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Résumé

Cette thèse étudie le contrôle optimal de la dynamique de type McKean-Vlasov et ses applications en
mathématiques financières. La thèse contient deux parties.

Dans la première partie, nous devéloppons la méthode de la programmation dynamique pour résoudre
les problèmes de contrôle stochastique de type McKean-Vlasov. En utilisant les contrôles admissibles ap-
propriés, nous pouvons reformuler la fonction valeur en fonction de la loi (resp. la loi conditionnelle) du
processus comme seule variable d’état et obtenir la propriété du flot de la loi (resp. la loi conditionnelle)
du processus, qui permettent d’obtenir en toute généralité le principe de la programmation dynamique.
Ensuite nous obtenons l’équation de Bellman correspondante, en s’appuyant sur la notion de différentia-
bilité par rapport aux mesures de probabilité introduite par P.L. Lions [Lio12] et la formule d’Itô pour
le flot de probabilité. Enfin nous montrons la propriété de viscosité et l’unicité de la fonction valeur
de l’équation de Bellman. Dans le premier chaptire, nous résumons quelques résultats utiles du calcul
différentiel et de l’analyse stochastique sur l’espace de Wasserstein. Dans le deuxième chapitre, nous
considérons le contrôle optimal stochastique de système à champ moyen non linéaire en temps discret.
Le troisème chapitre étudie le problème de contrôle optimal stochastique d’EDS de type McKean-Vlasov
sans bruit commun en temps continu où les coefficients peuvent dépendre de la loi joint de l’état et du
contrôle, et enfin dans le dernier chapitre de cette partie nous nous intéressons au contrôle optimal de la
dynamique stochastique de type McKean-Vlasov en présence de bruit commun en temps continu.

Dans la deuxième partie, nous proposons un modèle d’allocation de portefeuille robuste permettant
l’incertitude sur la rentabilité espérée et la matrice de corrélation des actifs multiples, dans un cadre
de moyenne-variance en temps continu. Ce problème est formulé comme un jeu différentiel à champ
moyen. Nous montrons ensuite un principe de séparation pour le problème associé. Nos résultats explicites
permettent de justifier quantativement la sous-diversification, comme le montrent les études empiriques.

Mots-clefs

Équation de type McKean-Vlasov, EDS de type McKean-Vlasov, programmation dynamique, espace
de Wasserstein, équation de Bellman, solution de viscosité , problème de Markowitz en temps continu,
incertitude sur les modèles, drift et corrélation ambiguës, principe de séparation, sous-diversification





Abstract

This thesis deals with the study of optimal control of McKean-Vlasov dynamics and its applications
in mathematical finance. This thesis contains two parts.

In the first part, we develop the dynamic programming (DP) method for solving McKean-Vlasov
control problem. Using suitable admissible controls, we propose to reformulate the value function of the
problem with the law (resp. conditional law) of the controlled state process as sole state variable and get
the flow property of the law (resp. conditional law) of the process, which allow us to derive in its general
form the Bellman programming principle. Then by relying on the notion of differentiability with respect to
probability measures introduced by P.L. Lions [Lio12], and Itô’s formula along measure-valued processes,
we obtain the corresponding Bellman equation. At last we show the viscosity property and uniqueness
of the value function to the Bellman equation. In the first chapter, we summarize some useful results of
differential calculus and stochastic analysis on the Wasserstein space. In the second chapter, we consider
the optimal control of nonlinear stochastic dynamical systems in discrete time of McKean-Vlasov type.
The third chapter focuses on the stochastic optimal control problem of McKean-Vlasov SDEs without
common noise in continuous time where the coefficients may depend upon the joint law of the state
and control. In the last chapter, we are interested in the optimal control of stochastic McKean-Vlasov
dynamics in the presence of common noise in continuous time.

In the second part, we propose a robust portfolio selection model, which takes into account ambiguity
about both expected rate of return and correlation matrix of multiply assets, in a continuous-time mean-
variance setting. This problem is formulated as a mean-field type differential game. Then we derive a
separation principle for the associated problem. Our explicit results provide an explanation to under-
diversification, as documented in empirical studies.

Keywords

McKean-Vlasov equation, McKean-Vlasov SDEs, dynamic programming, Wasserstein space, Bellman
equation, viscosity solution, continuous-time Markowtiz problem, model uncertainty, ambiguous drift
and correlation, separation principle, under-diversification
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Notations

I. Sets

� N is the set of nonnegative integers.

� R is the set of real numbers and R+ the set of positive real numbers.

� x.y denotes the scalar product of two Euclidian vectors x and y.

� We denote by ‖ · ‖2 the L2-norm (Euclidian norm) in Rd:

‖a‖2 =
√
a.a.

� For any matrix or vector M , we denote its transpose by Mᵀ and its trace by tr(M). We denote
identity matrix in Rd×d by Id×d and zero matrix in Rd×q by 0d×q.

� Sd is the set of symmetric matrices in Rd×d, Sd+ the set of nonnegative symmetric matrices in Rd×d

and Sd>+ the set of positive definite symmetric matrices in Rd×d. We define the order on Sd>+ as

A < B ⇐⇒ B −A ∈ Sd>+.

II. Functions

� 1A(x) is the indicator function on the set A.

� Given a continuously differentiable function f on Rd, we denote by ∇f the gradient vector in Rd

with components ∂f
∂xi

, 1 ≤ i ≤ d.

� C([t, s], E) is the set of continuous functions from the interval [t, s], t < s, into some Euclidian space
E. The interval [t, s] is often R+ or R.

III. Integration and probability
Given a topological space E and a probability space (Ω,F ,P)

� B(E): Borelian σ-filed generated by the open subsets of E.

� δx denotes the Dirac measure at x. δx(B) = 1B(x) for any B ∈ B(E).

� PX is the probability measure of random variables X on (Ω,F ,P) under P and L(X) the law of X.
P(X,Y ) is the joint distribution of random variables X and Y on (Ω,F ,P).

� L2(Ω,F ,P;E) is the space of square integrable random variable X, valued in E, F-measurable and
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such that E|X|2 < ∞. We sometimes omit some arguments and write L2(F ;E) when there is no
ambiguity.

� P(E), denotes the set of all probability measures on measurable space (E,B(E)).

� Pp(E), p ≥ 1, denotes the set of all probability measures on measurable space (E,B(E)) with a
finite p-order moment, i.e. µ ∈ P(E), and the p-norm of µ: ‖µ‖p := (

∫
E
|x|p)1/p < ∞. We often

call Pp(E) Wasserstein space.

� For any µ ∈ P2(E), F Euclidian space(often Rq in our context), we denote by L2
µ(F ) the set of

measurable functions ϕ : E → F which are square integrable with respect to µ, by L2
µ⊗µ(F ) the set

of measurable functions ψ : Rd ×Rd → F , which are square integrable with respect to the product
measure µ⊗ µ, and we set

µ(ϕ) = < ϕ, µ >:=
∫
Rd
ϕ(x)µ(dx), µ⊗ µ(ψ) :=

∫
Rd×Rd

ψ(x, x′)µ(dx)µ(dx′).

We also define L∞µ (F ) (resp. L∞µ⊗µ(F )) as the subset of elements ϕ ∈ L2
µ(F ) (resp. L2

µ⊗µ(F )) which
are bounded µ (resp. µ⊗ µ) a.e., and ‖ϕ‖∞ is their essential supremum.

� f :E → F is a measurable mapping, we denote pushforward measure by f ?µ: f ?µ(B) = µ(f−1(B)),
∀ B ∈ B(F ).

� P is a family of probability measures. We say that a property holds P quasi-surely (P-q.s. for
short) if it holds P-a.s. for all P ∈ P.



Introduction

The main objective of this Ph.D. thesis is to investigate the optimal control of McKean-Vlasov systems
and give several applications.

In the first part, we analyze in detail the DP method for the optimal control of McKean-Vlasov
systems. Due to the dependence of the coefficients on the law of the state process, DP requires adaptation.
Therefore, the key idea is to reformulate the problem as a distributed control problem with the probability
distribution (resp. conditional probability distribution) of the controlled state process as sole state
variable. Then we state a dynamic programming principle (DPP) for the value function in the space
of probability measures, which follows from a flow property of the law (resp. conditional law) of the
controlled state process. Moreover by relying on Wasserstein results mentioned in Chapter 1, we derive
the Bellman equation, and prove the viscosity property together with a uniqueness result for the value
function. We also deduce a verification theorem when the value function is smooth, and solve explicitly
the LQ McKean-Vlasov control problem with applications to the mean-variance portfolio selection and an
interbank systemic risk model. In Chapter 1, we present some results of Wasserstein differential calculus
such as the notion of differentiability with respect to measures due to P.L. Lions and Itô’s formula along
a flow of probability measures. In Chapter 2, we are interested in the optimal control of McKean-Vlasov
systems in discrete time. Chapter 3 is about the optimal control of McKean-Vlasov SDEs in continuous
time. In Chapter 4, we study the optimal control of stochastic SDEs of McKean-Vlasov type in the
presence of a common noise.

In the second part, we build a framework for the robust continuous-time mean-variance portfolio
selection where the model uncertainty carries on both expected rate of return and correlation matrix of
multiply risky assets. It is formulated as a McKean-Vlasov control problem under model uncertainty
and solved by a weak version of martingale optimality principle. We deduce a separation principle
for this associated robust problem, which allows to reduce the computation of robust optimal portfolio
strategy to the parametric infimum computation of the risk premium function. We quantify explicitly
the diversification effects in terms of Sharpe ratio and correlation parameter. In particular, our findings
consist in no trading in risky assets with large expected return ambiguity and trading only one risky asset
with high level of ambiguity about correlation.

0.1 Part I: The optimal control of McKean-Vlasov dynamics

McKean-Vlasov SDEs, whose coefficients may depend on the marginal distributions of the solutions,
have a long history with the work initialed by [Kac56] and [McK67]. However, the optimal control of
McKean-Vlasov dynamics, also called mean field type control problem, has notoriously been ignored in
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standard stochastic control literature for a while. Recently, it has been known a surge of renewed interest
since the emergence of the MFG proposed by Lasry and Lions [LL07] and simultaneously by Huang et
al. [HMC06].

The study of optimal control of McKean-Vlasov dynamics is motivated by the description of the
asymptotic behavior of a large but finite numbers of players (financial agents, firms) with mean field
interactions, which can be described loosely as follows: imagine there are N state processes interacting
through their empirical measures via the following SDE system:

dXi
t = b(Xi

t , ρ̄
N
t , α

i
t)dt+ σ(Xi

t , ρ̄
N
t , α

i
t)dBit + σ0(Xi

t , ρ̄
N
t , α

i
t)dW 0

t ,

ρ̄Nt = 1
N

N∑
i=1

δXit .

Here W 0, B1, . . ., BN are independent Brownian motions, and αi is the control of player i. As the player
i feels only Bi directly , we call B1, . . ., BN the idiosyncratic noises, and we call W 0 common noise,
since each player feels W 0 equally. The cost functional associated to the player i of the strategy profile
(α1, . . . , αN ) is

J i(α1, . . . , αN ) = E
[ ∫ T

0
f(Xi

t , ρ̄
N
t , α

i
t) + g(Xi

T , ρ̄
N
T )
]
.

As the number of players increases, this system of N -player games with the interaction of mean field
type is in high dimension of order N and not tractable in general. The required computational effort for
equilibrium typically involves a system of N PDEs and is usually prohibitively large. From a practical
point of view, one tends to study the asymptotic behavior of N -player games. The hope is to reduce
the analysis of the whole system to the analysis of a single representative player from the theory of
propagation of chaos. A natural question is in which sense this N -player stochastic differential games as
N → ∞ converge.

Two different notions of equilibrium may be considered. One notion is Nash equilibrium, which
usually takes two forms: open-loop Nash equilibrium and closed-loop Nash equilibrium. When the N -
player equilibrium is open-loop, compactness arguments yield that every limit point of N -player Nash
equilibrium is characterized as a weak solution of MFG, formulated as a standard control problem and
a fixed point problem over the space of probability measures, see [CD18, Vol II, Chapter 6], [Lac16];
when the N -player equilibrium is closed-loop, the convergence to the MFG equilibrium is known in
[CD18, Vol II, Chapter 6] when the associated Master equation has a unique smooth solution. There are
two approaches to solve MFG. In the original work [LL07], Lasry and Lions followed an analytic PDE
approach. The recent book by Carmona and Delarue [CD18, Vol II, Chapter 6] offers a comprehensive
treatment of the probabilistic approach to MFG. It brings numerous applications in economics and finance
such as [GLL11], [CFS15] among others.

The other notion is Pareto optimality where a social player chooses the control policy to minimize
the averaged objective

J(α1, . . . , αN ) := 1
N

N∑
i=1

J i(α1, . . . , αN ).

In [Lac17], the authors restricted themselves to the case without common noise and introduced the
relaxed formulation of McKean-Vlasov control problem, meaning that the state equation for N -player
games and the McKean-Vlasov control problem are formulated as controlled martingale problems and
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with relaxed (i.e. measure-valued) controls. They showed that the empirical measure sequence (ρ̄Nt )t∈[0,T ]
of near-optimally controlled N -player games admits in distribution limit points, and that every limit point
is supported on the set of measure flows (PXt)t∈[0,T ], where X is an optimally controlled state in the
McKean-Vlasov control problem. In particular, whenever the McKean-Vlasov control problem admits
a unique optimal control, this is a proper convergence theorem, i.e. propagation of chaos. The strong
formulation (compared to the relaxed formulation in [Lac17]) of the McKean-Vlasov control problem is
given by

dXt = b(Xt,PW
0

Xt , αt)dt+ σ(Xt,PW
0

Xt , αt)dBt + σ0(Xt,PW
0

Xt , αt)dW
0
t ,

where PW 0

Xt
is the distribution of Xt given W 0, and the objective of the representative player is the

minimization of the cost functional

J(α) := E
[ ∫ T

0
f
(
Xα
t ,PW

0

Xαt
, αt
)
dt+ g

(
XT ,PW

0

XT

)]
.

The similarities and differences between MFG and optimal control of McKean-Vlasov dynamics have
been discussed in [CDLL15] and [CD18, Vol I, Chapter 6]. Being a counterpart of MFG, the optimal
control of McKean-Vlasov dynamics also has numerous potential applications in several areas besides the
traditional domain of statistical physics, like economics and finance, social interactions, engineering and
so on. Actually, its applications in economics and finance include a portfolio liquidation problem with
trade crowding and a substitutable production goods model in [BP17], an interbank systematic risk with
partial observation model in [BHL+18] and a problem of interaction between customers and firms on
renewable energy [ABP17].

In the literature there are essentially two approaches to solve the optimal control of McKean-Vlasov
dynamics. The first, more probabilistic, approach is Pontryagain maximum principle. The early attempts
at tackling this problem with maximum principle focused on a class of models where the dynamics depends
solely upon moments of the distribution, see [AD10], [BDL11] and [BFY13]. By taking good advantage
of Lion’s differential calculus over the Wasserstein space, [CD15] and [CD18] developed an appropriate
version of Pontryagin maximum principle in its full generality. They introduced adjoint processes by
differentiating the Hamiltonian function with respect to both the state and its marginal distribution.
Then they characterized the optimal trajectories as the solutions of a forward-backward SDE of McKean-
Vlasov type.

The second approach is DPP. An important feature of DPP is that it does not require any convexity
on the coefficients. However, the difficulty of using DPP lies in the fact that (i) the dynamics described
by the McKean-Vlasov SDEs is non-Markovian and (ii) the dependence of the cost functional on the law
of the state induces time inconsistency. For example, in the mean-variance problem, the optimal control
at time t is precommittment, meaning that the solution depends not only on the current state but also on
the initial state, see [LZ00], [BC10]. To restore time consistency, [LP14] and [BFY15] used the closed-loop
feedback controls and reformulated the value function into the deterministic distributed control problem
together with a Fokker-Planck equation. Then they derived the dynamic programming equation by
calculus of variation. However, their work relies heavily on the assumption that the probability measure
admits at all times square integrable probability density function.

Inspired by the works [LP14] and [BFY15], we drop the density assumption and extend the DP
approach of these two papers over the McKean-Vlasov control problem, in discrete time and continuous
time, with and without common noise developed below.



4 Introduction

0.1.1 Some differential calculus on Wasserstein space

In Chapter 1, we review the Wasserstein space and its topological structure, which will be often used
implicitly in the remaining chapters. Then we recall the notion of differentiability on the Wasserstein
space introduced by Lions in his seminar lectures at Collège de France [Lio12]: structure of the derivative
of first order and second order. Finally, we recall the Itô’s formula along a flow of deterministic or random
probability measure and their lifted form, which will be useful for obtaining HJB equation and viscosity
characterization of the value function.

0.1.2 Dynamic programming for discrete time McKean-Vlasov control prob-
lem

In Chapter 2, we are interested in the optimal control of McKean-Vlasov equations in discrete time.
It can be regarded as an approximation of the continuous time problem discussed in the next chapter.

We are given two normed spaces (E, |.|) and (A, |.|) representing respectively the state space and
the control space. The dynamics of state valued in E (typically Rd) is described by the equation of
McKean-Vlasov type

Xα
k+1 = Fk+1(Xα

k ,PXα
k

, αk,Pαk , εk+1), k ∈ N, Xα
0 = ξ,

for some deterministic measurable functions Fk defined from E × P(E) × A × P(A) × Rd to E,
where (ξk)k is a sequence of i.i.d random variables, independent of the square integrable initial random
value ξ, and we denote by F = (Fk)k the filtration generated by {ξ, ξ1, . . . , ξk}. The control (αk)k is a
square integrable F-adapted process valued in A (typically a subset of Rm). For any (x, µ, a, λ) ∈ E ×
P(E) × A × P(A), we denote by Pk+1(x, µ, a, λ, dx′) the probability distribution of random variables
Fk+1(x, µ, a, λ, ξk+1). The cost functional over a finite horizon n ∈ N \ {0} for a control process α, is

J(α) = E
[ n−1∑
k=0

fk(Xα
k ,PXα

k

, αk,Pαk ) + g(Xα
n ,PXαn )

]
,

where fk : E × P2(E) × A × P2(A) → R and g : E × P2(E) → R are measurable real-valued functions
with square growth in each of their inputs. The objective is to minimize over all admissible controls the
cost functional

V0 = inf
α
J(α).

