I will show that my approach allows to have a super version of Noether
theorem which is quite natural, simple to prove with my formalism, and quite general since it
does not require any specific technical assumption of the kind used in [116].

Theorem 9. Consider a field theory defined by a configurations bundle E with fiber type the
supermanifold F over a base supermanifold X and by a Lagrangian form L which locally is
L = Lβ. Let E be the space of solutions of the field theory. Let χ be a projectable vector field on
E such that:

∀Φ ∈ E ∃αΦ ∈ Ωn−1|mX : ∀U ⊂ X :
∫

U

j1Φ∗ Liej1χ L =
∫

U

dαΦ

then we have that:

∀U ⊂ X, ∀Φ ∈ E :
∫

U

d

{
j1Φ∗

[
j1χ

(
L+ (−1)|A|(|A|+|L|)

cI ∧
∂L

∂q̇IA
βA

)]
− αΦ

}
= 0

Of course in theorem 9 fractional forms do appear.
In section 11.3, I will present a super extension of the multimomentum map introduced by

Gotay, Isenberg, Marsden, Montgomery, Śniatycki and Yasskin in [63].

Corollary 10. Let G be a Lie supergroup acting on P with a lifted covariant action, id est
so that for each element k ∈ g (the superalgebra), there exists a corresponding action on E
generated by the projectable vector field χ, such that LieχP

ω = 0. Suppose there exists J ∈
Hom

(
g,Ωn−1|m (P )

)
, such that for each k ∈ g:

χP ω = d [J(k)]

then, ∀Φ ∈ E :
j1Φ∗ Liej1χ L = d [J(k) + χP θ]

In this case we say that the map:

J : g −→ Ωn−1|m (P )

k −→ J(k)

is the super covariant comomentum map of the action.

Both the super Noether theorem and the super multimomentum map will be presented with
a formulation which will reveal to be very close to the corresponding one for classical theories.

Finally, in Chapter 12, I will present some examples showing how all the theory can be
implemented for some specific Lagrangians. The study of the superoscillator in section 12.1 and
the one of the superparticle in a curved space in section 12.2 will show how the tools presented
in this thesis can be useful to investigate supermechanical theories from a point of view which
wasn’t available before, exploiting at best the potentiality of the superfield formulation. In sec-
tion 12.3 I will work on the 3-dimensional super σ-model.

I conclude this introduction to my thesis by commenting a remark which appeared in a
very recent paper on a geometric framework for Lagrangian supermechanics from a categorical
point of view, by A. J. Bruce, K. Grabowska and G. Moreno, [18]. The authors write: "...To
our knowledge, the framework of geometric field theory - multisymplectic structures and so on
- has not been applied to supersymmetric field theory. In part, we think that this is due to
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the lack of appreciation of categorical methods applied to supergeometry within the geometric
mechanics community... ". I disagree with this remark. Some authors, for example D. S. Freed
in some lines of [54], write that the use of the notion of functor of points is necessary for a
mathematical completely meaningful presentation of a superfield theory. Again I disagree, even
if all these notions certainly lead to interesting viewpoints. Throughout all this thesis, I use a
concrete approach to super theories, in the sense of DeWitt-Rogers, always working with concrete
supermanifolds defined starting from the infinitely generated Grassmann algebra RS . I do not
make use of the notion of functor of points. It is true that a categorical point of view of superfield
theories may go better with the fact that probably there is no physical possible distinction
between theories defined starting from different Grassmann algebras. But I don’t think that
the key point for developing a meaningful geometric, multisymplectic, super-field theory is the
adoption of a categorical point of view, neither of a geometro algebraic one. As I have written
above, the crucial difficulty to overcome is to find objects which can be integrated and which
allow a Cartan calculus. This task can be undertaken as well with a concrete approach and this is
exactly what I want to present here. Moreover, in my opinion, the choice of the concrete approach
has the advantage to help a more intuitive insight on the geometrical framework, avoiding all
the levels of abstraction which are not strictly necessary.

The principal aim of the third part of my thesis is precisely to show that fractional superforms
are the natural objects to use when one wants to give a geometric formulation of a super field
theory and that they are the key ingredient in doing so, and specifically in building the super
version of the multisymplectic formalism.
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Introduction to Part I

The multisymplectic formalism allows a finite dimensional geometric description of classical
field theories seen from an Hamiltonian point of view. Multisymplectic geometry plays the role
played by symplectic geometry in the description of classical Hamiltonian mechanics. Moreover
the multisymplectic approach provides a tool for building a symplectic structure on the space of
solution of the field theory and to investigate it.

After the early works of V. Volterra in 1890, [150, 151], it was in the first half of last century
that the Hamiltonian approach to field theories was developed by H. Weyl, in [160], by T. De
Donder, in [32], and then by T. Lepage, in [104] and P. Dedecker in 1953 [33], see also [34].

In a series of papers during the 70’s, J. Kijowski, [94, 95], with W. Szczyrba [97, 98] and
then with W. M. Tulczyjew [99] proposed the multisymplectic point of view on all these theories.
Kijowski ideas allows to build a symplectic structure on the space of solution of a field theory,
which become the covariant phase space. This symplectic structure is to some extent independent
from any choice of splitting of spacetime in space and time. Therefore the multisymplectic
formalism provides a fully covariant point of view on Hamiltonian field theories.

Similar ideas on the symplectic structure of the covariant phase space were present, during
the 50’s, in the pioneering works of R. E. Peierls, see [122], and I. Segal, see [144], and appeared
again in 80’s in papers by E. Witten [161], C. Crnkovic and Witten [28] and G. Zuckerman [164].

A new interest flourished on the then called covariant Hamiltonian theories and on the co-
variant phase space approach, both in the physical and in the mathematical communities. The
multisymplectic formalism for field theories was studied and revisited by different authors and
presented in different variants; for example by J. F. Cariñena, M. Crampin and L. A. Ibort in [24],
by I. Kanatchikov in [85, 86], by M. Forger and H. Römer in [52], by Forger, C. Paufler and Römer
in [50, 51], by Forger and S. V. Romero in [53], by A. Echeverría-Enríquez, M. Muñoz-Lecanda
and N. Román-Roy in [46], by M. de León, D. Martín de Diego and A. Santamaría-Merini in
[29], by F. Hélein in [71], by Hélein and D. Vey in [75] and, under the Lagrangian-Hamiltonian
Unified Formalism label, for example by A. Echeverría-Enríquez, C. López, J. Marín Solano, M.
Muñoz-Lecanda and N. Román-Roy in [44].

The multisymplectic approach has been the starting point for a very original attempt of
quantization made by I. Kanatchikov: between his earliest papers on the subject, see [87]; between
his most recent ones, see [88].

Similar formalisms appeared: under the n-symplectic label in L. K. Norris [120] and in M.
McLean and L. K. Norris [111]; under the polisymplectic label for example in C. Günter [66], in
G. Sardanashvily [140], in G. Giachetta, L. Mangiarotti and Sardanashvily [59] and [60]; under
the k-symplectic label for example in A. Rey, Román-Roy and M. Salgado in [127]; under the
k-cosymplectic label for example in M. de León, E. Merino, J. A. Oubiña, P. Rodrigues and M.
Salgado [31], Rey, Román-Roy, Salgado and S. Vilariño in [128]. The mutual relations existing
between some of these formalisms and with the multisymplectic formalism are explained in the
review paper of M. de León, M. McLean, K. L. Norris, A. Rey-Roca and M. Salgado [30].

3
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Hélein and J. Kouneiher, [72, 73, 74], studied in the multisymplectic framework a formalism,
more general than the one used in the De Donder-Weyl theory, based on the works of Lepage
and Dedecker.

The multisymplectic formalism, born for first order field theories, has been generalized to
higher order theories: see for example S. Kourambaeva and S. Shkoller [102], L. Vitagliano [148],
P. D. Prieto-Martínez and Román-Roy [124] and J. Kijowski and G. Moreno [96].

The formalism has been used for theories defined on base manifolds with boundary: see L. A.
Ibort and A. Spivak [84].

Applications of the formalism to continuum Mechanics and hydrodynamics have been pro-
posed; see for example: J. E. Marsden and S. Shkoller [108], the already quoted above [102] and J.
E. Marsden, S. Pekarsky, S. Shkoller and M. West [107]. Covariant numerical methods for partial
differential equations, developed in or inspired by the multisymplectic framework, have been in-
troduced: see for example J. E. Marsden, G. W. Patrick and S. Shkoller [106], Kourambaeva and
Shkoller [102], F. Demoures, F. Gay-Balmaz and T. S. Ratiu [38] and Demoures, Gay-Balmaz,
M. Kobilarov and Ratiu [39].

The interest in multisymplectic field theories gave birth also to a number of studies on the so
called multisymplectic geometry. Unfortunately a general accepted definition of multisymplectic
manifold has not been settled. For some of the results obtained on this subject, one can see
F. Cantrijn, L. A. Ibort and M. de León [22] and [23], Forger and L. Gomes [49] and the more
recent works on higher symplectic geometry, see for example J. C. Baez, A. E. Hoffnung and C.
L. Rogers [3], Baez and C. L. Rogers [4], C. L. Rogers [134], M. Richter [129, 130, 131] where
the terminology of n-plectic geometry has been introduced.

The important work of M. J. Gotay, J. Isenberg, J. E. Marsden, R. Montgomery, J. Śniatycki
and P. B. Yasskin, [63, 64], can be read for a presentation of the multisymplectic formalism for
field theories. For a shorter introduction one can read Román-Roy [135]. For an introduction
with a report on the history on how the ideas around the multisymplectic formalism originated
and evolved, one can read Hélein [70].

In this thesis I will be mainly concerned with the multisymplectic formalism to build first
order field theories. I will use a version of the multisymplectic formalism which minimizes the
dimension of the spaces involved, which seems suitable to me for a first attempt of extending to
super-field theories. I call it the minimal setting for the multisymplectic formalism. The main
ingredient of this setting will be the finite dimensional multimomenta space P , which corresponds
to what Forger and Romero call the ordinary multiphase space, [53] and what Román-Roy, [135],
calls the restricted multimomentum bundle. For a review of other possible settings for the
formulation of multisymplectic field theories and for a list of the various fiber bundles more often
used in that context, see Echeverría-Enríquez, Muñoz-Lecanda and Román-Roy [45].

The main interest of the finite dimensional geometric construction of the multimomenta
space with its multisymplectic (n-plectic in the most up to date terminology) structure is that
it provides a way to build a symplectic structure on the covariant phase space. There is then a
direct link between the multisymplectic field theory and the classical canonical formulation of the
field theory. This link connects the works on multisymplectic geometry to the works of Physics
and Mathematical Physics communities on canonical field theory, pioneered by the papers of
Peierls and Segal already cited above, continued and developed by B. DeWitt [40, 41, 42], by
García and Pérez-Rendón in [56, 57, 58] and by Goldschmidt and Sternberg in [62].

Here I will follow [70] to show how, with the help of the multisymplectic form ω, it is possible
to build a symplectic form Ω on the space of Hamiltonian surfaces G . For more details one can
read Hélein and Kouneiher [73] and the papers of Kijowski, Szczyrba and Tulczyjew [97, 98, 99].
Then I will very shortly explain how the symplectic structure obtained on G is related to the
Poisson brackets used by physicists in field theory.
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Throughout all this thesis I will deal with theories arising from regular Lagrangians. The
multisymplectic approach, with some adaptations, can be used also for theories arising from
irregular Lagrangians, possibly with gauge symmetries and many of the results here presented
can be extended to that case: it is possible to built a symplectic structure on a space obtained by
reducing G . For an introduction to the subject one can see [63, 64] and [135] and the bibliography
therein.

In chapter 1 I will introduce a geometrical framework for the Lagrangian approach to first
order field theories, defining the Action and the space of solutions of the theory.

In chapter 2 I will introduce what I call the minimal setting for the multisymplectic description
of field theories. In section 2.1 I will define the multimomenta space and the Legendre transform.
In section 2.2 I will expose the Volterra theorem and I will show the Hamilton-Volterra equations.
In section 2.3 I’ll introduce the multisymplectic form. In section 2.4 I’ll explain the techniques
used to build a symplectic structure on covariant phase space.

Chapter 3 contains the main original contributions of this first part of my thesis. Starting
from the multisymplectic form, we can build a symplectic structure on the space of solutions G of
a field theory. The constructions however depends on the choice of a surface Σ of codimension 1
in the base manifold of the theory. It is then natural to ask oneself if that choice really affects the
symplectic structure or if the symplectic structure is in fact independent from that choice. I will
address this question and I will show that the choice of the surface of codimension 1 may indeed
influence the symplectic structure on the space of solutions. In section 3.1 I will show, with
the help of very simple examples, that two surfaces Σ and Σ′ belonging to different homology
classes may give birth to nonequivalent symplectic structures. In section 3.2, again with simple
examples, I will show that, when the base manifold cannot be split in a time-line times a compact
space (id est when the space is non compact), then again the choice of the surface of codimension
1 does influence the symplectic structure: some subtle phenomena occurs in this case and I will
investigate them.

In chapter 4 I will show how the symplectic structure on the space of solutions is linked with
the field brackets used by physicists.
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Chapter 1

Lagrangian formulation of

classical field theories

In this section I’ll fix the notation used in this work to formulate a classical first order La-
grangian field theory. I’ll list a number of different ways to identify the solutions of a Lagrangian
theory and I’ll recall some standard facts. Most of the results presented can be extended, with
some modifications, to higher order theories. For a less synthetic, more accurate and more rig-
orous presentation of the notions here treated, one can see a text book on classical field theory
like for example [48] and [61] or, with a slightly different approach, [36] and [54].

The aim of this section is also to present some of the definitions and of the results which I
try to extend to the super-field theories in chapter 5.

Let E, X and F be finite dimensional C∞ manifolds, E and X being connected and X being
also oriented; let (E, π,X, F ) be a differential fiber bundle with total space E, base X, type-fiber
F and bundle C∞ projection π, so that we have the following situation:

E

π

y

X

I will sometime denote the fiber bundle with its total space E, when there is no risk of confusion,
or with its projection π.

A field φ over X is a C∞ section of the fiber bundle π and we write φ ∈ Γ
(
E
)
. As often

done in the literature, we can call Γ
(
E
)

the space of fields. From now on and throughout all this
section and the following one of this paper, all the maps between manifolds will be considered
C∞ if not otherwise stated.
The first order jet space of sections of E is denoted by J1π, and j1φ denotes the first order jet
of the section φ, which is a lift of the section φ to J1π.

The jet space J1π has the structure of a differential fiber bundle over the base X with
projection j1π and of an affine fiber bundle over the base E with projection j1

0π. The two
projections are linked by j1π = π ◦ j1

0π. We can call j1 the lifting map from Γ
(
E
)
, the space of

section of E, to Γ
(
J1π

)
, the space of section of J1π, seen as fiber bundle over the base X.

j1 : Γ
(
E
)
−→ j1Γ

(
E
)
⊂ Γ

(
J1π

)

On J1π, on E and on X do exist adapted atlases of charts, so that, if on an open chart U of
X we use the local coordinates xa, a = 1, · · ·n, where n is the dimension of X, then on the open

7
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chart V of E it is possible to use, with the little abuse of notation xa = xa ◦ π, the coordinates(
xa, qi

)
with i = 1, ...,m, m being the dimension of the fiber F , and on the open chart W of J1π

we similarly use the coordinates
(
xa, qi, q̇ia

)
.

Sometime I’ll denote by ∂a the operator ∂
∂xa .

The field φ will read in coordinates:

φ : xa −→ (xa, qi (φ(x)))

A section s ∈ Γ
(
J1π

)
will read:

s : xa −→
(
xa, qi(s(x)), q̇ia(s(x))

)

Sometime, for brevity, I’ll write:
φ : xa −→ qi (xa)

s : xa −→
(
qi(xa), q̇ia(xa)

)

Then ∀x ∈ X, ∀φ ∈ Γ
(
E
)
, it will be q̇ia

(
j1φ (x)

)
= ∂aq

i(φ(x)).
On a local chart of J1π we can define the local contact one forms ci ∈ Ω1

locJ
1π, by the

formulas in local coordinates:
ci := dqi − q̇iadx

a

We can identify the sections in j1Γ
(
E
)

by the following proposition:

s ∈ Γ
(
J1π

)
belongs to j1Γ

(
E
)
⇐⇒ ∀i, ∀v ∈ TX, ci(s∗v) = 0 (1.1)

The Lagrangian L of our field theory is a n-dimensional differential form on J1π which is
horizontal with-respect to the projection j1π. On a local chart it is always possible to write it
as:

L = L
(
xa, qi, q̇ia

)
β

Where β = dx1 ∧ · · · ∧ dxn is the canonical n-form on the chart and where the coordinates xa

are seen as coordinates on J1π. Note that L does not define an intrinsic ( id est independent of
coordinates) function on J1π; in fact, when changing chart, L transforms as an n-density: it can
therefore be called the Lagrangian density.

The action AU is the integral of L on the n-dimensional surface s(U), where U ⊂ X is a n-
dimensional submanifold (possibly with boundary) of X, s is a section of J1π and so s(U) ⊂ J1π
is a a n-dimensional submanifold (possibly with boundary) of J1π. The value of A is always well
defined for every section s if U is compact. A particularly interesting case occur when s = j1φ
is the lift of a local section φ of E. In this case, with a little abuse of notation, we define:

AU (φ) := AU (j1φ) =
∫

j1φ(U)

L =
∫

U

j1φ∗L (1.2)

The space Γ
(
E
)

of all possible sections of E is not in general a finite dimensional manifold.
The same can be said for the space of their lifts to J1π, j1Γ

(
E
)
, for the space Γ

(
J1π

)
of all

sections of J1π and for their subspaces. Nevertheless, it is possible to give them a differential
structure, for example obtaining an infinite dimensional manifold modeled on some infinite di-
mensional linear space, or, choosing a different way, obtaining a diffeological space, or, following
Kijowsky with Szczyrba in one of their original works on multisymplectic field theory [98], con-
sidering them as inductive differential manifolds. I will not go trough the technical problems
involved in building such differential structures, one can see [126] for a possible approach to this
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subject. What is important for the rest of this paper is to know that it is possible to define the
notion of differentiable paths on these spaces, the notion of differentiable functions and so the
notions of tangent and cotangent spaces. In those contexts, A is a differentiable function on one
of those spaces.

Let’s call U a space of sections of E which share the same values on ∂U : U ⊂ Γ
(
E
)
. I call

j1U the space of their lifts which are sections of J1π: j1U ⊂ j1Γ
(
E
)
. There is one such space

U for each assignment of values on ∂U . Chosen U , I call Uφ the space of sections of E which
share the same values with φ on ∂U . It could be called U(U,φ) to stress its dependence both on
φ and on U , but I’ll mostly drop the first index for sake of brevity and to lighten a little bit the
notations.

A section s of J1π which is not a lift doesn’t belong to any of the spaces j1U described
above. Let’s denote by AU

∣∣
U

the function AU restricted to a set U . A field φ is said to be a
solution, or a critical point, of our theory if, for every U compact submanifold with boundary, φ
is an extremal point for AU in Uφ; that is φ is a point where the differential dAU vanishes in Uφ.
So we have:

φ is a solution ⇐⇒ ∀U, d
(
AU
∣∣
Uφ

)
(φ) = 0 ⇐⇒ ∀U d

(
AU
∣∣
j1Uφ

)
(j1φ) = 0 (1.3)

Where, as in (1.2), we have indicated with the same name AU two different functions defined on
different spaces. There should not be any risk of confusion.

I call E the set of all solutions, id est of all critical points, of the theory. E ⊂ Γ
(
E
)
. Again, as

all other subset of Γ
(
E
)
, E is not in general a finite dimensional manifold, but it can be endowed

in many cases (perhaps in any case) with a differential structure.
A path in Uφ trough φ is a function p from an interval I ⊂ R containing the point 0 to the

set Uφ, which is differentiable according to the differential structure given to Uφ and so that
p(0) = φ. Let’s parametrize I with the coordinate ℓ; we have then:

φ is a solution of the theory ⇐⇒ ∀U, ∀ p in Uφ trough φ,
dAU
dl

∣∣∣∣
ℓ=0

= 0 (1.4)

Condition (1.4) is equivalent to condition (1.3). We can see this condition from some other
points of view. For example, if we consider ∂ℓ

∣∣
ℓ=0

which is a vector tangent to I at ℓ = 0, then
p∗∂ℓ

∣∣
ℓ=0

is a vector belonging to TUφ over the point φ. Condition (1.4) is then equivalent to:

φ is a solution ⇐⇒ ∀U, ∀ p in Uφ trough φ, dAU
∣∣
Uφ

(φ) · p∗∂ℓ
∣∣
ℓ=0

= 0 (1.5)

Condition (1.4) can be written in another form. Let VπE ⊂ TE be the fiber-bundle of vectors
on E vertical with respect to the projection π. If φ is a section of E, we define VπE

∣∣
φ(X)

:= φ∗VπE:

it is a vector bundle with base X. We call Vφ(U) the set of all sections of VπE
∣∣
φ(X)

null on ∂U ,
id est the set of vertical vector fields on φ(X) whose value on φ(∂U) is 0.

The tangent space TφUφ is then in a one-to-one natural correspondence with Vφ(U). Let’s set
φℓ := p(ℓ). The vector p∗∂ℓ

∣∣
ℓ=0
∈ TφUφ corresponds to the vector field u ∈ Vφ(U) defined by:

∀x ∈ X, u(x) =
∂qi(φℓ(x))

∂ℓ

∣∣∣∣
ℓ=0

∂

∂qi

Conversely, if the closure U of U is compact, it can be shown that ∀ u ∈ Vφ(U), it exists a path
p trough φ in Uφ such that p∗∂ℓ

∣∣
ℓ=0
∈ TφUφ corresponds to u.
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Since j1 sends a section in Uφ to a section in j1Uφ, it induces the map j1
∗ : TφUφ −→

Tj1φj
1Uφ. The map j1

∗ : TUφ −→ Tj1Uφ, is then a diffeomorphism when the appropriate
differential structures are used.

Let Vj1πJ
1π ⊂ TJ1π be the fiber-bundle of vectors on J1π vertical with respect to the

projection j1π. If s is a section of J1π, we define Vj1πJ
1π
∣∣∣
s(X)

:= s∗Vj1πJ
1π: it is also a vector

fiber bundle with base X.
We can represent each p∗∂ℓ

∣∣
ℓ=0
∈ TφUφ by a section w of Vj1πJ

1π
∣∣∣
j1φ(X)

: let’s call K the

map which associates w to p∗∂ℓ
∣∣
ℓ=0
∈ TφUφ. K is defined as follow:

∀x ∈ X, w(x) = K(p∗∂ℓ
∣∣
ℓ=0

)(x) :=
∂qi(j1φℓ(x))

∂ℓ

∣∣∣∣
ℓ=0

∂

∂qi
+
∂q̇ia(j1φl(x))

∂ℓ

∣∣∣∣
ℓ=0

∂

∂q̇ia

The map K is injective and we can set Vj1φ(U) := K (TφUφ). For it’s definition Vj1φ(U) is
diffeomorph to Vφ(U), to TφUφ and to Tj1φj

1Uφ and for its construction ∀ w ∈ Vj1φ(U), it exists
a path p trough φ in Uφ so that p∗∂l

∣∣
l=0
∈ TφUφ corresponds to w.

It is important to note that w ∈ Vj1φ(U) does not imply that w(∂U) = 0. The components of
w in ∂

∂qi are indeed equal to 0 on ∂U and the tangential projection of ∂
∂q̇i

a
is equal to 0 on ∂U ,

however the normal projection does not necessarily vanish.
Fixed a path p trough φ in Uφ, we call ∂Uℓ the n-dimensional surface in J1π spanned by the

image of ∂U by the map j1φℓ when l goes from 0 to ℓ. In general ∂Uℓ 6= ∅ precisely because w,
corresponding to p∗∂ℓ, is in general different from 0 when calculated in x ∈ ∂U . Nonetheless we
have that

∫
∂Uℓ
L = 0 because w is vertical with respect to j1π whereas L is horizontal. We call

Vl the n+ 1-dimensional surface in J1π spanned by the image of U by the map j1φℓ when ℓ goes
from 0 to l. We have that ∂Vℓ = j1φℓ(U) + ∂Uℓ − j

1φ(U), if the suitable orientations are used.
Keeping all this in mind, we can write:

dAU
dℓ

∣∣∣∣
ℓ=0

= lim
ℓ→0

{
1
ℓ

[∫

j1φℓ(U)

L −

∫

j1φ(U)

L

]}

= lim
ℓ→0

{
1
ℓ

[∫

j1φℓ(U)

L −

∫

j1φ(U)

L

]}
+ lim
ℓ→0

{
1
ℓ

∫

∂Uℓ

L

}

= lim
ℓ→0

{
1
ℓ

[∫

j1φℓ(U)

L −

∫

j1φ(U)

L+
∫

∂Uℓ

L

]}

= lim
ℓ→0

{
1
ℓ

[∫

Vℓ

dL

]}
=
∫

j1φ(U)

w dL =
∫

j1φ(U)

dL(w)β

(1.6)

Where the last equality holds on a local chart.
So (1.4) is equivalent to the following:

φ is a solution of the theory ⇐⇒ ∀U, ∀w ∈ Vj1φ(U),

∫

j1φ(U)

w dL = 0 (1.7)

Let U ⊂ X be included in an chart of an adapted atlas with coordinates as in the beginning
of this section, then, with classical arguments, it can be shown that:

φ is a solution ⇐⇒ on every U, ∀x ∈ U,
d

dxa
∂L

∂q̇ia

(
j1φ(x)

)
−
∂L

∂qi
(
j1φ(x)

)
= 0 (1.8)

where the condition in (1.8) is the classical Euler-Lagrange system of equations for first order
Lagrangian field theories.



Chapter 2

Multisymplectic formulation of

classical field theories.

This chapter is devoted to give a brief introduction to the multisymplectic formalism (in the
minimal setting). In section 2.1 I define the multimomenta space and the Legendre transform. In
section 2.2 I introduce the Hamiltonian and I show the Hamilton-Volterra equations. In section
2.3 I introduce the multisymplectic form and in section 2.4 I show how, out of it, a symplectic
structure can be built in the covariant phase space.

2.1 The multimomenta space and the Legendre transform.

Let’s consider the space VπE ⊂ TE, introduced in the last section: it can be seen as the
total space of a vector fiber-bundle over E with the canonical projection, τ , but it can be also
considered as the total space for a (non vectorial in general) fiber bundle over X with projection
equal to π ◦ τ . Let e ∈ E, then we can call VeE the space of all points of VπE who are projected
by τ on e (it is the fiber over e of (VπE, τ,E)). It is possible then to build, with standard
techniques, a fiber bundle with base X, and with fiber over x ∈ X the collection of all linear
maps, from all the spaces VeE with π(e) = x, to Λn−1T ∗

xX; where Λn−1T ∗X is the fiber-bundle
of (n − 1)-forms on X. The fiber-type will then result to be a finite dimensional manifold. I
will call this new fiber bundle Homπ(V E,Λn−1T ∗X). I will not exhibit here the co-cycle of
the transition functions of this fiber bundle, being it the most natural one that one can think
of in this context. When E = X × F is the trivial fiber bundle with its canonical projection,
then Homπ(V E,Λn−1T ∗X) = E ×X Hom

(
X × TF,Λn−1T ∗X

)
≃ E ×X

(
Λn−1T ∗X ⊗ T ∗F

)
={

(x, n,m)|(x, n) ∈ E, (x,m) ∈ Hom
(
TnF,Λn−1T ∗

xX
)}

.
Let’s call P the total space of this new fiber-bundle: it will be our multimomenta space and

I will call it sometime also the minimal multiphase space. For simplicity we will often denote
with P the fiber bundle itself, so that we have the following:

Definition 11. The multimomenta space of a field theory is the fiber-bundle P = (P, πP ,X) :=
Homπ(V E,Λn−1T ∗X) with total space P , base X and projection πP .

Then, on a chart of an adapted atlas, a point p ∈ P will be denoted by the coordinates
(xa, qi, pai ). If e ∈ E has coordinates (xa, qi), x = π(e) ∈ X has coordinates (xa) and v ∈ VeE

is v = vi ∂
∂qi

∣∣∣∣
e

, then p(v) ∈ Λn−1T ∗
xX can be locally decomposed: p(v) = vipai βa, where βa =

11
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∂
∂xa dx1∧· · ·∧dxn. This provides us with the local coordinates pai for p ∈ Homπ

(
VeE,Λn−1T ∗

xX
)
.

When one changes coordinates naturally on X, E, V E and Λn−1T ∗X, it can be easily shown
that this formula remains unchanged and univocally defines an element of Λn−1T ∗X.

As suggested by the local coordinates structure, it can be shown that P can be considered
also as a fiber-bundle over E and it can also be shown that it is a vector fiber-bundle over E.

This is not a very elegant construction, but it has the advantage of minimizing the number of
variables needed to use the multisymplectic formalism; which is sufficient when you think to work
on local coordinates (as I’ll mainly do in the following) and when you aim to find an extension
to a wider framework (the one of super-fields).

We call Legendre transform the map FL between J1π and P , defined on local charts by:

FL
(
xa, qi, q̇ia

)
=
(
xa, qi,

∂L

∂q̇ia

(
xa, qi, q̇ia

))
(2.1)

We say that the Lagrangian L is regular if J1π is diffeomorphic to FL
(
J1π

)
⊂ P [108]. We

say that L is hyperregular if J1π is diffeomorphic to P [53].

2.2 The Hamiltonian and Hamilton-Volterra equations.

On FL(J1π) it is possible to define the Hamiltonian "function" H by:

H(xa, qi, pai ) := q̇iap
a
i − L

(
xa, qi, q̇ia

)
(2.2)

where we assume that q̇ia is a solution of

∂L

∂q̇ia

(
xa, qi, q̇ia

)
= pai (2.3)

H is not in fact a function on P and not even a coefficient of a form defined on P , but a
slightly more complicated object. Formula (2.2) is indeed locally well defined on every chart of
P . It is well defined even when the Lagrangian is not regular provided that (2.3) has at least
one solution and that the set of its solutions is connected, see [73]; this is because the value of H
does not depend on the choice of the particular solution q̇ia. I will not treat here the regularity
conditions needed on L in order for H to be smooth.

When one changes coordinates on E and passes from coordinates (xa, qi) to coordinates
(xa

′

, qi
′

), so that

xa
′

= xa
′

(xa)

qi
′

= qi
′

(xa, qi)
(2.4)

then corresponding natural changes of coordinates hold on J1π and on P , so that:

q̇i
′

a′ =
∂xa

∂xa′ (xa)q̇ia
∂qi

′

∂qi
(xa, qi) +

∂xa

∂xa′ (xa)
∂qi

′

∂xa
(xa, qi)

pa
′

i′ = det
(
∂x

∂x′

)
(xa)

∂xa
′

∂xa
(xa)

∂qi

∂qi′
(xa, qi)pai

(2.5)

As a consequence, if we call H ′ the Hamiltonian "function" defined with the new coordinates, we
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have that:

H ′
(
xa

′

, qi
′

, q̇i
′

a′

)
= det

(
∂x

∂x′

)
(xa)q̇iap

a
i − det

(
∂x

∂x′

)
(xa)L

(
xa, qi, q̇ia

)
+

+ det
(
∂x

∂x′

)
(xa)

∂qi
′

∂xa
(xa, qi)

∂qi

∂qi′
(xa, qi)pai =

= det
(
∂x

∂x′

)
(xa)H

(
xa, qi, q̇ia

)
+

+ det
(
∂x

∂x′

)
(xa)

∂qi
′

∂xa
(xa, qi)

∂qi

∂qi′
(xa, qi)pai

(2.6)

Formula (2.6) shows that H is not a global function on P .
In the paper of Cariñena, Camprin and Ibort [24], one finds that the Hamiltonian can be

naturally seen as the section of a fiber bundle Z (which we can call the multiphase space) over
P (the minimal multiphase space); see also Marsden and Shkoller [108], Forger and Romero [53]
and Hrabak [82] to understand the nature of H. Note however that Hrabak call P ’covariant-
phase-space’. For the definition of the multiphase space one can also look at [63]. Note that
the authors there call Z also covariant-phase-space, which introduces an ambiguity with the
terminology used here, since I call covariant phase space the space of solutions of the field
theory. Forger and Romero, [53] call Z the extended multiphase space, and call P the ordinary
multiphase space; Román-Roy, [135], call Z the extended multimomentum bundle and P the
restricted multimomentum bundle; as seen above, I prefer to call P minimal multiphase space,
or multimomenta space.

The space Z is a sub-bundle of the bundle Λn (E) and it is the space where the construction
of the Volterra-De Donder-Weyl theory is geometrically more natural. Formula (2.6) defines the
transition functions of the fiber bundle Z over P and so implicitly defines what a sections of Z
is. Since the construction of Z is not essential for what follows, and it is not in the spirit of the
minimal setting that I am using, I will not explicit it here. In what follows formula (2.2) and
(2.6) will be sufficient to define all the geometric objects needed.

When L is hyperregular, (2.3) has one and only one solution for every p ∈ P : then H is
defined for every p ∈ P .

When L is regular, the Hessian determinant of L with respect to the variables q̇ia is different

than 0 for each point r ∈ J1π; id est: ∀r ∈ J1π, det
∣∣∣ ∂2L

∂q̇i
a∂q̇

j

b

∣∣∣(r) 6= 0. Then it can be shown that

q̇ia
(
xa, qi, pai

)
is actually equal to ∂H

∂pa
i

.
In the following I will not deal with regularity problems, so, if not otherwise stated, I will

always suppose L hyperregular and P = FL
(
J1π

)
. When L is regular but not hyperregular, all

the results exposed here for P are still valid for FL
(
J1π

)
.

For more information about regularity conditions on FL one can see [45].
On a local chart, with canonical horizontal n-form β, one can define the local Hamiltonian

n-form H := Hβ but this in general doesn’t lead to a well defined Hamiltonian n-form on P .
As shown in [108], to have a globally defined Hamiltonian n-form on P , it is necessary first to
chose a connection on E; see also [24]. I will not deal with this, since it is not essential for what
follows.

Using FL we can associate to every section s ∈ Γ
(
J1π

)
a section FL(s) of P :

FL(s)(x) := FL ◦ s (x)

I will call FL the corresponding map between Γ
(
J1π

)
and Γ

(
P
)
, with a little abuse of notations.

When L is regular, this correspondence is invertible.
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With the help of the map j1 defined above, we can also establish a correspondence between
section of E and sections of P (not invertible because j1 is not one-to-one):

φ ∈ Γ
(
E
)
−→ j1φ ∈ Γ

(
J1π

)
−→ FL ◦ j1φ ∈ Γ

(
P
)

Note that, on a local chart, pai
(
FLj1φ(x)

)
= ∂L

∂q̇i
a

(
j1φ(x)

)
,∀x ∈ X.

Since 1890, [150], it was proved the following:

Theorem 12 (Volterra 1890). Let L be a regular Lagrangian density on J1π and let H be its
corresponding Hamiltonian density on P , then ∀U local chart and ∀x ∈ U ⊂ X, a field φ ∈ Γ(π)
is a solution of the Euler-Lagrange system of equations in (1.8), id est it is a solution of the
Lagrangian field theory, if and only if, ∀U local chart and ∀x ∈ U ⊂ X, FL ◦ j1φ satisfies the
generalized covariant Hamilton system:





∂qi

∂xa
(
FLj1φ(x)

)
=
∂H

∂pai

(
FLj1φ(x)

)

∂pai
∂xa

(
FLj1φ(x)

)
= −

∂H

∂qi
(
FLj1φ(x)

) (2.7)

I will prove in section 8.2 a super version of it.
Note that in the following I will sometime call the system of equations (2.7) as Hamilton-

Volterra system. In the literature it is sometime called Hamilton-De Donder-Weyl system, see
for example [46], sometime the Hamilton-De Donder system, see for example [60].

2.3 The multisymplectic form

The image of a section z ∈ Γ
(
P
)

is a n-dimensional surface in the total space P . It is then
natural to look for a geometric condition on n-surfaces in P to be the images of sections which
themselves are correspondents of sections φ of E which are solutions of our theory. Let’s rephrase
it this way: if we have a n-dimensional submanifold G ⊂ P , when can we say that there exist
φ ∈ E so that G = FL ◦ j1φ(X)?
The answer is that G has to satisfy four conditions:

1. G has to be the image of a section z ∈ Γ
(
P
)
, so: ∃z ∈ Γ

(
P
)

so that G = z(X)

2. z has to be the image trough FL of a section s ∈ Γ
(
J1π

)
, so: ∃s ∈ Γ

(
J1π

)
such that z =

FL(s);

3. s must belong to j1Γ
(
E
)
, so: ∃φ ∈ Γ

(
E
)

such that s = j1φ;

4. φ must be a solution of the theory, so: φ ∈ E ; or, which is equivalent, φ has to satisfy one
of the conditions in (1.3), (1.4), (1.5), (1.7) or (1.8).

We call Hamiltonian a n-submanifold of P who satisfies the above four conditions; we call G
the space of all Hamiltonian submanifolds. Then G and E are in one-to-one correspondence and
they are indeed diffeomorphic if a suitable differential structure is put on them.

Condition 1 can be translated in the following geometric one:

Proposition 13. Let U be a local chart of an adapted atlas of P and let β be the horizontal
non degenerate n-form on U defined in by β = dx1 ∧ · · · ∧ dxn, let G ⊂ P be a n-dimensional
submanifold of P , let p ∈ G be one of its points, and let TpG ⊂ TpP be the tangent space to G
in p, then the n-dimensional submanifold G ⊂ P is the image of a section z ∈ Γ

(
P
)

if and only
if ∀U, ∀p ∈ G, ∀v1, · · · , vn ∈ TpG linear independent, β(v1, · · · , vn) 6= 0.
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This condition can be linked to the Hamiltonian local forms H provided some assumptions
are made on their zeros. For example we have:

Proposition 14. Let Uα be the elements of the atlas of charts of P, let Hα be the Hamiltonian
local n-form on Uα, and assume that all Hα are everywhere different than 0; let G ⊂ P be a
n-dimensional submanifold of P , let p ∈ G be one of its points, and let TpG ⊂ TpP be the
tangent space to G in p; then the n-dimensional submanifold G ⊂ P is the image of a section
z ∈ Γ

(
P
)

if and only if ∀p ∈ G, ∀v1, · · · , vn ∈ TpG linear independent and ∀Uα containing p,
Hα(v1, · · · , vn) 6= 0. Equivalently, calling i : G −→ P the immersion of G in P : G ⊂ P is
the image of a section z ∈ Γ

(
P
)

if and only if ∀α i∗Hα 6= 0.

Condition 2 is automatically satisfied if L is hyperregular.
To translate condition 3 in a geometrical condition on G, we first note that, if L is regular,

we can push-forward the local contact forms ci defined in the previous section, and we have in
coordinates: gi := FL∗ci = dqi − ∂H

∂pa
i

dxa, where gi ∈ Ω1
locP are local differential one-forms on P

that we can call contact forms without risk of confusion.
If we call section-submanifolds those n-submanifolds G ⊂ P which satisfy condition 1 , and

we call lifted-submanifolds those n-submanifolds G ⊂ P which satisfy conditions 1 , 2 and 3,
then we have the following:

Proposition 15. Let L be a regular Lagrangian density on J1π and H be its corresponding
Hamiltonian function on the covariant-phase-space P , let gi the local contact forms on P defined
by gi = dqi − ∂H

∂pa
i

dxa; then a section-submanifold G ⊂ P with G = z(X) for z ∈ Γ
(
P
)

is a

lifted-submanifold of P if and only if ∀ gi : z∗gi = 0.

Note that this condition is equivalent to the first equation in the Hamilton-Volterra system 2.7.
The most interesting condition that G has to satisfy is the fourth one 4, which is the only

dynamical one. As it was seen by Kijowski [94] and by his coauthors [98], [99], condition 4 can
be translated in a geometric one; see also [70].

On a local chart U let’s set βa := ∂a β where β is the n-form of Proposition 13 and remember
that ∂a ∈ TP is the vector field on U defined in local coordinate by ∂a = ∂

∂xa . Let’s also fix the
following important definition:

Definition 16. If L is a Lagrangian density on J1π and H is its corresponding Hamiltonian
function on FL(J1π), I call the multisymplectic form of FL(J1π), the (n+ 1)-form ω ∈ Ωn+1P
defined on local charts of an adapted atlas by the formula: ω := dpai ∧ dq

i ∧ βa − dH ∧ β.

The fact that this is a good definition relies on the proof that H is locally well defined in each
point of each chart of P , on formula (2.6) and on the fact that the form θ := dqi ∧ pai βa −Hβ is
globally well defined; because then: ω = dθ. Let’s see why the form θ is globally well defined. As
we recalled before, P is a natural bundles with respect to the bundle E and so are the bundles
T ∗P , Λn−1T ∗P , ΛnT ∗P and Λn+1T ∗P . If one changes coordinates on E as in (2.4), then:

β′ = det
(
∂x′

∂x

)
β

βa′ = det
(
∂x′

∂x

)
∂xa

∂xa′ (xa)βa

dqi
′

= dqi
∂qi

′

∂qi
(xa, qi) + dxa

∂qi
′

∂xa
(xa, qi)

(2.8)
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and, putting together (2.5), (2.6) and (2.8), we have that:

θ′
(
xa

′

, qi
′

, pa
′

i′

)
= θ

(
xa, qi, pai

)
(2.9)

Note that ω is closed and it can be also proved to be non degenerate, so throughout all this
thesis I call it the multisymplectic form of FL(J1π), although this name does not agree with all
the definitions of multisymplectic forms given in the literature: see for example [49] where some
other conditions (generally not satisfied by my ω) are required to define a multisymplectic form.
The ω used here is a n-plectic form, using the terminology of Baez and C. L. Rogers, [4, 134],
and of Richter [129]. However, since in the contest of field theories the term n-plectic has not
become standard yet, I will keep calling ω multisymplectic.

Then condition 4 become:

Proposition 17. Let ω be the multisymplectic form on the multimomenta space P , then a
section-submanifold G ⊂ P , with G = z(X) for z ∈ Γ

(
P
)
, is a Hamiltonian submanifold of P if

and only if ∀u ∈ TP, z∗(u ω) = 0.

The proof of Proposition 17 can be done by directly calculating on local coordinates the value
of ω(u, z∗∂1, · · · , z∗∂n) using (2.7).

Note that in Proposition 17 it is requested in the hypothesis that G is a section-submanifold:
the fact that G ends out to be also a lifted-submanifold is a consequence of the condition imposed
on it. This can be seen easily if one notes that ω can also be written as

ω = dpai ∧ g
i ∧ βa −

∂H

∂qi
dqi ∧ β

If a section-submanifold G satisfies the condition requested in proposition 17, then the latter
condition can be applied to u = ∂

∂pb
j

and this yields that ∀b,∀j, z∗(gj ∧ βb) = 0 which in turns

yields that ∀j, z∗(gj) = 0.

2.4 The symplectic structure of the covariant phase space

Let’s study the tangent space of G on a point G ∈ G . Let δuG ∈ TGG be a vector over G: it
is associated to a so called Jacobi field u ∈ Γ (i∗ (V P )), id est a section over G of the pull-back
image of the vertical (with respect to the projection πP of the total space P onto the base X)
tangent bundle V P by the embedding map i : G −→ P . The section u can be seen as a vector
field on G, "following" which, each point g ∈ G is sent to a point g′ ∈ G′, where G′ ∈ G is another
Hamiltonian n-curve. An Hamiltonian n-curve G is deformed by u into an other Hamiltonian n-
curve G′. We could write symbolically δu =

∫
u. Note that for example u could be the restriction

to G of a vector field ū ∈ Γ (V P ) defined on all P and satisfying the condition Lūω = 0. Such a
field is called infinitesimal symplectomorphism and since it preserves the multisymplectic form
ω, its integral flux sends Hamiltonian n-curves to Hamiltonian n-curves and it so induces a path
in G , whose tangent vector in G would be exactly δuG. If u ∈ Γ (i∗ (V P )) is not a restriction of a
field ū defined on all P , nonetheless, by using the fact that G ∈ G , it is possible to give sense to
and calculate Luω (u′,X1, · · · ,Xn)

∣∣
g
∀g ∈ G ∀u′ ∈ Γ (V P ) , ∀X1, · · · ,Xn ∈ Γ (TG), see Hélein

[]. The condition ensuring that u corresponds to a δuG tangent to G in G is precisely that

∀g ∈ G , ∀u′ ∈ Γ (V P ) , ∀X1, · · · ,Xn ∈ Γ (TG) ,Luω (u′,X1, · · · ,Xn)
∣∣
g

= 0 (2.10)

See again the original papers of Kijowski for more details.
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It is important to specify that there may be different u and ũ corresponding to the same δuG,
so that δũ = δu =

∫
u =

∫
ũ. This happens whenever the vector field u − ũ ∈ Γ (TG): in other

words when the vector field u − ũ is in every point tangent to G. This by the way ensure that
u− ũ satisfies (2.10). We can always chose u to be in every point vertical with respect to πP , id
est without components tangent to the n-curve G.

On P we consider a slice Σ of co-dimension 1 with the property that for any Hamiltonian
n-curve G ∈ G the intersection of Σ with G is transverse. It will be then πP (Σ) = ΣX with
ΣX a n − 1-submanifold of X. We also assume that ∀G ∈ G , Σ ∩ G = z(ΣX) is an oriented
manifold of dimension n − 1 and we suppose that ΣX and z(ΣX) have suitable coorientations
with respect to the orientations of X and P , id est we suppose that the bundle i∗Σ (TP ) /TΣ is
oriented (where iΣ is the immersion of Σ in P ), see [73]. In the rest of this work, I will consider
only slices which are the lift of slices on the base manifold X, Σ = π−1ΣX . We can then define
ΩΣ to be a functional acting on couples of vectors on G and sending them to R in this way:

Definition 18. Let be δ1G, δ2G ∈ TGG two vectors on G ∈ G , and let be u1, u2 ∈ Γ (i∗ (V P ))
the corresponding vector fields over G, then we pose:

ΩΣ

∣∣
G

(δ1G, δ2G) :=
∫

Σ∩G
u1 ∧ u2 ω (2.11)

This hence defines ΩΣ, our symplectic 2-form on G .

Thanks to (2.10), ΩΣ is well defined and it is antisymmetric. If L satisfies certain conditions
of regularity, ΩΣ is non degenerate, the proof is given by Hélein in a paper in preparation. For
the proof that ΩΣ is closed one can see [97]. It is a symplectic 2-form on G : it was first introduced
by Kijowski and Szczyrba in [97] and [98].

The natural question arises if the Ω actually depends on the choice of the slice Σ. We address
this question in chapter 3.

A symplectic form Ω on G can be pull-back on E . Remember that if G ∈ G , then G is a
lifted-submanifold of P , so it is the image of a section z ∈ Γ

(
P
)
. By the Legendre transform FL

we can pull back it to a section s ∈ Γ
(
J1π

)
which is the lift by j1 of a section φ ∈ Γ

(
E
)

which
is a solution of the theory. If we call GL the inverse of one-to-one map just described, we have
that

GL : E −→ G

GL−1 : G −→ E

and if Ω ∈ Ω2G , then GL∗Ω ∈ Ω2E .
If L is not regular, the construction just described doesn’t work. We can still build ω ∈

Ωn+1FL(J1π), but in general ω will not be defined on all P . Nevertheless, we can still pull-back
ω by FL on J1π.

Let’s call o this pull-back: o := FL∗ω. On a local chart we have that:

o := FL∗ω = dpai ∧ dq
i ∧ βa − dH ∧ β (2.12)

where pai and H are now considered as local function of the variables xa, qi and q̇ia. Remembering
that the contact forms are ci = dqi − q̇iadx

a and considering that q̇ibdx
b ∧ pai βa = q̇iap

a
i β, we have

that:
o = d

[
ci ∧ pai βa + L ∧ β

]
= −pai dq̇

i
a ∧ β + dL ∧ β + dpai ∧ c

i ∧ βa (2.13)

Note that dL − o = −d
(
ci ∧ pai βa

)
.
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We can repeat on J1π the construction made before on P . On J1π we consider a slice Σ of
co-dimension 1 with the property that, for any s = Γ(J1π), the intersection of Σ with s(X) is
transverse. An important example is Σ = j1π−1(ΣX) with ΣX a (n − 1)-submanifold of X. If
we call i the embedding map i : s(X) →֒ J1π, we can then define OΣ to be a functional acting
on couples of vectors on s ∈ Γ(J1π) and sending them to R in this way:

Definition 19. Let be δ1s, δ2s ∈ TsΓ(J1π) two vectors on s ∈ Γ(J1π), and let be u1, u2 ∈
Γ
(
i∗
(
Vj1πJ

1π
))

the corresponding vertical vector fields over s(X), then we pose:

OΣ

∣∣
s

(δ1s, δ2s) :=
∫

Σ∩s(X)

u1 ∧ u2 o (2.14)

This gives us a 2-form OΣ on Γ(J1π).

OΣ can be restricted to j1E ⊂ j1Γ(E) ⊂ Γ(J1π). Let be i : j1φ(X) →֒ J1π the embedding
map of j1φ(X). Let be δ1j

1φ, δ2j
1φ ∈ Tj1φj

1E two vectors on j1φ ∈ j1E , and let be u1, u2 ∈
Γ
(
i∗
(
Vj1πJ

1π
))

the corresponding vertical vector fields over j1φ(X), then we pose:

OΣ

∣∣
j1φ

(
δ1j

1φ, δ2j
1φ
)

:=
∫

Σ∩j1φ(X)

u1 ∧ u2 o (2.15)

On a local chart U , we have:

OΣ,U

∣∣
j1φ

(
δ1j

1φ, δ2j
1φ
)

:=
∫

Σ∩j1φ(U)

u1 ∧ u2 o =

=
∫

Σ∩j1φ(U)

u1 ∧ u2 dpai ∧ dq
i ∧ βa =

=
∫

Σ∩j1φ(U)

u1 ∧ u2

[
∂2L

∂qj∂q̇ia
dqj ∧ dqi ∧ βa +

∂2L

∂q̇jb∂q̇
i
a

dq̇jb ∧ dq
i ∧ βa

]
(2.16)

Finally the restriction of OΣ to j1E can be pull-back by j1 to E . We have the following:

Definition 20. Let be δ1φ, δ2φ ∈ TφE two vectors on φ ∈ E , and let be u1, u2 ∈ Γ (φ∗VπE) the
corresponding vertical vector fields over φ(X), then we pose:

ΩΣX

∣∣
φ

(δ1φ, δ2φ) :=
∫

Σ∩j1φ(X)

j1
∗u1 ∧ j

1
∗u2 o (2.17)

and ΩΣX
∈ Ω2E is our symplectic form on E .

It can be shown that if L is regular, then ΩΣX
and GL∗ΩΣ coincide.

I have to note that calling OΣ and ΩΣX
symplectic forms is an abuse. They are indeed

2-forms on their, possibly infinite dimensional, manifolds of definition, but they may not be
non-degenerate, unless some regularity conditions on L are assumed.



Chapter 3

Nonequivalent symplectic

structures on covariant phase

space

At the end of last chapter I have shown how one can build a symplectic structure ΩΣ on the
covariant phase space starting from the multisymplectic form ω defined on the multiphase space
P and from a cooriented slice Σ of P . What happens if one makes the same construction starting
from a different slice Σ̄?

Hélein in [70] states that ΩΣ = ΩΣ̄ if for every Hamiltonian surface G, Σ ∩G and Σ̄ ∩G are
compact and if Σ and Σ̄ are in the same homology class.

The same results holds when Σ ∩ G is not compact, provided that we consider a subset of
I ⊂ G such that all G ∈ I satisfy some specific decay conditions at infinity.

The extended proofs of the corresponding theorems were privately communicated to me by
the author and will be soon available in a paper in preparation.

It remains to verify if ΩΣ is independent from Σ when one of the above conditions are not
satisfied.

In this chapter I will show that indeed ΩΣ, with Σ compact, does depend on the class of
homology of Σ for certain field theories. In section 3.1 I will study some simple field theories
defined on 2-dimensional tori. Those simple examples will be enough to fix the result. In section
3.2 I will instead consider the case of Σ non compact, studying simple theories on R2. I will then
discuss how the results of Hélein for non compact Σ can be interpreted.

3.1 Symplectic structures on spaces of solutions of field

theories over tori

In this section I consider bundles whose bases X are tori.

I note by Ta,b the Torus obtained as a quotient of the plane R2 by aZ× bZ, with a, b ∈ R+.

19
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3.1.1 Space of scalar fields over two dimensional tori.

Let’s consider the bundle E = Ta,b × R. We will have then:

Ta,b × R

π

y

Ta,b

Being this bundle trivial, a section φ corresponds to a smooth function φ : Ta,b −→ R; xµ −→
q = φ(xµ).

On an chart U ⊂ Ta,b, the local coordinates will be xµ, µ = 0, 1 with x0∈(0, a) and x1∈(0, b).
On R I will use the coordinate q. On J1π I will use the coordinates (xµ, q, q̇µ), so that ∀x ∈
Ta,b, ∀φ ∈ Γ

(
Ta,b × R

)
, q̇µ

(
j1φ (x)

)
= ∂µφ.

In local coordinates we have L : (xµ, q, q̇µ) −→ L (xµ, q, q̇µ)β, β = dx0 ∧ dx1 being the
standard volume 2-form on Ta,b and L, the Lagrangian density, being a local function between
j1U and R.

We have that P = Homπ(V E,Λn−1T ∗X) = Ta,b ×R×Ta,b
Hom

(
Ta,b × TR,Λn−1T ∗Ta,b

)
≃

Ta,b × R×Ta,b

(
Λn−1T ∗Ta,b ⊗ T ∗R

)
≃ Ta,b × R×Ta,b

T ∗Ta,b because we identify the real line R
with its tangent and with its cotangent. So we define the local Hamiltonian function:

H : Ta,b × R×Ta,b
T ∗Ta,b −→ R

(xµ, q, pµ) 7−→ pµq̇µ − L (xµ, q, q̇µ)

and we assume that q̇µ is the unique solution of ∂L
∂q̇µ

(xµ, q, q̇µ) = pµ.
As in section 2.2, to every section φ ∈ Γ (Ta,b × R) we associate a section z of P , which in

this case will be the section z : Ta,b −→ P defined by: pµ (xν) := ∂L
∂q̇µ

(xν , φ, ∂µφ) ,∀x ∈ Ta,b.
The Hamilton-Volterra system (2.7) become then:





∂φ

∂xµ
=
∂H

∂pµ
(xν , φ, pν)

∂pµ

∂xµ
= −

∂H

∂φ
(xν , φ, pν)

(3.1)

The section z ∈ Γ (P ) reads:
z : xν −→ (xµ, φ, pµ)

and its image G is a submanifold of P . Since z depends on φ, we can associate to any φ section
of (Ta,b × R) π

→ Ta,b, a submanifold Gφ of P = Ta,b × R×Ta,b
T ∗Ta,b.

The field φ satisfies (3.1) if and only if Gφ is an hamiltonian 2-curve, id est satisfies the
condition in proposition (17), which now is:

∀X1,X2 ∈ Γ (TGφ) ,∀ξ ∈ Γ
(
T
(
Ta,b × R×Ta,b

T ∗Ta,b
))

(
dp0 ∧ dφ ∧ β0 + dp1 ∧ dφ ∧ β1 − dH ∧ β

)
(ξ,X1,X2) = 0

or:
ω (ξ,X1,X2) = 0 (3.2)

where:

ω :=dp0 ∧ dφ ∧ β0 + dp1 ∧ dφ ∧ β1 − dH ∧ β

=dp0 ∧ dφ ∧ dx1 − dp1 ∧ dφ ∧ dx0 − dH ∧ dx0 ∧ dx1
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We call again E the spaces of solution of our field theory for some Lagrangian. If the La-
grangian is regular, E will be isomorphic to the space of all Hamiltonian 2-curves, satisfying (3.2).
For studying E it is useful to note that any smooth function φ : Ta,b −→ R can be developed
in Fourier series. To make the following calculations easier, I will consider complex functions
instead of real one (I complexify the space R) and then I will again come back to real spaces at
the end of calculations. So for every φ we will have:

φ
(
x0, x1

)
=
∑

k,j∈Z

φkjei2π( k
a
x0+ j

b
x1) (3.3)

with φkj ∈ C. This development is useful since we are going to study Lagrangians which lead to
Euler-Lagrange equations and Hamilton equations, linear with-respect to the field φ.

3.1.2 Free scalar field over a two dimensional torus.

Let’s consider the simple Lagrangian density L : J1π −→ R defined by:

L (xµ, q, q̇µ) =
1
2

(q̇0)2 −
1
2

(q̇1)2 (3.4)

To each field φ (xµ) we associate the momenta pµ (xν) := ∂L
∂q̇µ

(xν , φ, ∂µφ), and we have:

p0 = ∂0φ (3.5)

p1 = −∂1φ (3.6)

the Hamiltonian H : Ta,b × R×Ta,b
T ∗Ta,b −→ R is then:

H (xµ, q, pµ) =
1
2

(
p0
)2
−

1
2

(
p1
)2

(3.7)

From now on I write x0 = t and x1 = x. The Euler-Lagrange equation is then the wave equation:

∂2φ

∂t2
−
∂2φ

∂x2
= 0 (3.8)

A field φ developed in Fourier series as in (3.3) is a solution of our theory if and only if φkj = 0
whenever k and j don’t satisfy the following condition:

k2

a2
−
j2

b2
= 0 (3.9)

This Diophantin equation has an infinite number of solutions whenever the ratio a
b

is a rational
number. If a

b
is not a rational number, then the space of solutions reduce to the one dimensional

vector space of constants over Ta,b, which is of no interest for our discussion. We consider the
case when a

b
∈ Q: then the space of all solution E is an infinite dimensional vector space and

therefore an infinite dimensional manifold.
Every solution φ can be written as:

φ (t, x) =
∑

k∈Z0 so that k b
a

∈Z0

(
φk+ei2π( k

a
t+ k

a
x) + φk−ei2π( k

a
t− k

a
x)
)

+ φ0 (3.10)

where φk+, φk− and φ0 are numbers and Z0 ≡ Z \ {0}.
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Without lack of generality we can suppose a = 1. Indeed studying the theory with Lagrangian
(3.4) on the torus Ta,b is completely equivalent to study the theory with a Lagrangian of the
same form on the torus T1, b

a
.

Hence we set a = 1 and we study (3.4) on the torus T1,b. The condition (3.9) then become:

k2 −
j2

b2
= 0 (3.11)

which implies that b must be a rational number, and the solutions of the theory can be written
as:

φ (t, x) =
∑

k∈Z0 so that kb∈Z0

(
φk+ei2π(kt+kx) + φk−ei2π(kt−kx)

)
+ φ0 (3.12)

where t∈(0, 1) and x∈(0, b).
It is sometime useful to think of E as the direct sum of finite dimensional vector spaces:

E = (⊕k∈AEk)⊕ E0 (3.13)

where E0 is the one dimensional vector space generated by the function φ0 = 1 constant on
Ta,b and Ek is the 4 dimensional vector space spanned by the functions φkտ = ei2π(kt+kx),
φkր = ei2π(kt−kx), φkւ = ei2π(−kt+kx) and φkց = ei2π(−kt−kx); A is the infinite subset of N
determined by the condition (3.11) which we translate into to the condition kb ∈ N \ {0}. Then
every φ ∈ E can be decomposed as:

φ = φ0φ0 + φkտφkտ + φkրφkր + φkցφkց + φkւφkւ (3.14)

where Einstein convention is used for repeated indexes and k runs over N0 ≡ N \ {0}. The
numbers φ0, φkտ, φkր, φkց and φkւ are coordinates on E . Note that, to be more precise, the
vector space in (3.13) is the complexified of the space E of solutions that we want to study. We
should name it CE , and the same we should do for its subspaces and for their tangent spaces,
but we won’t do so to avoid a heavier notation. We will come back to the real vector spaces at
the end of this section.

In this situation it is easy to explicitly identify TE . If G is an hamiltonian 2-curve, i.e. an
element of E , then it corresponds to a φ as in (3.14). A vector δuG ∈ TGE must be of the form:

δuG =
∑

k∈Z0 so that kb∈Z0

(
uk+ ∂

∂φk+
+ uk− ∂

∂φk−

)
+ u0 ∂

∂φ0

=
∑

k∈N0 so that kb∈N0

(
ukր ∂

∂φkր + ukտ ∂

∂φkտ + ukց ∂

∂φkց + ukւ ∂

∂φkւ

)
+ u0 ∂

∂φ0

(3.15)

where uk+, uk−, ukր, ukտ, ukց, ukւ and u0 are numbers. When k > 0, we have that uk+ = ukտ

and uk− = ukր; when k < 0, we have that uk+ = u−kւ and uk− = u−kց.
On the other hand δuG must correspond to a suitable u ∈ Γ

(
i∗V

(
Ta,b × R×Ta,b

T ∗Ta,b
))

,
where i is the embedding map of G in Ta,b × R ×Ta,b

T ∗Ta,b. If on G we use t and x as local
coordinates, and remembering (3.5) and (3.6), we have:

i : (t, x) −→ (t, x, φ (t, x) , ∂0φ (t, x) ,−∂1φ (t, x))

As explained in the previous chapter the correspondence between δuG and u is 1 to 1 if u is
chosen to be vertical as in this case. The ’Jacobi field’ representing δuG is then the vector field
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u defined on G in this way:

u (t, x) =
∑

k∈Z0 so that kb∈Z0

(
uk+ei2π(kt+kx) + uk−ei2π(kt−kx)

) ∂

∂φ
+ u0 ∂

∂φ

+
∑

k∈Z0 so that kb∈Z0

i2πk
(
uk+ei2π(kt+kx) + uk−ei2π(kt−kx)

) ∂

∂p0

−
∑

k∈Z0 so that kb∈Z0

i2πk
(
uk+ei2π(kt+kx) − uk−ei2π(kt−kx)

) ∂

∂p1

where uk+, uk− and u0 are the same we had in (3.15). This vector field has no component
parallel to the 2-curve G.

As a base on the vector space TGE we can chose the vector δ0G = ∂
∂φ0 with the families of

vectors δk+G = ∂
∂φk+ and δk−G = ∂

∂φk− . The corresponding Jacobi fields are the vector fields:

ξ0 (t, x) =
∂

∂φ

ξk+ (t, x) =ei2π(kt+kx)

[
∂

∂φ
+ i2πk

(
∂

∂p0
−

∂

∂p1

)]

ξk− (t, x) =ei2π(kt−kx)

[
∂

∂φ
+ i2πk

(
∂

∂p0
+

∂

∂p1

)]
(3.16)

with k ∈ Z0 so that kb ∈ Z0. Note that their expressions (3.16) do not depend in fact from G.
Alternatively, as a base on the vector space TGE , we can chose the vector δ0G = ∂

∂φ0 with

the families of vectors δkրG = ∂
∂φkր , δkտG = ∂

∂φkտ , δkցG = ∂
∂φkց and δkւG = ∂

∂φkւ ; with
k ∈ N0, such that kb ∈ N0.

We now chose two slices Σ and Σ̄ of (T1,b × R) ⊕ TT1,b which do not belong to the same
homology class. We take Σ to be the slice defined in coordinates by the equation t = 0, and Σ̄
to be the one defined by x = 0. We can now compute the two symplectic structures arising from
these choices and then we can compare them.

We first compute ΩG defined by:

ΩG (δ1G, δ2G) :=
∫

Σ∩G
ξ1 ∧ ξ2 ω

We set Ωk+,k′− := ΩG (δk+G, δk′−G) and similarly for Ωk+,k′+ and Ωk−,k′−. In order to make
the computation, we fix coordinates on Σ ∩G. This is easy since Σ ∩G is the submanifold of G
defined in coordinates t and x by the equation t = 0. We have then:

Ωk+,k′− =
∫

Σ∩G
ξk+ ∧ ξk′− ω

Ωk+,k′+ =
∫

Σ∩G
ξk+ ∧ ξk′+ ω

Ωk−,k′− =
∫

Σ∩G
ξk− ∧ ξk′− ω

And since:

ξk+ ∧ ξk′− ω = ξk+ ∧ ξk′−
(
dp0 ∧ dφ ∧ dx− dp1 ∧ dφ ∧ dt− dH ∧ dt ∧ dx

)

= ξk+ ∧ ξk′−
(
dp0 ∧ dφ ∧ dx− dp1 ∧ dφ ∧ dt

)

= ξk+ ∧ ξk′−
(
dp0 ∧ dφ

)
dx− ξk+ ∧ ξk′−

(
dp1 ∧ dφ

)
dt

(3.17)
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and analogously for Ωk+,k′+ and Ωk−,k′−; we have:

Ωk+,k′− =
∫

Σ∩G
ξk+ ∧ ξk′− ω

=
∫

Σ∩G

[
ξk+ ∧ ξk′−

(
dp0 ∧ dφ

)
dx− ξk+ ∧ ξk′−

(
dp1 ∧ dφ

)
dt
]

=
∫

Σ∩G
ξk+ ∧ ξk′−

(
dp0 ∧ dφ

)
dx

=
∫ b

0

[
i2πkei2πkxei2π(−k′x) − i2πk′ei2π(−k′x)ei2πkx

]
dx

(3.18)

Remembering that k, k′, kb and k′b are integer, we finally have:

Ωk+,k′− = i2πbδkk′ (k − k′) = 0 (3.19)

where δab = 1 if a = b and δab = 0 if a 6= b.
In the same way we compute Ωk+,k′+ and Ωk−,k′−, and we have:

Ωk+,k′+ =
∫

Σ∩G
ξk+ ∧ ξk′+ ω

=
∫

Σ∩G

[
ξk+ ∧ ξk′+

(
dp0 ∧ dφ

)
dx− ξk+ ∧ ξk′+

(
dp1 ∧ dφ

)
dt
]

=
∫

Σ∩G
ξk+ ∧ ξk′+

(
dp0 ∧ dφ

)
dx

=
∫ b

0

[
i2πkei2πkxei2πk

′x − i2πk′ei2πk
′xei2πkx

]
dx

= i2πbδk(−k′) (k − k′) = i4πbkδk(−k′)

(3.20)

and

Ωk−,k′− =
∫

Σ∩G
ξk− ∧ ξk′− ω

=
∫

Σ∩G

[
ξk− ∧ ξk′−

(
dp0 ∧ dφ

)
dx− ξk− ∧ ξk′−

(
dp1 ∧ dφ

)
dt
]

=
∫

Σ∩G
ξk− ∧ ξk′−

(
dp0 ∧ dφ

)
dx

=
∫ b

0

[
−i2πke−i2πkxei2πk

′x − i2πk′e−i2πk′xe−i2πkx
]
dx

= i2πbδk(−k′) (k − k′) = i4πbkδk(−k′)

(3.21)

Finally, setting Ω0,· := ΩG (δ0G, ·), it is easy to see that Ω0,· = 0.
It is important to note that Ω, which could depend a priori on G, in fact does not. This is

because, in this simple case, E , which is a vector space, and TGE , can be identified for every G
and in fact Ω is the same on every TGE .