What does the admissible control set look like? In our context, we restrict our attention to controls
α in feedback form

αk = α̃k(Xα
k ), for α̃k ∈ AE , k = 0, . . . , n− 1, (0.1.1)

where AE is the set of deterministic measurable functions: E → A, satisfying a linear growth condition.
Then the admissible control set A consists of all F-adapted square integrable controls α given by (0.1.1).
Note that by Fubini’s theorem, we rewrite the cost functional as, for α ∈ A

J(α) =
n−1∑
k=0

f̂k(P
Xα
k

, α̃k) + ĝ(P
Xαn

),
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where the functions f̂k, k = 0, . . . , n− 1, defined on P2(E)×AE and ĝ defined on P2(E) are given by:

f̂k(µ, α̃) :=
∫
E

fk(x, µ, α̃(x), α̃ ? µ)µ(dx), ĝ(µ) :=
∫
E

g(x, µ)µ(dx).

We transform the initial stochastic control problem into a deterministic control problem involving only
the marginal distribution of the state process PXα

k
, and then define the dynamic value processes V αk at

time k = 0, . . ., n,

V αk := inf
β∈Ak(α)

n−1∑
j=k

f̂j(P
X
β
j

, β̃j) + ĝ(P
X
β
n

), for α ∈ A,

where Ak(α) = {β ∈ A : βj = αj , j = 0, . . . , k−1}, with the convention that A0(α) = A. Now the initial
value function V0 = inf

α∈A
J(α) = V α0 . When V αk > −∞, it is elementary to obtain the DPP for V αk , which

takes the following form V αn = ĝ(P
Xαn

)
V αk = inf

β∈Ak(α)
f̂k(P

X
β
k

, β̃k) + V βk+1, k = 0, . . . , n− 1. (0.1.2)

Actually, the value processes V αk , k = 0, . . ., n− 1, are deterministic measurable functions of PXα
k
. The

DPP (0.1.2) is reduced to the recursive computation of a sequence of deterministic functions (vk)k (called
value functions) on P(E), which is described in the following Theorem.

Theorem 0.1.1. When V αk > −∞, we have for any α ∈ A, V αk = vk(P
Xα
k

), k = 0, . . . , n, where (vk)k
is the sequence of value functions defined recursively on P2(E) by: vn(µ) = ĝ(µ)

vk(µ) = inf
α̃∈AE

[
f̂k(µ, α̃) + vk+1

(
Φk+1(µ, α̃)

)] (0.1.3)

for k = 0, . . . , n − 1, µ ∈ P2(E), where Φk+1 is the measurable function P2(E) × AE → P2(E) defined
by

Φk+1(µ, α̃)(dx′) =
∫
E

µ(dx)Pk+1(x, µ, α̃(x), α̃ ? µ, dx′).

The proof of Theorem (0.1.1) is an immediate consequence of backward induction and the flow property
of controlled marginal distribution PXα

k
given by

P
Xα
k+1

= Φk+1
(
P
Xα
k

, α̃k
)
, k ∈ N, P

Xα0
= Pξ.

In view of the DPP (0.1.3), the verification theorem not only asserts that a solution to (0.1.3) equals the
value functions (vk)k but also provides a sufficient condition for a feedback optimal control realizing the
infimum of (0.1.3).

We then test verification results on several cases: (i) the case without mean-field interaction; in this
case, the infimum in (0.1.3) can be reduced to the infimum on the finite-dimensional control space. (ii)
the case where the interaction is of order 1 (integral of function with respect to probability measure); in
this case, the value functions are defined on n-tuples and thus the size of this problem is reduced. (iii)
finally, the case of multivariate LQ McKean-Vlasov type (the coefficients only depend on the expectation
and variance of the state) has an explicit solution under suitable coercivity assumptions. DPP provides
another approach to the problem of LQ McKean-Vlasov control solved in [ELN13] via four different
approaches.
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0.1.3 Bellman equation and viscosity solutions for continuous time McKean-
Vlasov control problem

In Chapter 3, we focus on the optimal control of McKean-Vlasov dynamics in continuous time, which
can be viewed as the continuous version of the discrete time problem in the previous chapter. Our frame-
work takes into account a more general class allowing for the mean-field interactions through controls, in
addition to the mean-field interactions through states.

Let (Ω,F ,P) be a filtered probability space, B = (Bt)t≥0 a n-dimensional Brownian motion defined
on (Ω,F ,P), F = (Ft)0≤t≤T the filtration generated by B, and F0 a sub-σ-algebra of F independent
of B. We assume that F0 is rich enough in the sense that P2(Rd) = {Pξ, ξ ∈ L2(F0;Rd)}. Then, the
controlled McKean-Vlasov SDE is given by

dXα
t = b(t,Xα

t , αt,P(Xα
t
,αt)

)dt+ σ(t,Xα
t , αt,P(Xα

t
,αt)

)dBt, Xα
0 = X0 ∈ L2(F0,Rd), (0.1.4)

where the control process α is progressively measurable, square integrable with values in a subset A of Rm,
and P(Xαt ,αt) the joint distribution of the state Xα

t and the control αt. On the coefficients b: [0, T ] × Rd ×
A × P2(Rd×A)→ Rd and σ : [0, T ] × Rd × A × P2(Rd×A)→ Rd×d, we impose standard lipschitz and
linear growth conditions, which guarantee the existence and uniqueness of a square integrable solution
to (0.1.4). The control problem consists in minimizing over all admissible control processes the following
functional,

J(α) := E
[ ∫ T

0
f(t,Xt, αt,P(Xt,αt)

)dt+ g(XT ,PXT )
]
, (0.1.5)

where the deterministic measurable functions f : [0, T ] × Rd × A × P2(Rd × A) → R and g : Rd ×
P2(Rd) → R satisfy the quadratic growth conditions.

Even though the probability measure is deterministic, the dynamics Xα
t described by the controlled

McKean-Vlasov SDE is genuinely non-Markovian. Like in the previous chapter, we restrict ourselves to
admissible controls α ∈ A in feedback form:

αt = α̃(t,Xα
t ,PXαt ), (0.1.6)

for some deterministic measurable function α̃ : [0, T ] × Rd × P2(Rd) → A which is linear growth and
lipschitz in (x, µ) ∈ Rd × P2(Rd). We consider the dynamic version of (0.1.4) starting from ξ ∈ L2(Ft,Rd)
at time t ∈ [0, T ], and written as

Xt,ξ
s = ξ +

∫ s

t

b(r,Xt,ξ
r , α̃(r,Xt,ξ

r ,P
X
t,ξ
r

), Idα̃(r, .,P
X
t,ξ
r

) ? P
X
t,ξ
r

)dr (0.1.7)

+
∫ s

t

σ(r,Xt,ξ
r , α̃(r,Xt,ξ

r , Idα̃(r, .,P
X
t,ξ
r

) ? P
X
t,ξ
r

)dBr, t ≤ s ≤ T.

for any α̃ ∈ L(Rd;A), where the map Idα̃ : Rd → Rd × A is defined by Idα̃(x) := (x, α̃(x)), and L(Rd;A)
is the set of Lipschitz functions from Rd into A. The existence and uniqueness of a solution to (0.1.7)
yield the flow property of Xt,ξ

s

Xt,ξ
s = X

θ,Xt,ξ
θ

s , ∀ 0 ≤ t ≤ θ ≤ s ≤ T, ξ ∈ L2(Ft;Rd).

Notice that the law distribution of Xt,ξ
s depends on ξ only through its law Pξ. We are then allowed to

define

Pt,µs := P
X
t,ξ
s

, for 0 ≤ t ≤ s ≤ T, µ = P
ξ
∈ P2(Rd),
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and immediately get the flow property for the marginal distribution process:

Pt,µs = Pθ,P
t,µ
θ

s , ∀ 0 ≤ t ≤ θ ≤ s ≤ T, µ ∈ P2(Rd). (0.1.8)

Therefore, we now rewrite the cost functional (0.1.5) in the deterministic form in terms of marginal
distribution in P2(Rd) as sole state variable:

J(α) =
∫ T

0
f̂(t,P

Xt
, α̃(t, .,P

Xt
))dt+ ĝ(P

XT
),

where f̂ : [0, T ] × P2(Rd) × L(Rd;A) → R and ĝ: P2(Rd) → R are defined by

f̂(t, µ, α̃) := < f(t, ., α̃(.), Idα̃ ? µ), µ >, ĝ(µ) := < g(., µ), µ > .

Now it is natural to define the dynamic cost functional and value function from the flow property of the
marginal distribution process (0.1.8)

J(t, µ, α) =
[ ∫ T

t

f̂(s,Pt,µs , α̃(s, .,Pt,µs ))ds+ ĝ(Pt,µT )
]
,

v(t, µ) = inf
α∈A

J(t, µ, α) t ∈ [0, T ], µ ∈ P2(Rd). (0.1.9)

Since (0.1.9) is a deterministic control problem that does not involve any measurable selection arguments,
we obtain immediately the DPP.

Theorem 0.1.2. When v(t, µ) > −∞, we have for all 0 ≤ t ≤ θ ≤ T , µ ∈ P2(Rd):

v(t, µ) = inf
α∈A

[ ∫ θ

t

f̂(s,Pt,µs , α̃(s, .,Pt,µs ))ds + v(θ,Pt,µθ )
]
. (0.1.10)

In order to obtain a PDE from the DPP (0.1.10), we follow Lion’s approach to the differential calculus
on the Wasserstein space first introduced in [Lio12], then detailed in [Car12] and [CD18, Vol I, Chapter
5], and Itô’s formula for functions of deterministic measure-valued processes in [BLPR17], [CCD15] and
[CD18, Vol I, Chapter 5]. The Bellman equation associated to (0.1.10) is given by ∂tv + inf

α̃∈L(Rd;A)

[
f̂(t, µ, α̃) + < Lα̃t v(t, µ), µ >

]
= 0, on [0, T )× P2(Rd),

v(T, µ) = ĝ(µ), on P2(Rd)
(0.1.11)

where for α̃ ∈ L(Rd;A), ϕ ∈ C2
b (P2(Rd)) and (t, µ) ∈ [0, T ] × P2(Rd), Lα̃t is the function: Rd → R defined

by

Lα̃t ϕ(µ)(x) := ∂µϕ(µ)(x).b(t, x, α̃(x), Idα̃ ? µ)

+ 1
2tr
(
∂x∂µϕ(µ)(x)σσᵀ(t, x, α̃(x), Idα̃ ? µ)

)
.

To complete the DPP, we turn to the verification argument when the Bellman equation (0.1.11) has
a smooth solution. This is a quite straightforward consequence of the chain rule for functions on the
Wasserstein space. We then apply the verification theorem to one important class of LQ McKean-Vlasov
control problem and obtain the explicit solution, which is reduced to the resolution of Riccati differential
equation system. In particular, both mean-variance portfolio selection model and interbank system risk
model fall into the LQ framework and are solved explicitly.
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However, except the class of LQ McKean-Vlasov control problem, in general the value function v does
not have good regularity enough to interpret the fully nonlinear PDE of second order (0.1.11), and thus
a notion of viscosity solutions is required. Indeed, the Wasserstein space P2(Rd) is infinite dimensional
locally non compact space. There are few tools developed for viscosity solutions on Wasserstein space.
To circumvent this difficulty, we work in Hilbert space L2(F0;Rd) instead of Wasserstein space P2(Rd)
via the lifting identification, and identify the value function v and its lifted version. By abuse of notation
v(t,L(ξ)) = v(t, ξ), the lifted Bellman equation in [0, T ] × L2(F0;Rd) is given by: −

∂v

∂t
+H(t, ξ,Dv(t, ξ), D2v(t, ξ)) = 0 on [0, T )× L2(F0;Rd),

v(T, ξ) = Ĝ(ξ) := E[g(ξ,P
ξ
)], ξ ∈ L2(F0;Rd),

(0.1.12)

where H : [0, T ]× L2(F0;Rd)× L2(F0;Rd)× S(L2(F0;Rd)) → R is defined by

H(t, ξ, P,Q) = − inf
α̃∈L(Rd;A)

{
E
[
f(t, ξ, α̃(ξ), Idα̃ ? P

ξ
) + P.b(t, ξ, α̃(ξ), Idα̃ ? P

ξ
)

+ 1
2Q
(
σ(t, ξ, α̃(ξ), Idα̃ ? P

ξ
)N
)
.
(
σ(t, ξ, α̃(ξ), Idα̃ ? P

ξ
)N
)]}

,

with N ∈ L2(F0;Rn) of zero mean, unit variance, and independent of ξ. We choose all the twice
continuously Fréchet differentiable functions on L2(F0;Rd) as test functions and then naturally define
the viscosity subsolution (resp. supersolution) to the Bellman equation (0.1.11). After making stronger
assumptions on the coefficients and exploiting the lifted form of DPP, we show that the value function
v is a viscosity solution to the Bellman equation (0.1.11) satisfying the quadratic growth condition.
Assume further that the σ-algebra F0 is countably generated upto null sets, which guarantees that the
Hilbert space L2(F0;Rd) is separable. By [FGS15, Theorem 3.5 ], we prove a comparison principle
(hence uniqueness result) for the lifted Bellman equation (0.1.12). Our value function v in (0.1.9) is thus
characterized as the unique solution to Bellman equation (0.1.11) in the viscosity sense.

In the last section of this chapter, we drop the closed-loop restriction on the admissible controls, and
discuss a bit about more general open-loop controls when the coefficients depend only upon the mean-field
component through the law of the state variable. In the closed-loop case, the reformulation (0.1.9) of the
value function is an important step towards the DPP, however, in the open-loop case, the reformulation
requires more mathematical tools and measurability issues. Anyway, HJB equation is proposed and its
solution coincides with case of the closed-loop form when the solution is smooth, see [CCD15] for the
existence of smooth solution under some coercive assumptions. We also refer to more recently [BCP18]
for the case of open-loop controls with the randomization method.

0.1.4 Dynamic programming for continuous time conditional McKean-Vlasov
control problem

In this chapter, we deal with the McKean-Vlasov control problem with common noise. This is a
generalization of the previous chapters without common noise. While the DPP in the case without
common noise is quite straightforward, the presence of common noise makes it more intricate because of
measurability issues, which requires more care.

Let (Ω,F ,P) be a probability space in the form (Ω0 × Ω1,F0 ⊗F1,P0 ⊗ P1), Ω0 the canonical space
C(R+,Rm), W 0 the canonical process, P0 the Wiener measure, F0 the P0-completion of the natural
filtration generated by W 0, B a n-dimensional Brownian motion on (Ω1,F1,P1), G a sub-σ-algebra of
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F1 independent of B, F the natural filtration generated by W 0 and B, augmented with the independent
G. We denote by E0 (resp. E1) the expectation under P0 (resp. P1). We assume that G is rich enough in
the sense that P2(Rd) = {Pξ : ξ ∈ L2(G;Rd)}. Then, the controlled stochastic McKean-Vlasov dynamics
starting from ξ ∈ L2(Ft,Rd) at time t ∈ [0, T ] follows the stochastic McKean-Vlasov equation:

dXt,ξ
s = b(Xt,ξ

s ,PW
0

Xt,ξs
, αs)ds+ σ(Xt,ξ

s ,PW
0

Xt,ξs
, αs)dBs + σ0(Xt,ξ

s ,PW
0

Xt,ξs
, αs)dW 0

s , (0.1.13)

where PW 0

Xt,ξs
denotes the regular conditional distribution of Xt,ξ

s given W 0 or equivalently F0, and the
control α is F0-progressive process valued in some polish space A (typically a closed subset of the space
C(Rd, A)). We denote by A the set of admissible control processes. It’s worth mentioning that unlike
the first two chapters, the admissible control α is allowed to be in a more general form, see Remark
4.2.1 for details. As usual, the linear growth and lipschitz conditions on the coefficients b, σ guarantee
the existence and uniqueness of a square integrable solution to (0.1.13). The dynamic cost functional
associated to the stochastic McKean-Vlasov equation (0.1.13) is

J(t, ξ, α) := E
[ ∫ T

t

f
(
Xt,ξ
s ,PW

0

Xt,ξs
, αs
)
ds+ g

(
Xt,ξ
T ,PW

0

Xt,ξ
T

)]
,

and the objective is to minimize over all admissible control processes α ∈ A the cost functional

v(t, ξ) = inf
α∈A

J(t, ξ, α), (t, ξ) ∈ [0, T ]× L2(G;Rd). (0.1.14)

Note that by the law of iterated conditional expectations, and as α ∈ A is F0-progressive, we rewrite
the cost functional in terms of the conditional law of the state

J(t, ξ, α) = E[
∫ T

t

f̂(PW
0

Xt,ξ,αs
, αs)ds+ ĝ(PW

0

Xt,ξ,α
T

)],

where the functions f̂ : P2(Rd) × A → R, and ĝ: P2(Rd) → R are defined by

f̂(µ, a) := µ
(
f(·, µ, a)

)
, ĝ(µ) := µ

(
g(·, µ)

)
.

Since PW 0

Xt,ξ,αs
depends on the ξ only through its conditional law PW0

ξ , and G ⊂ Ft is rich enough and
independent of W 0, we define for any t ∈ [0, T ], µ ∈ P2(Rd), α ∈ A,

ρt,µ,αs := PW
0

Xt,ξ,αs
, t ≤ s ≤ T, for ξ ∈ L2(Ft;Rd) such that PW

0

ξ = µ,

a square integrable F0-progressive continuous process in P2(Rd). From the pathwise uniqueness of
Xt,ξ,α
s (ω0, ·) on (Ω1,F1,P1), P1-a.s., ω0 ∈ Ω0, we obtain a flow property on the controlled conditional

distribution {ρt,µ,αs , t ≤ s ≤ T}

ρt,µ,αs (ω0) = ρ
θ(ω0),ρt,µ,α

θ(ω0)
(ω0),αθ(ω

0),ω0

s (ω0), s ∈ [θ, T ], P0(dω0)− a.s. (0.1.15)

for all θ ∈ T 0
t,T , the set of F0-stopping times valued in [t, T ], where αθ(ω0),ω0 is a shifted control process

by concatenation, independent of F0
θ(ω0) introduced in [CTT16].

Notice that the cost functional J(t, ξ, α) depends on ξ only through its law µ = L(ξ), and since
{ρt,µs , t ≤ s ≤ T} and the control α are both F0-progressive. Therefore, the expectation is taken under
P0 and the value function defined on [0, T ] × P2(Rd) by abuse of notation

v(t, µ) = inf
α∈A

E0[
∫ T

t

f̂(ρt,µ,αs , αs)ds+ ĝ(ρt,µ,αT )].
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As usual in the proof of the DPP for standard stochastic control problem, we use the flow property
(0.1.15) and measurability selection arguments. The difference is that the process {ρt,µ,αs , t ≤ s ≤ T}
here is measure-valued. We obtain the DPP for the conditional McKean-Vlasov control problem

v(t, µ) = inf
α∈A

inf
θ∈T 0

t,T

E0
[ ∫ θ

t

f̂(ρt,µ,αs , αs)ds + v(θ, ρt,µ,αθ )
]

= inf
α∈A

sup
θ∈T 0

t,T

E0
[ ∫ θ

t

f̂(ρt,µ,αs , αs)ds + v(θ, ρt,µ,αθ )
]
.

Next, by relying on the notion of differentiability with respect to probability measures introduced by
P.L. Lions [Lio12] and the chain rule along a flow of probability measures [BLM17], [CCD15], we derive
the Bellman equation associated to the value function{

−∂tv − inf
a∈A

[
f̂(µ, a) + µ

(
Łav(t, µ)

)
+ µ⊗ µ

(
Mav(t, µ)

)]
= 0, (t, µ) ∈ [0, T )× P2(Rd),

v(T, µ) = ĝ(µ), µ ∈ P2(Rd),
(0.1.16)

where for φ ∈ C2
c (P2(Rd)), a ∈ A, and µ ∈ P2(Rd), Łaφ(µ) ∈ L2

µ(R) is the function Rd → R defined by

Łaφ(µ)(x) := ∂µφ(µ)(x).b(x, µ, a) + 1
2tr
(
∂x∂µφ(µ)(x)(σσᵀ + σ0σ

ᵀ

0)(x, µ, a)
)
,

and Maφ(µ) ∈ L2
µ⊗µ(R) is the function Rd × Rd → R defined by

Maφ(µ)(x, x′) := 1
2tr
(
∂2
µφ(µ)(x, x′)σ0(x, µ, a)σᵀ

0(x′, µ, a)
)
.

In general, there is no classical solution to the Bellman equation (0.1.16). We turn to the viscosity
characterization of the value function to the Bellman equation (0.1.16). As it is difficult to obtain
comparison principle for viscosity solutions in the Wasserstein space which is a locally non compact
space, we instead work in the Hilbert space L2(G;Rd) by viewing the value function as a function on
[0, T ] × L2(G,Rd) via the lifting identification. With the same notation v(t, ξ) = v(t,L(ξ)), the lifted
Bellman equation is then written as

{
−∂tv −H

(
ξ,Dv(t, ξ), D2v(t, ξ)

)
= 0, (t, ξ) ∈ [0, T )× L2(G;Rd),

v(T, ξ) = Ẽ1[g(ξ,L(ξ))
]
, ξ ∈ L2(G;Rd), (0.1.17)

where H : L2(G;Rd)× L2(G;Rd)× S(L2(G;Rd)) → R is defined by

H(ξ, P,Q) = inf
a∈A

E1
[
f(ξ,L(ξ), a) + P.b(ξ,L(ξ), a)

+ 1
2Q(σ0(ξ,L(ξ), a)).σ0(ξ,L(ξ), a) + 1

2Q(σ(ξ,L(ξ), a)N).σ(ξ,L(ξ), a)N
]
,

with N ∈ L2(G;Rn) of zero mean, and unit variance, and independent of ξ. We start with defining the
viscosity subsolution (resp. supersolution) to the lifted Bellman equation (0.1.17). It is further assumed
that the σ-algebra G is countably generated upto null sets, hence L2(G;Rd) is separable Hilbert space.
From the DPP and [FGS15, Theorem 3.5], we can show that v is the unique viscosity solution to the
Bellman equation (0.1.16). We also state some verification results, which allow us to get an analytic
feedback of the optimal control when there is a smooth function to the Bellman equation (0.1.16). The
proof of the verification theorem is based on the Itô’s formula along a flow of conditional probability
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measures and also require an additional linear growth condition on ∂µv(t, µ)(x) to guarantee the vanishing
of the martingale part of Itô’s formula.

Finally, we illustrate our results on a class of LQ stochastic McKean-Vlasov type, for which explicit
computations are possible. In particular, interbank systemic risk model fits into the LQ framework.

0.2 Part II: Robust mean-variance problem under model uncer-
tainty

As in standard stochastic control problem, one interesting perspective of McKean-Vlasov control
problem is to study it under G-expectation introduced by Peng [Pen10], called robust McKean-Vlasov
control problem. This is a new and challenging problem in that it involves both the possible dependence
of the coefficients upon the marginal distributions of the solutions and nonlinear expectation. In this part
of this thesis, we consider one of its applications in finance: a robust mean-variance portfolio selection
problem where model uncertainty carries on both rate of return and correlation matrix of the multiply
assets.

Because of different kinds of reasons, model risk,see e.g. [Tal09], occurs in optimal portfolio allocation.
In the literature on the robust portfolio selection problem, model uncertainty is usually parametrized by
a prior set Θ, in a general setting, a family of tuples (b, σ) describing the uncertainty about drift and
volatility. In a probability setup, PΘ consists of all semimartingale laws Pθ such that the associated
differential characteristics (bt, σt) take values in Θ, see [NN18]. In the study of drift uncertainty, many
authors introduced a dominated set of probability measures which are absolutely continuous with respect
to a reference probability measure. While, in the framework of volatility uncertainty, the set of probability
measures becomes non-dominated, see [MPZ15].

The majority of works on the robust portfolio selection problem focus on utility maximization. The
mean-variance criterion has received little attention in the continuous-time setting, however, more recently
[IP17] considered the robust mean-variance portfolio selection under covariance matrix ambiguity, in
particular correlation ambiguity, and solved it by a McKean-Vlasov dynamic programming approach.
Their method, however, can not be extended to tackle drift uncertainty. One key assumption in [IP17] is
that one can aggregate a family of processes. In the case of drift uncertainty, this condition does not hold
anymore. As mentioned in the first part of introduction, the nonlinear dependence of the cost functional
on the law of the state makes the robust mean-variance portfolio under drift uncertainty into a non
standard stochastic differential game. The objective of this part is to study the portfolio diversification
under model uncertainty on drift and correlation of multi-aasets with a dynamic robust mean-variance
approach.

Let us describe the model in detail. We consider a financial market which consists of one risk-free
asset and d ≥ 2 risky assets on a finite investment horizon T > 0. Let Ω be a canonical state space with
the uniform norm and Borel σ-field F , B = (Bt)t∈[0,T ] the canonical space, F = (Ft)0≤t≤T the canonical
filtration. We assume that the investor knows the marginal volatility of each asset σi, 1 ≤ i ≤ d, but is
diffident about the rate of return b and correlation ρ, assumed to be valued in a nonempty convex set Θ
⊂ Rd × Cd>+ where Cd>+ is the subset of all elements ρ = (ρij)1≤i<j≤d ∈ [−1, 1]d(d−1)/2 s.t. correlation
matrix C(ρ) of the assets belongs to Sd>+. We consider the following cases for the parametrization of the
ambiguity set Θ:
(HΘ)
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(i) Product set: Θ = ∆× Γ, where ∆ is a compact convex set of Rd and Γ a convex set of Cd>+.

(ii) Ellipsoidal set: Θ = {(b, ρ) ∈ Rd×Γ : ‖σ(ρ)−1(b− b̂)‖2 ≤ δ}, for some convex set Γ of Cd>+, where b̂
is a known vector and δ > 0 radius of ambiguity. For each given realization of ρ, the drift is allowed
to vary in the ellipsoidal set.

This parametrization (HΘ) includes large classes of model uncertainty. When there is no correlation
ambiguity, i.e. Γ is singleton, the case of different levels of drift uncertainty on different asset subclass, see
[GUW06], is included in (HΘ)(i). However, it is difficult to study this case in the structure of correlation
ambiguity. When there is one subclass for all assets, it’s an ellipsoidal set described in HΘ(ii). When
there is d subclass for all assets, it’s a rectangular set included in HΘ(i). The other subclass m, 1 < m <

d with ambiguity on correlation is left for future studies. We denote by Σ(ρ) the prior covariance matrix
of the assets and introduce the prior risk premium

R(b, ρ) = bᵀΣ(ρ)−1b for θ = (b, ρ) ∈ Θ.

We consider all F-progressively measurable processes θ = (θt) = (bt, ρt) taking value in Θ, denoted by VΘ,
and then build a correspondence between elements in VΘ and probability measures on (Ω,F), namely,

PΘ = {Pθ : θ ∈ VΘ},

where under each probability measure Pθ, there exists a Brownian motion W θ
t such that dBt = btdt +

σ(ρt)dW θ
t . It is worth mentioning that in this modelling the drift and correlation is allowed to be random

processes.

Now given an admissible portfolio strategy α ∈ A, the dynamics of the wealth process Xα
t with initial

value at x0 ∈ R evolves according to

dXα
t = αᵀ

tdiag(St)−1dSt = αᵀ

tdBt, 0 ≤ t ≤ T, PΘ − q.s.
= αᵀ

t

(
btdt+ σ(ρt)dW θ

t

)
, 0 ≤ t ≤ T, Pθ − a.s.

In our framework, the problem of mean-variance minimization problem is formulated as a McKean-Vlasov
differential game,

V0 := sup
α∈A

inf
Pθ∈PΘ

J(α, θ) = sup
α∈A

inf
Pθ∈PΘ

{
Eθ[Xα

T ]− λVarθ(Xα
T )
}
. (0.2.1)

In the classical mean-variance minimization problem, PΘ contains only one probability measure, which
corresponds to a singleton Θ = {(bo, ρo)}. This means that the investor knows the "historical" probability
measure denoted by Po that describes the dynamics of the underlying assets. In this case, the optimal
portfolio strategy is explicitly given by, see [LZ00] and Section 3.4.1 in Chapter 3

α∗t =
[
x0 + eR

oT

2λ −X∗t
]
(Σo)−1bo, 0 ≤ t ≤ T, Po − a.s. (0.2.2)

where X∗t is the state process associated to α∗t . We see from (0.2.2) that the investor diversifies her
portfolio among all the available assets according to (up to a scalar term) the vector (Σo)−1bo and in
general all the available risky assets will be held, called well-diversification.

To find the initial value function V0 and an optimal portfolio strategy α∗t for (0.2.1), we follow the
idea of the general martingale optimality principle approach. With the nonlinear dependence on the law
of the state process via the variance term in the mean-variance criterion, we have to adapt it to our
framework.
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Lemma 0.2.1. Let {V α,θt , t ∈ [0, T ], α ∈ A, θ ∈ VΘ} be a family of real-valued processes in the form

V α,θt : = vt(Xα
t ,Eθ[Xα

t ]),

for some measurable functions vt on R× R, t ∈ [0, T ], such that :

(i) vT (x, x̄) = x− λ(x− x̄)2, for all x, x̄ ∈ R,

(ii) the function t ∈ [0, T ] 7→ Eθ∗ [V α,θ
∗

t ] is nonincreasing for all α ∈ A and some θ∗ ∈ VΘ,

(iii) Eθ[V α
∗,θ

T ] ≥ V α
∗,θ

0 = v0(x0, x0), for some α∗ ∈ A and all θ ∈ VΘ.

Then, α∗ is an optimal portfolio strategy for the robust mean-variance problem (5.2.4) with a worst-case
scenario θ∗, and

V0 = sup
α∈A

inf
Pθ∈PΘ

J(α, θ) = inf
Pθ∈PΘ

sup
α∈A

J(α, θ) = v0(x0, x0) = J(α∗, θ∗).

According to the above lemma, we have to work on an enlarged space of both state and the expectation
of the state. So we construct a function vt(x, x̄), t ∈ [0, T ], x, x̄ ∈ R in the following form

vt(x, x̄) = Kt(x− x̄)2 + Ytx+ χt,

and choose (if exist) θ∗: = (b∗, ρ∗) = arg min
Θ

R(θ) ∈ Θ ⊂ VΘ and α∗t , the optimal portfolio strategy

in the classical mean-variance problem in the Black-Schole model with parameter (b∗, σ(ρ∗)) under Pθ∗ .
We check that such a pair (θ∗, α∗) satisfies weak optimality principle, which yields the main result called
separation principle.

Theorem 0.2.1. Let us consider a parametric set Θ for model uncertainty as in (HΘ). Suppose that
there exists θ∗ = (b∗, ρ∗) ∈ Θ solution to arg min

θ∈Θ
R(θ). Then the robust mean-variance problem (5.2.4)

admits an optimal portfolio strategy given by

α∗t = (x0 + eR(θ∗)T

2λ −X∗t )Σ(ρ∗)−1b∗, 0 ≤ t ≤ T, PΘ − q.s., (0.2.3)

where X∗ is the state process associated to α∗t . Moreover, the corresponding initial value function is

V0 = x0 + 1
4λ
[
eR(θ∗)T − 1

]
.

In the last section of this chapter, we provide some examples for explicit computation of the minimal
risk premium function θ ∈ Θ 7→ R(θ) in Theorem 0.2.1 and implication for the optimal robust portfolio
strategy and the portfolio diversification. According to drift uncertainty in (HΘ), we distinguish the
case of ellipsoidal set Θ = {(b, ρ) ∈ Rd × Γ : ‖σ(ρ)−1(b− b̂)‖2 ≤ δ} and rectangular set Θ =

∏d
i=1[bi, b̄i]

× Γ. Our first observation is that whenever δ > infρ∈Γ ‖σ(ρ)−1b̂‖2 in the ellipsoidal set and bi ≤ 0
≤ b̄i for each 1 ≤ i ≤ d in the rectangular set, α∗t ≡ 0. In other words, when the investor is poorly
confident about the estimation on the expected rate of return, then she doesn’t make risky investment
at all. In what follows, we assume that δ < infρ∈Γ ‖σ(ρ)−1b̂‖2 in the ellipsoidal set and bi > 0 for each 1
≤ i ≤ d, in the rectangular set. Our second observation is that if the investor is completely ambiguous
about correlation, i.e. Γ = Cd>+, then the investor only holds the asset with the highest instantaneous
(absolute value) Sharpe ratio. Next, we state our observation for two-asset model with drift uncertainty
and partial correlation ambiguity, i.e. Γ = [ρ, ρ̄] ⊂ (−1, 1). Whenever ellipsoidal set or rectangular
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set, there are three possible cases depending on the relation between Sharpe ratio "proximity" and the
correlation bounds: directional trading, i.e. long or short in both assets, spread trading, i.e. long in one
asset and short in the other one, and anti-diversification, i.e. only one asset with the highest Sharpe ratio
is held in the portfolio. At the end, we give the result for three-asset model with drift uncertainty and
partial correlation ambiguity, i.e. Γ =

∏3
j=1

∏j−1
i=1 [ρ

ij
, ρ̄ij ] ⊂ C3

>+. In this model, there are roughly five
possible cases depending on the Sharpe ratio "proximity" and correlation bounds: anti-diversification,
under-diversification in the sense that two assets are held in the optimal portfolio strategy, and well-
diversification. One contribution in this part is to unify and extend, to some extent, the results obtained
by [GUW06], [BGUW12] and [LZ17] with one type of model uncertainty in one period.
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Chapter 1

Some differential calculus on
Wasserstein space

Abstract: In this chapter, we present some useful elements of differential calculus and stochastic
analysis such as differentiability and Itô’s formula on Wasserstein space derived from the investigation of
MFG. We mention [Lio12], [Car12], [BLPR17], [CCD15], [WZ17], [GT18], from which are quoted most
of the results recalled without proof. Such a calculus plays an important role in the following chapters
when we drive the Hamiltonian-Jacobi-Bellman (HJB) equation of stochastic control of McKean-Vlasov
dynamics.

Keywords: Wasserstein space, differentiability, Itô’s formula
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1.1 Wasserstein space

Assume that (E, d) is a complete separable metric space. Let us consider a probability space (Ω,G,P)
(we have to adapt the notation of probability space to the need of the chapters below) which is rich
enough in the sense that for every µ ∈ P2(E), there is a random variable ξ ∈ L2(G;E) such that Pξ = µ.
For instance, Ω is Polish space, G its Borel σ-filed, P is atomless probability measure on (Ω,G) (Since Ω
is Polish, then P is atomless if and only if every singleton has zero probability measure). The probability
measure space P2(E) is endowed with the 2-Wasserstein distance defined by

W2(µ, µ′) := inf
{(∫

E×E
d(x, y)2π(dx, dy)

) 1
2 : π ∈ P2(E × E) with marginals µ and µ′

}
= inf

{(
E[d(ξ, ξ′)2]

) 1
2 : ξ, ξ′ ∈ L2(G;E) with Pξ = µ, Pξ′ = µ′

}
,

Then, it’s shown that (P2(E),W2) is a also complete separable metric space (see e.g. Theorem 6.18 in
[Vil08]). We shall equip P2(E) with the corresponding Borel σ-field B(P2(E)). We next recall some
useful topological properties on this Borel σ-field when E = Rd. This is implicitly used throughout the
manuscript.

Proposition 1.1.1. We denote by C2(Rd) the set of continuous functions on Rd with quadratic growth,
and for any ϕ ∈ C2(Rd), define the map Λ

ϕ
: P2(Rd) → R by Λ

ϕ
µ : = µ(ϕ) =

∫
Rd ϕ(x)µ(dx), for µ ∈

P2(Rd). Then

(i) for (µn)n, µ ∈ P2(Rd), we have that W2(µn, µ)→ 0 if and only if, for every ϕ ∈ C2(Rd), Λ
ϕ
µn →

Λ
ϕ
µ.

(ii) given a measurable space (O,O) and a map ρ : O → P2(Rd), ρ is measurable if and only if the map
Λϕ ◦ ρ = ρ(ϕ) : O → R is measurable, for any ϕ ∈ C2(Rd).

Notice that B(P2(Rd)) is generated by the family of functions (µ ∈ P2(Rd) 7→ µ(D))D∈B(Rd). Alterna-
tively, it coincides with the cylindrical σ-algebra σ(Λϕ , ϕ ∈ C2(Rd)) and that the map Λϕ is B(P2(Rd))-
measurable, for any measurable function ϕ with quadratic growth condition, by using a monotone class
argument since it holds true whenever ϕ ∈ C2(Rd).

1.2 Differentiability on Wassersetin space

There are various notions of differentiability in the Wasserstein space P2(Rd). For example, the notion
of Wasserstein derivative have been discussed in the theory of optimal transport. Briefly speaking, based
on the geometric theory of Wasserstein space, Wasserstein derivative is defined in terms of sub- and
super-differentials. An alternative notion has been introduced by Lions in his lectures at Collège de
France [Lio12], and then detailed in [Car12] and [CD18, Vol I , Chapter 5]. Lions’ notion is based on the
lifting of the function u : P2(Rd) → R into a function ũ defined on the so-called "flat" space L2(G;Rd)
by ũ(ξ) = u(Pξ). Conversely, given a function ũ defined on L2(G;Rd), we call inverse-lifted function of ũ
defined on P2(Rd) by u(µ) = ũ(ξ) for µ = L(ξ), and we notice that such u exists iff ũ(ξ) depends only
on the distribution of ξ for any ξ ∈ L2(G;Rd). In this case, we shall often identify the function u and its
lifted version ũ by using the same notation u = ũ.