For every G we can therefore split TGE so that:

TGE = (⊕k∈ATGkE )⊕ TG0E (3.22)

where A is the infinite subset of N determined by the condition kb ∈ N \ {0}, TG0E is the one
dimensional vector space generated by δ0G and TGkE is the 4-dimensional vector space spanned
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by δkրG, δkտG, δkց = and δkւG. On TGkE it may be useful to visualize the 2-form Ω using
the matrix of its components:




Ωkտ,kտ Ωkտ,kց Ωkտ,kր Ωkտ,kւ
Ωkց,kտ Ωkց,kց Ωkց,kր Ωkց,kւ
Ωkր,kտ Ωkր,kց Ωkր,kր Ωkր,kւ
Ωkւ,kտ Ωkւ,kց Ωkւ,kր Ωkւ,kւ


 = i4πbk




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0




We then compute Ω̄G defined by:

Ω̄G (δ1G, δ2G) :=
∫

Σ̄∩G
ξ1 ∧ ξ2 ω

Again we set Ω̄k+,k′− := Ω̄G (δk+G, δk′−G) and similarly for Ω̄k+,k′+, Ω̄k−,k′− and Ω̄0,·. We have
then:

Ω̄k+,k′− =
∫

Σ̄∩G
ξk+ ∧ ξk′− ω

=
∫

Σ̄∩G

[
ξk+ ∧ ξk′−

(
dp0 ∧ dφ

)
dx− ξk+ ∧ ξk′−

(
dp1 ∧ dφ

)
dt
]

=
∫

Σ̄∩G
−ξk+ ∧ ξk′−

(
dp1 ∧ dφ

)
dt

=
∫ 1

0

−
[
−i2πkei2πktei2π(k′t) − i2πk′ei2π(kt)ei2πk

′t
]
dt

= −δk(−k′) [−i2πk − i2πk′] = 0

(3.23)

Ω̄k+,k′+ =
∫

Σ̄∩G
ξk+ ∧ ξk′+ ω

=
∫

Σ̄∩G

[
ξk+ ∧ ξk′+

(
dp0 ∧ dφ

)
dx− ξk+ ∧ ξk′+

(
dp1 ∧ dφ

)
dt
]

=
∫

Σ̄∩G
−ξk+ ∧ ξk′+

(
dp1 ∧ dφ

)
dt

=
∫ 1

0

−
[
−i2πkei2πktei2πk

′t + i2πk′ei2πk
′tei2πkt

]
dt

= −δk(−k′) [−i2πk + i2πk′]

= i4πkδk(−k′)

(3.24)

Ω̄k−,k′− =
∫

Σ̄∩G
ξk− ∧ ξk′− ω

=
∫

Σ̄∩G

[
ξk− ∧ ξk′−

(
dp0 ∧ dφ

)
dx− ξk− ∧ ξk′−

(
dp1 ∧ dφ

)
dt
]

=
∫

Σ̄∩G
−ξk− ∧ ξk′−

(
dp1 ∧ dφ

)
dt

=
∫ 1

0

−
[
i2πkei2πktei2πk

′t − i2πk′ei2πk
′tei2πkt

]
dt

= −δk(−k′) [i2πk − i2πk′]

= −i4πkδk(−k′)

(3.25)
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and

Ω̄0,· = 0 (3.26)

On TGkE the components of the 2-form Ω̄ form the matrix:




Ωkտ,kտ Ωkտ,kց Ωkտ,kր Ωkտ,kւ
Ωkց,kտ Ωkց,kց Ωkց,kր Ωkց,kւ
Ωkր,kտ Ωkր,kց Ωkր,kր Ωkր,kւ
Ωkւ,kտ Ωkւ,kց Ωkւ,kր Ωkւ,kւ


 = i4πk




0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0




It may be the moment to come back to real vector spaces of solutions. On the vector spaces
E , E0 and Ek in (3.13) we consider the usual operation ∗ of complex conjugation. It is easy to
see that it acts so that:

φ∗
k+ = φ−k+

φ∗
k− = φ−k−

or equivalently:

φ∗
kտ = φkց

φ∗
kր = φkւ

We then look for elements of E invariant for the complex conjugation: they represent the
real fields solution of (3.8) and they form a subspace which is a real vector space. For simplicity
of notation we will continue to call it E and we’ll call TE its real tangent space using again the
same name used for its complexified’s one. E also splits in components as in (3.13). On the four
dimensional components Ek we can consider as a base the elements:

φk1 =
φkտ + φkց

2
= cos [2π (kt+ kx)]

φk2 =
φkտ − φkց

2i
= sin [2π (kt+ kx)]

φk3 =
φkր + φkւ

2
= cos [2π (kt− kx)]

φk4 =
φkր + φkւ

2
= sin [2π (kt− kx)]

and as real coordinates φk1, φk2, φk3 and φk4, obviously defined.
Similarly: for TGE holds (3.22) and on TGkE we choose as a base:

δk1G =
δkտG+ δkցG

2
=

∂

∂φk1

δk2G =
δkտG− δkցG

2i
=

∂

∂φk2

δk3G =
δkրG+ δkւG

2
=

∂

∂φk3

δk4G =
δkրG− δkւG

2i
=

∂

∂φk4
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If we define Ωk1,k2 := ΩG (δk1G, δk2G) and similarly for other components of Ω and Ω̄, after a
short computation we can compare the matrices:




Ωk1,k1 Ωk1,k2 Ωk1,k3 Ωk1,k4

Ωk2,k1 Ωk2,k2 Ωk2,k3 Ωk3,k4

Ωk3,k1 Ωk3,k2 Ωk3,k3 Ωk3,k4

Ωk4,k1 Ωk4,k2 Ωk4,k3 Ωk4,k4


 = 2πbk




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0




and 


Ω̄k1,k1 Ω̄k1,k2 Ω̄k1,−k3 Ω̄k1,−k4

Ω̄k2,k1 Ω̄k2,k2 Ω̄k2,−k3 Ω̄k2,−k4

Ω̄k3,k1 Ω̄k3,k2 Ω̄k3,−k3 Ω̄k3,k4

Ω̄k4,k1 Ω̄k4,k2 Ω̄k4,−k3 Ω̄k4,k4


 = 2πk




0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0




We conclude that Ω 6= Ω̄.
Choosing two slices Σ and Σ̄ in two different homology classes, we obtain two different sym-

plectic structures on TGE .

3.1.3 Massive scalar field over a two dimensional torus.

Using the same techniques of last section, we can study on E = Ta,b × R field theories
with slightly more complicated Lagrangians. We then find that similar results hold for different
theories.

For example, using the same notation of last section, we may consider the Lagrangian of the
massive scalar field, defined by the Lagrangian density L : J1π −→ R:

L (xµ, q, q̇µ) =
1
2

(q̇0)2 −
1
2

(q̇1)2 −
1
2
m2q2 (3.27)

Since pµ := ∂L
∂q̇µ

(xν , φ, ∂µφ), we have that:

p0 = ∂0φ (3.28)

p1 = −∂1φ (3.29)

so that the Hamiltonian H : P −→ R is:

H (xµ, q, pµ) =
1
2

(
p0
)2
−

1
2

(
p1
)2

+
1
2
m2q2 (3.30)

Writing again x0 = t and x1 = x, the Euler-Lagrange equation is:

∂2φ

∂t2
−
∂2φ

∂x2
+m2φ = 0 (3.31)

A field φ developed in Fourier series as in (3.3) is a solution of our theory if and only if k, j ∈ Z
satisfy the following condition:

− 4π2

(
k2

a2
−
j2

b2

)
+m2 = 0 (3.32)

The equation (3.32) is more difficult to study than (3.9); and in general, fixed a, b and m, it
has only a finite number of solution, when any: see [145] and references therein for an algorithm
to find them. We notice that if the couple (k, j) is a solution, then so it is for (−k, −j),
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(k, −j) and (−k, j). When m 6= 0, these are four distinct couples for any acceptable k except
at most one k̃ for which they may reduce to two couples. We call A ⊂ N the subset of natural

number k which satisfy (3.32) for some integer j. Then k ∈ A imply j
b

= ±
√

k2

a2 −
m2

′π2 . We have

then the four distinct solutions
(
k,
√

k2

a2 −
m2

4π2

)
,
(
−k, −

√
k2

a2 −
m2

4π2

)
,
(
k, −

√
k2

a2 −
m2

4π2

)
and

(
−k,

√
k2

a2 −
m2

4π2

)
for every k ∈ A except at most one special k0 ∈ A. This special value exists

when the equation k2 = a2m2

4π2 has a solution in the set of natural numbers: in this case k0 =
∣∣am

4π

∣∣
and we have the two solutions (k0, 0) and (−k0, 0). In all other cases, we label the solutions with
the names k տ, k ց, k ր and k ւ.

The space E of solutions of our theory is again a vector space and we can write:

E =

( ⊕

k∈A⊂N

Ek

)
(3.33)

Where each Ek is a four dimensional vector space except at most one specific degenerate Ek0

which may be one or two dimensional. Every non degenerate Ek is spanned by the four linear
independent elements:

φkտ = e
i2π

(
k
a
t+
√

k2

a2 − m2

4π2 x

)

φkց = e
i2π

(
− k

a
t−
√

k2

a2 − m2

4π2 x

)

φkր = e
i2π

(
k
a
t−
√

k2

a2 − m2

4π2 x

)

φkւ = e
i2π

(
− k

a
t+
√

k2

a2 − m2

4π2 x

)

where, we remember, k is a natural number. In the following, to make the notation lighter, we

will often write j
b

instead of
√

k2

a2 −
m2

4π2 , keeping in mind that j
b

is a positive function of k.

When there isn’t any degeneracy of any Ek0
, we write the solutions of our theory in this way:

φ (t, x) =
∑

k∈A⊂N

(
φkտφkտ + φkւφkւ + φkրφkր + φk ց φkց

)
(3.34)

where φk տ, φkւ, φkր, φkց are numbers and constitute the coordinates on E .

From this point on, we can argument in the same way we did in the previous section, except
for the fact that the set A ⊂ N is a finite subset of N (when it is not empty), instead of being an
infinite one; and it is in general difficult to find it. I will give some example for some specifics
value of a, b and m at the end of this section.

If G ∈ E , on TGE we take as base the vectors δkտG = ∂
∂φkտ , δkւG = ∂

∂φkւ , δkրG = ∂
∂φkր
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and δkցG = ∂
∂φkց . Their correspondents Jacobi fields over the Hamiltonian curve G are:

ξkտ (t, x) =ei2π( k
a
t+ j

b
x)
[
∂

∂φ
+ i2π

(
k

a

∂

∂p0
−
j

b

∂

∂p1

)]

ξkց (t, x) =ei2π(− k
a
t− j

b
x)
[
∂

∂φ
+ i2π

(
−
k

a

∂

∂p0
+
j

b

∂

∂p1

)]

ξkր (t, x) =ei2π( k
a
t− j

b
x)
[
∂

∂φ
+ i2π

(
k

a

∂

∂p0
+
j

b

∂

∂p1

)]

ξkւ (t, x) =ei2π(− k
a
t+ j

b
x)
[
∂

∂φ
+ i2π

(
−
k

a

∂

∂p0
−
j

b

∂

∂p1

)]

(3.35)

with k ∈ A ⊂ N.
We can compute Ω and Ω̄ integrating on the slices Σ and Σ̄ defined in the last section. Using

the same notation we have:

Ωkտ,k′ր =
∫

Σ∩G
ξkտ ∧ ξk′ր ω =

=
∫ b

0

[
i2π

k

a
ei2π

j
b
xei2π(− j′

b
x) − i2π

k′

a
ei2π(− j′

b
x)ei2π

j
b
x

]
dx

(3.36)

Remembering that k, k′, j and j′ are integer, we finally have:

Ωkտ,k′ր = i2πbδjj′

(
k

a
−
k′

a

)
= i2πbδkk′

(
k

a
−
k′

a

)
= 0 (3.37)

In the same way we compute Ωkտ,k′ւ and Ωkր,k′ր we find Ωտ,k′ւ = Ωkր,k′ր = 0.
On the other hand we have:

Ωkտ,k′տ =
∫

Σ∩G
ξkտ ∧ ξk′տ ω

=
∫ b

0

[
i2π

k

a
ei2π

j
b
xei2π

j′

b
x − i2π

k′

a
ei2π

j′

b
xei2π

j
b
x

]
dx = 0

(3.38)

Ωkտ,k′ց =
∫

Σ∩G
ξkտ ∧ ξk′ց ω

=
∫ b

0

[
i2π

k

a
ei2π

j
b
xei2π

−j′

b
x − i2π

−k′

a
ei2π

−j′

b
xei2π

j
b
x

]
dx

= i2πδjj′b

(
k

a
+
k′

a

)
= i4kπδkk′

b

a

(3.39)

and

Ωkր,k′ւ =
∫

Σ∩G
ξkր ∧ ξk′ւ ω

=
∫ b

0

[
i2π

k

a
e−i2π j

b
xei2π

j′

b
x + i2π

k′

a
ei2π

j′

b
xei2π

−j
b
x

]
dx

= i2πδjj′b

(
k

a
+
k′

a

)
= i4kπδkk′

b

a

(3.40)
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If for one specific k0, Ek0
is degenerate and has dimension 2, then on Ek0

we have:

φk0
:= φk0ր = φk0տ = ei2π( k

a
t)

and
φ−k0

:= φk0ց = φk0ւ = ei2π(− k
a
t)

because j0 = 0.
Also TGk0

E is degenerate and has dimension 2; we then have:

Ωk0,−k0
=
∫

Σ∩G
ξk0
∧ ξ−k0

ω = i2πb
(
k0

a
+
k0

a

)
= i4k0π

b

a
(3.41)

For all non degenerate subspaces TGkE , we have:




Ωkտ,kտ Ωkտ,kց Ωkտ,kր Ωkտ,kւ
Ωkց,kտ Ωkց,kց Ωkց,kր Ωkց,kւ
Ωkր,kտ Ωkր,kց Ωkր,kր Ωkր,kւ
Ωkւ,kտ Ωkւ,kց Ωkւ,kր Ωkւ,kւ


 = i4πk

b

a




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0




For Ω̄ we have:

Ω̄kտ,k′ր =
∫

Σ̄∩G
ξkտ ∧ ξk′ր ω

=
∫

Σ̄∩G
−ξkտ ∧ ξk′ր

(
dp1 ∧ dφ

)
dt

=
∫ a

0

−

[
−i2π

j

b
ei2π

k
a
tei2π( k′

a
t) − i2π

j′

b
ei2π( k′

a
t)ei2π

k
a
t

]
dt = 0

(3.42)

Similarly: Ω̄kտ,k′ւ = Ω̄kր,k′ր = Ω̄kր,k′ց = 0. But:

Ω̄kտ,k′ց =
∫

Σ̄∩G
ξkտ ∧ ξk′ց ω

=
∫ a

0

−

[
−i2π

j

b
ei2π

k
a
tei2π( −k′

a
t) − i2π

j′

b
ei2π( −k′

a
t)ei2π

k
a
t

]
dt

= −δkk′

[
−i2π

ja

b
− i2π

j′a

b

]

= i4πδkk′j
a

b

(3.43)

Ω̄kր,k′ւ =
∫

Σ̄∩G
ξkր ∧ ξk′ւ ω

=
∫ a

0

−

[
i2π

j

b
ei2π

k
a
tei2π( −k′

a
t) + i2π

j′

b
ei2π( −k′

a
t)ei2π

k
a
t

]
dt

= −δkk′

[
i2π

ja

b
+ i2π

j′a

b

]

= −i4πδkk′j
a

b

(3.44)
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If there is a Ek0
degenerate of dimension 2, we have on TGk0

E :

Ω̄k0,−k0
=
∫

Σ̄∩G
ξk0
∧ ξ−k0

ω

=
∫ a

0

−

[
−i2π

j̃

b
ei2π

k̃
a
tei2π( −k̃

a
t) − i2π

j̃

b
ei2π( −k̃

a
t)ei2π

k̃
a
t

]
dt = 0

(3.45)

because j0 = 0.
For all non degenerate TGkE , we have:




Ω̄kտ,kտ Ω̄kտ,kց Ω̄kտ,kր Ω̄kտ,kւ
Ω̄kց,kտ Ω̄kց,kց Ω̄kց,kր Ω̄kց,kւ
Ω̄kր,kտ Ω̄kր,kց Ω̄kր,kր Ω̄kր,kւ
Ω̄kւ,kտ Ω̄kւ,kց Ω̄kւ,kր Ω̄kւ,kւ


 = i4πj

a

b




0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0




As we did in the previous section, we come back now to real valued fields. On the four
dimensional components Ek of our space of solutions E we can consider as a base the elements:

φk1 =
φkտ + φkց

2
= cos

[
2π
(
k

a
t+

j

b
x

)]

φk2 =
φkտ − φkց

2i
= sin

[
2π
(
k

a
t+

j

b
x

)]

φk3 =
φkր + φkւ

2
= cos

[
2π
(
k

a
t−

j

b
x

)]

φk4 =
φkր + φkւ

2
= sin

[
2π
(
k

a
t−

j

b
x

)]

On the 4 dimensional real vector spaces TGkE we choose as a base:

δk1G =
δkտG+ δkցG

2
=

∂

∂φk1

δk2G =
δkտG− δkցG

2i
=

∂

∂φk2

δk3G =
δkրG+ δkւG

2
=

∂

∂φk3

δk4G =
δkրG− δkւG

2i
=

∂

∂φk4

Defining Ωk1,k2 := ΩG (δk1G, δk2G) and similarly for other components of Ω and Ω̄ exactly
as we did in the previous section, we have the following matrices:




Ωk1,k1 Ωk1,k2 Ωk1,k3 Ωk1,k4

Ωk2,k1 Ωk2,k2 Ωk2,k3 Ωk3,k4

Ωk3,k1 Ωk3,k2 Ωk3,k3 Ωk3,k4

Ωk4,k1 Ωk4,k2 Ωk4,k3 Ωk4,k4


 = 2πk

b

a




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


 (3.46)

and 


Ω̄k1,k1 Ω̄k1,k2 Ω̄k1,−k3 Ω̄k1,−k4

Ω̄k2,k1 Ω̄k2,k2 Ω̄k2,−k3 Ω̄k2,−k4

Ω̄k3,k1 Ω̄k3,k2 Ω̄k3,−k3 Ω̄k3,k4

Ω̄k4,k1 Ω̄k4,k2 Ω̄k4,−k3 Ω̄k4,k4


 = 2πj

a

b




0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


 (3.47)
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Again we see that Ω 6= Ω̄.

I will now give one explicit example for specific values of a, b and m. Let’s fix a = 1, b = 2
and m = 4π2 · 24.

Then we can see that E = E5 ⊕ E10 is the direct sum of two 4-dimensional vector spaces
spanned by the elements:

φ5տ = ei2π(5t+
√

25−24x) = ei2π(5t+x)

φ5ց = ei2π(−5t−
√

25−24x) = ei2π(−5t−x)

φ5ր = ei2π(5t−
√

25−24x) = ei2π(5t−x)

φ5ւ = ei2π(−5t+
√

25−24x) = ei2π(−5t+x)

φ7տ = ei2π(7t+5x)

φ7ց = ei2π(−7t−5x)

φ7ր = ei2π(7t−5x)

φ7ւ = ei2π(−7t+5x)

On TG5E we have:



Ωk1,k1 Ωk1,k2 Ωk1,k3 Ωk1,k4

Ωk2,k1 Ωk2,k2 Ωk2,k3 Ωk3,k4

Ωk3,k1 Ωk3,k2 Ωk3,k3 Ωk3,k4

Ωk4,k1 Ωk4,k2 Ωk4,k3 Ωk4,k4


 = 2π




0 −5 · 2 0 0
5 · 2 0 0 0

0 0 0 −5 · 2
0 0 5 · 2 0




and 


Ω̄k1,k1 Ω̄k1,k2 Ω̄k1,−k3 Ω̄k1,−k4

Ω̄k2,k1 Ω̄k2,k2 Ω̄k2,−k3 Ω̄k2,−k4

Ω̄k3,k1 Ω̄k3,k2 Ω̄k3,−k3 Ω̄k3,k4

Ω̄k4,k1 Ω̄k4,k2 Ω̄k4,−k3 Ω̄k4,k4


 = 2π




0 −2 · 1
2 0 0

2 · 1
2 0 0 0

0 0 0 2 · 1
2

0 0 −2 · 1
2 0




On TG7E we have:



Ωk1,k1 Ωk1,k2 Ωk1,k3 Ωk1,k4

Ωk2,k1 Ωk2,k2 Ωk2,k3 Ωk3,k4

Ωk3,k1 Ωk3,k2 Ωk3,k3 Ωk3,k4

Ωk4,k1 Ωk4,k2 Ωk4,k3 Ωk4,k4


 = 2π




0 −7 · 2 0 0
7 · 2 0 0 0

0 0 0 −7 · 2
0 0 7 · 2 0




and



Ω̄k1,k1 Ω̄k1,k2 Ω̄k1,−k3 Ω̄k1,−k4

Ω̄k2,k1 Ω̄k2,k2 Ω̄k2,−k3 Ω̄k2,−k4

Ω̄k3,k1 Ω̄k3,k2 Ω̄k3,−k3 Ω̄k3,k4

Ω̄k4,k1 Ω̄k4,k2 Ω̄k4,−k3 Ω̄k4,k4


 = 2π




0 −10 · 1
2 0 0

10 · 1
2 0 0 0

0 0 0 10 · 1
2

0 0 −10 · 1
2 0




The same techniques, with similar results, can be used to study the field theory arsing from
the Lagrangian defined by the Lagrangian density L : J1π −→ R:

L (xµ, q, q̇µ) =
1
2

(q̇0)2 +
1
2

(q̇1)2 −
1
2
m2q2 (3.48)
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which leads to the elliptic Euler-Lagrange equation:

∂2φ

∂t2
+
∂2φ

∂x2
+m2φ = 0 (3.49)

Note that with this Lagrangian the case m = 0 would be trivial, being the space of solution
the one dimensional vector space of constants on T.

3.1.4 Theories on non trivial fiber bundles over a torus.

In this section I study the symplectic structures on the spaces of fields which are sections of
some non-trivial fiber bundles over a torus. I will obtain results analogous to the ones obtained
in the past two sections. This study is useful to show how the techniques described in the first
chapter can be applied to field theories defined on non trivial bundles of configurations and whose
fiber-type is not R.

Let’s consider the (vector) fiber bundles:

E

π

y

Ta,b

with fiber C, the set of complex numbers, and so that their sections φ can be written in local
coordinates t and x as:

φ (t, x) = ei2π( α
a
t+ β

b
x)
∑

k,j∈Z

φkjei2π( k
a
t+ j

b
x) (3.50)

where α, β ∈ R are fixed numbers depending on the fiber bundle; k, j ∈ Z and φkj ∈ C.
If on Ta,b we follow the closed path γ : [0, a] −→ Ta,b defined in coordinates by τ :−→

(t (τ) , x (τ)) = (τ, 0) with τ ∈ [0, a], we see that the fiber C undertakes a continuous rotation.
The total angle of the rotation reaches at the end of the path a value of −2πα. Analogously if we
follow the closed path γ′ : [0, b] −→ Ta,b defined in coordinates by τ :−→ (t (τ) , x (τ)) = (0, τ)
with τ ∈ [0, b], we see that the fiber C undertakes a continuous rotation which at the end of the
path corresponds to an angle −2πβ.

To cover the fiber bundle E we can use an atlas two of which charts are Uε with coor-
dinates (t, x, q) , t ∈ (−ε, a− ε), x ∈ (−ε, b− ε) and U ′

ε with coordinates (t′, x′, q′), t ∈
(a+ ε, 2a+ ε), x ∈ (b+ ε, 2b+ ε) so that t′ = t+a, x′ = x+b, q′ = e−i2π(α+β)q ∀t ∈ (ε, a− ε),
x ∈ (ε, b− ε), q ∈ C. For every fixed α and β we have a different bundle.

On J1π we use as coordinates (t, x, q, q̇0, q̇1), where q, q̇0, q̇1 are complex and qr, q̇r0, q̇
r
1

are their real components, qi, q̇i0, q̇
i
1 their imaginary components. For every φ ∈ Γ (E) section

of E, we have q̇µ
(
j1φ (x)

)
= ∂µφ.

We study the theories defined by the Lagrangian densities L:

L : J1π −→ R

(t, x, q, q̇0, q̇1) 7−→
1
2
|q̇0|

2 −
1
2
|q̇1|

2 −
1
2
m2 |q|2

where m is a real parameter.
Note that L is well defined on J1π, because its expression in local coordinates depends only

on |φ| and it is not therefore affected by the rotation of the fiber C of the fiber bundle.
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Again, for every section of E we have:

p0 = q̇0 = ∂0φ (3.51)

p1 = −q̇1 = −∂1φ (3.52)

where p0 and p1 are in this case complex.
The Hamiltonian is:

H : Homπ(V E,Λn−1T ∗Ta,b) ∼= Homπ(V E, T ∗Ta,b) −→R

(xµ, q, pµ) 7−→
1
2

∣∣p0
∣∣2 − 1

2

∣∣p1
∣∣2 +

1
2
m2 |φ|2

where we have used an identification between T ∗C and C.
Our multisymplectic form is:

ω = dp0
r ∧ dφ

r ∧ dx+ dp0
i ∧ dφ

i ∧ dx− dp1
r ∧ dφ

r ∧ dt− dp1
i ∧ dφ

i ∧ dt− dH ∧ dt ∧ dx (3.53)

where the labels r and i indicate the real and imaginary components respectively.
The Euler-Lagrange equation is:

∂2φ

∂t2
−
∂2φ

∂x2
+m2φ = 0 (3.54)

A field (3.50) is a solution of the theory if the integers k and j satisfy the following equation:

1
a2

(α+ k)2 −
1
b2

(β + j)2 =
m2

4π2
(3.55)

As one could imagine, the structure of the space of solutions E depends on the parameters
α and β. We will study the special case when α and β are integers or semi-integers: we may
then write α = n · 1

2 and β = l · 1
2 with l, n ∈ Z. This case is particularly interesting because it

corresponds to fiber bundles with fiber C which have natural sub-bundles with fiber R. We will
see right after that in this case the structure of E is strictly analogous to the one we have seen
in the previous sections. At the end of this sections I will say something about the more general
case when α, β, or both, aren’t a multiple of 1

2 . For the moment let’s follow the scheme we used
in the past sections.

If α = n · 1
2 and β = l · 1

2 with l, n ∈ Z, then the space E of solutions of our theory is a vector
space and it can be written as:

E =

( ⊕

k∈A⊂Z

Ek

)
(3.56)

where A is the set of integer numbers k ≥ −α such that it exists j ∈ Z which satisfies with k the
equation (3.55); in the following and at the end of the section I will make some more comments
on the nature of the space A ⊂ Z. In formula(3.56), every Ek is a four dimensional complex
vector space except at most one specific degenerate Ek0

which may be two dimensional, if m 6= 0,
or one dimensional, if m = 0. Every non degenerate Ek is spanned by the four linear independent
complex functions:

φkտ = e
i2π

[
( k

a
+ α

a )t+
√

1
a2 (α+k)2− m2

4π2 x

]
(3.57)

φkց = e
i2π

[
−( k

a
+ α

a )t−
√

1
a2 (α+k)2− m2

4π2 x

]
(3.58)
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φkր = e
i2π

[
( k

a
+ α

a )t−
√

1
a2 (α+k)2− m2

4π2 x

]
(3.59)

φkւ = e
i2π

[
−( k

a
+ α

a )t+
√

1
a2 (α+k)2− m2

4π2 x

]
(3.60)

Note that, if k ≥ −α, k ∈ Z satisfies (3.55), then so does k′ = −k − 2α, which, substituted
to k into the solution (3.57), gives the solution (3.60) and, substituted into the solution (3.59),
gives the solution (3.58); and we have k′ < −α.

It is precisely the condition that α = n · 1
2 with n ∈ Z which is necessary and sufficient for k′

to be integer (and minor or equal to α) as well, and therefore for the functions (3.58) and (3.60)
to be of the form (3.61) and therefore to be actual sections of our fiber bundles with parameters
α and β. An analogous discussion can be done for j and β.

In the following, to make the notation lighter, I will often write
(
β
b

+ j
b

)
instead of

√
1
a2 (α+ k)2 − m2

4π2 ,

understanding that
(
β
b

+ j
b

)
is a positive function of k; id est j ≥ −β.

When there isn’t any degeneracy of any Ek̃, we may write the solutions of our theory in this
way:

φ (t, x) =
∑

k∈A⊂Z

(
φkտφkտ + φkցφkց + φkրφkր + φkւφkւ

)
(3.61)

where φkտ, φkց, φkր, φkւ are complex numbers.
It is more useful thought, to separate the real from the imaginary part of φ and to use the

functions:

φk1 = cos2π
[(

k

a
+
α

a

)
t+

(
β

b
+
j

b

)
x

]

φk2 = sin2π
[(

k

a
+
α

a

)
t+

(
β

b
+
j

b

)
x

]

φk3 = cos2π
[(

k

a
+
α

a

)
t−

(
β

b
+
j

b

)
x

]

φk4 = sin2π
[(

k

a
+
α

a

)
t−

(
β

b
+
j

b

)
x

]

Then we can write:

φ (t, x) =
∑

k∈A⊂Z

(
φk1φk1 + φk2φk2 + φk3φk3 + φk4φk4

)
(3.62)

where φk1, φk2, φk3, φk4 are complex numbers.
And:

φ (t, x) =
∑

k∈A⊂Z

(
φk1rφk1 + φk2rφk2 + φk3rφk3 + φk4rφk4

)
+

+ i
∑

k∈A⊂Z

(
φk1iφk1 + φk2iφk2 + φk3iφk3 + φk4iφk4

) (3.63)

where φk1r, φk2r, φk3r, φk4r, φk1i, φk2i, φk3i, φk4i are real numbers and they are the real and
imaginary components of the complex numbers φk1, φk2, φk3, φk4.

φk1r, φk2r, φk3r, φk4r, φk1i, φk2i, φk3i, φk4i are the real coordinates on the real vector space
E .
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The set A depends on the parameters a and b which fix our torus, on the parameters α and β
which fix the fiber bundle on the torus and on the parameter m which fix the chosen Lagrangian
between the family of Lagrangians we are studying. If m = 0, A may be an infinite set, whereas
if m 6= 0, A is a finite set. Of course A is empty for most of values of a, b, α, β and m. I will
make some more comments on A at the end of the section.

We can proceed now in our study in the same way we did in the previous sections. For
simplicity we will not consider in the following the case when there is a degeneracy of Ek̃ for a
particular k̃.

If G ∈ E , on the eight dimensional real vector space TGE we take as base the vectors
δk1rG = ∂

∂φk1r , δk2rG = ∂
∂φk2r , δk3rG = ∂

∂φk3r , δk4rG = ∂
∂φk4r and δk1iG = ∂

∂φk1i , δk2iG = ∂
∂φk2i ,

δk3iG = ∂
∂φk3i , δk4iG = ∂

∂φk4i .

Their corresponding vector fields over the Hamiltonian curve G are:

ξk1r (t, x) = cos 2π
[(

α

a
+
k

a

)
t+

(
β

b
+
j

b

)
x

]
∂

∂φr

− 2π
(
α

a
+
k

a

)
sin 2π

[(
α

a
+
k

a

)
t+

(
β

b
+
j

b

)
x

]
∂

∂p0
r

+ 2π
(
β

b
+
j

b

)
sin 2π

[(
α

a
+
k

a

)
t+

(
β

b
+
j

b

)
x

]
∂

∂p1
r

ξk2r (t, x) = sin 2π
[(

α

a
+
k

a

)
t+

(
β

b
+
j

b

)
x

]
∂

∂φr

+ 2π
(
α

a
+
k

a

)
cos 2π

[(
α

a
+
k

a

)
t+

(
β

b
+
j

b

)
x

]
∂

∂p0
r

− 2π
(
β

b
+
j

b

)
cos 2π

[(
α

a
+
k

a

)
t+

(
β

b
+
j

b

)
x

]
∂

∂p1
r

(3.64)

ξk3r (t, x) = cos 2π
[(

α

a
+
k

a

)
t−

(
β

b
+
j

b

)
x

]
∂

∂φr

− 2π
(
α

a
+
k

a

)
sin 2π

[(
α

a
+
k

a

)
t−

(
β

b
+
j

b

)
x

]
∂

∂p0
r

− 2π
(
β

b
+
j

b

)
sin 2π

[(
α

a
+
k

a

)
t−

(
β

b
+
j

b

)
x

]
∂

∂p1
r

ξk4r (t, x) = sin 2π
[(

α

a
+
k

a

)
t−

(
β

b
+
j

b

)
x

]
∂

∂φr

+ 2π
(
α

a
+
k

a

)
cos 2π

[(
α

a
+
k

a

)
t−

(
β

b
+
j

b

)
x

]
∂

∂p0
r

+ 2π
(
β

b
+
j

b

)
cos 2π

[(
α

a
+
k

a

)
t−

(
β

b
+
j

b

)
x

]
∂

∂p1
r

(3.65)
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and

ξk1i (t, x) = cos 2π
[(

α

a
+
k

a

)
t+

(
β

b
+
j

b

)
x

]
∂

∂φi

− 2π
(
α

a
+
k

a

)
sin 2π

[(
α

a
+
k

a

)
t+

(
β

b
+
j

b

)
x

]
∂

∂p0
i

+ 2π
(
β

b
+
j

b

)
sin 2π

[(
α

a
+
k

a

)
t+

(
β

b
+
j

b

)
x

]
∂

∂p1
i

ξk2i (t, x) = sin 2π
[(

α

a
+
k

a

)
t+

(
β

b
+
j

b

)
x

]
∂

∂φi

+ 2π
(
α

a
+
k

a

)
cos 2π

[(
α

a
+
k

a

)
t+

(
β

b
+
j

b

)
x

]
∂

∂p0
i

− 2π
(
β

b
+
j

b

)
cos 2π

[(
α

a
+
k

a

)
t+

(
β

b
+
j

b

)
x

]
∂

∂p1
i

(3.66)

ξk3i (t, x) = cos 2π
[(

α

a
+
k

a

)
t−

(
β

b
+
j

b

)
x

]
∂

∂φi

− 2π
(
α

a
+
k

a

)
sin 2π

[(
α

a
+
k

a

)
t−

(
β

b
+
j

b

)
x

]
∂

∂p0
i

− 2π
(
β

b
+
j

b

)
sin 2π

[(
α

a
+
k

a

)
t−

(
β

b
+
j

b

)
x

]
∂

∂p1
i

ξk4i (t, x) = sin 2π
[(

α

a
+
k

a

)
t−

(
β

b
+
j

b

)
x

]
∂

∂φi

+ 2π
(
α

a
+
k

a

)
cos 2π

[(
α

a
+
k

a

)
t−

(
β

b
+
j

b

)
x

]
∂

∂p0
i

+ 2π
(
β

b
+
j

b

)
cos 2π

[(
α

a
+
k

a

)
t−

(
β

b
+
j

b

)
x

]
∂

∂p1
i

(3.67)

with k ∈ A ⊂ Z.
We can compute Ω and Ω̄ integrating on the slices Σ and Σ̄ defined as in the last section.
Equations (3.53), (3.64), (3.65), (3.66) and (3.67) tell us that the real and the imaginary

section of the theory are dis-coupled.
We have:

Ωkqr,k′q′i = Ω̄kqr,k′q′i = 0, ∀q, q′ ∈ 1, 2, 3, 4 (3.68)

Moreover we have:
Ωkqr,k′q′r = Ωkqi,k′q′i, ∀q, q

′ ∈ 1, 2, 3, 4 (3.69)

and
Ω̄kqr,k′q′r = Ω̄kqi,k′q′i, ∀q, q

′ ∈ 1, 2, 3, 4 (3.70)

We can therefore calculate the values of the components of Ω and Ω̄ on the real section of
the theory only. I exhibit the calculations in Appendix A.1.

The results are:



Ωk1,k1 Ωk1,k2 Ωk1,k3 Ωk1,k4

Ωk2,k1 Ωk2,k2 Ωk2,k3 Ωk3,k4

Ωk3,k1 Ωk3,k2 Ωk3,k3 Ωk3,k4

Ωk4,k1 Ωk4,k2 Ωk4,k3 Ωk4,k4


 = 2π

b

a




0 − (α+ k) 0 0
(α+ k) 0 0 0

0 0 0 − (α+ k)
0 0 (α+ k) 0




(3.71)
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


Ω̄k1,k1 Ω̄k1,k2 Ω̄k1,−k3 Ω̄k1,−k4

Ω̄k2,k1 Ω̄k2,k2 Ω̄k2,−k3 Ω̄k2,−k4

Ω̄k3,k1 Ω̄k3,k2 Ω̄k3,−k3 Ω̄k3,k4

Ω̄k4,k1 Ω̄k4,k2 Ω̄k4,−k3 Ω̄k4,k4


 = 2π

a

b




0 − (β + j) 0 0
(β + j) 0 0 0

0 0 0 (β + j)
0 0 − (β + j) 0




(3.72)
As already noted, we obtain the same results if we calculate Ω and Ω̄ on the imaginary section

of the theory.
We see that Ω 6= Ω̄.
Note the correspondence existing between (3.71), (3.72) and (3.46), (3.47).
We now come back to the question of identifying the set A to which k belongs. As we said

A depends on, a, b, α, β and m. We first consider α = n 1
2 and β = l 1

2 with l, n ∈ Z. Then the
equation (3.55) become:

1
a2

(
n

1
2

+ k

)2

−
1
b2

(
l
1
2

+ j

)2

=
m2

4π2
(3.73)

We study the case when m = 0. Then we have:

1
a2

(
n

1
2

+ k

)2

−
1
b2

(
l
1
2

+ j

)2

= 0 (3.74)

It is clear that (3.74) has solutions only if a
b

is rational. Without lack of generality we can
suppose that a and b are integer without common divisor so that a

b
is reduced. It is easy to see that

if both n and l are even, then there is a natural 1 to 1 correspondence between the solutions of
the theory with n = 0, l = 0 and the solutions of the theory with n, l generic, the correspondence
sending a solution labeled by k to a solution labeled by k− n

2 . This correspondence let unchanged
Ω and Ω̄.

If on the other hand one of the two numbers n and l is odd, then the other one must be even,
since otherwise the set of solutions would be empty. Let’s see why. We can rewrite (3.74) in this
way:

|l + 2j| =

∣∣∣∣
b

a
(n+ 2k)

∣∣∣∣ (3.75)

where all variables are integers. Suppose that n is odd: then a must be odd too, otherwise
b
a

(n+ 2k) could not be integer. But if a is odd, then b is even (because a and b have no divisors
in common) and this imply that also (l + 2j) must be even and so also l is even. A similar
discussion can be done for the case when l is odd.

The conditions that n and a are odd while l and b are even or vice versa are sufficient to have
a non empty, and in fact infinite, set A of solutions. We can show that those solutions are in a 1
to 1 correspondence with the solutions of the theory with n = 1 and l = 0 (or n = 0 and l = 1),
which means α = 1

2 and β = 0 (α = 0 and β = 1
2 ). For the theory with n = 1 and l = 0 the set

A is the set of natural numbers k so that 1+2k
a

is an integer. This set is obviously infinite. Note
that for this theory there is no k̃ for which Ek̃ is degenerate. To a solution of this theory labeled
by k we link the solution of the theory with generic odd n labeled by the integer k− n

2 + 1
2 . The

correspondence again leave Ω and Ω̄ unchanged as it can be easily seen by substitution in (3.71)
and (3.72). A similar correspondence holds between the theory n = 0, l = 1 and the generic
theory with n generic even number and l generic odd number.

These correspondences should not be unforeseen if one thinks of the geometrical meaning of
the rotations with angles 2πα and 2πβ.

If we study the case when m 6= 0, we find similar correspondences with similar arguments.
We see that the real interesting cases to study are the one with n = 1 and l = 0, the one with
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n = 0 and l = 1 and the one with n = 1 and l = 1 (an example for the case n = 0 and l = 0 has
already been given in the previous section).

When α and β are not multiples of 1
2 , the situation becomes a bit more complicated. It does

not make sense anymore to speak about a "real" and an "imaginary" section of the theory and
there isn’t anymore any sub-bundle with fiber R. The formula (3.56) loses of its interest, and
in fact, if both α and β were different than a multiple of 1

2 then each Ek would be of complex
dimension 1 instead of 4. Moreover it can be seen, with calculations similar to those shown here,
that Ωk,k′ and Ω̄k,k′ may be different than 0 even when k 6= k′.

Still in general it would be Ω 6= Ω̄.

3.2 Symplectic structures on spaces of solutions of field

theories over R2

The proof given by Hélein of the equivalence of the symplectic structures built from different
slices belonging to the same homology class remains valid for non-compact slices if we restrict
the space of solutions on which we want to build the symplectic structure. The point there is
that, on a generic solution G, the symplectic form may not be defined; let’s see why. When
G ∈ E is an hamiltonian surface, id est the image in P of a solution of the theory, the symplectic
form ΩΣ is built by integration of ξ1 ∧ ξ2 ω over the surface obtained intersecating the slice Σ
with G (where ω is the multisymplectic form and ξ1 and ξ2 are Jacobi vertical vector fields on
G). For the integral to be well defined, ξ1 and ξ2 must go to zero fast enough at the infinity
of Σ ∩ G, otherwise the integral diverge. If we want to compare ΩΣ with ΩΣ̄, we have then to
consider a subset I ⊂ E of the whole space of solutions, such that, chosen the slices Σ and Σ̄, for
every G ∈ I and for every δ1G, δ2G ∈ TGI , the integrals

∫
Σ∩G ξ1 ∧ ξ2 ω and

∫
Σ̄∩G ξ1 ∧ ξ2 ω

(where ξ1 and ξ2 are Jacobi fields corresponding to the vectors δ1G and δ2G) are well defined.
Hélein prove then that ΩΣ are ΩΣ̄ are indeed equal, provided that some more conditions are
satisfied. First of all it must exist a smooth one parameter family of slices Σt such that Σ0 = Σ
and Σ1 = Σ̄ and such that ∀t ∈ [0, 1] , ∀δ1G, δ2G ∈ TGI ,

∫
Σ̄t∩G ξ1 ∧ ξ2 ω is well defined

(where ξ1 and ξ2 are Jacobi fields corresponding to the vectors δ1G and δ2G); then the family
must satisfy some more conditions which ensure a good behavior at the infinity of Σt ∩ G for
every t and for every G. Hélein uses a special kind of homology between Σ and Σ̄. What happens
if Σ and Σ̄ are not homological in that sense?

In the next three sections I will study two examples of the situation described above. I
will consider two simple field theories over R2 and I will compare ΩΣ with ΩΣ̄ on a class of
hamiltonian surfaces for which they are well defined but such that Σ and Σ̄ are not homological
in the above sense (although they are homological for the standard homology).

To compare different symplectic structures I will use an integral Fourier development of the
Jacobi fields ξ.

I will show in this way that, when Σ is non compact, some subtle phenomena can occur and
in general standard homology is not sufficient to ensure the independence of ΩΣ from Σ.

3.2.1 Space of scalar fields over R2.

Let’s consider the fiber bundle E = R2 × R:

R2 × R

π

y

R2
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A section φ of the bundle is a smooth function φ : R2 −→ R.
We have a chart U = R2 which cover all the base space R2. The coordinates on U will be xµ,

µ = 0, 1 with x0∈(−∞,+∞) and x1∈(−∞,+∞). I will often use the following notation: x0 = t
and x1 = x. On V = φ (U) = R we use φ as coordinate.

We call J1π the first order jet fiber bundle of E, which is isomorphic to R5. On J1π we use
as coordinates (xµ, q, q̇µ), so that ∀x ∈ R2, ∀φ ∈ Γ

(
R2 × R

)
, q̇µ

(
j1φ (x)

)
= ∂µφ.

In local coordinates we have the Lagrangian L : (xµ, q, q̇µ) −→ L (xµ, q, q̇µ)β, β = dx0∧dx1 =
dt∧dx being the standard volume 2-form on R2 and L, the Lagrangian density, being a function
between J1π and R.
The Euler-Lagrange equation is:

d

dxµ

(
∂L

∂q̇µ
(x, φ, ∂φ)

)
=
∂L

∂q
(x, φ, ∂φ) (3.76)

Let q ∈ R, x ∈ R2: since Hom
(
TqR, TxR2

)
≃ Hom

(
R,R2

)
≃ R2, because we identify the

real line R with its tangent and with its cotangent and the real plane R2 with its tangent, we
have the Hamiltonian:

H :
(
R2 × R

)
× R2 −→ R

H : (xµ, q, pµ) −→ pµq̇µ − L (xµ, q, q̇µ)

where we assume that q̇µ is the unique solution of ∂L
∂q̇µ

(xµ, q, q̇µ) = pµ. To every section φ ∈

Γ
(
R2 × R

)
we associate a section p of R2×R×R2, which will be the section p : R2 −→ R2×R×R2

defined by: q (xν) := φ (xν) and pµ (xν) := ∂L
∂q̇µ

(xν , φ, ∂µφ) ,∀x ∈ R2.
The Hamilton system is then:





∂φ

∂xµ
=
∂H

∂pµ
(xν , φ, pν)

∂pµ

∂xµ
= −

∂H

∂φ
(xν , φ, pν)

(3.77)

We interpret (φ, pµ) as a section of R2 × R× R2

(φ, pµ) : xµ −→ (xµ, φ, pµ)

and its image G (xµ) is a submanifold of R2 × R× R2, and so we can associate to any φ section
of the bundle

(
R2 × R

) π
→ R2, a submanifold G of R2 × R× R2.

The field φ satisfies (3.76) if and only if the section (φ, pµ) satisfy (3.77) which happens if
and only if G (xµ) is an Hamiltonian 2-curve, id est satisfies the condition:

∀X1,X2 ∈ Γ (TG) ,∀ξ ∈ Γ
(
T
(
R2 × R× R2

))

(
dp0 ∧ dφ ∧ β0 + dp1 ∧ dφ ∧ β1 − dH ∧ β

)
(ξ,X1,X2) = 0

or:
ω (ξ,X1,X2) = 0 (3.78)

where:

ω :=dp0 ∧ dφ ∧ β0 + dp1 ∧ dφ ∧ β1 − dH ∧ β

=dp0 ∧ dφ ∧ dx1 − dp1 ∧ dφ ∧ dx0 − dH ∧ dx0 ∧ dx1

=dp0 ∧ dφ ∧ dx− dp1 ∧ dφ ∧ dt− dH ∧ dt ∧ dx

We call E the space of solutions of our field theory for some Lagrangian and we identify it
with the spaces of all Hamiltonian 2-curves, satisfying (3.78).
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3.2.2 Free scalar field over R2

In this section we study the field theory defined by the Lagrangian density L : J1π −→ R:

L (xµ, q, q̇µ) =
1
2

(q̇0)2 −
1
2

(q̇1)2 (3.79)

To each field φ (xµ) we associate the momenta pµ (xν) := ∂L
∂q̇µ

(xν , φ, ∂µφ), and we have:

p0 = ∂0φ (3.80)

p1 = −∂1φ (3.81)

The Hamiltonian H : R2 × R× R2 −→ R is then:

H (xµ, q, pµ) =
1
2

(
p0
)2
−

1
2

(
p1
)2

(3.82)

The Euler-Lagrange equation is the wave equation:

∂2φ

∂t2
−
∂2φ

∂x2
= 0 (3.83)

The space of solutions of the theory is the infinite dimensional real vector space E . As we
did in the previous sections of this chapter, we will identify G with E . Being E a vector space,
we have ∀G : TGE ≃ E .

A generic solution of the theory φ can be written as

φ (t, x) = φ+(t+ x) + φ−(t− x) (3.84)

where φ+, φ− ∈ C∞ (R,R) are generic smooth real functions in one variable.
It is easy to see that if G is an Hamiltonian surface in E , then a generic vector δuG ∈ TGE

is represented by a ’Jacobi field’ ξ ∈ Γ
(
i∗
(
T
(
R2 × R× R2

)))
, where i is the embedding map of

G in R2 × R× R2. If on G we use t and x as local coordinates, we have:

i : (t, x) −→ (t, x, φ (t, x) , ∂0φ (t, x) ,−∂1φ (t, x))

and ξ is defined on G in this way:

ξ(t, x) = [u+(t+ x) + u−(t− x)]
∂

∂φ
+
[
u′

+(t+ x) + u′
−(t− x)

] ∂

∂p0
+
[
−u′

+(t+ x) + u′
−(t− x)

] ∂

∂p1

(3.85)
where u+, u− ∈ C∞ (R,R) are generic smooth real functions in one variable and u′

+ + u′
− are

their first derivative.
In the following we will consider the two vectors δu+

G, δu−
G ∈ TGE , represented by the

Jacobi fields:

ξ+(t, x) =u+(t+ x)
∂

∂φ
+ u′

+(t+ x)
∂

∂p0
− u′

+(t+ x)
∂

∂p1

ξ−(t, x) =u−(t− x)
∂

∂φ
+ u′

−(t− x)
∂

∂p0
+ u′

−(t− x)
∂

∂p1

(3.86)

Note that the expressions in (3.86) do not depend in fact from G, which is consistent with the
fact that E is a vector space and not a curved space.
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On R2 × R × R2 we consider a slice Σ of codimension 1 with the property that for any
Hamiltonian n-curve G ∈ E the intersection of Σ with G is transverse. We also assume that
∀G ∈ E , Σ ∩ G is an oriented manifold of dimension 2 − 1 = 1. We can then define the
symplectic form ΩΣ: let be δ1G, δ2G ∈ TGE two vectors over G ∈ E , and let be u1 and u2 the
corresponding Jacobi fields over G, then:

ΩΣ (δ1G, δ2G) :=
∫

Σ∩G
u1 ∧ u2 ω (3.87)

The form ΩΣ is not defined on all TE because the integral in (3.87) may diverge. This is a
common situation one has to deal with when working with field theories defined on non compact
base manifolds. The problem is well known and it can be addressed in different ways. For
example Kijowski and Szczyrba in [98] suggested to consider only couples of vectors δ1G, δ2G
such that at least one between the corresponding Jacobi fields over G, u1 and u2, is compactly
supported when restricted to any of the admissible slices Σ. This unfortunately would be a by
far too strong condition for the theory we are studying, unless we strongly limit the choice of Σ.
This is not what I want to do here. Let’s put aside for a while the problem of the convergence
of the integral in (3.87): we will come back to it at the end of this subsection.

Suppose that ΩΣ is well defined, then it will not depend on the point G over which we
calculate it. It may depends instead on the slice Σ: this dependence is precisely what I want to
study in the following.

We choose the slice Σcd of R2 × R × R2 to be the hyperspace of dimension 4 defined by the
equation x = ct+ d with c, d ∈ R being two parameters. All Σcd clearly have the characteristics
described above. For every G, Σcd ∩ G has dimension 1 and it can be parametrized with a
parameter τ in this way:

τ −→ (τ, cτ + d, φ (τ, cτ + d) , ∂0φ (τ, cτ + d) ,−∂1φ (τ, cτ + d))

Choosing this parametrization, we have also automatically chosen a naturally associated
orientation of Σcd.

Let’s set Ωcd := ΩΣcd
. I want now to compute:

Ωcd ++ := Ωcd
(
δu+

G, δũ+
G
)

:=
∫

Σcd∩G
ξ+ ∧ ξ̃+ ω (3.88)

Ωcd −− := Ωcd
(
δu−

G, δũ−
G
)

:=
∫

Σcd∩G
ξ− ∧ ξ̃− ω (3.89)

Ωcd +− := Ωcd
(
δu+

G, δũ−
G
)

:=
∫

Σcd∩G
ξ+ ∧ ξ̃− ω (3.90)

We have that:

Ωcd ++ =
∫

Σcd∩G
ξ+ ∧ ξ̃+ ω

=
∫

Σcd∩G

[
u′

+(t+ x)ũ+(t+ x)− u+(t+ x)ũ′
+(t+ x)

]
dx

+
∫

Σcd∩G

[
u′

+(t+ x)ũ+(t+ x)− u+(t+ x)ũ′
+(t+ x)

]
dt

=
∫ ∞

−∞

[
u′

+(τ + cτ + d)ũ+(τ + cτ + d)− u+(τ + cτ + d)ũ′
+(τ + cτ + d)

]
(cdτ + dτ)

(3.91)
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so, if c = −1, then:
Ωcd ++ = 0

if c 6= −1, then:

Ωcd ++ = sgn(c+ 1)
∫ ∞

−∞

[
u′

+(z)ũ+(z)− u+(z)ũ′
+(z)

]
dz (3.92)

For Ωcd −− we have:

Ωcd −− =
∫

Σcd∩G
ξ− ∧ ξ̃− ω

=
∫

Σcd∩G

[
u′

−(t− x)ũ−(t− x)− u−(t− x)ũ′
−(t− x)

]
dx

−

∫

Σcd∩G

[
u′

−(t− x)ũ−(t− x)− u−(t− x)ũ′
−(t− x)

]
dt

=
∫ ∞

−∞

[
u′

−(τ − cτ − d)ũ−(τ − cτ − d)− u−(τ − cτ − d)ũ′
−(τ − cτ − d)

]
(cdτ − dτ)

(3.93)

so, if c = 1, then:
Ωcd −− = 0

if c 6= 1, then:

Ωcd −− = sgn(c− 1)
∫ ∞

−∞

[
u′

−(z)ũ−(z)− u−(z)ũ′
−(z)

]
dz (3.94)

And finally we have:

Ωcd +− =
∫

Σcd∩G
ξ+ ∧ ξ̃− ω

=
∫

Σcd∩G

[
u′

+(t+ x)ũ−(t− x)− u+(t+ x)ũ′
−(t− x)

]
dx

+
∫

Σcd∩G

[
u′

+(t+ x)ũ−(t− x) + u+(t+ x)ũ′
−(t− x)

]
dt

=
∫ ∞

−∞

{
(c+ 1)

[
u′

+(τ + cτ + d)ũ−(τ − cτ − d)
]
− (c− 1)

[
u+(τ + cτ + d)ũ′

−(τ − cτ − d)
]}

dτ

=
∫ ∞

−∞

[
df

dτ
(τ)g(τ) + f(τ)

dg

dτ
(τ)
]
dτ = f(∞)g(∞)− f(−∞)g(−∞)

(3.95)

where f(τ) := u+(τ + cτ + d) and g(τ) := ũ−(τ − cτ − d). Note that Ωcd +− = 0 if u+ or ũ−
goes to 0 at infinity.

Looking at the results obtained with (3.92), (3.94) and (3.95), we can conclude that Ω does
not depend on the choice of the slice Σcd as long as we take in consideration the orientation of
such slices and as far as we do not cross the slices corresponding to the parameters c = 1 and
c = −1. To be more precise: if we limit ourselves to slices of space type, which entirely lie inside
the light cone, which means to slices corresponding to c < −1 and c > 1, then it is possible
to choose a continuum orientation in the space of slices Σcd, so that Ω does not depend on the
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choice of c and d. The same if we limit ourselves to slices with parameters −1 < c < 1. On
the other hand the value of Ω may change if we calculate it on 2 different slices lying in the 2
different sectors and there is no possible choice of a continue orientation in the space of slices
which can completely avoid this. Finally, if we consider the special slices with c = −1 or c = 1,
we can see that the corresponding Ω shows a special degeneracy.

We can also observe that Ω never depends on the parameter d.
The symplectic structure change when we pass trough an ipersurface of light type.

Before to close this subsection, let’s come back to the problem of the convergence of the
integral (3.87). We saw above, equation (3.84), that every element φ of the space E can be
written as:

φ (t, x) = φ+(t+ x) + φ−(t− x)

where φ+, φ− ∈ C∞ (R,R).
Let’s now consider the space I ⊂ C∞ (R,R) of real smooth functions defined by:

I := H1 (R) ∩ C∞ (R,R) (3.96)

where H1 (R) = W 1,2 (R) is the Sobolev space of functions f ∈ L2 (R) such that their weak
derivatives f ′ are also in L2 (R).

Let’s consider the subspace I ⊂ E defined by:

I := {φ ∈ E |φ = φ+ + φ− with φ+, φ− ∈ I}

Then it is TI ∼= I . Suppose G ∈ I and δu ∈ TGI , then δu is represented by a ’Jacobi field’ ξ
such that:

ξ(t, x) = [u+(t+ x) + u−(t− x)]
∂

∂φ
+
[
u′

+(t+ x) + u′
−(t− x)

] ∂

∂p0
+
[
−u′

+(t+ x) + u′
−(t− x)

] ∂

∂p1

with u+, u− ∈ I.
Then, remembering equations (3.92), (3.94) and (3.95), it is easy to see that the integral

(3.87) is always well defined when u1, u2 ∈ TI . Therefore Formula (3.87) defines a symplectic
form on I ⊂ E . The comparison between non-equivalent symplectic structures made in this
subsection makes sense if we compare symplectic forms Ω and Ω′ defined on I .

We could do better. A Fourier analysis would also show that the integral (3.87) is indeed
always well defined if u1, u2 ∈ TJ ; where:

J := {φ ∈ E |φ = φ+ + φ− with φ+, φ− ∈ J}

with
J := H

1
2 (R) ∩ C∞ (R,R) . (3.97)

Remark 21. Note that in Formula (3.96) and (3.97), the intersection with C∞ (R,R) is assumed,
although it is not necessary to ensure the convergence of the integrals calculated in this section,
because all the fields are from the beginning supposed to be smooth.

3.2.3 Massive scalar field over R2.

On the same fiber bundle over R2 used in the last sections, we study now the field theory
defined by the following Lagrangian density L : J1π −→ R:

L (xµ, q, q̇µ) =
1
2

(q̇0)2 −
1
2

(q̇1)2 −
1
2
m2q2 (3.98)
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This is a special case of the theory studied by Marsden and Shkoller in [108].
We will use the same notations used in the past sections.
The Hamiltonian H : R2 × R× R2 −→ R is then:

H (xµ, q, pµ) =
1
2

(
p0
)2
−

1
2

(
p1
)2

+
1
2
m2q2 (3.99)

The Euler-Lagrange equation is the equation:

∂2φ

∂t2
−
∂2φ

∂x2
+m2φ = 0 (3.100)

The space of solutions of the theory is again a infinite dimensional real vector space E . We
study its complexified CE to make some calculations easier. We denote every φ ∈ CE solution of
(3.100) with its Fourier integral. We have then:

φ (t, x) =
∫ +∞

−∞

[
φ+(j)ei2π(kt+jx) + φ−(j)ei2π(kt−jx)

]
dj (3.101)

where

k =
j

|j|

√
j2 +

m2

4π2
(3.102)

is a real function of j with values always concordant with those of j.
We consider φ+(j) and φ−(j) as elements of a chosen functional space I ⊂ C∞ (R,R); in this

way we restrict E to a subset I
If φ ∈ CI , then it corresponds to an hamiltonian 2-curve G.
As in the previous section, if δuG ∈ CTGI is a vector over the point G, then δuG corresponds

to a suitable u ∈ Γ
(
i∗
(
CT
(
R2 × R× R2

)))
. As a correspondent to δuG we take the vector field

u defined on G by its Fourier integral in this way:

u (t, x) =
∫ +∞

−∞
dj
[
u+ (j) ei2π(kt+jx) + u− (j) ei2π(kt−jx)

] ∂

∂φ
+

+
∫ +∞

−∞
dj i2πk

[
u+ (j) ei2π(kt+jx) + u− (j) ei2π(kt−jx)

] ∂

∂p0

−

∫ +∞

−∞
dj i2πj

[
u+ (j) ei2π(kt+jx) − u− (j) ei2π(kt−jx)

] ∂

∂p1

(3.103)

where u+, and u− are elements of a functional space D determined by the choice of I, which in
turns determines also I and CI . The choice of I, and so of D, is made so that all the integral
appearing in the following do converge. I will not show here how it is possible to chose a suitable
I, but one can retains that a procedure analogous to the one adopted at the end of the previous
subsection can be followed also in this case. A posteriori, one can verify (as in the case of free
field treated in the previous session) that indeed a good choice of I is I = H

1
2 (R) ∩ C∞ (R,R),

which implies D = I.
We will distinguish again the vector fields of the type u+ from those of the type u−, where:

u+ (t, x) =
∫ +∞

−∞
dj
[
u+ (j) ei2π(kt+jx)

] [ ∂
∂φ

+ i2π
(
k
∂

∂p0
− j

∂

∂p1

)]
(3.104)

and

u− (t, x) =
∫ +∞

−∞
dj
[
u− (j) ei2π(kt−jx)

] [ ∂
∂φ

+ i2π
(
k
∂

∂p0
+ j

∂

∂p1

)]
(3.105)
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On R2 × R× R2 we use the same slices Σcd defined in the previous section and we parametrize
them in the same way with the parameter τ .

We can calculate Ω for any δuG ∈ CTGI . We compute:

Ωcd ++ := Ωcd (δu+G, δũ+G) :=
∫

Σcd∩G
u+ ∧ ũ+ ω (3.106)

Ωcd −− := Ωcd (δu−G, δũ−G) :=
∫

Σcd∩G
u− ∧ ũ− ω (3.107)

Ωcd +− := Ωcd (δu+G, δũ−G) :=
∫

Σcd∩G
u+ ∧ ũ− ω (3.108)

We have then:

Ωcd ++ =
∫ +∞

−∞
dj

∫ +∞

−∞
dj′ u+ (j) ũ+ (j′)

{∫ +∞

−∞
i2π (k − k′)

[
ei2π(kτ+cjτ+jd)ei2π(k′τ+cj′τ+j′d)

]
c dτ

+
∫ +∞

−∞
−i2π (−j + j′)

[
ei2π(kτ+cjτ+jd)ei2π(k′τ+cj′τ+j′d)

]
dτ

}

=
∫ +∞

−∞
dj

∫ +∞

−∞
dj′ u+ (j) ũ+ (j′)

∫ +∞

−∞
i2π [c(k − k′) + (j − j′)] ei2π(j+j′)dei2π(k+k′+cj+cj′)τdτ

=
∫ +∞

−∞
dj

∫ +∞

−∞
dj′ u+ (j) ũ+ (j′) i2π [c(k − k′) + (j − j′)] ei2π(j+j′)dδ (k + k′ + cj + cj′)

(3.109)

To study the value of this integral, it is necessary to study the value of the function f =
k + k′ + cj + cj′ which is a function of the variables j and j′ depending on the parameter c
(remembering that k and k′ are defined by (3.102) as function of j and j′). In particular it is
necessary to find the zeros of this function f .

One can see that if c ≥ 0, then the function f has only one zero j = −j′. Moreover
df
dj′ = ck′+j′

k′ , and, when c ≥ 0,
∣∣∣ dfdj′

∣∣∣ = df
dj′

In (3.109) we can then perform the integration over j′ and we find that, when c ≥ 0:

Ωcd ++ =
∫ +∞

−∞
dj u+ (j) ũ+ (−j) i4π [ck + j]

k

ck + j

=
∫ +∞

−∞
i4πk u+ (j) ũ+ (−j) dj

(3.110)

When c < −1, the function f has the only zero j′ = −j for j > 2c
1−c2 and j < − 2c

1−c2 , but it
has a second zero j′ = j2 for every − 2c

1−c2 < j < 2c
1−c2 , being j2 a function of j and j2 6= −j .

Moreover, if c < −1, then sgn(ck + j) = − sgn k and so we have
∣∣∣ dfdj′

∣∣∣ =
∣∣∣ ck

′+j′

k′

∣∣∣ = − ck
′+j′

k′ . We



3.2. FIELD THEORIES OVER R2 47

have then, when c < −1:

Ωcd ++ =
∫ +∞

−∞
dj u+ (j) ũ+ (−j) i4π [ck + j]

(
−

k

ck + j

)

+
∫ 2c

1−c2

− 2c

1−c2

dj u+ (j) ũ+ (j2) i2π [ck + j − ck2 − j2] ei2π(j+j2)d

(
−

k2

ck2 + j2

)

=
∫ +∞

−∞
−i4πk u+ (j) ũ+ (−j) dj

+
∫ 2c

1−c2

− 2c

1−c2

dj u+ (j) ũ+ (j2) i2π [ck + j − ck2 − j2] ei2π(j+j2)d

(
−

k2

ck2 + j2

)

(3.111)

where k2 is a function of j2 calculated with (3.102) and it is then a function of j.
To evaluate the second integral in (3.111) we must consider that f(j′ = j2) = 0 imply

k+cj = −(k2 +j2). Moreover from (3.102) we obtain that k2 = j2 + m2

4π2 and c2j2 = c2k2−c2 m2

4π2

and similarly for k2
2 and j2

2 . So we have the following equivalent equalities:

k + cj = −(k2 + cj2)

(k + cj)2 = (k2 + cj2)2

k2 + 2cjk + c2j2 = k2
2 + 2cj2k2 + c2j2

2

j2 +
m2

4π2
+ 2cjk + c2k2 − c2 m

2

4π2
= j2

2 +
m2

4π2
+ 2cj2k2 + c2k2

2 − c
2 m

2

4π2

(ck + j)2 = (ck2 + j2)2

(ck + j) = ±(ck2 + j2)

But the first of them taken with (ck + j) = −(ck2 + j2) would imply j2 = −j; Since we know
that j2 6= −j, then we conclude that k + cj = −(k2 + cj2) is equivalent to ck + j = ck2 + j2 and
therefore the second integral in (3.111) equals 0.

We then have, when c < −1:

Ωcd ++ =
∫ +∞

−∞
−i4πk u+ (j) ũ+ (−j) dj (3.112)

When −1 < c < 0 a similar situation occurs:

Ωcd ++ =
∫ +∞

−∞
dj u+ (j) ũ+ (−j) i4π [ck + j]

∣∣∣∣
k

ck + j

∣∣∣∣+

+
∫ 2c

1−c2

− 2c

1−c2

dj u+ (j) ũ+ (j2) i2π [ck + j − ck2 − j2] ei2π(j+j2)d

(
−

k2

ck2 + j2

) (3.113)

We can repeat the reasoning made on j2, which did not depend on the value of c, and conclude
that the second integral equals 0.

In this case, however, the sign of the function k
ck+j has a more complicated dependence on

the variable j. We therefore have, when −1 < c < 0:

Ωcd ++ =
∫ +∞

−∞
dj u+ (j) ũ+ (−j) i4π sgn (ck + j) |k| (3.114)
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Ωcd ++ various continuously with the parameter c when −1 < c < 0.
When c = −1, again the equation f = 0 has only one solution j′ = −j, and taking into

consideration the sign of k
−k+j , we have:

Ωcd ++ =
∫ +∞

−∞
−i4πk u+ (j) ũ+ (−j) dj (3.115)

To complete our study, we may want to calculate Ω on a slice Σ∞d, defined by the equation
t = d. In this case Σcd ∪G can be parametrized with a parameter τ in this way:

τ −→ (d, τ, φ (d, τ) , ∂0φ (d, τ) ,−∂1φ (d, τ))

We then have:

Ω∞d ++ =
∫ +∞

−∞
dj

∫ +∞

−∞
dj′ u+ (j) ũ+ (j′)

∫ +∞

−∞
i2π (k − k′)

[
ei2π(kd+jτ)ei2π(k′d+j′τ)

]
dτ

=
∫ +∞

−∞
dj

∫ +∞

−∞
dj′ u+ (j) ũ+ (j′)

∫ +∞

−∞
i2π [k − k′] ei2π(k+k′)dei2π(j+j′)τdτ

=
∫ +∞

−∞
dj

∫ +∞

−∞
dj′ u+ (j) ũ+ (j′) i2π [k − k′] ei2π(k+k′)dδ (j + j′)

=
∫ +∞

−∞
i4πk u+ (j) ũ+ (−j) dj

(3.116)

In a similar way we can compute Ωcd −− and Ω∞d −−. The role of the special value c = −1
for the parameter c will be taken in this case by the value c = 1.

Ωcd −− =
∫ +∞

−∞
dj

∫ +∞

−∞
dj′ u− (j) ũ− (j′)

{∫ +∞

−∞
i2π (k − k′)

[
ei2π(kτ−cjτ−jd)ei2π(k′τ−cj′τ−j′d)

]
c dτ

+
∫ +∞

−∞
−i2π (j − j′)

[
ei2π(kτ−cjτ−jd)ei2π(k′τ−cj′τ−j′d)

]
dτ

}

=
∫ +∞

−∞
dj

∫ +∞

−∞
dj′ u− (j) ũ− (j′)

∫ +∞

−∞
i2π [c(k − k′)− (j − j′)] ei2π(−j−j′)dei2π(k+k′−cj−cj′)τdτ

=
∫ +∞

−∞
dj

∫ +∞

−∞
dj′ u− (j) ũ− (j′) i2π [c(k − k′)− (j − j′)] ei2π(−j−j′)dδ (k + k′ − cj − cj′)

(3.117)

An argument similar and symmetric to the one we have undertaken before will take place to
obtain the following results:

for c ≥ 1

Ωcd −− =
∫ +∞

−∞
4πi k u−(j) ũ−(−j) dj (3.118)
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for c ≤ 0

Ωcd −− = −
∫ +∞

−∞
4πi k u−(j) ũ−(−j) dj (3.119)

for 0 < c < 1

Ωcd −− = −
∫ +∞

−∞
4πi |k| sgn(ck − j) u−(j) ũ−(−j) dj (3.120)

and finally:

Ω∞d −− =
∫ +∞

−∞
4πi k u−(j) ũ−(−j) dj (3.121)

As for Ωcd +−, we have:

Ωcd +− =
∫ +∞

−∞
dj

∫ +∞

−∞
dj′ u+ (j) ũ− (j′)

{∫ +∞

−∞
i2π (k − k′)

[
ei2π(kτ+cjτ+jd)ei2π(k′τ−cj′τ−j′d)

]
c dτ

+
∫ +∞

−∞
−i2π (−j − j′)

[
ei2π(kτ+cjτ+jd)ei2π(k′τ−cj′τ−j′d)

]
dτ

}

=
∫ +∞

−∞
dj

∫ +∞

−∞
dj′ u+ (j) ũ− (j′)

∫ +∞

−∞
i2π [c(k − k′) + (j + j′)] ei2π(j−j′)dei2π(k+k′+cj−cj′)τdτ

=
∫ +∞

−∞
dj

∫ +∞

−∞
dj′ u+ (j) ũ− (j′) i2π [c(k − k′) + (j + j′)] ei2π(j−j′)dδ (k + k′ + cj − cj′)

(3.122)

To show that this integral is always equal to 0, we can argue in this way: if there is a k′ function
of k so that k + k′ + cj − cj′ = 0, then we have the following equivalent equalities:

k + cj = −(k′ − cj′)

(k + cj)2 = (k′ − cj′)2

k2 + 2cjk + c2j2 = k′2 − 2cj′k′ + c2j′2

j2 +
m2

4π2
+ 2cjk + c2k2 − c2 m

2

4π2
= j′2 +

m2

4π2

′
2cj′k′ + c2k′2 − c2 m

2

4π2

(ck + j)2 = (ck′ − j′)2

(ck + j) = ±(ck′ − j′)

where one of the last two equalities hold.
But if k + cj = −(k′ − cj′) and (ck + j) = −(ck′ − j′) hold together, then j = j′, which is
in contradiction with the first of the two (being m 6= 0), unless c = ±1. So, if c 6= ±1, then
k+ k′ + cj − cj′ = 0 implies that (ck + j) = (ck′ − j′), which implies that the integral in (3.124)
equals 0.

If c = ±1, some algebra shows that k+k′ +cj−cj′ = 0 would imply that j′ = j which in turns
would imply k′ = k which together would be in contradiction with k + k′ + cj − cj′ = 0, unless
k = 0, which is impossible if m 6= 0. So we conclude that if c = ±1, then k + k′ + cj − cj′ 6= 0
always and therefore again we have that the integral in (3.124) equals 0.
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Therefore:
Ωcd +− = 0 ∀c ∈ R (3.123)

Finally we have:

Ω∞ d +− =
∫ +∞

−∞
dj

∫ +∞

−∞
dj′ u+ (j) ũ− (j′)

∫ +∞

−∞
i2π (k − k′)

[
ei2π(kd+jτ)ei2π(k′d−j′τ)

]
dτ

=
∫ +∞

−∞
dj

∫ +∞

−∞
dj′ u+ (j) ũ− (j′)

∫ +∞

−∞
i2π [k − k′] ei2π(k+k′)dei2π(j−j′)τ dτ

=
∫ +∞

−∞
dj

∫ +∞

−∞
dj′ u+ (j) ũ− (j′) i2π [k − k′] ei2π(k+k′)dδ (j − j′) = 0

(3.124)

To come back to δuG ∈ TGI real vector space, it is enough in the formula (3.103), (3.104) and
(3.105) to consider only u+ (k) and u− (k) real and with the additional condition that u+− (k) =
u+− (−k); or u+ (k) and u− (k) imaginary pure with the extra condition that u+− (k) = −u+− (−k).

These conditions ensure that Ωcd ++, Ω∞d ++, Ωcd −− and Ω∞d −− have real value.
We can conclude that Ω does not depend on the parameter d.
If we choose only slices of space type, which entirely lie inside the light cone, which means

that we choose slices corresponding to c < −1 and c > 1, then it is possible to choose a continuum
orientation in the space of slices Σcd, so that Ω does not depend on the choice of c.

On the opposite, when c varies between the values -1 and 1, which means when we consider
slices time-like, then Ω varies continuously with the parameter c.

There isn’t any special phenomenon of degeneracy on the slices corresponding to c = −1 and
c = 1 which delimit the light cone, but when such slices are crossed, then Ω begins to undertake
changes.



Chapter 4

Observables and their Poisson

brackets

In section 2.4 I showed how to build a symplectic structure on the covariant phase space G
starting from the multisymplectic structure on the finite-dimensional multimomenta space P .

The space of functions on G , let’s call it F (G ), or, for gauge theories, the space of functions
on the quotient space, by the gauge group, of G , is called the space of observables and it is of
the highest interest from a physical point of view.

On F (G ) physicists have introduced brackets, the "fields brackets", which in facts can be
viewed as a Poisson structure on G .

In this short chapter I want to show how to build a Poisson structure on G , starting from
its symplectic structure. I will then exhibit some formula for the Poisson brackets on F (G )
and I will try to relate them to the brackets used by physicists. These results are known for
multisymplectic field theories; in chapter 10 I will show how they can be extended to superfields
theories.

Since in general G is infinite-dimensional, building on it a Poisson structure in a rigorous way
would need an infinite-dimensional differential structure on G , such that it would be possible
to speak of the tangent space TG , the cotangent space T ∗G and the space of smooth functions
C∞ (G ). I will not explore here these questions and I will not go into the analytical subtleties of
the matter. One can consult how Kijowsky and Szczyrba treated the matter in [97, 98]. I refer to
K. A. Rejzner, [125, 126], for a possible approach to this subject, although other approaches may
be equally valid. In this thesis I will treat G , F (G ), TG and T ∗G as formal objects, meaning that
all the considerations here done could be made rigorous whence a suitable differential structure
on G is defined.

For more details on the use of a functional approach in studying Symplectic and Poisson
structures on the covariant phase space, one can see M. Forger and S. V. Romero [53].

Let G ∈ G be a solution of the field theory: as seen in section 2.3 G can be seen as an
Hamiltonian section-submanifold of P associated to the section z ∈ Γ (P ), so that G = z(X).
As we have seen in section 2.4, every vector VG ∈ TGG corresponds to a vertical vector field,
which here I will call with the same name VG, over the Hamiltonian manifold G. We can
write VG = V q

i

G (z(x)) ∂
∂qi |z(x) + V

pa
i

G (z(x)) ∂
∂pa

i

|z(x). Remember that VG must satisfy the Jacobi
equations.

Let’s suppose that the theory admits for the n-dimensional base manifold X a decomposition
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in a product of a n − 1-dimensional space manifold and a one dimensional time manifold, such
that every "space" manifold is a Cauchy surface (for a discussion on the Cauchy problem in field
theory one can see the review paper of I. Khavkine [89] and the bibliography therein). On X, we
can use local coordinates (t, ~xb) with b = 1, . . . , n − 1, where (~xb) are coordinates on the space
and such that, for every k constant, the equation t = k defines a Cauchy surface: let’s call them
Cauchy coordinates. Let’s call ΣX the Cauchy surface of X corresponding to t = 0 and let’s call
Σ the restriction of P to ΣX .

Then, if the Cauchy problem is well-posed and, in particular, in the absence of gauge symme-
try, to fix a solution of the theory G, it is enough to know z (ΣX) = z(X)∩Σ = G∩Σ or, in other
words, it is enough to know the values of the fields on ΣX , qi(~x) := qi(z (0, ~x)), together with the
values of the first components of their multimomenta in the Cauchy coordinates on the Cauchy
surface, id est p0

i (z (0, ~x)); let’s call πi that component: πi(~x) := p0
i (z (0, ~x)). Inversely to each

set of values
[
qi(~x), πi(~x)

]
on the Cauchy surface, it corresponds one solution of the theory.

In fact, to every vector VG ∈ TGG corresponds a vector field, which here I again will call with
the same name VG, over the surface Σ ∩G and of the form:

VG(~x) = V q
i

G (z(0, ~x))
∂

∂qi

∣∣∣∣
z(0,~x)

+ V πi

G (z(0, ~x))
∂

∂πi

∣∣∣∣
z(0,~x)

Let’s consider a function F ∈ F (G ): it’s differential dF ∈ Γ (T ∗G ) acts linearly on vector
fields on G to give functions on G . In other words dF |G acts linearly on TGG to give a real
number. Hence dF |G (VG) can be written in this way:

dF |G (VG) =
∫

ΣX

[
V q

i

G (~x)
δF

δqi

∣∣∣∣
G

(~x) + V πi

G (~x)
δF

δπi

∣∣∣∣
G

(~x)
]
d~x

where d~x is the n−1-dimensional canonical volume form defined on Σx by the Cauchy coordinates,
V q

i

G (~x) and V πi

G (~x) are shortcut for V q
i

G (z(0, ~x)) and V πi

G (z(0, ~x)) and where δF
δqi

∣∣∣
G

and δF
δπi

∣∣∣
G

are

suitable distributions defined on ΣX and depending on G . In general it is not simple to calculate
these distributions, but for certain classes of function on G it turns out that the calculation is
easy.

On G it is possible to define a symplectic form ΠΣ in this way:

ΠΣ|G (UG, VG) :=
∫

ΣX

−
(
Uq

i

G (~x)V πi

G (~x)− V q
i

G (~x)Uπi

G (~x)
)
d~x =

∫

Σ∩G
− (UG ∧ VG) dqi∧dπi∧d~x

(4.1)
where I denote by the same name d~x the canonical volume n − 1-form defined by the Cauchy
coordinates on ΣX and its lift on Σ.

Note that, a priori, ΠΣ depends not only on Σ but also on the chosen decomposition of X
and on the chosen Cauchy coordinates, because the form dqi∧dπi∧d~x depends on them. I don’t
keep track of this possible dependence because we will see below that indeed ΠΣ do not depend
on anything else than Σ.

The, Peierls-like, fields brackets used by physicists are equivalent to the Poisson brackets
which originates from the Symplectic structure on G defined by the symplectic form ΠΣ; see [89],
chapter 3, for a discussion on this statement: we content ourselves to formally prove (4.5) below.
Let’s see briefly how to define these Poisson brackets with a procedure which mimics the one
used on finite dimensional manifolds.

To every function F ∈ F (G ) we can associate a vector field FV on G in this way:

dF (·) = ΠΣ

(
·, FV

)
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then:
FV q

i

G =
δF

δπi

∣∣∣∣
G

, FV πi

G = −
δF

δqi

∣∣∣∣
G

And we define:
{A,B} := ΠΣ

(
AV,BV

)
(4.2)

Then we see that:

{A,B} (G) =
∫

ΣX

−
(
AV q

i

G (~x)BV πi

G (~x)− BV q
i

G (~x)AV πi

G (~x)
)
d~x

=
∫

ΣX

(
δA

δπi

∣∣∣∣
G

(~x)
δB

δqi

∣∣∣∣
G

(~x)−
δB

δπi

∣∣∣∣
G

(~x)
δA

δqi

∣∣∣∣
G

(~x)
)
d~x

(4.3)

Note that, if one changes the Cauchy decomposition of X, or if one changes the Cauchy
coordinates, in general π′

i 6= πi; so in general we have that: dqi ∧ dπi ∧ d~x 6= dqi ∧ dπ′
i ∧ d~x

′. This
means that the form dqi ∧ dπi ∧ d~x is not defined in a covariant way. As a consequence also the
fields brackets are not defined in a covariant way.

However: if, in order to define the Poisson structure, we replace the form ΠΣ with the
Symplectic form ΩΣ defined in section 2.4, following the ideas of Kijowski and Szczyrba, [98],
then clearly we obtain a Poisson structure which do not depend on the full Cauchy decomposition
nor on the coordinates chosen, but only, possibly, on the Cauchy surface Σ. We obtain then a
covariantly defined Poisson structure on G which turn it into a true covariant phase space.

In fact, if one remembers the discussion made at the beginning of chapter 3, one see that
ΩΣ is even independent on Σ under certain assumptions (for example if we can chose Cauchy
surfaces Σ which are all compact and belonging to the same homology class).

The situation is even better: it can be proven that, for every Σ, whatever is the global Cauchy
decomposition of X and whatever are the Cauchy coordinates used to define ΠΣ, we have that:

ΠΣ = ΩΣ

The formal proof is very easy; see [64] for more details. By the definition of ΠΣ, πi and by
the definition of Cauchy coordinates given above and the definition of multisymplectic form ω
and Symplectic form ΩΣ, we have that:

ΠΣ|G (UG, VG) =
∫

Σ∩G
− (UG ∧ VG) dqi ∧ dπi ∧ d~x =

=
∫

Σ∩G
− (UG ∧ VG) dqi ∧ dp0

i ∧ β0 =

=
∫

Σ∩G
(UG ∧ VG) ω = ΩΣ|G (UG, VG)

(4.4)

So the Poisson structure covariantly built with ΩΣ is equal to the Poisson structure built with
ΠΣ. Equation (4.3) holds for both.

For a discussion on the equivalence of the Poisson structure built with ΩΣ with the structure
given by the Peierls brackets defined with the help of Green functions, see [53] and [89].

Let’s now consider the functions A = qi(~y) and B = πi(~y) defined on G ∈ G in the following
way:

A(G) = qi (z(0, ~y)) , B(G) = πi (z(0, ~y))
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Then it is easy to calculate:

δA

δqj

∣∣∣∣
G

(~x) = δijδ
n−1(~x− ~y),

δA

δπj

∣∣∣∣
G

(~x) = 0

δB

δqj

∣∣∣∣
G

(~x) = 0
δB

δπj

∣∣∣∣
G

(~x) = δji δ
n−1(~x− ~y)

So, from formula (4.3), we obtain:
{
qi(~y), qj(~y′)

}
= 0

{
πi(~y), qj(~y′)

}
= δji δ

n−1(~y − ~y′)
{
πi(~y), πj(~y′)

}
= 0

(4.5)

Relations (4.5) are the fundamental commutators at equal times of physicists classical Bosonic
field theory. We have then shown the link existing between the symplectic structure built on G
with the multisymplectic techniques and the canonical commutators structure of Physics field
theories.

Note that all the considerations made above make sense only under certain conditions on
the field theory. For example, if the Lagrangian is gauge invariant under a certain gauge group,
then the Cauchy problem has not an unique solution and the subject of Cauchy decompositions
need to be treated more carefully, see [89]. Moreover, when the Lagrangian is not regular, the
multisymplectic form ω can still be defined on P , but the symplectic form ΩΣ may be, a priori,
degenerate. In these cases the link between the multisymplectic form on P and the canonical
structure of the field theory used in Physics is not anymore so simple to find. For a discussion
on Yang-Mills theories in a multisymplectic framework see [71]; for a discussion on General Rela-
tivity and its possible extensions see [75]. For a discussion on Symplectic and Poisson structures
on the spaces of solutions of field theories with constraints and gauge invariants see [89].

Relations (4.5) constitute the starting point and the main ingredient of canonical quantiza-
tion. The other essential ingredients of canonical quantization are Green functions and field
commutators at different times. I will not treat here the question of their covariant definitions.

It is worth noting that there have been some attempts of approaching fields quantization
directly from the point of view of multisymplectic field theory, trying to exploit the fact that it is
defined on the finite dimensional multimomenta space P and trying to exploit it’s main resource,
which is the existence of the multisymplectic differential form ω.

These attempts usually begin with a definition of the space of observable which is a drastic
reduction of the space of all possible function on G and they continue by trying and build a
Poisson-like structure on that space, defining somehow the brackets of observables in a covariant
way. At this stage authors try and take advantage from the presence of the multisymplectic
struture on the finite dimensional space P . Then the quantization programs possibly continue
using the brackets defined for quantization.

All these approaches are naturally covariant and do not want to rely on a Cauchy decompo-
sition (id est a time foliation) of the spacetime X.

For some examples of how the restricted space of observables with their Poisson-like brakets
can be constructed, see Kijowski [94, 95], Kijowski and Szczyrba [97], Hélein [74], Forger and
Römer [52], Forger, Paufler and Römer [50, 51], M. O. Salles [139] and the last chapter of Forger
and Romero [53]. See also Baez, Hoffnung and C. L. Rogers [3] and Baez and Rogers [4], where
on the space of observables of a string theory is built a Lie 2-algebra structure exploiting the
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2-plectic (multisymplectic in my terminology) structure. Richter in [131] build on a certain space
of observables a structure of homotopy Poisson-n algebra.

With his work, see for example [85, 86, 87, 88], I. Kanatchikov carries forward the program,
until a quantized theory is built.
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Part II

Fractional mixed forms on

supermanifolds
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Introduction to Part II

In this second part of my thesis I introduce the notions of fractional forms, fractional coforms
and fractional mixed forms on supermanifolds. The fractional forms will be an essential ingredient
for the definition of a superfield theory and for the supermultisymplectic formalism which is the
main object of the third part of this thesis.

Fractional forms are good examples of the forms introduced by Th. Voronov and A. Zorich
in their papers during late ’80-s, [155, 156, 157, 158]. Voronov-Zorich forms were introduced as
the natural analogous on supermanifold of classical forms on classical manifolds. They can be
integrated over supermanifolds, they present a natural pairing with supervectors and they admit
a Cartan calculus. The fractional forms that I define here in Chapter 5 are a specific class of
Voronov-Zorich forms which can be defined through the use of superdeterminants. It is possible
to set up rules for a Cartan calculus on fractional forms and I do it in section 5.4; this calculus
turns out to be more manageable than the Cartan calculus for generic superforms.

When building a superfield theory, we can decide to restrict ourselves, as long as it is possible,
to the use of fractional forms rather than using the more general but more complicated superforms.
I believe that fractional forms, with their simple notation introduced here, not only can simplify
the actual Cartan calculus needed for field theories, but they can make it also more transparent.
Moreover fractional forms, like all Voronov-Zorich r|s-forms can be integrated, and their integral
satisfy some nice properties, as I explain in section 5.5.

I will show in the third and last part of this thesis how all this can be useful in the definition
of superfield theories.

Fractional coforms are special examples of what Voronov calls twisted covariant dual La-
grangians satisfying the fundamental equations or shortly twisted dual forms in [153] and [154],
and they are the basis for the definition of his stable forms. Fractional mixed forms are examples
of what Voronov called mixed forms, [153], [154]. I will introduce them in Chapter 6, together
with the rules to perform with them a Cartan calculus and together with the definition and the
proof of some properties of their integral.

Chapter 6 is indeed independent of the rest of this thesis and it is not necessary to read it
in order to understand its third part. Therefore the material presented there is not treated in
detail. It can be considered as a natural complement of chapter 5 and as a preliminary work for
future studies, especially in the direction of Batalin-Vilkovisky and Bechi-Rouet-Stora-Tyutin
superfield theories.
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Chapter 5

Fractional forms and their

integration on supermanifolds

Section 5.1 will be dedicated to fix some conventions and notations regarding supermanifolds.
In section 5.2 I will give the definition of Voronov-Zorich superforms and I will propose a

natural extension of this definition.
In section 5.3 I will treat a subclass of superforms that I call Berezinian superforms.
In section 5.4 I will present the exterior multiplication of superforms by covectors and their

contraction with vectors. Doing so, I fix an imprecision in the definition of the wedge product
appearing in [154]. Moreover I point out and I resolve an ambiguity in the definition of the
interior product by an odd vector, which until now had not been noticed. I will present then the
commutation relations to which exterior and interior products obey, which were first shown by
Voronov in [154].

I will then define fractional superforms and will consider a Cartan calculus for fractional
superforms, which turns out to be quite intuitive.

In sections 5.3 and 5.4 I also introduce a simple system of notation which, I think, makes all
the subject transparent and possibly makes it easier the use of superforms in field theory or other
areas of mathematics. It is from the choice of this notation that arises the term "fractional".

In section 5.5 I will shortly explain how the objects previously defined can be used to built
a theory of integration on supermanifolds. Indeed all the material presented in the following
chapters of this thesis presupposes a good theory of integration of superforms on supermanifolds.
I will make use of the theory first elaborated by Voronov and Zorich in [155, 156, 157, 158]
and presented in a detailed exposition by Voronov in [152]. In fact I will only need the main
definitions and the main theorems of that theory and I will explicitly recall them without giving
detailed proofs. I’ll propose some minor modifications, like the introduction of the integral over
an immersed body, which suitable for the matter treated here.

5.1 Supermanifolds and their tangent and cotangent mod-

ules.

The use of anticommuting variables in mathematical physics can be traced back to the papers
of 50’s and 60’s of J. Schwinger on the theory of quantized fields, see the book of Schwinger [143].

In his paper on the commutation laws of relativistic fields, Peierls, in 1952 [122], made use of
anticommuting parameters, which he put in front of fermionic fields.

61



62 CHAPTER 5. FRACTIONAL FORMS AND INTEGRATION ON SUPERMANIFOLDS

J. Martin in 1959, [109, 110], introduced a differential calculus for functions of anticommuting
variables with the aim of extending Feynman’s path-integral method of quantization to fermions,
but his work remained largely unknown.

It was the work of F. A. Berezin on second quantization in 1965 [11] that really gave birth
to supermathematics. It was followed by other works of Berezin and coauthors, for example
Berezin with G. I. Kac on supergroups in 1970 [14] and Berezin with D. A. Leites in 1975 on
supermanifolds [15].

During the 70’s, the development of supersymmetric field theories in Physics, which began
with the works of D. Volkov and V. Akulov [149] and J. Wess and B. Zumino [159], required a
good mathematical foundation of the theory of supermanifolds and triggered a number of studies
of different authors: for example again Berezin [12, 13], M. Batchelor [7] or Leites [103].

Two different, but essentially equivalent, approaches to supermanifolds can be undertaken,
see [8]. Following A. Rogers [133], I call the first approach ’concrete’ and the second one ’algebro-
geometric’.

In the concrete approach a supermanifold is a set, more specifically it is a manifold modeled
on some ‘superspace’ so that it has local coordinates, some of which take values in the even and
some others in the odd part of a Grassmann algebra [133]. This approach has been developed
mainly by Rogers, see for example [132], and B. DeWitt, [43].

In the algebro-geometric approach to supermanifolds, it is the sheaf of functions on a classical
manifold which is extended, to become an anticommuting sheaf. This approach was initially
developed by the Russian school following Berezin; for an introduction to the subject see Leites
[103] and Y. Manin [105]; see also C. Bartocci, U. Bruzzo and D. Hernández Ruipérez [6].

For a shorter introduction to supermanifolds see also Hélein [69].
Recently a categorical point of view on supermanifolds has been proposed by some authors:

see C. Sachse [138]. This approach strongly relies on the concept of functor of points, which, to
my knowledge, was first introduced in supermathemathics by A. S. Schwarz in [141].

In this work, I will use the concrete approach. For an extended introduction to the subject
and a more complete historical account, see the book of Rogers [133] from which I have also
taken most of the notation.

I will use the remaining two parts of this section to fix some notations and conventions.

5.1.1 Supermanifolds.

For the definitions of superspaces, supermanifolds, tangent super-module, G∞ superfunctions
and G∞ super-bundles in the concrete aprroach, I refer to [133].

In this thesis a superspace of dimension n|m will be a real superspace:

Rn|m
S := RS,0 × · · · × RS,0︸ ︷︷ ︸

n times

×RS,1 × · · · × RS,1︸ ︷︷ ︸
m times

where RS,0 and RS,1 are respectively the even and the odd part of the real Grasmann algebra
with infinite number of generators; I will call sometime "even numbers" the elements of RS,0
and "odd numbers" the elements of RS,1. The presence of an infinite number of generators is
important for certain proofs.

On Rn|m
S the DeWitt topology will be understood [43]. Supermanifolds M of dimension

n|m will be modeled on Rn|m
S with the DeWitt topology with the use of n|m − G∞ atlases of

charts. The G∞-maps are in superanalysis the natural generalization of C∞-maps: see [133] for
a proper definition. For a different approach to maps between supermanifolds see Hélein [68].
The subscript S will be often let to drop.
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On supermanifolds I will use the following convention: indices of even coordinates will be
indicated with Latin lowercase letters, indices of odd coordinates will be indicated with Greek
lowercase letters; capital Latin letters will be used for indices running trough coordinates of both
parities or when the parity of the coordinate is unknown or generic. The convention used for
the coordinates on tangent spaces of supermanifolds will be introduced and explained below. I
will follow the so called skew-commutative convention for the parities of forms and vectors of a
supermanifold: it will also be explained below.

With the symbols | | or deg( ), I’ll denote the degree of a coordinate or of an index (according
to the context), especially when they appear in a formula which is the exponent of (−1). The
degree is 0 when the coordinate (or the index) is even and it is 1 when the coordinate (or the
index) is odd. All operations undertaken with degrees will be understood as modulo Z2 if not
otherwise stated.

On an open chart U of an atlas of the supermanifold X I’ll use often the local coordinates
(xa, xα), a = 1, · · ·n, α = 1, · · ·m (or the coordinates xA with A = 1, · · · , n+m), where n|m is
the superdimension of X. So we will have |xa| = 0 and |xα| = 1 or |a| = 0 and |α| = 1.

I’ll often denote by ∂a, ∂α and ∂A the operators ∂
∂xa , ∂

∂xα and ∂
∂xA .

5.1.2 Tangent and cotangent bundles of a supermanifold.

The first big difference which distinguishes the super framework from the classical one arises
when one considers vectors on supermanifolds. The tangent space over a point x of a superman-
ifold X is not in fact a superspace, whereas a free supermodule over RS : I will call it TxX.

It is possible to establish a natural one-to-one correspondence between the elements of the
tangent supermodule TxX and a superspace. If the supermanifold X has dimension n|m, the
tangent supermodule over one of its point is a free supermodule of dimension n|m. If on a local
chart U of X, x has coordinates (xa, xα), then a base for TxX is provided by the derivations
(∂a; ∂α). In this paper I follow the so called skew-commutative convention for the parities of
forms and vectors of a supermanifold: so I give to ∂A = ∂

∂xA the same parity of xA: thus ∂a will
be even and ∂α will be odd. Once fixed the degrees of the generators of the supermodule TxX,
we note that:

– an element of TxX is even if it is the product of an even generator by an even element of
the algebra RS or if it is the product of an odd generator by an odd element of the algebra
RS ;

– an element of TxX is odd if it is the product of an odd generator by an even element of the
algebra RS or if it is the product of an even generator by an odd element of the algebra
RS .

For example: va∂a is even if all va ∈ RS,0 are even numbers, whereas ṽa∂ais odd if all ṽa ∈ RS,1
are odd numbers; vα∂α is even if all vα ∈ RS,1 are odd numbers, whereas ṽα∂α is odd if all
ṽα ∈ RS,0 are even numbers. A suitable version of Einstein convention on repeated superindexes
is understood.

I call Tx,0X the space of all even elements of TxX and I call Tx,1X the space of all odd
elements of TxX. We have then TxX = Tx,0X ⊕ Tx,1X. Tx,0X has a natural structure of
superspace of the same superdimension n|m of X. Every element v ∈ Tx,0X can be written
as v = va∂a + vα∂α with ∀a = 1, · · · , n va ∈ RS,0, ∀α = 1, · · · ,m vα ∈ RS,1. So (va; vα)
can be used as coordinates on Tx,0X. Also Tx,1X has a natural structure of superspace, with
superdimension m|n, endowed with the coordinates (ṽα; ṽa). Lastly TxX = Tx,0X ⊕ Tx,1X
has itself a natural structure of superspaces of superdimension n + m|m + n, and with natural
coordinates (va, ṽα; vα, ṽa). So in the following I will often use the convention that coordinates on
tangent spaces over a supermanifold are indicated with the same indices used for the coordinates
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in the supermanifolds and either with a bar over them, to indicate that they maintain the same
parity of the corresponding coordinate on the base, or with a tilde over them, to indicate that
they have opposite parity to the one of the corresponding coordinate on the base.

Note that Tx,1X is naturally isomorphic to ΠTx,0X in the category of superspaces, where Π is
the parity-inversion functor. Very often in the literature (for example in the papers of Voronov)
Tx,0X is called the tangent space and it is indicated with TxX, whereas Tx,1X is indicated
with ΠTxX. I prefer to use the notation introduced above, where TxX indicates the tangent
supermodule or the tangent superspace built up from it. TX will be the tangent bundle on X,
defined in the expected way. This notation can be useful in some situations.

Remark 22. Each free supermodule A of superdimension n|m over the algebra RS can be put in
a one to one correspondence with a superspace of superdimension n+m|m+ n with a technique
analogue to the one used above, so that we can write A ∼= A0⊕A1 where A0 and A1 are the even
and odd part of the supermodule A.

We will use this construction a couple of time in the following without coming back on its
details.

In particular in the following sections we will meet the cotangent space T ∗
xX of a n|m-

supermanifold X over one of its points x; id est the space of left-RS-linear functions from TxX to
RS . I will call covectors its element. Note that T ∗

xX is a right supermodule on RS of dimension
n|m. It can be seen as a superspace of dimension n + m|m + n and can be split in an even
component T ∗

x,0X of dimension n|m and an odd component T ∗
x,1X of dimension m|n. Every

even covector p can be written as p = dxapa + dxαpα and every odd covector p̃ can be written
as p̃ = dxap̃a + dxαp̃α. This is in agreement with the skew-commutative convention for which∣∣dxA

∣∣ =
∣∣xA
∣∣ = |A|.

5.2 Superforms on supermanifolds

Starting from the concept of vector fields, it is not difficult to define tensor fields on a
supermanifold: see [133] chapter 10. Then an almost obvious generalization of differential forms
becomes readily available: they are the graded analogue of classical differential forms and they
first appeared explicitly in the literature in a paper of B. Kostant in 1977 [101].

To build a Lagrangian theory, as seen in chapter 1, the main ingredient is the Lagrangian
n-form on J1π. The Lagrangian has then to be integrated on the image of a section of J1π, to
obtain the action A of the theory on a field configuration. If one want to extend the Lagrangian
formalism to a superfield theory, the integration of the Lagrangian is the most delicate point to
address. First of all it is necessary to use a suitable definition of integral on superspaces. At this
scope, for physical applications, it is used the Berezin integral, first introduced in [11]. But, if one
tries and uses differential n-forms à la Kostant to build an integration theory on supermanifolds,
one soon falls in some troubles, and in fact it doesn’t exist a satisfactory theory of integration
of "naive" forms.

One can instead use other objects of integration, like Berezinian tensor densities, whose
definition is natural when one disposes of tensors and of Berezin integral. The drawback is
that densities do not share many of the features of forms which allow the use of a geometrical
language in describing field theories. For example they do not naturally allow contraction with
super vector fields which generate supersymmetries.

The quest becomes then necessary for objects which on one side share some of the tensor
properties of forms and on the other side are suitable for building a consistent and possibly
simple theory of integration.
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At this scope I will use the forms introduced and studied by Voronov and Zorich in [155, 156,
157, 158] and in [152]. Voronov and Zorich worked on the basis of previous ideas of the Russian
school. J.N. Bernstein and Leites in 1977 had defined ’integral forms’ as tensor products of
multivector fields with Berezin volume forms, [16]; then they defined ’pseudodifferentials’ forms
[17], which are beautiful objects, but which do not have any natural grading and do not solve
in a satisfactory way the problem of integration on submanifolds of a supermanifold (moreover
they cannot be integrated on supermanifolds whose odd part is unoriented). A.S. Schwarz, M.A.
Baranov, A.V. Gajduk, O.M. Khudaverdian and A.A. Rosly, in the beginning of 80’s, [55, 5, 136]
studied Berezinian densities and introduced the concept of closed densities.

In subsection 5.2.1 I will give a very short introduction of the theory of Voronov and Zorich;
in subsection 5.2.2 I will define extended forms, which are a natural extension of Voronov-Zorich
forms.

5.2.1 Voronov and Zorich superforms

Voronov and Zorich in their papers often use the word "Lagrangian" in a way which is not
exactly equivalent to the way it is used here: I will therefore use a vocabulary slightly different
than the one used for example in [152]. I will present here a version of Voronov-Zorich theory
which allows superforms with poles: see [9]. Let’s see the main definitions.

Recall that GL(n|m) is the supergroup of invertible RS-linear even maps between a super-
module A over RS of dimensions n|m and a supermodule B of the same superdimension (note
that n|m is the dimension of A and B as supermodules and not as superspaces, see Remark
22). When fixed bases of A and B are chosen, an element g ∈ GL(n|m) can be written as a
(n,m)× (n,m)-dimensional supermatrix:

g =
(
g0,0 g0,1

g1,0 g1,1

)

where g0,0 is a n × n invertible matrix with even entries; g0,1 is a matrix with n rows and m
columns with odd entries; g1,0 is a matrix with m rows and n columns with odd entries and g1,1

is a m×m invertible matrix with even entries.
An element a ∈ A can be written as the column of its coordinates with-respect to the chosen

basis; the supermatrix g acts from the left with the usual rule of multiplications of matrices and
the image b = g(a) ∈ B is the column of its coordinates in the base chosen on B. Note that,
when A = B, one usually chooses the same base on the two copies of the supermodule.

Since A = A0 ⊕ A1, see Remark 22, we can consider the restriction of g to A0 and then the
restriction to A1. Since, by definition of GL(n|m), g is even, we have that g(A0) ⊂ B0 and
g(A1) ⊂ B1; so, when necessary, we can consider g as a RS,0-linear invertible map between the
superspace A0 of dimension n|m and the superspace B0 of the same dimension.

Recall that if g ∈ GL(n|m) is written as a supermatrix, we have:

Definition 23. The superdeterminant, also called Berezinian, of g ∈ GL(n|m) is the element
of RS obtained with the following formula:

sdetn,m(g) = Bern,m(g) := det
(
g0,0 − g0,1g

−1
1,1g1,0

)
det
(
g−1

1,1

)
(5.1)

Where the determinant of the matrices involved is calculated with the usual rule. Note that
∀g ∈ GL(n|m), Bern,m(g) is in fact an element of RS,0 and, to be more precise, an invertible
one.

I extend this definition to any (n,m) × (n,m)-dimensional supermatrix, regardless of the
parities of its entries, provided that its block g1,1 has even entries and it is invertible. In this
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more general case, the entries of the matrix in the first parenthesis in equation (5.1) may be odd,
so it is important to fix a definition of det which fix the order of terms involved in multiplications,
because the result of those multiplications may vary according to the order chosen to perform
them.

Definition 24. If g is a (n+m)× (n+m) matrix with entries belonging to RS and so that its
submatrix g11 is invertible, then we pose:

sdetn,m(g) := det
(
g0,0 − g0,1g

−1
1,1g1,0

)
det
(
g−1

1,1

)
(5.2)

where the determinants appearing in the second member of the equality (5.2) are the polynomials
calculated with the usual definition provided that in each of their monomial the entries of the
matrix involved are multiplied following an order by column: so that elements of first column
come first, then elements of second column and so on.

Note that in this more general case the superdeterminant may be an odd element of RS . Note
that with this definition the superdeterminant keeps the property of additivity in the first n rows
and in the first n columns.

Let g ∈ GL(n|m) be written as a supermatrix (after having chosen arbitrarily the necessary
basis) and let V be a superspace of dimension o|p, then there is a left action of GL(n|m) onto
V × · · · × V︸ ︷︷ ︸

n

×ΠV × · · · ×ΠV︸ ︷︷ ︸
m

, defined in this way:

∀g ∈ GL(n|m), ∀v1, · · · , vn ∈ V, ṽ1, · · · , ṽm ∈ ΠV, g ·




v1

...
vn
ṽ1

...
ṽm




=
(
g0,0 g0,1

g1,0 g1,1

)




v1

...
vn
ṽ1

...
ṽm




(5.3)

Where, in the right side of the last equation, the product is the usual matrix product with
attention given to the order in products of entries and where an element v ∈ V , multiplied on
the left by an odd number, gives an element of ΠV in a natural way and vice-versa.

Note that in equation (5.3), as well as in most of formula in this thesis, I write each vector
v as the line of its components. I use here the convention adopted in Voronov papers, which is
indeed different from the convention usually adopted in papers on classical differential geometry,
where vectors are usually written in column.

We are now in the position to understand the definition of a superform given by Voronov and
Zorich.

Let’s consider a supermanifold X of dimension n|m and one of its point x ∈ U ⊂ X, where
U is a local chart of X. On U we have local coordinates xA. Let TxX be the tangent module of
X over x. A base for TxX is given by (∂A|x)A=1...n|m. We can identify a point u ∈ TxX by its
coordinates uA with-respect to the chosen basis. On TxX we can consider the topology inherited
from TX. We have then the following:

Definition 25 (Voronov and Zorich). A form of degree r|s over a point x ∈ X, supermanifold of
dimension n|m, is a G∞ map ω : O ⊂ Tx,0X × · · ·Tx,0X︸ ︷︷ ︸

r

×Tx,1X × · · ·Tx,1X︸ ︷︷ ︸
s

−→ RS, which

satisfies the following: ∀v ∈ O, open subset of Tx,0X × · · ·Tx,0X︸ ︷︷ ︸
r

×Tx,1X × · · ·Tx,1X︸ ︷︷ ︸
s

:

∀g ∈ GL(r|s), ω(g · v) = ω(v) Berr,s(g) (5.4)
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∂2ω

∂vBG∂v
A
F

+ (−1)|G||F |+(|G|+|F |)|A| ∂2ω

∂vBF ∂v
A
G

= 0 (5.5)

where A,B = 1, · · · , n + m are the indices in the space TxX and so also in both spaces Tx,0X
and Tx,1X with their usual degree; vAF is the A-th coordinates of vF in the local base (∂A|x)A; F
runs from 1 to r + s and we have vF ∈ Tx,|F |X, where we set |F | = 0 when F = 1, · · · , r and
|F | = 1 when F = r + 1, · · · , r + s.

It can be seen that the definition does not depend on the choice of the chart U and of the
corresponding basis for TxX.

An important consequence of (5.5), which in some sense justifies it, is noted below in remark
67 in the section treating the integration of superforms.

Note that, by definition, if v ∈ Tx,0X × · · ·Tx,0X︸ ︷︷ ︸
r

×Tx,1X × · · ·Tx,1X︸ ︷︷ ︸
s

is such that vr+1, · · · , vr+s

are linear dependent, then there are only two possibility: either v /∈ O (so that ω is not defined
on v), or ω(v) = 0.

The space of r|s-forms over x has a natural structure of free right supermodule over RS ; in
fact, if ω is a r|s-superform, λ ∈ RS and v ∈ Tx,0X × · · ·Tx,0X︸ ︷︷ ︸

r

×Tx,1X × · · ·Tx,1X︸ ︷︷ ︸
s

, then we can

define ωλ with ωλ(v) := ω(v)λ.
I call the space of r|s-superform Λr|s

x , as a shortcut for Λr|sT ∗
xX and we have, as usual,

Λr|s
x = Λr|s

x,0 ⊕ Λr|s
x,1, where Λr|s

x,0 and Λr|s
x,1 are respectively the even and the odd part of Λr|s

x

and they are superspaces. Note that ω ∈ Λr|s
x,0 if ∀v ∈ Tx,0X × · · ·Tx,0X︸ ︷︷ ︸

r

×Tx,1X × · · ·Tx,1X︸ ︷︷ ︸
s

,

ω(v) ∈ RS,0 and ω ∈ Λr|s
x,1 if ∀v ∈ Tx,0X × · · ·Tx,0X︸ ︷︷ ︸

r

×Tx,1X × · · ·Tx,1X︸ ︷︷ ︸
s

, ω(v) ∈ RS,1.

We can give to Λr|s
x the structure of left supermodule over over RS using the following defini-

tion: ∀λ ∈ RS , ∀ω ∈ Λr|s
x , ∀v ∈ Tx,0X × · · ·Tx,0X︸ ︷︷ ︸

r

×Tx,1X × · · ·Tx,1X︸ ︷︷ ︸
s

: λω(v) := (−1)|λ||ω|ωλ(v).

In the usual way we can build the fiber bundles Λr|s
0 X, Λr|s

1 X and Λr|sX.

Definition 26. A G∞ section of the bundle Λr|sX is called a differential r|s-form. The space

of r|s-form over X is called Ωr|sX := Γ
(

Λr|sX
)

.

Definition 27. The operator of exterior derivation d is defined on forms ω of degree r|s by the
formula

∀(v1, · · · , vr, vr+1; ṽ1, · · · , ṽs) ∈ Tx,0X × · · ·Tx,0X︸ ︷︷ ︸
r+1

×Tx,1X × · · ·Tx,1X︸ ︷︷ ︸
s

,

∀ω ∈ Ωr|sX :

dω(v1, · · · , vr, vr+1; ṽ1, · · · , ṽs) := (−1)r vAr+1

(
∂ω

∂xA
− (−1)|A||F |

vBF
∂2ω

∂xB∂vAF

)
(5.6)

where the index F runs from 1 to r+ s and its parity is the parity of the corresponding vector so
that |F | = 0 when vF = vF ∈ T0X and |F | = 1 when vF = ṽF−r ∈ T1X; the indices A and B
run from 1 to n + m and their parities are defined in the obvious way following the parities of
coordinates on X.

Proposition 28. The operator of exterior derivation d is well defined, it sends r|s-forms to
r + 1|s-forms and it is RS-linear.
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Proof. See [152].

5.2.2 Preforms and extended forms

I define preforms in the following way:

Definition 29. A preform of degree r|s over a point x ∈ X, X of dimension n|m, is a G∞ map
ω : TxX × · · ·TxX︸ ︷︷ ︸

r+s

−→ RS, which, when restricted to Tx,0X × · · ·Tx,0X︸ ︷︷ ︸
r

×Tx,1X × · · ·Tx,1X︸ ︷︷ ︸
s

,

is a form of degree r|s.

Note that, with these definitions, one can prove that there is a one-to-one correspondence
between r-forms à la Kostant (see [133] chapter 10 for their definition in a G∞ setting) and
r|0-forms. In fact a r-form can be proven to be a r|0-preform.

One may asks himself if all r|0-preforms are also r-forms à la Kostant, and the answer is no.
Not only: there exist 1|0-preforms which are RS,0-linear on all TxX (which implies that they are
linear separately on Tx,0X and Tx,1X), which on Tx,0X coincide with a 1-form, but who are not
1-forms.

Consider for example the superspace V 0|m: it is a supermanifold and its tangent module
TxX = Tx,0X ⊕ Tx,1X over a point x is isomorphic to V ⊕ ΠV . If (xα), α = 1, · · · ,m are the
coordinates on V , then a vector v ∈ TxV can be written as v = vα∂α|x + ṽα∂α|x with vα ∈ RS,1,
ṽα ∈ RS,0, vα∂α|x ∈ Tx,0X and ṽα∂α|x ∈ Tx,1X. The 1-form à la Kostant dxα|x acts on v in
this way: dxα|x(v) = vα = vα + ṽα. Now let’s consider the function ω : TxX −→ RS defined
by ω(v) = vα − ṽα. It is a 1|0-preform, it is RS,0-linear on TxX, when restricted to Tx,0X it
coincides with dxα|x, but it is not a 1-form à la Kostant, and in fact it does not coincide with
dxα|x on all TxX.

Similar phenomena occur for r greater than 1.

Definition 30. A form of degree r|s over a point x ∈ X, X of dimension n|m, is said to be
extended in the first argument if it is a G∞ map ω̂ : TxX×Tx,0X × · · ·Tx,0X︸ ︷︷ ︸

r−1

×Tx,1X × · · ·Tx,1X︸ ︷︷ ︸
s

which is RS-linear in the first argument, RS,0-linear and antisymmetric in the r − 1 following
arguments, and which, when restricted to Tx,0X × · · ·Tx,0X︸ ︷︷ ︸

r

×Tx,1X × · · ·Tx,1X︸ ︷︷ ︸
s

, is a form of

degree r|s.

An extended 1|0-form is a 1-form à la Kostant. An extended 1|0-form α can be written on a
local chart as α = dxAαA.

I chose the convention to fix the degree of dxA as
∣∣dxA

∣∣ := |A|; this is far from being widely
accepted, but it seems to me the most natural and most useful in the context of this work. This
convention is sometime called the skew-commutative convention, while the other one is called
commutative. Note that, when using the commutative convention, the wedge product is often
defined as a graded commutative product of differentials. This definition differs from the one
that I use here later by a sign when the wedge product of dxa with dxα is considered. Note also
that the two different corresponding de Rham complexes are called by Manin [105] ’even’ and
’odd’ complexes: I stress the fact that this use of the terms ’even’ and ’odd’ is different than the
one made here.

It is immediate to see by a direct calculation that the operator of exterior derivative defined
above sends the coordinate local function xA (which can be seen as a 0|0-form) to the 1|0-form
dxA. So the notation is consistent.
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I call T ∗
xX the space of extended 1|0-form over a point x of a supermanifold X. It is a right free

supermodule whose even generators are the forms dxa and the odd generators are the forms dxα.
It can be given also the structure of left supermodule with the technique seen in the previous sec-
tion, so that: ∀λ ∈ RS , ∀µ ∈ T ∗

xX and ∀v ∈ TxX, (λµ) (v) = (−1)|λ||µ| (µλ) (v) = (−1)|λ||µ|µ(v)λ.
Note that, with this definition, we have that in general: (λµ) (v) 6= (−1)|λ||µ(v)|µ(v)λ and
(λµ) (v) 6= λ [µ (v)]. A similar situation will occur for extended superforms of higher degree:
I will not comment on it again.

Using the same technique described at the beginning of the chapter it is possible to build the
super cotangent fiber bundle T ∗X: on a local chart it has coordinates (xa, xα;αa, αα, α̃a, α̃α).
T ∗

0X is the even part of T ∗X and it has coordinates (xa, xα;αa, αα). T ∗
1X is the odd part of T ∗X

and it has coordinates (xa, xα; α̃a, α̃α). T ∗
0X and T ∗

1X have fibers type which are superspaces of
dimension n|m and m|n respectively, accordingly with the degree convention that I chose above.

Definition 31. A form of degree r|s over a point x ∈ X, X of dimension n|m, is said to be
extended in the arguments (va1

, · · · , vak
), with k < r, if it is a G∞ map ω̂ : Tx,0X × · · · ×

TxX × · · · × Tx,0X × Tx,1X × · · ·Tx,1X︸ ︷︷ ︸
s

(where TxX substitutes Tx,0X k times in the positions

a1, · · · , ak) which satisfies the following conditions:
– when restricted to Tx,0X × · · ·Tx,0X︸ ︷︷ ︸

r

×Tx,1X × · · ·Tx,1X︸ ︷︷ ︸
s

, it is a form of degree r|s,

– ∀(v1, · · · , vr−k, ṽ1, · · · , ṽs) ∈ Tx,0X × · · ·Tx,0X︸ ︷︷ ︸
r−k

×Tx,1X × · · ·Tx,1X︸ ︷︷ ︸
s

,

ω̂(v1, · · · , ·1, · · · , ·k, · · · , vr−k, ṽ1, · · · , ṽs), where the free arguments are in the positions
a1, · · · , ak, is a "naive" k-form à la Kostant,

– ∀(v1, · · · , vk, ṽ1, · · · , ṽs) ∈ TxX × · · ·TxX︸ ︷︷ ︸
k

×Tx,1X × · · ·Tx,1X︸ ︷︷ ︸
s

,

ω̂(v1, · · · , ·1, · · · , ·r−k, · · · , vk, ṽ1, · · · , ṽs), where the free arguments are in the positions dif-
ferent than a1, · · · , ak, is RS,0-linear and antisymmetric.

We call ω̂ an extended-form, when it is extended in the above sense in all its even arguments.
We say that ω̂ extends the r|s-form ω if, when restricted to

Tx,0X × · · ·Tx,0X︸ ︷︷ ︸
r

×Tx,1X × · · ·Tx,1X︸ ︷︷ ︸
s

, it coincides with ω.

Remark 32. The space Tx,0X × · · · × TxX × · · · × Tx,0X × Tx,1X × · · ·Tx,1X︸ ︷︷ ︸
s

(where TxX

substitutes Tx,0X k times in the positions a1, · · · , ak) could be more precisely denoted with the
help of the Ordered Cartesian Product:

Or
[
A(a1,...,ak) ×B(a1,...,ak)

]
:= C1 × · · · × Cr

where:

Ci = A if i ∈ (a1, . . . , ak)

Ci = B if i /∈ (a1, . . . , ak)

with k < r.
Then we could write:

Tx,0X × · · · × TxX × · · · × Tx,0X × Tx,1X × · · ·Tx,1X︸ ︷︷ ︸
s

≡Or
[
TxX

(a1,...,ak) × Tx,0X
(a1,...,ak)

]
× Tx,1X × · · ·Tx,1X︸ ︷︷ ︸

s

.
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I did not use this notation in Definition 31, neither I will use it in the following, because I judge
that the notation used, although less precise, is lighter and more intuitive.

Proposition 33. For every form ω of degree r|s over a point x ∈ X, X of dimension n|m, there
is one and only one form ω̂ which extends ω in the arguments (va1

, · · · , vak
), with k < r.

Proof. Let me recall that a k-form à la Kostant over a point x ∈ X is a G∞ map ô :
TxX × · · ·TxX︸ ︷︷ ︸

k

−→ RS such that ∀(v1, · · · , vk) ∈ TxX × · · ·TxX︸ ︷︷ ︸
k

, ∀H ∈ RS , ∀i ∈ {1, · · · , k − 1},

ô(v1, · · · ,Hvi, · · · , vk) = (−1)|H|
∑

i−1

l=1
|vl|Hô(v1, · · · , vi, · · · , vk) (5.7)

and
ô(v1, · · · , vi, vi+1, · · · , vk) = (−1)1+|vi||vi+1|ô(v1, · · · , vi+1, vi, · · · , vk) (5.8)

To prove the existence of a map ω̂ which satisfies the conditions of definition 30 we can argument
by induction on the number k of extended entries of ω̂.

When k = 0 we pose ω̂0 = ω and there is nothing to prove.
Suppose by induction that it is possible to find an extension of ω in the arguments (va1

, · · · , val
)

with l < k, let’s call it ω̂l, then we pose:

ω̂l+1(v1, · · · , va1
, · · · , val

, · · · , val+1
, · · · , vr, ṽ1, · · · , ṽs) :=

:=ω̂l(v1, · · · , va1
, · · · , val

, · · · , val+1
, · · · , vr, ṽ1, · · · , ṽs)+

+ (−1)
∑

l

i=1
|vαi | ∂

∂ε
ω̂l(v1, · · · , va1

, · · · , val
, · · · , εṽal+1

, · · · , vr, ṽ1, · · · , ṽs)

(5.9)

where ε ∈ RS,1 is an odd parameter.
With some patience and calculations one can see that ω̂l+1 extends ω in the arguments

(va1
, · · · , val+1

). Hence (5.9) together with ω̂0 = ω can be taken as the inductive definition of ω̂.
To prove the uniqueness of ω̂, we argue by contradiction and induction again on the number

k of extended entries.
For k = 0 obviously, ω̂0 must be equal to ω and so the uniqueness is proved.
Suppose the uniqueness is proved for l extended entries, then suppose by contradiction that

there is some ω̂
′l+1 6= ω̂l+1 where ω̂l+1 is defined by (5.9); then there would be (v1, · · · , va1

, · · · , val+1
, · · · , vr, ṽ1, · · ·

such that

ω̂
′l+1(v1, · · · , va1

, · · · , val+1
, · · · , vr, ṽ1, · · · , ṽs) 6= ω̂l+1(v1, · · · , va1

, · · · , val+1
, · · · , vr, ṽ1, · · · , ṽs).

and since we must have

ω̂
′l+1(v1, · · · , va1

, · · · , val+1
, · · · , vr, ṽ1, · · · , ṽs)

= ω̂
′l+1(v1, · · · , va1

, · · · , val+1
, · · · , vr, ṽ1, · · · , ṽs)

+ ω̂
′l+1(v1, · · · , va1

, · · · , ṽal+1
, · · · , vr, ṽ1, · · · , ṽs)

by linearity of ω̂
′l+1 in the argument val+1

.

= ω̂l(v1, · · · , va1
, · · · , val+1

, · · · , vr, ṽ1, · · · , ṽs)

+ ω̂
′l+1(v1, · · · , va1

, · · · , ṽal+1
, · · · , vr, ṽ1, · · · , ṽs)

= ω̂l+1(v1, · · · , va1
, · · · , val+1

, · · · , vr, ṽ1, · · · , ṽs)

+ ω̂
′l+1(v1, · · · , va1

, · · · , ṽal+1
, · · · , vr, ṽ1, · · · , ṽs)
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by the induction hypothesis of uniqueness of the extension of ω in the arguments (va1
, · · · , val

).
This implies that we would have:

ω̂
′l+1(v1, · · · , va1

, · · · , ṽal+1
, · · · , vr, ṽ1, · · · , ṽs) 6= ω̂l+1(v1, · · · , va1

, · · · , ṽal+1
, · · · , vr, ṽ1, · · · , ṽs)

But on the other hand we would have that:

∀η ∈ RS,1 : ω̂
′l+1(v1, · · · , va1

, · · · , val+1
+ ηṽal+1

, · · · , vr, ṽ1, · · · , ṽs) =

=ω̂
′l+1(v1, · · · , va1

, · · · , val+1
, · · · , vr, ṽ1, · · · , ṽs)

+ ω̂
′l+1(v1, · · · , va1

, · · · , ηṽal+1
, · · · , vr, ṽ1, · · · , ṽs)

by linearity of ω̂
′l+1 in the argument val+1

;

=ω̂l(v1, · · · , va1
, · · · , val+1

, · · · , vr, ṽ1, · · · , ṽs)

+ η(−1)
∑

l

i=1
|vai |ω̂

′l+1(v1, · · · , va1
, · · · , ṽal+1

, · · · , vr, ṽ1, · · · , ṽs)

by the induction hypothesis of uniqueness of the extension of ω in the arguments (va1
, · · · , val

)
and by the RS-linearity of ω̂

′l+1 in the argument val+1
;

=ω̂l(v1, · · · , va1
, · · · , val+1

, · · · , vr, ṽ1, · · · , ṽs)

+ η(−1)
∑

l

i=1
|vai |ω̂l+1(v1, · · · , va1

, · · · , ṽal+1
, · · · , vr, ṽ1, · · · , ṽs) =

again by the induction hypothesis of uniqueness of the extension of ω in the arguments (va1
, · · · , val

)
and by the inductive definition of ω̂l+1.

And so we would have

∀η ∈ RS,1 :

ηω̂
′l+1(v1, · · · , va1

, · · · , ṽal+1
, · · · , vr, ṽ1, · · · , ṽs) = ηω̂l+1(v1, · · · , va1

, · · · , ṽal+1
, · · · , vr, ṽ1, · · · , ṽs)

and since RS has infinite odd generators, this is a contradiction.
One can also give the definition of r|s-differential-preforms and r|s-differential-extended-forms

in the expected way. Note although that the space of extended forms over a point is not a
natural bilateral supermodule, but only a natural right free supermodule. The structure of left
supermodule can be given with the sign rule as seen above.

The differential r|s-forms, preforms and extended forms can be pull-back by G∞ maps in the
usual way, see [152] pag.60.

5.3 Berezinian r|s-forms

In this section I want to study an important class of r|s-forms.
Voronov, in [154], example 1.1, claims that there exists a particularly simple class of r|s-forms,

built from the superdeterminant of arrays of 1|0-forms. This kind of r|s-forms appears naturally
in Physics and they are used by A. Belopolsky in [9, 10] and by P. A. Grassi and M. Marescotti
in [65] in the context of string theory and were already used by O. M. Khudaverdian in [91] in
the context of Batalin-Vilkovisky theory. Belopolsky called them Plücker forms and he gave an
indirect proof that they indeed satisfy the conditions (5.4) and (5.5). The proof is based on the
fact they can be built by Baranov-Schwarz transform followed by a sign twist, starting from a
special kind of Bernstein-Leites pseudodifferential forms; since Voronov (see [152]) has proved
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that the Baranov-Schwarz transform sends pseudodifferential forms to twisted Voronov-Zorich
forms, then the proof follows.

Those special Voronov-Zorich forms also reveal to be very important in the third part of this
thesis: I call them Berezinian forms because they can be built from 1|0-forms, with the help of a
superdeterminant. However neither Voronov nor Belopolsky nor Khudaverdian do give in their
papers a full direct proof of the fact that those forms satisfy indeed (5.4) and (5.5). Since I could
not find any such proof in the published literature and since I couldn’t find myself any trivial
proof, I use this subsection to give a definition of Berezinian forms and to present such a proof
(indeed an elaborated one).

To this purpose, I need first to prove three technical lemmas.

Lemma 34. Let D be an invertible s × s matrix whose entries dij (where i identifies the i-th
column and j the j-th row) are even-numbers id est elements of RS,0, then the following identity
holds:

∂ detD
∂dij

·
∂ detD
∂dkl

−
∂ detD
∂dkj

·
∂ detD
∂dil

=
∂2 detD
∂dij∂d

k
l

· detD (5.10)

Proof. If all the entries of D belong to R, we can proceed as follow. We fix a base ei, i = 1, · · · , s
of a real vector space V of dimension s and then we consider its dual basis θj , j = 1, · · · , s
of covectors belonging to V ∗. The matrix D is then associated to the linear operator from V
to V sending each ei to the vector dije

j . We then note that ∀v1, · · · , vs ∈ V θ1 ∧ θ2 ∧ · · · ∧

θs(Dv1, · · · ,Dvs) = (detD) · θ1 ∧ θ2 ∧ · · · ∧ θs(v1, · · · , vs) and we consider the real number
θ1 ∧ θ2 ∧ · · · ∧ θs(De1, · · · ,DD−1ej , · · · ,DD−1el, · · · ,Des), where the matrices DD−1 occur in
the positions i and k respectively. Using the definition and the properties of the pullback we
have then:

θ1 ∧ θ2 ∧ · · · ∧ θs(De1, · · · ,DD−1ej︸ ︷︷ ︸
i

, · · · ,DD−1el︸ ︷︷ ︸
k

, · · · ,Des)

= (detD) · θ1 ∧ θ2 ∧ · · · ∧ θs(e1, · · · ,D−1ej︸ ︷︷ ︸
i

, · · · ,D−1el︸ ︷︷ ︸
k

, · · · , es) =

= (detD) · θi ∧ θk(D−1ej ,D−1el) = detD
[(
D−1

)j
i

(
D−1

)l
k
−
(
D−1

)l
i

(
D−1

)j
k

]
=

=
1

detD

[
∂ detD
∂dij

·
∂ detD
∂dkl

−
∂ detD
∂dkj

·
∂ detD
∂dil

]

On the other hand, we have that:

θ1 ∧ θ2 ∧ · · · ∧ θs(De1, · · · ,DD−1ej︸ ︷︷ ︸
i

, · · · ,DD−1el︸ ︷︷ ︸
k

, · · · ,Des)

= θ1 ∧ θ2 ∧ · · · ∧ θs(De1, · · · , ej︸︷︷︸
i

, · · · , el︸︷︷︸
k

, · · · ,Des)

= (−1)i−1+k−2+j−1+l−2+bΘjl(De1, · · · ,Des)ik

=
∂2 detD
∂dij∂d

k
l

where b = 0 when j < l and i < k or when j > l and i > k, b = 1 when j < l but i > k or
when j > l and i < k; where Θjl = θ1 ∧ · · · ∧ θs without θj and θl in the wedge product and
Θjl(De1, · · · ,Des)ik means Θjl applied to the vectors (De1, · · · ,Des) where in the list do not
appear the vectors Dei and Dek.

The same argument can be adapted to matrices with entries in Rs,0 keeping in mind the
properties of G∞ and their even derivatives. So the theorem is proved.
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Lemma 35. Let M =



vE0 v0

0 v1
0

vEf A B

vEϕ C D


 be a supermatrix of size (r+1|s)× (r+1|s) where v0

0 is a

line vector with r components vB0 (B runs from 1 to r), v1
0 is a line vector with s components vγ0

(γ runs form 1 to s), vEf is a column vector of r components (f runs from 1 to r), vEϕ is a column
vector of s components (ϕ runs from 1 to s), A is a r × r matrix with entries aBf , B is a r × s
matrix with entries aγf (γ runs form 1 to s), C is a s× r matrix with entries aBϕ and D is a s× s
matrix with entries aγϕ, with possibly some of the first r + 1 columns of M with inverted parity
with respect to the one usual in a supermatrix. Let’s call G the supermatrix r|s×r|s-dimensional

G :=
(
A B
C D

)
where possibly some of the r first columns of G have inverse parity with respect

to the usual one. We have the following formula:

sdetr+1|sM =vE0 sdetr|sG

− vEf sdetr|s ∂
f
0G

− (−1)|E|vEϕ det ∂ϕfD
1

detD
sdetr|s ∂

f
0G

+ (−1)|E|vEϕ det ∂ϕ0 D
1

detD
sdetr|sG

(5.11)

where |E| denotes the parity of the column 0 of M which is equal to 0 if the entries in that
column have the usual parity of supermatrices and it is equal to 1 if they have inverse parity
with respect to the usual one; ∂f0G is the matrix obtained by G substituting the f-th line with the
corresponding entries of the line 0 of M ; ∂ϕfD is the matrix obtained by D where substituting the
ϕ-th line with the corresponding entries of the f-th line of B; ∂ϕ0 D is the matrix obtained by D
substituting the ϕ-th line with the corresponding entries of the line 0 of M (id est the components
of v1

0); and where all the determinants and superdeterminants are calculated according with the
formula introduced in definition 24.

Proof. By direct calculation and developing for the first column:

sdetr+1|sM = sdetr+1|s



vE0 v0

0 v1
0

vEf A B

vEϕ C D


 = det

r+1

[(
vE0 v0

0

vEf A

)
−

(
v1

0

B

)
D−1

(
vEϕ C

)]
=

= det
r+1

[(
vE0 v0

0

vEf A

)
−

(
v1

0D
−1vEϕ v1

0D
−1C

BD−1vEϕ BD−1C

)]
=

= det
r+1

[(
vE0 − v

1
0D

−1vEϕ v0
0 − v

1
0D

−1C
vEf −BD

−1vEϕ A−BD−1C

)]
=

= vE0 sdetr|sG− v
1
0D

−1vEϕ sdetr|sG− v
E
f sdetr|s ∂

f
0G+ aγf

(
D−1

)ϕ
γ
vEϕ sdetr|s ∂

f
0G

where
(
D−1

)ϕ
γ

is the element of D−1 in the γ-th line and ϕ-th column.
But: (

D−1
)ϕ
γ

=
∂ detD
∂aγϕ

·
1

detD
and

aγf
(
D−1

)ϕ
γ

= det ∂ϕfD ·
1

detD
then, since the parity of elements in B is always 1, we have that:

aγf
(
D−1

)ϕ
γ
vEϕ = (−1)|E|+1

vEϕ det ∂ϕfD ·
1

detD
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Moreover v1
0D

−1vEϕ stands for:

vγ0
(
D−1

)ϕ
γ
vEϕ = vγ0

∂ detD
∂aγϕ

·
1

detD
vEϕ = det ∂ϕ0 D ·

1
detD

vEϕ

= (−1)|E|+1
vEϕ det ∂ϕ0 D ·

1
detD

again because the parity of all vγ0 is 1.
Note that all the calculations depends on the parity of the column 0 of M , as it is clear from

the result, but do not depend on the parity of the columns of M going from 1 to r. So the
theorem is proved.

Lemma 36. Let G be a r|s× r|s-dimensional supermatrix, G :=
(
A B
C D

)
, where possibly some

of the first r columns of G have inverted parity with respect to the usual one. Let’s call gBF the
elements of G, with F,B = 1, . . . , r|s; let gB0 ∈ RS be the r|s components of an even vector. We
have the following formulas:

1. gB0
∂
∂gB

f

sdetG = sdet ∂f0G

2. gB0
∂
∂gB

ϕ
sdetG = − 1

dets D
dets ∂

ϕ
0 D sdetr|sG+ 1

dets D

∑r
f=1 dets ∂

ϕ
fD sdetr|s ∂

f
0G

where ∂f0G is the matrix obtained by G substituting the line f with the elements gB0 and ∂ϕ0 D is
the matrix obtained by D substituting the line ϕ with the elements gβ0 and where f = 1, . . . , r and
ϕ = r + 1, . . . , r + s.

Proof. The first claim is obvious for the linearity of the superdeterminant in his first r lines.
To calculate gB0

∂
∂gB

ϕ
G, it is useful to rewrite G as:

G := sdetr|s

(
A B
C D

)
= det

r

(
A−BD−1C

) 1
detsD

with:

A :=



g1

1 · · · gr1
...

. . .
...

g1
r · · · grr


 ; B :=




gr+1
1 · · · gr+s

1
...

. . .
...

gr+1
r · · · gr+s

r


 ;

C :=



g̃1

1 · · · g̃r1
...

. . .
...

g̃1
s · · · g̃rs


 ; D :=




g̃r+1
1 · · · g̃r+s

1
...

. . .
...

g̃r+1
s · · · g̃r+s

s




We then have:

gβ0
∂

∂gβϕ
G = gβ0

∂

∂gβϕ

[
det
r

(
A−BD−1C

) 1
detsD

]

= −gβ0
1

(detsD)2

∂

∂gβϕ

[
det
s
D
]

det
r

(
A−BD−1C

)
+ gβ0

1
detsD

∂

∂gβϕ

[
det
r

(
A−BD−1C

)]

= −gβ0
1

detsD
∂

∂gβϕ

[
det
s
D
]
G+ gβ0

1
detsD

∂

∂gβϕ

[
det
r

(
A−BD−1C

)]

= −
1

detsD
det
s
∂ϕ0 D sdetr|sG+ gβ0

1
detsD

∂

∂gβϕ

[
det
r

(
A−BD−1C

)]

(5.12)
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where ∂ϕ0 D is the matrix obtained by D substituting the entries in the ϕ-th line with the corre-
sponding entries gβ0 . And:

gβ0
1

detsD
∂

∂gβϕ

[
det
r

(
A−BD−1C

)]
+ gb0

∂

∂gbϕ
G

=
1

detsD

{
gβ0

∂

∂gβϕ

[
det
r

(
A−BD−1C

)]
+ gb0

∂

∂gbϕ

[
det
r

(
A−BD−1C

)]
} (5.13)

To proceed with the calculation we call E :=
(
A−BD−1C

)
and Elf :=

(
A−BD−1C

)l
f
. I will

from now on omit the overbar on g0.

We note that:

(BD−1)γf =
1

detsD
det
s
∂γfD (5.14)

and so:

(
BD−1C

)l
f

=
1

detsD
det
s
∂γfDg

l
γ (5.15)

and

Elf = glf −
1

detsD
det
s
∂γfDg

l
γ (5.16)

We have to calculate gB0
∂
∂gB

ϕ
[detr E]. In the polynomial detr E, each monomial is a product of r

factors each of which is an element of E.

The operator gb0
∂
∂gb

ϕ
acts on each monomial by transforming it in a polynomial: it acts

as a derivation and it maps each factor Elf which has the column l even into the factors
kl 1

dets D
dets ∂

ϕ
fDg

l
0, where kl is a sign depending only on l, leaving each time the other fac-

tors invariant.

The operator gβ0
∂

∂g
β
ϕ

acts on each monomial in a slightly more complicated way, transforming

it in a polynomial as follows: it acts as a derivation and it maps each factor Elf with column l
odd into the factors:

[
kl

1
detsD

det
s
∂ϕfDg

l
0 − k

lgβ0
∂

∂gβϕ

(
1

detsD
det
s
∂γfD

)
glγ

]

leaving other factors invariant; it maps each factor Elf with column l even into the factors:

[
−klgβ0

∂

∂gβϕ

(
1

detsD
det
s
∂γfD

)
glγ

]

leaving other factors invariant.
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So we have:

gB0
∂

∂gBϕ

[
det
r
E
]

= gB0
∂

∂gBϕ

[∑

p

σ(p)
r∏

l=1

Elp(l)

]
=
∑

p

σ(p)gB0
∂

∂gBϕ

r∏

l=1

Elp(l)

=
∑

p

σ(p)
r∑

i=1

{∏

l<i

Elp(l)

[
ki

1
detsD

det
s
∂ϕ
p(i)Dg

i
0 − k

igβ0
∂

∂gβϕ

(
1

detsD
det
s
∂γ
p(i)D

)
giγ

]∏

l>i

Elp(l)

}

=
∑

p

σ(p)
r∑

i=1

{∏

l<i

Elp(l)

[
ki

1
detsD

det
s
∂ϕ
p(i)Dg

i
0

]∏

l>i

Elp(l)

}
+

−
∑

p

σ(p)
r∑

i=1

{∏

l<i

Elp(l)

[
kigβ0

∂

∂gβϕ

(
1

detsD
det
s
∂γ
p(i)D

)
giγ

]∏

l>i

Elp(l)

}

(5.17)

On the right hand side we have two sums. The first one becomes:

∑

p

σ(p)
r∑

i=1

{∏

l<i

Elp(l)

[
ki

1
detsD

det
s
∂ϕ
p(i)Dg

i
0

]∏

l>i

Elp(l)

}

=
∑

p

σ(p)
r∑

i=1

1
detsD

det
s
∂ϕ
p(i)D

{∏

l<i

Elp(l)

[
gi0
]∏

l>i

Elp(l)

}

=
r∑

i=1

1
detsD

∑

p

σ(p) det
s
∂ϕ
p(i)D

{∏

l<i

Elp(l)

[
gi0
]∏

l>i

Elp(l)

}
(5.18)

where p is a permutation of r elements and σ(p) is the sign of the permutation p. Note that the
factors ki disappear because the operator gB0

∂
∂gB

ϕ
and the operator 1

dets D
dets ∂

ϕ

p(i)D have the
same parity and they "jump" the same factors during the calculation. Moreover their parity is 1
and this fix all the signs in the second line of (5.17).

To calculate the second term in the last line of (5.17), let’s first calculate

− gβ0
∂

∂gβϕ

(
1

detsD
det
s
∂γ
p(i)D

)
giγ

= −gβ0
∂

∂gβϕ

(
1

detsD
vεp(i)

∂

∂gεγ
det
s
D

)
giγ

= gβ0
1

(detsD)2

∂

∂gβϕ

(
det
s
D
)
gεp(i)

∂

∂gεγ

(
det
s
D
)
giγ − g

β
0

1
detsD

gεp(i)

∂2

∂gβϕ∂gεγ

(
det
s
D
)
giγ

= gβ0
1

(detsD)2

∂

∂gεϕ

(
det
s
D
)
gεp(i)

∂

∂gβγ

(
det
s
D
)
giγ

where the last equality holds because of Lemma 34 which can be applied because D is invertible
in the domain of definition of G.
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Then the second term in the last line of (5.17) becomes:

∑

p

σ(p)
r∑

i=1

{∏

l<i

Elp(l)

[
kigβ0

1

(detsD)2

∂

∂gεϕ

(
det
s
D
)
gεp(i)

∂

∂gβγ

(
det
s
D
)
giγ

]∏

l>i

Elp(l)

}

= −
∑

p

σ(p)
r∑

i=1

{∏

l<i

Elp(l)

[
ki

1

(detsD)2 det
s
∂ϕ
p(i)D det

s
∂γ0Dv

Ai
γ

]∏

l>i

Elp(l)

}

=
r∑

i=1

1
(detsD)

∑

p

σ(p) det
s
∂ϕ
p(i)D

{∏

l<i

Elp(l)

[
−

1
(detsD)

det
s
∂γ0Dg

i
γ

]∏

l>i

Elp(l)

}
(5.19)

where the ki disappear from the calculation for the same reason explained above.