Definition 1.2.1. We say that u is L-differentiable (resp. C1) on P2(Rd) if the lifting ũ is Fréchet
differentiable (resp. Fréchet differentiable with continuous derivatives) on L2(G;Rd).
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In this case, the Fréchet derivative [Dũ](ξ) is viewed as an element Dũ(ξ) of L2(G;Rd) by Riesz’
theorem: [Dũ](ξ)(Y ) = E[Dũ(ξ).Y ] for any Y ∈ L2(G;Rd). In [Car12] and [CD18, Vol I, Chapter 5], it
has been shown that the law of the random variable Dũ(ξ) does not depend upon the particular choice
of ξ satisfying Pξ = µ. Moreover, if u is C1, then there exists a deterministic measurable function h : Rd
→ Rd such that Dũ(ξ) can be represented as

Dũ(ξ) = h(ξ), µ = Pξ − a.e. (1.2.1)

We also refer to [WZ17] for an alternative proof of this structure of Lions derivative. Therefore, we denote
by ∂µu(P

ξ
)(ξ) : = h(ξ), which is called L-derivative of u at µ = Pξ. From a geometric analysis perspective,

Lions L-differentiability may be not as intuitive as differentiability in the sense of Wasserstein, actually,
one can reconcile the notion of Lions L-derivative and Wasserstein derivative, that is, u is continuously
L-differentiable iff u is Wasserstein differentiable, and ∂µu(µ) equals Wasserstein derivative, see [GT18]
for a deep connection between these two notions of derivatives.

Next, we consider the structure of second-order derivatives.

Definition 1.2.2. We say that u is partially C2 if it is C1, and one can find, for any µ ∈ P2(Rd), a
continuous version of the mapping x ∈ Rd 7→ ∂µu(µ)(x), such that the mapping (µ, x) ∈ P2(Rd)×Rd 7→
∂µu(µ)(x) is jointly continuous at any point (µ, x) such that x ∈ Supp(µ), and if for any µ ∈ P2(Rd), the
mapping x ∈ Rd 7→ ∂µu(µ)(x) is differentiable, its derivative being jointly continuous at any point (µ, x)
such that x ∈ Supp(µ). The gradient is then denoted by ∂x∂µu(µ)(x) ∈ Sd.

Definition 1.2.3. We say that u is fully C2 if it is C1, and one can find, for any µ ∈ P2(Rd), a continuous
version of the mapping x ∈ Rd 7→ ∂µu(µ)(x), such that the mapping (µ, x) ∈ P2(Rd)× Rd 7→ ∂µu(µ)(x)
is jointly continuous at any point (µ, x) such that x ∈ Supp(µ), and

(i) for each fixed µ ∈ P2(Rd), the mapping x ∈ Rd 7→ ∂µu(µ)(x) is differentiable in the standard
(classical) sense, with a gradient denoted by ∂x∂µu(µ)(x) ∈ Rd×d, and s.t. the mapping (µ, x) ∈
P2(Rd)× Rd 7→ ∂x∂µu(µ)(x) is jointly continuous

(ii) for each fixed x ∈ Rd, the mapping µ ∈ P2(Rd) 7→ ∂µu(µ)(x) is differentiable in the above lifted sense.
Its derivative, interpreted thus as a mapping x′ ∈ Rd 7→ ∂µ

[
∂µu(µ)(x)

]
(x′) ∈ Rd×d in L2

µ(Rd×d),
is denoted by x′ ∈ Rd 7→ ∂2

µu(µ)(x, x′), and s.t. the mapping (µ, x, x′) ∈ P2(Rd) × Rd × Rd 7→
∂2
µu(µ)(x, x′) is continuous.

Definition 1.2.4. We say that u is C2
b (P2(Rd)) if it is partially C2, ∂x∂µu(µ) ∈ L∞µ (Rd×d), and for any

compact set K of P2(Rd), we have

sup
µ∈K

[ ∫
Rd

∣∣∂µu(µ)(x)|2µ(dx) +
∥∥∂x∂µu(µ)‖∞

]
< ∞.

As shown in [CCD15], if the lifting ũ ∈ C2
c (L2(G;Rd)), the set of twice continuously Fréchet differen-

tiable on L2(G;Rd) with Lipschitz Fréchet derivative, then u lies in C2
b (P2(Rd)). In this case, the second

Fréchet derivative D2ũ(ξ) is identified indifferently by Riesz’ theorem as a bilinear form on L2(G;Rd) or
as a symmetric operator (hence bounded) on L2(G;Rd), denoted by D2ũ(ξ) ∈ S(L2(G;Rd)), and we have
the relation (see Appendix A.2 in [CD14]):

D2ũ(ξ)[Y N, Y N ] = E
[
D2ũ(ξ)(Y N).Y N

]
= E

[
tr
(
∂x∂µu(Pξ)(ξ)Y Y ᵀ

)]
, (1.2.2)

for any ξ ∈ L2(G;Rd), Y ∈ L2(G;Rd×q), and where N ∈ L2(G;Rq) is independent of (ξ, Y ) with zero
mean and unit variance.
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Definition 1.2.5. We say that u is fully C2
c if it is fully C2, ∂x∂µu(µ) ∈ L∞µ (Rd×d), ∂2

µu(µ) ∈ L∞µ⊗µ(Rd×d)
for any µ ∈ P2(Rd), and for any compact set K of P2(Rd), we have

sup
µ∈K

[ ∫
Rd

∣∣∂µu(µ)(x)|2µ(dx) +
∥∥∂x∂µu(µ)‖∞ +

∥∥∂2
µu(µ)‖∞

]
< ∞. (1.2.3)

We illustrate the notion of differentiability with some fundamental examples, some of which are from
[CD18].

Example 1.2.1. (i) The function u is of the first order form:

u(µ) = < ϕ, µ >: =
∫
Rd
ϕ(x)µ(dx),

for some continuously differentiable function ϕ defined on Rd, whose derivative is at most of linear
growth. In this case, the lifted function of u is given by ũ(ξ) = E[ϕ(ξ)] and

ũ(ξ + Y ) = E[ϕ(ξ + Y )]

= E[ϕ(ξ)] +
∫ 1

0
E[∇ϕ(ξ + hY ).Y ]dh

= E[ϕ(ξ)] + E[∇ϕ(ξ).Y ] + E
∫ 1

0
[(∇ϕ(ξ + hY )−∇ϕ(ξ)).Y ]dh.

It is easy to check that the last term in the r.h.s is o(‖Y ‖22), and thus the Fréchet derivative of ũ at
ξ is given by ∇ϕ. Consequently, we have ∂µu(µ) = ∇ϕ.

(ii) For any Λ ∈ Sd, we set

µ̄ : =
∫
Rd
xµ(dx), µ̄2(Λ) : =

∫
Rd
xᵀΛxµ(dx), Var(µ)(Λ) : = µ̄2(Λ)− µ̄ᵀΛµ̄,

which corresponds to ϕ(x) = x, ϕ(x) = xᵀΛx, and ϕ(x) = (x − µ)ᵀΛ(x − µ) in (i) respectively.
Therefore, we have

∂µµ̄ = Id×d, ∂µµ̄2(Λ) = 2Λx, ∂µVar(µ)(Λ) = 2Λ(x− µ̄),

which shall be used in the class of LQ McKean-Vlasov problem.

(iii) The function u is in the cylindrical form:

u(µ) = F (< ϕ1, µ >, . . . , < ϕd, µ >)

for some continuously differentiable functions F , ϕ1, . . ., ϕd defined on Rd, whose derivatives are at
most of linear growth. In this case, the lifted function of u is given by ũ(ξ) = F (E[ϕ1(ξ)], . . . ,E[ϕd(ξ)])
and

ũ(ξ + Y ) = F (E[ϕ1(ξ + Y )], . . . ,E[ϕd(ξ + Y )])

= F (E[ϕ1(ξ)], . . . ,E[ϕd(ξ)]) +
d∑
i=1

∂xiF (E[ϕ1(ξ)], . . . ,E[ϕd(ξ)])E[∇ϕi(ξ).Y ]

+
∫ 1

0

d∑
i=1

[
∂xiF (E[ϕ1(ξ + hY )], . . . ,E[ϕd(ξ + hY )])E[∇ϕi(ξ + hY ).Y ]

− ∂xiF (E[ϕ1(ξ)], . . . ,E[ϕd(ξ)])E[∇ϕi(ξ).Y ]
]
dh
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We check that the last term in the r.h.s is o(‖Y ‖22), and thus the Fréchete derivative of ũ is given

by
d∑
i=1

∂xiF (E[ϕ1(ξ)], . . . ,E[ϕd(ξ)])∇ϕi(ξ). Therefore, we have

∂µϕ(µ) =
d∑
i=1

∂xiF (< ϕ1, µ >, . . . , < ϕd, µ >)∇ϕi.

1.3 Itô’s formula on Wasserstein space

1.3.1 Itô’s formula along a flow of deterministic measures

In this thesis, we shall use a chain rule (or Itô’s formula) along a flow of deterministic probability
measures and recall it here. Let us consider an Rd-valued Itô process

Xt = X0 +
∫ t

0
bsds+

∫ t

0
σsdBs, 0 ≤ t ≤ T, (1.3.1)

where (bt) and (σt) are progressively measurable processes with respect to the filtration generated by the
n-dimensional Brownian motion B, valued respectively in Rd and Rd×n, and satisfying the integrability
condition:

E
[ ∫ T

0
|bt|2 + |σt|2dt

]
< ∞. (1.3.2)

We then claim:

Proposition 1.3.1. Let u be C2
b (P2(Rd)). Then, under condition (1.3.2), for all t ∈ [0, T ],

u(P
Xt

) = u(P
X0

) +
∫ t

0
E
[
∂µu(P

Xs
)(Xs).bs + 1

2tr
(
∂x∂µu(P

Xs
)(Xs)σsσᵀ

s

)]
ds. (1.3.3)

This proposition is proved independently in [BLPR17] and [CCD15], see also the Appendix in [CD14].

It will be useful to reformulate the Itô’s formula for the lifted function ũ on L2(G;Rd) (= L2(Ω,G,P;Rd)).
Now, denoting by (B̃t)0≤t≤T , (b̃t)0≤t≤T , (σ̃t)0≤t≤T the copies of (Bt)0≤t≤T , (bt)0≤t≤T and (σt)0≤t≤T on
the space (Ω,G,P), we then have an Itô process of the form on (Ω,G,P)

X̃t = X̃0 +
∫ t

0
b̃tdt+

∫ t

0
σ̃tdB̃t, 0 ≤ t ≤ T,

which is then the copy of X in (1.3.1). Thus, when the lifted function ũ ∈ C2(L2(G;Rd)), we obtain from
(1.3.7) and (1.2.2) an Itô’s formula on the lifted space L2(G;Rd),

u(X̃t) = u(X̃0) +
∫ t

0
E[Dũ(X̃s).b̃s + 1

2D
2ũ(X̃s)(σ̃sN).σ̃sN ], 0 ≤ t ≤ T, (1.3.4)

where N ∈ L2(G;Rd), is independent of (X̃0, B̃), with zero mean, and unit variance.
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1.3.2 Itô’s formula along a flow of random measures

We next give an Itô’s formula along a flow of conditional measures proved in [CCD15] (see also
[CDLL15] and [CD15]). Let (Ω,F ,P) be a probability space of the form (Ω,F ,P) = (Ω0 × Ω1,F0 ⊗
F1,P0 ⊗ P1), where (Ω0,F0,P0) supports W 0 and (Ω1,F1,P1) supports B. Let us consider an Itô
process in Rd of the form:

Xt = X0 +
∫ t

0
bsds+

∫ t

0
σsdBs +

∫ t

0
σ0
sdW

0
s , 0 ≤ t ≤ T, (1.3.5)

where X0 is independent of (B,W 0), and the coefficients b, σ and σ0 are progressively measurable
processes with respect to the natural filtration F generated by (X0, B,W 0), and satisfying the square
integrability condition:

E
[ ∫ T

0
|bt|2 + |σt|2 + |σ0

t |2dt
]

< ∞. (1.3.6)

Denote by PW0
Xt

the conditional law of Xt, t ∈ [0, T ], given the σ-algebra F0 generated by the whole
filtration of W 0, and by E

W0 = E1 the conditional expectation w.r.t. F0.

Proposition 1.3.2. Let u ∈ C2
c (P2(Rd)). Then, under condition (1.3.6), for all t ∈ [0, T ], we have:

u(PW0
Xt

) = u(P
X0

) +
∫ t

0
E
W0

[
∂µu(PW0

Xs
)(Xs).bs + 1

2tr
(
∂x∂µu(PW0

Xs
)(Xs)(σsσᵀ

s + σ0
s(σ0

s)ᵀ)
)]

+ E
W0

[
E′
W0

[1
2tr
(
∂2
µu(PW0

Xs
)(Xs, X

′
s)σ0

s(σ
′0
s )ᵀ

)]]
ds

+
∫ t

0
E
W0

[
∂µu(PW0

Xs
)(Xs)ᵀσ0

s

]
dW 0

s , (1.3.7)

where X ′ and σ′0 are copies of X and σ0 on another probability space (Ω0×Ω′1,F0⊗F ′1,P0×P′1), with
(Ω′1,F ′1,P′1) supporting B′ a copy of B, and E′

W0 = E′1.

Assume further that (Ω1,F1,P1) is in the form Ω1 = Ω̃1×Ω′1, F1 = G⊗F ′1, P1 = P̃1⊗P′1, where Ω̃1 is
a Polish space, G its Borel σ-algebra, P̃1 an atomless probability measure on (Ω̃1,G), while (Ω′1,F ′1,P′1)
supports B. We denote by E1 (resp. Ẽ1) the expectation under P1 (resp. P̃1). It will be useful to
formulate Itô’s formula for the lifted function ũ on L2(G;Rd) (= L2(Ω̃1,G, P̃1;Rd)). Notice, however,
that even if u ∈ C2

c (P2(Rd)), then its lifted function ũ may not be in general twice continuously Fréchet
differentiable on L2(G;Rd), as discussed in Example 2.1 in [BLPR17]. Under the extra-assumption that
the lift ũ ∈ C2(L2(G;Rd)) (the set of real-valued twice continuously Fréchet differentiable on L2(G;Rd)),
the second Fréchet derivative D2ũ(ξ) is identified indifferently by Riesz’ theorem as a bilinear form on
L2(G;Rd) or as a self-adjoint operator (hence bounded) on L2(G;Rd), denoted by D2ũ(ξ) ∈ S(L2(G;Rd)),
and we have the relation (see Appendix A.2 in [CD14]):

D2ũ(ξ)[Y, Y ] = Ẽ1
[
D2ũ(ξ)(Y ).Y

]
= Ẽ1

[
Ẽ′1
[
tr
(
∂2
µu(L(ξ))(ξ, ξ′)Y (Y ′)ᵀ

)]]
+ Ẽ1

[
tr
(
∂x∂µu(L(ξ))(ξ)Y Y ᵀ

)]
,

D2ũ(ξ)[ZN,ZN ] = Ẽ1
[
D2ũ(ξ)(ZN).ZN

]
= Ẽ1

[
tr
(
∂x∂µu(L(ξ))(ξ)ZZᵀ

)]
,

(1.3.8)

for any ξ ∈ L2(G;Rd), Y ∈ L2(G;Rd), Z ∈ L2(G;Rd×q), and where (ξ′, Y ′) is a copy of (ξ, Y ) on another
Polish and atomless probability space (Ω̃′1,G′, P̃′1), N ∈ L2(G;Rq) is independent of (ξ, Z) with zero
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mean, and unit variance. Now, let us consider a copy B̃ of B on the probability space (Ω̃1,G, P̃1), denote
by X̃0, b̃, σ̃, σ̃0 copies of X0, b, σ, σ0 on (Ω̃ = Ω0 × Ω̃1, F̃ = F0 ⊗ G, P̃ = P0 ⊗ P̃1), and consider the Itô
process X̃ on (Ω̃, F̃ , P̃ ) of the form

X̃t = X̃0 +
∫ t

0
b̃sds+

∫ t

0
σ̃sdB̃s +

∫ t

0
σ̃0
sdW

0
s , 0 ≤ t ≤ T,

which is then a copy of X in (1.3.5). The process X̌ defined by X̌t(ω0) = X̃t(ω0, .), 0 ≤ t ≤ T , is
F0-progressive, and valued in L2(G;Rd). Similarly, the processes defined by b̌t(ω0) = b̃t(ω0, .), σ̌t(ω0) =
σ̃t(ω0, .), σ̌0

t (ω0) = σ̃0
t (ω0, .), 0 ≤ t ≤ T , are valued in L2(G;Rd), P0-a.s. Thus, when the lifted function

ũ ∈ C2(L2(G;Rd)), we obtain from (1.3.7) and relation (1.2.1)-(1.3.8) an Itô’s formula on the lifted space
L2(G;Rd):

ũ(X̌t) = ũ(X̌0) +
∫ t

0
Ẽ1
[
Dũ(X̌s).b̌s + 1

2D
2ũ(X̌s)(σ̌sN).σ̌sN + 1

2D
2ũ(X̌s)(σ̌0

s).σ̌0
s

]
ds

+
∫ t

0
Ẽ1[Dũ(X̌s)ᵀσ̌0

s

]
dW 0

s , 0 ≤ t ≤ T, P0 − a.s. (1.3.9)

where N ∈ L2(G;Rd) is independent of (B̃, X̃0), with zero mean, and unit variance.

Remark 1.3.1. Itô’s formula (1.3.9) is proved in Proposition 6.3 in [CD15], and holds true for any
function ũ which is twice continuously Fréchet differentiable on L2(G;Rd). The fact that ũ has a lifted
structure plays no role, and is used only to derive from (1.2.1)-(1.3.8) Itô’s formula (1.3.7) on the Wasser-
stein space P2(Rd). Recall however that Itô’s formula (1.3.7) holds even if the lift is not twice continuously
Fréchet differentiable as shown in [CCD15] (see also [CDLL15]). �





Chapter 2

Dynamic programming for discrete
time McKean-Vlasov control
problem a

Abstract: We consider the stochastic optimal control problem of nonlinear mean-field systems in
discrete time. We reformulate the problem into a deterministic control problem with marginal distribution
as controlled state variable, and prove that dynamic programming principle holds in its general form.
We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate
linear-quadratic McKean-Vlasov control problem.