Remembering (5.15), we can write that:

−
1

(detsD)
det
s
∂γ0Dg

i
γ = −

[
∂
p(i)
0

(
BD−1C

)]i
p(i)

so we can put together (5.18) and (5.19), we can substitute in (5.17) and we obtain:

gB0
∂

∂gBϕ

[
det
r
E
]

=
r∑

i=1

1
detsD

∑

p

σ(p) det
s
∂ϕ
p(i)D

{∏

l<i

Elp(l)

[
gi0
]∏

l>i

Elp(l)

}

+
r∑

i=1

1
(detsD)

∑

p

σ(p) det
s
∂ϕ
p(i)D

{∏

l<i

Elp(l)

[
−

1
(detsD)

det
s
∂γ0Dg

i
γ

]∏

l>i

Elp(l)

}

=
r∑

i=1

1
detsD

∑

p

σ(p) det
s
∂ϕ
p(i)D

{∏

l<i

Elp(l)

[
∂
p(i)
0 A

]i
p(i)

∏

l>i

Elp(l)

}

−
r∑

i=1

1
(detsD)

∑

p

σ(p) det
s
∂ϕ
p(i)D

{∏

l<i

Elp(l)

[
∂
p(i)
0

(
BD−1C

)]i
p(i)

∏

l>i

Elp(l)

}

=
1

detsD

∑

p

r∑

i=1

σ(p) det
s
∂ϕ
p(i)D

{∏

l<i

Elp(l)

[
∂
p(i)
0 E

]i
p(i)

∏

l>i

Elp(l)

}

=
1

detsD

∑

p

r∑

f=1

σ(p) det
s
∂ϕfD




∏

l<f

E
p−1(l)
l

[
∂f0E

]p−1(f)

f

∏

l>f

E
p−1(l)
l





=
1

detsD

r∑

f=1

det
s
∂ϕfD det

r
∂f0E

=
r∑

f=1

det
s
∂ϕfD sdetr|s ∂

f
0G

(5.20)

where ∂f0E is obtained by the matrix E by substituting the f -th line with the corresponding
entries of gB0 .
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Keeping into account the results obtained in (5.12),(5.13) and (5.20) we can write that:

gB0
∂

∂gBϕ
G = gβ0

∂

∂gβϕ
G+ gb0

∂

∂gbϕ
G

= −
1

detsD
det
s
∂ϕ0 D sdetr|sG+ gβ0

1
detsD

∂

∂gβϕ

[
det
r

(
A−BD−1C

)]
+ gb0

∂

∂gbϕ
G

= −
1

detsD
det
s
∂ϕ0 D sdetr|sG+

1
detsD

r∑

f=1

det
s
∂ϕfD sdetr|s ∂

f
0G

(5.21)

And the theorem is proved.
I can now prove the following three theorems which allow to identify the Berezinian class of

Voronov-Zorich superforms:

Theorem 37. Let (U, xA, vA, ṽA) be a local adapted chart of TX, tangent space of a n|m-
dimensional manifold X; let x ∈ U , let v be any (ṽ1, · · · , ṽs) ∈ Tx,1U × · · ·Tx,1U︸ ︷︷ ︸

s

, let α1 < α2 <

· · · < αs be s different odd indices chosen in the the set {n+ 1, · · · , n+m}; then the function

ω : O ⊂ Tx,1U × · · ·Tx,1U︸ ︷︷ ︸
s

−→ RS

defined by:

ω(v) := sdet0,s




ṽα1
1 · · · ṽαs

1
...

. . .
...

ṽα1
s · · · ṽαs

s


 =

1

dets




ṽα1
1 · · · ṽαs

1
...

. . .
...

ṽα1
s · · · ṽαs

s




(5.22)

is a 0|s-form over x ∈ U .

Proof. Let’s call D the matrix




ṽα1
1 · · · ṽαs

1
...

. . .
...

ṽα1
s · · · ṽαs

s


 and let’s call ∆ its determinant.

To prove that ω satisfy (5.4), we take a generic g ∈ GL(0|s), then g · v is the matrix obtained
multiplying, with the usual matrix product, the matrix g times the matrix obtained writing each
ṽβ as a line made of its components, id est the matrix D; then we have:

ω(g · v) = sdet0,s (g ·D) =
1

dets (g ·D)
=

1
dets g dets (D)

= sdet0,s g · ω(v)

To prove that ω satisfies (5.5), we have to prove that ∀i, j, k, l = 1 · · · , s ∂2∆−1

∂v
αl
j
∂v

αk
i

= ∂2∆−1

∂v
αk
j
∂v

αl
i

.

We can perform a direct calculation:

∂2∆−1

∂vαl

j ∂v
αk

i

= −
∂

∂vαl

j

(
1

∆2

∂∆
∂vαk

i

)
=

2
∆3

∂∆
∂vαl

j

∂∆
∂vαk

i

−
1

∆2

∂2∆
∂vαl

j ∂v
αk

i

=
2

∆3

∂∆
∂vαk

j

∂∆
∂vαl

i

+
1

∆2

∂2∆
∂vαl

j ∂v
αk

i

=
2

∆3

∂∆
∂vαk

j

∂∆
∂vαl

i

−
1

∆2

∂2∆
∂vαk

j ∂vαl

i

=
∂2∆−1

∂vαk

j ∂vαl

i
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where we made use of Lemma 34. The theorem is proved.

Theorem 38. Let (U, xA, vA, ṽA) be a local chart of TX, tangent space of a n|m-dimensional
manifold X; let x ∈ U , let w be any (v1, · · · , vr+1; ṽ1, · · · , ṽs) ∈ Tx,0U × · · ·Tx,0U︸ ︷︷ ︸

r+1

×Tx,1U × · · ·Tx,1U︸ ︷︷ ︸
s

;

let α1 < α2 < · · · < αs be s different odd indices chosen in the the set {n + 1, · · · , n + m}; let
A1, A2, · · · , Ar+1 be r + 1 even or odd indices (possibly equal) chosen in the set {1, · · · , n+m};
then the function

ω : O ⊂ Tx,0U × · · ·Tx,0U︸ ︷︷ ︸
r+1

×Tx,1U × · · ·Tx,1U︸ ︷︷ ︸
s

−→ RS

defined by:

ω(w) := sdetr+1,s




v
Ar+1

1 vA1
1 · · · vAr

1 vα1
1 · · · vαs

1
...

...
. . .

...
...

. . .
...

v
Ar+1
r vA1

r · · · v
Ar−
r vα1

r · · · vαs
r

v
Ar+1

r+1 vA1
r+1 · · · vAr

r+1 vα1
r+1 · · · vαs

r+1

˜
v
Ar+1

1 ṽA1
1 · · · ṽAr

1 ṽα1
1 · · · ṽαs

1
...

...
. . .

...
...

. . .
...

˜
v
Ar+1
s ṽA1

s · · · ṽAr
s ṽα1

s · · · ṽαs
s




(5.23)

is an r + 1|s-form over x ∈ U , O being precisely the subset where the formula (5.23) is well
defined.

Moreover we have that
ω = d

(
xA

r+1

θ
)

(5.24)

where θ is the r|s-form defined by:

∀x ∈ U, ∀v := (v1, · · · , vr; ṽ1, · · · , ṽs) ∈ Tx,0U × · · ·Tx,0U︸ ︷︷ ︸
r

×Tx,1U × · · ·Tx,1U︸ ︷︷ ︸
s

:

θ(v) := sdetr,s




vA1
1 · · · vAr

1 vα1
1 · · · vαs

1
...

. . .
...

...
. . .

...

vA1
r · · · vAr

r vα1
r · · · vαs

r

ṽA1
1 · · · ṽAr

1 ṽα1
1 · · · ṽαs

1
...

. . .
...

...
. . .

...

ṽA1
s · · · ṽAr

s ṽα1
s · · · ṽαs

s




(5.25)

Note that we don’t assume as hypothesis that the indices Ai are different from the indices
αj .

Proof. I will prove the theorem by induction on r + 1.
– If r + 1 = 0 and s 6= 0 then the theorem reduces to theorem 37 which has already been

proved.
– If r + 1 = 0 and s = 0, then there is nothing to prove.
– If r + 1 = 1 and s = 0, then the proof is trivial.
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Suppose now that the theorem has already been proved for r|s. Let’s consider θ defined by
(5.25): it is an r|s-form by the inductive hypothesis; so also xAr+1θ is a r|s-form as it can be
easyly seen. If I prove that ω = d

(
xAr+1θ

)
, because of proposition 28, our theorem is proved.

Let’s calculate d
(
xAr+1θ

)
using definition 27. Using the definition of superdeterminant, we

can easily prove that:

ω(w) := sdetr+1,s




v
Ar+1

1 vA1
1 · · · vAr

1 vα1
1 · · · vαs

1
...

...
. . .

...
...

. . .
...

v
Ar+1
r vA1

r · · · v
Ar−
r vα1

r · · · vαs
r

v
Ar+1

r+1 vA1
r+1 · · · vAr

r+1 vα1
r+1 · · · vαs

r+1

˜
v
Ar+1

1 ṽA1
1 · · · ṽAr

1 ṽα1
1 · · · ṽαs

1
...

...
. . .

...
...

. . .
...

˜
v
Ar+1
s ṽA1

s · · · ṽAr
s ṽα1

s · · · ṽαs
s




=

= (−1)r sdetr+1,s




v
Ar+1

r+1 vA1
r+1 · · · vAr

r+1 vα1
r+1 · · · vαs

r+1

v
Ar+1

1 vA1
1 · · · vAr

1 vα1
1 · · · vαs

1
...

...
. . .

...
...

. . .
...

v
Ar+1
r vA1

r · · · v
Ar−
r vα1

r · · · vαs
r

˜
v
Ar+1

1 ṽA1
1 · · · ṽAr

1 ṽα1
1 · · · ṽαs

1
...

...
. . .

...
...

. . .
...

˜
v
Ar+1
s ṽA1

s · · · ṽAr
s ṽα1

s · · · ṽαs
s




In the following I call vAF which stands for vaF , vαF , the components of the multivector v and var+1,
vαr+1 the components of the vector vr+1, with F ∈ {f, ϕ} and f ∈ {1, · · · , r}, ϕ ∈ {1, · · · , s},
a ∈ {1, · · · , n}, α ∈ {1, · · · ,m}. I will also need to indicate the components of v which explicitely
appear in the definition of θ (5.25) and ω (5.23): I will call them vAl

F and vαλ

F , with l ∈ {1, · · · , r}

and λ ∈ {1, · · · , s}. I will call vAr+1

r+1 , vAl

r+1 and vαλ

r+1 the components of vr+1 which appear in
(5.23).

We have that:

(−1)rd
(
xAr+1θ

)
(w) =vBr+1

(
δ
Ar+1

B θ(v)− (−1)|B||F |vCF
∂

∂vBF
(−1)|C|(|B|+|F |)δ

Ar+1

C θ(v)
)

=vAr+1

r+1 θ(v)− (−1)[|B||F |+|Ar+1|(|B|+|F |)]vBr+1v
Ar+1

F

∂

∂vBF
θ(v)

=vAr+1

r+1 θ(v)− (−1)[|B||f |+|Ar+1|(|B|+|f |)+|Ar+1||B|]v
Ar+1

f vBr+1

∂

∂vBf
θ(v)

− (−1)[|B||ϕ|+|Ar+1|(|B|+|ϕ|)+(|Ar+1|+1)|B|]˜vAr+1
ϕ vBr+1

∂

∂vBϕ
θ(v)

=vAr+1

r+1 θ(v)− vAr+1

f θ(∂fr+1v)− (−1)|Ar+1|˜vAr+1
ϕ vBr+1

∂

∂vBϕ
θ(v)

(5.26)

where θ(∂fr+1v) is the superdeterminant of the matrix obtained by the matrix in formula 5.25 by
substituting the line f with the last r|s columns of line r + 1 in the matrix in formula 5.23; id
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est θ(∂fr+1v) is the value obtained by letting θ act on the multivector obtained by substituting
in v the f -th vector with vr+1.

To calculate ˜
v
Ar+1
ϕ vBr+1

∂
∂vB

ϕ
θ(v), it is useful to rewrite θ(v) as:

θ(v) := sdetr|s

(
A B
C D

)
= det

r

(
A−BD−1C

) 1
detsD

with:

A :=




vA1
1 · · · vAr

1
...

. . .
...

vA1
r · · · vAr

r


 ; B :=



vα1

1 · · · vαs

1
...

. . .
...

vα1
r · · · vαs

r


 ;

C :=




ṽA1
1 · · · ṽAr

1
...

. . .
...

ṽA1
s · · · ṽAr

s


 ; D :=




ṽα1
1 · · · ṽαs

1
...

. . .
...

ṽα1
s · · · ṽαs

s




By Lemma 36, we then have that:

vBr+1

∂

∂vBϕ
θ(v) = −

1
detsD

det
s
∂ϕr+1Dθ(v) +

1
detsD

det
s
∂ϕfDθ(∂

f
r+1v) (5.27)

Keeping into account (5.27), we can rewrite (5.26) as follows:

(−1)rd
(
xAr+1θ

)
(w) =vAr+1

r+1 θ(v)− vAr+1

f θ(∂fr+1v)− (−1)|Ar+1|˜vAr+1
ϕ vBr+1

∂

∂vBϕ
θ(v)

=vAr+1

r+1 θ(v)− vAr+1

f θ(∂fr+1v) + (−1)|Ar+1|˜vAr+1
ϕ

1
detsD

det
s
∂ϕr+1Dθ(v)

− (−1)|Ar+1|˜vAr+1
ϕ

1
detsD

det
s
∂ϕfDθ(∂

f
r+1v)

(5.28)

Using (5.11), we can develop the matrix defining ω in (5.23) and then we can compare the
obtained development with (5.28). We can see that the claim is proved.

Note that

Theorem 39. Let X be an n|m-dimensional supermanifold and TX its tangent space. Let
x ∈ X, let w be any (v1, · · · , vr; ṽ1, · · · , ṽs) ∈ Tx,0X × · · ·Tx,0X︸ ︷︷ ︸

r

×Tx,1X × · · ·Tx,1X︸ ︷︷ ︸
s

; let θ1 . . . θs

be s linear independent odd 1|0-forms; let Θ1, · · · ,Θr be r even or odd 1|0-forms (possibly linear
dependent); let

O ⊂ Tx,0X × · · ·Tx,0X︸ ︷︷ ︸
r

×Tx,1X × · · ·Tx,1X︸ ︷︷ ︸
s

be the subset where the function

ω : O ⊂ Tx,0X × · · ·Tx,0X︸ ︷︷ ︸
r

×Tx,1X × · · ·Tx,1X︸ ︷︷ ︸
s

−→ RS
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ω(w) := sdetr,s




Θ1 (v1) · · · Θr (v1) θ1 (v1) · · · θs (v1)
...

. . .
...

...
. . .

...
Θ1 (vr) · · · Θr (vr) θ1 (vr) · · · θs (vr)
Θ1 (ṽ1) · · · Θr (ṽ1) θ1 (ṽ1) · · · θs (ṽ1)

...
. . .

...
...

. . .
...

Θ1 (ṽs) · · · Θr (ṽs) θ1 (ṽs) · · · θs (ṽs)




(5.29)

is well defined.
If O is not empty, then ω is an r|s-form over x ∈ X,

Proof. Since θ1 . . . θs are s linear independent odd 1|0-forms, if O is not empty, there is a chart
U ⊂ X containing x and with local coordinates (xa, ξα) such that over x: θ1 = dξ1 . . . θs = dξs.
Moreover, since by definition, the superdeterminant in (5.29) is additive in the first r columns
and satisfy a graded version of homogeneity in each of them when the entries in each column of
the first block share the same parity as well as the entries in each column of the second block, then
it follows that, in those coordinates, ω(w) is expressed as a linear combination, with coefficients
in RS , of terms each of which is of the type of those appearing in theorem 38. By theorem 38,
each of these term is a Voronov-Zorich form over the point x.

Since Voronov and Zorich have proved that the conditions (5.4) and (5.5), given pointwise,
are well posed and do not depend from the choice of the local coordinates, the theorem is proved.

Definition 40. I call Berezinian-superforms the superforms of the type defined with (5.29) and
their RS-linear combinations.

Particularly interesting are n|m-forms over a n|m-dimensional supermanifold X. We have
the following:

Theorem 41. Let ω and ω′ be n|m-forms over the n|m-dimensional supermanifold X, so that
∀x ∈ X, ω

∣∣
x

and ω′∣∣
x

do not vanish; if there exists a section v ∈ Γ(T0X × · · ·T0X︸ ︷︷ ︸
n

×T1X × · · ·T1X︸ ︷︷ ︸
m

)

such that, for every x ∈ X, v
∣∣
x

=
(
vx,1, · · · , vx,n, ṽx,n+1, · · · , ṽx,n+m

)
is a base for the free mod-

ule TxX and ω
∣∣
x
(v
∣∣
x
) is invertible , then there exist a G∞ function f ∈ G∞(X), so that ω′ = fω.

Moreover f is everywhere non vanishing in X.

Proof. Let v ∈ Γ(T0X × · · ·T0X︸ ︷︷ ︸
n

×T1X × · · ·T1X︸ ︷︷ ︸
m

) be as in the hypothesis, so that ∀x ∈ X, ω
∣∣
x
(v
∣∣
x
)

is invertible in RS , and fix f(x) := ω′∣∣
x
(v
∣∣
x
)
[
ω
∣∣
x
(v
∣∣
x
)
]−1

.

We have that, if v′∣∣
x

= (v′
x,1 · · · v

′
x,n, ṽ

′
n+1, · · · , ṽ

′
n+m) is so that (v′

x,1 · · · v
′
x,n) and (ṽ′

n+1, · · · , ṽ
′
n+m)

are linear independent, then a g ∈ GL(n|m) exists so that v′ = gv. We have then for every such
v′

ω′∣∣
x
(v′) = ω′∣∣

x
(gv) = Bern,m(g)ω′∣∣

x
(v) = Bern,m(g)f(x)ω

∣∣
x
(v) =

= f(x)ω
∣∣
x
(gv) = f(x)ω

∣∣
x
(v′)

Finally ω′∣∣
x

does not vanish ∀x ∈ X, so f(x) 6= 0 ∀x, and we conclude that for any u in its
domain of definition ω′∣∣

x
(u) = f(x)ω

∣∣
x
(u).

This proves that the dimension of the free supermodule Λn|m
x is 1 for every x ∈ X and that

all n|m-forms on a n|m-supermanifold are Berezinian superforms.
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For a study of Λr|m
x on a n|m-manifold, see [152], where Voronov shows the connection

between the r|m-forms and integral and pseudodifferential forms defined by Bernstein and Leites
[16, 17].

We can see that n|m-forms over n|m-dimensional supermanifolds behave much alike n-forms
on n-dimensional manifolds. For example:

Proposition 42. Let (U, xA, vA, ṽA) be a local chart of TX, tangent space of a n|m-dimensional
manifold X; the function

β : O ⊂ T0U × · · ·T0U︸ ︷︷ ︸
n

×T1U × · · ·T1U︸ ︷︷ ︸
m

−→ RS

defined by:

β := sdetn,m




v1
1 · · · vn1 vn+1

1 · · · vn+m
1

...
. . .

...
...

. . .
...

v1
n · · · vnn vn+1

n · · · vn+m
n

ṽ1
1 · · · ṽn1 ṽn+1

1 · · · ṽn+m
1

...
. . .

...
...

. . .
...

ṽ1
m · · · ṽnm ṽn+1

m · · · ṽn+m
m




(5.30)

is an n|m-form over U : we call it the canonical n|m-form of U .

Proof. Obvious after theorem 38
So, combining theorem 41 and proposition 42, we can prove:

Theorem 43. Every n|m-form L ∈ Ωn|mX over a n|m-dimensional manifold X can be written
in local coordinates as:

L = L(xA)β

and if L is everywhere non vanishing on the local chart, then L(xA) is everywhere non vanishing
too.
Changing local chart, L transform as a n|m-density, that is

L′(xA
′

) = Bern,m
(∂xA′

∂xA

)−1

L(xA)

where (∂x
A′

∂xA )−1 is the inverse matrix of the tangent map of the transformation function of local
coordinates.

Note that if one assigns conventionally the Z2 degree to an n|m-form, assigning the same
degree to all its local representative, the degree is well defined. I choose the following convention:
|L| = |L|; where |L| = 0 if it takes only even values, and 1 if it takes only odd values: it is con-

sistent because, by change of coordinates, |L| doesn’t change, being
∣∣∣Bern,m

(
∂xA′

∂xA

)∣∣∣ = 0. This
convention agrees with the parity convention already adopted above in the previous two sections.

We will denote the Berezinian forms defined by (5.29) in this way:

ω =
Θ1 ∧ · · · ∧Θr

θ1 ⊙ · · · ⊙ θs
(5.31)
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Note the difference between the notation in (5.31) and similar notations like:

ω = Θ1 ∧ · · · ∧Θr ⊙ v1 ⊙ · · · ⊙ vs (5.32)

where v1 . . . vs are odd vector fields; or

ω = dx1 ∧ · · · ∧ dxr
∂s

∂xm+1 . . . ∂xm+s
(5.33)

where xA are local coordinates on a n|m-manifold.
Notations like the one in (5.32) are usually restricted only to n|m-forms on n|m-manifolds,

or to integral forms, see for example [114, 116]; notations like the one in (5.33) are usually
restricted only to n|m-forms on n|m-manifolds and they already appeared in the literature in
several variants, especially in the context of Berezinian densities, see for example [146].

I propose the use of (5.31) which has to be intended as a shortcut for (5.29).

Another important class of superforms are r|0-forms. It is easy to prove that every extended
r|0-form is a Berezinian form. In particular every extended 1|0-form µ is a Berezinian form and
can be written as dxAµA.

Following the same convention used for elements of the cotangent bundle, id est for Kostant
1-form, we have that

∣∣dxA
∣∣ =

∣∣xA
∣∣ = |A|. The parity of µ then follows automatically.

Every extended r|0-form ω can be written as a RS-linear combination of forms of the type of
θ = dxA1 ∧ · · · dxAr . I use the following natural convention:

|θ| =
∣∣dxA1 ∧ · · · ∧ dxAr

∣∣ :=
∣∣dxA1

∣∣+ · · ·+
∣∣dxAr

∣∣ (5.34)

The degree of a generic r|0-form ω follows.
For a form of the type defined with 5.31 I set the following convention:

|ω| =

∣∣∣∣
Θ1 ∧ · · · ∧Θr

θ1 ⊙ · · · ⊙ θs

∣∣∣∣ :=
∣∣Θ1 ∧ · · · ∧Θr

∣∣ = |Θ1|+ · · ·+ |Θr| (5.35)

5.4 Fractional r|s-forms and Cartan calculus

In his work on ’stable forms’ [154], Voronov introduced, for every 1|0-form α, an operator
e(α) acting on ’stable forms’. Voronov then says that this operator corresponds to an operator,
indicated with eα, which act on r|s-forms, sending them to r+ 1|s forms and which behaves like
the wedge product of α with a r|s-form. Voronov, [154] formula 17 pag. 9, gives the following
formula in coordinates for eα:

eα = (−1)r
(
vAr+1αA − (−1)|α||F |+|B|vAFαAv

B
r+1

∂

∂vBF

)
(5.36)

Formula (5.36) is in fact imprecise. This can be seen if one considers on a supermanifold the
very simple 0|1-form ω defined by:

ω(ṽ1) =
1

ṽγ1

(5.37)
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and the 1|0-form α = dxβ . Then, using (5.36), one would find that:

eαω(v0, ṽ1) = edxβω(v0, ṽ1)

= (−1)0

[
vA0 δ

β
A − (−1)1·1+1

ṽA1 δ
β
Av

γ
0

∂

∂ṽγ1

]
1
ṽγ1

= (−1)0

[
vβ0 − (−1)1·1+1

ṽβ1 v
γ
0

∂

∂ṽγ1

]
1
ṽγ1

=
vβ0
ṽγ1

+
ṽβ1 v

γ
0

(ṽγ1 )2

(5.38)

But the form defined by (5.38) does not satisfy (5.5).
The correct definition of a wedge product operator of a 1|0-form α acting on generic r|s-forms

is given by Belopolsky in [9], it is used also in [65] and it corresponds to the following formula:

eα = (−1)r
(
vAr+1αA − (−1)|α||F |vAFαAv

B
r+1

∂

∂vBF

)
(5.39)

Belopolsky doesn’t exhibit the proof that his definition is well posed. I will not give here a
full proof, because it is not necessary for what follows. I will instead show that (5.39) is well
posed for Berezinian forms and I will show that for Berezinian forms it reduces to an intuitive
formula. We have in fact:

Proposition 44. Let (U, xA, vA, ṽA) be a local chart of TX, tangent space of a n|m-dimensional
manifold X; let x ∈ U , let w := (v1, · · · , vr+1; ṽ1, · · · , ṽs) ∈ Tx,0U × · · ·Tx,0U︸ ︷︷ ︸

r+1

×Tx,1U × · · ·Tx,1U︸ ︷︷ ︸
s

;

let θ be the r|s-superform defined with (5.25), and let µ := dxAµA be a 1|0-superform, then the
function defined by:

µ ∧ θ(w) := sdetr+1,s




vA1 µA vA1
1 · · · vAr

1 vα1
1 · · · vαs

1
...

...
. . .

...
...

. . .
...

vAr µA vA1
r · · · v

Ar−
r vα1

r · · · vαs
r

vAr+1µA vA1
r+1 · · · vAr

r+1 vα1
r+1 · · · vµs

r+1

ṽA1 µA ṽA1
1 · · · ṽAr

1 ṽα1
1 · · · ṽαs

1
...

...
. . .

...
...

. . .
...

ṽAs µA ṽA1
s · · · ṽAr

s ṽα1
s · · · ṽαs

s




(5.40)

is a r + 1|s coordinates-superform over x.

Proof. It is obvious after theorem 38.
And:

Proposition 45. Let (U, xA, vA, ṽA) be a local chart of TX, tangent space of a n|m-dimensional
manifold X; let x ∈ U , let w := (v1, · · · , vr+1; ṽ1, · · · , ṽs) ∈ Tx,0U × · · ·Tx,0U︸ ︷︷ ︸

r+1

×Tx,1U × · · ·Tx,1U︸ ︷︷ ︸
s

,

let v := (v1, · · · , vr; ṽ1, · · · , ṽs) ∈ Tx,0U × · · ·Tx,0U︸ ︷︷ ︸
r

×Tx,1U × · · ·Tx,1U︸ ︷︷ ︸
s

; let θ be the r|s-superform



86 CHAPTER 5. FRACTIONAL FORMS AND INTEGRATION ON SUPERMANIFOLDS

defined with (5.25), and let µ := dxAµA be a 1|0-superform; if eµθ is defined by (5.39) and µ∧ θ
is defined by (5.40), then:

eµθ(w) = µ ∧ θ(w) (5.41)

Proof. First of all we note that equation (5.39) well defines an operator, indeed, if one considers
the operator defined on an other local chart U ′, it is easy to see that the two operators coincide
on U ∩U ′. When (5.41) is proved, this will also prove that definition (5.40) does not depend on
local coordinates.

Then, if we apply eµ to θ, we obtain:

eµθ(w) = (−1)r
(
vBr+1µBθ(v)− (−1)|µ||F |vBF µBv

A
r+1

∂θ(v)
∂vAF

)
(5.42)

where the index A takes the values A1, . . . , Ar, α1, . . . , αs, whereas B runs from 1 to n|m and F
runs from 1 to r|s.

Using Lemma 36, we can rewrite (5.42) as:

eµθ(w) =(−1)r
[
vBr+1µBθ(v)− (−1)|µ||f |vBf µB

(
θ(∂fr+1v)

)]

− (−1)r(−1)|µ||ϕ|
[
vBϕ µB

(
−

1
detsD

det
s
∂ϕr+1Dθ(v) +

1
detsD

det
s
∂ϕfDθ(∂

f
r+1v)

)]

(5.43)

But, by Lemma 35, (5.43), is equivalent to (5.40), and the theorem is proved.
After proposition 44, if ω = Θ1∧···∧Θr

θ1⊙···⊙θs , and µ is a 1|0-form, then we can write:

µ ∧ ω = µ ∧
Θ1 ∧ · · · ∧Θr

θ1 ⊙ · · · ⊙ θs
=
µ ∧Θ1 ∧ · · · ∧Θr

θ1 ⊙ · · · ⊙ θs
(5.44)

It is easy to see that:
∀λ ∈ RS , µ ∧ λθ = (−1)|µ||λ|λµ ∧ θ

So the wedge product can be extended by RS-linearity to linear combinations of r|s-superforms.
Then we have the following:

Proposition 46. ∀λ ∈ RS , ∀µ, ν ∈ Ω1|0X, ∀θ, ∀τ r|s-Berezinian-superforms we have that:

µ ∧ (θ + τ) = µ ∧ θ + µ ∧ τ (5.45)

(µ+ ν) ∧ θ = µ ∧ θ + ν ∧ θ (5.46)

µ ∧ λθ = µλ ∧ θ = (−1)|µ||λ|λµ ∧ θ (5.47)

Proof. (5.45) is true by definition; (5.46) and (5.47) can be verified by direct calculations using
the definition (5.40) and the properties of the superdeterminant defined with 24.

Moreover it is immediate to see that relation (5.24) becomes:

ω = d(xAr+1θ) = dxAr+1 ∧ θ

and more in general:

Proposition 47. For the r|s-Berezinian-form θ defined by (5.25) on the supermanifold X and
for every G∞-function f on X, we have

d(fθ) = df ∧ θ (5.48)
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To build up the Cartan calculus, we still need to define an inner product between a vector
field and a r|s-form. We will see in a while that my definition of interior product by an even
vector field coincides with the ones given by Voronov and Belopolsky and used also by Grassi
and Marescotti. The interior product by an odd vector field is instead defined in the literature
with a certain ambiguity, because it is not given enough attention to the necessity of extending
a superforms before to contract it with an odd vector in one of its first arguments. Since the
extension may not be unique without the assumption that I made in definition 31, then the lack
of this last definition introduces an ambiguity. We have the following:

Lemma 48. Let X be a supermanifold of dimension n|m and let ω be any r|s-form on it,
extended in its first argument, if u is a tangent vector field to X, then ωu(·) := ω(u, ·) is a r−1|s
form on X.

Proof. We have to prove that the conditions (5.4) and (5.5) hold for ωu. When u is even,
the second condition is automatically satisfied because it is satisfied by ω. To prove the first
condition, let’s take v = (v1, · · · , vr−1, ṽ1, · · · , ṽs) ∈ Γ(T0X × · · ·T0X︸ ︷︷ ︸

r−1

×T1X × · · ·T1X︸ ︷︷ ︸
s

) and

let’s consider a g ∈ GL(r − 1|s) acting on v according to 5.3 so that gv = v′; we can then

build g′ ∈ GL(r|s) as the r|s-supermatrix g′ :=
(

1 0
0 g

)
. We can make g′ act on the couple

(u, v) ∈ Γ(T0X × · · ·T0X︸ ︷︷ ︸
r

×T1X × · · ·T1X︸ ︷︷ ︸
s

) in this way g′(u, v) := (u, gv). A straightforward

calculation gives Berr,s(g′) = Berr−1,s(g). So we have that ωu(v′) = ωu(gv) = ω(u, gv) =
ω(g′(u, v)) = Berr,s(g′)ω(u, v) = Berr−1,s(g)ωu(v).

If u is odd, let’s take any odd generator η of RS , then ηu is even and we can apply to it the same
argument seen above. Moreover ∀η, ωηu(v′) = ηωu(v′) and ωηu(v) = ηωu(v) for the RS-linearity
in the first argument of the extended form ω. So we have that: ∀η, ηωu(v′) = ηBerr−1,s(g)ωu(v)
and since RS has infinite odd generator, it must be ωu(v′) = Berr−1,s(g)ωu(v).

To prove that (5.5) is satisfied by ωu also when u is odd, we note that ω is the extension
in the first argument of its restriction to Γ(T0X × · · ·T0X︸ ︷︷ ︸

r

×T1X × · · ·T1X︸ ︷︷ ︸
s

). So by 33 we have

that:

∀u ∈ Γ(T1X), ∀v ∈ Γ(T0X × · · ·T0X︸ ︷︷ ︸
r−1

×T1X × · · ·T1X︸ ︷︷ ︸
s

), ∀ε ∈ RS,1

ωu(v) = ω(u, v) =
∂

∂ε
ω(εu, v)

and consequently:

∂2

∂vBG∂v
A
F

ωu(v) =
∂2

∂vBG∂v
A
F

∂

∂ε
ω(εu, v) = (−1)|G|+|B|+|F |+|A| ∂

∂ε

∂2

∂vBG∂v
A
F

ω(εu, v)

=− (−1)|G|+|B|+|F |+|A|(−1)|G||F |+(|G|+|F |)|A| ∂

∂ε

∂2

∂vBF ∂v
A
G

ω(εu, v)

=− (−1)|G||F |+(|G|+|F |)|A| ∂2

∂vBF ∂v
A
G

∂

∂ε
ω(εu, v)

=− (−1)|G||F |+(|G|+|F |)|A| ∂2

∂vBF ∂v
A
G

ωu(v)

which is (5.5).
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I will call the form ωu also u ω or iuω.
When ω is a Berezinian-form, then I call iuω a contracted Berezinian-form: note that in

general it may not be a Berezinian form.
If ω = Θ1∧···∧Θr

θ1⊙···⊙θs and v = vA∂A, we can write:

u ω = vA∂A
Θ1 ∧ · · · ∧Θr

θ1 ⊙ · · · ⊙ θs
(5.49)

where formula (5.49) has to be considered a shortcut for the formulas described in Lemma 48.
I set the following convention:

|u ω| := |u|+ |ω| (5.50)

The same convention will be used in the following whenever interior products are involved.
Voronov in [152, 154] gives a definition of the interior product by the following:

Proposition 49. Let X be a supermanifold of dimension n|m and let ω be any r|s-form on it.
If u is a tangent vector field to X locally defined by u = uA∂A, then then the operator iu defined
in local coordinates by

iu = (−1)r−1uA
∂

∂vAr
(5.51)

sends ω to iuω, which is a r − 1|s-form on X.

If ω is a Berezinian-form, then it is easy by a straightforward calculation to prove that my
definition agrees with the one given by Voronov.

Since every r|s-forms is RS,0-linear in its first r arguments (see [152]), then it is equally easy
to prove that my definition and Voronov definition are equivalent for every r|s-form.

What is incorrect is to deduce from those definitions that making an interior product by an
odd vector is equivalent to substitute the odd vector as the first argument of the original form.
This may be without sense or could lead to ambiguities. Indeed before contracting a form with
an odd vector, it always necessary to extend it (for example with (5.9)).

New forms can obviously be obtained by repeated contractions with different vector fields.
Note that: to extend a form in its first argument, to perform a contraction with an odd vector,
followed by an other extension in the new first argument of the new form and another contraction
by an odd vector is not equivalent to extend the original form in its two first arguments with
(5.9) and then contract it in its two first arguments with two odd vectors. For example, if ω is a
form and ω̂ is its extension in the first two arguments, if ṽ and ũ are odd vectors, then:

ṽ (ũ ω) 6= ω̂ (ũ, ṽ)

In other words, if ̂̃u ω is the extension of ũ ω in its first argument, we have that:

̂̃u ω (·) 6= ω̂ (ũ, ·)

This is consistent, if one thinks that ̂̃u ω is RS-linear in its first argument, while ω̂ (·, ·), being
a Kostant-form, must obey to (5.8) and therefore it is not RS-linear in its second argument.

It is useful to define a wedge product between a 1|0-form and a contracted Berezinian-form.
We can make so with the help of the following:
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Proposition 50. Let (U, xA, vA, ṽA) be a local chart of TX, tangent space of a n|m-dimensional
manifold X; let x ∈ U , let v := (v1, · · · , vr; ṽ1, · · · , ṽs) ∈ Tx,0U × · · ·Tx,0U︸ ︷︷ ︸

r

×Tx,1U × · · ·Tx,1U︸ ︷︷ ︸
s

;

let θ be the r|s-Berezinian-superform defined with (5.25); let η be a odd generator of RS,1; let
θū and θũ be its contractions with the even vector field ū and ũ and let µ := dxAµA be a 1|0-
superform, then the functions defined by:

µ ∧ θū(v) := sdetr+1,s




vA1 µA vA1
1 · · · vAr

1 vα1
1 · · · vαs

1

0 uA1 · · · uAr uα1 · · · uαs

vA2 µA vA1
2 · · · vAr

2 vα1
2 · · · vαs

2
...

...
. . .

...
...

. . .
...

vAr µA vA1
r · · · v

Ar−
r vα1

r · · · vαs
r

ṽA1 µA ṽA1
1 · · · ṽAr

1 ṽα1
1 · · · ṽαs

1
...

...
. . .

...
...

. . .
...

ṽAs µA ṽA1
s · · · ṽAr

s ṽα1
s · · · ṽαs

s




(5.52)

and

µ ∧ θũ(v) := (−1)|µ| ∂

∂η
sdetr+1,s




vA1 µA vA1
1 · · · vAr

1 vα1
1 · · · vαs

1

0 ηũA1 · · · ηũAr ηũα1 · · · ηũαs

vA2 µA vA1
2 · · · vAr

2 vα1
2 · · · vαs

2
...

...
. . .

...
...

. . .
...

vAr µA vA1
r · · · v

Ar−
r vα1

r · · · vαs
r

ṽA1 µA ṽA1
1 · · · ṽAr

1 ṽα1
1 · · · ṽαs

1
...

...
. . .

...
...

. . .
...

ṽAs µA ṽA1
s · · · ṽAr

s ṽα1
s · · · ṽαs

s




(5.53)

are r|s-forms.
Moreover we have again that ∀λ ∈ RS , ∀µ, ν ∈ Ω1|0X which have the same parity:

(µ+ ν) ∧ θu = µ ∧ θu + ν ∧ θu (5.54)

µ ∧ λθu = µλ ∧ θu = (−1)|µ||λ|λµ ∧ θu (5.55)

Proof. The proof that both (5.52) and (5.53) define a r|s-form relies on the fact that

µ ∧ (iu)θ + (−1)|µ||u|
iu(µ ∧ θ) = (−1)|µ||u|

µ(u)θ (5.56)

which can be checked by direct calculation starting from (5.40), (5.52) and (5.53).
The proof of (5.54) and (5.55) can be done by direct calculation.
We have then the following three propositions, the second of which is analogous to proposition

45:

Proposition 51. The wedge product defined for fractional forms with (5.40), is a special case
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of the wedge product defined locally for all superforms with the formula:

∀ local chart U, ∀µ ∈ Ω1|0U, ∀θ ∈ Ωr|sU,

∀v = (v1, · · · , vr; ṽ1, · · · , ṽs) ∈ Tx,0U × · · ·Tx,0U︸ ︷︷ ︸
r

×Tx,1U × · · ·Tx,1U︸ ︷︷ ︸
s

,

∀w := (v, vr+1) ∈ Tx,0U × · · ·Tx,0U︸ ︷︷ ︸
r+1

×Tx,1U × · · ·Tx,1U︸ ︷︷ ︸
s

:

µ ∧ θ(w) := (−1)r
[
µ(vr+1)− (−1)|µ||F |

µ(vF )vAr+1

∂

∂vAF

]
θ(v)

(5.57)

Id est: on Berezinian superform, µ∧ acts as eµ.

Proof. The theorem is just a corollary of theorems 44 and 45 which have been proved with the
same calculation techniques used for proving theorem 38.

Proposition 52. Let (U, xA, vA, ṽA) be a local chart of TX, tangent space of a n|m-dimensional
manifold X; let x ∈ U , let w := (v1, · · · , vr+1; ṽ1, · · · , ṽs) ∈ Tx,0U × · · ·Tx,0U︸ ︷︷ ︸

r+1

×Tx,1U × · · ·Tx,1U︸ ︷︷ ︸
s

;

let θ be the r|s-Berezinian-superform defined with (5.25); let θū and θũ be its contractions with re-
spectively the even vector field ū and the odd vector field ũ and let µ := dxAµA be a 1|0-superform:
if eµθū and eµθũ are defined by (5.39) and µ ∧ θū and µ ∧ θũ are defined by (5.52) and (5.53),
then:

eµθū(w) = µ ∧ θū(w)

eµθũ(w) = µ ∧ θũ(w)
(5.58)

Proof. First of all we note that, since (5.39) well define an operator, the proof of (5.58) is also a
proof that definitions (5.52) and (5.53) are well given and don’t depend on coordinates.

Then, for what we have seen above, we note that θu = iuθ, where iu is defined by (5.51).
Using (5.39) and (5.51), we can therefore easily see that:

eµθu = − (−1)|µ||u|
iu(eµθ) + (−1)|µ||u|

µ(u)θ (5.59)

Remembering that eµθ = µ ∧ θ and comparing (5.59) with (5.56), we have that:

eµθu = µ ∧ θu

We can therefore set the following definition:

Definition 53. Let (U, xA, vA, ṽA) be a local chart of TX, tangent space of a n|m-dimensional
manifold X; let x ∈ U , let v := (v1, · · · , vr; ṽ1, · · · , ṽs) ∈ Tx,0U × · · ·Tx,0U︸ ︷︷ ︸

r

×Tx,1U × · · ·Tx,1U︸ ︷︷ ︸
s

;

let θ be any r|s-superform; let µ := dxAµA be a 1|0-superform, then:

µ ∧ θ := eµθ

where eµ is defined by (5.39).

And we have then:
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Proposition 54.

∀µ, ν ∈ Ω1|0X, ∀ω ∈ Ωr|sX,

µ ∧ ν ∧ ω = (−1)|µ||ν|+1ν ∧ µ ∧ ω
(5.60)

Proof. By direct calculation using (5.57) or, with easier calculations, for the class of Berezinian-
forms and contracted Berezinian-forms, using (5.40), (5.52) and (5.53).

A short comment on the formula (5.56) for the commutator between interior and exterior
products: in [65] and [9] a different formula is given. Note that, formula 3.6 in [65], defining the
interior product, does not make sense without a definition of an extension of superforms. If one
assumes that for a generic Berezinian superform its extension were obtained by simply using the
superdeterminant formula (5.25), then formula 3.6 in [65] would not coincide with my definition
(5.53) and moreover formula 3.6 would not lead to a superform satisfying (5.4) and (5.5) (as
can be seen with simple counterexamples).This explain also the difference between (5.56), which
involves a superanticommutator, and the corresponding formula in [65] (the third equality of 3.8)
which instead involves a supercommutator.

Using (5.54) and (5.55), the wedge product can be extended to the space of all contracted
Berezinian-forms by RS linearity.

Using 5.60, if α is a t|0-form and ω is a r|s-form, it is easy to define the wedge product α∧ω.
Using (5.59) and (5.56), we can repeatedly apply the operator iu to a contracted Berezinian-

form obtaining a class of new forms, which we may call repeatedly contracted Berezinian forms,
for which the interior products with vector fields and the exterior product with 1|0-forms are
well defined and enjoy the properties described by (5.56), (5.54) and (5.55). Moreover, for this
class of forms, it is possible to explicitly calculate the wedge and interior products in term
of superdeterminants of the components of the 1-forms and vectors involved obtaining, results
analogous to the ones of theorem 50. In the following chapters of this thesis, I will use only
Berezinian and contracted Berezinian forms, so formula (5.40), (5.52) and (5.53) will be enough
to explicitly calculate their values.

If ω = Θ1∧···∧Θr

θ1⊙···⊙θs and v1 = vA1 ∂A, . . . , vp = vBp ∂B , using the properties seen above, we can
write:

vp . . . v1 ω = v1 ∧ · · · ∧ vp
Θ1 ∧ · · · ∧Θr

θ1 ⊙ · · · ⊙ θs
(5.61)

We can therefore give the following:

Definition 55. The class of superforms obtained by Berezinian superforms repeatedly performing
wedge products by 1|0-superforms and contraction by vector fields and their RS-linear combina-
tions is called the class of fractional superform.

The name is justified by the notation proposed with (5.44), (5.49) and(5.61).

It is important to know how the operator d act on fractional forms and how its action is
correlated with the action of the wedge product and of the interior product. We have:

Proposition 56.

∀f ∈ Ω0|0X = F (X) , ∀ω ∈ Ωr|sX,

d(fω) = df ∧ ω + fdω
(5.62)
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Proof. By direct calculation using (5.6) and the definition of eµθ.

Since we define the class of fractional superforms as the smallest subclass of general r|s-
forms containing the Berezinian forms and closed under contraction and wedge product, the
natural question arises whether this subclass is a proper subclass of Voronov-Zorich forms or it
is coincident with the class of all Voronov-Zorich forms.

I don’t have now an answer to this question.
For example: if

ω =
1

θ̃

with θ̃ = dxAθ̃A, |θ| = 1 and with dθ̃ 6= 0, then I don’t know if dω is a fractional form or not,
although I guess it is not.

Then it may be that the class of fractional superforms is not closed under exterior derivation.
The example above, by the way, shows that the action of the operator d on a fractional form,

and even on a Berezinian form, is not always easy to compute.

We have the following:

Proposition 57. If µ is a 1|0-form and ω is and r|s-form:

d(µ ∧ ω) = dµ ∧ ω − µ ∧ dω

Proof. By direct calculation remembering definition 53 and using 5.39 and 5.6 .
One other property of n|m-forms, easy to demonstrate, is that they can be pullback by G∞

maps in the expected way.
Using (5.6) and (5.57), it is easy to prove that the pullback of forms trough a G∞ map

between supermanifold commutes with the exterior derivative and that the pullback of a wedge
product is the wedge product of the pullbacks.

Voronov and Zorich have shown that, with their definitions of exterior derivative, interior
product and pull back, the following Cartan formula holds for the Lie derivative along an even
or an odd vector field u:

∀ω ∈ Ωr|sX, ∀u ∈ Γ (TX) :

Lieu ω = d (iuω) + iu (dω)
(5.63)

keeping in mind that (5.63) makes sense whenever iuω is well defined.
Since my definitions of exterior derivative and pull back for fractional superforms and my

definition of interior product agree with the ones of Voronov and Zorich, then (5.63) also holds
for Berezinian, for contracted Berezinian and for fractional superforms.

I can finally define a new kind of product which is an extension of the exterior product and
which had not been taken in consideration by Voronov.

Definition 58. The exterior product between the two Berezinian forms Θ1∧···∧Θl

θ1⊙···⊙θd and Γ1∧···∧Γr

γ1⊙···⊙γs

is the l + r|d+ s Berezinian form defined by:

(
Θ1 ∧ · · · ∧Θl

θ1 ⊙ · · · ⊙ θd

)
∧

(
Γ1 ∧ · · · ∧ Γr

γ1 ⊙ · · · ⊙ γs

)
:=

Θ1 ∧ · · · ∧Θl ∧ Γ1 ∧ · · · ∧ Γr

θ1 ⊙ · · · ⊙ θd ⊙ γ1 ⊙ · · · ⊙ γs
(5.64)
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This definition will reveal to be useful in section 6.3. One could try to extend it to non
Berezinian forms. This could be achieved by defining, for each 0|1-form α, the operator eα
sending every r|s-form ω to a r|s+ 1 form in a way analogous to the one of the operator defined
by (5.39). This could be useful in the context of string theory for defining picture changing
operators, see [9, 10] but, since it is not necessary for what it follows, I will not undertake this
path.

5.5 Integral of superforms on supermanifolds

The main interesting feature of r|s-forms is that they can be integrated on r|s-submanifolds.
Voronov and Zorich in [155, 156, 157, 158] have in fact shown that r|s-forms can be integrated
over r|s-supermanifold with boundary, whence a suitable definition of boundary is given and
that a super version of Stokes theorem then holds. For details on the theory of integration see
Voronov [152].

For a short and good account on the history of the theory of integration on supermanifolds,
with all the main references quoted, see the introduction of [154]; for an other list of references
see the bibliographical notes of [152]. A recent review on integration of integral forms oriented
to physical applications is Witten’s paper [163].

Here I will give only the main definitions and results without many comments. I will introduce
only the material which is necessary to develop a super field theory in the next two parts of this
thesis.

Remember that for every G∞-supermanifold X of dimension r|s there is a well defined map,
called body, and usually denoted by ǫ, from X to X, being X a r-dimension real C∞-manifold.
For details see [133].

Definition 59. I call body immersion every injective C∞ map b from X to X such that:

∀x ∈ X, ǫb(x) = x (5.65)

The body-immersion map b fix a "real" slice b(X) in X: with a little abuse of language I will
call this image the immersed body of X even if it is not obviously uniquely defined, neither can
be in general canonically defined.

Remark 60. Batchelor with her theorem, in [7] (see also [133], Chapter 8), shows that to every
vector fiber bundle E with an n-dimensional C∞ base X and an m-dimensional fiber, corresponds
a n|m-dimensional G∞ supermanifold (with DeWitt topology), which, using Rogers notation, we
can call S (X,E), whose body is X. Conversely: every G∞ n|m-dimensional supermanifold with
DeWitt topology is superdiffeomorphic to a supermanifold of the type S (X,E), with E uniquely
determined by X.

We could show that every G∞ n|m-dimensional supermanifold X with a fixed immersed body
corresponds to a vector fiber bundle E with a fixed global section, but this correspondence is not
1 to 1: two different immersions may correspond to the same global section. This means that
the immersion of the body contains more information than the global section of the corresponding
Batchelor vector bundle. We will see in the following how this information may be useful to
define an integral over a supermanifold.

To avoid any ambiguity, we could from now on consider only supermanifolds X with a fixed
immersed body: in this case we could call it, with a little abuse of notation, b(X), as a shortcut
for b(X) = b(ǫ(X)). Note that, once an immersed body is fixed, if U ⊂ X, then b(U) := U ∩b(X)
is well defined. Note moreover that, if on a chart U the local coordinates are (xa, xn+α) and
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if, ∀x ∈ X such that b(x) ∈ U , we have that xn+α (b(x)) = 0 and xa (b(x)) ∈ R, then the
same conditions are not necessarily satisfied on another local chart U ′. However it is possible to
demonstrate that, once fixed an immersed body, there always exists a sub-atlas of X such that,
for every local chart [U, (xa, xn+α)], xn+α (b(x)) = 0 and xa (b(x)) ∈ R. In the following I will
always use such an atlas, unless I explicitly mention it.

If the supermanifold X is an open domain of Rn|m, then an atlas can be chosen with a single
chart with coordinates (xA). The body of X is an open domain X ⊂ Rn with coordinates
(xa), xa ∈ R, and there is a canonical immersed body b(X) so that the body immersion map b
sends (xa) to (xa = xa;xn+α = 0).

If U is an open domain in Rn|m with coordinates (xa, xn+α), and if f is a G∞-function on U ,
we can write in coordinates:

f(xa, xn+α) = xΛf̂Λ(xa) (5.66)

where the Greek capital letter Λ stands for a multiindex which can be 0 or can be a sequence of
ordered integer numbers αj , not mutually equal, chosen in the set going from n + 1 to n + m.
Here and in the following we will use the convention that the order in the multiindex must go
from the smaller αj to the bigger αj when the multiindex is written as an apex and the opposite
when it is written as a subscript. If the same letter is used for a apex multiindex and a subscript
multiindex, then it is understood that they are obtained by inverses sequences of indexes. By
definition: if Λ = 0, then xΛ = 1; if Λ = α1α2 · · ·αk, with n < α1 < α2 < · · · < αk ≤ n+m, then
xΛ = xα1xα2 · · ·xαk . For example, if m = 7, α1 = n+3, α2 = n+5, α3 = n+7 and Λ = α1α2α3,
then xΛ = xn+3xn+5xn+7, but fΛ = fα3α2α1

= fn+7,n+5,n+3. The function f̂Λ is the Grassmann
analytic continuation of a function fΛ defined on U and with values in RS ; for the definition of
Grassmann analytic continuation see [133].

I then define the Berezin integral of f over U as:
∫

U

DxaDxαf =
∫

U

DxaDxαxΛf̂Λ(xa) :=
∫

U

Dxaftop(xa) (5.67)

where f̂top = f̂n+m,n+m−1,··· ,n+1 is the top component in the expansion (5.66) and ftop = f̂top|U
is the corresponding function on U .

Note that, with this definition,
∫
U
DxaDxα is an operator from G∞ (U) to RS which is

RS-linear from the right.
Note also that this definition agrees with the definition given by Voronov in [152] and differs

from the definition given by Rogers in [133], which gives rise to an operator RS-linear on the
left: this depends on the choice of putting the coefficients f̂Λ in the expansion (5.66) after the
product of odd variables xΛ; the two definitions give the same results when ftop is real or even
and they differ when ftop is odd.

If we consider a non canonical immersed body b(U), we can give the following definition of
an integral of the function f over the pair [U, b(U)]:

∫

[U,b(U)]

DxaDxαf =
∫

[U,b(U)]

DxaDxαxΛf̂Λ(xa) :=
∫

U

Dxaf̂top (b(xa)) (5.68)

Unfortunately both definitions (5.67) and (5.68) pose some problems when the function f is
not null at the boundary of U . If one try and use them directly to define an integral over a non
compact supermanifold, then he falls quickly in some troubles. To avoid these troubles Voronov
and Zorich proposed to define the integral over supermanifolds with boundaries.

We can define a n|m-dimensional domain of Rn|m with boundary in the following way: we
consider a G∞ function v from Rn|m to R1|0 and we define a domain with boundary as the pair
(U, ∂U), where ∂U , called the boundary, is the set of points x of Rn|m such that v(x) = 0 and
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U , called the interior part, is the set of points x of Rn|m such that ǫ [v(x)] > 0 (remember that
ǫ [v(x)] is the body of v(x) id est its real part). Note that it could be written v(x) > 0 without
ambiguity.

It is possible to prove that ǫ (∂U) = ∂ǫ (U), where ∂ǫ (U) = ∂U is the natural boundary of

ǫ (U) = U. Note that ∂U could be defined by the equation v = 0, where v = ǫ
(
v|Rn|m

)
is a real

function defined on Rn.
Note that two different domains with boundary could have the same interior part (and dif-

ferent boundaries). Let’s consider for example on R1|0, with variable x, the two functions v = x
and u = x − η1η2, where η1, η2 ∈ RS,1 are odd constants. The two functions define the two
domains with boundary (Uv, ∂Uv) and (Uu, ∂Uu) with Uv = Uu and with ∂Uv consisting in the
point x = 0 and ∂Uv consisting in the point x = η1η2.

However it is possible to prove that if (U, ∂U1) and (U, ∂U2) are two domains with boundary
which have the same interior part and which are defined by the two functions v1 and v2, then
ǫ (∂U1) = ǫ (∂U2); moreover ǫ (∂U1) = ǫ (∂U2) = ∂U and v1 = v2. In the example above:
v = v = x.

We can now give the following:

Definition 61 (Voronov and Zorich). The Berezin integral of the function f over a domain with
boundary (U, ∂U) defined by the function u is:

∫

(U,∂U)

DxaDxαf :=
∫

U

DxaDxαxΛf̂Λ(xa)θ̂ (u(xa, xα)) (5.69)

where
∫
U
DxbDxr+β is the Berezin integral defined above, and where θ̂ is the Grassmann analytic

continuation to R1|0 of the classical Heaviside θ function defined on R1.

Note that, since the Grassmann analytic continuation of the classical θ involves its deriva-
tives and since the first derivative of θ is the Dirac δ distribution, it is clear that the integral
defined above automatically include boundary terms, id est a Berezinian integral over the bound-
ary ∂U and consequently a real integral over ∂U . The definition of δ distribution on Rn|m is
straightforward.

I want to present a small extension of definition 61:

Definition 62. The Berezin integral of the function f over over the triplet [(U, ∂U) , b(U)],
where (U, ∂U) is a domain with boundary defined by the function u (u > 0 on U) and b(U) is an
immersed body (possibly non canonical) of U , such that ∂b(U) = b (∂U) ⊂ ∂U , is defined by:

∫

[(U,∂U),b(U)]

DxaDxαf :=
∫

[U,b(U)]

DxaDxαxΛf̂Λ(xa)θ̂ (u(xa, xα)) (5.70)

where
∫

[U,b(U)]
DxaDxα is the Berezin integral over immersed body defined above with (5.68), and

where θ̂ is the Grassmann analytic continuation to R1|0 of the classical θ function defined on R1.

Remark 63. Definitions 61 and 62 are always well posed and give a finite result when U ∪∂U is
compact. If (U, ∂U1) and (U, ∂U2) are two domains with boundary which have the same interior
part U and different boundaries, which are defined by the two functions u1 and u2, then we have
in general that

∫
(U,∂U1)

6=
∫

(U,∂U2)
. This fact will be crucial in allowing a good definition of

integration over supermanifolds with boundaries.

Using the notion of domain with boundary it is easy to give a definition of supermanifold
with boundary. I will not give it here explicitly. Sometime a r|s-supermanifold with boundary
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X contained in a r|s-supermanifold Y can be defined starting directly from a function v defined
on Y .

We can now define the integral of a super-form.

Definition 64. Let Y be an n|m-supermanifold. Let X be a r|s-supermanifold with boundary ∂X.
Let {(Uα, ∂Uα) , ρα} be a partition of unity of X, with (Uα, ∂Uα) open domains with boundary
of Rr|s defined by the functions uα (uα > 0 on Uα), let every Uα be included in a local chart
with coordinates xB; let b (X) be an immersed body of X and b (Uα) the corresponding immersed
bodies (possible non canonical) on Uα; let i : X −→ Y be an immersion of X in Y which is a
G∞-map; let ω be a r|s-form defined on Y ; then:

∫

i[(X,∂X),b(X)]

ω :=
∑

α

ρα

∫

[(Uα,∂Uα),b(Uα)]

DxbDxr+βi∗ω (∂1, · · · , ∂r+s)

=
∑

α

ρα

∫

[Uα,b(Uα)]

DxbDxr+βi∗ω (∂1, · · · , ∂r+s) θ̂ (uα)
(5.71)

Note that, in order to avoid to weight to much the notation, in Formula (5.71) I did not write
explicitly the coordinates functions from X to the charts Uα.

Remark 65. The same definition can be used when X has no boundary. In this case the boundary
terms over each ∂Uα do not appear in the sum (5.71).

Note that we can take a simpler version of definition 64, if we fix an immersed body and we
use adapted (existing) atlases for which, in each chart: b (Uα) = Uα is the canonical body of
b (Uα). For this case, the proof that the definition is well posed and that it doesn’t depend on the
choice of the charts can be found in [152]. The proof is based on the property (5.4) of superforms.
The proof is also based on the fact that, changing coordinates, it changes also the local function
defining the boundary and consequently it changes the contribution of the θ̂ functions in the
integral.

I decided to give this slightly more complicated definition because it allows more general
changes of coordinates, namely those changes of coordinates for which the immersed body does
not correspond to the canonical bodies of the charts involved in the change. In the following I
give a couple of super simple examples to explain how the definition works.

Let Y = R1|2. Let’s take on Y the coordinates (x, ξ1, ξ2). Let’s consider the superform

ω = dx
dξ1⊙dξ2

[
f̂0(x) + ξ1ξ2f̂21(x)

]
. Let’s consider the submanifold with boundary X of Y defined

by v = x when x < 1 and by u = 1− x when x > 0. Let’s use on X the coordinates of Y . The
immersion of X in Y is then given locally by the identity. Let’s consider the immersed body
of X defined by x (b(X)) = x, ξ1 (b(X)) = 0 and ξ2 (b(X)) = 0, with understandable notation.
Then:

∫

i[(X,∂X),b(X)]

ω =
∫

b(X)

dx

∫
Dx1+β

[
f̂0(x) + ξ1ξ2f̂21(x)

] [
θ̂ (x)− θ̂ (x− 1)

]

=
∫
dxf21(x) [θ(x)− θ(x− 1)]

=
∫ 1

0

dxf21(x)

If we perform a change of coordinates which leaves ξ unchanged and such that y = x+ξ1ξ2, then
in the new coordinates the body is given by y (b(X)) = x, ξ1 (b(X)) = 0 and ξ2 (b(X)) = 0 and
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in the new local coordinates we have that ω = dy
dξ1⊙dξ2

[
f̂0(y − ξ1ξ2) + ξ1ξ2f̂21(y − ξ1ξ2)

]
. Then

we have:
∫

i[(X,∂X),b(X)]

ω

=
∫

b(X)

dy

∫
Dx1+β

[
f̂0(y − ξ1ξ2) + ξ1ξ2f̂21(y − ξ1ξ2)

] [
θ̂
(
y − ξ1ξ2

)
− θ̂

(
y − ξ1ξ2 − 1

)]

=
∫

b(X)

dy

∫
Dx1+β

[
f̂0(y)− ξ1ξ2 ∂f̂0

∂y
(y) + ξ1ξ2f̂21(y)

] [
θ̂ (y)− ξ1ξ2δ(y)− θ̂ (y − 1) + ξ1ξ2δ(y − 1)

]

=
∫
dxf21(x) [θ(x)− θ(x− 1)] =

∫ 1

0

dxf21(x)

And we recover the previous result.
On the other hand, if we perform a change of coordinates which leaves the ξ unchanged

and such that y = x + η1η2, with η1 and η2 odd constant belonging to RS,1, then in the new
coordinates the body is given by y (b(X)) = x + η1η2, ξ1 (b(X)) = 0 and ξ2 (b(X)) = 0 and in

the new local coordinates we have that ω = dy
dξ1⊙dξ2

[
f̂0(y − η1η2) + ξ1ξ2f̂21(y − η1η2)

]
. Then

we have:
∫

i[(X,∂X),b(X)]

ω

=
∫

b(X)

dy

∫
Dx1+β

[
f̂0(y − η1η2) + ξ1ξ2f̂21(y − η1η2)

] [
θ̂
(
y − η1η2

)
− θ̂

(
y − η1η2 − 1

)]

=
∫

b(X)

dy

∫
Dx1+β

[
f̂0(y)− η1η2 ∂f̂0

∂y
(y) + ξ1ξ2f̂21(y − η1η2)

] [
θ̂ (y)− η1η2δ(y)− θ̂ (y − 1) + η1η2δ(y − 1)

]

=
∫
dxf21(x) [θ(x)− θ(x− 1)] =

∫ 1

0

dxf21(x)

which gives us again the same value.
If we hadn’t used the definition including the concept of immersed body, we could have not

obtained this last result. Obviously we could have decided to not allow changes of coordinates
which send a local canonical body to a local non canonical one. This is always possible because
we can always cover a supermanifold with atlases for which the changes of coordinates are never
of that kind.

I don’t know if these kind of considerations were implicitly present in the original work of
Voronov and Zorich. It is true that they become almost necessary if one works in the concrete
framework for supermanifolds, which allows the use of odd constant.

In any case I think that the concept of immersed body clarifies better from a geometric point
of view the notion of integration on a supermanifold. Moreover I will utilize that concept again
in chapter 9 on Comparison Theorems, again with the idea that it can help in understanding the
geometrical meaning of those theorems.

Remark 66. Definition 64 is always well posed when X ∪∂X is compact, also if X alone is not
compact.

We could try and define an integral over X, when X is not compact, but X ∪ ∂X is compact,
and this can be done if suitable conditions on ω are imposed. We have however to be careful: if
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X is an open supermanifold immersed in an other supermanifold Y and X can be comptactified
by adding a suitable boundary, then speaking of the integral on X may not have much sense. As
we have seen, the same supermanifold X may have different boundaries, and the natural notion
of integral of superforms is a notion defined on supermanifolds with boundary: changing the
boundary in general changes the value of the integral, so there is not much point in looking for
a value depending only on the interior part. If we look for a different definition of integral on
supermanifolds with boundary, we may lose the advantages of the one here presented, the main
of which is the validity of a super version of the Stokes theorem, as we see below.

For some comments on integrations on non compact manifolds and for a short accounts on
approaches different from the one undertaken here, one can see Rogers [133]. One can also read
the recent paper of A. Alldridge, J. Hilgert and W. Palzer, [2], who worked on older ideas of M.
J. Rothstein, [137]. I am not going to compare their results to the one of Voronov and Zorich
here presented, althought it would be interesting to do so.

In fact, for what follows in the third and fourth part of this thesis, dealing with a geomet-
rically well defined variational foundation of super field theories, it is enough to have a good
definition of integral on compact supermanifolds with boundary. What will be important are
indeed variations of some integral for compactly supported variations of the fields.

Remark 67. The integral defined with 64 satisfies an interesting property which is a consequence
of (5.5): if we take a compactly supported small variation of the immersion i, then the functional
variation of

∫
i(X)

ω doesn’t depend on derivatives of the immersion with respect to the coordinates
on X which are of order higher than 1.

Condition (5.5) is imposed by Voronov and Zorich precisely because they wanted this property
to be true.

The functional variation of
∫
i(X)

ω can be then expressed as the integral:
∫
i(X)

w dω, where
w is the vector field generating the infinitesimal compactly supported variation of i and where d
is the operator defined by Voronov and Zorich.

The reader can see the original works of Voronov and Zorich and [152] for details. In section
6.3 I will give a short proof of an analogous property satisfied by the integral of mixed forms on
a supermanifold.

We conclude with the following version of Stokes theorem for superforms:

Theorem 68 (Voronov and Zorich). If α is a superform, then:
∫

U

dα =
∫

∂U

α (5.72)

For the proof see Voronov [152].



Chapter 6

Fractional coforms, mixed forms

and their integration on

supermanifolds

In 1995 Khudaverdian, [91], had the idea to define codensities on supermanifolds.
Independently Voronov, in [153] and then in [154], gave the definition of dual forms on a

supermanifold, which turned out to be special kind of codensities.
Voronov, in [153] and in [154] gave also the definition of mixed forms and showed how to

perform a Cartan calculus with those new objects.
In section 6.1 I give a version of the definition of dual forms adapted to the notation used

until now. I prefer to call coforms, what Voronov calls dual forms. Then I explain what I mean
by fractional coforms.

In section 6.2 I introduce mixed forms and I define mixed fractional forms.
In section 6.3 I shortly explain how coforms and mixed forms can be integrated on submani-

folds of a supermanifold.
All the material presented in this chapter is not necessary to build a multisymplectic superfield

theory (which is the main scope of this thesis) and it is presented without many details. It can
be consider as the natural companion of the material presented in the previous chapter and as
an introduction for further and more complete studies.

The use of fractional coforms and fractional mixed forms, together with the theory of their
integration, may be useful in the context of BRST (Bechi, Rouet, Stora, Tyutin) and BV (Batalin,
Vilkovisky) superfield theories. I believe indeed that their use can make more transparent some
aspects of BRST and BV approaches. So the results presented in this chapter can be considered
as a preliminary work for a future study in that direction.

6.1 Berezinian and fractional t|q-coforms on supermani-

folds.

I follow the path already undertaken in sections 5.2.1 and 5.3.
Let g ∈ GL(t|q) be written as a supermatrix (after having chosen arbitrarily the necessary

basis) and let V be a superspace of dimension n|m, then there is a right action of GL(t|q) onto

99
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V ∗ × · · · × V ∗
︸ ︷︷ ︸

t

×ΠV ∗ × · · · ×ΠV ∗
︸ ︷︷ ︸

q

, defined in this way:

∀g ∈ GL(t|q), ∀p1, · · · , pt ∈ V ∗, p̃1, · · · , p̃q ∈ ΠV ∗,
(
p1, · · · , pt; p̃1, · · · , p̃q

)
· g =

=
(
p1, · · · , pt; p̃1, · · · , p̃q

)
·

(
g0,0 g0,1

g1,0 g1,1

) (6.1)

Where, in the right side of the last equation, the product is the usual matrix product with
attention given to the order in products of entries and where an element p ∈ V ∗, multiplied on
the right by an odd number, gives an element of ΠV ∗ in a natural way and so on.

Let’s consider a supermanifold X of dimension n|m and one of its point x ∈ U ⊂ X, where
U is a local chart of X. On U we have local coordinates xF . Let T ∗

xX be the tangent module
of X over x. A base for T ∗

xX is given by
(
dxF |x

)
F=1...n|m. We can identify a point p ∈ T ∗

xX

by its coordinates pF with-respect to the chosen basis. On T ∗
xX we can consider the topology

inherited from T ∗X. We have then the following:

Definition 69 (Voronov). A coform of codegree t|q over a point x ∈ X, supermanifold of dimen-
sion n|m, is a G∞ map w : O ⊂ T ∗

x,0X × · · ·T
∗
x,0X︸ ︷︷ ︸

t

×T ∗
x,1X × · · ·T

∗
x,1X︸ ︷︷ ︸

q

−→ RS, which, ∀p ∈ O,

open subset of T ∗
x,0X × · · ·T

∗
x,0X︸ ︷︷ ︸

t

×T ∗
x,1X × · · ·T

∗
x,1X︸ ︷︷ ︸

q

, satisfies the following two conditions:

∀g ∈ GL(t|q), w(p · g) = w(p) Bert,q(g) (6.2)

∂2w

∂pBG∂p
A
F

+ (−1)|G||F |+(|G|+|F |)|A| ∂2w

∂pBF ∂p
A
G

= 0 (6.3)

where F,G = 1, · · · , n + m are the indices in the space T ∗
xX and so also in both spaces T ∗

x,0X

and T ∗
x,1X with their usual degree; pAF is the F -th coordinates of pA in the local base

(
dxF |x

)
F

;
A runs from 1 to t+ q and we have pA ∈ T ∗

x,|A|X, where we set |A| = 0 when A = 1, · · · , t and
|A| = 1 when A = t+ 1, · · · , t+ q.