Keywords: McKean-Vlasov equation, dynamic programming, calculus of variations.

a. This chapter is based on a paper in collaboration with Huyên Pham [PW16]. This paper is published in Applied
Mathematics and Optimization, 74(3), 2016.
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2.1 Introduction

The problem studied in this paper concerns the optimal control of nonlinear stochastic dynamical
systems in discrete time of McKean-Vlasov type. Such topic is related to the modeling of collective
behaviors for a large number of players with mutual interactions, which has led to the theory of MFGs,
introduced in [LL07] and [HMC06].

Since the emergence of MFG theory, the optimal control of mean-field dynamical systems has attracted
a lot of interest in the literature, mostly in continuous time. It has been first studied in [AD01] by
functional analysis method with a value function expressed in terms of the Nisio semigroup of operators.
More recently, several papers have adopted the stochastic maximum principle for characterizing solutions
to the controlled McKean-Vlasov systems in terms of adjoint backward stochastic differential equations
(BSDEs), see [AD10], [BDL11], [CD15]. We also refer to the paper [Yon13] which focused on the LQ
case where the BSDE from the maximum principle leads to a Riccati equation system. It is mentioned in
these papers that due to the non-markovian nature of the McKean-Vlasov systems, dynamic programming
(also called Bellman optimality) principle does not hold and the problem is time inconsistent in general.
Indeed, the standard Markov property of the state process, say X, is ruled out, however, as noticed in
[BFY13], [BFY15], this can be restored by working with the marginal distribution of X. The dynamic
programming has then been applied in [LP14] for a specific control problem where the objective function
depends upon statistics of X like its mean value but with no mean-field interaction on the dynamics of
X, and by assuming the existence at all times of a density function for the marginal distribution of X.

The purpose of this paper is to provide a detailed analysis of the dynamic programming method
for the optimal control of nonlinear mean-field systems in discrete time, where the coefficients may
depend both upon the marginal distributions of the state and of the control. The case of continuous
time McKean-Vlasov equations requires more technicalities and mathematical tools, and is under current
investigation. The discrete time framework has been also considered in [ELN13] for LQ problem, and
arises naturally in situations where signal values are available only at certain times. On the other hand,
it can also be viewed as the discrete time version or approximation of the optimal control of continuous
time McKean-Vlasov stochastic differential equations. Our methodology is the following. By using
closed-loop (also called feedback) controls, we first convert the stochastic optimal control problem into
a deterministic control problem involving only the marginal distribution of the state process. We then
derive the deterministic evolution of the controlled marginal distribution, and prove in its general form
the DPP. This gives sufficient conditions for optimality in terms of calculus of variations in the space of
feedback control functions. Classical DPP for stochastic control problem without mean-field interaction
falls within our approach. We finally apply our method for solving explicitly the mean-variance portfolio
selection problem and the multivariate LQ mean-field control problem, and retrieve in particular the
results obtained in [ELN13] by four different approaches.

The outline of the paper is as follows. The next section formulates the McKean-Vlasov control
problem in discrete time. In Section 2.3, we develop the dynamic programming method in this framework.
Section 2.4 is devoted to applications of the DPP with explicit solutions in the LQ case including the
mean-variance problem.
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2.2 McKean-Vlasov control problem

We consider a general class of optimal control of mean-field type in discrete time. We are given two
measurable spaces (E,B(E)) and (A,B(A)) representing respectively the state space, and the control
space. On a probability space (Ω,F ,P), we consider a controlled stochastic dynamics of McKean-Vlasov
type:

Xα
k+1 = Fk+1(Xα

k ,PXα
k

, αk,Pαk , εk+1), k ∈ N, Xα
0 = ξ, (2.2.1)

for some measurable functions Fk defined from E × P(E) × A × P(A) × Rd into E, where (εk)k is a
sequence of i.i.d. random variables, independent of the initial random value ξ, and we denote by F =
(Fk)k the filtration with Fk the σ-algebra generated by {ξ, ε1, . . . , εk}. Here, (Xα

k )k is the state process
valued in E controlled by the F-adapted process (αk)k valued in A, Thus, the dynamics of (Xα

k ) depends
at any time k of its marginal distribution, but also of the marginal distribution of the control, which
represents an additional mean-field feature with respect to classical McKean Vlasov equations, and also
considered recently in [ELN13].

Let us now precise the assumptions on the McKean-Vlasov equation. We shall assume that (E, |.|) is
a normed space (most often Rd), (A, |.|) is also a normed space (typically a subset of Rm), and we recall
from Notations that P2(E) the space of square integrable probability measures over E , i.e. µ ∈ P(E)
s.t. ‖µ‖2

2
:=
∫
E
|x|2µ(dx) <∞, and similarly for P2(A). For any (x, µ, a, λ) ∈ E×P(E)×A×P(A), and

k ∈ N, we denote by Pk+1(x, µ, a, λ, dx′) the probability distribution of the E-valued random variable
Fk+1(x, µ, a, λ, εk+1) on (Ω,F ,P), and we assume

(H1) For any k ∈ N, there exists some positive constant Ck,F s.t. for all (x, a, µ, λ) ∈ E×A×P(E)×P(A):∫
E

|x′|2Pk+1(x, µ, a, λ, dx′) = E
[∣∣Fk+1(x, µ, a, λ, εk+1)

∣∣2]
≤ Ck,F (1 + |x|2 + |a|2 + ‖µ‖2

2
+ ‖λ‖2

2
).

Assuming that the initial random value ξ is square integrable, and considering admissible controls α
which are square integrable, i.e. E|αk|2 < ∞, for any k, it is then clear under (H1) that E|Xα

k |2 < ∞,
i.e. P

Xα
k

∈ P2(E), and there exists some positive constant Ck s.t.

E|Xα
k |2 ≤ Ck

(
1 + E|ξ|2 +

k−1∑
j=0

E|αj |2
)
. (2.2.2)

The cost functional associated to the system (2.2.1) over a finite horizon n ∈ N \ {0} is:

J(α) := E
[ n−1∑
k=0

fk(Xα
k ,PXα

k

, αk,Pαk ) + g(Xα
n ,PXαn )

]
, (2.2.3)

for any square integrable F-adapted processes α valued in A, where the running cost functions fk, k =
0, . . . , n − 1, are measurable real-valued functions on E × P2(E) × A × P2(A), and the terminal cost
function g is a real-valued measurable function on E × P2(E). We shall assume

(H2) There exist some positive constant Cg and for any k = 0, . . . , n − 1, some positive constant Ck,f
s.t. for all (x, a, µ, λ) ∈ E ×A× P2(E)× P2(A):∣∣fk(x, µ, a, λ)

∣∣ ≤ Ck,f (1 + |x|2 + |a|2 + ‖µ‖2
2

+ ‖λ‖2
2
),∣∣g(x, µ)

∣∣ ≤ Cg(1 + |x|2 + ‖µ‖2
2
).
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Under (H1)-(H2), the cost functional J(α) is well-defined and finite for any admissible control, and
the objective is to minimize over all admissible controls the cost functional, i.e. by solving

V0 := inf
α
J(α), (2.2.4)

and when V0 > −∞, find an optimal control α∗ i.e. achieving the minimum in (2.2.4) if it exists.

Problem (2.2.1)-(2.2.4) arises in the study of collective behaviors of a large number of players (parti-
cles) resulting from mean-field interactions: typically, the controlled dynamics of a system of N symmetric
particles are given by

Xi,αi

k+1 = Fk+1(Xi,αi

k ,
1
N

N∑
j=1

δ
X
j,αi

k

, αik,
1
N

N∑
j=1

δ
α
j
k

, εik+1), i = 1, . . . , N,

by assuming that a center decides of the general same policy αi = α for all players with same running and
terminal gain functions, the propagation of chaos argument from McKean-Vlasov theory (see [Szn91])
states that when the number of players N goes to infinity, the problem of each agent is asymptotically
reduced to the problem of a single agent with controlled dynamics (2.2.1) and objective (2.2.4). We refer
to [CDL13] for a detailed discussion about optimal control of McKean-Vlasov equations and connection
with equilibrium of large populations of individuals with mean-field interactions.

2.3 Dynamic programming

In this section, we make the standing assumptions (H1)-(H2), and our purpose is to show that
dynamic programming principle holds for problem (2.2.4), which we would like to combine with some
Markov property of the controlled state process. However, notice that the McKean-Vlasov type depen-
dence on the dynamics of the state process rules out the standard Markov property of the controlled
process (Xα

k ). Actually, this Markov property can be restored by considering its probability law (P
Xα
k

)k.
To be more precise and for the sake of definiteness, we shall restrict ourselves to controls α = (αk)k given
in closed-loop (or feedback) form:

αk = α̃k(Xα
k ), k = 0, . . . , n− 1, (2.3.1)

for some deterministic measurable functions α̃k of the state. Notice that the feedback control may also
depend on the (deterministic) marginal distribution, and it will be indeed the case for the optimal one,
but to alleviate notation, we omit this dependence which is implicit through the deterministic function
α̃k. We denote by AE the set of measurable functions on E valued in A, which satisfy a linear growth
condition, and by A the set of admissible controls α in closed loop form (2.3.1) with α̃k in AE , k ∈ N.
We shall often identify α ∈ A with the sequence (α̃k)k in AE via (2.3.1). Notice that any α ∈ A satisfies
the square integrability condition, i.e. E|αk|2 < ∞, for all k. Indeed from the linear growth condition on
α̃k in AE , we have E|αk|2 ≤ Cα(1 + E|Xα

k |2) for some constant Cα (depending on α), which gives the
square integrability condition by (2.2.2).

Next, we show that the initial stochastic control problem can be reduced to a deterministic control
problem. Indeed, the key point is to observe by definition of P

Xα
k

and noting that P
αk

is the image by
α̃k of P

Xα
k

for a feedback control α ∈ A, that the gain functional in (2.3.2) can be rewritten as:

J(α) =
n−1∑
k=0

f̂k(P
Xα
k

, α̃k) + ĝ(P
Xαn

), (2.3.2)
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where f̂k, k = 0, . . . , n− 1, are defined on P2(E)×AE , ĝ is defined on P2(E) by:

f̂k(µ, α̃) :=
∫
E

fk(x, µ, α̃(x), α̃ ? µ)µ(dx), ĝ(µ) :=
∫
E

g(x, µ)µ(dx), (2.3.3)

and α̃ ? µ ∈ P2(A) is the (
α̃ ? µ

)
(B) = µ

(
α̃−1(B)

)
, ∀B ∈ B(A).

Hence, the original problem (2.2.4) is transformed into a deterministic control problem involving the
infinite dimensional marginal distribution process. Let us then define the dynamic version for problem
(2.2.4):

V αk := inf
β∈Ak(α)

n−1∑
j=k

f̂j(P
X
β
j

, β̃j) + ĝ(P
X
β
n

), k = 0, . . . , n, (2.3.4)

for α ∈ A, where Ak(α) = {β ∈ A : βj = αj , j = 0, . . . , k − 1}, with the convention that A0(α) = A, so
that V0 = infα∈A J(α) is equal to V α0 . It is clear that V αk < ∞, and we shall assume that

V αk > −∞, k = 0, . . . , n, α ∈ A. (2.3.5)

Remark 2.3.1. The finiteness condition (2.3.5) can be checked a priori directly from the assumptions
on the model. For example, when fk, g, hence f̂k, g, k = 0, . . . , n − 1, are lower-bounded functions,
condition (2.3.5) clearly holds. Another example is the case when fk(x, µ, a, λ), k = 0, . . . , n − 1, and g
are lower bounded by a quadratic function in x, µ, and λ, so that by the linear growth condition on α̃,

f̂k(µ, α̃) + ĝ(x, µ) ≥ −Ck
(
1 + ‖µ‖2

)
, ∀ µ ∈ P2(E), α̃ ∈ AE ,

and we are able to derive moment estimates on Xα
k , uniformly in α:

∥∥P
Xα
k

∥∥2
2

= E[|Xα
k |2] ≤ Ck, which

arises typically when A is bounded from (2.2.2). Then, it is clear that (2.3.5) holds true. Otherwise, this
finiteness condition can be checked a posteriori from a verification theorem, see Theorem 2.3.2. �

The DPP for the deterministic control problem (2.3.4) takes the following formulation:

Lemma 2.3.1. (Dynamic Programming Principle)

Under (2.3.5), we have V αn = ĝ(P
Xαn

)
V αk = inf

β∈Ak(α)
f̂k(P

X
β
k

, β̃k) + V βk+1, k = 0, . . . , n− 1. (2.3.6)

Proof. In the context of deterministic control problem, the proof of the DPP is standard and does
not require any measurable selection arguments. For sake of completeness and since it is quite elementary,
we give it. Denote by Jk(α) the cost functional at time k, i.e.

Jk(α) :=
n−1∑
j=k

f̂k(P
Xα
k

, α̃k) + ĝ(P
Xαn

), k = 0, . . . , n,
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so that V αk = infβ∈Ak(α) Jk(β) , and by Wα
k the r.h.s. of (2.3.6). Then,

Wα
k = inf

β∈Ak(α)

[
f̂k(P

X
β
k

, β̃k) + inf
γ∈Ak+1(β)

Jk+1(γ)
]

= inf
β∈Ak(α)

inf
γ∈Ak+1(β)

[
f̂k(P

X
β
k

, β̃k) + Jk+1(γ)
]

= inf
β∈Ak(α)

inf
γ∈Ak+1(β)

[
f̂k(P

X
γ
k

, γ̃k) + Jk+1(γ)
]

= inf
γ∈{Ak+1(β):β∈Ak(α)}

Jk(γ),

where we used in the third equality the fact that Xβ
k = Xγ

k , βk = γk for γ ∈ Ak+1(β). Finally, we notice
that {Ak+1(β) : β ∈ Ak(α)} = Ak(α). Indeed, the inclusion ⊂ is clear while for the converse inclusion, it
suffices to observe that any γ in Ak(α) satisfies obviously γ ∈ Ak+1(γ). This proves the required equality:
Wα
k = V αk . �

Let us now show how one can simplify the DPP by exploiting the flow property of (P
Xα
k

)k for any
admissible control α in feedback form ∈ A. Actually, we can derive the evolution of the controlled
deterministic process (P

Xα
k

)k.

Lemma 2.3.2. For any admissible control in closed-loop form α ∈ A, we have

P
Xα
k+1

= Φk+1
(
P
Xα
k

, α̃k
)
, k ∈ N, P

Xα0
= Pξ (2.3.7)

where Φk+1 is the measurable function defined from P2(E)×AE into P2(E) by:

Φk+1(µ, α̃)(dx′) =
∫
E

µ(dx)Pk+1(x, µ, α̃(x), α̃ ? µ, dx′). (2.3.8)

Proof. Fix α ∈ A. Recall from the definition of the transition probability Pk+1(x, µ, a, λ, dx′)
associated to (2.2.1) that

P
[
Xα
k+1 ∈ dx′

∣∣Fk] = Pk+1(Xα
k ,PXα

k

, αk,Pαk , dx
′), k ∈ N. (2.3.9)

For any bounded measurable function ϕ on E, we have by the law of iterated conditional expectation
and (2.3.9):

E
[
ϕ(Xα

k+1)
]

= E
[
E
[
ϕ(Xα

k+1)
∣∣Fk]]

= E
[ ∫

E

ϕ(x′)Pk+1(Xα
k ,PXα

k

, αk,Pαk , dx
′)
]

= E
[ ∫

E×E
ϕ(x′)Pk+1(x,P

Xα
k

, α̃k(x), α̃k ? PXα
k

, dx′)P
Xα
k

(dx)
]

where we used in the last equality the fact that αk = α̃k(Xα
k ) is in closed loop form, the definition of

P
Xα
k

, and noting that P
αk

= α̃k ? PXα
k

. This shows the required inductive relation for P
Xα
k

. �

Remark 2.3.2. Relation (2.3.7) is the Fokker-Planck equation in discrete time for the marginal distri-
bution of the controlled process (Xα

k ). In absence of control and McKean-Vlasov type dependence, i.e.
Pk+1(x, dx′) does not depend on (µ, a, λ), we retrieve the standard Fokker-Planck equation with a linear
function Φk+1(µ) = µPk+1. In our McKean-Vlasov control context, the function Φk+1(µ, α̃) is nonlinear
in µ. �
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By exploiting the inductive relation (2.3.7) on the controlled process (P
Xα
k

)k, the calculation of the
value processes V αk can be reduced to the recursive computation of deterministic functions (called value
functions) on P(E).

Theorem 2.3.1. (Dynamic programming and value functions)

Under (2.3.5), we have for any α ∈ A, V αk = vk(P
Xα
k

), k = 0, . . . , n, where (vk)k is the sequence of value
functions defined recursively on P2(E) by: vn(µ) = ĝ(µ)

vk(µ) = inf
α̃∈AE

[
f̂k(µ, α̃) + vk+1

(
Φk+1(µ, α̃)

)] (2.3.10)

for k = 0, . . . , n− 1, µ ∈ P2(E).

Proof. First observe that for any β ∈ Ak(α), Xβ
k = Xα

k , k = 0, . . . , n. Let us prove the result by
backward induction. For k = n, the result clearly holds since V αn = ĝ(P

Xαn
). Suppose now that at time

k + 1, V αk+1 = vk+1(P
Xα
k+1

) for some deterministic function vk+1 and any α ∈ A. Then, from the DPP
(2.3.6) and Lemma 2.3.2, we get

V αk = inf
β∈Ak(α)

f̂k(P
Xα
k

, β̃k) + vk+1(P
X
β
k+1

)

= inf
β∈Ak(α)

wk(P
Xα
k

, β̃k) (2.3.11)

where

wk(µ, α̃) := f̂k(µ, α̃) + vk+1
(
Φk+1

(
µ, α̃

))
.