It can be seen that the definition does not depend on the choice of the chart U and of the
corresponding basis for T ∗

xX.
Note that, by definition, if p ∈ T ∗

x,0X × · · ·T
∗
x,0X︸ ︷︷ ︸

t

×T ∗
x,1X × · · ·T

∗
x,1X︸ ︷︷ ︸

q

is so that pt+1, · · · , pt+q

are linearly dependent, then there are only two possibility: either p /∈ O (so that w is not defined
on p), or w(p) = 0. Moreover, in this second case, w being a G∞ map on O, we must have
w(p) = 0 ∀p ∈ O.

It is easy to prove that the space of t|q-coforms over x is naturally a free left supermodule over
RS ; I call it Λt|q;x, as a shortcut for Λt|qTxX and we have, as usual, Λt|q;x = Λt|q;x,0 ⊕ Λt|q;x,1,
where Λt|q;x,0 and Λt|q;x,1 are respectively the even and the odd part of Λt|q;x and they are
superspaces. The space Λt|q;x can be given the structure of right supermodule by a sign rule
analougous to the one used in sections 5.2 and 5.3.

In the usual way we can build the fiber bundles Λt|q;0X, Λt|q;1X and Λt|qX.

Definition 70. A G∞ section of the bundle Λt|qX is called a differential t|q-coform. The space

of t|q-coforms over X is called Ωt|qX := Γ
(

Λt|qX
)

.
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The t|q-coforms can be extended in their first t arguments with techniques analogous the one
used to extend r|s-forms. It is although more natural to extend them so that they have "right
Rs-linearity":

Definition 71. A coform of degree t|q over a point x ∈ X of dimension (n,m) is said to be
extended in the arguments (pa1

, · · · , pak
), with k < t, if it is a G∞ map ŵ : T ∗

x,0X × · · · ×
T ∗
xX × · · · × T

∗
x,0X × T

∗
x,1X × · · ·T

∗
x,1X︸ ︷︷ ︸

q

(where T ∗
xX substitutes Tx,0X k times in the positions

a1, · · · , ak) which satisfies the following conditions:
– when restricted to T ∗

x,0X × · · ·T
∗
x,0X︸ ︷︷ ︸

t

×T ∗
x,1X × · · ·T

∗
x,1X︸ ︷︷ ︸

q

, it is a coform of degree p|q,

– ∀(p1, · · · , pt−k, p̃1, · · · , p̃q) ∈ T ∗
x,0X × · · ·T

∗
x,0X︸ ︷︷ ︸

t−k

×T ∗
x,1X × · · ·T

∗
x,1X︸ ︷︷ ︸

q

, ∀p1, . . . , pk ∈ T ∗
x,0X × · · ·T

∗
x,0X︸ ︷︷ ︸

k

ŵ(p1, · · · , p1, · · · , piH, · · · , pk, · · · , pt−k, p̃1, · · · , p̃q)

= (−1)|H|
∑

k

l=i+1
|pl|ŵ(p1, · · · , p1, · · · , pi, · · · , pk, · · · , pt−k, p̃1, · · · , p̃q)H

and
ŵ(p1, · · · , p1, · · · , pi, · · · , pi+1, · · · , pk, · · · , pt−k, p̃1, · · · , p̃q)

= (−1)1+|pi||pi+1|ŵ(p1, · · · , p1, · · · , pi+1, · · · , pi, · · · , pk, · · · , pt−k, p̃1, · · · , p̃q)
where the pl are in the positions a1, · · · , ak,

– ∀(p1, · · · , pt−k, p̃1, · · · , p̃s) ∈ T ∗
x,0X × · · ·T

∗
x,0X︸ ︷︷ ︸

t−k

×T ∗
x,1X × · · ·T

∗
x,1X︸ ︷︷ ︸

q

, ∀p1, . . . , pk ∈ T ∗
x,0X × · · ·T

∗
x,0X︸ ︷︷ ︸

k

ŵ(p1, · · · , ·1, · · · , ·t−k, · · · , pk, p̃1, · · · , p̃q), where the free arguments are in the positions dif-
ferent than a1, · · · , ak, is RS,0-linear and antisymmetric.

We call ŵ an extended-coform, when it is extended in the above sense in all its even arguments.
We say that ŵ extends the t|q-coform w if, when restricted to T ∗

x,0X × · · ·T
∗
x,0X︸ ︷︷ ︸

t

×T ∗
x,1X × · · ·T

∗
x,1X︸ ︷︷ ︸

q

,

it coincides with w.

Proposition 72. For every coform w of degree t|q over a point x ∈ X of dimension (n,m),
there is one and only one coform ŵ which extends w in the arguments (pak , · · · , pa1), with k < t.
The coform ŵ can be inductively defined by:

ŵ0 = w (6.4)

ŵl+1(p1, · · · , pal+1 , · · · , pal , · · · , pa1 , · · · , pt, p̃1, · · · , p̃q)

:=ŵl(p1, · · · , pal+1 , · · · , pal , · · · , pa1 , · · · , pt, p̃1, · · · , p̃q)

+ (−1)
∑

l

i=1
|pαi |ŵl(p1, · · · , p̃al+1ε, · · · , pal , · · · , pa1 , · · · , pt, p̃1, · · · , p̃q)

←−
∂

∂ε

(6.5)

where ε ∈ RS,1 is an odd parameter.

An extended 1|0-coform is clearly an element of the bidual of TxX.
When V is a left supermodule over the superalgebra RS , its dual V ∗ is defined as the set of

left RS-linear function from V to RS . V ∗ is then naturally a right free supermodule over RS .
The bidual V ∗∗ is defined as the set of right RS-linear function between V ∗ and RS and it is
naturally a left supermodule over RS . Between V and its bidual V ∗∗ there exists a canonical
one-to-one left-RS-linear correspondence such that, if v ∈ V , v ∈ V ∗∗ and a ∈ V ∗:

v ←→ v

v(a) = a(v)
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Note that this correspondence is not the only legitimate one. One could also think of something
like v(a) = (−1)|a||v|a(v) although the left-linearity would be affected. I will not follow this path.

So to each extended 1|0-coform, we can associate a corresponding vector. In particular, if w
is the extended 1|0-coform which sends p = dxApA to pB , we can associate to w the vector ∂B
hence, with a little abuse of notation, we can write w = ∂B . We will see in the following that a
similar notation can be used also for higher degree coforms.

With techniques analogous to the one used in section 5.3 it is then possible to build Berezinian
coforms:

Theorem 73. Let (U, xA, pA, p̃A) be a local chart of T ∗X, cotangent space of a n|m-dimensional
manifold X; let x ∈ U , let π := (p1, · · · , pt+1; p̃1, · · · , p̃q) ∈ T ∗

x,0U × · · ·T
∗
x,0U︸ ︷︷ ︸

t+1

×T ∗
x,1U × · · ·T

∗
x,1U︸ ︷︷ ︸

q

;

let α1 < α2 < · · · < αq be q different odd indices chosen in the the set {n + 1, · · · , n + m}; let
A1, A2, · · · , At+1 be t+ 1 even or odd indices (possibly equal) chosen in the set {1, · · · , n+m};
then the function

w : O ⊂ T ∗
x,0U × · · ·T

∗
x,0U︸ ︷︷ ︸

t+1

×T ∗
x,1U × · · ·T

∗
x,1U︸ ︷︷ ︸

q

−→ RS

defined by:

w(π) := rsdett+1,q




p1
At+1

· · · ptAt+1
pt+1
At+1

p̃1
At+1

· · · p̃qAt+1

p1
A1

· · · ptA1
pt+1
A1

p̃1
A1

· · · p̃qA1

...
. . .

...
...

...
. . .

...

p1
At

· · · ptAt
pt+1
At

p̃1
At

· · · p̃qAt

p1
α1

· · · ptα1
pt+1
α1 p̃1

α1
· · · p̃qα1

...
...

. . .
...

...
. . .

...

p1
αq

· · · ptαq
pt+1
αq p̃1

αq
· · · p̃qαq




(6.6)

is a t + 1|q-coform over x ∈ U , O being precisely the subset where the formula (6.6) is well
defined.

The operator rsdet appearing in (6.6) is nothing else than the superdeterminant of the matrix
defined with (5.1) but with a different definition of determinant. Precisely, instead of using
the definition of determinant given with (5.2), when calculating a rsdet, the determinants are
computed by respecting the order by raw instead of the order by column. We have then:

rightdetG = detGT

where G is a matrix with entries, belonging to RS , of both parities and GT is its transposed.
This obviously introduce a difference between sdet and rsdet when the entries of the super-

matrix are not all even in the first block, which may happen with the "extended" supermatrices
used here. The order used in (6.6) is necessary so that w satisfies (6.2).

We can call Berezinian the coform defined by (6.6), and we can write it in this way:

w =
∂At+1

∧ ∂A1
∧ · · · ∧ ∂At

∂α1
⊙ · · · ⊙ ∂αq

(6.7)
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More generally, by an equation analogous the equation (5.29), we can define a Berezinian
t|q-coform noted as:

w =
v1 ∧ · · · ∧ vt
ṽ1 ⊙ · · · ⊙ ṽq

(6.8)

where v1, . . . , vt are vectors, even or odd, and ṽ1, . . . , ṽq are odd vectors.
Proceeding on the way followed in section 5.3, we can extend a Berezinian coform in the

first argument with (6.5) and we can contract a t + 1|q-coform by an even or an odd covector
obtaining a t|q-coform. We can therefore define contracted Berezinian coforms and repeatedly
contracted Berezinian coforms.

The contractions are made with the help of proposition 72. One can easily see that the
contraction of a t + 1|q-coform by a covector p = dxF pF corresponds to the application of the
operator acting from the right:

ip = (−1)t
←−
∂

∂pt+1
F

pF (6.9)

.
This operator can be written also as:

ipw =(−1)t(−1)|F |(|w|+|F |)(−1)(|F |+|p|)(|w|+|F |)pF
∂

∂pt+1
F

w

=(−1)t(−1)|p|(|w|+|F |)pF
∂

∂pt+1
F

w

(6.10)

.
Note that the operator ip is not equivalent to the operator e(p) defined by Voronov in [154]

(which acts between different spaces), although they are related one to the other one.
We can then define a wedge product, or exterior product, of a Berezinian, or a Berezinian

contracted, or a generic coform by a vector; the wedge product increases by one the even codegree
of the coform. We have the following:

Proposition 74. Let X be a supermanifold, for every v ∈ TX, the operator

ev : Ωt|qX −→ Ωt+1|qX

defined on every θ ∈ Ωt|qX by:

evθ := θ ·

[
(−1)|v||θ|

vApt+1
A − (−1)|v||θ| (−1)|v||F |

←−
∂

∂pFB
pt+1
B vApFA

]
(−1)t (6.11)

is well defined.
The following formula holds:

ipev (θ) = −evip (θ) + (−1)|v||θ|
θv (p) (6.12)

and
ipev (θ) = −evip (θ) + (−1)|p||θ|

v (p) θ (6.13)

Proof. I will prove the proposition only for Berezinian and repeatedly contracted Berezinian
coforms.

I omit the proof that (6.11) does not depend on the choice of the coordinates.
The fact that ev sends Berezinian t|q-coforms to Berezinian t + 1|q-coforms can be checked

by direct calculation with the use of a formula analogous to (5.11) and valid for the developing
of right-superdeterminants.
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Formula (6.12) and (6.13) are clearly equivalent and can be proved to be true by direct

calculations for a generic t|q-coform θ. In fact, let π =
(
p1, . . . , pt; p̃1, . . . , p̃q

)
, then we have:

ipevθ (π) = ip (−1)|v||θ| (−1)t
[
θ(π)vApt+1

A − (−1)|v||F |
θ(π)

←−
∂

∂pFB
pt+1
B vApFA

]

= (−1)|v||θ|
[
θ(π)vApt+1

A − (−1)|v||F |
θ(π)

←−
∂

∂pFB
pt+1
B vApFA

] ←−
∂

∂pt+1
C

pC

= (−1)|v||θ|
[
θ(π)vApA − (−1)|v||F |

θ(π)
←−
∂

∂pFB
pBv

ApFA (−1)|p|(|v|+|F |)
]

and

evipθ (π) = (−1)(|p|+|θ|)|v|
[(

θ(π)
←−
∂

∂ptC
pC

)
vAptA − (−1)|v||Z|

(
θ(π)

←−
∂

∂ptC
pC

) ←−
∂

∂pZB
ptBv

ApZA

]

= (−1)|p||v| (−1)|v||θ|
(
θ(π)

←−
∂

∂ptC
pC

)
vAptA

− (−1)|p||v| (−1)|v||θ| (−1)|v||Z| (−1)(|p|+|C|)(|Z|+|B|)
(
θ(π)

←−
∂

∂ptC

) ←−
∂

∂pZB
pCptBv

ApZA

= (−1)|p||v| (−1)|v||θ|
(
θ(π)

←−
∂

∂ptC
pC

)
vAptA

+ (−1)|p||v| (−1)|v||θ| (−1)|v||Z| (−1)(|p|+|C|)(|Z|+|B|) (−1)|B||C|+(|B|+|C|)|Z|
(
θ(π)

←−
∂

∂ptB

) ←−
∂

∂pZC
pCptBv

ApZA

= (−1)|p||v| (−1)|v||θ|
(
θ(π)

←−
∂

∂ptC
pC

)
vAptA

+ (−1)|p||v| (−1)|v||θ| (−1)|v||Z|+|p||Z|
θ(π)

←−
∂

∂pZC
pCv

ApZA

where Z runs from 1 to t− 1|q and where (6.3) has been used. So (6.12) is proved.
Then, by iterated application of contractions and exterior products, the proposition is proved

for Berezinian and repeatedly contracted Berezinian coforms.
Formula (6.13) is the analogoues for the coforms of (5.59) for the forms and it allows to

perform part of Cartan calculus for coforms.
The operator ev can be written also as:

ev · w := (−1)t
[
vF pt+1

F − (−1)|F ||A|
vGpAGp

t+1
F

∂

∂pAF

]
· w (6.14)

where w is a coform of codegree t|q, and it therefore coincides with the operator defined in [154]
by formula (16) (note that in that formula there is an imprecision since the exponent r of (-1)
should be p).

It can be proved that, if w is defined by (6.8) and u is a 1|0 coform corresponding to the
vector u, then

euw =
u ∧ v1 ∧ · · · ∧ vp
ṽ1 ⊙ · · · ⊙ ṽq
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So we can write:

u ∧ (·) := eu(·)

However, Formula (6.13) is not as intuitive as (5.59) is. For example, if w is defined by (6.8),
µ is a 1|0-form and u is a vector, we can compute:

u ∧ (µ w) = −µ (u ∧ w) + (−1)|w||u|µ (u)w

= −µ
u ∧ v1 ∧ · · · ∧ vp
ṽ1 ⊙ · · · ⊙ ṽq

+ (−1)|w||u|µ (u)
v1 ∧ · · · ∧ vp
ṽ1 ⊙ · · · ⊙ ṽq

(6.15)

where |w| = |v1|+ · · ·+ |vp|.
Formula (6.15) would become a bit more transparent if we wrote the interior product in this

way:

w µ := µ w

assuming the convention to put forms always on the right and coforms (or vectors) always on
the left when performing interior products. Then (6.15) becomes:

(u ∧ w) µ = (−1)|w||u|µ (u)w − u ∧ (w µ)

We can therefore call fractional coforms the coforms belonging to the class built up starting
from Berezinian coforms and applying repeatedly the wedge product by vectors and the interior
product with covectors. Their degree can be defined with conventions analogous to the one used
to fix the degree of fractional form in sections 5.3 and 5.4.

To define a full Cartan calculus on fractional coforms we still have to define an exterior
derivative. To do so, we first have to define fractional mixed forms and then carry on the path
drawn by Voronov in [153] and [154]. We will do so at the end of the next section.

6.2 Mixed fractional forms on supermanifolds

We can define in a natural way the contraction of a Berezinian form by a Berezinian coform
and of a Berezinian coform by a Berezinian form, so that the contraction is a symmetric pairing
between forms and coforms.

Let’s first consider the case when the degree of the Berezinian form is equal to the codegree
of the Berezinian coform.

Let’s see an example. Let be ω = Θ
θ1⊙θ2 and w = u

ṽ1⊙ṽ2

, with |Θ| = 1 and |u| = 0; then we
pose:

w ω := sdet1,2




Θ(u) θ1(u) θ2(u)
Θ(ṽ1) θ1(ṽ1) θ2(ṽ1)
Θ(ṽ2) θ1(ṽ2) θ2(ṽ2)


 (6.16)

ω w = rsdet1,2



u(Θη) u(θ1) u(θ2)
ṽ1(Θη) ṽ1(θ1) ṽ1(θ2)
ṽ2(Θη) ṽ2(θ1) ṽ2(θ2)



←−
∂

∂η
(6.17)

where for every 1|0-form µ and for every vector v we pose v(µ) := µ(v), which is coherent with
the considerations made at the beginning of the previous section. Then we can easily see that
w ω = ω w.
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In general, if ω = Θ1∧···∧Θr

θ1⊙···⊙θs , if τ is an other r|s-form and w = u1∧···∧ur

ṽ1⊙···⊙ṽs

and x is an other

r|s-coform, we pose:

w τ := τ̂ (u1, · · · , ur; ṽ1, · · · , ṽs)

ω x := x̂
(
Θ1, · · · ,Θr; θ1, · · · , θs

)

w ω := ω̂ (u1, · · · , ur; ṽ1, · · · , ṽs)

ω w := ŵ
(
Θ1, · · · ,Θr; θ1, · · · , θs

)

where the symbol ̂ indicates the extension of the form or of the coform in the arguments for
which it needs to be extended.

Then it is possible to prove that w ω = ω w.
What happens when we try to contract a form with a coform and the degree of the form and

the codegree of the coform do not coincide? If ω ∈ Ωr|s and w = u1∧···∧ut

ṽ1⊙···⊙ṽq

, with t ≤ r and q ≤ s,

then we can define:

ω w (·) := w ω (·) := ω̂ (u1, · · · , ut, ·; ṽ1, · · · , ṽq, ·)

and, with considerations similar to the one used in the proof of Lemma (48), we can prove that
w ω (·) is a r − t|s− q-form.

Analogously: if w ∈ Ωt|q and ω = Θ1∧···∧Θr

θ1⊙···⊙θs , with r ≤ t and s ≤ q, then we can define:

w ω (·) := ω w (·) := ŵ
(
Θ1, · · · ,Θr, ·; θ1, · · · , θs, ·

)

and, with similar considerations, we can prove that ω w (·) is a t− r|q − s-coform.
Note that, if µ is a 1|0-form, then the operator µ ∧ (·) coincides with the operator iµ defined

by (6.9).
Other questions are: what if ω ∈ Ωr|s and w = u1∧···∧ut

ṽ1⊙···⊙ṽq

, with q ≤ s but r < t? What if

w ∈ Ωt|q and ω = Θ1∧···∧Θr

θ1⊙···⊙θs , with s ≤ q but t < r?
We may extend the interior product to these new cases by defining new kind of objects. In

particular we will see, in the following part of this section, that the last case will give rise to
mixed fractional forms, and I will show that they are a special subclass of the mixed forms
defined by Voronov in [153] and [154].

Let’s first see what Voronov mixed forms are.

Let’s consider a supermanifold X of dimension n|m and a superspace Rr|s. The space M =
X × Rr|s has a natural structure of supermanifold of dimension n + r|m + s. Its tangent space
TM is isomorphic to TX ⊕ TRr|s. We have as well that T ∗M ∼= T ∗X ⊕ TRr|s ∗.

Voronov in [153] and [154] gives the definition of mixed superforms on a supermanifold X
making implicitly use of the auxiliary supermanifold M . Here in the following I give a definition
of mixed superforms which is a variant to the one given in [154], adapted to my notation.

Definition 75. Let X be a supermanifold of dimension n|m and M be the supermanifold M =
X ×Rr|s. Let x ∈ X and (with a little abuse of notation) let’s call x also the point of M defined
by x := (x, 0).

A mixed form of codegree t|q and additional degree r|s over a point x ∈ X is a G∞ map
w : O ⊂ T ∗

x,0M × · · ·T
∗
x,0M︸ ︷︷ ︸

t

×T ∗
x,1M × · · ·T

∗
x,1M︸ ︷︷ ︸

q

−→ RS, which, ∀p ∈ OX open subset of

T ∗
x,0X × · · ·T

∗
x,0X︸ ︷︷ ︸

t

×T ∗
x,1X × · · ·T

∗
x,1X︸ ︷︷ ︸

q

, ∀o ∈
(
Rr|s ∗

)
0
× · · ·

(
Rr|s ∗

)
0︸ ︷︷ ︸

t

×
(
Rr|s ∗

)
1
× · · ·

(
Rr|s ∗

)
1︸ ︷︷ ︸

q

,

satisfies the following conditions:
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–

∀g ∈ GL(t|q), w
[(
p
o

)
· g

]
= w

[(
p
o

)]
Bert,q(g) (6.18)

–

∀h ∈ GL(r|s), ∀a ∈Mat(r|s× n|m) with entries aKF , with parities
∣∣aKF

∣∣ = |F |+ |K|

w

[(
p+ a · o
h · o

)]
= Bert,q(h)w

[(
p
o

)]

(6.19)

–
∂2w

∂pBG∂p
A
F

+ (−1)|G||F |+(|G|+|F |)|A| ∂2w

∂pBF ∂p
A
G

= 0 (6.20)

–
∂2w

∂pBG∂o
A
K

+ (−1)|G||K|+(|G|+|K|)|A| ∂2w

∂oBK∂p
A
G

= 0 (6.21)

–
∂2w

∂oBL∂o
A
K

+ (−1)|L||K|+(|L|+|K|)|A| ∂2w

∂oBK∂o
A
L

= 0 (6.22)

where
(
p
o

)
∈ T ∗

x,0M × · · ·T
∗
x,0M︸ ︷︷ ︸

t

×T ∗
x,1M × · · ·T

∗
x,1M︸ ︷︷ ︸

q

; where xF are the coordinates on X and

yK are the coordinates on Rr|s; where F,G = 1, · · · , n+m are also the indices in the space T ∗
xX

and so also in both spaces T ∗
x,0X and T ∗

x,1X with their usual degree; pAF is the F -th coordinates
of pA in the local base

(
dxF |x

)
F

; K,L = 1, · · · , r + s are the indices in the spaces Rr|s ∗, Rr|s ∗

and so also in both spaces Rr|s ∗
0 and Rr|s ∗

1 with their usual degree; oAK is the K-th coordinates
of oA in the local base

(
dyK

)
K

; A and B run from 1 to t + q and we have pA ∈ T ∗
x,|A|X and

oA ∈ Rr|s ∗
|A| , where |A| = 0 when A = 1, · · · , t and |A| = 1 when A = t+ 1, · · · , t+ q.

The space of mixed forms of codegree t|q and additional degree r|s over a point x ∈ X is
indicated with Λr|s

t|q as a shortcut for Λr|s
t|qTxX.

We can easily define the vector bundle Λr|s
t|qTX over the base X. Its G∞ sections are the

differential mixed forms of codegree t|q and additional degree r|s. Note that they are sections of
a bundle whose base is X and not M . This will be important for the definition of their integral
in section 6.3.

The space of differential mixed forms of codegree t|q and additional degree r|s of a manifold
X is indicated by Ωr|s

t|qX.
Conditions (6.18), (6.20), (6.21) and (6.22) tell us that a mixed form of codegree t|q and

additional degree r|s over the point x of the manifold X is a coform of codegree t|q over the
point (x, 0) of the manifold M = X ×Rr|s which also has to satisfy (6.19). To every differential
mixed form w of codegree t|q and additional degree r|s over the manifold X, we can easily
associates a differential coform w̌ of codegree t|q over the manifold M = X × Rr|s which do not
depends on the coordinates yK of Rr|s and which also satisfies (6.19).

If one looks for fractional mixed forms on X, then one has to look for fractional coform on
M which satisfy (6.19). Indeed we have that:

Proposition 76. Let (U, xA, pF ) be a local chart of T ∗X, cotangent space of a n|m-dimensional
manifold X; let

(
yK
)

be coordinates on Rr|s and (oK) be coordinates on Rr|s ∗; let x ∈ U ;
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let π := (p1, · · · , pt+r; p̃1, · · · , p̃q+s) ∈ T ∗
x,0U × · · ·T

∗
x,0U︸ ︷︷ ︸

t+r

×T ∗
x,1U × · · ·T

∗
x,1U︸ ︷︷ ︸

q+s

;

let o := (o1, · · · , ot+r; õ1, · · · , õq+s) ∈ Rr|s ∗
0 × · · · × Rr|s ∗

0︸ ︷︷ ︸
t+r

×Rr|s ∗
1 × · · ·Rr|s ∗

1︸ ︷︷ ︸
q+s

;

let α1 < α2 < · · · < αq be q different odd indices chosen in the the set {n + 1, · · · , n + m}; let
A1, A2, · · · , At be t even or odd indices (possibly equal) chosen in the set {1, · · · , n+m};
then the function

w : O ⊂ T ∗
(x,0),0M × · · ·T

∗
(x,0),0M︸ ︷︷ ︸

t+r

×T ∗
(x,0),1M × · · ·T

∗
(x,0),1M︸ ︷︷ ︸

q+s

−→ RS

w =
∂A1
∧ · · · ∧ ∂At

∧ ∂y1 ∧ · · · ∧ ∂yr

∂α1
⊙ · · · ⊙ ∂αq

⊙ ∂yr+1 ⊙ · · · ⊙ ∂yr+s

defined by:

w

(
π
o

)
:= rsdett+r,q+s




p1
A1

· · · pt+rA1
p̃1
A1

· · · p̃q+s
A1

...
. . .

...
...

. . .
...

p1
At

· · · pt+rAt
p̃1
At

· · · p̃q+s
At

o1
1 · · · ot+r1 õ1

1 · · · õq+s
1

...
. . .

...
...

. . .
...

o1
r · · · ot+rr õ1

r · · · õq+s
r

p1
α1

· · · pt+rα1 p̃1
α1

· · · p̃q+s
α1

...
. . .

...
...

. . .
...

p1
αq

· · · pt+rαq p̃1
αq

· · · p̃q+s
αq

o1
r+1 · · · ot+rr+1 õ1

r+1 · · · õq+s
r+1

...
. . .

...
...

. . .
...

o1
r+s · · · ot+rr+s õ1

r+s · · · õq+s
r+s




(6.23)

is a mixed form of codegree t + r|q + s and additional degree r|s over x ∈ U , O being precisely
the subset where the formula (6.23) is well defined.

Proof. By theorem 73, we are sure that w, defined by (6.23), satisfies (6.18), (6.20), (6.21) and
(6.22). We still have to prove that it satisfies (6.19).

By the definition of w, we have that

w

[(
π + a · o
h · o

)]
= w

[(
id a
0 h

)
·

(
π
o

)]

Then, by direct calculation, using the properties of the rsdet and keeping into account of the
specific parities of the elements of the matrices involved, one can see that

w

[(
id a
0 h

)
·

(
π
o

)]
= Berr,s(h) · w

[(
π
o

)]

and the theorem is proved.
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Note that the condition that all ∂y do appear in the definition of ω, without repetitions and
with all odd ∂y at denominator, is precisely the condition which ensures that (6.19) is satisfied
for a Berezinian coforms defined on M .

For a general mixed forms w of codegree t|q and additional degree r|s, we can define an
exterior product by a 1|0-coform v, sending w to the mixed form evw of codegree t + 1|q and
additional degree r|s:

ev · w := (−1)
t

[
vF pt+1

F − (−1)
|F ||A|

vGpAGp
t+1
F

∂

∂pAF
− (−1)

|K||A|
vGpAGo

t+1
K

∂

∂oAK

]
· w (6.24)

See [154] for the proof that ev is well defined.

We can prove that, if w is defined by (6.23), so that w =
∂A1 ∧···∧∂At

∧∂y1 ∧···∧∂yr

∂α1 ⊙···⊙∂αq ⊙∂yr+1 ⊙···⊙∂yr+s
, then:

ev · w =ev ·
∂A1
∧ · · · ∧ ∂At

∧ ∂y1 ∧ · · · ∧ ∂yr

∂α1
⊙ · · · ⊙ ∂αq

⊙ ∂yr+1 ⊙ · · · ⊙ ∂yr+s

=
v ∧ ∂A1

∧ · · · ∧ ∂At
∧ ∂y1 ∧ · · · ∧ ∂yr

∂α1
⊙ · · · ⊙ ∂αq

⊙ ∂yr+1 ⊙ · · · ⊙ ∂yr+s

So in general we can define, for a generic w ∈ Ω
r|s
t|q :

v ∧ w := ev · w (6.25)

Voronov, [154] theorem 1.4, has proved that:

eveu = −(−1)|v||u|euev (6.26)

This is consistent with the definition given with (6.25).
For a general mixed forms w of codegree t+ 1|q and additional degree r|s, we can define an

interior product by a 1|0-form µ:

µ w := iµw := (−1)tw

←−
∂

∂pt+1
F

µF (6.27)

.
This operator is the analogue of the operator defined with (6.9) and (6.10) and it can be

written also as:

iµw =(−1)t(−1)|F |(|w|+|F |)(−1)(|F |+|µ|)(|w|+|F |)µF
∂

∂pt+1
F

w

=(−1)t(−1)|µ|(|w|+|F |)µF
∂

∂pt+1
F

w

(6.28)

.
The operator iα is related to the operator e(α) defined in [154], formula (14), but it is not

equivalent to it. In fact, if w is a mixed form of codegree t|q and additional degree r|s, we have:

iαw = (−1)t−1(−1)r(−1)|α||w|σ−1
1|0e(α)w

where σ−1
1|0 is the homomorphism defined below.

It is immediate to prove that:

iαiβ = −(−1)|α||β|iβiα (6.29)
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It is also possible to prove that:

iαev (w) = −eviα (w) + (−1)
|v||w|

wv (α) = −eviα (w) + (−1)
|α||w|

v (α)w (6.30)

which is the generalization to mixed forms of (6.12) and (6.13).
Remembering the considerations made at the beginning of this section, we also find out that:

Proposition 77. Let (U, xA, pF ) be a local chart of T ∗X, cotangent space of a n|m-dimensional
manifold X; let

(
yK
)

be coordinates on Rr|s and (oK) be coordinates on Rr|s ∗; let x ∈ U ;

let π := (p1, · · · , pt+r−l; p̃1, · · · , p̃q+s−d) ∈ T ∗
x,0U × · · ·T

∗
x,0U︸ ︷︷ ︸

t+r−l

×T ∗
x,1U × · · ·T

∗
x,1U︸ ︷︷ ︸

q+s−d

;

let o := (o1, · · · , ot+r−l; õ1, · · · , õq+s−d) ∈ Rr|s ∗
0 × · · · × Rr|s ∗

0︸ ︷︷ ︸
t+r−l

×Rr|s ∗
1 × · · ·Rr|s ∗

1︸ ︷︷ ︸
q+s−d

;

let α1 < α2 < · · · < αq be q different odd indices chosen in the the set {n + 1, · · · , n + m}; let
A1, A2, · · · , At be t even or odd indices (possibly equal) chosen in the set {1, · · · , n+m};
let Θ1, . . . ,Θl be 1|0-forms on X of any parity and let θ1, . . . , θd be odd 1|0-forms on X, with
l ≤ r and d ≤ s; then the function

Θ1 ∧ · · · ∧Θl

θ1 ⊙ · · · ⊙ θd
w : O ⊂ T ∗

(x,0),0M × · · ·T
∗
(x,0),0M︸ ︷︷ ︸

t+r−l

×T ∗
(x,0),1M × · · ·T

∗
(x,0),1M︸ ︷︷ ︸

q+s−d

−→ RS

Θ1 ∧ · · · ∧Θl

θ1 ⊙ · · · ⊙ θd
w =

Θ1 ∧ · · · ∧Θl

θ1 ⊙ · · · ⊙ θd
∂A1
∧ · · · ∧ ∂At

∧ ∂y1 ∧ · · · ∧ ∂yr

∂α1
⊙ · · · ⊙ ∂αq

⊙ ∂yr+1 ⊙ · · · ⊙ ∂yr+s

defined by:

Θ1 ∧ · · · ∧Θl

θ1 ⊙ · · · ⊙ θd
w

(
π
o

)
:= (−1)

1
2

[(∑
l

i=1
|Θi|
)2

+
∑

l

i=1
|Θi|
]

rsdetr+t,s+q




Θ1
A1

(ηl)
|Θ1| · · · Θl

A1
(η1)|Θ

l| p1
A1

· · · pt+r−l
A1

θ1
A1

· · · θdA1
p̃1
A1

· · · p̃q+s−d
A1

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

Θ1
At

(ηl)
|Θ1| · · · Θl

At
(η1)|Θ

l| p1
At

· · · pt+r−l
At

θ1
At

· · · θdAt
p̃1
At

· · · p̃q+s−d
At

0 · · · 0 o1
1 · · · ot+r−l

1 0 · · · 0 õ1
1 · · · õq+s−d

1
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...

0 · · · 0 o1
r · · · ot+r−l

r 0 · · · 0 õ1
r · · · õq+s−d

r

Θ1
α1

(ηl)
|Θ1| · · · Θl

α1
(η1)|Θ

l| p1
α1

· · · pt+r−l
α1 θ1

α1
· · · θdα1

p̃1
α1

· · · p̃q+s−d
α1

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

Θ1
αq

(ηl)
|Θ1| · · · Θl

αq
(η1)|Θ

l| p1
αq

· · · pt+r−l
αq θ1

αq
· · · θdαq

p̃1
αq

· · · p̃q+s−d
αq

0 · · · 0 o1
r+1 · · · ot+r−l

r+1 0 · · · 0 õ1
r+1 · · · õq+s−d

r+1
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...

0 · · · 0 o1
r+s · · · ot+r−l

r+s 0 · · · 0 õ1
r+s · · · õq+s−d

r+s




( ←−
∂

∂η1

)|Θl|

· · ·

( ←−
∂

∂η

(6.31)

is a mixed form of codegree t + r − l|q + s − d and additional degree r|s over x ∈ U , O being
precisely the subset where the formula (6.23) is well defined.
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Proof. By theorem 73 and by what was said at the beginning of this section about the contraction
of extended coforms by forms, we are sure that w, defined by (6.31), satisfies (6.18), (6.20), (6.21)
and (6.22). We still have to prove that it satisfies (6.19).

By the definition of w, we have that

w

[(
π + a · o
h · o

)]
= w

[(
id a
0 h

)
·

(
π
o

)]

Then, again, by direct calculation, using the properties of the rsdet and keeping into account
of the specific parities of the elements of the matrices involved, one can see that

w

[(
id a
0 h

)
·

(
π
o

)]
= Berr,s(h) · w

[(
π
o

)]

and the theorem is proved.
Note that in this last case the conditions which ensure that (6.19) is satisfied are two: first it

is necessary that all ∂y do appear in the definition of ω, without repetitions and with all odd ∂y
at denominator, and second it is necessary that the forms Θi and θj are defined on X and not on
all M . In other words, if we consider the forms Θi and θj as forms on M , then their projections
on the space Rr|s ∗ must be null.

Voronov in [154] define two series of homomorphisms:

Definition 78. Let (U, xA, pF ) be a local chart of T ∗X, cotangent space of a n|m-dimensional
manifold X; let x ∈ U ;
let M = X × Rr|s, N = X × Rr|s × Ra|b.
With a little abuse of notation, let’s also set x = (x, 0) ∈M and x = (x, 0, 0) ∈ N ;
let π1 := (p1, · · · , pt; p̃1, · · · , p̃q) ∈ T ∗

x,0U × · · ·T
∗
x,0U︸ ︷︷ ︸

t

×T ∗
x,1U × · · ·T

∗
x,1U︸ ︷︷ ︸

q

;

let ρ1
1 := (r1, · · · , rt; r̃1, · · · , r̃q) ∈ Rr|s ∗

0 × · · · × Rr|s ∗
0︸ ︷︷ ︸

t

×Rr|s ∗
1 × · · ·Rr|s ∗

1︸ ︷︷ ︸
q

;

let π2 := (pt+1, · · · , pt+a; p̃q+1, · · · , p̃q+b) ∈ T ∗
x,0U × · · ·T

∗
x,0U︸ ︷︷ ︸

a

×T ∗
x,1U × · · ·T

∗
x,1U︸ ︷︷ ︸

b

;

let ρ2
1 := (rt+1, · · · , rt+a; r̃q+1, · · · , r̃q+b) ∈ Rr|s ∗

0 × · · · × Rr|s ∗
0︸ ︷︷ ︸

a

×Rr|s ∗
1 × · · ·Rr|s ∗

1︸ ︷︷ ︸
b

;

let ρ1
2 := (o1, · · · , ot; õ1, · · · , õq) ∈ Ra|b ∗

0 × · · · × Ra|b ∗
0︸ ︷︷ ︸

t

×Ra|b ∗
1 × · · ·Ra|b ∗

1︸ ︷︷ ︸
q

;

let ρ2
2 := (ot+1, · · · , ot+a; õq+1, · · · , õq+b) ∈ Ra|b ∗

0 × · · · × Ra|b ∗
0︸ ︷︷ ︸

a

×Ra|b ∗
1 × · · ·Ra|b ∗

1︸ ︷︷ ︸
b

;

let
(
π1

ρ1
1

)
∈ T ∗

x,0M × · · ·T
∗
x,0M︸ ︷︷ ︸

t

×T ∗
x,1M × · · ·T

∗
x,1M︸ ︷︷ ︸

q

;

let



π1

ρ1
1

ρ1
2


 ∈ T ∗

x,0N × · · ·T
∗
x,0N︸ ︷︷ ︸

t

×T ∗
x,1N × · · ·T

∗
x,1N︸ ︷︷ ︸

q

;

let



π2

ρ2
1

ρ2
2


 ∈ T ∗

x,0N × · · ·T
∗
x,0N︸ ︷︷ ︸

a

×T ∗
x,1N × · · ·T

∗
x,1N︸ ︷︷ ︸

b

;
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then:

σa|b : Λ
r|s
t|q −→ Λ

r+a|s+b
t+a|q+b

σ−1
a|b : Λ

r+a|s+b
t+a|q+b −→ Λ

r|s
t|q

(6.32)

are defined by:

σa|bζ



π1 π2

ρ1
1 ρ2

1

ρ1
2 ρ2

2


 := ζ

(
π1 − π2

(
ρ2

2

)−1
ρ1

2

ρ1
1 − ρ

2
1

(
ρ2

2

)−1
ρ1

2

)
Ber(ρ2

2) (6.33)

σ−1
a|bλ

(
π1

ρ1
1

)
:= λ



π1 0
ρ1

1 0
0 id


 (6.34)

where ζ ∈ Λ
r|s
t|q and λ ∈ Λ

r+a|s+b
t+a|q+b .

We have that:

Theorem 79 (Voronov 1999). The maps σa|b and σ−1
a|b defined bye (6.33) and (6.34) are indeed

well defined homomorphisms between Λ
r|s
t|q and Λ

r+a|s+b
t+a|q+b ; moreover we have that σ−1

a|b is the inverse
of σa|b.

Proof. See the proof of theorem 1.1 in [154].
The morphism σ−1

a|b acts in a very simple way on the fractional mixed forms defined by (6.23)
and (6.31). We have in fact the following two:

Proposition 80. If w is the mixed fractional form of codegree t+r|q+s and additional degree r|s
defined by (6.23); if a < r, b < q and if σ−1

a|b is the morphism between Λ
r|s
t+r|q+s and Λ

t+r−a|q+s−b
t+a|q+b

defined by (6.34), then we have that:

σ−1
a|bw = σ−1

a|b
∂A1
∧ · · · ∧ ∂At

∧ ∂y1 ∧ · · · ∧ ∂yr

∂α1
⊙ · · · ⊙ ∂αq

⊙ ∂yr+1 ⊙ · · · ⊙ ∂yr+s

=
∂A1
∧ · · · ∧ ∂At

∧ ∂y1 ∧ · · · ∧ ∂yr−a

∂α1
⊙ · · · ⊙ ∂αq

⊙ ∂yr+1 ⊙ · · · ⊙ ∂yr+s−b

(6.35)
If a = r and b = s, then

σ−1
r|sw = σ−1

r|s
∂A1
∧ · · · ∧ ∂At

∧ ∂y1 ∧ · · · ∧ ∂yr

∂α1
⊙ · · · ⊙ ∂αq

⊙ ∂yr+1 ⊙ · · · ⊙ ∂yr+s

=
∂A1
∧ · · · ∧ ∂At

∂α1
⊙ · · · ⊙ ∂αq

(6.36)

Proof. It is easy by direct calculation.

Proposition 81. If Θ1∧···∧Θl

θ1⊙···⊙θd w is the mixed fractional form of codegree t+ r− l|q+ s− d and
additional degree r|s defined by (6.31); if a < r, a ≤ t+ r − l, b < s, b ≤ q + s− d and if σ−1

a|b is
the morphism defined by (6.34), then:

σ−1
a|b

(
Θ1 ∧ · · · ∧Θl

θ1 ⊙ · · · ⊙ θd
w

)
=

Θ1 ∧ · · · ∧Θl

θ1 ⊙ · · · ⊙ θd
∂A1
∧ · · · ∧ ∂At

∧ ∂y1 ∧ · · · ∧ ∂yr−a

∂α1
⊙ · · · ⊙ ∂αq

⊙ ∂yr+1 ⊙ · · · ⊙ ∂yr+s−b

(6.37)

if a = r, a ≤ t+ r − l, b = s, b ≤ q + s− d, id est if a = r, t− l ≥ 0, b = s, q − d ≥ 0, then:

σ−1
a|b

(
Θ1 ∧ · · · ∧Θl

θ1 ⊙ · · · ⊙ θd
w

)
=

Θ1 ∧ · · · ∧Θl

θ1 ⊙ · · · ⊙ θd
∂A1
∧ · · · ∧ ∂At

∂α1
⊙ · · · ⊙ ∂αq

(6.38)
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Proof. Again it can be easily done by direct calculation.
Following an idea of Voronov, [154], I want to define the space of stable mixed forms of

codegree t|q as the direct limit of the spaces of mixed forms with codegree t + r|q + s and
additional degree r|s for r → ∞ and s → ∞. In this way the stable mixed form can have
negative even codegree.

Note that I use the name "stable mixed forms" and not stable forms. I will briefly explain at
the end of this section what are the objects called by Voronov "stable forms".

For example the fractional mixed form:

Θ1 ∧ · · · ∧Θl

θ1 ⊙ · · · ⊙ θd
w =

Θ1 ∧ · · · ∧Θl

θ1 ⊙ · · · ⊙ θd
∂A1
∧ · · · ∧ ∂At

∧ ∂y1 ∧ · · · ∧ ∂yr

∂α1
⊙ · · · ⊙ ∂αq

⊙ ∂yr+1 ⊙ · · · ⊙ ∂yr+s

has a representative in the space of stable mixed forms and it is:

lim
a→∞, b→∞

σa|b

(
Θ1 ∧ · · · ∧Θl

θ1 ⊙ · · · ⊙ θd
∂A1
∧ · · · ∧ ∂At

∧ ∂y1 ∧ · · · ∧ ∂yr

∂α1
⊙ · · · ⊙ ∂αq

⊙ ∂yr+1 ⊙ · · · ⊙ ∂yr+s

)

After what we have seen with propositions 80 and 81, I suggest to denote that representative in
this way:

Θ1 ∧ · · · ∧Θl

θ1 ⊙ · · · ⊙ θd
∂A1
∧ · · · ∧ ∂At

∂α1
⊙ · · · ⊙ ∂αq

:= lim
a→∞, b→∞

σa|b

(
Θ1 ∧ · · · ∧Θl

θ1 ⊙ · · · ⊙ θd
∂A1
∧ · · · ∧ ∂At

∧ ∂y1 ∧ · · · ∧ ∂yr

∂α1
⊙ · · · ⊙ ∂αq

⊙ ∂yr+1 ⊙ · · · ⊙ ∂yr+s

) (6.39)

Formula (6.39) is a definition of a notation and it is valid even when l > t.
This notation suggests however a way to extend the interior product between forms and

coforms also to the case when the even degree of the form exceed the even codegree of the
coform. In fact, if when l > t and d < q, we can pose:

Definition 82. The interior product between the Berezinian form ω = Θ1∧···∧Θl

θ1⊙···⊙θd and the Berezinian

coform ∂A1 ∧···∧∂At

∂α1 ⊙···⊙∂αq
is defined by:

ω

(
∂A1
∧ · · · ∧ ∂At

∂α1
⊙ · · · ⊙ ∂αq

)

:= lim
a→∞, b→∞

σa|b

(
Θ1 ∧ · · · ∧Θl

θ1 ⊙ · · · ⊙ θd
∂A1
∧ · · · ∧ ∂At

∧ ∂y1 ∧ · · · ∧ ∂yl−t

∂α1
⊙ · · · ⊙ ∂αq

)

≡
Θ1 ∧ · · · ∧Θl

θ1 ⊙ · · · ⊙ θd
∂A1
∧ · · · ∧ ∂At

∂α1
⊙ · · · ⊙ ∂αq

(6.40)

In this way we have extended the interior product so to answer to one of the questions posed
at the beginning of the section. We can for example give sense to operations like:

dξ1 1
∂
∂ξ1

and by symmetry we can pose:
1
∂
∂ξ1

dξ1 := dξ1 1
∂
∂ξ1
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Note that definition 82 can be adopted also when the coform w is not Berezinian.
For example, if l > t and d < q, and w is a generic t|q-coform, we can pose:

(
Θ1 ∧ · · · ∧Θl

θ1 ⊙ · · · ⊙ θd

)
w := lim

a→∞, b→∞
σa|b

(
Θ1 ∧ · · · ∧Θl

θ1 ⊙ · · · ⊙ θd
σl−t|0w

)
(6.41)

To give sense to operations like
∂

∂ξ1

1

dξ1

we have to define new kind of objects that we can call mixed forms of the second type. They can
be defined following the same path undertaken here, starting from forms instead of starting from
coforms. Then we would have that a mixed forms of second type of degree r|s and additional
codegree t|q on a n|m-manifold X is a form of degree r + t|s + q on the extended manifold
M = X × Rt|q, which satisfies an additional condition of the type of (6.19) and which can
be projected on the manifold X ( so that its "coefficients" do not depend on the coordinates
on Rt|q). On mixed forms of the second types it is possible to define appropriate interior and
exterior products so that they have properties analogous to the ones expounded here for the
mixed forms of the first type. It is possible to define stable mixed forms of the second type.

Once this is done, one will have that, whenever they are defined, the interior product and the
exterior product by 1|0-forms and 1|0-coforms, satisfy the commutation relations already seen in
the sections 5.4 and 6.1.

Then it is possible to define fractional mixed forms of the second type and stable fractional
mixed forms of the second type and to verify that the interior and exterior products have a
simple action on them.

I will not show here the definitions of the mixed forms and fractional mixed forms of the
second type and of the exterior and interior products acting on them, bu the reader can imagine
them.

For fractional forms, fractional coforms and stable fractional mixed forms of the first type, we
have defined a good amount of what one would call Cartan calculus, id est interior and exterior
products, plus some extensions.

We still have to see how an exterior derivative can be defined on mixed forms of first type
and on coforms (which can be considered as a special case of mixed forms of first type). We will
see that the behavior of the exterior derivative will be quite nice on most of fractional coforms
and fractional mixed forms (although, as already seen for fractional forms, on some of them this
will not be the case).

In the following I will continue calling mixed forms the mixed forms of the first type.

Definition 83. Let (U, xA, pF ) be a local chart of T ∗X, cotangent space of a n|m-dimensional
manifold X; let x ∈ U ; let M = X × Rr|s, N = X × Rr|s × R1|0;
with a little abuse of notation, let’s also set x = (x, 0) ∈M and x = (x, 0, 0) ∈ N ;
let π := (p1, · · · , pt; p̃1, · · · , p̃q) ∈ T ∗

x,0U × · · ·T
∗
x,0U︸ ︷︷ ︸

t

×T ∗
x,1U × · · ·T

∗
x,1U︸ ︷︷ ︸

q

;

let ρ := (r1, · · · , rt; r̃1, · · · , r̃q) ∈ Rr|s ∗
0 × · · · × Rr|s ∗

0︸ ︷︷ ︸
t

×Rr|s ∗
1 × · · ·Rr|s ∗

1︸ ︷︷ ︸
q

;

let o := (o1, · · · , ot; õ1, · · · , õq) ∈ R1|0 ∗
0 × · · · × R1|0 ∗

0︸ ︷︷ ︸
t

×R1|0 ∗
1 × · · ·R1|0 ∗

1︸ ︷︷ ︸
q

;

let
(
π
ρ

)
∈ T ∗

x,0M × · · ·T
∗
x,0M︸ ︷︷ ︸

t

×T ∗
x,1M × · · ·T

∗
x,1M︸ ︷︷ ︸

q

;
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let



π
ρ
o


 ∈ T ∗

x,0N × · · ·T
∗
x,0N︸ ︷︷ ︸

t

×T ∗
x,1N × · · ·T

∗
x,1N︸ ︷︷ ︸

q

;

let w be a mixed form of codegree t|q and additional degree r|s, then the exterior derivative of w
is the mixed form of codegree t|q and additional degree r + 1|s defined by:

dw



π
ρ
o


 := (−1)r(−1)|A||F |oA

∂

∂xF
∂

∂pAF
w

(
π
ρ

)
(6.42)

Theorem 84. If w is a coform of codegree t|q, and f a G∞ function on a supermanifold X,
then we have:

d(fw) = fdw − (−1)t(−1)|f ||w|df σ1,0w (6.43)

where σ1,0 is the homomorphism defined by (6.33).

Proof. By definition (6.42), we have that:

d(fw)

(
π
o

)
=d(fw)

(
pAF
oA

)

=(−1)|A||F |oA
∂

∂xF
∂

∂pAF
[fw (π)]

=fdw

(
π
o

)
+ (−1)|A||F |(−1)|f |(|A|+|F |)oA

∂f

∂xF
∂

∂pAF
w(π)

=fdw

(
π
o

)
+ (−1)|f ||F | ∂f

∂xF
oA

∂

∂pAF
w(π)

On the other hand, from (6.33), we have:

σ1|0w

(
π p̌
o ǒ

)
= σ1|0w

(
pAF p̌F
oA ǒ

)
= w

[
pAF − p̌F

oA

ǒ

]
ǒ

and from definition (6.28) we obtain:

df σ1|0w

(
π p̌
o ǒ

)
= σ1|0w

(
πAF p̌F
oA ǒ

)
= (−1)t(−1)|f |(|w|+|F |) ∂f

∂xF
∂

∂p̌F

{
w

[
pAF − p̌F

oA

ǒ

]
ǒ

}

But:
∂

∂p̌F

{
w

[
pAF − p̌F

oA

ǒ

]
ǒ

}
= ǒ

(
−
oA

ǒ

)
∂

∂pAF
w

[
pAF − p̌F

oA

ǒ

]

and since
∂

∂p̌F

{
w

[
pAF − p̌F

oA

ǒ

]
ǒ

}
= ǒ

∂

∂p̌F

{
w
[
pAF
]}

because σ1|0w is linear in p̌, we have that:

∂

∂p̌F

{
w

[
pAF − p̌F

oA

ǒ

]
ǒ

}
= ǒ

(
−
oA

ǒ

)
∂

∂pAF
w
[
pAF
]

= −oA
∂

∂pAF
w
[
pAF
]

and:

df σ1|0w

(
π p̌
o ǒ

)
= −(−1)t(−1)|f |(|w|+|F |) ∂f

∂xF
oA

∂

∂pAF
w
[
pAF
]
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and the theorem is proved.
Note that formula (6.43) is more transparent when it is written in this way:

d(wf) = dw · f + (−1)t+1σ1,0w df

A similar theorem can be proved with a little bit more calculations for the case when w is a
mixed form of codegree t|q and additional degree r|s.

If we work on stable mixed forms, remembering definition 82 and its generalisation (6.41),
the equation (6.43) becomes:

d(fw) = fdw − (−1)t(−1)|f ||w|df w (6.44)

or equivalently:
d(wf) = dw · f − (−1)tw df (6.45)

From the definition of the operator d, (6.42), a straightforward calculation gives:

d (∂F ) = d

(
1

∂φ

)
= 0 (6.46)

Then (6.46) and (6.44) give:

Proposition 85. If v is a Berezinian 1|0-coform (id est a vector field), with components vF in
the local coordinates xF of the n|m dimensional supermanifold X, then:

d(v) = d
(
vF∂F

)
= (−1)(|v|+|F |)|F |dvF ∂F = (−1)(|v|+|F |)|F | ∂v

F

dxF
(6.47)

and:

d

(
fφ

1

∂φ

)
= −dfφ

1

∂φ
(6.48)

Voronov has shown how to calculate the commutator between the operator d and the operator
ev for every vector field v, see the homotopy identity for mixed forms: formula (40) in [154]. The
homotopy identity involves the Lie derivative of a mixed form along the vector field v, which I
do not introduce here. It is enough to note that it yields the following expected property:

d

(
∂A1
∧ · · · ∧ ∂At

∂α1
⊙ · · · ⊙ ∂αq

)
= 0 (6.49)

Formula (6.46), (6.45), (6.25), (6.24), (6.27), (6.26), (6.29), (6.30) and (6.49) allow a full and
simple Cartan calculus on stable fractional mixed forms of the first type. The only exception
would be the coforms of the type

1

ṽ

with dṽ 6= 0, and the mixed forms obtained from them.

In fact we have that d
(

1

ṽ

)
is not in general a fractional mixed form.

I propose to use the collective name of fractional forms to indicate the union of the sets of
fractional forms, fractional coforms and fractional stable mixed forms of the first and the second
type. What has been done in this and the previous chapter is to establish the rules for the Cartan
calculus for fractional forms intended in this broader sense.
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I conclude this section recalling that Voronov in [153] and [154] calls space of stable r|s-forms
on the n|m-dimensional supermanifold X the space defined as

Λr|sTX := lim
a,b
−→

Λ
r+a|s+b
n+a|m+bTX

With this definition Voronov can represent the space of forms in the space of mixed forms and
can then extend r|s-forms to negative r. This reveals to be useful when studying the cohomology
of supermanifolds.

For the purpose of this work, which was to establish an extended Cartan calculus for the
special case of fractional forms, it seemed to me more useful to define the spaces of stable mixed
fractional forms of the first and of the second type and to represent the space of proper fractional
forms inside the space of stable mixed fractional forms of the second type.

6.3 Integral of coforms and mixed forms on supermanifolds

The integration of dual densities (codensities) on supermanifolds has been studied by Gajduk,
Khudaverdian and Schwarz in [55] and by Khudaverdian in [91]. Khudaverdian shows the link
between dual densities and integral forms and explains how their integration is a crucial ingredient
for the developing of the Batalin-Vilkovisky (BV) theory.

The theory of integration of coforms and mixed forms on a supermanifold has been developed
by Voronov in [153]. Voronov shows that the coforms (which he call dual forms) are special class
of dual densities (or codensities) and they can be integrated on dual paths (or copaths) on a
supermanifolds.

I will present very briefly in this section the main aspects of this theory. It will then be clear
that the integration of coforms and mixed forms has a connection with the BRST theory and
the BV theory, which is one of the reasons why it could be interesting also for Physics.

As we will see the the definition of integral of coforms and mixed forms is the main reason
for the definitions of those objects, seen in the previous two sections.

Voronov in [153] gives a definition of copath. I give here an adapted version:

Definition 86. Consider a coordinate open domain U in a supermanifold X of dimension n|m;
U has dimension n|m as well. A copath in U is a function f ∈ G∞(U,Rt|q) whose components
constitute an array of independents functions fA ∈ G∞(U) enumerated by indices A, which run
over even and odd values from 1 to t|q, so that fA can be formally treated as coordinates on Rt|q.
The dimension t|q is called the codimension of the copath.

The subset Y ⊂ U defined by y ∈ Y ⇔ f(y) = 0, id est by fA(y) = 0, is a closed submanifold
of X and, since the functions fA are independents, it has codimension t|q. The multidimensional
differential df is constituted by the array dfA which is an array of 1|0-forms on U . In fact df can

be considered a shortcut for the t|q Berezinian superform defined by df := df1∧···∧dft

df̃1⊙···⊙df̃q
; so that,

with the notation used in the previous section, we have: w(df) = df w.
If w is a coform of codegree t|q, we can define its integral on Y with:

Iβ, Y [w] :=

∫

Y

w :=

∫

U

β δ (f)w(df) (6.50)

where β is a fixed n|m-form on U ; the last integral in (6.50) is the integral of superforms defined
in section 5.5; δ is the Dirac distribution on the superspace Rt|q and we can define the operator
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∫
U
β δ (f), by: ∫

U

β δ (f) :=

∫

Y

α (6.51)

where α is any superform such that df ∧α = β, where the operator ∧ is defined by (5.64). (Note
that if df ∧ α = β and df ∧ α′ = β, then α|Y = α′|Y ).

Equation (6.51) can be considered a definition of the Dirac δ. For an introduction to distri-
butions on manifolds see [] and for distributions on supermanifolds see [].

Note that in (6.50) we could use the canonical n|m-form on U , so that, if (xg, xγ) = (xG),
G = 1, . . . , n|m, are the coordinates on U , β = dx1∧···∧dxn

dxn+1⊙···⊙dxn+m . In this case we should remember

however that, if on U we use new coordinates (xG
′

), then in (6.50) we must keep using the old
form β and not the new canonical form β′ for the new coordinate system; otherwise the integral
in (6.50) would not be well defined. This is what I mean when I write that β is a fixed chosen
n|m-form on U . The integral Iβ, Y [w] depends on the choice of the n|m form β.

For (6.50) to be well posed we have also to control what happens if the same submanifold Y is
defined by a different array of functions gB . This in fact amounts to treat Rt|q as a supermanifold,
perform a change of coordinates on it, and then express the function f in the new coordinates.
If hB constitute an array of change of coordinates functions, then Y is defined by y ∈ Y ⇔
hB [f(y)] = hB(0). If we set gB := hB ◦ f − hB(0), then Y is defined by y ∈ Y ⇔ gB(y) = 0.

We have to study what happens to IY [w] when coordinates are changed on the target space
Rt|q. In fact we have that:
∫

U

β δ (g)w(dg) =±

∫

U

β δ (h ◦ f − h(0))w(dg) = ±

∫

U

β
δ (f)

Ber
(
∂gB

∂fA

)w(dg)

=±

∫

U

β
δ (f)

Ber
(
∂gB

∂fA

)w(dfA
dgB

dfA
) = ±

∫

U

β
δ (f)

Ber
(
∂gB

∂fA

)w(df) Ber

(
∂gB

∂fA

)

=±

∫

U

β δ (f)w(df)

(6.52)

To obtain (6.52) I made use of a property of the Dirac δ on supermanifolds (see ??). The ±

sign appearing in the formula depends on the sign of Ber
(
∂gB

∂fA

)
and can be set to 1 if one

choose to integrate only on positively orientated submanifolds Y and if one chooses h so that it
preserves the orientation. One can then change the sign in the definition of the integral when
one wants to perform an integration on negatively orientated manifolds. All this leads to a well
posed definition of integral if the orientations of submanifolds Y are defined with the so called
(+,−)-coorientation convention: see [152, 154].

Note that, as pointed out by Voronov, [153], the integral (6.50) would not make sense if the
fa or if the fα were not independent. In the first case the Dirac δ would not be well defined, in
the second case w(df) would not be defined.

Note that (6.52) holds precisely because w satisfies (6.2).
Since β is fixed, by definition the integral in (6.52) does not depend on the choice of the

coordinate system on U as well.
With a partition of unity argument, we can extend the definition (6.52) to the case when Y

is not covered by a single coordinate chart U , but this is possible only if we have picked up a
form β defined on all Y . In particular we could use a form β defined on allX, when this is possible.
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The integral of coforms defined with (6.50) has a nice property. Suppose that δfA are com-
pactly supported small variations of the functions fA and suppose that Y + δY is a submanifold
defined by y ∈ Y +δY ⇔ (f + δf) (y) = 0. Then δY is a compactly supported small deformation
of Y and we have:

Proposition 87. If δI [w] :=
∫
Y+δY

w −
∫
Y
w, and δI

δf
is the functional variation of I with-

respect of the variation of f , then δI
δf

depends only on the first order derivatives of the fA with
respect to the xF .

Proof. In a short-while I will give a more general proof for an analogous theorem, valid for the
integral of mixed forms. Since coforms can be considered as mixed forms of additional degree
0|0, then this proposition will be a corollary.

Let’s now see the definition of the integral of a mixed form.

Definition 88. Let X be a supermanifold of dimension n|m, let U ⊂ X be an open domain con-
tained in a single chart of X with coordinates (xF ). Let yK be the coordinates on the superspace
Rr|s. Let M := X × Rr|s; let Y ⊂ U × Rr|s be a closed submanifold of M defined by the copath
f ∈ G∞ (U × Rr|s,Rt|q

)
. Let β be a fixed n|m-form on U and α be a fixed r|s-form on Rr|s;

let w be a mixed form on X of codegree t|q and additional degree r|s and let be w̌ its associated
coform on M , which does not depends on the coordinates yK ;
then we define the integral of w over Y by:

Iβ,α, Y [w] :=

∫

Y

w :=

∫

Y

w̌ =

∫

U×Rr|s

β ∧ α δ (f) w̌(df) (6.53)

Note that both β and α are fixed: α can be the canonical form on Rr|s for the coordinates
(yK): α = dy1∧···∧dyr

dyr+1⊙···⊙dyr+s ; but in this case, if we perform a change of coordinate, α doesn’t
change and it isn’t therefore anymore the canonical form for the new coordinates. In fact, in
(6.53), we could even choose to put any fixed t+r|q+s-form on M . The value of the integral IY [w]
doesn’t change if we perform a change of coordinates on M , even if the change of coordinates
on Rr|s depends on the coordinates on X. Moreover, using an argument analogous to the one
used in (6.52), and remembering that the w and w̌ satisfy (6.18), one can see that the value of
the integral Iβ,α, Y [w] doesn’t change when coordinates are changed on the target space Rt|q. So,
whence β and α are chosen, the integral Iβ,α, Y [w] is well defined.

The next result, which I’m going to prove, is a generalization of proposition 87:

Proposition 89. Suppose that δfA are compactly supported small variations of the functions
fA and suppose that Y + δY is a submanifold defined by y ∈ Y + δY ⇔ (f + δf) (y) = 0, so that
δY is a compactly supported small deformation of Y . If δI [w] :=

∫
Y+δY

w −
∫
Y
w, and δI

δf
is

the functional variation of I with-respect of the variation of f , then δI
δf

depends only on the first
order derivatives of the fA with respect to the xF .

Proof. We can treat Iβ,α, Y [w] as if it were the action of a singular Lagrangian defined with the
use of a Dirac δ distribution. Since δfA are compactly supported, to calculate the functional
variation δI

δf
, it suffices to use standard techniques, but paying attention to the parities of the

object involved and remembering the properties of the derivative of the δ distribution. Identifying
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w with w̌, we get the following:

δI

δfA
=
∂δ(f)

∂fB
δABw(df)−

∂δ(f)

∂fB
(−1)|A||G|+|A||δ|+|B||G|+|B||δ|+|B| ∂f

B

∂xG
∂w

∂pAG
(df)

−
∂δ(f)

∂fB
(−1)|A||K|+|A||δ|+|B||K|+|B||δ|+|B| ∂f

B

∂yK
∂w

∂oAK
(df)

− (−1)|A||F |+|A||δ|δ(f)
∂2w

∂xF∂pAF
(df)

− (−1)|A||F |+|A||δ|δ(f)

[
∂2fC

∂xF∂xG
∂2w

∂pCG∂p
A
F

(df) +
∂2fC

∂xF∂yK
∂2w

∂oCK∂p
A
F

(df)

]

− (−1)|A||K|+|A||δ|δ(f)

[
∂2fC

∂yK∂yI
∂2w

∂oCI ∂o
A
K

(df) +
∂2fC

∂yK∂xF
∂2w

∂pCF ∂o
A
K

(df)

]

(6.54)

but the last two lines disappear because w and w̌ satisfy (6.20), (6.21) and (6.22), and the
proposition is proved.

Note that in fact it can be proved that also the second line in (6.54) vanishes, because w
satisfies (6.19), see [153].

Remembering (6.42), the third line in (6.54), can be rewritten in terms of dw and in fact it
constitutes the justification for the definition (6.42).

Proposition 87 is a corollary of proposition 6.54 and it holds precisely because w in 87 satisfies
(6.3).

The integral Iβ,α, Y [w] satisfies an other interesting property, consequence of (6.19):

Proposition 90. Let f be a copath defining Y . If some components f̆Z of f are of the type
f̆Z = gZ(yK) − hZ(xF ), where gZ ∈ G∞(Rr|s) and hZ ∈ G∞(X) for some Z, then the integral
IY [w] does not depend on the functions hZ .

Proof. The property is a consequence of (6.19) because df̆Z = dyK ∂gZ

∂yK − dx
F ∂h

Z

∂xF . Since (6.19)

holds, w(df) does not depend on ∂hZ

∂xF and so it does not depend on hZ .
See proposition 3.1 of [153].
This property can be easily checked on some examples if one uses fractional mixed forms.

I finish this chapter with the following:

Theorem 91. Let γ be a n|m-form defined on the n|m-manifold X. Let f ∈ G∞(U,Rt|q). Let
Z ⊂ X be the submanifold of X of codimension t|q, defined by z ∈ Z ⇔ f(z) = 0, id est by
fA(z) = 0, with A = 1, . . . , t|q and t ≤ n, q ≤ m. Let w be a Berezinian coform on X of codegree
t|q; let δ be the Dirac distribution defined with (6.51); then we have that:

Iγ, Z [w] =

∫

Z

w =

∫

X

γ δ(f)w(df) =

∫

Z

w γ = IZ [w γ] (6.55)

Proof. From the definition (6.51), we have that:
∫

X

γ δ(f)w(df) =

∫

Z

β w(df)

where β is any n− t|m− q Berezinian form such that:

df ∧ β =
df1 ∧ · · · ∧ df t

df̃1 ⊙ · · · ⊙ df̃q
∧ β = γ
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But, since ∀v ∈ TZ, v df = 0, then:

β w(df)|Z = [w (df ∧ β)] |Z = (w γ)|Z

and the theorem is proved.
Note that |β| = |γ| = |df | = 0 and so β w(df) = w(df)β.
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Introduction to Part III

I repeat in this introduction to the third part of my thesis some concepts already presented
in the main Introduction to this thesis, adding some details and some references.

The theories of superfields has been studied extensively since the 70’s, when supersymmetry
began to play an important role in Physics.

A supersymmetric field theory can be usually presented in two different ways: as a field
theory on a classical manifold, with fermionic and bosonic components of the field (the compo-
nents approach), or as a theory defined on a supermanifold with even and odd coordinates (the
superfield approach).

When one uses the components approach, the field equations can be derived by a variational
principle with an action defined as the integral on the classical base manifold of a Lagrangian
density. The action obviously involves both the bosonic (commuting) and the fermionic (anti-
commuting) components of the fields, treating them accordingly to the respective parities.

To express the action principle in a geometric language, we use Lagrangian densities defined
in terms of differential forms. Since the Lagrangian density typically depends on the derivative of
the components of the fields (which can be bosonic or fermionic), even if the theory is defined on
a classical (bosonic) manifold, it is clear that it is necessary to develop a calculus for differential
forms valid also for the fermionic sector. This is not simple at all and it has been done by
D. Hernández Ruipérez and J. Muñoz Masqué during 80’s, exactly for the case when the base
manifold is classical. In [76, 77, 78, 118, 119] they have indeed developed a graded variational
calculus for Lagrangian densities defined in terms of graded Kostant differential forms and they
have obtained the corresponding Lagrangian formalism (Euler-Lagrange equations, Poincaré-
Cartan forms, Noether invariants, etc.).

When the base manifold is not classical and it is a supermanifold, like in the superfield
approach to supersymmetric theories, then the task is even more difficult. The theory can still
be derived by a variational principle, but the action in this case is defined as the Berezinian
integral of a Lagrangian density, which must be therefore a Berezinian volume density.