Now, for any β ∈ Ak(α), and since β̃k is valued in AE , we clearly have: wk(µ, βk) ≥ inf α̃∈AE wk(µ, α̃),
and so infβ∈Ak(α) wk(µ, β̃k) ≥ inf α̃∈AE wk(µ, α̃). Conversely, for any α̃ ∈ AE , the control β defined by
βj = αj , j ≤ k − 1, and β̃j = α̃ for j ≥ k, lies in Ak(α), so: wk(µ, α̃) ≥ infβ∈Ak(α) wk(µ, β̃k), and thus
infβ∈Ak(α) wk(µ, β̃k) = inf α̃∈AE wk(µ, α̃). We conclude from (2.3.11) that: V αk = vk(P

Xα
k

) with vk(µ) =
inf
α̃∈AE

wk(µ, α̃), i.e. given by (2.3.10). �

Remark 2.3.3. Problem (2.2.4) includes the case where the cost functional in (2.3.2) is a nonlinear
function of the expected value of the state process, i.e. the running cost functions and the terminal
gain function are in the form: fk(Xα

k ,PXα
k

, αk) = f̄k(Xα
k ,E[Xα

k ], αk), k = 0, . . . , n − 1, g(Xα
n ,PXαn ) =

ḡ(Xα
n ,E[Xα

n ]), which arise for example in mean-variance problem (see Section 2.4). It is claimed in
[BM14] and [Yon13] that Bellman optimality principle does not hold, and therefore the problem is time-
inconsistent. This is true when one takes into account only the state process Xα (that is its realization),
since it is not Markovian, but as shown in this section, dynamic programming principle holds whenever
we consider the marginal distribution as state variable. This gives more information and the price to
paid is the infinite-dimensional feature of the marginal distribution state variable. �

We complete the above Bellman’s optimality principle with a verification theorem, which gives a
sufficient condition for finding an optimal control.

Theorem 2.3.2. (Verification theorem)
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(i) Suppose we can find a sequence of real-valued functions wk, k = 0, . . . , n, defined on P2(E) and
satisfying the dynamic programming relation: wn(µ) = ĝ(µ)

wk(µ) = inf
α̃∈AE

[
f̂k(µ, α̃) + wk+1

(
Φk+1(µ, α̃)

)] (2.3.12)

for k = 0, . . . , n− 1, µ ∈ P2(E). Then V αk = wk(P
Xα
k

), for all k = 0, . . . , n, α ∈ A, and thus wk = vk.

(ii) Moreover, suppose that at any time k and µ ∈ P(E), the infimum in (2.3.12) for wk(µ) is at-
tained, by some α̃∗k(., µ) in AE. Then, by defining by induction the control α∗ in feedback form by α∗k =
α̃∗k(Xα∗

k ,P
Xα
∗

k

), k = 0, . . . , n− 1, we have

V0 = J(α∗),

which means that α∗ ∈ A is an optimal control.

Proof. (i) Fix some α ∈ A, and arbitrary β ∈ A associated to a feedback sequence (β̃k)k in AE .
Then, from the dynamic programming relation (2.3.12) for wk, and recalling the evolution (2.3.7) of the
controlled marginal distribution P

X
β
k

, we have

wk(P
X
β
k

) ≤ f̂k(P
X
β
k

, β̃k) + vk+1(P
X
β
k+1

), k = 0, . . . , n− 1.

By induction and since wn = ĝ, this gives

wk(P
X
β
k

) ≤
n−1∑
j=k

f̂j(P
X
β
j

, β̃j) + ĝ(P
X
β
n

).

By noting that P
Xα
k

= P
X
β
k

, when β ∈ Ak(α), and since β is arbitrary, this proves that wk(P
Xα
k

) ≤ V αk .
In particular, V αk > −∞, i.e. relation (2.3.5) holds, and then by Theorem 2.3.1, V αk is characterized by
the sequence of value functions (vk)k defined by the DP (2.3.10). This DP obviously defines by backward
induction a unique sequence of functions on P2(E), hence wk = vk, k = 0, . . . , n, and therefore V αk =
wk(P

Xα
k

).

(ii) By definition of α̃∗k which attains the infimum in (2.3.12), we have

wk
(
P
Xα
∗

k

)
= f̂k(P

Xα
∗

k

, α̃∗k(.,P
Xα
∗

k

)) + wk+1
(
P
Xα
∗

k+1

)
, k = 0, . . . , n− 1.

By induction this implies that

V0 = w0(Pξ) =
n−1∑
k=0

f̂k
(
P
Xα
∗

k

, α̃∗k(.,P
Xα
∗

k

)
)

+ ĝ(P
Xα
∗

n

) = J(α∗),

which shows that α∗ is an optimal control. �

The above verification theorem, which consists in solving the dynamic programming relation (2.3.12),
is useful to check a posteriori the finiteness condition (2.3.5), and can be applied in practice fo find explicit
solutions to some McKean-Vlasov control problems, as investigated in the next section.
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2.4 Applications

2.4.1 Special cases

We consider some particular cases, and provide the special forms of the DPP.

2.4.1.1 No mean-field interaction

We first consider the standard control case where there is no mean-field interaction in the dynamics
of the state process, i.e. Fk+1(x, a, εk+1), hence Pk+1(x, a, dx′) do not depend on µ, λ, as well as in the
cost functions fk(x, a) and g(x). For simplicity, we assume that A is a bounded set, which ensures the
finiteness condition (2.3.5). In this case, we can see that the value functions vk are in the form

vk(µ) =
∫
E

ṽk(x)µ(dx), k = 0, . . . , n, (2.4.1)

where the functions ṽk defined on E satisfy the classical dynamic programming principle:{
ṽn(x) = g(x)
ṽk(x) = inf

a∈A

[
fk(x, a) + E

[
ṽk+1(Xα

k+1)
∣∣Xα

k = x, αk = a
]]
,

(2.4.2)

for k = 0, . . . , n−1. Let us check this result by backward induction. This holds true for k = n since vn(µ)
= ĝ(µ) =

∫
E
g(x)µ(dx). Suppose that (2.4.1) holds true at time k + 1. Then, from the DPP (2.3.10),

(2.3.8) and Fubini’s theorem, we have

vk(µ) = inf
α̃∈AE

[ ∫
E

fk(x, α̃(x))µ(dx) +
∫
E

ṽk+1(x′)Φk+1(µ, α̃)(dx′)
]

= inf
α̃∈AE

[ ∫
E

[
fk(x, α̃(x)) +

∫
E

ṽk+1(x′)Pk+1(x, α̃(x), dx′)
]
µ(dx)

]
= inf

α̃∈AE

∫
E

w̃k(x, α̃(x))µ(dx)

where we set w̃k(x, a) = fk(x, a) +
∫
E
ṽk+1(x′)Pk+1(x, a, dx′). Now, we observe that

inf
α̃∈AE

∫
E

w̃k(x, α̃(x))µ(dx) =
∫
E

inf
a∈A

w̃k(x, a)µ(dx). (2.4.3)

Indeed, since for any α̃ ∈ AE , the value α̃(x) is valued in A for any x ∈ E, it is clear that the inequality
≥ in (2.4.3) holds true. Conversely, for any ε > 0, and x ∈ E, one can find α̃ε(x) in A such that

w̃k(x, α̃ε(x)) ≤ inf
a∈A

w̃k(x, a) + ε.

By a measurable selection theorem, the map x 7→ α̃ε(x) can be chosen measurable, and since A is bounded,
the function α̃ε lies in AE . It follows that

inf
α̃∈AE

∫
E

w̃k(x, α̃(x))µ(dx) ≤
∫
E

w̃k(x, α̃ε(x))µ(dx) ≤
∫
E

inf
a∈A

w̃k(x, a)µ(dx) + ε,

which shows (2.4.3) since ε is arbitrary. Therefore, we have vk(µ) =
∫
E
ṽk(x)µ(dx) with

ṽk(x) = inf
a∈A

w̃k(x, a)

= inf
a∈A

[
fk(x, a) +

∫
E

ṽk+1(x′)Pk+1(x, a, dx′)
]
,

which is the relation (2.4.2) at time k from the definition of the transition probability Pk+1.
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2.4.1.2 First order interactions

We consider the case of first order interactions, i.e. the dependence of the model coefficients upon the
probability measures is linear in the sense that for any (x, µ, a) ∈ E × P2(E)×A, α̃ ∈ AE ,

Pk+1(x, µ, a, α̃ ? µ, dx′) =
∫
E

P̃k+1(x, y, a, α̃(y), dx′)µ(dy),

fk(x, µ, a, α̃ ? µ) =
∫
E

f̃k(x, y, a, α̃(y))µ(dy), g(x, µ) =
∫
E

g̃(x, y)µ(dy),

for some transition probability kernels P̃k+1 from E×E×A×A into E, measurable functions f̃k defined
on E ×E ×A×A, k = 0, . . . , n− 1, and g̃ defined on E ×E. In this case, the value functions vk are in
the reduced form

vk(µ) =
∫
E2n−k+1

ṽk(x2n−k+1)µ(dx2n−k+1), k = 0, . . . , n, (2.4.4)

where we denote by xp the p-tuple (x1, . . . , xp) ∈ Ep, by µ(dxp) the product measure µ(dx1)⊗. . .⊗µ(dxp),
and the functions ṽk are defined recursively on E2n−k+1 by

ṽn(x, y) = g̃(x, y)
ṽk(x2n−k ,y2n−k) = inf

α̃∈AE

[
f̃k(x1, y1, α̃(x1), α̃(y1))

+
∫
E2n−k

ṽk+1(x′2n−k)P̃k+1(x2n−k ,y2n−k , α̃(x2n−k), α̃(y2n−k),dx′2n−k)
]
,

where we set

P̃k+1(xp,yp, α̃(xp), α̃(yp),dx′p)
= P̃k+1(x1, y1, α̃(x1), α̃(y1), dx′1)⊗ . . .⊗ P̃k+1(xp, yp, α̃(xp), α̃(yp), dx′p).

Let us check this result by backward induction. This holds true for k = n since v̂n(µ) =
∫
E2 g̃(x, y)µ(dx)µ(dy).

Suppose that (2.4.4) holds true at time k+1. Then, from the DPP (2.3.10), (2.3.8) and Fubini’s theorem,
we have

vk(µ) = inf
α̃∈AE

{
∫
E2
f̃k(x1, y1, α̃(x1), α̃(y1))µ(dx1)µ(dy1)

+
∫
E3∗2n−k

ṽk+1(x′2n−k)P̃k+1(x2n−k ,y2n−k , α̃(x2n−k), α̃(y2n−k),dx′2n−k)µ(dx2n−k)µ(dy2n−k)}

= inf
α̃∈AE

∫
E2n−k+1

w̃k(x2n−k ,y2n−k , α̃(x2n−k), α̃(y2n−k))µ(dx2n−k)µ(dy2n−k)

where we set

w̃k(x2n−k ,y2n−k , α̃(x2n−k), α̃(y2n−k)) = f̃k(x1, y1, α̃(x1), α̃(y1))

+
∫
E2n−k

ṽk+1(x′2n−k)P̃k+1(x2n−k ,y2n−k , α̃(x2n−k), α̃(y2n−k),dx′2n−k).

Now, proceeding the similar argument as no mean-field interaction case, we observe that

inf
α̃∈AE

∫
E2n−k+1

w̃k(x2n−k ,y2n−k , α̃(x2n−k), α̃(y2n−k))µ(dx2n−k)µ(dy2n−k)

=
∫
E2n−k+1

inf
α̃∈AE

w̃k(x2n−k ,y2n−k , α̃(x2n−k), α̃(y2n−k))µ(dx2n−k)µ(dy2n−k).
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Therefore, we have vk(µ) =
∫
E2n−k+1 vk(x2n−k ,y2n−k)µ(dx2n−k)µ(dy2n−k) with

vk(x2n−k ,y2n−k) = inf
α̃∈AE

[
f̃k(x1, y1, α̃(x1), α̃(y1))

+
∫
E2n−k

ṽk+1(x′2n−k)P̃k+1(x2n−k ,y2n−k , α̃(x2n−k), α̃(y2n−k),dx′2n−k)
]
,

2.4.2 Linear-quadratic McKean-Vlasov control problem

We consider a general multivariate linear McKean-Vlasov dynamics in E = Rd with control valued in
A = Rm:

Xα
k+1 =

(
BkX

α
k + B̄kE[Xα

k ] + Ckαk + C̄kE[αk]
)

(2.4.5)
+
(
DkX

α
k + D̄kE[Xα

k ] +Hkαk + H̄kE[αk])εk+1, k = 0, . . . , n− 1,

starting from Xα
0 = ξ, where Bk, B̄k, Dk, D̄k are constant matrices in Rd×d, Ck, C̄k, Hk, H̄k are constant

matrices in Rd×m, and (εk) is a sequence of i.i.d. random variables with distribution N (0, 1), independent
of ξ. The quadratic cost functional to be minimized is given by

J(α) = E
[ n−1∑
k=0

[
(Xα

k )ᵀQkX
α
k +

(
E[Xα

k ]
)ᵀ
Q̄kE[Xα

k ] + Lᵀ

kX
α
k + L̄ᵀ

kE[Xα
k ]

+ αᵀ

kRkαk +
(
E[αk]

)ᵀ
R̄kE[αk]

]
+
(
Xα
n

)ᵀ
QXα

n +
(
E[Xα

n ]
)ᵀ
Q̄E[Xα

n ] + LᵀXα
n + L̄ᵀE[Xα

k ]
]
, (2.4.6)

for some constants matrices Qk, Q̄k, Q, Q̄, in Rd×d, Rk, R̄k in Rm×m, and vectors Lk, L̄k, L, L̄ ∈ Rd, k
= 0, . . . , n − 1. Since the cost functions are real-valued, we may assume w.l.o.g. that all these matrices
Qk, Q̄k, Q, Q̄, Rk and R̄k are symmetric. This model is in the form (2.2.1) and associated to a transition
probability satisfying:

Pk+1(x, µ, a, λ, dx′)  N
(
Mk(x, µ, a, λ); Σk(x, µ, a, λ)Σk(x, µ, a, λ)ᵀ

)
(2.4.7)

Mk(x, µ, a, λ) = Bkx+ B̄kµ̄+ Cka+ C̄kλ̄

Σk(x, µ, a, λ) = Dkx+ D̄kµ̄+Hka+ H̄kλ̄

where we set for any µ ∈ P2(Rd) (resp. P2(Rm)) symmetric matrix Λ ∈ Rd×d (resp. in Rm×m):

µ̄ :=
∫
xµ(dx), µ̄2(Λ) :=

∫
xᵀΛxµ(dx), Var(µ)(Λ) := µ̄2(Λ)− µ̄ᵀΛµ̄,

and in the form (2.3.2), hence (2.3.2) for feedback controls, with

f̂k(µ, α̃) = Var(µ)(Qk) + µ̄ᵀ(Qk + Q̄k)µ̄+ (Lk + L̄k)ᵀµ̄

+ Var(α̃ ? µ)(Rk) + α̃ ? µ
ᵀ(Rk + R̄k)α̃ ? µ

ĝ(µ) = Var(µ)(Q) + µ̄ᵀ(Q+ Q̄)µ̄ + (L+ L̄)ᵀµ̄.

We look for candidate wk, k = 0, . . . , n, of values functions satisfying the dynamic programming
principle (2.3.10), in the quadratic form:

wk(µ) = Var(µ)(Λk) + µ̄ᵀΓkµ̄+ ρᵀ

kµ̄+ χk, (2.4.8)
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for some constant symmetric matrices Λk and Γk in Rd×d, vector ρk ∈ Rd and real χk to be determined
below. We proceed by backward induction. For k = n, we see that wk = ĝ (= vk) iff

Λn = Q, Γn = Q+ Q̄, ρn = L+ L̄, χn = 0. (2.4.9)

Now, suppose that the form (2.4.8) holds true at time k + 1, and observe from (2.3.8) and (2.4.7) that
for any µ ∈ P2(Rd), α̃ ∈ AE , Λ ∈ Rd×d, we have by Fubini’s theorem:

Φk+1(µ, α̃) =
∫
Rd

E
[
Y (x, µ, α̃)

]
µ(dx)

Φk+1(µ, α̃)
2
(Λ) =

∫
Rd

E
[
Y (x, µ, α̃)ᵀΛY (x, µ, α̃)

]
µ(dx),

where Y (x, µ, α̃)  N
(
Mk(x, µ, α̃(x), α̃ ? µ); Σk(x, µ, α̃(x), α̃ ? µ)Σk(x, µ, α̃(x), α̃ ? µ)ᵀ

)
. Therefore,

Φk+1(µ, α̃) = (Bk + B̄k)µ̄+ (Ck + C̄k)α̃ ? µ,

and after some tedious but straightforward calculation:

Var(Φk+1(µ, α̃))(Λ) = Φk+1(µ, α̃)
2
(Λ)− Φk+1(µ, α̃)

ᵀ

ΛΦk+1(µ, α̃)

=
∫
Rd

[
Σk(x, µ, α̃(x), α̃ ? µ)ᵀΛΣ(x, µ, α̃(x), α̃ ? µ)

+ Mk(x, µ, α̃(x), α̃ ? µ)ᵀΛM(x, µ, α̃(x), α̃ ? µ)
]
µ(dx)

−
(

(Bk + B̄k)µ̄+ (Ck + C̄k)α̃ ? µ
)ᵀ

Λ
(

(Bk + B̄k)µ̄+ (Ck + C̄k)α̃ ? µ
)

= Var(µ)(Bᵀ

kΛBk +Dᵀ

kΛDk) + µ̄ᵀ(Dk + D̄k)ᵀΛ(Dk + D̄k)µ̄
+ Var(α̃ ∗ µ)(Hᵀ

kΛHk + Cᵀ

kΛCk)
+ α̃ ? µ

ᵀ(Hk + H̄k)ᵀΛ(Hk + H̄k)α̃ ? µ

+ 2
∫
Rd

(x− µ̄)ᵀ(Dᵀ

kΛHk +Bᵀ

kΛCk)α̃(x)µ(dx)

+ 2µ̄ᵀ(Dk + D̄k)ᵀΛ(Hk + H̄k)
∫
Rd
α̃ ? µ.

Then, wk satisfies the DPP (2.3.10) iff

wk(µ) = inf
α̃∈AE

[
f̂k(µ, α̃) + Var(Φk+1(µ, α̃))(Λk+1) + Φk+1(µ, α̃)

ᵀ

Γk+1Φk+1(µ, α̃)
]

(2.4.10)

= Var(µ)(Qk +Bᵀ

kΛk+1Bk +Dᵀ

kΛk+1Dk) + inf
α̃∈AE

Gµk+1(α̃)

+ µ̄ᵀ
(
Qk + Q̄k + (Dk + D̄k)ᵀΛk+1(Dk + D̄k) + (Bk + B̄k)ᵀΓk+1(Bk + B̄k)

)
µ̄

+
(
Lk + L̄k + (Bk + B̄k)ᵀρk+1

)ᵀ
µ̄+ χk+1, (2.4.11)

where we define the function Gµk+1 : L2(µ;A) 7→ R by

Gµk+1(α̃) = Var(α̃ ? µ)(Vk) + α̃ ? µ
ᵀ
Wkα̃ ? µ + 2

∫
Rd

(x− µ̄)ᵀSkα̃(x)µ(dx)

+ 2µ̄ᵀTkα̃ ? µ + ρᵀ

k+1(Ck + C̄k)α̃ ? µ, (2.4.12)
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and we set Vk = Vk(Λk+1), Wk = Wk(Λk+1,Γk+1), Sk = Sk(Λk+1), Tk = Tk(Λk+1,Γk+1), with
Vk(Λk+1) = Rk +Hᵀ

kΛk+1Hk + Cᵀ

kΛk+1Ck;
Wk(Λk+1,Γk+1) = Rk + R̄k + (Ck + C̄k)ᵀΓk+1(Ck + C̄k) + (Hk + H̄k)ᵀΛk+1(Hk + H̄k)

Sk(Λk+1) = Dᵀ

kΛk+1Hk +Bᵀ

kΛk+1Ck;
Tk(Λk+1,Γk+1) = (Dk + D̄k)ᵀΛk+1(Hk + H̄k) + (Bk + B̄k))ᵀΓk+1(Ck + C̄k).