In 1987 in [80] Hernández Ruipérez and Muñoz Masqué recognize: "the lack of an intrin-
sic definition of a suitable notion of intermediate Berezinian densities with its Cartan exterior
calculus, prevents us from developing a Lagrangian formalism...", meaning a full Lagrangian for-
malism valid also for the case when the base manifold is a supermanifold. Nonetheless, in [79]
and [80] they arrived to an intrinsic formulation of the notion of Berezinian Lagrangian density
and Berezinian critical sections. Moreover, when a theory can be expressed both with the com-
ponents and with the superfield approach, they showed the way to relate the critical sections of
the Berezinian Lagrangian density, defined on the supermanifold, to the critical sections of the
corresponding Lagrangian, defined on a bosonic manifold with graded differential forms. This
was done via a first version of what will be then called the Comparison Theorem.

In 1992 J. Monterde, in [113], showed that the Berezinian critical sections of an action de-
fined with a Berezinian Lagrangian density must satisfy a super version of the Euler-Lagrange
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equations. He arrived to his results using a notation which I find a bit heavy.
In [114], Monterde and Muñoz Masqué made a step forward in building a geometric approach

to superfield theories. While developing a version of supermechanics they present a theory defined
on a base supermanifold of dimension 1|1 and they show that the fields satisfy some Hamilton
equations which are a generalization of the Hamilton-Volterra equations (2.7) to the case when
the base manifolds has dimension 1|1. They also presented for their theory the super version of
the Poincaré-Cartan (or Cartan) form. Again it seems that these results have not been exploited
by physicists nor they have yielded any significant new studies in the mathematical literature.
This again may be due to the heavy notations used.

Note that a super Cartan form and its exterior derivative (a super symplectic form) were
also introduced in papers on Lagrangian supermechanics and Hamiltonian supermechanics. For
a geometric presentation of Lagrangian supermechanics, see L. A. Ibort and J. Marín-Solano
[83]; for Hamiltonian supermechanics see J. F. Cariñena and H. Figueroa [26]. In those papers,
however, the theories studied are defined on a base manifold which is the real one-dimensional
time-line and so they cannot be considered as field theories.

In 2002, in [115], Monterde and Muñoz Masqué further developed their theory of Hamiltonian
supermechanics: they study the supermanifold of solutions and they built on it a super symplectic
structure. In 2003, in [117], Monterde and J. A. Vallejo presented the Lagrangian version of the
same theory.

Once one disposes of a super version of the Poincaré-Cartan form, it is then natural to look for
a fully geometric version of the corresponding Hamilton-Volterra theory for superfields theories.

In fact in 2006 Monterde, Muñoz Masqué and Vallejo published a paper, [116], in which they
proposed a Hamilton-Cartan formalism for first-order Berezinian variational problems valid for
fields defined on supermanifolds of any dimension. As it had already been done in [114], they
achieved their purpose by studying, with the help of the Comparison Theorem, an associated
higher-order graded variational problem, defined on a bosonic base manifold. They obtained a
super Poincaré-Cartan form valid for theories on bases of any dimension. However they chose a
notation which I judge not very much adapted to general proofs, neither to actual calculations.
In some situations they were forced to present their results using examples of low dimensions
(typically odd dimension equal to 2). They also obtained a very beautiful and important result,
which is the generalization of first Noether theorem to super field theories (theorem 8.2 in [116]);
but they obtained it using a rather technical assumption needed in the hypothesis.

To my knowledge neither Monterde, Muñoz Masqué or Vallejo, nor any other mathematician,
tried to use the results on super Poincaré-Cartan forms to describe the general superfield theories
with the multisymplectic approach.

Independently from the results obtained by the Spanish school, previously described, there has
been, to my knowledge, only one attempt to extend the multisymplectic formalism to superfields.
S. P. Hrabak in [81, 82] initiated a study of the formulation of the classical BRST symmetry within
the framework of a multisymplectic theory. To do so, he needed to extend the multisymplectic
formalism so that it works also for field theories whose base is a classical bosonic manifold, but
whose space of fields is a supermanifold (with bosonic and fermionic sectors). He accomplished
his task in [82]. He didn’t however show how to eventually extend the formalism also to the case
when the base itself is a supermanifold.

Here in the third part of my thesis I will present a full multisymplectic version of the superfield
theories valid for any dimension (even and odd) of the base space and of the space of fields. My
results are a generalization of those obtained by Hrabak in [82] and they are based on a full
exploitation of the potential of the theory of superforms of Voronov and Zorich. They can also
be considered a natural generalization of the results obtained in the geometrical presentations of
finite dimensional supermechanics, which includes the use of a super symplectic form, like [83]
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and [26].
If one wants to build a multisymplectic superfield theory, he has to use objects (for example

the multisymplectic form) which can be integrated on a supermanifold and which in the same time
can be used for a Cartan calculus, including contraction by supervectors, external product by one
forms and external derivation. This is the difficult point. In fact, before the articles of Voronov
of 90’s, [153, 154], no such object did exist. Before the appearance of superforms of Voronov and
Zorich, the best candidates to play the role which in classical field theory is played by differential
forms were Kostant forms or pseudodifferential and integral forms. Unfortunately Kostant forms
can be integrated only on even base manifolds. On the other hand, pseudodifferential and integral
forms are good for integration but do not admit a simple and natural version of Cartan calculus.
In their works, Hernández Ruipérez, Muñoz Masqué, Monterde and Vallejo, in order to find a
way to bypass this fundamental difficulty, treated the theories defined on a superbase, relating
them to corresponding theories (of higher order) which can be understood as defined on an even
base.

In my work, I use a different approach. I believe that Voronov Zorich superforms are the
natural objects to use to build a multisymplectic theory because they can be integrated and, as
we have seen in the second part of this thesis, they admit a full Cartan calculus. So I use them
and, more specifically, I try and use, as far as possible, only fractional superforms. In this way
all the proofs and calculations become, simpler, more transparent and directly comparable to
the corresponding ones of classical field theory.

In chapter 7 I will show how to found superfield theories on an action principle, defining the
action starting from the fractional Berezinian superforms presented in 5.3. I will obtain the same
super version of Euler-Lagrange equations already obtained in [113], but using a lighter notation
and a formalism which I judge more natural and which allows simpler and shorter proofs. In
particular I show that there is no need to use an higher order Lagrangian in components for a
theory which can be described by a first order Berezinian Lagrangian.

Chapter 8 is the most important part of my thesis: it contains the main results of this work. It
consists in the presentation of the multisymplectic approach to superfield theories made with the
help of the fractional superforms defined in 5.4. In section 8.1 I define the super-multimomenta
space and the super version of the Legendre transform. In section 8.2 I present the super version of
the Hamilton-Volterra equations. In section 8.3 I introduce the super Poincaré-Cartan form and
the super multisymplectic form and I prove the theorem which relate them to the Hamiltonian
surfaces solutions of the theory. In section 8.4 I build a super symplectic structure on the super
covariant phase space (the space of solutions of the theory).

In chapter 9 I will show how the Comparison Theorem can be seen from the perspective of
the formalism introduced in the two previous chapters. The chosen concrete approach hopefully
will clarify the relations existing between the so called components theories and the so called
superfield theories. In section 9.2, I will look at the comparison from the Hamiltonian point of
view and I will make a first comparison of symplectic structures on the spaces of solutions of
theories expressed in the superfield and in the components formalisms. These results are original.

In chapter 10 I will explain how the supermultisymplectic formalism can be used to define
super Poisson brakets for super fields. In particular in section 10.1 I will study in more detail the
simplest case of supermechanics; I will show how on the space of solutions of a supermechanic
theory is naturally defined a super symplectic structure and I will relate my results to the already
published results obtained by Khudaverdian [91] [] and by Monterde and Muñoz Masqué [115].

To my knowledge, nobody has tried yet to build covariantly a super symplectic struture on
the space G of solutions of a superfield theory; apart Monterde, Muñoz Masqué and Vallejo,
in [115] and [117] quoted above, who did it for the special case of base manifold of dimension
1|1, which give rise to a supermechanics theory. In section 10.2 I show how the constructions
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expounded in chapter 4 for classical field theories, can be directly extended to the super case for
super field theories defined on base supermanifold X of any even and odd dimension. The space
G becomes then a truly super covariant phase space. From the super Poisson structure built on
G , I derive the super commutation rules to which Fermionic and Bosonic fields have to obey and
I demonstrate that these rules are exactly those expected from a physical point of view. This
will justify in a natural way the use of anticommutator for Fermionic fields.

In chapter 11 I will study the symmetries and supersymmetries of super field theories with
the techniques offered by the formalism of fractional mixed forms and from the point of view of
the super multisymplectic approach expounded in the previous chapters.

Some "super" versions of the first Noether theorem valid for supermechanics already exist:
see for example Ibort and Marín-Solano [83] and Cariñena and Figueroa [25].

L. Fatibene and M. Francaviglia, in [48] and L. Fatibene, M. Ferraris, M. Francaviglia and R.
G. McLenaghan, in [47], have tried to give a geometric interpretation of supersymmetries using
the classical tools of classical Poincaré-Cartan form and generalized vector fields defined over
a bosonic manifold for field theories whose field spaces are product of exterior powers of some
vector spaces, such that spinors can be represented.

As already said, in 2006 Monterde, Muñoz Masqué and Vallejo, [116], obtained a version of
the first Noether theorem valid for generic super field theories, but with the help of a rather
technical assumption needed in the hypothesis.

Here in Chapter 11, section 11.2, I will show that my approach allows to have a super version
of Noether theorem which is quite natural, simple to prove with my formalism, and quite general
since it does not require any specific technical assumption of the kind used in [116]. In section
11.3, I will present a super extension of the multimomentum map introduced by Gotay, Isenberg,
Marsden, Montgomery, Śniatycki and Yasskin in [63]. Both the super Noether theorem and the
super multimomentum map will be presented with a formulation which will reveal to be very
close to the corresponding one for classical theories.

Finally, in chapter 12, I will present some examples to show how all the theory can be im-
plemented for some specific Lagrangians. I will treat with my formalism the superoscillator, the
superparticle in a curved space and the 3-dimensional super σ-model.

The principal aim of this third part of my thesis is to show that fractional superforms are the
natural objects to use, when one wants to give a variational and a geometric formulation of a
super field theory, and specifically that they are the key ingredient in building the super version
of the multisymplectic formalism.



Chapter 7

Lagrangian super field theories.

In this chapter I will present an extension of the classical Lagrangian field theory to superfields
defined on supermanifolds and with value on supermanifolds.

An algebraic setting for the Lagrangian formalism over graded algebras has been proposed
by A. Verbovetsky in [146], who was looking for a super- and non-commutative generalizations
of the A. M. Vinogradov theory of C-spectral sequence, which is indeed a way to give an algebro-
geometric foundation of Lagrangian field theory. I will not follow his ideas.

A geometrical setting has already been proposed by Hernández Ruipérez, Muñoz Masqué,
and Monterde in their works during 80’s and 90’s, [76, 77, 78, 118, 119, 80, 113, 114], and by
Monterde and Vallejo in [117].

Indeed I will use a different approach for a geometrical foundation of Lagrangian superfield
theories. All the theory here presented will be based on the use of fractional (most of the time
Berezinian) superforms, defined in sections 5.3 and 5.4. I will show that this choice allows for
simpler proofs and calculations and make it transparent the analogy between the superfield and
the classical field theory.

In fact I will follow here the path already undertaken in chapter 1, extending, whenever pos-
sible, the notions and the results there presented. Sometime, when the extension is trivial, I will
consider it understood.

Let E, X and F be finite dimensional G∞-supermanifolds, E and X being connected; and
let (E, π,X, F ) be a super fiber bundle with total space E, base X, type-fiber F and bundle
G∞-projection π.

A field Φ over X is a G∞-section of the fiber bundle π and we write: Φ ∈ Γ
(
E
)
. From now

on and throughout all this section and the following one of this paper, all the maps between
supermanifolds will be considered G∞ if not otherwise stated.

With a construction totally analogous to the classical one, it is possible to define J1π, the
first order jet space of sections of E, see [133] chapter 10. It is a super fiber bundle whose super
dimension depends on the superdimensions of X and F . For any section Φ of E, j1Φ denotes its
first order jet, and it is a lift to J1π. For more details on super-jet-bundles, and another point
of view, one can look at [76, 80, 113, 114] and [61] chapter 3, where jets of sections of bundles,
whose base X is even, are considered. One can also read Bruce [19] for a categorical point of
view on curves in supermanifolds and their jets.

There is no difficulty in defining the maps j1π and j1
0π. Also the definition of the map j1

between sections of E and sections of J1π doesn’t pose any new problem, but the same one
existing in the classical case, because both spaces of sections may be infinite dimensional.

129
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On J1π, on E and on X do exist adapted atlases of charts, so that, if on an open chart U
of X we use the local coordinates (xa, xα), a = 1, · · · , n, α = 1, · · · ,m (or the coordinates xA

with A = 1, · · · , n + m), where n|m is the superdimension of X, then, on an open chart V of
E over U , it is possible to use, with a little abuse of notations, the coordinates

(
xa, xα; qi, qι

)

with i = 1, · · · , r, ι = 1, · · · , s (or the coordinates (xA, qI), with I = 1, · · · , r + s), r|s being
the dimension of the fiber F ; and on an open chart W of J1π over U it is possible to use the
coordinates

(
xa, xα; qi, qι; q̇IA

)
. The degree of q̇IA being

∣∣q̇IA
∣∣ = |A|+ |I|.

On T (J1π), I will use local adapted charts with coordinates
(
xA; qI ; q̇IA; vA; ṽA; vI ; ṽI ; vIA; ṽIA

)
,

where the positions and the names given to the indices of coordinates v should be enough to
identify them in a natural way; sometime, to be clearer, I will use the corresponding coor-

dinates
(
xA; qI ; q̇IA; vxA ; ṽxA ; vqI ; ṽqI ; vq̇

I
A ; ṽq̇

I
A

)
. If r ∈ J1π, an even generic vector v over r

(v ∈ Tr,0(J1π)) will be written in local coordinates as: v = vA ∂
∂xA + vI ∂

∂qI + vIA
∂
∂q̇I

A

. Note

that
∣∣∣vA
∣∣∣ = |A| and so |va| = 0; |vα| = 1. The coordinates of an even vectors can be even

or odd. A generic odd vector ṽ over r (ṽ ∈ Tr,1(J1π)) will be written in local coordinates as:

ṽ = ṽA ∂
∂xA + ṽI ∂

∂qI + ṽIA
∂
∂q̇I

A

. Note that
∣∣∣ṽA
∣∣∣ = |A| + 1 and so

∣∣ṽa
∣∣ = 1;

∣∣ṽα
∣∣ = 0. Also the

coordinates of an odd vectors can be even or odd. A generic vector v ∈ Tr(J1π) will be v = v+ ṽ.
There are important 1-forms on J1π, the contact forms:

Definition 92. The contact 1|0-extended-forms cI on J1π are the local forms defined on local
charts, with self-explaining notation, by:

cI = dqI − dxAq̇IA (7.1)

With the contact forms it is possible to identify the section of J1π which are lift of sections
of E exactly as in the classical framework. We have indeed:

Proposition 93. A section s ∈ Γ(J1π) is the lift of a section Φ ∈ Γ(E), and, if so, we write s =
j1Φ, if and only if ∀cI , s∗cI = 0. If in coordinates s reads: x = (xA) −→ s(x) = (xA, qI , q̇IA),
then Φ : x = (xA) −→ Φ(x) = (xA, qI)

We have now all the ingredients to define a Lagrangian super field theory.

Definition 94. Let’s consider a superbundle (E, π,X) with base X of dimension n|m. The
Lagrangian morphism LAG of a field theory defined on E is a superfiberbundle morphism between
J1π and Λn|mX where Λn|mX is the bundle of n|m-forms on the base X.

By pull-back performed with theG∞ map j1π we can define the super-fiberbundle j1π∗Λn|mX,
which is a subbundle of Λn|m (J1π

)
.

With the help of the morphism LAG, we can define the Lagrangian form:

Definition 95. The Lagrangian form L ∈ Ωn|m(J1π) associated to the Lagrangian morphism
LAG is the n|m-form over J1π defined by:

∀r ∈ J1π : L|r := j1π∗LAG(r)|r

The form L is a section of the super-fiberbundle j1π∗Λn|mX.
With the help of proposition 43, one can easily prove that:
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Proposition 96. Every Lagrangian n|m-form L ∈ Γ
(
j1π∗Λn|mX

)
can be written on a local

chart as:
L = L

(
xA; qI ; q̇IA

)
β

where β = dx1∧···∧dxn

dxn+1⊙···⊙dxn+m is the Berezinian local n|m-form defined in 42.

In the following part of this thesis, when there is no risk of confusion, for brevity I will
alternatively call Lagrangian the Lagrangian form L or the Lagrangian density L, which is a
local function on J1π, but not a global function on it.

If we pose the following:

Definition 97. If J1π is the first order jet superbundle of a superbundle (E, π,X) over the n|m-
dimensional basis X, we say that a n|m-form α ∈ Ωn|m(J1π) is horizontal, if its value is null,
or non defined, whenever applied to a multivector v ∈ Γ(T0J

1π ⊗ · · ·T0J
1π︸ ︷︷ ︸

n

⊗T1J
1π ⊗ · · ·T1J

1π︸ ︷︷ ︸
m

)

which is vertical in one of its components.

Then it is immediate to prove that:

Proposition 98. The Lagrangian L of our field theory is an horizontal n|m-dimensional differ-
ential form on J1π.

As we have seen in the section 5.5, Voronov and Zorich have shown that n|m-forms can be
integrated over n|m-supermanifold with boundary, whence a suitable definition of boundary is
given.

The action A is the integral of L on the n|m-dimensional surface s(X), where s is a section
of J1π and so s(X) ⊂ J1π is a n|m-dimensional submanifold of J1π. As in section 1 we can
define the action over a section Φ of the bundle π, using again the same name for two different
functions defined on related spaces:

A(Φ) := A(j1Φ) =

∫

j1Φ(X)

L =

∫

X

j1Φ∗L (7.2)

We assume that we have given a differential super-structure to Γ
(
E
)

and to analogous spaces
that we will meet in the following. A is then a smooth super-functional on Γ

(
E
)
.

Remark 99. For the integral appearing in (7.2) to be well defined, some conditions on X ( X
compact) or on Φ ( boundary conditions) or on both are required. However in the following, to
define a superfield theory, we will not need that the integral of j1Φ∗L is well defined on all the
base X so we will not need to use (7.2).

What we will need is to perform integrations over supermanifolds with boundary which are
compact. As we are going to see, such kind of integrals are sufficient to define the action
AU,∂U (Φ):

AU,∂U (Φ) := AU,∂U (j1Φ) =

∫

U,∂U

j1Φ∗L (7.3)

where (U, ∂U) is a supermanifold with boundary such that U ∪ ∂U ⊂ X is compact.
This definition in turns allows to define superfield theories also on non-compact supermani-

folds. In fact starting from (7.3) we will be able to define the solutions of a field theory as critical
sections of the action.
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We can proceed exactly as in chapter 1. I will underline only some differences coming from
the super-structure.

First of all, to give full sense to (7.2), to (7.3) and to similar ones, we must first choose and
fix an immersed body of X: see section 5.5. I will assume that this choice is made once and for
all. I will not keep track of this choice in the notation of the integrals below.

Then we can proceed to define AU,∂U (Φ).
As in chapter 1, for every submanifold U ⊂ X with boundary ∂U and for every section Φ,

we can define the action over U . But in the super case, we must take care of the boundary,
because integrals on supermanifolds depends on their boundaries and two supermanifolds with
boundary can have the same internal part U but different boundaries. This will not prevent us
from defining the action and its critical sections.

Remembering definitions 61, 62 and 64 we can define AU,∂U (Φ) with (7.3):

Definition 100. Let U ⊂ X be a submanifold of X with boundary ∂U and such that U∪∂U ⊂ X
is compact; let Φ be a section of the fields bundle (E, π,X); let L be the Lagrangian form on J1π;
then the action AU,∂U (Φ) on the section Φ over the supermanifold with boundary (U, ∂U) is
defined by:

AU,∂U (Φ) := AU,∂U (j1Φ) =

∫

U,∂U

j1Φ∗L

For the sake of simplicity I will sometime write AU (Φ), understanding the dependence on
∂U .

Keeping in mind the dependence both on U and on ∂U and remembering that an immersed
body has been fixed, we can then define the spaces of local sections UΦ, which share the same
values on the boundary ∂U and then we can define j1UΦ in a way completely analogous to the
one used in Chapter 1; and we can set:

Definition 101. A solution Φ of the field theory with Lagrangian L over J1π is a section
Φ ∈ Γ

(
π
)

such that, ∀U submanifold of X and for every ∂U boundary of U such that U ∪ ∂U is
compact, dAU,∂U

∣∣
UΦ

(Φ) = 0 or, equivalently, dAU,∂U
∣∣
j1UΦ

(j1Φ) = 0.

We can define an even path trough Φ in Γ
(
E
)
, or in UΦ, as a G∞ superfunction p from an

open set I ⊂ R1|0 containing the point 0 to the set Γ
(
E
)
, or UΦ, and so that p(0) = Φ. A G∞

odd path in Γ
(
E
)
, or UΦ, trough Φ will be a superfunction p from R0|1 to the set Γ

(
E
)
, or UΦ,

and so that p(0) = Φ. Let’s parametrize I with the coordinate l and R0|1 with λ; we have then:

Φ is a solution of the theory ⇐⇒ ∀U, ∀ even path p in UΦ trough Φ,
dAU
dl

∣∣∣∣
l=0

= 0 (7.4)

It can be shown that (7.4) is equivalent to

Φ is a solution of the theory ⇐⇒ ∀U, ∀ odd path p in UΦ trough Φ,
dAU
dλ

∣∣∣∣
λ=0

= 0 (7.5)

For proving one direction of the equivalence it is important to work with the Grassmann algebra
with infinite generators.

It is also possible to find a result analogous to 1.7 of section 1. For every section Φ of E
and for every U ⊂ X, we can define the vertical tangent bundle over j1Φ(X), call it Vj1Φ(J1π),
and then we can define Vj1Φ again in a way analogous to the one undertaken in section 1. Then
we can repeat the arguments given in (1.6), with the shrewdness of considering only even paths
which lead to even w ∈ Vj1Φ(J1π). The argument works because ∂Ul and Vl are indeed a n|m-
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and a n+ 1|m-manifolds; it is possible to show that j1φl(U) + ∂Ul − j
1φ(U) is a boundary of Vl

when suitable orientations are chosen and the analogous of Stokes theorem is valid for n|m-forms:
see [155] and [152] for this last statement. We finally discover that:

Φ is a solution of the theory ⇐⇒ ∀U, ∀∂U, ∀w ∈ Vj1Φ even,
∫

j1Φ(U)

w dL = 0 (7.6)

where dL is the exterior differential of r|s-forms defined with (5.6) and is the interior product
defined with (5.51).

To prove the analogous of (7.6) when X is compact without boundary is even simpler: one can
proceed as in (1.6), keeping in mind that ∂X = ∅, paying attention to the order of multiplications
and using Voronov and Zorich version of Stokes theorem for r|s-forms.

Let U ⊂ X be a local chart of an adapted atlas with coordinates as in the beginning of this
section, then:

Theorem 102. A superfield Φ ∈ Γ
(
E
)

is a solution of the Lagrangian theory with Lagrangian
defined on local charts U by L = Lβ, if and only if for every local chart U and ∀x ∈ U :

(−1)|A||I| d

dxA
∂L

∂q̇IA

(
j1Φ(x)

)
−
∂L

∂qI
(
j1Φ(x)

)
= 0 (7.7)

Proof. Let’s consider a local chart U as a submanifold U ⊂ X and let’s consider one of its
boundaries ∂U and an even path p in UΦ through Φ: p : l −→ Φl with Φ0 = Φ. Locally on
U , we can write:

AU,∂U (Φl) =

∫

j1Φl(U)

L =

∫

U

j1Φ∗
l L =

∫

U

j1Φ∗
l (Lβ)

We understand that all integrals depend on the chosen boundaries, without writing it explicitly.
On U we have:

dAU,∂U
dl

=
d

dl

∫

U

j1Φ∗
l (Lβ) =

∫

U

d

dl
j1Φ∗

l (Lβ) =

∫

U

[
d

dl
j1Φ∗

l (L)

]
j1Φ∗

l (β)

=

∫

U

[
d

dl
L(j1Φl)

]
β =

∫

U

[
∂qIl
dl

(j1Φl)
∂L

∂qI
(j1Φl) +

∂q̇Il,A
dl

(j1Φl)
∂L

∂q̇IA
(j1Φl)

]
β

=

∫

U

[
∂qIl
dl

(j1Φl)
∂L

∂qI
(j1Φl) +

∂

dl

∂

∂xA
qIl (j1Φl)

∂L

∂q̇IA
(j1Φl)

]
β

=

∫

U

[
∂qIl
dl

(j1Φl)
∂L

∂qI
(j1Φl) +

∂

∂xA

(
∂

dl
qIl (j1Φl)

∂L

∂q̇IA
(j1Φl)

)]
β

−

∫

U

[
(−1)|A||I| ∂

dl
qIl (j1Φl)

∂

∂xA
∂L

∂q̇IA
(j1Φl)

]
β

Moreover
∫

U

[
∂

∂xA

(
∂

dl
qIl (j1Φl)

∂L

∂q̇IA
(j1Φl)

)]
β

=

∫

U

[
(−1)

|A||L| ∂

∂xA

(
(−1)

|A||L| ∂

dl
qIl (j1Φl)

∂L

∂q̇IA
(j1Φl)

)]
β = 0

where the last equality holds because of the "divergence" theorem for super-integrals (see [152]
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pag. 27); and because
∣∣∣ ∂dlqIl (j1Φl)

∂L
∂q̇I

l,A

(j1Φl)
∣∣∣ = |A+ L| and ∂

dl
qIl = 0 on j1Φl (∂U). So we have:

dA

dl

∣∣∣∣
l=0

=
dAU
dl

∣∣∣∣
l=0

=

∫

U

[
∂

dl
qIl (j1Φ)

∣∣∣∣
l=0

∂L

∂qI
(j1Φ)− (−1)|A||I| ∂

dl
qIl (j1Φ)

∣∣∣∣
l=0

∂

∂xA
∂L

∂q̇IA
(j1Φ)

]
β

and, for the arbitrariness of U , ∂U and p, this imply that if Φ is a solution of the theory, then
for every U and for every x ∈ U , must be:

∂L

∂qI
(j1Φ(x))− (−1)|A||I| ∂

∂xA
∂L

∂q̇IA
(j1Φ(x)) = 0

After all this, the inverse is obvious and so the theorem is proved.
The condition (7.7) is the super Euler-Lagrange system of equations for Lagrangian super-

field theories. It had already been found by Monterde in [113] (note that in the original paper
there is a misprint in the corresponding formula in Remark 3 at the end of section 6). If one
checks in [113], or for a more recent presentation in [116] (theorem 7.6), how (7.7) has been
proved by Monterde, then one immediately realizes the advantage of using the formalism of
Voronov Zorich superforms here adopted.

Note that formula (7.7) appears already in the works of Voronov and Zorich, but in a different
context and it has there a different meaning.

We have originally built our field theory starting from the action principle 101. We could use
instead (7.7) as a definition for a solution of a Lagrangian theory given by a Lagrangian n|m-
density L on a supermanifold X. Theorem 102 proves that the two definitions are equivalent
when they are both well posed.

The formulation starting from the action principle is the one used mostly by physicists when
dealing with supersymmetric field theories treated from the super-fields point of view. Usually,
once a super-action on super-fields is given, Berezin integration over odd variable is undertaken,
to obtain a classical action on classical bosonic and fermionic fields defined on the body of
the domain of the superaction. This leads to classical Euler-Lagrange equation for those fields.
Since the starting points are the superaction, as the one I used here, and the same kind of
extremal action principle, the approach used by physicists must be equivalent to the one here
presented. In fact one could directly show that the super-Euler-Lagrange system of equations
(7.7) is equivalent to a classical Euler-Lagrange system for the classical fields which are the
coefficients of the superfield Φ in its expansion in the odd variable of the basis supermanifold X,
calculated on the body of X itself. These fields are precisely the fermionic and the bosonic fields
which appear in the classical Euler-Lagrangian system obtained by the physicists. I will not
give this proof, which is unessential having already established with theorem 102 the equivalence
between (7.7) and 101. I will treat with some more detail the subject in chapter 9 and I will
show an example in section 12.



Chapter 8

Multisymplectic super field

theories.

In this chapter I will try and extend the multisymplectic formalism to super field theories
starting from the Lagrangian set up proposed in chapter 7 and following the same path under-
taken in chapter 2 for classical field theories.

In section 8.1 I will begin to present the covariant Hamiltonian formalism for a generic regular
super field theory. I will define the super multimomenta space and the super Legendre tranform.

In section 8.2 I will define the Hamiltonian and I’ll show the super version of the Hamilton-
Volterra system (2.7).

In section 8.3 I will define a multisymplectic fractional super-form analogous to the form
defined in 16. I will prove a theorem analogous to proposition 17. I will define on the super
multimomenta space the super Cartan (or Poincaré-Cartan) form and its pullback on the first
jet space of the superfield bundle.

In section 8.4 I will then build, on the space of solutions of the theory (the super covariant
phase space), the super analogous of the symplectic form (2.11).

8.1 The super-multimomenta space and the super Legen-

dre transform

As in chapter 7, the super bundle of fields is (E, π,X) with base the n|m-dimensional su-
permanifold X and with fiber-type the supermanifold F of dimensions r|s. On X we can build
the super bundle Λn−1|mX as shown in section 5.2. On E we can build VπE, using a con-
struction analogous to the one exposed at the end of chapter 1 and adapted to supermanifolds.
The fibers of both these bundles are superspaces which are the direct sum of the even and of
the odd part of two supermodules; so in fact we have: Λn−1|mX = Λ

n−1|m
0 X ⊕ Λ

n−1|m
1 X and

VπE = Vπ,0E ⊕ Vπ,1E.
In the following we will be interested in the subbundle Bn−1|mX ⊂ Λn−1|mX whose fibers

are spanned by the n − 1|m−forms βA which I am going to define. Remember that, if v =

(v1, · · · , vn, ṽ1, · · · , ṽm) ∈ Γ(T0X × · · ·T0X︸ ︷︷ ︸
n

×T1X × · · ·T1X︸ ︷︷ ︸
m

) and if β = dx1∧···∧dxn

dxn+1⊙···⊙dxn+m is the

local canonical n|m-form defined with (5.30), then β(v) = β(v1, · · · , vn, ṽ1, · · · , ṽm) ∈ G∞U .
The superform β can be easyly extended by RS-linearity to Γ(TX×T0X × · · ·T0X︸ ︷︷ ︸

n−1

×T1X × · · ·T1X︸ ︷︷ ︸
m

)

135
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with the procedure described in proposition 33: by direct calculation it can be shown that this
is achieved when in the formula (5.30) we admit that the entries in the first row can be of the
opposite parity with-respect to the usual one. Note that, if you have a Berezinian r|s-superform
ω defined by a superdeterminant on a n|m-manifold X, then it is not obvious that its RS exten-
sion ω̂ is defined by the same superdeterminant defining ω, with first row extended to any parity
entry. In fact this is in general false, but it is true for the canonical local n|m-form β. I will
call this extended superform with the same name β, letting drop the ̂ , unless there is risk of
confusion. Then I define locally:

βa(v1, · · · , vn−1, ṽ1, · · · , ṽm) := β(
∂

∂xa
, v1, · · · , vn−1, ṽ1, · · · , ṽm) (8.1)

and

βα(v1, · · · , vn−1, ṽ1, · · · , ṽm) := β(
∂

∂xα
, v1, · · · , vn−1, ṽ1, · · · , ṽm) (8.2)

To prove that βa and βα are indeed n− 1|m-forms, we make use of lemma 48:

Proposition 103. Each βA is a local n−1|m-form and when a coordinates changing is performed
we have the following transformation rules:

βA′ = Ber(
∂x′

∂x
)
∂xA

∂xA′ βA (8.3)

Proof. βA is a local n − 1|m-form on the local chart U because obtained by contracting the
canonical local n|m-form β with the vector field ∂A and so Lemma 48 applies to it.

If U and U ′ are two overlapping local charts of X, β and β′ are the corresponding local
canonical n|m-forms and we call ∂x′

∂x
the matrix of the coordinates change, then, by direct

calculation, one can see that:

∀v ∈ Γ(T0X × · · ·T0X︸ ︷︷ ︸
n

×T1X × · · ·T1X︸ ︷︷ ︸
m

), β′(v) = Ber(
∂x′

∂x
)β(v)

So we have:

∀w ∈ Γ(T0X × · · ·T0X︸ ︷︷ ︸
n−1

×T1X × · · ·T1X︸ ︷︷ ︸
m

),

β′
A′(w) =β′(∂A′ , w) = β′(

∂xA

∂xA′ ∂A, w) =
∂xA

∂xA′ β
′(∂A, w) =

∂xA

∂xA′ Ber(
∂x′

∂x
)β(∂A, w)

= Ber(
∂x′

∂x
)
∂xA

∂xA′ βA(w)

I set by convention |βa| = 0 and |βα| = 1. This is coherent with the convention used in
the second part of this thesis. We can see that, in the same way as Λ

n−1|m
x X, also B

n−1|m
x X,

for every x is a left and right supermodule of dimension n|m which can be interpreted as a
superspace of dimension n+m|m+ n.

As in section 2.1, we can build Homπ(V E,Bn−1|mX), which is a fiber bundle over X. The
fiber over a point x ∈ X is the collection of all RS-linear maps between the supermodules
VeE and B

n−1|m
x X for all e, such that π(e) = x. As explained in section 5.1, these RS-linear

maps between supermodules can be considered as super linear maps between the corresponding
superspaces. The space of these maps is itself a supermanifold and precisely it is superdiffeomorph
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to l(r|s, n|m)⊕ l(r|s,m|n), where l(r|s, n|m) is the set of super linear maps between a superspace
of dimension r|s and a superspace of dimension m|n.

We can see Homπ(V E,Bn−1|mX) as a super fiber bundle over E; then its fiber-type is the
superspace Z = Z0 ⊕ Z1

∼= l(r|s, n|m)⊕ l(r|s,m|n).
We can call Homπ,j(V E,B

n−1|mX), j = 0, 1 the bundle over E obtained by restricting the
fiber-type Z to Zj . All these super fiber-bundles are defined in a natural way with G∞ transition
functions.

Our super-multimomenta-space (or minimal super-multiphase-space, to recall a terminology
used in section 2.1) will be a super-bundle

P ⊂ Homπ(V E,Bn−1|mX)

to be more precis we will have P ⊂ Homπ,0(V E,Bn−1|mX), when |L| = 0, and P ⊂ Homπ,1(V E,Bn−1|mX),
when |L| = 1. Let’s see all this in coordinates, to make it more clear.

On l(r|s, n|m) we can use (pAI ) as local coordinates. On l(r|s,m|n) we can use as local

coordinates (p̃AI ). On Homπ(V E,Bn−1|mX) I use an adapted atlas with local charts U with

coordinates (xA, qI , pAI , p̃
A
I ). On Homπ,0(V E,Bn−1|mX) the local coordinates are (xA, qI , pAI );

on Homπ,1(V E,Bn−1|mX) the local coordinates are (xA, qI , p̃AI ). On the corresponding U ⊂ X
are defined the canonical n|m-form β and the n− 1|m-forms βA.

The point p ∈ Homπ(V E,Bn−1|mX) with local coordinates (xA, qI , pAI , p̃
A
I ) represents the

RS-linear map between the supermodule VeE, with e ∈ E with coordinates (xA, qI), and
B
n−1|m
x X, with x ∈ X with coordinates (xA), which maps the generator ∂

∂qI ∈ VeE to (pAI +

p̃AI )βA
∣∣
x

= pAI βA
∣∣
x
, with the understandable notation pAI = pAI + p̃AI . Note that pAI , p̃AI and pAI

act on the left of βA.
Homπ(V E,Bn−1|mX) is a natural bundle over E. When coordinates are changed on E, the

p coordinates change as follow:

p′A′

I′ = Ber(
∂x

∂x′ )
∂qI

∂qI′ p
A
I

∂xA
′

∂xA
(8.4)

or equivalently:

p′A′

I′ = Ber(
∂x

∂x′ )
∂qI

∂qI′ p
A
I

∂xA
′

∂xA

p̃′A′

I′ = Ber(
∂x

∂x′ )
∂qI

∂qI′ p̃
A
I

∂xA
′

∂xA

(8.5)

so that dqI
∣∣
V E
⊗ pAI βA is globally well defined.

We can now define P . On a local chart U , I define the super Legendre transform FL, a
G∞ map between J1π

∣∣
U

and Homπ(V E
∣∣
U
, Bn−1|mU). Suppose that on J1π

∣∣
U

is defined a

Lagrangian density L = L+ L̃ so that L is even and L̃ is odd, then:

FL
(
xA, qI , q̇IA

)
=

(
xA, qI , (−1)|A| ∂L

∂q̇IA

(
xA, qI , q̇IA

)
,
∂L̃

∂q̇IA

(
xA, qI , q̇IA

))
(8.6)

Keeping in mind the transformation rules of q̇IA

q̇I
′

A′ =
∂xA

∂xA′ q̇
I
A

∂qI
′

∂qI
+
∂xA

∂xA′

∂qI
′

∂xA
(8.7)

we find that:
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Proposition 104. Formula (8.6) is a well-posed definition of a G∞ map FL : J1π −→
Homπ(V E,Bn−1|mX).

Proof. It is enough to show that (−1)|A| ∂L
∂q̇I

A

and ∂L̃
∂q̇I

A

transform like in (8.5). In fact, with a bit

of calculations and using (8.7), one finds that:

(−1)|A
′| ∂L

′

∂q̇I
′

A′

= (−1)|A
′|(−1)(|I′|+|A′|)(|A|+|A′|) Ber(

∂x

∂x′ )
∂xA

′

∂xA
∂qI

∂qI′

∂L

∂q̇IA

= (−1)|A
′|(−1)(|A|+|A′|)(|A|+|A′|) Ber(

∂x

∂x′ )
∂qI

∂qI′

∂L

∂q̇IA

∂xA
′

∂xA

= (−1)|A| Ber(
∂x

∂x′ )
∂qI

∂qI′

∂L

∂q̇IA

∂xA
′

∂xA

(8.8)

and

∂L̃′

∂q̇I
′

A′

= (−1)(|I′|+|A′|)(|A|+|A′|) Ber(
∂x

∂x′ )
∂xA

′

∂xA
∂qI

∂qI′

∂L̃

∂q̇IA

= (−1)(|A|+|A′|)(|A|+|A′|+1) Ber(
∂x

∂x′ )
∂qI

∂qI′

∂L̃

∂q̇IA

∂xA
′

∂xA

= Ber(
∂x

∂x′ )
∂qI

∂qI′

∂L̃

∂q̇IA

∂xA
′

∂xA

(8.9)

and (8.8) and (8.9) are equivalent to (8.5).
Since L is G∞, by (8.6) one can see that also FL is G∞.
So I can give the following:

Definition 105. Whenever P := FL(J1π) ⊂ Homπ(V E,Bn−1|mX) inherits from Homπ(V E,Bn−1|mX)
the differential structure of a supermanifold, we say that the super-multimomenta-space, or min-
imal super-multiphase-space, of a super-field theory is the super-fiber-bundle P = (P, πP ,X) with
total space P , with base X and with projection πP .

One can compare (8.6) with the definition of super-Legendre transformation given in [26] for
the case of supermechanics and one can notice the analogy.

Remark 106. The conditions under which FL(J1π) is indeed a sub-supermanifolds of Homπ(V E,Bn−1|mX)
are not easy to be established and a future work in this direction can be foreseen. The difficult
point here is that it is not immediate to establish when the image of a G∞ map from a super-
manifold to an other target supermanifold is indeed a sub-supermanifold of the target. From the
theorem of the inverse function of G∞ maps, see [133], it is however possible to deduce that if
FL is invertible on its image and its tangent map is invertible too, then its inverse FL−1 is also
G∞ and therefore the image of the Legendre transform FL(J1π) is a supermanifold. This fact is
useful to establish that, when the Lagrangian is regular, then P is always well defined.

The definition of the super Legendre transformation (8.6) explains the conventions chosen for
the coordinates pAI : from (8.6) one finds that we must have |pAI | = |A|+ |I|+ |L|, so that in fact

pAI = pAI when L is purely even and pAI = p̃AI when L is purely odd. Keeping in mind all the
degree conventions used until now and using (8.6) one can directly check that:

Proposition 107. If we consider P as a bundle over E, then its fiber-type is a submanifold of
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– l(r|s, n|m) when |L| = |L| = 0
– l(r|s,m|n) when |L| = |L| = 1

and we have that:

– P ⊂ Homπ,0(V E,Bn−1|mX), when |L| = 0
– P ⊂ Homπ,1(V E,Bn−1|mX), when |L| = 1

which is the proposition already anticipated above.

Sometime in the following, on a local chart of P , I will need the local functions (xA, qI , pAI ),

remembering that
∣∣pAI
∣∣ = |A|+|I|+|L| or the local functions (xA, qI , pAI , p̃

A
I ), with

∣∣∣pAI
∣∣∣ = |A|+|I|

and
∣∣∣p̃AI
∣∣∣ = |A|+ |I|+ 1.

As in the classical case, from FL we can build a map between Γ
(
J1π

)
and Γ(P ).

8.2 The Hamiltonian and super Hamilton-Volterra equa-

tions

On P it is possible to define the Hamiltonian function H as we did in section 2.2 for classical
theories:

H(xA, qI , pAI ) := q̇IAp̃
A
I + (−1)|A|q̇IAp

A
I − L

(
xA, qI , q̇IA

)
(8.10)

where we assume that q̇IA is a solution of

(−1)|A|(|L|+1) ∂L

∂q̇IA

(
xA, qI , q̇IA

)
= pAI (8.11)

Or, equivalently, that it is at the same time a solution of the following two equations:

(−1)|A| ∂L

∂q̇IA

(
xA, qI , q̇IA

)
= pAI

∂L̃

∂q̇IA

(
xA, qI , q̇IA

)
= p̃AI

(8.12)

As in the classical case, with the help of the super version of the implicit function theorem,
it can be shown that this is a good definition because the value of H does not depend on the
choice of the particular solution q̇IA, provided that some topological conditions of connectedness
are satisfied.

Since L is G∞, also H is G∞ whenever q̇IA is a G∞ function of
(
xA, qI , pAI

)
(note that we are

assuming that P has the structure of a G∞ supermanifold, see definition 105 and remark 106).
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H transforms in this way:

H ′
(
xA

′

, qI
′

, q̇I
′

A′

)
=

= sdet

(
∂x

∂x′

)
(xA)q̇IAp̃

A
I + (−1)

|A|
sdet

(
∂x

∂x′

)
(xA)q̇IAp

A
I +

− sdet

(
∂x

∂x′

)
(xA)L

(
xA, qI , q̇IA

)
+ sdet

(
∂x

∂x′

)
(xA)

∂qI
′

∂xA
(xA, qI)

∂qI

∂qI′ (xA, qI)p̃AI +

+ (−1)
|A|

sdet

(
∂x

∂x′

)
(xA)

∂qI
′

∂xA
(xA, qI)

∂qI

∂qI′ (xA, qI)pAI =

= sdet

(
∂x

∂x′

)
(xA)H

(
xA, qI , q̇IA

)
+ sdet

(
∂x

∂x′

)
(xA)

∂qI
′

∂xA
(xA, qI)

∂qI

∂qI′ (xA, qI)p̃AI +

+ (−1)
|A|

sdet

(
∂x

∂x′

)
(xA)

∂qI
′

∂xA
(xA, qI)

∂qI

∂qI′ (xA, qI)pAI

(8.13)

H can be split in two components which are both G∞:

H = H + H̃ (8.14)

where:
H = (−1)|A|q̇IAp

A
I − L

(
xA, qI , q̇IA

)

H̃ = q̇IAp̃
A
I − L̃

(
xA, qI , q̇IA

) (8.15)

By the definition of P every section z ∈ Γ(P ) is the image trough FL of a section s ∈ Γ(J1π).
If both FL and its tangent map are invertible, we say that the Lagrangian is regular, see remark
106. This implies that the equation (8.11) has no more than one solution. Comparing this
notion of regularity with the one given in [83] and [26] for supermechanics Lagrangians (id est
for theories defined on a base manifold X of dimension 1|0), we see that they are equivalent. My
definition of regularity is also equivalent to the one given by Monterde and Muñoz Masqué in
[114] and [115] for theories defined on X = R1|1.

The notion of regular Lagrangian is not, however, the most useful for what it follows. I define
now some other related notions which reveal to be of some use:

Definition 108. A Lagrangian L is said to be purely even if L = L.
A Lagrangian L is said to be purely odd if L = L̃.
A Lagrangian L is said to be even-regular if the map FL : q̇IA −→ pAI = (−1)|A| ∂L

∂q̇I
A

(
xA, qI , q̇IA

)

is invertible on its image and its inverse is G∞.

A Lagrangian L is said to be odd-regular if the map FL : q̇IA −→
∂L̃
∂q̇I

A

(
xA, qI , q̇IA

)
is invertible

on its image and its inverse is G∞.
A Lagrangian L is said to be purely even regular if it is purely even and regular.
A Lagrangian L is said to be purely odd regular if it is purely odd and regular.

Note that when L is even-regular or odd-regular, then P is always well defined (see remark
106). When L is even-regular, pAI can be used as coordinates on the fiber of P . When L is

odd-regular, p̃AI can be used as coordinates on the fiber of P .

Remark 109. If a Lagrangian L is purely even regular, then the superdimension of J1π must
be equal to the superdimension of Homπ,0(V E,Bn−1|mX).



8.2. THE HAMILTONIAN AND SUPER HAMILTON-VOLTERRA EQUATIONS 141

If a Lagrangian L is purely odd regular, then the superdimension of J1π must be equal to the
superdimension of Homπ,1(V E,Bn−1|mX). This is quite a strong condition, because it immedi-
ately implies that either the dimension of the base X is n|n, or the dimension of the fiber F of
the field bundle is r|r. This condition, nevertheless, doesn’t prevent to have interesting purely odd
regular Lagrangians: see for example the Lagrangian of the superparticle introduced in section
12.2.

We fix the following:

Definition 110. A section z ∈ Γ(P ) is called a lifted-section if FL−1z = j1Φ for a section
Φ ∈ Γ(E).

We can then characterize locally the lifted-sections of P with the help of H. We have indeed:

Theorem 111. When the Lagrangian L is even-regular, a section z ∈ Γ
(
FL(J1π)

)
is a lifted-

section if and only if for every local chart U and for every x ∈ U :

(−1)|I| ∂q
I

∂xA
(z(x)) =

∂H

∂pAI
(z(x)) (8.16)

When the Lagrangian L is odd-regular, a section z ∈ Γ
(
FL(J1π)

)
is a lifted-section if and only

if for every local chart U and for every x ∈ U :

∂qI

∂xA
(z(x)) =

∂H̃

∂p̃AI

(z(x)) (8.17)

Proof. To make calculations shorter, in this proof I indicate with the symbol pAI a coordinate

which can be alternatively pAI or p̃AI .
For the definition of H, and because FL−1z is well defined being L regular, we have that:

∂H

∂pAI
(z(x)) = (−1)|B|(|L|+1) ∂q̇

J
B

∂pAI
pBJ (z(x))

+ (−1)|B|(|L|+1)(−1)(|A|+|I|+|L|)(|B|+|J|)q̇JBδ
I
Jδ
A
B (z(x))−

∂q̇JB
∂pAI

∂L

∂q̇JB

(
FL−1z(x)

)

For (8.11), we have that ∂L
∂q̇J

B

(
FL−1z(x)

)
= (−1)|B|(|L|+1)pBJ (z(x)) and so:

∂H

∂pAI
(z(x)) = (−1)|A|(|L|+1)(−1)(|A|+|I|+|L|)(|A|+|I|)q̇IA (z(x))

= (−1)|I|(|L|+1)q̇IA (z(x))

But q̇IA (z(x)) = q̇IA
(
FL−1z(x)

)
.

If FL−1z = j1Φ with Φ ∈ Γ(E), then q̇IA
(
FL−1z(x)

)
= ∂qI

∂xA and so one implication is proved.

Inversely, if ∂H
∂pA

I

(z(x)) = (−1)(|I|)(|L|+1) ∂q
I

∂xA (z(x)), then we must have q̇IA
(
FL−1z(x)

)
=

∂qI

∂xA (z(x)); and the other implication is proved too.
Note that, as in the classical case, H is not really a function defined on P , but a more

complicated object, as shown by (8.13). As in the classical case (see section 2.2), one could
first define a super-multiphase-space Z, find out that Z is a vector bundle over the minimal
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super-multiphase-space P , and then define H as a section of Z (see [82] and [24], [63], [108] for
the construction of Z in the classical case).

On a local chart, with canonical horizontal n|m-form β, one can define the local Hamiltonian
n|m-form H := Hβ but in general this will not lead to a well defined Hamiltonian n|m-form on
P .

I can now prove the extension of Volterra theorem 12 to super-field-theories.

Theorem 112. Let L be a purely even regular Lagrangian function on J1π and let H be its
corresponding Hamiltonian function on P . If a field Φ ∈ Γ(π) is a solution of the Euler-Lagrange
system of equations (7.7), ∀U local chart and ∀x ∈ U ⊂ X, id est if it is a solution of the
Lagrangian field theory, then ∀U local chart and ∀x ∈ U ⊂ X, z = FL ◦ j1Φ is a solution of the
system (8.18).

Conversely if z ∈ Γ(P ), ∀U local chart and ∀x ∈ U ⊂ X, satisfies:





(−1)|I| ∂q
I

∂xA
(z(x)) =

∂H

∂pAI
(z(x))

(−1)|A|(−1)|A||I| ∂p
A
I

∂xA
(z(x)) = −

∂H

∂qI
(z(x))

(8.18)

then there is a section Φ ∈ E , solution of the field theory, such that z = FLj1Φ.
Let L̃ be a purely odd regular Lagrangian function on J1π and let H̃ be its corresponding

Hamiltonian function on P , then if a field Φ ∈ Γ(π) is a solution of the Euler-Lagrange system
of equations (7.7), ∀U local chart and ∀x ∈ U ⊂ X, id est if it is a solution of the Lagrangian
field theory, then ∀U local chart and ∀x ∈ U ⊂ X, z = FL ◦ j1Φ is a solution of the system
(8.19).

Connversely if z ∈ Γ(P ), ∀U local chart and ∀x ∈ U ⊂ X, satisfies:




∂qI

∂xA
(z(x)) =

∂H̃

∂p̃AI

(z(x))

(−1)|A||I| ∂p̃
A
I

∂xA
(z(x)) = −

∂H̃

∂qI
(z(x))

(8.19)

then there is a section Φ ∈ E , solution of the field theory, such that z = FLj1Φ.

Proof. I will prove the theorem for L = L purely even regular. Similar arguments would give
the proof for L = L̃ purely odd regular.

For the first implication: by theorem 111 we already know that FLj1Φ(x) satisfies the first
equation in (8.18). From the definition of H, let’s now calculate:

∂H

∂qI
(
FLj1Φ(x)

)
=(−1)|A| ∂q̇

J
A

∂qI
(
j1Φ(x)

)
pAJ
(
FLj1Φ(x)

)
−
∂L

∂qI
(
j1Φ(x)

)

−
∂q̇JA
∂qI

(
j1Φ(x)

) ∂L
∂q̇JA

(
j1Φ(x)

)

and since (−1)|A|pAJ
(
FLj1Φ(x)

)
= ∂L

∂q̇J
A

(
j1Φ(x)

)
, we have that:

∂H

∂qI
(
FLj1Φ(x)

)
= −

∂L

∂qI
(
j1Φ(x)

)
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and when Φ ∈ E , (7.7) holds and we have:

−
∂H

∂qI
(
FLj1Φ(x)

)
= (−1)|A||I| d

dxA
∂L

∂q̇IA

(
j1Φ(x)

)
= (−1)|A|(−1)|A||I| ∂p

A
I

∂xA
(
FLj1Φ(x)

)

and the first implication is proved.
For the second implication: if z satisfies the first equation in (8.18), then, by theorem 111, it
exists a section Φ ∈ Γ(π) so that z = FLj1Φ. Then:

−
∂H

∂qI
(z(x)) = −

∂H

∂qI
(
FLj1Φ

)
=

∂L

∂qI
(
j1Φ(x)

)

and

(−1)|A|(−1)|A||I| ∂p
A
I

∂xA
(z(x)) = (−1)|A|(−1)|A||I| ∂p

A
I

∂xA
(
FLj1Φ

)
=

= (−1)|A||I| d

dxA
∂L

∂q̇IA

(
j1Φ(x)

)

and if z = FLj1Φ satisfies the second equation in (8.18), then j1Φ must satisfy (7.7) and so Φ is
a solution of the theory and Φ ∈ E .

A first version of an Hamilton-like system of equations valid in the case when X = R1|1, can
be found in [115], where Monterde and Muñoz Masqué treat supermechanics as a theory on R1|1.
The system of equations found there is however much more complicated than system (8.18) and
its analogy with the classical system 2.7 or with the classical Hamilton equations for mechanics
is not immediately apparent.

Note that, when L has not a pure parity, but it is a mix of even and odd components (let’s
call it a non-homogeneous Lagrangian), then the situation is rather more complicated. Indeed
when L is at the same time even-regular and odd-regular, the Euler-Lagrange system is clearly
in general overdetermined. When it is satisfied then the corresponding system of equations
(8.18) and (8.19) are satisfied simultaneously. The converse holds when (8.18) and (8.19) are
simultaneously satisfied.

In general when L is even-regular but not purely even, then in order to be a solution of the
theory a section of P must satisfy (8.19) plus some other conditions that can be interpreted as
constraints. A similar situation occurs when L is odd-regular but not purely odd.

An interesting situation could occur when L is regular without being neither even-regular,
nor odd-regular. I will not treat these more complicated situations in this thesis.

I am not sure that non-homogeneous Lagrangians could be of interest for Physics, and I
don’t know if non-trivial, mathematically interesting, examples of non-homogeneous Lagrangians
(regular or not) can be given, such that the corresponding P is a well defined supermanifold, see
remarks 106 and 109. In the following I will not treat in details non-homogeneous theories.

8.3 The super-multisymplectic form

In this section I will give a geometric formulation of a superfield theory based on the use of
a multisymplectic fractional superform.

The image of a section z ∈ Γ
(
P
)

is a n|m-dimensional surface in the total space P . As
we did in section 2.3 for the classical case, we can address ourselves the question: if we have a
n|m-dimensional submanifold G ⊂ P , when does a Φ ∈ E exist so that G = FL ◦ j1φ(X)? What
geometric conditions has G to satisfy?
Exactly as in the classical case:
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1. G has to be the image of a section z ∈ Γ
(
P
)
, so: ∃z ∈ Γ

(
P
)

so that G = z(X)

2. z has to be the image trough FL of a section s ∈ Γ
(
J1π

)
, so: ∃s ∈ Γ

(
J1π

)
so that z =

FL(s);

3. s must belong to j1Γ
(
E
)
, so: ∃Φ ∈ Γ

(
E
)

so that s = j1Φ;

4. Φ must be a solution of the theory, so: Φ ∈ E ; or, which is equivalent, Φ has to satisfy one
of the conditions in (7.4), (7.5), (7.6), or (7.7).

We call Hamiltonian a n|m-submanifold of P which satisfies the above four conditions; we call
G the space of all Hamiltonian submanifolds. Then G and E are in one-to-one correspondence
and they are indeed diffeomorph if a suitable G∞-differential structure is put on them.

As in the classical case, if we call i the immersion of G in P , we have:

Proposition 113. Let U be a local chart on P and let β be the local canonical n|m-form on U ,
let G ⊂ P be a simply connected n|m-dimensional submanifold of P and i its immersion map in
P , then G is the image of a section z ∈ Γ

(
P
)

if and only if ∀U local chart, i∗β 6= 0.

Condition 2 is automatically satisfied because P = FL(J1π).
If L is even-regular or odd-regular then, with understandable notations, theorem 111 shows

that:
∂H

∂pAI
(FLs(x)) =

(
−1
)(|L|+1)(|I|)

q̇IA (s(x))

Therefore we have that:

gI := FL∗c
I = dqI −

(
−1
)(|L|+1)(|I|)

dxA
∂H

∂pAI
(8.20)

where cI are the contact local extended-forms on J1π defined in chapter 7 with (7.1). Identity
(8.20) is a shortcut for one of the two identities:

gI = dqI − dxA
∂H̃

∂p̃AI

(8.21)

and

gI = dqI −
(
−1
)(|I|)

dxA
∂H

∂pAI
(8.22)

The gI can be considered as "naive" local 1-forms on P or local 1|0-extended-forms on P : I
call them contact forms.

If we call section-submanifolds those n|m-submanifolds G ⊂ P which satisfy condition 1 ,
and we call lifted-submanifolds those n|m-submanifolds G ⊂ P which satisfy conditions 1, 2 and
3, then Condition 3 translates to the following:

Proposition 114. Let L be an even-regular or an odd-regular Lagrangian function on J1π
and H be its corresponding Hamiltonian function on the super-multimomenta-space P , let gI

be the contact local forms on FL(J1π), then a section-submanifold G ⊂ P with G = z(X) for
z ∈ Γ

(
FL(J1π)

)
is a lifted-submanifolds of P if and only if ∀ gI : z∗gI = 0.

Note that this condition is equivalent to the first equation of 8.18 or 8.19.
I now show what is the super-correspondent of the multisymplectic form.



8.3. THE SUPER-MULTISYMPLECTIC FORM 145

Definition 115. Let L be an even-regular or an odd-regular Lagrangian function on J1π and H
be its corresponding Hamiltonian function on the super-multimomenta-space P , let U be a local
chart of P . I call the super-multisymplectic form the fractional n+ 1|m-local-form ω, which is a
G∞-map from T0U × · · · × T0U︸ ︷︷ ︸

n+1

×T1U × · · · × T1U︸ ︷︷ ︸
m

to RS, defined locally by:

∀ (v0, v1, · · · , vn, ṽ1, · · · , ṽm) ∈ T0U × · · · × T0U︸ ︷︷ ︸
n+1

×T1U × · · · × T1U︸ ︷︷ ︸
m

ω (v0, v1, · · · , vn, ṽ1, · · · , ṽm) =

= − sdetn+2|m


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pa

I
m ṽx1
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m




+

− sdetn+1|m




vq
I

0
∂H
∂qI vx

1

0 · · · vx
n

0 vx
n+1

0 · · · vx
n+m

0

vq
I

1
∂H
∂qI vx

1

1 · · · vx
n

1 vx
n+1

1 · · · vx
n+m

1

...
...

. . .
...

...
. . .

...

vq
I

n
∂H
∂qI vx1

n · · · vxn

n vxn+1

n · · · vxn+m

n

ṽq
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1 ṽx
n+1

1 · · · ṽx
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+
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− sdetn+1|m
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ṽx
1

1 · · · ṽx
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

(8.23)

where the symbols vp
A
I are shortcuts for vp

A
I or vp̃

A
I , the symbols ∂H

∂pA
I

are shortcuts for ∂H

∂pA
I

or

∂H̃

∂p̃A
I

, according to the parity of L; and where sum over repeated indexes (also when in different

columns) is understood as usual.

A much more concise expression for ω will be given in Formula (8.24).
It is still to be proven that ω is in fact a n+ 1|m-form.

Proposition 116. The super-multisymplectic function ω is a local n+ 1|m-form.

Proof. Note that in each of the four matrices defining ω all entries respect the parity required
by a classical supermatrix with the exceptions of at most the entries in the first and the second
columns. Then this proposition is a direct consequence of theorem 38 and Lemma 48.

Proposition 117. The super-multisymplectic function ω is well defined globally.

Proof. The proof relies on the fact that, with the use of (5.40), (5.52) and (5.53) and using the
proprieties of the wedge product (5.55) and (5.60) and of the exterior derivative (5.48) and (5.62),
one can prove that:

ω = −dqI ∧ dpAI ∧ βA − dH ∧ β = d(dqI ∧ pAI βA −Hβ) (8.24)

But the form dqI ∧ pAI βA −Hβ is globally well defined. To prove it, we first have to note that
from formula (5.56) it follows immediately that:

dxA ∧ βA = (−1)|A|β (8.25)

where there is no sum on repeated indexes. More generally we have that:

dxB ∧ βA = (−1)|A|βδBA (8.26)

So, changing coordinates and remembering (8.3), (8.5) and (8.13), we find:

dqI
′

∧ pA
′

I′ β
′

A′ −H ′β′

=

(
dqI

dqI
′

dqI
+ dxB

dqI
′

dxB

)
∧ Ber

(
∂x

∂x′

)
∂qJ

∂qI′ p
A
J

∂xA
′

∂xA
Ber

(
∂x′

∂x

)
∂xC

∂xA′ βC

−

[
Ber

(
∂x

∂x′

)
H + (−1)

|A|(|L|+1)
Ber

(
∂x

∂x′

)
∂qI

′

∂xA
∂qI

∂qI′ p
A
I

]
Ber

(
∂x′

∂x

)
β

= dqI ∧ pAI βA −Hβ + (−1)
|A||L|

(−1)
|A| dq

I′

dxA
∂qJ

∂qI′ p
A
J β − (−1)

|A|(|L|+1) dq
I′

dxA
∂qJ

∂qI′ p
A
J β

= dqI ∧ pAI βA −Hβ

(8.27)
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so also its exterior derivative is globally well defined and theorem is proved.
Note that the calculation presented above with Formula (8.27) strongly relies on the properties

of Voronov-Zorich superforms and their Cartan Calculus, introduced in the Second Part of this
thesis, and on the definition of the super multimomenta space P and of the Hamiltonian H,
given above in this Chapter. It is precisely having in mind Proposition 117 that most of the
preliminary work of Chapters 5 and of Sections 8.1 and 8.2 has been made.

Definition 118. The global n|m-form defined locally by:

θ := dqI ∧ pAI βA −Hβ (8.28)

is called the Cartan form on the super-multimomenta-space P .

Note that θ = FL∗L+ gI ∧ pAI βA.
Note that both θ and ω are fractional superforms; indeed:

θ := dqI ∧ pAI βA −Hβ = dqI ∧ pAI

(
∂A

dx1 ∧ · · · ∧ dxn

dxn+1 ⊙ · · · ⊙ dxn+m

)
−H

dx1 ∧ · · · ∧ dxn

dxn+1 ⊙ · · · ⊙ dxn+m

ω = −dqI∧dpAI ∧βA−dH∧β = −dqI∧dpAI ∧

(
∂A

dx1 ∧ · · · ∧ dxn

dxn+1 ⊙ · · · ⊙ dxn+m

)
−dH∧

dx1 ∧ · · · ∧ dxn

dxn+1 ⊙ · · · ⊙ dxn+m

It is important to note that the equality (8.24) establishes a direct link between the super-
multisymplectic form ω and its classical counterpart defined with 16.

The superforms defined here with (8.28) and (8.24) can be compared with the analogous
Cartan forms defined in [83] and [26] for the supermechanics, which can be considered as a
special case for X = R1|0, and with the super Poincaré-Cartan forms defined in [114], [117] and
[115] for their supermechanics on R1|1, which can be considered as the integral of my θ taken on
an odd submanifold of R1|1 transverse to the even time line.

My super Cartan form can be also compared with the super Cartan form defined by Monterde,
Muñoz Masqué and Vallejo in [116] and valid for every dimension of X. One sees that my θ
defined with (8.28) has a closest and more transparent connection with the classical Cartan form.
I think that the notation introduced in chapter 5 for fractional superforms helps in keeping
formula lighter; moreover the very use of Voronov Zorich superforms, in my approach, allows to
make evident the parallelism between classical and super theory.

I can now prove the main result of this thesis:

Theorem 119. Let L be a purely even-regular or a purely odd-regular Lagrangian function
on J1π and H be its corresponding Hamiltonian function on the super-multimomenta-space P ,
then a section-submanifold G ⊂ P , of the form G = z(X) for z ∈ Γ

(
FL(J1π)

)
, is a Hamiltonian

submanifold of P if and only if ∀U local chart of P , with corresponding local super-multisymplectic
n + 1|m-form ω, and ∀u ∈ Γ (T0U), z∗(u ω) = 0; where T0U is the even tangent space to U ,
and
u ω (v1, · · · , vn, ṽ1, · · · , ṽm) := ω (u, v1, · · · , vn, ṽ1, · · · , ṽm).

Proof. What we have to prove is that:

∀u ∈ Γ (T0U) , ∀v = (v1, · · · , vn, ṽ1, · · · , ṽm) ∈ Γ


T0X × · · · × T0X︸ ︷︷ ︸

n

×T1X × · · · × T1X︸ ︷︷ ︸
m




with (v1, · · · , vn) and (ṽ1, · · · , ṽm), RS-linearly independent,

ω (u, z∗v1, · · · , z∗vn, z∗ṽ1, · · · , z∗ṽm) = 0
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Indeed, if (v1, · · · , vn) are linearly dependent, then their images trough z∗ are linear dependent
too and it is easy to see that the value of their contraction with ω is 0. If (ṽ1, · · · , ṽm) are linearly
dependent, it is easy to see that ω is not defined on their image through z∗. We can then extend
ω to value 0 there.

I chose v so that, on the local chart U , va = ∂a and ṽα = ∂α. Then:

∀x ∈ U, z∗∂A
∣∣
x

=
∂

∂xA
∣∣
z(x)

+
∂qI

∂xA
(z(x))

∂

∂qI
∣∣
z(x)

+
∂pBI
∂xA

(z(x))
∂

∂pBI

∣∣
z(x)

I want now to calculate ω (u, z∗∂1, · · · , z∗∂n+m) (z(x)) for a generic u ∈ Γ (T0U) and a generic
x ∈ X. Note that any other v′, with the required characteristics of linear independence, is linked
to the chosen v by v′ = gv where g ∈ GL(n|m) and consequently z∗v′ = gz∗v; so, because of
Lemma 48, ω(u, z∗v′) = Ber g ω(u, z∗v). If I can show that ω (u, z∗∂1, · · · , z∗∂n+m) (z(x)) = 0
for a generic u, then the same holds for any v′.

I’ll carry on the calculations separately for the terms appearing in (8.23).
From the first term we have:
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(8.29)
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From the second term we have:
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(8.30)

From the third and the fourth term we have:
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= − det
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(8.31)

Adding (8.29), (8.30) and (8.31), we find that ω (u, z∗∂1, · · · , z∗∂n+m) (z(x)) is equal to:
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(8.32)

Then, being uq
I

, up
A
I , ux

b

and ux
n+β

arbitrary, 8.32, compared with (8.18) and (8.19), proves
the theorem.
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Note that part of the proof of theorem 119 could be rewritten exploiting the properties of the
internal and external products for superforms. I chose to present instead explicit calculations, to
not hide what is behind the definitions of fractional superforms.

The arguments used in proving theorem 119 can be easily adapted to be used when the vector
field u is odd and we make use of the extension in the first argument of ω. We obtain this way
the following theorem:

Theorem 120. Let L be a purely even-regular or a purely odd-regular Lagrangian function on
J1π and H be its corresponding Hamiltonian function on the super-multimomenta-space P , then
a section-submanifold G ⊂ P , with G = z(X) for z ∈ Γ

(
FL(J1π)

)
, is a Hamiltonian submanifold

of P if and only if ∀U local chart of P , with corresponding local super-multisymplectic n+ 1|m-
extended-form ω̂, and ∀u ∈ Γ (T1U), z∗(u ω̂) = 0; where T1U is the odd tangent space to U ,
and
u ω̂ (v1, · · · , vn, ṽ1, · · · , ṽm) := ω̂ (u, v1, · · · , vn, ṽ1, · · · , ṽm).

Again, as in the classical case, we can note that in theorems 119 and 120 it is requested in
the hypothesis that G is a section-submanifold: the fact that G ends out to be also a lifted-
submanifold is a consequence of the condition imposed on it. This can be seen if one notes that
ω can also be written locally as

ω = −gI ∧ dpAI ∧ βA − dq
I ∂H

∂qI
∧ β

If a section-submanifold G satisfy the condition required in proposition 119 and 120, then this
last one can be applied to u = ∂

∂pB
J

and this yields that ∀B,∀J, z∗(gJ ∧ βB) = 0 which in turns

yields that ∀J, z∗(gJ ) = 0.

The study of the purely even and purely odd regular cases can be used as the starting point
for the study of more complicated non-regular and/or non-homogeneous Lagrangians.

8.4 The symplectic structure of the super covariant phase

space

Having at hand the super-multisymplectic form, we can follow the path undertaken in the
classical case in section 2.4.

We call again G the space of Hamiltonian submanifold of P and we build on it a symplectic
structure. I will then sometime call G the super covariant phase space.

The super covariant phase space is in general infinite-dimensional. I will not treat here the
problem of how to give it a superdifferential structure such that it can be treated as an infinite-
dimensional supermanifold. For a possible solution of this problem in a categorical framework
of supermathematics, one can see A. Alldridge, [1] or C. Sachse, [138] and F Hanish, [67], who
worked on older ideas of V. Molotkov, [112]. One can also read the introductions and consult the
bibliographies of the works quoted above to find about other possible approaches to this subject.

Suppose that on G a suitable super-differential structure is given, such that we can speak
about its tangent module TGG at one of its points G ∈ G . Let δuG ∈ TGG be an even vector
over G: it is a vector tangent to an even path in G and it is represented by some u ∈ Γ (i∗ (V P )),
id est a section over G of the pull-back image of the vertical (with respect to the projection πP
of the total space P onto the base X) tangent bundle V P by the embedding map i : G −→ P .
The section u can be both even or odd. As in the classical case, u can be seen as a vector field
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(even or odd) on G, "following" which, each point g ∈ G is moved to a point g′ ∈ G′, being
G′ ∈ G an other Hamiltonian n|m-curve. u deforms an Hamiltonian n|m-curve G into another
Hamiltonian n|m-curve G′. Considerations similar to the ones made at the end of sections 2
could be made. What is most interesting is the definition of a symplectic form on TG .

As in the classical case, we can consider a slice Σ of co-dimension 1 in P , with the property
that for any Hamiltonian n|m-curve G ∈ G the intersection of Σ with G is transverse. In the
super case we have two possible choices:

1. the codimension of Σ is even;

2. the codimension of Σ is odd.

We pick up the first choice.
I don’t treat here the problems involved with the orientation of Σ.
Once a Σ with a suitable orientation is chosen, we can then define ΩΣ to be a functional

acting on couples of vectors of TG and mappingthemtoRS in the following way:

Definition 121. Let be δ1G, δ2G ∈ TG,0G two even vectors at G ∈ G , and let u1, u2 ∈
Γ (i∗ (V0P )) be the corresponding even vector fields over G, then we pose:

ΩΣ

∣∣
G

(
δ1G, δ2G

)
:=

∫

Σ∩G
(u1 ∧ u2) ω (8.33)

Definition 122. Let be δ1G, δ2G ∈ TGG two vectors on G ∈ G of generic parities, and let be
u1, u2 ∈ Γ (i∗ (V P )) the corresponding vector fields over G, then we pose:

ΩΣ

∣∣
G

(δ1G, δ2G) :=

∫

Σ∩G
(u1 ∧ u2) ω̂ =

∫

Σ∩G
ω̂ (u1, u2, ·) (8.34)

where ω̂ is the extension of ω in the first two arguments. ΩΣ is our symplectic 2|0-extended-form
on the infinite dimensional supermanifold G .

Note that, by the definition of ω̂, 33, we have that:

ΩΣ

∣∣
G

(δ1G, δ2G) = (−1)|δ1G||δ2G|ΩΣ

∣∣
G

(δ2G, δ1G)

and ΩΣ can be seen as a 2-form à la Kostant on G .
Note that, since |ω| = |L|, we have that |Ω| = |L| + m, where m is the odd dimension of X

and where the shift is due to the Berezinian integration in (8.34).
In the special case of X = R1|0, the integral of ω over Σ ∩ G reduces to an evaluation at a

fixed time t0 and the super symplectic form ΩΣ reduces substantially to ω evaluated at t0. In
this case the symplectic form Ω coincides with the one found for supermechanics in [83]. The
symplectic structure presented in [26] is more difficult to compare to mine, due to the more
involute notation.

A symplectic structure on the space of solutions of their theory has been constructed also
by Monterde, Muñoz Masqué and Vallejo in [115]. It corresponds to the symplectic structure
on the space of solutions constructed here for theories built on a base X = R1|1. Note that, in
[115], the authors cite the fact their symplectic superform has parity opposite to the one of the
Lagrangian: this agrees with what we have seen above when m = 1.

It is important to note that, for ΩΣ to be well defined, Σ has to be compact; otherwise it
could happen that Ω is defined only on a subset of vectors of TG . Finding a compact Σ which
satisfies the conditions exposed above is always possible when X itself is compact or when X is
the product of a compact supermanifolds times R1|0.

The symplectic form Ω on G can be pull-back on E . We can pull-back ω by FL on J1π.
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Definition 123. o := FL∗ω̂ is called the super-multisymplectic form on (J1π)

Using (8.24) one can see that:

Proposition 124. If L = L is purely even regular, then:

o = FL∗d(dqI ∧ pAI βA −Hβ)

= d

[
dqI ∧ (−1)|A| ∂L

∂q̇IA
βA − (−1)|A|q̇IA(−1)|A| ∂L

∂q̇IA
β + Lβ

]

= d
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cI ∧ (−1)|A| ∂L

∂q̇IA
βA + Lβ

]
(8.35)

If L = L̃ is purely odd regular, then:

o = FL∗d(dqI ∧ p̃AI βA − H̃β)

= d
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dqI ∧

∂L̃

∂q̇IA
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I
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(8.36)

In general:

o = FL∗d(dqI ∧ pAI βA −Hβ)

= d

[
dqI ∧ (−1)|A| ∂L

∂q̇IA
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I
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= d

[
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|A|(|A|+|L|)
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βA + Lβ

]
(8.37)

On J1π we consider a compact slice Σ of co-dimension 1|0 with the property that, for any
s = Γ(J1π), the intersection of Σ with s(X) is transverse. We will then have j1π(Σ) = ΣX where
ΣX is a n − 1|m-submanifold of X. If we call i the embedding map i : s(X) →֒ J1π, we can
then define OΣ to be a functional acting on couples of vectors on s ∈ Γ(J1π) and sending them
to RS in the following way:

Definition 125. Let be δ1s, δ2s ∈ TsΓ(J1π) two vectors on s ∈ Γ(J1π), and let be u1, u2 ∈
Γ
(
i∗
(
Vj1πJ

1π
))

the corresponding vertical vector fields over s(X), then we pose:

OΣ

∣∣
s

(δ1s, δ2s) :=

∫

Σ∩s(X)

(u1 ∧ u2) ô (8.38)

and OΣ is our symplectic 2|0-form on Γ(J1π).

Again there is almost no difference from the classical case. OΣ can be restricted to j1E ⊂
j1Γ(E) ⊂ Γ(J1π). Let be i : j1Φ(X) →֒ J1π the embedding map of j1Φ(X). Let be
δ1j

1Φ, δ2j
1Φ ∈ Tj1φj

1E two vectors on j1Φ ∈ j1E , and let be u, v ∈ Γ
(
i∗
(
Vj1πJ

1π
))

the
corresponding vertical vector fields over j1Φ(X), then we pose:

OΣ

∣∣
j1Φ

(
δ1j

1Φ, δ2j
1Φ
)

:=

∫

Σ∩j1Φ(X)

(u ∧ v) ô (8.39)
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To have an idea of how O can be computed on local charts, let’s consider a local chart U so
that Σ is defined locally by x1 = 0, then for δ1j

1Φ and δ2j
1Φ even we have:

OΣ,U

∣∣
j1Φ

(
δ1j

1Φ, δ2j
1Φ
)

:=

∫

Σ∩j1Φ(U)

v u o =

=

∫

Σ∩j1Φ(U)

[
−uq
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(
vq

J ∂2L

∂qJ∂q̇I1
+ vq̇

J
B

∂2L

∂q̇JB∂q̇
I
1

)
+ vq

I

(
uq

J ∂2L

∂qJ∂q̇I1
+ uq̇

J
B

∂2L

∂q̇JB∂q̇
I
1

)]
β1

(8.40)

As in the classical case, it has to be noted that calling OΣ a symplectic form may be an
abuse. It is indeed a 2|0-form on its, possibly infinite dimensional, supermanifold of definition,
but it may not be non-degenerate, unless some hypotheses of regularity on the Lagrangian L are
assumed.



Chapter 9

Comparison theorems

Supersymmetric field theories are defined in the Physics literature with the superfield on
supermanifolds formalism or with the so called components formalism, where the bosonic and
fermionic fields are defined over conventional even manifolds. In this chapter I want to prove
the existence of an isomorphism between the space of fields of a supersymmetric theory defined
with the superfield formalism and the space of fields of a corresponding theory presented with
the components formalism. I want to prove also the existence of an isomorphism between the
spaces of solutions of the corresponding theories, and I want to compare the symplectic structures
naturally arising from the two theories.

It is sometime said that, to give sense to the isomorphisms above, it is necessary to use the
functor of points formalism for treating the supermanifolds: for such an assertion see for example
Freed [54]; for a presentation of the functor of points formalism see [35]. What follows shows how
to make sense of them within a concrete formalism which allows a more intuitive interpretation
in terms of geometrical objects.

The material presented in this chapter can also be interpreted as the translation using my
formalism of the Comparison Theorem formulated with other formalisms. The Comparison The-
orem establishes indeed an equivalence between a first order Lagrangian super theory defined on
a base manifold X of dimension n|m and a corresponding m+1-th order Lagrangian supertheory
defined in a suitable way. The two theories have, at least classically, the same physical meaning,
since they have spaces of solutions which are diffeomorph. The theorem was formulated in a first
version in [80] and reformulated in [113] and [114].

In my version, the theories compared are a first order Lagrangian theory defined on a base
manifold X of dimension n|m and a corresponding first order Lagrangian theory defined on
its n-dimensional body X. The fact that both theories are first order is a consequence of a
suitable choice of the fields target manifolds used. This fact, by the way, also clarifies why both
theories admit (whence the Lagrangian are chosen) a canonical Poincaré-Cartan form (which is
not obvious for m+ 1-th order Lagrangian theories).

I will treat with some more details the case when the starting superfield theory has for field
space an even supermanifold. The Comparison Theorem is valid in the more general case, which
I will not treat in details, but which can easily be dealt with.

In section 9.1 I will treat the Lagrangian approach obtaining results analogous to the one
found in [80], [113] and [114].

In section 9.2 I will treat the Hamiltonian approach and I will make a first comparison of
symplectic structures on the spaces of solutions of theories expressed in the so called superfield
and in the so called components formalisms. The results there presented are original.

155



156 CHAPTER 9. COMPARISON THEOREMS

I will sacrifice some rigor and precision for a shorter presentation.

9.1 The comparison theorem

Suppose that the fields-super-bundle E has base X with dimension n|m, has fiber-type F
with dimension r|0 and has projection π. Then F has only even coordinates; on a local chart
the index I, of local coordinates qI , is only even. From now on I will indicate that index with
i. I call X = ǫ (X) the body of X and b (X) its immersed body, see section 5.5. I will suppose
from now on that we work with a subatlas of X such that in all local charts U with coordinates
(xa, xα) and ∀x ∈ U , xa [b (x)] = xa ∈ R and xα [b (x)] = 0.

As in section 7, I define the Lagrangian field theory starting from a Lagrangian horizontal
n|m-form defined on J1π.

It is possible to define two other important fiber bundles over E.

Definition 126. I call J0|mπ the sub-bundle of Jmπ where only jets with odd derivatives are
considered.
I call J1|mπ the sub-bundle of Jm+1π where only jets with odd derivatives and at most one even
derivative are considered.

Note that all these bundles are G∞-bundles over E and also over X. They can be pull-back
on X by the map b which is C∞ obtaining C∞-bundles over the real manifold X with fiber-type
which may be supermanifolds. This is somehow an hybrid situation; let’s schematize it:

Jm+1π

J1|mπ b∗ (Jm+1π
)

J0|mπ J1π b∗ (J1|mπ
)

E b∗ (J0|mπ
)

b∗ (J1π
)

b∗ (E)

X X

jm+1
1|m

π

j
1|m

0|m
π j

1|m

1 π

j
0|m

0 π j1
0π

π

ǫ

b

(9.1)

On J0|mπ we can use
(
xA, q̇iΛ

)
as coordinates on a local chart. We have that A = 1, · · · , n+m,

xA ∈ RS . The Greek capital letter Λ stands for a multiindex which can be 0 or can be a sequence
of ordered integer numbers αj running from n+1 to n+m, without repetition of the same number;
the order goes from the bigger αj to the smaller αj . So for example it can be Λ = α5α2α1 where
αj = n + j ≤ n + m. We have also that q̇i0 = qi. We define the length of the multiindex Λ as
l(Λ) = 0 if Λ = 0 and l(Λ) is equal to the number of α occurring in the sequence when Λ 6= 0;
so for example l (α5α2α1) = 3. By the definition, the maximum length of a multiindex Λ can be
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m. We have that q̇iΛ ∈ RS and
∣∣q̇iΛ
∣∣ = |Λ| = l(Λ), where the last equality is taken modulo 2, as

usual when dealing with degrees.
On J1|mπ we can use as local coordinates (xA, q̇iΛ, q̇

i
a,Λ), where a = 1, · · · , n, and q̇ia,0 = q̇ia.

We have that q̇ia,Λ ∈ RS and |q̇ia,Λ| = |Λ| = l(Λ).

On b∗ (J0|mπ
)

we can use as local coordinates
(
xa, q̇iΛ

)
, where a = 1, · · · , n, xa ∈ R and

q̇iΛ ∈ RS .
On b∗ (J1|mπ

)
we can use as local coordinates (xa, q̇iΛ, q̇

i
a,Λ).

The transition functions of all these bundles are defined as one would expect.
The shift between the two sides of the diagram (9.1) is made on purpose. We have in fact

the following:

Proposition 127. There exists a one-to-one correspondence between the space Γ (E) of G∞

sections of E and the space Γ
(
b∗ (J0|mπ

))
of C∞ sections of b∗ (J0|mπ

)
.

Proof. Let U be a local chart on E with coordinates
(
xA, qi

)
. Let U be the naturally associated

chart on b∗ (J0|mπ
)
, with local coordinates

(
xa, q̇iΛ

)
.

To every Φ ∈ Γ (E) locally defined by:

Φ : xA −→
(
xA, qi

(
xA
))

we associate the section Φ ∈ Γ
(
b∗ (J0|mπ

))
locally defined by:

Φ : xa −→
(
xa, q̇iΛ (xa)

)
=
(
xa, ∂Λq

i
∣∣
b(xa)

)

where ∂Λ := ∂αj
· · · ∂αk

when Λ = αj · · ·αk.
To every Φ ∈ Γ

(
b∗ (J0|mπ

))
locally defined by:

Φ : xa −→
(
xa, q̇iΛ (xa)

)

we associate the section Φ ∈ Γ (E) locally defined by:

Φ : xA −→
(
xA, qi

(
xA
))

=
(
xA, xΛ̂̇qiΛ (xa)

)

where xΛ =
(
xαk − xαk

(
b(xA)

))
· · ·
(
xαj − xαj

(
b(xA)

))
= xαk · · ·xαj when q̇iΛ = q̇iαj ···αk

(note

the different order of αj when the index Λ is an apex and when it is a subscript) and ̂̇qiΛ (xa) is
the Grassmann analytic continuation of q̇iΛ (xa) (see Rogers chapter 4 for its definition).

The proof that these associations are well made, and that they are one the inverse of the
other one, is straightforward.

Analogously, we have:

Proposition 128. There exists a surjective correspondence between the space Γ
(
J1π

)
of G∞

sections of J1π and the space Γ
(
b∗ (J1|mπ

))
of C∞ sections of b∗ (J1|mπ

)
.

Proof. Let U be a local chart on J1π with coordinates
(
xA, qi, q̇iA

)
. Let U be the naturally

associated chart on b∗ (J1|mπ
)
, with local coordinates

(
xa, q̇iΛ, q̇

i
a,Λ

)
.

To every s ∈ Γ
(
J1π

)
locally defined by:

s : xA −→
(
xA, qi

(
xA
)
, q̇iA

(
xA
))
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we associate the section s ∈ Γ
(
b∗ (J1|mπ

))
locally defined by:

s : xa −→
(
xa, q̇iΛ (xa) , q̇ia,Λ (xa)

)
=
(
xa, ∂Λq

i
∣∣
b(xa)

, ∂Λq̇
i
a

∣∣
b(xa)

)

To every s ∈ Γ
(
b∗ (J1|mπ

))
locally defined by:

s : xa −→
(
xa, q̇iΛ (xa) , q̇ia,Λ (xa)

)

we associate the section s ∈ Γ
(
J1π

)
locally defined by:

s : xA −→
(
xA, qi

(
xA
)
, q̇ia
(
xA
)
, q̇iα

(
xA
))

=
(
xA, xΛ̂̇qiΛ (xa) , xΛ̂̇qia,Λ (xa) , ∂αx

Λ̂̇qiΛ (xa)
)

where ̂̇qia,Λ (xa) is the Grassmann analytic continuation of q̇ia,Λ (xa).
The application of the first correspondence, followed by the application of the second one, do

not lead to the identity in Γ
(
J1π

)
. The sections which are fixed points for that map are those

which satisfy the condition: q̇iα = ∂αq
i id est those who are lifted in the odd sector.

We can define a lift map j1|m between Γ
(
b∗ (J0|mπ

))
and Γ

(
b∗ (J1|mπ

))
.

To every Φ ∈ Γ
(
b∗ (J0|mπ

))
, locally defined by:

Φ : xa −→
(
xa, q̇iΛ (xa)

)

we associate the section j1|mΦ ∈ Γ
(
b∗ (J1|mπ

))
, locally defined by:

j1|mΦ : xa −→
(
xa, q̇iΛ (xa) , q̇ia,Λ (xa)

)
=
(
xa, q̇iΛ (xa) , ∂aq̇

i
Λ (xa)

)

Note that, if we call j0|m the projection from b∗ (J0|mπ
)

to X, then we have that b∗ (J1|mπ
)

=

J1j0|m. We could then simply set j1 := j1|m.
We have the following:

Proposition 129. For every Φ ∈ Γ (E), j1Φ = j1|mΦ = j1Φ.

Proof. It follows directly from the equality ∂a∂Λ = ∂Λ∂a.

We therefore have the following commutative diagram:

Γ
(
J1π

)
Γ
(
b∗ (J1|mπ

))

Γ (E) Γ
(
b∗ (J0|mπ

))

ub

j1

ub

j1|m (9.2)

where ub are the maps between spaces of sections denoted before by the underbar.
We can do more. To every point e ∈ b∗ (J0|mπ

)
, we can associate a 0|m-dimensional subman-

ifold Se of E in this way:

Definition 130. If e ∈ b∗ (J0|mπ
)

has local coordinates
(
xa, q̇iΛ

)
, then Se is the 0|m-submanifold

of E parametrized by the coordinates xα defined by:

Se : (xα) −→
(
xa (b (xa)) , xα, qi (xα)

)
=
(
xa, xα, xΛq̇iΛ

)
(9.3)

where xΛ = xαk · · ·xαj when q̇iΛ = q̇iαj ···αk
.
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We can do something similar between b∗ (J1|mπ
)

and J1π.

Definition 131. If r ∈ b∗ (J1|mπ
)

has local coordinates (xa, q̇iΛ, q̇
i
a,Λ), we associate to it the

0|m-dimensional submanifold Sr ⊂ J1π parametrized by the coordinates xα and defined by:

Sr : (xα) −→
(
xa (b (xa)) , xα, qi (xα) , q̇ia (xα) , q̇iα (xα)

)
=

=
(
xa, xα, xΛq̇iΛ, x

Λq̇ia,Λ, ∂α
(
xΛ
)
q̇iΛ
) (9.4)

Suppose that on J1π is defined a Lagrangian n|m-density L, so that L, defined locally by
L = βL (with β the local canonical n|m-form), is the Lagrangian n|m-horizontal-form of our
field theory. We can then define a Lagrangian n-form L on b∗ (J1|mπ

)
by:

L (r) :=

∫

Sr

βL (9.5)

I can now define a functional action A acting on sections Φ ∈ Γ
(
b∗ (J0|mπ

))
in the following

way:

A (Φ) :=

∫

X

j1|mΦ∗L (9.6)

And I can prove the following theorem:

Theorem 132. A field Φ ∈ Γ (E) is a solution of the field theory with Lagrangian L if and only
if the corresponding field Φ ∈ Γ

(
b∗ (J0|mπ

))
is a solution of the field theory with Lagrangian L.

Proof. Let’s consider a local chart U ⊂ X which is a submanifold with boundary ∂U ; there
always exists a chart U ⊂ X which is a submanifold of X with coordinates (xa, xα) and with
a boundary ∂U so that ǫ(U) = U , ǫ(∂U) = ∂U and so that the boundary ∂U is defined by a
function v which is real on b(U) and so that ∀α, ∂αv = 0.

For such a U and ∂U , and for every Φ ∈ Γ (E), we have that:

AU,∂U (Φ) =

∫

U

j1Φ∗L =

∫

U

j1|mΦ∗L = AU (Φ)

In fact:
∫

U

j1Φ∗L =

∫

Rn|m

DxaDxαL
(
xA, qi(Φ(x)), ∂Aq

i(Φ(x))
)
θ̂ (v(x))

=

∫

Rn

Dxa
∫

R0|m

DxαL
(
xa (b(x)) , xα, xΛ∂Λq

i(Φ(b(x))), xΛ∂a∂Λq
i(Φ(b(x))), ∂α(xΛ)∂Λq

i(Φ(b(x)))
)
θ (v(x))

=

∫

Rn

Dxa
∫

S
j1|mΦ(x)

DxαLθ(v(x))

=

∫

Rn

∫

S
j1|mΦ(x)

βL θ(v(x))

=

∫

U

j1|mΦ∗L

If we have an even path in UΦ, it induces a real path in U Φ; and inversely. We can parametrize
by l ∈ R1|0 the first path and by l = ǫ(l) ∈ R the second path (being ǫ the body map of R1|0).
We have then:

∂

∂l
AU,∂U (Φl) =

∂

∂l
AU (Φl)
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It follows immediately that, if Φ is a solution of the theory with Lagrangian L, then Φ is a
solution of the theory with Lagrangian L.

For establishing the converse, it is enough to prove that a field Φ is a solution of the theory
if ∂

∂l
AU,∂U (Φl)

∣∣∣
l=0

= 0 for every U and for every ∂U defined by a v as above (which are quite

a special kind of boundaries); the proof is straightforward, because this last condition implies
easily that Φ satisfy (7.7).

Note that the definitions 126, 130 and 131 can be extended verbatim to the case when the fiber-
type F of the super fiber bundle E is of any super dimension r|s. The local coordinates would then
be
(
xA, q̇IΛ

)
on J0|mπ and (xA, q̇IΛ, q̇

I
a,Λ) on J1|mπ; with q̇IΛ, q̇

I
a,Λ ∈ RS ,

∣∣q̇IΛ
∣∣ = |Λ|+ |I| = l(Λ)+ |I|

and |q̇Ia,Λ| = |Λ|+ |I| = l(Λ) + |I|.
Propositions 127, 128 and 129 still hold in this more general case: the proofs must just be

adapted to the parities of the elements involved.
All previous diagrams are still valid.
Definitions 9.5 and 9.6 can be taken as they are. Then theorem 132 can be adapted in an

easy way to become my version of the Comparison Theorem.
I presented here the simplest case where the odd dimension of F is s = 0, because this case is

adapted to treat the comparison between the so called superfield and the so called components
formalisms.

In the next section I will continue to study this special case. I will prove some other com-
parisons theorems some of which involve the symplectic structures on the spaces of solutions of
the theories treated. The results there obtained could be extended to the more general case of
fiber-type of general odd dimension.

9.2 Comparison of symplectic structures in superfield and

components formalisms

We have thus established a one-to-one correspondence between the space E of solutions of the
field theory on E with Lagrangian L and the space E of solutions of the field theory on b∗ (J0|mπ

)

with Lagrangian L. I stress one more time the fact that fields in E are classical fields, because
defined on a classical manifolds, X, but they take value on a supermanifold, the fiber-type of
b∗ (J0|mπ

)
. The situation is somehow hybrid. If on a local chart, with local canonical n-form

β = dx1 ∧ · · · ∧ dxn, we have that L = βL, it is nevertheless possible to prove that the action
principle for the action A leads in local coordinates to the Euler-Lagrange system:

d

dxa
∂L

∂q̇ia,Λ

(
j1Φ(x)

)
−
∂L

∂q̇iΛ

(
j1Φ(x)

)
= 0

Note that by (9.5) we have that |L| = |L|+m.
We can define a Legendre transform from b∗ (J1|mπ

)
to a space P . The construction is

analogous to the ones of section 2 and 5: we substitute E with b∗ (J0|mπ
)
, π with j0|m and X

with X. So we have that

P := Homj0|m

(
V b∗(J0|mπ),RS ⊗ Λn−1T ∗X

)

where the tensor product is necessary because L may take value in RS . As usual we can consider
RS = RS,0 ⊕ RS,1 and consider the fiber type of P as a supermanifold. In local coordinates:

FL : (xa, q̇iΛ, q̇
i
a,Λ) −→ (xa, q̇iΛ, p

a,Λ
i ) =

(
xa, q̇iΛ,

∂L

∂q̇ia,Λ

(
xa, q̇iΛ, q̇

i
a,Λ

)
)

(9.7)
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where pa,Λi = pa,Λi + p̃a,Λi =
∂L

∂q̇i
a,Λ

+
∂L̃

∂q̇i
a,Λ

. Or:

FL : (xa, q̇iΛ, q̇
i
a,Λ) −→ (xa, q̇iΛ, p

a,Λ
i , p̃a,Λi ) =

(
xa, q̇iΛ,

∂L

∂q̇ia,Λ
,
∂L̃

∂q̇ia,Λ

)
(9.8)

Note that
∣∣∣pa,Λi

∣∣∣ = |L|+l(Λ) = |L|+m+l(Λ) whereas

∣∣∣∣p̃
a,Λ
i

∣∣∣∣ = |L|+l(Λ)+1 = |L|+m+l(Λ)+1.

A corresponding map (which again I call with the same name) FL, between sections of the
spaces involved, can be defined naturally.

We can therefore add a line to the diagram (9.2) and we obtain:

Γ (P ) Γ (P )

Γ
(
J1π

)
Γ
(
b∗ (J1|mπ

))

Γ (E) Γ
(
b∗ (J0|mπ

))

ubJ1π

FL FL

j1

ubE

j1|m

(9.9)

When L is regular, FL is one-to-one, and we can easily complete the diagram with an arrow
between Γ (P ) and Γ (P ), and obtain a commutative diagram. This is also possible in general.
In fact:

Proposition 133. There exists an onto correspondence, noted with the underline , between
the space Γ (P ) of G∞ sections of P and the space Γ (P ) of C∞ sections of P , which makes
diagram (9.9) commutative. Moreover, when L is regular, P = FL ◦ J1π ◦ FL

−1

Proof. Let U be a local chart on P with coordinates
(
xA, qi, pAi

)
. Let U be the naturally as-

sociated chart on P , with local coordinates
(
xa, q̇iΛ, p

a,Λ
i

)
. To every z ∈ Γ (P ) locally defined

by:
z : xA −→

(
xA, qi

(
xA
)
, pAi

(
xA
))

we associate the section z ∈ Γ (P ) locally defined by:

z : xa −→
(
xa, q̇iΛ (xa) , pa,Λi (xa)

)

=

(
xa, ∂Λq

i
∣∣
b(xa)

, (−1)
l(Λ)(l(Λ)+m)

∫
DxαxΛpai (xa (b(xa)) , xα)

)

Let s ∈ Γ
(
J1π

)
be locally defined by:

s : xA −→
(
xA, qi

(
xA
)
, q̇iA

(
xA
))

.

Then:

FL · s : xA −→

(
xA, qi

(
xA
)
,
∂L

∂q̇iA

(
xA, qi

(
xA
)
, q̇iA

(
xA
)))
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and
FL · s : xa −→

(
xa, ∂Λq

i
∣∣
b(xa)

, pa,Λi (xa)
)
, (9.10)

where:

pa,Λi (xa) = (−1)
l(Λ)(l(Λ)+m)

∫
DxαxΛ ∂L

∂q̇ia

(
xa (b(xa)) , xα, qi (xa (b(xa)) , xα) , q̇iA (xa (b(xa)) , xα)

)

(9.11)
On the other hand:

s : xa −→
(
xa, ∂Λq

i
∣∣
b(xa)

, ∂Λq̇
i
a

∣∣
b(xa)

)

and
FL · s : xa −→

(
xa, ∂Λq

i
∣∣
b(xa)

, pa,Λi (xa)
)

(9.12)

where:

pa,Λi (xa) =
∂L

∂q̇ia,Λ

(
xa, ∂Λq

i
∣∣
b(xa)

, ∂Λq̇
i
a

∣∣
b(xa)

)

=
∂

∂q̇ia,Λ

[∫
DxαL

(
xa (b (xa)) , xα, xΛ∂Λq

i
∣∣
b(xa)

, xΛ∂Λq̇
i
a

∣∣
b(xa)

, ∂α
(
xΛ
)
∂Λq

i
∣∣
b(xa)

)]

= (−1)
l(Λ)(l(Λ)+m)

∫
DxαxΛ ∂L

∂q̇ia

(
xa (b(xa)) , xα, xΛ∂Λq

i
∣∣
b(xa)

, xΛ∂Λq̇
i
a

∣∣
b(xa)

, ∂α
(
xΛ
)
∂Λq

i
∣∣
b(xa)

)

= (−1)
l(Λ)(l(Λ)+m)

∫
Dxα

xΛ ∂L

∂q̇ia

(
xa (b(xa)) , xα, qi (xa (b(xa)) , xα) , q̇ia (xa (b(xa)) , xα) , q̇iα (xa (b(xa)) , xα)

)

(9.13)

Comparing (9.11) and (9.13), we achieve the first part of the assertion. The second then follows
immediately because, when L is regular, FL is invertible.

For every multiindex Λ I define cΛ the complement multiindex containing all the αj which
do not appear in Λ and only them, with the usual decreasing order. I also call g(Λ) the sign
defined trough the equality

g(Λ)Λ · cΛ = αm · · ·α1

For example, if m = 7 and Λ = α5α3α1, then cΛ = α7α6α4α2 and g(Λ) = (−1)9 = −1.
If we write pAi

(
xA
)

= xΓ∂Γp
A
i

(
b(xA)

)
, then we can note that the expression for pa,Λi (xa) ap-

pearing in the proof of proposition 133 can be simplified:

pa,Λi (xa) = (−1)
l(Λ)(l(Λ)+m)

∫
DxαxΛpai (xa (b(xa)) , xα)

= (−1)
l(Λ)(l(Λ)+m)

∫
DxαxΛxΓ∂Γp

a
i (b(xa))

= (−1)
l(Λ)(l(Λ)+m)

g(Λ)∂cΛp
a
i (b(xa))

=h(Λ)∂cΛp
a
i (b(xa))

(9.14)

if we set h(Λ) := (−1)
l(Λ)(l(Λ)+m)

g(Λ).
We can therefore reformulate the action of P in coordinates by saying that:
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Definition 134. The map P sends every z ∈ Γ (P ) locally defined by:

z : xA −→
(
xA, qi

(
xA
)
, pAi

(
xA
))

to the section z ∈ Γ (P ) locally defined by:

z : xa −→
(
xa, q̇iΛ (xa) , pa,Λi (xa)

)

=
(
xa, ∂Λq

i
∣∣
b(xa)

, h(Λ)∂cΛp
a
i

∣∣
b(xa)

)

with h(Λ) = ±1 according to definition given above.

When L is regular we have the following commutative diagram:

Γ (P ) Γ (P )

Γ
(
J1π

)
Γ
(
b∗ (J1|mπ

))

Γ (E) Γ
(
b∗ (J0|mπ

))

P

J1π

FL FL

j1

E

j1

(9.15)

On P we define the Hamiltonian H with:

H := q̇ia,Λp
a,Λ
i − L := q̇ia,Λp

a,Λ
i − L+ q̇ia,Λp̃

a,Λ
i − L̃ (9.16)

We have that |H| = |L| = |L|+m.
With proposition 133 and theorem 132 we have established that ubP := P sends Hamilto-

nian section of P to Hamiltonian section of P . It is then possible to pull back the symplectic form
Ω from the space of Hamiltonian sections G to the space G and compare it with the symplectic
form Ω on it.

Let’s consider two even paths in G : p1 and p2 parametrized by the variables L1 and L2:

p1 : L1 −→
[
zL1

: xA −→
(
xA, qi(xA, L1), pAi (xA, L1)

)]

p2 : L2 −→
[
zL2

: xA −→
(
xA, qi(xA, L2), pAi (xA, L2)

)]

The map ubP sends p1 and p2 to two paths, ubP (p1) and ubP (p2), in G :

ubP (p1) : L1 7−→[
zL1

: xa 7−→

(
xa, ∂Λq

i(b(xa), L1), (−1)
l(Λ)(l(Λ)+m)

∫
Dxn+1 · · ·Dxn+mxΛpai (xa, xα, L1)

)]

ubP (p2) : L2 7−→[
zL2

: xa 7−→

(
xa, ∂Λq

i(b(xa), L2), (−1)
l(Λ)(l(Λ)+m)

∫
Dxn+1 · · ·Dxn+mxΛpai (xa, xα, L2)

)]
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If we choose Σ to be the surface of even codimension 1 locally defined by the equation x1 = 0,
we can calculate:

ub∗
PΩΣ

(
∂p1

∂L1

∣∣∣∣
L1=0

,
∂p2

∂L2

∣∣∣∣
L2=0

)

= ΩΣ

(
∂ubP (p1)

∂L1

∣∣∣∣
L1=0

,
∂ubP (p2)

∂L2

∣∣∣∣
L2=0

) (9.17)

and since:

∂zL
∂L

∣∣∣∣
L=0

=
∂

∂L
∂Λq

i(b(xa), L)

∣∣∣∣
L=0

∂

∂qiΛ

+ (−1)
l(Λ)(l(Λ)+m) ∂

∂L

∫
Dxn+1 · · ·Dxn+mxΛpai (xa, xα, L)

∣∣∣∣
L=0

∂

∂pa,Λi

we have that:

ub∗
PΩΣ

(
∂p1

∂L1

∣∣∣∣
L1=0

,
∂p2

∂L2

∣∣∣∣
L2=0

)

=

∫

Σ

{
∂

∂L1
∂Λq

i(b(xa), L1)

∣∣∣∣
L1=0

(−1)
l(Λ)(l(Λ)+m) ∂

∂L2

∫
Dxn+1 · · ·Dxn+mxΛpai (xa, xα, L2)

∣∣∣∣
L2=0

β
a

−
∂

∂L2
∂Λq

i(b(xa), L2)

∣∣∣∣
L2=0

(−1)
l(Λ)(l(Λ)+m) ∂

∂L1

∫
Dxn+1 · · ·Dxn+mxΛpai (xa, xα, L1)

∣∣∣∣
L1=0

β
a

}

=

∫

Σ

βa

{
∂

∂L1
qi(xA, L1)

∣∣∣∣
L1=0

∂

∂L2
pai
(
xA, L2

)∣∣∣∣
L2=0

−
∂

∂L2
qi(xA, L2)

∣∣∣∣
L2=0

∂

∂L1
pai
(
xA, L1

)∣∣∣∣
L1=0

}

(9.18)

where the last equality holds because L1 and L2 are even variables.
So we have that, when L1 and L2 are even:

ub∗
PΩΣ

(
∂p1

∂L1

∣∣∣∣
L1=0

,
∂p2

∂L2

∣∣∣∣
L2=0

)
= ΩΣ

(
∂p1

∂L1
|L1=0,

∂p2

∂L2
|L2=0

)
(9.19)

where Σ is defined locally by x1 = 0.
If L1 or L2 is odd, or if both are odd, the calculation is not valid anymore, but we should

pass to the extended forms Ω̂Σ and ub∗
P Ω̂Σ.

Note that it is possible that L is degenerate whereas L is regular, which allows to build Ω
and ub∗

PΩ, but doesn’t allow to build up Ω.



Chapter 10

Super Poisson Brackets

Fields brackets are the fundamental object in classical canonical formulation of field theories
and they constitute the starting point for canonical quantization.

Even if this has not been often noticed, the definition of fields brackets for classical Fermionic
fields constituted also the motivation for one of the first uses of anticommuting variables in
Physics. The work of Peierls in 1952, [122], can be considered the origin of supermathematics
in Physics. In [122], facing the problem of defining the brackets of classical Fermionic fields, R.
E. Peierls puts in front of them some anticommuting parameters and then carries on a classical
analysis as if he was dealing with classical, commuting, quantities.

This procedure, which seems a bit arbitrary, has since then been, implicitly or explicitly,
standard for physicists working with the commutation laws of fields.

In this chapter I want to show how the super-Poisson commutation laws of superfields arise
naturally in the formalism of fractional superform.

In section 8.4 I showed how to build a symplectic structure on the super covariant phase space
space G , id est the space of Hamiltonian n|m-submanifolds of the super-multimomenta-space P ,
and on the space E , isomorphic to G , of solutions of the Lagrangian superfield theory. When
the Lagrangian density L is non degenerate, the symplectic structure is non degenerate as well
and it allows the construction of a corresponding Poisson structure on the same spaces.

In section 10.1 I show how to define the super Poisson brackets in the simplest case of
supermechanics. That simple case will be nonetheless fundamental to understand the mechanism
which leads to the correct commutation laws of superfields.

I will also comment some interesting properties of the super Poisson brackets, deriving from
the nature of the symplectic structure ΩΣ on G .

In section 10.2 I will very briefly treat the more general case of higher dimensional super field
theories.

10.1 Supermechanics and Poisson brackets for super-functions.

In this section I will study the special case of supermechanics. This arises when the fiberbun-
dle of fields E has base X of dimension 1|0 and fiber-type F of dimension dimension r|s or, as
well, when X has dimension 1|m and the fiber-type F has dimension r|0, which is a special case
of the situation studied in detail in the previous section.

Let’s first consider the case when X has dimension 1|0.

165
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On E we can use as local coordinates (t, qI); on J1π we can use local coordinates (t, qI , q̇I); if
the Lagrangian L is regular we can build the corresponding super-covariant-phase-space P and
on P we can use as coordinates (t, qI , pI) , where pI = pI if L = L is even and pI = p̃I if L = L̃
is odd.

A section s ∈ Γ(J1π) can be written as:

s : X −→ J1π ; s : t −→ (t, qIs (t), q̇Is (t))

A section z ∈ Γ(P ) can be written as:

z : X −→ P ; z : t −→ (t, qIz(t), pz,I(t)) (10.1)

The spaces E , of solutions of the field theory, and G , of Hamiltonian surfaces, are in this
case finite dimensional and they are diffeomorphic when L is regular. If we choose on P the
surface Σ of codimension 1 defined locally by the equation t = 0, then the space G is well
parametrized by the coordinates (qI0 , pI,0) where a section z ∈ G has coordinates qI0(z) = qIz(0)

and pI,0(z) = pz,I(0). A vector δz ∈ TzG can be written as δz = uq
I
0 ∂
∂qI

0

∣∣∣
z

+ upI,0 ∂
∂pI,0

∣∣∣
z
. It is

easy to see that, when δ1z, δ2z,∈ Tz,0G are even vectors, then equation (8.33) becomes:

ΩΣ

∣∣
z

(
δ1z, δ2z

)
:=

∫

Σ∩G
u1 ∧ u2 ω = −dqI0 ∧ dpI,0

∣∣
z
(u1, u2)

= −u
qI

0
1 u

pI,0

2 + u
qI

0
2 u

pI,0

1

(10.2)

For the sake of simplicity I will from now on let the subsript 0 drop, so I will rename the
coordinates on G as (qI , pI), I will write δz = uq

I ∂
∂qI

∣∣∣
z

+ upI ∂
∂pI

∣∣∣
z

and:

ΩΣ

∣∣
z

(
δ1z, δ2z

)
= −dqI ∧ dpI

∣∣
z
(u1, u2)

= −uq
I

1 u
pI

2 + uq
I

2 u
pI

1

(10.3)

When δ1z, δ2z,∈ Tz,G are vectors of generic parity, then, remembering (5.9), equation (8.34)
becomes:

Ω̂Σ

∣∣
z

(δ1z, δ2z) = − ̂dqI ∧ dpI
∣∣
z
(u1, u2)

= −uq
I

1 u
pI

2 + uq
I

2 u
pI

1 − (−1)
|I|
uq

I

1 ũ
pI

2 + ũq
I

2 u
pI

1 +

− ũq
I

1 u
pI

2 + (−1)
|I|
uq

I

2 ũ
pI

1 − (−1)
|I|
ũq

I

1 ũ
pI

2 + (−1)
|I|+1

ũq
I

2 ũ
pI

1

(10.4)

Similar considerations can be done for the space E and the form O, using as local coordinates
on E the Cauchy data (qI0 , q̇

I
0) defined as expected with the help of a surface Σ again defined

locally by t = 0.
When Ω̂Σ is non degenerate, it defines on P a supersymplectic structure. Note that ΩΣ is

even when L = L is even and it is odd when L = L̃ is odd, because
∣∣dqI

∣∣ = |I| and |dpI | = |I|+|L|.
This is coherent with what we have seen in section 8.4 for the case when the odd dimension of
the base manifold X is m = 0.

If Ω̂Σ, defined by (10.4), is non degenerate, it can be used to define a Poisson bracket on
F (G ) which is the space of function on G . Remember that Ω̂Σ ∈ Ω2|0G .

Let’s consider f ∈ F (G ), then df ∈ Ω1|0G . We associate to f a vector field uf ∈ X (G ) =
Γ (TG ) defining it with:

Ω̂Σ (·, δz) = df(·) (10.5)
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where δz is associated to uf .
Then from (10.4), we obtain that it must be:

−upI

f − (−1)
|I|
ũpI

f =
∂f

∂qI

(−1)
|I|+|I||L|

uq
I

f + (−1)
|L|+|I||L|

ũq
I

f =
∂f

∂pI

(10.6)

Note that it is essential to put uf as second argument of Ω̂Σ, otherwise we could not obtain a
1|0-form.

If f, g ∈ F(G ), then we set:
{f, g} := Ω̂Σ (uf , ug) (10.7)

Since from (10.6) we have that:
|uf | = |f |+ |L|

it follows that:

{f, g} = Ω̂Σ (uf , ug) = − (−1)
|uf ||ug|

Ω̂Σ (ug, uf ) = − (−1)
(|f |+|L|)(|g|+|L|) {g, f} (10.8)

With some calculations from (10.7), (10.4) and (10.6) one obtains that:

{f, g} = (−1)
(|I|+|L|)(|f |+1) ∂f

∂pI

∂g

∂qI
− (−1)

(|I|+|L|)(|g|+1)
(−1)

(|f |+|L|)(|g|+|L|) ∂g

∂pI

∂f

∂qI
(10.9)

Formula (10.9) should be consider a shortcut for the formula obtained summing the two below
(10.11) and (10.12), which are more interesting since we are more interested to theories which
stems from Lagrangians of pure degree.

Formula (10.9) is obviously coherent with (10.8); in fact from (10.9) we obtain by direct
calculation that:

{f, g} = − (−1)
(|f |+|L|)(|g|+|L|) {g, f} (10.10)

When |L| = 0, we have that G ∼= E ∼= T ∗
0 F , where F is the target space, id est the fiber-type

of our fields bundle or the space of fields. Remember that, if F has dimension r|s, then T ∗
0 F has

dimension 2r|2s. When |L| = 0, also |H| = 0 and ΩΣ is even and it defines an even symplectic
structure on G ∼= E ∼= T ∗

0 F . The Hamiltonian supermechanics in this case can be completely
described in terms of this even symplectic structure on T ∗

0 F . The even Poisson brackets (10.9)
are:

{f, g} = (−1)
|I|(|f |+1) ∂f

∂pI

∂g

∂qI
− (−1)

|I|(|g|+1)
(−1)

|f ||g| ∂g

∂pI

∂f

∂qI
(10.11)

When |L| = 1, we have that G ∼= E ∼= T ∗
1 F . Remember that, if F has dimension r|s, then

T ∗
1 F has dimension r+ s|r+ s. When |L| = 1, also |H| = 1 and ΩΣ is odd and it defines an odd

symplectic structure on G ∼= E ∼= T ∗
1 F . The Hamiltonian supermechanics in this case can be

completely described in terms of an odd symplectic structure on T ∗
1 F . In the literature an odd

form of the type of ΩΣ is also called sometime periplectic, see Rogers [133].
The odd Poisson brackets (10.9) are:

{f, g} = (−1)
(|I|+1)(|f |+1) ∂f

∂p̃I

∂g

∂qI
− (−1)

(|I|+1)(|g|+1)
(−1)

(|f |+1)(|g|+1) ∂g

∂p̃I

∂f

∂qI
(10.12)

Note that in this case equation (10.10), become:

{f, g} = − (−1)
(|f |+1)(|g|+1) {g, f}
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The odd Poisson brackets are an instance of Buttin brackets, from C. Buttin who first studied
them in a general setting during the 60’s, see [20]. Sometime they take the name of antibrackets.

Odd symplectic structures are closely related to Batalin-Vilkovisky formalism as one can learn
by reading Schwarz [142] and the papers of O. M. Khudaverdian, in particular [90], [92], with A.
P. Neressian, and [91]. An extensive bibliography on the subjects can be found in [91]. On odd
Poisson brackets, and their connection with BV formalism, is also interesting to read Witten [162]
and Y. Kosmann-Schwarzbach and J. Monterde [100] and to consult the bibliography therein.

It would be interesting to reformulate the results obtained by Khudaverdian and by other
authors with the formalism of mixed fractional forms introduced in chapter 6, starting from the
work already done in [93]. I will not follow this path in this thesis.

The analysis just made for the case when X has dimension 1|0, can be extended to the case
when X has dimension 1|m and the fiber-type F has dimension 1|0. In this case, following the
considerations presented in section 6, I can build an equivalent theory on the bundle b∗ (J0|mπ

)

whose base X is a one dimensional real manifold (so it can be treated as if it had dimension 1|0).
On the space of solutions G , which is diffeomorph to the spaces G and E when L is regular, we
can build the symplectic form Ω which I used in (9.17), (9.18) and (9.19) starting from a surface
Σ to be defined by the local equation t = 0, where t is the only local even coordinate.

Formulas (10.2), (10.3) and (10.4) can be rewritten substituting the index I with the index
Λ. Ω assume the form:

ΩΣ

∣∣
G

(
δ1G, δ2G

)
=

∫

Σ∩G
v1 ∧ v2 ω = −dqΛ ∧ dp

Λ(v1, v2)|t=0 (10.13)

Equation (10.4), remembering that
∣∣qΛ
∣∣ = l(Λ) becomes:

Ω̂Σ

∣∣
z

(δ1z, δ2z) = − ̂dqΛ ∧ dpΛ
∣∣
z
(u1, u2)

= −uqΛ

1 up
Λ

2 + uqΛ

2 up
Λ

1 − (−1)
l(Λ)

uqΛ

1 ũp
Λ

2 + ũqΛ

2 up
Λ

1

− ũqΛ

1 up
Λ

2 + (−1)
l(Λ)

uqΛ

2 ũp
Λ

1 − (−1)
l(Λ)

ũqΛ

1 ũp
Λ

2 + (−1)
l(Λ)+1

ũqΛ

2 ũp
Λ

1

(10.14)

If ΩΣ is non degenerate, it can be used to define a Poisson bracket and equations (10.8) and
(10.9) become:

{f, g} = Ω̂Σ (uf , ug) = (−1)
|uf ||ug|

Ω̂Σ (ug, uf ) = (−1)
(|f |+|L|)(|g|+|L|) {g, f} (10.15)

and

{f, g} = (−1)
(|Λ|+|L|)(|f |+1) ∂f

∂pΛ

∂g

∂qΛ
− (−1)

(|Λ|+|L|)(|g|+1)
(−1)

(|f |+|L|)(|g|+|L|) ∂g

∂pΛ

∂f

∂qΛ
(10.16)

with |L| = |L|+m.
You can see the example given in section 7 for understanding what happens.

When X has dimension 1|m and F has dimension r|s the spaces G ∼= E are still finite
dimensional. Formula (10.13) can be generalized to this case; it becomes:

ΩΣ

∣∣
G

(
δ1G, δ2G

)
= −dqIΛ ∧ dp

Λ
I (v1, v2)|t=0 (10.17)

with
∣∣qIΛ
∣∣ = |I|+ l(Λ) and

∣∣pΛ
I

∣∣ = |I|+ l(Λ) + |L|+m.
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Equivalently formula (10.14), (10.15) and (10.16) could be generalized as well.
In the special case when X has dimension 1|1 and F has dimension r|s all these formula can

be then compared to the corresponding ones appearing in [114], [115] and [117], to find that they
agree with them.

10.2 Super Poisson brackets for superfields

Phenomena similar to the ones described in section 10.1 occur when X has even dimension
greater than 1 and Poisson brackets are defined on functions of superfields like we did in chapter
4.

The path followed in chapter 4 can be repeated without to many changes, paying attention
to the parity of the quantities involved and using extended superforms as we have done in the
previous section. If A and B are functionals defined on G , formula (4.3) can be generalized and
it becomes:

{A,B} (G) =

∫

ΣX

−
(
AV q

I

G (~x)BV πI

G (~x)− BV q
I

G (~x)AV πI

G (~x)
)
d~x

=

∫

ΣX

[
(−1)

(|I|+|L|)(|A|+1) δA

δπI

∣∣∣∣
G

(~x)
δB

δqI

∣∣∣∣
G

(~x)

− (−1)
(|I|+|L|)(|B|+1)

(−1)
(|A|+|L|)(|B|+|L|) δB

δπI

∣∣∣∣
G

(~x)
δA

δqI

∣∣∣∣
G

(~x)

]
d~x

=

∫

ΣX

[
(−1)

(|I|+|Λ|+|L|)(|A|+1) δA

δπΛ
I

∣∣∣∣
G

(~x)
δB

δqIΛ

∣∣∣∣
G

(~x)

− (−1)
(|I|+|Λ|+|L|)(|B|+1)

(−1)
(|A|+|L|)(|B|+|L|) δB

δπΛ
I

∣∣∣∣
G

(~x)
δA

δqIΛ

∣∣∣∣
G

(~x)

]
d~x

(10.18)

where ΣX is a Cauchy slice in X of codimension 1|0, (~x) are the restriction of the Cauchy
coordinates on the n− 1|m dimensional supermanifold ΣX , d~x is the canonical volume n− 1|m-
form defined by the Cauchy coordinates on ΣX ; ΣX is the body of ΣX , (~x) are the Cauchy
coordinates on ΣX and d~x is the canonical volume n−1-form defined by the Cauchy coordinates
on ΣX . Note that

∣∣πΛ
I

∣∣ = |I|+ l(Λ) + |L|+m.
Note that the last equality in (10.18) is a consequence of the equivalence of the symplectic

structures built on G with ΩΣ and with ΩΣ. Of this equivalence I gave a sketch of a proof in
section 9.2.

The components analysis of formula (10.18), analogous to the one undertaken in the previous
section in the case when n = 1, shows that the components fields obey the expected commutation
and anticomutation relations of Bosonic and Fermionic fields of a Physics field theories whenever
|L| = |L|+m = 0.

When |L| = |L| + m = 1, equation (10.18) defines an odd Poisson structure on the space of
functions over G (the observables).

What should be retained here is that, if we are studying a field theory with |L| = |L|+m = 0,
and we define the brackets of functional of fields in the super multisymplectic framework, then
we obtain (10.18), and the brackets satisfy the expected supercoummutation rules.

It is interesting to understand better where the correct parities of the commutators arise
from. Peierls in his paper of 1952, [122] pag. 149, had to introduce an ad hoc assumption in
order to justify the presence of anticommutators for Fermions. He justifies it with these words:
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"...To obtain the usual commutation rules for Fermi statistics, one has to resort to a special
device, which can be made plausible in the following way. Fermion wave functions [ψα(x)] are
well known not to be single-valued, since a rotation of the co-ordinate system by 2π will change
their sign. ... To avoid this, one can postulate the existence of some operator θ, which is itself
of such a character as to change sign if the co-ordinate system is rotated by 2π, and which
anticommutes with all components of the spinor field at all points in space-time. Then θψα(x)
is a single-valued quantity which may reasonably occur in the action principle. One obtains then
the correct commutation laws...". Peierls puts in front of Fermionic fields some anticommuting
parameters and then carries on a classical analysis as if he was dealing with classical quantities.

Many other authors, after him, won’t even justify the fact that Fermions need anticommuta-
tors instead of commutators, they will just introduce them and use them.

With my geometric approach, the presence of anticommutators for Fermions is a consequence
of two assumptions:

– that the classical fields associated to Fermions are odd coordinates of a supermanifold;
– that the multisymplectic Voronov Zorich form ω is extended to a Kostant-like form ω̂ and

so is the symplectic form Ω on the super covariant phase space, which is extended to Ω̂.
The latter assumption links the parity of commutators to the symmetry properties of some forms
(the Kostant forms) which are indeed quite natural objects in supergeometry.

As long as the extension of the Voronov Zorich forms to extended forms (which share sym-
metry properties with Kostant forms ) is natural, then the only relevant assumption made is the
first one.

So, with this approach, at the end of the story, the correct parity of the classical commutators
arise from the fact that we assume that classical Fermion fields are odd objects. This in my
opinion is not so clear if one uses other approaches to field theory.

Of course it could be interesting to investigate the possibility to extend Voronov Zorich forms
in another way, so that they satisfy other type of symmetries, and then eventually to study
what would be the consequences for the new multisymplectic superform, for the new symplectic
superform on the covariant phase space and for the new supercommutators.

I close this chapter with a remark. As I wrote in chapter 4, Kijowski [94, 95], Kijowski
and Szczyrba [97], I. Kanatchikov [85, 86, 87], Hélein [74], Forger and H. Römer [52], Forger,
C. Paufler and Römer [50, 51], M. O. Salles [139], Baez, Hoffnung and C. L. Rogers [3], Baez
and Rogers [4], Richter [131], worked on specific subclasses of functionals on G : namely those
functionals which arise from the integration on some submanifold of X of the pullback of, possibly
generalized, forms defined on P . (Here generalized roughly means that their coefficients in local
coordinates may depends on the derivative of the coordinates as well as on the coordinates
themselves; generalized forms can be considered then as the restrictions on P of forms defined
on some jet space of P .) For those functionals the Poisson brackets defined with (10.18) turn
out to be linked to some other brackets defined directly on the space of forms with the help of
the multisymplectic structure.

It would be interesting to study similar settings for the super field theories (and super string
theories) using my formalism and studying functionals arising from generalized fractional super-
forms. In fact most of the results found in the papers quoted above can be easily transposed to
the super case by using the definitions and the calculation techniques expounded in this third
part of my thesis. I will use similar calculation techniques in the fourth part of this thesis while
proving a super version of Noether first theorem and defining a super multimomentum map.



Chapter 11

Super Noether theorem and

super multimomentum map

Classical symmetries are one of the most important features of field theories and, at least since
the birth of supersymmetric field theories during the 70’s, supersymmetries as well are of the
greatest importance in Physics. It is then not surprising that also the mathematical literature on
the subject is vast. However, a satisfactory framework to describe supersymmetries for superfield
theories in a geometrical way has not yet been completely set up.

The studies of supersymmetries from a geometrical point of view have reached for superme-
chanical theories more advanced results. Various different super version of first Noether theorem
for supermechanics have been proposed: see for example Ibort and Marín-Solano [83] and Car-
iñena and Figueroa [25]. A super version of reduction theorems of Poisson manifolds have been
studied, see for example F. Cantrijn and L. A. Ibort [21].

L. Fatibene and M. Francaviglia, [48] and L. Fatibene, M. Ferraris, M. Francaviglia and R.
G. McLenaghan, [47], studied supersymmetric field theories in the components formulation and
showed that the supersymmetry can be treated as a generalized symmetry in classical theories,
with just some attention to the parity of the fields. So they can give a version of Noether theorem
valid for the supersymmetries of supersymmetric field theories in the components formulation.
Their ultimate aim is to show that the standard and the supersymmetric frameworks admit a
unifying mathematical language. Unfortunately their approach doesn’t help in treating symme-
tries of theories defined with the super-field formulation and therefore it doesn’t allow to fully
exploit the power of that formulation.

In 2006 Monterde, Muñoz Masqué and Vallejo, [116], obtained a geometric formulation of a
super version of first Noether theorem valid for super field theories defined on base manifolds
of any dimension, even or odd. They achieved this beautiful and important result by studying,
with the help of the Comparison Theorem, an associated higher-order graded variational prob-
lem, defined on a bosonic base manifold. They although needed a rather technical assumption
added to the hypothesis to prove Noether theorem. Moreover their notation doesn’t make really
transparent the analogy between their theory and the classical geometrical theory of symmetry
for Lagrangian field theories.

In this chapter, I will show that the formalism introduced in this thesis allows a very simple
formulation of Noether first theorem for super fields theories, which doesn’t require any addi-
tional hypothesis. This formulation will be strictly analogue to the one used in geometrical
interpretations of classical field theories and therefore will achieve the aim of describing the stan-
dard and the supersymmetric frameworks with a unified mathematical language. Moreover my
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formulation will allow to fully exploit the super-field approach to supersymmetric field theories.
I will also show how to obtain a super version of the multimomentum map introduced in [63].

In section 11.1 I will explain what are even and odd symmetries of a super field theory and
I will show how they are linked to even and odd (generalized) vector fields on the space of
configurations.

In section 11.2 I will exhibit and prove my super version of first Noether theorem.
In section 11.3 I will build the super multimomentum map for a supergroup of symmetry.

11.1 Symmetries and supersymmetries of a super field the-

ory

Let E, X and F be finite dimensional G∞-supermanifolds of dimensions n + r|m + s, n|m
and r|s, E and X being connected; and let (E, π,X, F ) be a super fiber bundle with total space
E, base X, type-fiber F and bundle G∞-projection π. In this chapter I will call sometime E the
configuration space and F the space of fields or the target space. On X we suppose that is fixed
an immersed body (see Section 5.5 for the definition of immersed body).

A field Φ over X is a G∞-section of the fiber bundle π: Φ ∈ Γ
(
E
)
. As in the previous

chapters, we will deal with the space Γ
(
E
)

of all possible sections of E supposing that it has
been given a super differential structure. The same assumption will be understood for other
infinite-dimensional space of sections here studied.

Let’s consider the superfield theory defined by the Lagrangian L (which is an horizontal
n|m-dimensional differential form on J1E). The action A over a field Φ on an n|m-dimensional
submanifold U ⊂ X with boundary ∂U is defined by the integral of L:

AU,∂U (Φ) :=

∫

(U,∂U)

j1Φ∗L (11.1)

where the integral is supposed to be performed with respect the fixed immersed body.
For every (U, ∂U), AU,∂U is a smooth super-functional on Γ

(
E
)
.

I give now a version of the action principle slightly different from the one given in Chapter 7:

Definition 135. A solution Φ of the field theory with Lagrangian L over J1E is a section
Φ ∈ Γ

(
E
)

such that, ∀U submanifold of X with ∂U boundary of U , dAU
∣∣
UΦ

(Φ) = 0; where

UΦ := {φ ∈ Γ(E) | ∀k ∈ N, jkφ|∂U = jkΦ|∂U}.

Definition 135 differs from (101) because of the different definition of UΦ. Definition 135
can be generalized without changes to theories with Lagrangian of arbitrary order; moreover
definition 135 and definition (101) give the same space of solutions for Lagrangian of the first
orders, although definition 135 allows an easiest treating of symmetries.

Let’s call E the space of all solutions of the field theory. We have that E ⊂ Γ(E). We suppose
that also E has been given a super differential structure.

Definition 136. An even projectable flow map R on E is a G∞-map from the supermanifolds
R1|0 × E to E which satisfies the usual conditions for a flow map and such that:

∀c1, c2 ∈ E, ∀k ∈ R1|0 : π (c1) = π (c2) =⇒ π (R(k, c1)) = π (R(k, c2))

An odd projectable flow map R on E is a G∞-map from the supermanifolds R0|1×E to E which
satisfies the usual conditions for a flow map and such that:

∀c1, c2 ∈ E, ∀κ ∈ R0|1 : π (c1) = π (c2) =⇒ π (R(κ, c1)) = π (R(κ, c2))
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A projectable flow map on the fiber bundle E can be projected onto a flow map on its base
X.

On a local chart U of E, the flow map R can be written in this way:

R : (K,xA, qI) 7−→ (xAK , q
I
K)

where the parameter K ∈ RS is an even or an odd element of the Grassmann algebra with infinite
generators RS . Since R is projectable, we have that:

xAK = xAK
(
K,xA

)

qIK =
(
K,xA, qI

)

The first of the two equations defines the projected flow map on X.
To a projectable flow map R corresponds a projectable vector field on E which I will call

with the name χ. Locally χ can be written:

χ
(
xA, qI

)
=χA

(
xA
) ∂

∂xA
+ χI

(
xA, qI

) ∂

∂qI

=
∂xAK
∂K

(
0, xA

) ∂

∂xA
+
∂qIK
∂K

(
0, xA, qI

) ∂

∂qI

(11.2)

When the flow map R is even, its corresponding vector field χ is even too; when R is odd, also
χ is odd.

The flow map R induces also a flow map RΓ on the space Γ(E). In fact, if Φ ∈ Γ(E), x ∈ X
and

Φ : x 7−→ Φ (x)

then for every K, we can define ΦK ∈ Γ(E) so that ∀x ∈ X:

ΦK : x −→ R (K,Φ (x−K)) (11.3)

The flow map R and its corresponding projectable vector field χ can be lifted to a flow map
and a projectable vector field j1R and j1χ on J1E in a way analogous to the one used for classical
vector fields on classical jet bundles (see for example [63]). What one wants is that:

∀K ∈ RS , ∀Φ ∈ Γ(E) : j1R
(
K, j1Φ(x)

)
= j1 [ΦK ] (xK) (11.4)

On a local chart U of J1E, the flow map j1R can be written in this way:

j1R : (K,xA, qI , q̇IA) −→ (xAK , q
I
K , q̇

I
K,A) (11.5)

Equation (11.4) implies that ∀Φ ∈ Γ(E):

j1R

(
K,xA,ΦI(x),

∂ΦI

∂xA
(x)

)
=

(
xAK ,Φ

I
K(xK),

∂ΦIK
∂xAK

(xK)

)
(11.6)

Since:
∂ΦIK
∂xAK

(xK) =
∂xB

∂xAK
(xK)

dΦIK
dxB

[x (xK)] (11.7)

where
dΦIK
dxB

(x) :=
∂ΦIK
∂xB

(x) +
∂ΦJ

∂xB
(x)

∂ΦIK
∂ΦJ

(x)
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and since (11.6) must be satisfied for any Φ ∈ Γ(E), we have that q̇IK,A in equation (11.5) must
satisfy the following rule:

q̇IK,A =
∂xB

∂xAK
[xK (x)]

[
∂qIK
∂xB

(x, q) + q̇JB
∂qIK
∂qJ

(x, q)

]
(11.8)

The projectable vector field j1χ can be written on a chart:

j1χ
(
xA, qI

)
= χA

(
xA
) ∂

∂xA
+ χI

(
xA, qI

) ∂

∂qI
+ χIB

(
xA, qI , q̇IB

) ∂

∂q̇IB

=
∂xAK
∂K

(
0, xA

) ∂

∂xA
+
∂qIK
∂K

(
0, xA, qI

) ∂

∂qI
+
∂q̇IK,B
∂K

(
0, xA, qI , q̇IB

) ∂

∂q̇IB

(11.9)

From (11.8) and (11.2) we have that:

∂q̇IK,A
∂K

=
∂

∂K

(
∂xB

∂xAK

)
[xK (x)]

[
∂qIK
∂xB

(x, q) + q̇JB
∂qIK
∂qJ

(x, q)

]

+ (−1)
|K|(|A|+|B|) ∂x

B

∂xAK
[xK (x)]

∂

∂K

[
∂qIK
∂xB

(x, q) + q̇JB
∂qIK
∂qJ

(x, q)

]

=
∂

∂K

(
∂xB

∂xAK

)
[xK (x)]

[
∂qIK
∂xB

(x, q) + q̇JB
∂qIK
∂qJ

(x, q)

]

+ (−1)
|K|(|A|+|B|)

(−1)
|K||B| ∂x

B

∂xAK
[xK (x)]

[
∂2qIK
∂xB∂K

(x, q) + q̇JB
∂2qIK
∂qJ∂K

(x, q)

]

(11.10)

Moreover, remembering that:

∂

∂K

[
∂xBK
∂xC

(x(xK))
∂xA

∂xBK
(xK)

]
=

∂

∂K

(
δAC
)

= 0

we have that:

∂2xBK
∂K∂xC

(x(xK))
∂xA

∂xBK
(xK) = − (−1)

|K|(|B|+|C|) ∂x
B
K

∂xC
(x(xK))

∂2xA

∂K∂xBK
(xK)

and
∂2xA

∂K∂xDK
(xK) = − (−1)

|K|(|D|+|C|) ∂x
C

∂xDK
(xK)

∂2xBK
∂K∂xC

(x(xK))
∂xA

∂xBK
(xK)

So (11.10) becomes:

∂q̇IK,A
∂K

= (−1)
|K||A| ∂x

B

∂xAK
[xK (x)]

[
∂2qIK
∂xB∂K

(x, q) + q̇JB
∂2qIK
∂qJ∂K

(x, q)

]

− (−1)
|K|(|A|+|C|) ∂x

C

∂xAK
(xK(x))

∂2xDK
∂K∂xC

(x)
∂xB

∂xDK
(xK(x))

[
∂qIK
∂xB

(x, q) + q̇JB
∂qIK
∂qJ

(x, q)

]

= (−1)
|K||A| ∂x

B

∂xAK
[xK (x)]

[
∂2qIK
∂xB∂K

(x, q) + q̇JB
∂2qIK
∂qJ∂K

(x, q)

]

− (−1)
|K|(|A|+|C|) ∂x

C

∂xAK
(xK(x))

∂2xDK
∂K∂xC

(x) q̇IK,D

(11.11)
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and

χIA
(
xA, qI , q̇IB

)
=
∂q̇IK,A
∂K

∣∣∣∣∣
K=0

= (−1)
|K||A| ∂x

B

∂xAK
[xK (x)]

∣∣∣∣
K=0

[
∂χI

∂xB
(x, q) + q̇JB

∂χI

∂qJ
(x, q)

]

− (−1)
|K||A| ∂x

C

∂xAK
(xK(x))

∣∣∣∣
K=0

∂χD

∂xC
(x) q̇IK,D|K=0

= (−1)
|K||A|

[
∂χI

∂xA
(x, q) + q̇JA

∂χI

∂qJ
(x, q)

]
− (−1)

|K||A| ∂χ
B

∂xA
(x) q̇IB

(11.12)

Suppose there is a flow map R on E such that:

∀U ⊂ X, ∀Φ ∈ Γ (E) :

∫

U

j1Φ∗ Liej1χ L = 0 (11.13)

then with standard techniques it is easy to see that the corresponding flow map RΓ on Γ (E)
sends Φ ∈ E to ΦK ∈ E , id est it sends solutions of the theory to solutions of the theory. It
is possible to restrict RΓ to E , building so a flow map RE on E ; in this situation R defines a
symmetry of the theory.

One can ask himself if, given a flow map M on E , it is always possible to find a flow map
R on E such that M = RE and such that j1Φ∗ Liej1χ L = 0, where χ is the vector field on E
associated to R. The answer is no for two reasons.

First of all it is possible to build symmetries by adding a divergence-like term to the right
hand side of (11.13).

So we have for example that:

Proposition 137. Let R be a flow map on E and χ its associated vector field. If:

∃k ∈ N, ∃α ∈ Ωn−1|m (JkC
)

: ∀U ⊂ X, ∀Φ ∈ Γ (C) :∫

U

j1Φ∗ Liej1χ L =

∫

U

jkΦ∗dα
(11.14)

then the corresponding flow map RΓ on Γ (E) sends Φ ∈ E to ΦK ∈ E , id est it sends solutions
of the theory to solutions of the theory and R defines a symmetry of the theory.

When α 6= 0, it is often said in the physicists literature that χ generate a non manifest
symmetry: see for example [54]. When (11.14) holds with α = 0, the symmetry is called
manifest.

But there are also flow maps M on E which do not correspond to any R on E, with or without
divergence terms.

Under certain conditions it is nevertheless possible to show that the flow map M can be gen-
erated by a so called generalized vertical vector field on E. For understanding what a generalized
vector field is see P. J. Olver [121], L. Fatibene and M. Francaviglia [48] and L. Fatibene, M.
Ferraris, M. Francaviglia and R. G. McLenaghan [47], who treated the classical case and the
super case when the base manifold is classic.

Note that in the special case of supermechanics every flow map M can be generated by a
generalized vector field on E, as is stated by the super version of the inverse of Noether theorem
proved in [83] and [25].
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In the classical case, generalized vector fields can be though of as special vector fields on the
jet bundle JkE for a certain k ∈ N (although this is not entirely correct, see [47]). In [83] and
[25] the authors extended the definition of generalized vector fields to supermechanical theories.
In [47] the definition has been extended to theories defined on even base manifolds with odd
field space. The definition given in [48] can be directly extended to the most general super case
(possibly with odd base manifold) using our formalism: I will not do so here. It will be sufficient
to know that, locally, a generalized vertical vector field on E can be written as:

K = KI
(
xA, qI , q̇IA, q̈

I
AB , . . .

) ∂

∂qI
(11.15)

where
(
xA, qI , q̇IA, q̈

I
AB , . . .