(2.4.13)
Here, L2(µ;A) ⊃ AE is the Hilbert space of measurable functions on E = Rd valued in A = Rm and
square integrable w.r.t. µ ∈ P2(E).

We now search for the infimum of the function Gµk+1, and shall make the following assumptions on
the symmetric matrices of the quadratic cost functional and on the coefficients of the state dynamics:

(c0) {
Q ≥ 0, Q+ Q̄ ≥ 0, Qk ≥ 0, Qk + Q̄k ≥ 0,

Rk ≥ 0, Rk + R̄k ≥ 0, k = 0, . . . , n− 1,

and for all k = 0, . . . , n− 1,

(c1) Rk > 0 or [Ck of full rank, Qk+1 > 0], or [Hk of full rank, Qk+1 > 0],

(c2) Rk + R̄k > 0 or [Ck + C̄k of full rank, Qk+1 + Q̄k+1 > 0], or [Hk + H̄k of full rank, Qk+1 > 0].

Conditions (c0)-(c1)-(c2) is slightly weaker than the condition in [ELN13] (see their Theorem 3.1),
where the condition (c0) is strengthened to Rk > 0 and Rk+ R̄k > 0 for all k = 0, . . . , n−1, for ensuring
the existence of an optimal control. We relax this positivity condition with the conditions (c1)-(c2) in
order to include the case of mean-variance problem (see the example at the end of this section). Actually,
as we shall see in Remark 2.4.1, these conditions will guarantee that for Λk, Γk to be determined below,
the function Gµk+1 is convex and coercive on L2(µ;A) for any k = 0, . . . , n−1. For the moment, we derive
after some straightforward calculation the Gateaux derivative of Gµk+1 at α̃ in the direction β ∈ L2(µ;A),
which is given by:

DGµk+1(α̃;β) := lim
ε→0

Gµk+1(α̃+ εβ)−Gµk+1(α̃)
ε

=
∫
Rd
gk+1(x, α̃)β(x)µ(dx)

with

gk+1(x, α̃) = 2α̃(x)ᵀVk + 2α̃ ? µᵀ(
Wk − Vk

)
+ 2(x− µ)ᵀSk + 2µ̄ᵀTk + ρᵀ

k+1(Ck + C̄k).

We shall check later in Remark 2.4.1 that Vk and Wk are positive symmetric matrices, hence invertible.
We thus see that DGµk+1(α̃; .) vanishes for α̃ = α̃∗k(., µ) s.t. gk+1(x, α̃∗k(., µ)) = 0 for all x ∈ Rd, which
gives:

α̃∗k(x, µ) = −V −1
k Sᵀ

k(x− µ̄) − W−1
k T ᵀ

k µ̄ −
1
2W

−1
k (Ck + C̄k)ᵀρk+1 (2.4.14)

and then after some straightforward caculation:

Gµk+1(α̃∗k(., µ)) = −Var(µ)
(
SkV

−1
k Sᵀ

k

)
− µ̄ᵀ

(
TkW

−1
k T ᵀ

k

)
µ̄ − µ̄ᵀTkW

−1
k (Ck + C̄k)ᵀρk+1

− 1
4ρ

ᵀ

k+1(Ck + C̄k)W−1
k (Ck + C̄k)ᵀρk+1.
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Assuming for the moment that α̃∗k(., µ) attains the infimum of Gµk+1 (this is a consequence of the convexity
and coercivity of Gµk+1 shown in Remark 2.4.1), and plugging the above expression in (2.4.10), we see
that wk is like the function µ 7→ Gµk+1(α̃∗k(., µ)), a linear combination of terms in Var(µ)(.), µ̄ᵀ(.)µ̄, and
by identification with the form (2.4.8), we obtain an inductive relation for Λk, Γk, ρk, χk:

Λk = Qk +Bᵀ

kΛk+1Bk +Dᵀ

kΛk+1Dk − Sk(Λk+1)V −1
k (Λk+1)Sᵀ

k(Λk+1)
Γk = (Qk + Q̄k) + (Bk + B̄k)ᵀΓk+1(Bk + B̄k) + (Dk + D̄k)ᵀΛk+1(Dk + D̄k)

− Tk(Λk+1,Γk+1)W−1
k (Λk+1,Γk+1)T ᵀ

k (Λk+1,Γk+1)
ρk = Lk + L̄k +

[
(Bk + B̄k)− (Ck + C̄k)W−1

k (Λk+1,Γk+1)T ᵀ

k (Λk+1,Γk+1)
]
ρk+1

χk = χk+1 − 1
4ρ

ᵀ

k+1(Ck + C̄k)W−1
k (Λk+1,Γk+1)(Ck + C̄k)ᵀρk+1.

(2.4.15)

for all k = 0, . . . , n−1, starting from the terminal condition (2.4.9). The relations for (Λk,Γk) in (2.4.15)
are two algebraic Riccati difference equations, while the equations for ρk and χk are linear equations
once (Λk,Γk) are determined. This system (2.4.15) is the same as the one obtained in [ELN13]. In the
particular mean-variance problem considered at the end of this section, we can obtain explicit closed-form
expressions for the solutions (Λk,Γk, ρk, χk) to this Riccati system. However, in general, there are no
closed-form formulae, and these quantities are simply computed by induction.

In the following remark, we check the issues that have left open up to now.

Remark 2.4.1. Let conditions (c0)-(c1)-(c2) hold. We prove by backward induction that for all k =
1, . . . , n, the matrices Vk−1 = Vk−1(Λk), Wk−1 = Wk−1(Λk,Γk) are symmetric positive, hence invertible,
with (Λk,Γk) given by (2.4.15), together with the nonnegativity of the symmetric matrices Λk, Γk, which
will immediately gives the convexity and coercivity of the function Gµk in (4.5.7) for µ ∈ P2(Rd).

At time k = n, we have Λn = Q ≥ 0, Γn = Q + Q̄ ≥ 0, and thus from (2.4.13), Vn−1 = Vn−1(Λn),
Wn−1 = Wn−1(Λn,Γn) are symmetric positive under (c0)-(c1)-(c2). Now, suppose that the assertion
is true at time k + 1, i.e. Vk, Wk are symmetric positive, and Λk+1, Γk+1 are symmetric nonnegative.
Then, it is clear from (2.4.15) that Λk and Γk are symmetric, and noting that they can be rewritten from
the expression of Vk,Wk, Sk, Tk in (2.4.13) as

Λk = Qk + SkV
−1
k Rk

(
SkV

−1
k

)ᵀ +
(
Bk − Ck(SkV −1

k )ᵀ
]ᵀΛk+1

[
Bk − Ck(SkV −1

k )ᵀ

)
+
(
Dk −Hk(SkV −1

k )ᵀ

)ᵀ

Λk+1

(
Dk −Hk(SkV −1

k )ᵀ

)
Γk = Qk + Q̄k + TkW

−1
k (Rk + R̄k)

(
TkW

−1
k

)ᵀ
+
(
Bk + B̄k − (Ck + C̄k)(TkW−1

k )ᵀ

)ᵀ

Γk+1

(
Bk + B̄k − (Ck + C̄k)(TkW−1

k )ᵀ

)
+
(
Dk + D̄k − (Hk + H̄k)(TkW−1

k )ᵀ

)ᵀ

Γk+1

(
Dk + D̄k − (Hk + H̄k)(TkW−1

k )ᵀ

)
,

it is also clear that they are nonnegative under (c0). Finally from the expression (2.4.13) at time k − 1,
we see that Vk−1 = Vk−1(Λk) and Wk−1 = Wk−1(Λk,Γk) are symmetric positive under (c0)-(c1)-(c2),
which shows the required assertion. �

In view of the above derivation and Remark 2.4.1, it follows that the functions wk, k = 0, . . . , n, given
in the quadratic form (2.4.8) with (Λk,Γk, ρk, χk) as in (2.4.15), satisfy by construction the DPP (2.3.10),
and by the verification theorem, this implies that the value functions are given by vk = wk, while the
optimal control is given in feedback form from (2.4.14) by:

α∗k = α̃k(X∗k ,PX∗
k

) = −V −1
k Sᵀ

k

(
X∗k − E[X∗k ]

)
− W−1

k T ᵀ

kE[X∗k ], (2.4.16)

where X∗k = Xα∗

k is the optimal wealth process with the feedback control α∗. We retrieve the expression
obtained in [ELN13] by four different methods (see e.g. their Theorem 3.1). We can push further our
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calculations to get an explicit form of the optimal control expressed only in terms of the state process
(and not on its mean). Indeed, from the linear dynamics (2.4.5), we have

E[X∗k+1] = (Bk + B̄k)E[X∗k ] + (Ck + C̄k)E[α∗k]

= (Bk + B̄k)E[X∗k ]− (Ck + C̄k)
(
W ᵀ

k

)−1
T ᵀ

kE[X∗k ] = NkE[X∗k ],

with Nk = Bk + B̄k − (Ck + C̄k)W−1
k Tk, for k = 0, . . . , n− 1, and so by induction:

E[X∗k ] = Nk−1 . . . N0E[ξ].

Plugging into (2.4.16), this gives the explicit form of the optimal control as

α∗k = −V −1
k Sᵀ

kX
∗
k +

(
V −1
k Sᵀ

k −W
−1
k T ᵀ

k

)
Nk−1 . . . N0E[ξ], k = 0, . . . , n− 1. (2.4.17)

We observe that the optimal control at any time k does not only depend on the current state X∗k but
also on its the initial state ξ (via its mean).

Example: Mean-variance portfolio selection

The mean-variance discrete-time problem consists in minimizing the cost functional:

J(α) = γ

2 Var(Xα
n )− E[Xα

n ]

= E
[γ

2
(
Xα
n

)2 −Xα
n

]
− γ

2

(
E[Xα

n ]
)2
,

for some γ > 0, with a dynamics for the wealth process (Xα
k ) valued in E = R controlled by the amount

αk valued in A = R invested in the stock at time k (we assume zero interest rate):

Xα
k+1 = Xα

k + αk(b∆ + σ
√

∆εk+1), k = 0, . . . , n− 1, Xα
0 = x0. (2.4.18)

Here x0 ∈ R is the initial capital, b, σ > 0 are some constants, representing respectively the rate of
return and volatility of the stock, ∆ > 0 is a parameter, e.g. ∆ = T/n, arising when considering a time
discretization of a continuous-time model over [0, T ], and (εk) is a sequence of i.i.d. random variables
with distribution N (0, 1). This univariate model fits into the LQ framework (2.4.5)-(2.4.6) with:

Bk = 1, B̄k = 0, Ck = b∆, C̄k = 0, Dk = D̄k = 0, Hk = σ
√

∆, H̄k = 0,
Qk = Q̄k = Lk = L̄k = Rk = R̄k = 0, Q = γ

2 , Q̄ = −γ2 , L = 0, L̄ = −1.

Conditions (c0)-(c1)-(c2) are clearly satisfied, and the Riccati system (2.4.15) for (Λk,Γk, ρk, χk) ∈
R+ × R+ × R× R is written in this case as:

Λk = Λk+1
σ2

σ2+b2∆
Γk = σ2Λk+1

σ2Λk+1+b2∆Γk+1
Γk+1

ρk = σ2Λk+1
b2∆Γk+1+σ2Λk+1

ρk+1

χk = χk+1 − 1
4

b2∆ρ2
k+1

σ2Λk+1+b2∆Γk+1
,

together with the terminal condition Λn = γ
2 , Γn = 0, ρn = −1, χn = 0. This leads by induction to the

explicit form for (Λk,Γk, ρk, χk):
Λk = γ

2

(
σ2

σ2+b2∆

)n−k
,

Γk = 0, ρk = −1

χk = − 1
2γ

((
σ2+b2∆
σ2

)n−k
− 1
)
.

(2.4.19)
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The value functions are then explicitly given by

vk(µ) = γ

2

( σ2

σ2 + b2∆

)n−k
Var(µ)− µ̄− 1

2γ

((σ2 + b2∆
σ2

)n−k
− 1
)
,

for all k = 0, . . . , n, µ ∈ P2(R). Moreover, the optimal control is given in feedback form from (2.4.16) by:

α∗k = α̃k(X∗k ,PX∗
k

) = − b

σ2 + b2∆
(
X∗k − E[X∗k ]

)
+ b

σ2γ

(σ2 + b2∆
σ2

)n−k−1
,

where X∗k = Xα∗

k is the optimal wealth process with the feedback control α∗. It is then explicitly written
from (2.4.17) by

α∗k = − b

σ2 + b2∆

[
X∗k − x0 −

1
γ

(
1 + b2

σ2 ∆
)n]

. (2.4.20)

We then observe that the optimal control at any time k does not only depend on the current wealth
X∗k but also on the initial wealth x0. This expression (2.4.20) of the optimal control is the discrete time
analog of the continuous time optimal control obtained in [LZ00] or [AD10]. Actually, if we view (2.4.18)
as a time discretization (with a time step ∆ = T/n) of a continuous time Black-Scholes model for the
stock price over [0, T ], with a controlled wealth dynamics

dXα
t = αt(bdt+ σdWt), Xα

0 = x0,

then by sending n to infinity (hence ∆ to zero) into (2.4.20), we retrieve the closed-form expression of
the optimal control in [LZ00] or [AD10]:

α∗t = − b

σ2

[
Xα∗

t − x0 −
1
γ

exp
( b2
σ2T

)]
.



Chapter 3

Bellman equation and viscosity
solutions for continuous time
McKean-Vlasov control problem a

Abstract: We consider the stochastic optimal control problem of McKean-Vlasov stochastic differential
equation where the coefficients may depend upon the joint marginal law of the state and control. By
using feedback controls, we reformulate the problem into a deterministic control problem with only the
marginal distribution of the process as controlled state variable, and prove that dynamic programming
principle holds in its general form. Then, by relying on the notion of differentiability with respect to
probability measures recently introduced by P.L. Lions in [Lio12], and a special Itô formula for flows of
probability measures, we derive the (dynamic programming) Bellman equation for mean-field stochastic
control problem, and prove a verification theorem in our McKean-Vlasov framework. We give explicit
solutions to the Bellman equation for the linear quadratic mean-field control problem, with applications
to the mean-variance portfolio selection and a systemic risk model. We also consider a notion of lifted
viscosity solutions for the Bellman equation, and show the viscosity property and uniqueness of the value
function to the McKean-Vlasov control problem. Finally, we discuss the case of McKean-Vlasov control
problem with open-loop controls and compare the associated dynamic programming equation with the
case of feedback controls.

Keywords: McKean-Vlasov SDEs, dynamic programming, Bellman equation, Wasserstein space, vis-
cosity solutions.

a. This chapter is based on a paper written in collaboration with Pham Huyên [PW18]. This paper is published in
ESAIM: Control, Optimisation, Calculus of Variations, 24(1), 2018.
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3.1 Introduction

The problem studied in this paper concerns the optimal control of mean-field SDEs, also known
as McKean-Vlasov equations. This topic is closely related to the mean-field game (MFG) problem as
originally formulated by Lasry and Lions in [LL07] and simultaneously by Huang, Caines and Malhamé
in [HMC06]. It aims at describing equilibrium states of large population of symmetric players (particles)
with mutual interactions of mean-field type, and we refer to [CDL13] for a discussion pointing out the
subtle differences between the notions of equilibrium in MFG and optimal control of McKean-Vlasov
dynamics.

While the analysis of McKean-Vlasov SDEs has a long history with the pioneering works by Kac
[Kac56] and H. McKean [McK67], and later on with papers in the general framework of propagation
of chaos, see e.g. [Szn91], [JMW08], the optimal control of McKean-Vlasov dynamics is a rather new
problem, which attracts an increasing interest since the emergence of the MFG theory and its numerous
applications in several areas outside physics, like economics and finance, biology, social interactions,
networks. Actually, it has been first studied in [AD01] by functional analysis method with a value function
expressed in terms of the Nisio semigroup of operators. More recently, several papers have adopted
the stochastic maximum (also called Pontryagin) principle for characterizing solutions to the controlled
McKean-Vlasov systems in terms of an adjoint backward stochastic differential equation (BSDE) coupled
with a forward SDE: see [AD10], [BDL11], [Yon13] with a state dynamics depending upon moments of the
distribution, and [CD15] for a deep investigation in a more general setting. Alternatively, and although
the dynamics of mean-field SDEs is non-Markovian, it is tempting to use DP method (also called Bellman
principle), which is known to be a powerful tool for standard Markovian stochastic control problem, see
e.g. [FS06], [Pha09], and does not require any convexity assumption usually imposed in Pontryagin
principle. Indeed, mean-field type control problem was tackled by DP in [LP14] and [BFY15] for specific
McKean-Vlasov SDE and cost functional, typically depending only upon statistics like its mean value or
with uncontrolled diffusion coefficient, and especially by assuming the existence at all times of a density
for the marginal distribution of the state process. The key idea in both papers [LP14] and [BFY15] is
to reformulate the stochastic control problem with feedback strategy as a deterministic control problem
involving the density of the marginal distribution, and then to derive a dynamic programming equation
in the space of density functions.