)
are local adapted coordinates in the infinite-jets space J∞E. The

component KI
(
xA, qI , q̇IA, q̈

I
AB , . . .

)
obviously cannot be seen as the derivative of a flow map

on E. Nonetheless Lie-dragging and the Lie derivative can be defined along generalized vector
fields. For each section Φ ∈ Γ (E), the composition KΦ = K ◦ Φ is a vertical vector field
defined on the image of Φ and it can be used to drag the section itself. Moreover generalized
vector fields can be lifted to J1E. So formulas similar to (11.13) and (11.14) can be written
to define a symmetry which in turns defines the flow map on E see [47] and [48] for the case
when X has even dimension. I call these symmetries "generalized manifest" or "generalized non
manifest" symmetries (depending on the absence or presence of divergence like terms like dα in
their defining formula).

Adopting the point of view of P. Deligne and D. Freed, [36, 54], a flow map M generated
by a generalized vertical vector field on E corresponds to a local vector field on Γ (E). With
that point of view there is no need to distinguish between generalized and conventional vector
fields for treating symmetries. In fact Freed in [54], unlike what I am doing here, uses the
term "generalized" as a synonymous of "non manifest". Nevertheless I think that it is worth
to distinguish generalized vector fields from conventional ones and generalized symmetries from
non-generalized ones.

Symmetries which are interesting for physical theories are generated by vector fields or gen-
eralized vector fields on the space of configurations E.

In [47] and [48] the authors show that, if one defines a supersymmetric field theory with the
components formulation, so that the base manifold X is an even manifold, then the supersym-
metries are generated by generalized vertical vector fields on E of the form of (11.15).

In the next section, with the help of fractional forms formalism, I will give a super version of
Noether theorem valid for base manifolds of any degree, even or odd. In the last chapter of this
thesis, for some examples, I will show that, if one defines a supersymmetric field theory with the
super-field formulation (so that the base manifold X has an odd section different than 0), then
it is possible that the supersymmetry is generated by non-generalized vector fields on the space
of configurations E. This will give a simpler geometrical interpretation of supersymmetry.

11.2 Noether theorem for super fields: supercurrents and

conserved quantities.

In this section I will prove a version of Noether theorem valid for super field theories. I will
then show that it implies the presence of supercurrents and supercharges.

The superform locally defined on J1E by the formula

θ∗ = Lβ + (−1)
|A|(|A|+|L|)

cI ∧
∂L

∂q̇IA
βA (11.16)
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is indeed well defined globally and it is in fact the pull back by the Legendre transform of the
Cartan superform defined on the covariant phase space P :

θ∗ = FL∗θ. (11.17)

This form θ∗ is the Poincaré-Cartan form of our superfield theory in the Lagrangian repre-
sentation. I will show here how it is involved in symmetries.

Theorem 138. Consider a field theory defined by a configurations bundle E with fiber type
the supermanifold F over a base supermanifold X and by a Lagrangian form L which locally is
L = Lβ. Let E be the space of solutions of the field theory. Let χ be a projectable vector field on
E such that:

∀Φ ∈ E ∃αΦ ∈ Ωn−1|mX : ∀U ⊂ X :

∫

U

j1Φ∗ Liej1χ L =

∫

U

dαΦ (11.18)

where U is a compact submanifold with boundary of X with the same dimension of X; then, for
every Φ ∈ E , the form

[
j1Φ∗ (j1χ θ∗)− αΦ

]
is closed; id est:

∀U ⊂ X, ∀Φ ∈ E :
∫

U

d

{
j1Φ∗

[
j1χ

(
L+ (−1)

|A|(|A|+|L|)
cI ∧

∂L

∂q̇IA
βA

)]
− αΦ

}
= 0

(11.19)

Proof. We first note that:

(−1)
|A|(|A|+|L|)

∫

U

d · j1Φ∗
[
j1χ

(
cI ∧

∂L

∂q̇IA
βA

)]

= (−1)
|A|(|A|+|L|)

∫

U

d · j1Φ∗
[
cI
(
j1χ
) ∂L
∂q̇IA

βA + (−1)
|χ||I|

cI ∧
(
j1χ βA

)]

= (−1)
|A|(|A|+|L|)

∫

U

d · j1Φ∗
[
cI
(
j1χ
) ∂L
∂q̇IA

βA

]
(11.20)

So from (11.18) and (11.20) we have that:

∫

U

j1Φ∗ Liej1K L −

∫

U

dαΦ + (−1)
|A|(|A|+|L|)

∫

U

d · j1Φ∗
[
j1χ

(
cI ∧

∂L

∂q̇IA
βA

)]

− (−1)
|A|(|A|+|L|)

∫

U

d · j1Φ∗
[
cI
(
j1χ
) ∂L
∂q̇IA

βA

]
= 0

(11.21)

and using Cartan formula for superforms (5.63) proved by Voronov and Zorich we see that:
∫

U

d · j1Φ∗ [j1χ L
]

+

∫

U

j1Φ∗ [j1χ dL
]
−

∫

U

dα

+ (−1)
|A|(|A|+|L|)

∫

U

d · j1Φ∗
[
j1χ

(
cI ∧

∂L

∂q̇IA
βA

)]

− (−1)
|A|(|A|+|L|)

∫

U

d · j1Φ∗
[
cI
(
j1χ
) ∂L
∂q̇IA

βA

]
= 0

(11.22)

So, remembering formula (11.12), remembering that
∣∣KA

∣∣ = |K| + |A| and using the Euler
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Lagrange equations for superfields (7.7), we have:

∫

U

d

{
j1Φ∗

[
j1χ

(
L+ (−1)

|A|(|A|+|L|)
cI ∧

∂L

∂q̇IA
βA

)]
− αΦ

}

=

∫

U

j1Φ∗ [j1χ dL
]
− (−1)

|A|(|A|+|L|)
∫

U

d · j1Φ∗
[
cI
(
j1χ
) ∂L
∂q̇IA

βA

]

=

∫

U

χI
∂L

∂qI
β + χIB

∂L

∂q̇IB
β

+

∫

U

− (−1)
|χ||L|

dxC
∂qI

∂XC

∂L

∂qI
χAβA − (−1)

|χ||L|
dxC

∂2qI

∂xC∂xB
∂L

∂q̇IB
χAβA

+

∫

U

− (−1)
|A||χ| d

dxA

(
j1Φ∗cI

(
j1χ
) ∂L
∂q̇IA

)
β

=

∫

U

{
χI

∂L

∂qI
+ χIB

∂L

∂q̇IB
− (−1)

|χ||L|
(−1)

|A|(|A|+|L|+|χ|) ∂q
I

∂xA
∂L

∂qI
χA

− (−1)
|χ||L|

(−1)
|A|(|A|+|L|+|χ|) ∂2qI

∂xA∂xB
∂L

∂q̇IB
χA

− (−1)
|A||χ| d

dxA
(
j1Φ∗cI

(
j1χ
)) ∂L
∂q̇IA

− (−1)
|A||I|

j1Φ∗cI
(
j1χ
) d

dxA
∂L

∂q̇IA

}
β

=

∫

U

{
χI

∂L

∂qI
+ (−1)

|χ||B| dχ
I

dxB
∂L

∂q̇IB
− (−1)

|χ||B| dχ
A

dxB
q̇IA

∂L

∂q̇IB

− (−1)
|χ||L|

(−1)
|A|(|A|+|L|+|χ|) ∂q

I

∂xA
∂L

∂qI
χA

− (−1)
|χ||L|

(−1)
|A|(|A|+|L|+|χ|) ∂2qI

∂xA∂xB
∂L

∂q̇IB
χA

− (−1)
|A||χ|

[
dχI

dxA
−

d

dxA

(
χB

∂qI

∂xB

)]
∂L

∂q̇IA
− (−1)

|A||I|
[
χI − χB

∂qI

∂xB

]
d

dxA
∂L

∂q̇IA

}
β

=

∫

U

{
χI
[
∂L

∂qI
− (−1)

|A||I| d

dxA
∂L

∂q̇IA

]
+ (−1)

|χ||B| dχ
I

dxB
∂L

∂q̇IB
− (−1)

|χ||B| dχ
A

dxB
q̇IA

∂L

∂q̇IB
+

− χA
∂qI

∂xA

[
∂L

∂qI
− (−1)

|A||I| d

dxA
∂L

∂q̇IA

]
− (−1)

|A||B|
χA

∂2qI

∂xB∂xA
∂L

∂q̇IB
+

− (−1)
|A||χ|

[
dχI

dxA
−

d

dxA

(
χB

∂qI

∂xB

)]
∂L

∂q̇IA

}
β = 0

(11.23)

And the theorem is proved.
Note that theorem 138 is also true if we replace the vector field χ by a generalized vector

field. To prove it one has just to pay attention to the lift of the generalized vector field and to
definition of the Lie derivative along it. These concepts are in the super framework analogous to
the corresponding ones in the classical framework; see for the classical case [47], [48] and [121].

It is also true the converse of theorem 138:

Theorem 139. Consider a field theory defined by a configurations bundle E with fiber type
the supermanifold F over a base supermanifold X and by a Lagrangian form L which locally is
L = Lβ. Let E be the space of solutions of the field theory. Let χ be a projectable vector field on
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E such that:

∀U ⊂ X, ∀Φ ∈ E , ∃αΦ ∈ Ωn−1|mX :
∫

U

d

{
j1Φ∗

[
j1χ

(
L+ (−1)

|A|(|A|+|L|)
cI ∧

∂L

∂q̇IA
βA

)]
− αΦ

}
= 0

(11.24)

then we have that:

∀Φ ∈ E : ∀U ⊂ X :

∫

U

j1Φ∗ Liej1χ L =

∫

U

dαΦ (11.25)

Proof. The proof is analogous to the one of theorem 138

The quantity γ := j1Φ∗
[
j1χ

(
L+ (−1)

|A|(|A|+|L|)
cI ∧ ∂L

∂q̇I
A

βA

)]
− αΦ can be called a su-

percurrent.
Remember that:

j1Φ∗
[
j1χ

(
L+ (−1)

|A|(|A|+|L|)
cI ∧

∂L

∂q̇IA
βA

)]
= j1Φ∗ [j1χ FL∗ (θ)

]
(11.26)

where FL is the super Legendre transformation between J1E and the covariant multiphase space
P and θ is the Cartan form on P all defined in Chapter 8.

Suppose that U is a n|m-dimensional submanifold of X with boundary ∂U , then, by Stokes
theorem for superforms 68, we find that, under the hypotheses of theorem 138:

∫

U

d

{
j1Φ∗

[
j1χ

(
L+ (−1)

|A|(|A|+|L|)
cI ∧

∂L

∂q̇IA
βA

)]
− αΦ

}

=

∫

∂U

j1Φ∗
[
j1χ

(
L+ (−1)

|A|(|A|+|L|)
cI ∧

∂L

∂q̇IA
βA

)]
− αΦ = 0

(11.27)

If ∂U is the disjoint union of two submanifolds Σ1 and Σ2 of dimension n − 1|m, then, after a
suitable choice of orientations, (11.27) implies that:

∫

Σ1

j1Φ∗
[
j1χ

(
L+ (−1)

|A|(|A|+|L|)
cI ∧

∂L

∂q̇IA
βA

)]
− αΦ

=

∫

Σ2

j1Φ∗
[
j1χ

(
L+ (−1)

|A|(|A|+|L|)
cI ∧

∂L

∂q̇IA
βA

)]
− αΦ := Q

(11.28)

Hence on every solution Φ of the theory, Q is a conserved quantity and γ is its density.

Remember that at the beginning of section 11.1 we have fixed an immersed body on the
base manifold X. It is then automatically fixed an immersed body for every submanifold of X.
All the integrals performed until now and in the following are understood to be performed with
respect of the fixed immersed body.

As a consequence of Batchelor theorem, [7] (see Remark 60), if X has dimension n|m, it can
be seen as a super vector bundle whose fiber type Π has dimension 0|m and whose base Xn|0
has dimension n|0. Then it make sense to define the form γn|0, over the base Xn|0, integrating
γ over all the odd variables, id est over the fibers Πx:

γn|0 :=

∫

Πx

γ (11.29)
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If an immersion b of the body X into X is fixed, see Definition 59, then we can define:

γ := b∗γn|0 (11.30)

which is a C∞ differential form over the body X of X.
Suppose again that U is a n|m-dimensional submanifold of X with boundary ∂U , then,

performing the Berezin integrals with respect of the fixed immersed body, we have:
∫

U

dγ = 0 =⇒

∫

∂U

γ = 0 =⇒

∫

∂U

b∗
∫

Πx

γ = 0 =⇒

∫

∂U

γ =

∫

∂U

γ = 0

Therefore γ is a current on X, the body of X.

The discussion of this section can be extended to the case when the supergroup of symmetries
of the superfield theory is not a one parameter supergroup but an higher dimensional supergroup
acting on the field bundle E with a projectable action. In this more general case, the role of the
flow map R on E is taken by an action map. Each action map on E can be lifted to j1E with
the help of formula completely analogous to (11.3) and (11.4). The role of the projectable vector
field χ on E is then played by the infinitesimal generators of the symmetries. For each of them it
can be defined a lift to j1E using the lifted action map and then for each infinitesimal generator
of the supergroup of symmetries theorem, 138 and formula 11.28 are valid. Examples of such a
situation will be given in sections 12.2 and 12.3.

11.3 Momentum maps for multisymplectic super field the-

ories.

Suppose that a Lie group G acts smoothly on E respecting the bundle structure and suppose
that g is its Lie algebra. If k ∈ g generates the flow map K on E with associated vector field χ,
then the map

J : g −→ Ωn−1|m (J1E
)

k 7−→ j1χ

(
L+ (−1)

|A|(|A|+|L|)
cI ∧

∂L

∂q̇IA
βA

)
(11.31)

is the superfield extension of the map called by Gotay, Isenberg, Marsden, Montgomery, Śniatycki
and Yasskin in [63] the covariant momentum map in the Lagrangian representation.

From what we have seen above we have that:

Theorem 140. If G is a group of manifest symmetries for the field theory defined by the La-
grangian L and g is its Lie algebra, then for every k ∈ g and for every solution of the theory
Φ ∈ E , we have that:

d
{
j1Φ∗ [J (k)]

}
= 0

Let’s now study how symmetries can be seen on the multimomenta space P . On P we can
use local coordinates

(
xA, qI , pAI

)
, see section 8.1.

I will suppose from now that the Lagrangian L is even-regular or odd-regular, see section 8.2.
In both case the Legendre super transform FL between J1E and P is invertible. Remember that
the transform FL sends q̇IA to pAI = (−1)

|A|(|A|+|L|) ∂L
∂q̇I

A

.

We have that:
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Theorem 141. Let χ be a projectable vector field on E, then:

∀Φ ∈ E , ∃αΦ ∈ Ωn−1|mX :

j1Φ∗ Liej1χ L = dαΦ

(11.32)

if and only if:

∀Φ ∈ E , ∃αΦ ∈ Ωn−1|mX :
(
FL∗j

1Φ
)∗

LieFL∗j1χ θ = dαΦ

(11.33)

where θ is the Cartan form on P defined locally by θ := dqI ∧ pAI βA −Hβ.

Proof. We remember that locally:

FL∗θ = L+ (−1)
|A|(|A|+|L|)

cI ∧
∂L

∂q̇IA
βA

and
θ = FL∗L+ gI ∧ pAI βA

where the gI are the local contact forms on P defined with (8.20).
We remember also that:

dθ = ω

where ω is the multisymplectic superform defined in 115.
From the properties of the pull back and from theorems 138 and 139, we have that the

following propositions are equivalent:

1.
∀Φ ∈ E , ∃αΦ ∈ Ωn−1|mX : j1Φ∗ Liej1χ L − dαΦ = 0

2.
∀Φ ∈ E , ∃αΦ ∈ Ωn−1|mX : j1Φ∗ [d

(
j1χ FL∗θ

)]
− dαΦ = 0

3.
∀Φ ∈ E , ∃αΦ ∈ Ωn−1|mX :

(
FL∗j

1Φ
)∗ [

d
(
FL∗j

1χ θ
)]
− dαΦ = 0

But from Theorem 119, we have that:

∀Φ ∈ E , ∀u ∈ Γ (TP ) :
(
FL∗j

1Φ
)∗

[u dθ] = 0

And so propositions 1, 2 and 3 are equivalent to

∀Φ ∈ E , ∃αΦ ∈ Ωn−1|mX :
(
FL∗j

1Φ
)∗ [

d
(
FL∗j

1χ θ
)

+ FL∗j
1χ dθ

]
− dαΦ = 0

Which in turn is equivalent to:

∀Φ ∈ E , ∃αΦ ∈ Ωn−1|mX :
(
FL∗j

1Φ
)∗

LieFL∗j1χ θ − dαΦ = 0

and the theorem is proved.
For the sake of brevity, we can pose: χP := FL∗j1χ and σΦ := FL∗j1Φ.
Note that we could state and prove a similar theorem for generalized vector fields on P .
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Corollary 142. Let G be a Lie supergroup acting on P with a lifted covariant action, id est so
that for each element k ∈ g, there exists a corresponding action on E generated by the projectable
vector field χ, such that LieχP

ω = 0, and suppose that there exists J ∈ Hom
(
g,Ωn−1|m (P )

)
,

such that for each k ∈ g:
χP ω = d [J(k)]

then, ∀Φ ∈ E :
j1Φ∗ Liej1χ L = d [J(k) + χP θ] (11.34)

In this case we say that the map:

J : g −→ Ωn−1|m (P )

k −→ J(k)
(11.35)

is the super covariant momentum map of the action.

Note that the corollary can be very easily extended to the case when the action of the Lie
group G on P is not a lifted action. The super covariant momentum map defined with (11.35)
is the extension to superfield theories of the covariant momentum map defined for classical field
theories in [63], [108] and [29].

Suppose that a Lie group G acts on P with a special covariant action, id est so that for each
element k ∈ g, there exists a corresponding action on E generated by the projectable vector
field χ, such that LieFL∗j1χ θ = 0, then we are in a special case of application of theorem 141
and corollary 142. Following [63], I can then define a special super covariant momentum map J ,
with:

J : g −→ Ωn−1|m (P )

k 7−→ −χP θ
(11.36)

Note that my definitions of momentum maps slightly differ from the ones given in [63] and
[108] because I wanted to keep the notation a bit lighter. Moreover there exists a difference
in the conventional mutual sign between θ and ω (for me ω := dθ, whereas in those papers is
ω := −dθ). Following [21], I could have called my maps super comomentum maps. In fact one
can see that they are the direct generalizations of the super comomentum maps defined in [21],
which can be used in treating symmetries of supermechanical theories, where the base manifold
of the theory has dimension 1|0.



Chapter 12

Examples

In this chapter I will present some examples to illustrate the theory expounded in the chapters
above.

The theory developed in the previous chapters is fully exploitable when one deals with regular
Lagrangian super field theories. However, almost always, physical interesting super-Lagrangians
are not regular. The natural continuation of the study undertaken in this thesis, is the extension
to non regular theories, which can be done using techniques similar to the one used to treat
classical field theories with constraints or in general non regular Lagrangians. This work has not
been done yet.

Nonetheless, some of the considerations made above, can lead to interesting results also in
non-regular cases. For this reason some of the examples here exhibited consist of theories whose
Lagrangian is not regular.

In section 12.1 I will present a mechanical theory which is a super version of the harmonic
oscillator which doesn’t exhibit any manifest supersymmetry.

In section 12.2 I will treat the superparticle in a flat space. This simple example will allow
me to show how supersymmetries of a supermechanical system are treated with my formalism,
following what presented in Chapter 11.

In section 12.3 I will study a 3-dimensional σ-model with 2 supersymmetries and I’ll derive
with my formalism the current corresponding to one of its odd symmetries.

12.1 A super oscillator

In this section I will treat a super version of the harmonic oscillator which doesn’t exhibit
any manifest supersymmetry. I want to use this toy model to show that one can think of super
field theories (in this case a super mechanic theory) outside of the context of supersymmetry.
Moreover this example will allow to illustrate some of the techniques introduced in Chapter 9.

Let’s take the following fields bundle:

E := R1|2 × R1|0

π

y

X := R1|2

On X we use the coordinates (xA) ≡ (t; τ1, τ2), then we have that every field can be locally
expressed as:

Φ(x) = q(t) + τ1ψ1(t) + τ2ψ2(t) + τ1τ2F (t)

183
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where q and F are even and ψ1 and ψ2 are odd.
We define the field theory by the Lagrangian:

L = L
(
xA; q; q̇A

)
β :=

(
1

2

∑

A

q̇Aq̇A −
1

2
q2

)
β =

(
1

2
q̇tq̇t −

1

2
q2

)
β

The fields equation for a field Φ is:

∂L

∂q
(j1Φ(x))−

∂

∂xA
∂L

∂q̇A
(j1Φ(x)) = 0

So:

− Φ(x)−
∑

A

∂

∂xA
∂

∂xA
Φ(x) = 0 (12.1)

Equation (12.1) becomes:

q(t)+τ1ψ1(t)+τ2ψ2(t)+τ1τ2F (t) = −
∂2

∂t2
q(t)−τ1 ∂

2

∂t2
ψ1(t)−τ2 ∂

2

∂t2
ψ2(t)−τ1τ2 ∂

2

∂t2
F (t) (12.2)

or: 



q(t) = −
∂2

∂t2
q(t)

ψ1(t) = −
∂2

∂t2
ψ1(t)

ψ2(t) = −
∂2

∂t2
ψ2(t)

F (t) = −
∂2

∂t2
F (t)

(12.3)

Using the notation of section 9.1, we have that q̇0 = q, q̇1 = ψ1, q̇2 = ψ2 and q̇21 = F ; and
we can set q̇t,0 = q̇, q̇t,1 = ψ̇1, q̇t,2 = ψ̇2 and q̇t,21 = Ḟ . We have then:

Lβ =
(
q̇Ḟ − ψ̇1ψ̇2 − qF + ψ1ψ2

)
dt (12.4)

where t ∈ R. The corresponding Euler-Lagrange equations are precisely (12.3).
The Lagrangian L is purely even but not regular. We can anyway define a Legendre transform

and an Hamiltonian "function", which, remembering (8.6) and (8.10), are:

FL
(
xA, q, q̇A

)
=

(
xA, q, pA

(
xA, q, q̇A

))
=

(
xA, q, pt

(
xA, q, q̇A

)
, pτ1

(
xA, q, q̇τ1

)
, pτ2

(
xA, q, q̇τ2

))

=

(
xA, q, (−1)|A| ∂L

∂q̇A

(
xA, q, q̇A

))
=

(
xA, q, q̇t, 0, 0

)

(12.5)

and:
H(xA, qI , pAI ) := (−1)|A|q̇ApA − L

(
xA, qI , q̇IA

)
=

1

2
ptpt +

1

2
q2 (12.6)

On the space P defined by pτ1 = 0, pτ2 = 0, p̃t = 0, p̃τ1 = 0, p̃τ2 = 0, we can also define the
multisymplectic form. On P we can use as local coordinates

(
t, τ1, τ2, q, pt

)
, and we have locally:

ω =− dq ∧ dpt ∧

(
∂t

dt

dτ1 ⊙ dτ2

)
−
(
ptdpt + qdq

)
∧

dt

dτ1 ⊙ dτ2
(12.7)
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Since L is not regular, the hypothesis of theorems 112 and 119 are not satisfied and we don’t
have an Hamiltonian description as in (8.18).

On the other hand L is even and regular. We have then:

FL
(
t, q, ψ1, ψ2, F ; q̇, ψ̇1, ψ̇2, Ḟ

)
=

(
t, q, ψ1, ψ2, F ; pq, pψ1 , pψ2 , pF

)

=

(
t, q, ψ1, ψ2, F ;

∂L

∂q̇
,
∂L

∂ψ̇1

,
∂L

∂ψ̇2

,
∂L

∂Ḟ

)

=

(
t, q, ψ1, ψ2, F ; Ḟ ,−ψ̇2, ψ̇1, q̇

)
(12.8)

and:

H = pF pq + pψ2pψ1 + qF − ψ1ψ2 = q̇Ḟ − ψ̇1ψ̇2 + qF − ψ1ψ2 (12.9)

Hamilton system becomes:





(−1)
l(Λ) ∂qΛ

∂t

(
FLj1Φ(x)

)
=
∂H

∂pΛ

(
FLj1Φ(x)

)

∂pΛ

∂t

(
FLj1Φ(x)

)
= −

∂H

∂qΛ

(
FLj1Φ(x)

)
(12.10)

or: 



∂q

∂t
= pF

−
∂ψ1

∂t
= −pψ2

−
∂ψ2

∂t
= pψ1

∂F

∂t
= pq





∂pq

∂t
= −F

∂pψ1

∂t
= ψ2

∂pψ2

∂t
= −ψ1

∂pF

∂t
= −q

(12.11)

or: 



∂q

∂t
= q̇

−
∂ψ1

∂t
= −ψ̇1

−
∂ψ2

∂t
= −ψ̇2

∂F

∂t
= Ḟ





∂2F

∂t2
= −F

−
∂2ψ2

∂t2
= ψ2

∂2ψ1

∂t2
= −ψ1

∂2q

∂t2
= −q

(12.12)

which is equivalent to (12.3).
We can also build Ω. The space of solutions G ∼= E is a supermanifold of finite dimension

4|4 which can be well parametrized by (q0, F0, q̇0, Ḟ0;ψ1 0, ψ2 0, ψ̇1 0, ψ̇2 0), where the subscript 0
means that the fields are calculated at t = 0. If G ∈ G is an Hamiltonian surface, then a vector
δ1G ∈ TGG can be written as δ1G = vq0

1
∂
∂q0

+ vF0
1

∂
∂F0

+ vq̇0

1
∂
∂q̇0

+ · · · and it corresponds to the

vector field defined on G whose value at t = 0 is: v1(0) = vq0

1
∂
∂q

+ vF0
1

∂
∂F

+ vq̇0

1
∂
∂q̇

+ · · · . I choose
the surface Σ of codimension 1 to be defined by the equation t = 0. Then we have, when δ1G
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and δ2G are even:

ΩΣ

∣∣
G

(
δ1G, δ2G

)
=

∫

Σ∩G
v1 ∧ v2 ω = −dqΛ ∧ dp

Λ(v1, v2)|t=0 =

= −vq0

1 v
Ḟ0
2 + vq0

2 v
Ḟ0
1 − v

F0
1 vq̇0

2 + vF0
2 vq̇0

1 +

+ vψ1 0

1 v
ψ̇20
2 − vψ1 0

2 vψ̇2 0

1 − vψ2 0

1 v
ψ̇10
2 + vψ2 0

2 vψ̇1 0

1

(12.13)

When one, or both, of the vectors involved, is odd, the value of Ω̂ can be obtained by replacing
ω with ω̂ in the integral appearing in formula (12.13); where ω̂ is the extension of ω in its two
first arguments, performed according to definition 33, so that the new form ω̂ can be contracted
by odd vectors too.

The form Ω̂ is non degenerate and it can be used to define a Poisson bracket on F(G ), the
space of functions on G .

I want to stress here one interesting property of that Poisson bracket which follows from the
definition of Ω̂. Let’s consider f ∈ F(G ), then we associate to it the vector Xf defined by:

Ω̂ (·,Xf ) = df(·) (12.14)

If f, g ∈ F(G ), then we set:
{f, g} := Ω̂ (Xf ,Xg) (12.15)

Let’s consider for our example the functions ψ1 and −ψ̇2 (I let the subscript 0 drop for the sake
of simplicity) which are canonically conjugate and which are both odd. Remembering 33, so
that:

Ω̂Σ

∣∣
G

(δ1G, δ2G) = − ̂dqΛ ∧ dpΛ(v1, v2)|t=0 =

= vψ1

1 vψ̇2

2 − v
ψ1

2 vψ̇2

1 + ṽψ1

1 vψ̇2

2 + vψ1

2 ṽψ̇2

1 − v
ψ1

1 ṽψ̇2

2 − ṽ
ψ1

2 vψ̇2

1 − ṽ
ψ1

1 ṽψ̇2

2 − ṽ
ψ1

2 ṽψ̇2

1 + · · ·

We have that:

Xψ1
= −

∂

∂ψ̇2

X−ψ̇2
=

∂

∂ψ1

and:

{
ψ1,−ψ̇2

}
= Ω̂

(
Xψ1

,X−ψ̇2

)
= Ω̂

(
X−ψ̇2

,Xψ1

)
=
{
−ψ̇2, ψ1

}
= 1

And, as expected, the Poisson bracket is symmetric when acting on two odd functions.

12.2 The superparticle

In this section I present an example taken from supermechanics: the superparticle moving in
a flat space (for which I will give detailed calculations) or in a curved space (for which I will skip
some details). The situation can be modeled by a superfield theory defined on the supertime.

I will use this simple model to show how the supersymmetry generator, with my formalism,
can be represented by an odd (non-generalized) vector field on the bundle of configurations. At
the end of the section I will describe how the supersymmetry leads to a corresponding conserved
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quantity: the supercharge.

Let me first show how the Lagrangian of the superparticle moving in a generic curved space
can be built with my formalism. Let be X = R1|1, F = N , where N is a generic even superman-
ifold of dimension r|0, an let E = R1|1 ×N be the configurations bundle. Let g be an even G∞

Euclidean metric on N , which is the Grassmann continuation of a C∞ Euclidean metric g on the
body of N . On a local chart U ⊂ E, we can use

(
t, τ ; qi

)
as local coordinates. On an adapted

chart of J1E we can use the coordinates
(
t, τ ; qi; q̇it, q̇

i
τ

)
. A section Φ of E can be locally written

as:
Φi(t, τ) := qi(Φ(T )) = xi(t) + τψi(t) (12.16)

where, since all Φi must be even, the xi are even and ψi odd. From (12.16) we see that the same
theory could be described using the fields xi and ψi defined on the time line R1|0.

The lift of Φ to J1E can be written as:

j1Φ : T = (t, τ) 7−→
(
t, τ ; qi

(
j1Φ(T )

)
; q̇it
(
j1Φ(T )

)
, q̇iτ
(
j1Φ(T )

))

=

(
t, τ ; Φi(t, τ);

∂

∂t
Φi(t, τ),

∂

∂τ
Φi(t, τ)

)

=
(
t, τ ;xi(t) + τψi(t); ẋi(t) + τψ̇i(t), ψi(t)

)
(12.17)

The Lagrangian of the theory is locally L = Lβ, where:

L
(
t, τ ; qi; q̇it, q̇

i
τ

)
=

1

2

(
τ q̇it − q̇

i
τ

)
gij
(
qi
)
q̇jt (12.18)

Note that |L| = |L| = 1.
Let’s now study the simplest case occurring when N is the flat even r-dimensional space. All

the considerations made below about this simplest case can be extended to the most general case
with a bit more complicated calculations.

If N = Rr|0, then an atlas with a single chart can be used and the coordinates of the chart
described above can be taken as global ones.

When the metric g is the flat Euclidean metric, we have that gij
(
qi
)

= δij and L reduces to:

L
(
t, τ ; qi; q̇it, q̇

i
τ

)
=

1

2
τ q̇it q̇

i
t −

1

2
q̇iτ q̇

i
t (12.19)

So the Euler Lagrange equations have the simple form:

τ
d2Φi

dt2
−

1

2

d2Φi

dtdτ
−

1

2

d2Φi

dτdt
= 0 (12.20)

or:
τ ẍi(t)−

1

2
ψ̇i(t)−

1

2
ψ̇i(t) = 0 (12.21)

or: {
ẍi(t) = 0

ψ̇i(t) = 0
(12.22)

The Lagrangian L is purely odd, L = L̃, and it is regular. Remembering (8.6) and (8.10), we
can define a Legendre transform and an Hamiltonian "function":

FL
(
t, τ ; qi; q̇it, q̇

i
τ

)
=
(
t, τ ; qi; p̃ti, p̃

τ
i

)

=

(
t, τ ; qi;

∂L̃

∂q̇it
,
∂L̃

∂q̇iτ

)
=

(
t, τ ; qi; τ q̇it −

1

2
q̇iτ ,−

1

2
q̇it

) (12.23)
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and:

H
(
t, τ ; qi; p̃ti, p̃

τ
i

)
=H̃

(
t, τ ; qi; p̃ti, p̃

τ
i

)

=q̇itp̃
t
i + q̇iτ p̃

τ
i − L = −2p̃τi p̃

t
i +
(
−4p̃τi − 2p̃ti

)
p̃τi − 2τ p̃τi

2
−
(
−4p̃τi − 2p̃ti

)
p̃τi

=− 2p̃τi p̃
t
i − 2τ p̃τi

2

(12.24)

The Hamilton-Volterra system is then:




∂Φi

∂t
=
∂H̃

∂p̃ti

∂Φi

∂τ
=
∂H̃

∂p̃τi

∂p̃ti
∂t

+
∂p̃τi
∂τ

= −
∂H̃

∂qi

(12.25)

or: 



∂Φi

∂t
= −2p̃τi

∂Φi

∂τ
= −2p̃ti − 4τ p̃τi

∂p̃ti
∂t

+
∂p̃τi
∂τ

= 0

(12.26)

or: 



∂Φi

∂t
= −2p̃τi

∂Φi

∂τ
= −2p̃ti − 4τ p̃τi

−
1

2

∂2Φi

∂t∂τ
+ τ

∂2Φi

∂t2
−

1

2

∂2Φi

∂τ∂t
= 0

(12.27)

which is equivalent to (12.20).
We can also define the multisymplectic form:

ω =− dqi ∧ dpti ∧
1

dτ
− dqi ∧ dpτi ∧

(
∂τ

dt

dτ

)
−
(
−2p̃τi dp̃

t
i − 2p̃tidp̃

τ
i − 4τ p̃τi dp̃

τ
i

)
∧
dt

dτ
(12.28)

In the generic case of metric depending on the fields qi, the Euler Lagrange equations, the
Hamilton-Volterra system and the multisymplectic forms are a bit more complicated and I will
not exhibit them here.

Nevertheless it is not difficult to prove with my formalism that the generic Lagrangian (12.18)
is invariant under the action of the group of supertranslations of the supertime whose generators
are the vector fields:

χt =
∂

∂t

χτ =τ
∂

∂t
+

∂

∂τ

(12.29)
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whose lifts to J1E are:

j1χt =
∂

∂t

j1χτ =τ
∂

∂t
+

∂

∂τ
+ q̇it

∂

∂q̇iτ

(12.30)

Note that χt and its lift are even whereas χτ and its lift are odd.
Let’s study better the symmetry generated by χτ . The map on E generated by χτ can be

parametrized by an odd parameter κ and it is defined by:




tκ = t+ κτ

τκ = τ + κ

qiκ = qi
(12.31)

A lifted map on J1E is defined by:




tκ = t+ κτ

τκ = τ + κ

qiκ = qi

q̇it,κ = q̇it

q̇iτ,κ = q̇iτ + κq̇it

(12.32)

Note that:
qiκ(t, τ) = xiκ(t) + τψκ(t)

and
qiκ(tκ, τκ) = xiκ(tκ) + τκψ(tκ) (12.33)

Therefore, since all the functions here involved are G∞ and admit Taylor expansions, taking
into account the parities of variables, (12.31) implies that:

{
xiκ(t) = xi(t)− κψi(t)

ψiκ(t) = ψi(t) + κẋi(t)
(12.34)

Note that (12.34) is obviously coherent with (12.32).
If one describes the superparticle using the component fields xi and ψi defined on the real

time line, then one falls necessarily on the transformation (12.34), which involves derivatives of
the fields and whose generator can be only a generalized vector field. Moreover the corresponding
component Lagrangian defined in terms of xi and ψi would show a non manifest symmetry.

Describing the superparticle with the superfields qi defined on the supertime R1|1 allows us
to treat the supersymmetry (12.31) as generated by a conventional vector field and, as we are
going to see, the supersymmetry in this formalism is manifest.

In fact we still have to see that (12.31) and the corresponding generator (12.29) define a
symmetry of the theory.

Let’s calculate Liej1χτ
L. We have that:

Liej1χτ
L =d

(
j1χτ L

)
+ j1χτ dL = d

(
−L · j1χτ β

)
+ j1χτ dL

=− dL ∧
(
j1χτ β

)
+ j1χτ dL = j1χτ dL · β − j1χτ (dL ∧ β) + j1χτ dL

=j1χτ dL · β =

(
∂L

∂τ
+ q̇it

∂L

∂q̇iτ

)
β = 0

(12.35)
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Where the result is obtained remembering (12.18) and (12.30), remembering that |L| = |dL| = 1
and

∣∣j1χτ
∣∣ = 1, using the properties of fractional superforms, and specifically (5.56), and noting

that:
d
(
j1χτ β

)
= 0

So χτ defines indeed a manifest symmetry of the system.
Using the super Poincaré-Cartan form, we can therefore calculate the corresponding super-

current γ on a solution Φ. We have that:

γ = j1Φ∗
[
j1χτ

(
L+ (−1)

|A|(|A|+|L|)
cI ∧

∂L

∂q̇IA
βA

)]

= j1Φ∗
[
j1χτ

(
L+ ci ∧

∂L

∂q̇it
βt + ci ∧

∂L

∂q̇iτ
βτ

)]

= j1Φ∗
[(
τ
∂

∂t
+

∂

∂τ

) (
L+ ci ∧

∂L

∂q̇it
βt + ci ∧

∂L

∂q̇iτ
βτ

)]
(12.36)

Since R1|1 is a split supermanifold, we can integrate over the odd variable τ : id est we chose
the submanifold Σ of codimension 1 defined by t = t0, we integrate γ over Σ, and we obtain the
current γ defined on R1|0 and depending on the variable t0. Letting drop the subscript 0 of t0,
we obtain:

γ =

∫

Σ

γ =

∫
j1Φ∗

[
−

1

2
τ q̇iτgij(q)q̇

j
t +

1

2
τ q̇iτgij(q)q̇

j
t +

1

2
τ q̇iτgij(q)q̇

j
t

]
βt

=

∫
1

dτ

[
1

2
τψi(t)gij(x, ψ, τ)

(
ẋj(t) + τψ̇j(t)

)]

=
1

2
ψi(t)gij(x, ψ, 0)ẋj(t)

(12.37)

Where the result is obtained by remembering (12.18), using the properties of fractional super-
forms, and specifically (5.56), and noting that:

∫

Σ

βτ = 0

∫

Σ

∂

∂t

∂

∂τ

(
ci ∧ β

)
= 0

∫

Σ

∂

∂τ

∂

∂τ

(
ci ∧ β

)
= 0

Since γ is a current on R1|0, we have that on a solution of the theory
dγ

dt
= 0. In other word

on a solution we have:
d

dt

[
ψi(t)gij(x, ψ, 0)ẋj(t)

]
= 0

The corresponding conserved quantity is therefore:

Q = ψigij(x, ψ, 0)ẋj (12.38)

Note that, since g is G∞ and it depends on (xi + τψi), in fact gij(x, ψ, 0) does not depend on ψ.
When g doesn’t depend on q, (12.38) is an immediate consequence of (12.22).
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To see that χt in (12.29) is the generator of a symmetry is even simpler; from (12.30) we have
in fact that:

Liej1χt
L =d

(
j1χt L

)
+ j1χt dL = d

(
∂

∂t
L

)
+
∂

∂t
dL

=dL ∧ βt +
∂

∂t
(dL ∧ β) = −

∂

∂t
(dL ∧ β) +

∂

∂t
(dL ∧ β) = 0

(12.39)

Where again use has been made of (5.56).
The corresponding supercurrent γt on a solution Φ is:

γt = j1Φ∗
[
j1χt

(
L+ (−1)

|A|(|A|+|L|)
cI ∧

∂L

∂q̇IA
βA

)]

= j1Φ∗
[
∂

∂t

(
L+ ci ∧

∂L

∂q̇it
βt + ci ∧

∂L

∂q̇iτ
βτ

)]

= j1Φ∗
[
Lβt +

∂

∂t

(
ci ∧

∂L

∂q̇it
βt + ci ∧

∂L

∂q̇iτ
βτ

)]
(12.40)

With considerations similar to the ones made above, one can see that:

γt =

∫

Σ

γt =

∫
j1Φ∗

[
1

2
τ q̇itgij(q)q̇

j
t −

1

2
q̇iτgij(q)q̇

j
t +

1

2
q̇iτgij(q)q̇

j
t +

1

2
q̇iτgij(q)q̇

j
t

]
βt

=

∫
1

dτ

[
1

2
τ q̇itgij(q)q̇

j
t

]

=

∫
1

dτ

[
1

2
τ
(
ẋi(t) + τψ̇i(t)

)
gij(x, ψ, τ)

(
ẋj(t) + τψ̇j(t)

)]

=
1

2
ẋi(t)gij(x, ψ, 0)ẋj(t)

(12.41)

And the corresponding conserved quantity is the energy:

E = ẋigij(x, ψ, 0)ẋj

where E in fact doesn’t depend on ψ; as it was for Q.

12.3 The 3-dimensional σ-model with two supersymme-

tries

In this section I will study a 3-dimensional σ-model with 2 supersymmetries to show how
the formalism of superfields, fractional forms and super Poincaré-Cartan form, described above,
allows to calculate in a simple and geometrically transparent way the supercurrents of the theory
and the conserved supercharghes.

For this field model I will use as base manifold X = R3|2 and as target space F = R1|0. The
configuration bundle is E = R3|2 × R1|0. The model could be extended to more general base
manifolds whose even parts are Riemaniann manifolds and to a more general target space of
dimension 1|0 (see for example [54], [69] and [37]). To keep things easier, I will use this simpler
model; moreover I will not carry on all the computations. The techniques of calculations would
not change in the more general case. I judge that the simpler case and the few calculations
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presented here will be sufficient to illustrate the theory introduced in the previous chapters and
specifically to show how the super Poincaré-Cartan form can be exploited.

On E we can use an atlas with a single global chart with coordinates
(
t, x, y, θ1, θ2; q

)
. On an

adapted chart of J1E we can use the coordinates
(
t, x, y, θ1, θ2; q; q̇t, q̇x, q̇y, q̇θ1 , q̇θ2

)
. A section Φ

of E can be written as:

Φ(t, x, y, θ1, θ2) := q(Φ(X)) = ϕ(t, x, y) + θ1ψ1(t, x, y) + θ2ψ2(t, x, y) + θ1θ
2F (t, x, y) (12.42)

where, since Φ must be even, ϕ and F are even and ψ1 and ψ2 are odd. The same theory could
be described using the fields ϕ, ψ1, ψ2 and F defined on the bosonic spacetime R3 which is the
body of R3|2.

The Lagrangian of the theory is L = Lβ, where:

L
(
t, x, y, θ1, θ2; q; q̇t, q̇x, q̇y, q̇θ1 , q̇θ2

)

=
1

2

(
q̇θ1 − θ1q̇t − θ

1q̇x − θ
2q̇y
) (
q̇θ2 − θ2q̇t + θ2q̇x − θ

1q̇y
)

+ h(q)
(12.43)

and where h is an even G∞ function from R1|0 to R1|0.
Note that |L| = |L| = 0.
From (12.43), we obtain that:

∂L

∂q̇t
=−

1

2
θ1
(
q̇θ2 − θ2q̇t + θ2q̇x − θ

1q̇y
)
−

1

2

(
q̇θ1 − θ1q̇t − θ

1q̇x − θ
2q̇y
)
θ2

=−
1

2
θ1q̇θ2 −

1

2
q̇θ1θ2 + θ1θ2q̇t

∂L

∂q̇x
=−

1

2
θ1
(
q̇θ2 − θ2q̇t + θ2q̇x − θ

1q̇y
)

+
1

2

(
q̇θ1 − θ1q̇t − θ

1q̇x − θ
2q̇y
)
θ2

=−
1

2
θ1q̇θ2 +

1

2
q̇θ1θ2 − θ1θ2q̇x

∂L

∂q̇y
=−

1

2
θ2
(
q̇θ2 − θ2q̇t + θ2q̇x − θ

1q̇y
)
−

1

2

(
q̇θ1 − θ1q̇t − θ

1q̇x − θ
2q̇y
)
θ1

=−
1

2
θ2q̇θ2 −

1

2
q̇θ1θ1 − θ1θ2q̇y

∂L

∂q̇θ1

=
1

2

(
q̇θ2 − θ2q̇t + θ2q̇x − θ

1q̇y
)

∂L

∂q̇θ2

=−
1

2

(
q̇θ1 − θ1q̇t − θ

1q̇x − θ
2q̇y
)

(12.44)

Therefore the super Euler-Lagrangian equation is the following:

1

2
θ1 d2Φ

dtdθ2
+

1

2

d2Φ

dtdθ1
θ2 − θ1θ2 d

2Φ

dt2

+
1

2
θ1 d2Φ

dxdθ2
−

1

2

d2Φ

dxdθ1
θ2 + θ1θ2 d

2Φ

dx2

+
1

2
θ2 d2Φ

dydθ2
+

1

2

d2Φ

dydθ1
θ1 + θ1θ2 d

2Φ

dy2

−
1

2

d2Φ

dθ1dθ2
−

1

2
θ2 d2Φ

dθ1dt
+

1

2
θ2 d2Φ

dθ1dx
+

1

2

dΦ

dy
−

1

2
θ1 d2Φ

dθ1dy

+
1

2

d2Φ

dθ2dθ1
+

1

2
θ1 d2Φ

dθ2dt
+

1

2
θ1 d2Φ

dθ2dx
−

1

2

dΦ

dy
+

1

2
θ2 d2Φ

dθ2dy
+ h′ (Φ) = 0

(12.45)
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which is equivalent to:

0 =θ1 d2Φ

dtdθ2
+

d2Φ

dtdθ1
θ2 + θ1 d2Φ

dxdθ2
−

d2Φ

dxdθ1
θ2 + θ2 d2Φ

dydθ2
+

d2Φ

dydθ1
θ1

+
d2Φ

dθ2dθ1
− θ1θ2 d

2Φ

dt2
+ θ1θ2 d

2Φ

dx2
+ θ1θ2 d

2Φ

dy2
+ h′ (Φ)

(12.46)

where h′ is the derived function of h. One can compare equation (12.46) with the equivalent one
in [37] (Formula 4.31), obtained using integral forms on superspace.

To derive the equivalent Euler-Lagrange equations of the components of the field Φ, one
can follow two ways. Either one first finds the Lagrangian for the theory formulated in the
components formalism (using for example the techniques presented in Chapter 9) and then
derives the corresponding Euler-Lagrange equations, or one derive these equations directly from
(12.45). In Chapter 9 I proved that the two way are equivalent. Here (as I have already done in
the previous two sections) I will follow only the second path, which is shorter having already at
hand equation (12.46). Rememebering (12.42), we find that (12.46) is equivalent to:

0 =θ1 dψ2

dt
+
dψ1

dt
θ2 + θ1 dψ2

dx
−
dψ1

dx
θ2 + θ2 dψ2

dy
+
dψ1

dy
θ1

+ F − θ1θ2 d
2ϕ

dt2
+ θ1θ2 d

2ϕ

dx2
+ θ1θ2 d

2ϕ

dy2
+ h′ [ϕ+ θ1ψ1 + θ2ψ2 + θ1θ

2F
] (12.47)

where ϕ, ψ1, ψ2 and F depend on the variables (t, x, y).

Since h is a G∞ function, we have that:

h′ [ϕ+ θ1ψ1 + θ2ψ2 + θ1θ
2F
]

=h′ [ϕ] +
[
θ1ψ1 + θ2ψ2 + θ1θ

2F
]
h′′ [ϕ]

+
1

2

[
θ1ψ1 + θ2ψ2 + θ1θ

2F
]2
h′′′ [ϕ]

=h′ [ϕ] +
[
θ1ψ1 + θ2ψ2 + θ1θ

2F
]
h′′ [ϕ]− θ1θ2ψ1ψ2h

′′′ [ϕ]

(12.48)

where h′′ and h′′′ are the second and the third derivative of the function h and where in the Taylor
expansion (12.48), the higher order terms disappear because higher powers of the nilpotent term[
θ1ψ1(t, x, y) + θ2ψ2(t, x, y) + θ1θ

2F (t, x, y)
]

vanish.

Note that this kind of manipulation of the function h makes sense because we are working
with the concrete Rogers-DeWitt approach to supermanifolds and because h is taken to be G∞;
see [133] for more details on Taylor expansions of G∞-functions.

Equation (12.47) is then equivalent to:

0 =θ1 dψ2

dt
+
dψ1

dt
θ2 + θ1 dψ2

dx
−
dψ1

dx
θ2 + θ2 dψ2

dy
+
dψ1

dy
θ1 + F − θ1θ2 d

2ϕ

dt2
+ θ1θ2 d

2ϕ

dx2
+ θ1θ2 d

2ϕ

dy2

+ h′ [ϕ] +
[
θ1ψ1 + θ2ψ2 + θ1θ

2F
]
h′′ [ϕ]− θ1θ2ψ1ψ2h

′′′ [ϕ]

(12.49)
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which in turn is equivalent to the Euler-Lagrange system of equations:




dψ2

dt
+
dψ2

dx
−
dψ1

dy
= −ψ1h

′′ [ϕ]

dψ1

dt
−
dψ1

dx
−
dψ2

dy
= ψ2h

′′ [ϕ]

F = −h′ [ϕ]

−
d2ϕ

dt2
+
d2ϕ

dx2
+
d2ϕ

dy2
= −Fh′′ [ϕ] + ψ1ψ2h

′′′ [ϕ]

(12.50)

This system can be compared with the equivalent ones found with other techniques in [37]
(Formula 4.22, 4.34 and 4.35) and [69] (Formula 43).

Since the Lagrangian (12.43) is not regular, I can’t give an Hamiltonian description of the
theory using the tools developed in sections 8.1, 8.2 and 8.3. I can however study the symmetries
of the theory from the Lagrangian point of view, using the techniques explained in Chapter
11 and I can build a symplectic structure on the covariant phase space using the pullback of
the multisymplectic form on J1E as explained at the end of section 8.4. Let’s first see this
construction.

Let’s fix the surface Σ ⊂ J1E of codimension 1|0 defined by the equation t = 0. Let Φ ∈ E
be a solution of the theory and let be δ1Φ, δ2Φ ∈ TΦE two vectors over Φ; let be u1, u2 ∈
Γ
(
i∗
(
Vj1πJ

1E
))

the corresponding vertical Jacobi vector fields over j1Φ(X), then we pose:

OΣ

∣∣
Φ

(δ1Φ, δ2Φ) :=

∫

Σ∩j1Φ(X)

(u1 ∧ u2) ô (12.51)

where o = −dq ∧ d
(
∂L
∂q̇A

)
∧ βA − dH ∧ β.

Because of the definition of Σ and of ô, we can simplify (12.52), which becomes:

OΣ

∣∣
Φ

(δ1Φ, δ2Φ) := −

∫

Σ∩j1Φ(X)

(u1 ∧ u2)
̂

dq ∧ d

(
∂L

∂q̇t

)
∧ βt (12.52)

where the hat îndicate the extension of the superform in its two first arguments (see section 5.2.2).

Let’s now study the symmetries of the theory from the Lagrangian point of view. One can
prove that the theory is invariant with respect of the transformations generated by the following
vector fields on E:

χt =
∂

∂t
χx =

∂

∂x
χy =

∂

∂y

χ1 =
∂

∂θ1
+ θ1

(
∂

∂t
+

∂

∂x

)
+ θ2 ∂

∂y
χ2 =

∂

∂θ2
+ θ2

(
∂

∂t
−

∂

∂x

)
+ θ1 ∂

∂y

(12.53)

where |χt| = |χx| = |χy| = 0 and |χ1| = |χ2| = 1.
Each one of the generators listed in (12.53) gives rise to a supercurrent (even or odd). I

will treat only the symmetry generated by χ1. Similar techniques can be applied to all other
generators.

Let’s show that χ1 does indeed generate a symmetry. First of all from (11.9) and (11.12) we
obtain that:

j1χ1 =
∂

∂θ1
+ θ1

(
∂

∂t
+

∂

∂x

)
+ θ2 ∂

∂y
+ (q̇t + q̇x)

∂

∂q̇θ1

+ q̇y
∂

∂q̇θ2
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So we have that:

Liej1χ1
L =d

(
j1χ1 L

)
+ j1χ1 dL = d

(
L · j1χ1 β

)
+ j1χ1 dL

=dL ∧
(
j1χ1 β

)
+ j1χ1 dL =

(
j1χ1 dL

)
· β − j1χ1 (dL ∧ β) + j1χ1 dL

=
(
j1χ1 dL

)
· β =

[
∂L

∂θ1
+ (q̇t + q̇x)

∂L

∂q̇θ1

+ q̇y
∂L

∂q̇θ2

]
β

=

[
−

1

2
(q̇t + q̇x)

(
q̇θ2 − θ2q̇t + θ2q̇x − θ

1q̇y
)

+
1

2

(
q̇θ1 − θ1q̇t − θ

1q̇x − θ
2q̇y
)
q̇y

]
β

+

[
(q̇t + q̇x)

1

2

(
q̇θ2 − θ2q̇t + θ2q̇x − θ

1q̇y
)]
β

+

[
−q̇y

1

2

(
q̇θ1 − θ1q̇t − θ

1q̇x − θ
2q̇y
)]
β = 0

(12.54)

Where the result is obtained remembering (12.43), remembering that |L| = |dL| = 0, using the
properties of fractional superforms, and specifically (5.56), and noting that:

d
(
j1χ1 β

)
= 0

So χ1 generates indeed a manifest symmetry of the system. For every solution Φ of the theory,
χ1 defines a supercurrent γ1:

γ1 =j1Φ∗
[
j1χ1

(
L+ (−1)

|A|(|A|+|L|)
c ∧

∂L

∂q̇A
βA

)]

=j1Φ∗
[
j1χ1

(
L+ c ∧

∂L

∂q̇a
βa − c ∧

∂L

∂q̇α
βα

)]

=j1Φ∗
[
j1χ1 L+

(
j1χ1 c

)
·
∂L

∂q̇a
βa −

(
j1χ1 c

)
·
∂L

∂q̇α
βα

]

− j1Φ∗
[
c ∧

(
j1χ1

∂L

∂q̇a
βa − j

1χ1
∂L

∂q̇α
βα

)]

=j1Φ∗
[(

∂

∂θ1
+ θ1 ∂

∂t
+ θ1 ∂

∂x
+ θ2 ∂

∂y

)
L

]

+ j1Φ∗
{[(

∂

∂θ1
+ θ1 ∂

∂t
+ θ1 ∂

∂x
+ θ2 ∂

∂y

)
c

]
·
∂L

∂q̇a
βa

}

− j1Φ∗
{[(

∂

∂θ1
+ θ1 ∂

∂t
+ θ1 ∂

∂x
+ θ2 ∂

∂y

)
c

]
·
∂L

∂q̇α
βα

}

(12.55)

where c is the contact form on J1E.
If Π ⊂ X is the surface defined by t = t0, x = x0 and y = y0, then the form:

γ1 :=

∫

Π

γ1

depends on the variables t0, x0 and y0 and it is a current on the body of X.
If we fix a time slice Σ ⊂ X of codimension 1, then the quantity:

Q1 =

∫

Σ

γ1 =

∫

Σ

γ1
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is a conserved quantity.
Let’s define Σ by the equation t = t0. To compute Q1 we don’t need to explicitely compute

all the components of the superform γ1. We have in fact:

Q1 =

∫

Σ

j1Φ∗
(
θ1 ∂

∂t
Lβ

)
+

∫

Σ

j1Φ∗
{[(

∂

∂θ1
+ θ1 ∂

∂t
+ θ1 ∂

∂x
+ θ2 ∂

∂y

)
c

]
·
∂L

∂q̇t
βt

}

=

∫

Σ

j1Φ∗ (θ1Lβt
)
−

∫

Σ

j1Φ∗
[(
q̇θ1 + θ1q̇t + θ1q̇x + θ2q̇y

)
·
∂L

∂q̇t
βt

]

=

∫

Σ

(
1

2
θ1θ2ψ1

∂ϕ

∂t
−

1

2
θ1θ2ψ1

∂ϕ

∂x
−

1

2
θ1θ2ψ2

∂ϕ

∂y
+

1

2
θ1θ2ψ2F + θ1θ2ψ2h

′(ϕ)

)
dx ∧ dy

dθ1 ⊙ θ2

−

∫

Σ

[(
ψ1 + θ2F + θ1 ∂ϕ

∂t
+ θ1θ2 ∂ψ2

∂t
+ θ1 ∂ϕ

∂x
+ θ1θ2 ∂ψ2

∂x
+ θ2 ∂ϕ

∂y
− θ1θ2 ∂ψ1

∂y

)
·

·

(
−

1

2
θ1ψ2 −

1

2
ψ1θ

2 + θ1θ2 ∂ϕ

∂t

)]
dx ∧ dy

dθ1 ⊙ θ2

=

∫

Σ

(
1

2
ψ1
∂ϕ

∂t
−

1

2
ψ1
∂ϕ

∂x
−

1

2
ψ2
∂ϕ

∂y
+

1

2
ψ2F + ψ2h

′(ϕ)

)
dx ∧ dy

−

∫

Σ

[
θ1θ2ψ1

∂ϕ

∂t
+

1

2
θ1θ2ψ2F +

1

2
θ1θ2ψ1

∂ϕ

∂t
+

1

2
θ1θ2ψ1

∂ϕ

∂x
+

1

2
θ1θ2ψ2

∂ϕ

∂y

]
dx ∧ dy

dθ1 ⊙ θ2

=

∫

Σ

(
1

2
ψ1
∂ϕ

∂t
−

1

2
ψ1
∂ϕ

∂x
−

1

2
ψ2
∂ϕ

∂y
+

1

2
ψ2F + ψ2h

′(ϕ)

)
dx ∧ dy

−

∫

Σ

[
ψ1
∂ϕ

∂t
+

1

2
ψ2F +

1

2
ψ1
∂ϕ

∂t
+

1

2
ψ1
∂ϕ

∂x
+

1

2
ψ2
∂ϕ

∂y

]
dx ∧ dy

=

∫

Σ

(
−ψ1

∂ϕ

∂t
− ψ1

∂ϕ

∂x
− ψ2

∂ϕ

∂y
+ ψ2h

′(ϕ)

)
dx ∧ dy

(12.56)

Formula (12.56) is equivalent to the one obtained with different techniques in [54] (first of
Formula 7.36).
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Conclusion and perspectives

The fractional forms introduced in the second part of this thesis allowed the multisymplectic
approach to superfield theories developed in the third part. This offers an Hamiltonian point of
view for superfield theories with several space-time variables. The formalism gives also new tools
to study supermechanical theories.

As in the classical case, the super-multisymplectic approach provides a way to build a sym-
plectic structure on the covariant phase space, which can be even or odd depending on the parity
of the Lagrangian defining the superfield theory. From the symplectic structure a direct pro-
cedure leads to the fields brackets needed by physicists as the starting point of the canonical
quantization.

I see some possible paths to follow in order to complete, to exploit and/or to extend the
results found with the work of this thesis. I list here some of them.

– First of all it is necessary to extend the constructions and the theorems here presented to
the case where the Lagrangian defining the superfield theory is not regular. This is indeed
the most common case for superfield theories. Very likely the techniques used in classical
field theory to treat singular Lagrangians, can be easily extended to the super case, so that
the dynamic can be described with the super-multisymplectic formalism. This will give an
Hamiltonian point of view on superfield theories where gauge symmetries are present and
on theories which can be described with the use of constraints.

– It is then necessary to study the infinite dimensional super covariant phase space providing
it with a rigorously defined super-differential structure in order to prove rigorously the
properties of the super-symplectic form built with the help of the super-multisymplectic
formalism.

– A more systematic and complete study of fractional forms can be foreseen, which may also
clarify their relations with generic Voronov-Zorich superforms.

– A promising path to follow is in my opinion the one leading to a description of the BRST
symmetry with the multisymplectic formalism, completing the work already initiated by S.
P. Hrabak. BRST symmetry can indeed be seen as an odd symmetry, therefore the tools
here developed for treating odd symmetries may provide new insights into the matter.

– The coforms defined in chapter 6 seem to me the natural objects to use to study the
BV approach to field theories. Some of their properties, expounded here, may help in
understanding better, and from a new point of view, some features of the BV theory.

– I think that the use of fractional forms may be useful in exploiting better the picture
changing operators which appear in string theory. The formalism introduced in this thesis
should be applied to some superfield theories of interest to physicists, like for example super
Chern-Simons theories, where picture changing operators play an important role.

– Finally this formalism could be applied to other supersymmetric theories to exploit the
power of its geometric point of view.
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Appendix A

Computation of symplectic forms.

A.1 Computation of the components of Ω and Ω̄ for theo-

ries on bundles.

I exhibit here the calculations necessary to compute the values of the components of Ω and
Ω̄ for the field theories defined in section 3.1.4.

We have:

Ωk1r,k′1r =

∫

Σ∩G
ξk1r ∧ ξk′1r ω

=

∫ b

0

{
−2π

(
α

a
+
k

a

)
sin

[
2π

(
β

b
+
j

b

)
x

]
cos

[
2π

(
β

b
+
j′

b

)
x

]}
dx

+

∫ b

0

{
2π

(
α

a
+
k′

a

)
sin

[
2π

(
β

b
+
j′

b

)
x

]
cos

[
2π

(
β

b
+
j

b

)
x

]}
dx

=

∫ b

0

−2π

(
α

a
+
k

a

)
1

2

{
sin

[
2πx

(
2β

b
+
j + j′

b

)]
+ sin

[
2πx

(
j − j′

b

)]}
dx

+

∫ b

0

2π

(
α

a
+
k′

a

)
1

2

{
sin

[
2πx

(
2β

b
+
j + j′

b

)]
+ sin

[
2πx

(
j′ − j

b

)]}
dx = 0

(A.1)

because j, j′ and 2β are integer. In the same way we can calculate:

Ωk1r,k′3r = Ωk1r,k′4r = Ωk2r,k′2r = Ωk2r,k′3r = Ωk2r,k′4r = Ωk3r,k′3r = Ωk4r,k′4r = 0 (A.2)
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On the other hand we have:

Ωk1r,k′2r =

∫

Σ∩G
ξk1r ∧ ξk′2r ω

=

∫ b

0

{
−2π

(
α

a
+
k

a

)
sin

[
2π

(
β

b
+
j

b

)
x

]
sin

[
2π

(
β

b
+
j′

b

)
x

]}
dx

−

∫ b

0

{
2π

(
α

a
+
k′

a

)
cos

[
2π

(
β

b
+
j′

b

)
x

]
cos

[
2π

(
β

b
+
j

b

)
x

]}
dx

=

∫ b

0

−2π

(
α

a
+
k

a

)
1

2

{
cos

[
2πx

(
j − j′

b

)]
− cos

[
2πx

(
2β

b
+
j + j′

b

)]}
dx

−

∫ b

0

2π

(
α

a
+
k′

a

)
1

2

{
cos

[
2πx

(
j − j′

b

)]
+ cos

[
2πx

(
2β

b
+
j + j′

b

)]}
dx

=− π

(
2α

a
+
k + k′

a

)∫ b

0

cos

[
2πx

(
j − j′

b

)]
dx

+ π

(
k − k′

a

)∫ b

0

cos

[
2πx

(
2β

b
+
j + j′

b

)]
dx

=− π

(
2α

a
+
k + k′

a

)
δjj′b+ π

(
k − k′

a

)∫ b

0

cos

[
2πx

(
2β

b
+
j + j′

b

)]
dx

=− 2π
b

a
(α+ k) δkk′ + 0

(A.3)

because j = j′ only when k = k′, and because the last integral equal to 0 being in general(
β
b

+ j
b

)
≥ 0 and

(
β
b

+ j′

b

)
≥ 0, and more specifically, when there is no degeneracy ( as it is

the case we are now studying):
(
β
b

+ j
b

)
> 0 and

(
β
b

+ j′

b

)
> 0. If in the sum (3.56) there is

one specific k̃ with a degeneracy of the corresponding Ek̃, then all our reasoning is still valid for
every k and k′ except k̃ which could be easily treated separately.
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Finally we have:

Ωk3r,k′4r =

∫

Σ∩G
ξk3r ∧ ξk′4r ω

=

∫ b

0

{
−2π

(
α

a
+
k

a

)
sin

[
−2π

(
β

b
+
j

b

)
x

]
sin

[
−2π

(
β

b
+
j′

b

)
x

]}
dx

−

∫ b

0

{
2π

(
α

a
+
k′

a

)
cos

[
−2π

(
β

b
+
j′

b

)
x

]
cos

[
−2π

(
β

b
+
j

b

)
x

]}
dx

=

∫ b

0

−2π

(
α

a
+
k

a

)
1

2

{
cos

[
2πx

(
j′ − j

b

)]
− cos

[
2πx

(
−

2β

b
−
j + j′

b

)]}
dx

−

∫ b

0

2π

(
α

a
+
k′

a

)
1

2

{
cos

[
2πx

(
j′ − j

b

)]
+ cos

[
2πx

(
−

2β

b
−
j + j′

b

)]}
dx

=− π

(
2α

a
+
k + k′

a

)∫ b

0

cos

[
2πx

(
j′ − j

b

)]
dx

+ π

(
k − k′

a

)∫ b

0

cos

[
2πx

(
−

2β

b
−
j + j′

b

)]
dx

=− π

(
2α

a
+
k + k′

a

)
δjj′b+ π

(
k − k′

a

)∫ b

0

cos

[
2πx

(
−

2β

b
−
j + j′

b

)]
dx

=− 2π
b

a
(α+ k) δkk′ + 0

(A.4)

We compute Ω̄ integrating on the slice Σ̄, and we find with analogous techniques:

Ω̄k1r,k′3r = Ω̄k1r,k′4r = Ω̄k2r,k′2r = Ω̄k2r,k′3r = Ω̄k2r,k′4r = Ω̄k3r,k′3r = Ω̄k4r,k′4r = 0 (A.5)

and:

Ω̄k1r,k′2r =

∫

Σ̄∩G
ξk1r ∧ ξk′2r ω

=

∫ a

0

{
−2π

(
β

b
+
j

b

)
sin

[
2π

(
α

a
+
k

a

)
t

]
sin

[
2π

(
α

a
+
k′

a

)
t

]}
dt

−

∫ a

0

{
2π

(
β

b
+
j′

b

)
cos

[
2π

(
α

a
+
k′

a

)
t

]
cos

[
2π

(
α

a
+
k

a

)
t

]}
dt

=

∫ a

0

−2π

(
β

b
+
j

b

)
1

2

{
cos

[
2πt

(
k − k′

a

)]
− cos

[
2πt

(
2α

a
+
k + k′

a

)]}
dt

−

∫ a

0

2π

(
β

b
+
j′

b

)
1

2

{
cos

[
2πt

(
k − k′

b

)]
+ cos

[
2πt

(
2α

a
+
k + k′

a

)]}
dt

=− π

(
2β

b
+
j + j′

b

)∫ a

0

cos

[
2πt

(
k − k′

a

)]
dt

+ π

(
j − j′

b

)∫ a

0

cos

[
2πt

(
2α

a
+
k + k′

a

)]
dt =

=− π

(
2β

b
+
j + j′

b

)
δkk′a+ π

(
j − j′

b

)∫ a

0

cos

[
2πt

(
2α

a
+
k + k′

a

)]
dt

=− 2π
a

b
(β + j) δkk′ + 0

(A.6)
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because the last integral is equal to 0 being in general k ≥ −α and k′ ≥ −α, and more specifically,
when there is no degeneracy ( as it is the case we are now studying): k > −α and k′ > −α. If
in the sum (3.56) there is one specific k̃ with a degeneracy of the corresponding Ek̃, then all our
reasoning is still valid for every k and k′ except k̃ which could be easily treated separately.
We have then:

Ω̄k3r,k′4r =

∫

Σ̄∩G
ξk3r ∧ ξk′4r ω

=

∫ a

0

{
2π

(
β

b
+
j

b

)
sin

[
2π

(
α

a
+
k

a

)
t

]
sin

[
2π

(
α

a
+
k′

a

)
t

]}
dt

∫ a

0

{
2π

(
β

b
+
j′

b

)
cos

[
2π

(
α

a
+
k′

a

)
t

]
cos

[
2π

(
α

a
+
k

a

)
t

]}
dt

=

∫ a

0

2π

(
β

b
+
j

b

)
1

2

{
cos

[
2πt

(
k − k′

a

)]
− cos

[
2πt

(
2α

a
+
k + k′

a

)]}
dt

∫ a

0

2π

(
β

b
+
j′

b

)
1

2

{
cos

[
2πt

(
k − k′

a

)]
+ cos

[
2πt

(
2α

a
+
k + k′

a

)]}
dt

=π

(
2β

b
+
j + j′

b

)∫ a

0

cos

[
2πt

(
k − k′

a

)]
dt

+ π

(
j′ − j

b

)∫ a

0

cos

[
2πt

(
2α

a
+
k + k′

a

)]
dt

=π

(
2β

b
+
j + j′

b

)
δkk′a+ π

(
j′ − j

b

)∫ a

0

cos

[
2πt

(
2α

a
+
k + k′

a

)]
dt

=2π
a

b
(β + j) δkk′ + 0

(A.7)

As already noted, we would obtain the same results if we calculated Ω and Ω̄ on the imaginary
section of the theory.
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