Inspired by the works [BFY15] and [LP14], the objective of this paper is to analyze in detail the
dynamic programming method for the optimal control of mean-field SDEs where the drift, diffusion
coefficients and running costs may depend both upon the joint marginal distribution of the state and of
the control. This additional dependence related to the mean-field interaction on control is natural in the
context of McKean-Vlasov control problem, but has been few considered in the literature, see however
[Yon13] for a dependence only through the moments of the control. Our paper can be viewed as the
continuous time version of the discrete time problem studied recently in [PW16]. By using closed-loop
(also called feedback) controls, we first convert the stochastic optimal control problem into a deterministic
control problem where the marginal distribution is the sole controlled state variable, and we prove that
dynamic programming holds in its general form. The next step for exploiting the DP is to differentiate
functions defined on the space of probability measures. There are various notions of derivatives with
respect to measures which have been developed in connection with the theory of optimal transport and
using Wasserstein metric on the space of probability measures, see e.g. the monographs [AGS08], [Vil08].
For our purpose, we shall use the notion of differentiability introduced by P.L. Lions in his lectures at the
Collège de France [Lio12], see also the helpful redacted notes [Car12]. This notion of derivative is based
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on the lifting of functions defined on the space of square integrable probability measures into functions
defined on the Hilbert space of square integrable random variables distributed according to the “lifted"
probability measure. It has been used in [CD15] for differentiating the Hamiltonian function appearing
in stochastic Pontryagin principle for controlled McKean-Vlasov dynamics. As usual in continuous time
control problem, we need a dynamic differential calculus for deriving the infinitesimal version of the DP,
and shall rely on a special Itô’s chain rule for flows of probability measures as recently developed in
[BLPR17] and [CCD15], and used in [CD14] for deriving the so-called Master equation in MFG. We
are then able to derive the dynamic programming Bellman equation for mean-field stochastic control
problem. This infinite dimensional fully nonlinear partial differential equation (PDE) of second order in
the Wassertein space of probability measures extends previous results in the literature [BFY15], [CD14],
[LP14]: it reduces in particular to the Bellman equation in the space of density functions derived by
Bensoussan, Frehse and Yam [BFY17] when the marginal distribution admits a density, and on the other
hand, we notice that it differs from the Master equation for McKean-Vlasov control problem obtained
by Carmona and Delarue in [CD14] where the value function is a function of both the state and its
marginal distribution, and so with associated PDE in the state space comprising probability measures
but also Euclidian vectors. Following the traditional approach for stochastic control problem, we prove
a verification theorem for the Bellman equation of the McKean-Vlasov control problem, which reduces
to the classical Bellman equation in the case of no mean-field interaction. We apply our verification
theorem to the important class of LQ McKean-Vlasov control problems, addressed e.g. in [Yon13] and
[BSYY16] by maximum principle and adjoint equations, and that we solve by a different approach where
it turns out that derivations in the space of probability measures are quite tractable and lead to explicit
classical solutions for the Bellman equation. We illustrate these results with two examples arising from
finance: the mean-variance portfolio selection and an interbank systemic risk model, and retrieve the
results obtained in [LZ00], [FL16] and [CFS15] by different methods.

In general, there are no classical solutions to the Bellman equation, and we thus introduce a notion
of viscosity solutions for the Bellman equation in the Wasserstein space of probability measures. There
are several definitions of viscosity solutions for Hamilton Jacobi equations of first order in Wasserstein
space and more generally in metric spaces, see e.g. [AGS08], [GNT08], [FK09] or [GŚ15b]. We adopt
the approach in [Lio12], and detailed in [Car12], which consists, after the lifting identification between
measures and random variables, in working in the Hilbert space of square integrable random variables
instead of working in the Wasserstein space of probability measures, in order to use the various tools
developed for viscosity solutions in separable Hilbert spaces, in particular in our context, for second order
Hamilton-Jacobi equations, see [Lio88], [Lio89a], [Lio89b], and the recent monograph [FGS15]. We then
prove the viscosity property of the value function and a comparison principle, hence uniqueness result,
for our Bellman equation associated to the McKean-Vlasov control problem.

Finally, we consider the more general class of open-loop controls instead of (Lipschitz) closed-loop
controls, hence allowing a priori bang-bang controls, which is useful in the applications. We derive the
corresponding dynamic programming equation, and compare with the Bellman equation arising from
McKean-Vlasov control problem with feedback controls.

The rest of the paper is organized as follows. Section 2 describes the McKean-Vlasov control problem
and fix the standing assumptions. In Section 3, we state the dynamic programming principle after the
reformulation into a deterministic control problem, and derive the Bellman equation together with the
proof of the verification theorem. We present in Section 4 the applications to the LQ framework where
explicit solutions are provided with two examples arising from financial models. Section 5 deals with
viscosity solutions for the Bellman equation, and the last section considers the case of open-loop controls.
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3.2 McKean-Vlasov control problem

Let us fix some probability space (Ω,F ,P) on which is defined a n-dimensional Brownian motion
B = (Bt)0≤t≤T , and denote by F = (Ft)0≤t≤T its natural filtration, augmented with an independent
σ-algebra F0 ⊂ F . Given a normed space (E, |.|), recall that P2(E) is Wasserstein space and L2(F0;E)
(= L2(Ω,F0,P;E)) the set of square integrable E-valued random variables on (Ω,F0,P). In the sequel, E
will be either Rd, the state space, or A, the control space, a subset of Rm, or the product space Rd×A. We
shall assume without loss of generality (see Remark 3.2.1 below) that F0 is rich enough to carry E-valued
random variables with any arbitrary square integrable distribution, i.e. P2(E) = {Pξ, ξ ∈ L2(F0;E)}.

Remark 3.2.1. A possible construction of a probability space, which is rich enough to satisfy the above
conditions is the following. We consider a Polish space Ω0, its Borel σ-algebra F0 and let P0 be an
atomless probability measure on (Ω0,F0). We consider another probability space (Ω1,F1,P1) supporting
a n-dimensional Brownian motion B and denote by FB = (FBt ) its natural filtration. By defining Ω =
Ω0 × Ω1, F = F0 ∨ F1, P = P0 ⊗ P1, and F = (Ft) with Ft = FBt ∨ F0, 0 ≤ t ≤ T , we then obtain that
the filtered probability space (Ω,F ,F,P) satisfies the required condition in the above framework. �

We also denote by W2 the 2-Wasserstein distance defined on P2(E) by

W2(µ, µ′) := inf
{(∫

E×E
|x− y|2π(dx, dy)

) 1
2 : π ∈ P2(E × E) with marginals µ and µ′

}
= inf

{(
E|ξ − ξ′|2

) 1
2 : ξ, ξ′ ∈ L2(F0;E) with Pξ = µ, Pξ′ = µ′

}
.

We consider a controlled stochastic dynamics of McKean-Vlasov type for the processXα = (Xα
t )0≤t≤T

valued in Rd:

dXα
t = b(t,Xα

t , αt,P(Xα
t
,αt)

)dt+ σ(t,Xα
t , αt,P(Xα

t
,αt)

)dBt, Xα
0 = X0, (3.2.1)

where X0 ∈ L2(F0;Rd), and the control process α = (αt)0≤t≤T is progressively measurable with values
in a subset A of Rm. The coefficients b and σ are deterministic measurable functions from [0, T ]× Rd ×
A × P2(Rd × A) into Rd and Rd×n respectively. Notice here that the drift and diffusion coefficients b,
σ of the controlled state process do not depend only on the marginal distribution of the state process
Xt at time t but more generally on the joint marginal distribution of the state/control (Xt, αt) at time
t, which represents an additional mean-field feature with respect to classical McKean-Vlasov equations.
We make the following assumption:

(H1) There exists some constant Cb,σ > 0 s.t. for all t ∈ [0, T ], x, x′ ∈ Rd, a, a′ ∈ A, λ, λ′ ∈ P2(Rd×A),

|b(t, x, a, λ)− b(t, x′, a′, λ′)|+ |σ(t, x, a, λ)− σ(t, x′, a′, λ′)|
≤ Cb,σ

[
|x− x′|+ |a− a′|+W2(λ, λ′)

]
,

and ∫ T

0
|b(t, 0, 0, δ(0,0))|2 + |σ(t, 0, 0, δ(0,0))|2dt < ∞.

Condition (H1) ensures that for any control process α, which is square integrable, i.e. E[
∫ T

0 |αt|
2dt]

< ∞, there exists a unique solution Xα to (3.2.1), and moreover this solution satisfies (see e.g. [Szn91]
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or [JMW08]):

E
[

sup
0≤t≤T

|Xα
t |2
]
≤ C

(
1 + E|X0|2 + E

[ ∫ T

0
|αt|2dt

])
< ∞. (3.2.2)

In the sequel of the paper, we stress the dependence of Xα on α if needed, but most often, we shall omit
this dependence and simply write X = Xα when there is no ambiguity.

The cost functional associated to the McKean-Vlasov equation (3.2.1) is

J(α) := E
[ ∫ T

0
f(t,Xt, αt,P(Xt,αt)

)dt+ g(XT ,PXT )
]

(3.2.3)

for a square integrable control process α. The running cost function f is a deterministic real-valued
function on [0, T ]×Rd ×A×P2(Rd ×A) and the terminal gain function g is a deterministic real-valued
function on Rd × P2(Rd). We shall assume the following quadratic condition on f , g:

(H2) There exists some constant Cf,g > 0 s.t. for all t ∈ [0, T ], x ∈ Rd, a ∈ A, µ ∈ P2(Rd), λ ∈
P2(Rd ×A),

|f(t, x, a, λ)|+ |g(x, µ)| ≤ Cf,g
(
1 + |x|2 + |a|2 + ‖µ‖2

2
+ ‖λ‖2

2

)
.

Under Condition (H2), and from (3.2.2), we see that J(α) is well-defined and finite for any square
integrable control process α. The stochastic control problem of interest in this paper is to minimize the
cost functional:

V0 := inf
α∈A

J(α), (3.2.4)

over a set of admissible controls A to be precised later.

3.3 Dynamic programming and Bellman equation

3.3.1 Dynamic programming principle

In this paragraph, we make the standing assumptions (H1)-(H2), and our purpose is to show that
dynamic programming principle holds for problem (3.2.4), which we would like to combine with some
Markov property of the controlled state process. However, notice that the McKean-Vlasov type depen-
dence on the dynamics of the state process rules out the standard Markov property of the controlled
process (Xt)t. Actually, this Markov property can be restored by considering its probability law (P

Xt
)t.

To be more precise and for the sake of definiteness, we shall restrict ourselves to controls α = (αt)0≤t≤T
given in closed loop (or feedback) form:

αt = α̃(t,Xt,PXt ), 0 ≤ t ≤ T, (3.3.1)

for some deterministic measurable function α̃(t, x, µ) defined on [0, T ] × Rd × P2(Rd). We shall discuss
in the last section how one deal more generally with open-loop controls. We denote by Lip([0, T ]×Rd ×
P2(Rd);A) the set of deterministic measurable functions α̃ on [0, T ] × Rd × P2(Rd), valued in A, which
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are Lipschitz in (x, µ), and satisfy a linear growth condition on (x, µ), uniformly on t ∈ [0, T ], i.e. there
exists some positive constant Cα̃ s.t. for all t ∈ [0, T ], x, x′ ∈ Rd, µ, µ′ ∈ P2(Rd),

|α̃(t, x, µ)− α̃(t, x′, µ′)| ≤ Cα̃
(
|x− x′|+W2(µ, µ′)

)
,∫ T

0
|α̃(t, 0, δ0)|2dt < ∞.

Notice that for any α̃ ∈ Lip([0, T ]× Rd × P2(Rd);A), and under the Lipschitz condition in (H1), there
exists a unique solution to the SDE:

dXt = b(t,Xt, α̃(t,Xt,PXt ),P(Xt,α̃(t,Xt,PXt
)))dt

+ σ(t,Xt, α̃(t,Xt,PXt ),P(Xt,α̃(t,Xt,PXt
)))dBt, (3.3.2)

starting from some square integrable random variable, and this solution satisfies the square integrability
condition (3.2.2). The set A of so-called admissible controls α is then defined as the set of control
processes α of feedback form (3.3.1) with α̃ ∈ Lip([0, T ]× Rd × P2(Rd);A). We shall often identify α ∈
A with α̃ in Lip([0, T ] × Rd × P2(Rd);A) via (3.3.1), and we see that any α in A is square-integrable:
E[
∫ T

0 |αt|
2dt] < ∞, by (3.2.2) and Gronwall’s lemma.

Let us now check the flow property of the marginal distribution process P
Xt

= P
Xα
t
for any admissible

control α in A. For any α̃ ∈ L(Rd;A), the set of Lipschitz functions from Rd into A, we denote by Idα̃
the function

Idα̃ : Rd → Rd ×A
x 7→ (x, α̃(x)).

We observe that the joint distribution P(Xt,αt) associated to a feedback control α ∈ A is equal to the
image by Idα̃(t, .,P

Xt
) of the marginal distribution P

Xt
of the controlled state process X, i.e. P(Xt,αt) =

Idα̃(t, .,P
Xt

) ? P
Xt
, recall that ? denotes the standard pushforward of measures: for any α̃ ∈ L(Rd;A),

and µ ∈ P2(Rd):

(Idα̃ ? µ)(B) = µ
(
Idα̃−1(B)

)
, ∀B ∈ B(Rd ×A).

We consider the dynamic version of (3.3.2) starting at time t ∈ [0, T ] from ξ ∈ L2(Ft;Rd), which is then
written as:

Xt,ξ
s = ξ +

∫ s

t

b(r,Xt,ξ
r , α̃(r,Xt,ξ

r ,P
X
t,ξ
r

), Idα̃(r, .,P
X
t,ξ
r

) ? P
X
t,ξ
r

)dr (3.3.3)

+
∫ s

t

σ(r,Xt,ξ
r , α̃(r,Xt,ξ

r , Idα̃(r, .,P
X
t,ξ
r

) ? P
X
t,ξ
r

)dBr, t ≤ s ≤ T.

Existence and uniqueness of a solution to (3.5.9) implies the flow property:

Xt,ξ
s = X

θ,Xt,ξ
θ

s , ∀ 0 ≤ t ≤ θ ≤ s ≤ T, ξ ∈ L2(Ft;Rd). (3.3.4)

Moreover, as pointed out in Remark 3.1 in [BLPR17] (see also the remark following (2.3) in [CCD15]),
the solution to (3.5.9) is also unique in law from which it follows that the law of Xt,ξ depends on ξ only
through its law P

ξ
. Therefore, we can define

Pt,µs := P
X
t,ξ
s

, for 0 ≤ t ≤ s ≤ T, µ = P
ξ
∈ P2(Rd), (3.3.5)
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As a consequence of the flow property (3.3.4), and recalling that P2(Rd) = {Pξ, ξ ∈ L2(F0;Rd)}, it is
clear that we also get the flow property for the marginal distribution process:

Pt,µs = Pθ,P
t,µ
θ

s , ∀ 0 ≤ t ≤ θ ≤ s ≤ T, µ ∈ P2(Rd). (3.3.6)

Recall that the process Xt,ξ, hence also the law process Pt,µ depends on the feedback control α ∈ A, and
if needed, we shall stress the dependence on α by writing Pt,µ,α.

We next show that the initial stochastic control problem can be reduced to a deterministic control
problem. Indeed, by definition of the marginal distribution P

Xt
, recalling that P(Xt,αt) = Idα̃(t, .,P

Xt
) ?

P
Xt
, and Fubini’s theorem, we see that the cost functional can be written for any admissible control α ∈

A as:

J(α) =
∫ T

0
f̂(t,P

Xt
, α̃(t, .,P

Xt
))dt+ ĝ(P

XT
),

where the function f̂ is defined on [0, T ]× P2(Rd)× L(Rd;A) and ĝ is defined on P2(Rd) by

f̂(t, µ, α̃) := < f(t, ., α̃(.), Idα̃ ? µ), µ >, ĝ(µ) := < g(., µ), µ > . (3.3.7)

We have thus transformed the initial control problem (3.2.4) into a deterministic control problem involving
the infinite dimensional controlled marginal distribution process valued in P2(Rd). In view of the flow
property (3.3.6), it is then natural to define the value function

v(t, µ) := inf
α∈A

[ ∫ T

t

f̂(s,Pt,µs , α̃(s, .,Pt,µs ))ds+ ĝ(Pt,µT )
]
, t ∈ [0, T ], µ ∈ P2(Rd), (3.3.8)

so that the initial control problem in (3.2.4) is given by: V0 = v(0,P
X0

). It is clear that v(t, µ) < ∞, and
we shall assume that

v(t, µ) > −∞, ∀ t ∈ [0, T ], µ ∈ P2(Rd). (3.3.9)

Remark 3.3.1. The finiteness condition (3.3.9) can be checked a priori directly from the assumptions
on the model. For example, when f , g, hence f̂ , ĝ, are lower-bounded functions, condition (3.3.9) clearly
holds. Another example is the case when f(t, x, a, λ), and g(x, µ) are lower bounded by a quadratic
function in x, µ, and λ (uniformly in (t, a)) so that

f̂(t, µ, α̃) + ĝ(x, µ) ≥ −C
(
1 + ‖µ‖2

)
, ∀µ ∈ P2(Rd), α̃ ∈ L(Rd;A),

and we are able to derive moment estimates on the controlled process X, uniformly in α:
∥∥Pt,µ

s

∥∥2
2

=
E[|Xt,ξ

s |2] ≤ C(1 + ‖µ‖2
2
), (for µ = P

ξ
) which arises typically from (3.2.2) when A is bounded. Then, it

is clear that (3.3.9) holds true. Otherwise, this finiteness condition can be checked a posteriori from a
verification theorem, see Theorem 3.3.1. �

The DPP for the deterministic control problem (3.3.8) takes the following formulation:

Theorem 3.3.1. (Dynamic Programming Principle)

Under (3.3.9), we have for all 0 ≤ t ≤ θ ≤ T , µ ∈ P2(Rd):

v(t, µ) = inf
α∈A

[ ∫ θ

t

f̂(s,Pt,µs , α̃(s, .,Pt,µs ))ds + v(θ,Pt,µθ )
]
. (3.3.10)
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Proof. In the context of deterministic control problem, the proof of the DPP is elementary and does
not require any measurable selection arguments. For sake of completeness, we provide it. Denote by
J(t, µ, α) the cost functional:

J(t, µ, α) :=
∫ T

t

f̂(s,Pt,µ,αs , α̃(s, .)) + ĝ(Pt,µ,αT ), 0 ≤ t ≤ T, µ ∈ P2(Rd), α ∈ A,

so that v(t, µ) = infα∈A J(t, µ, α), and by w(t, µ) the r.h.s. of (3.3.10) (here we stress the dependence of
the controlled marginal distribution process Pt,µ,α on α). Then,

w(t, µ) = inf
α∈A

[ ∫ θ

t

f̂(s,Pt,µ,αs , α̃(s, .,Pt,µ,αs ))ds+ inf
β∈A

J(θ,Pt,µ,βθ , β)
]

= inf
α∈A

inf
β∈A

[ ∫ θ

t

f̂(s,Pt,µ,αs , α̃(s, .,Pt,µ,αs ))ds+ J(θ,Pt,µ,βθ , β)
]

= inf
α∈A

inf
β∈A

[ ∫ θ

t

f̂(s,Pt,µ,γ[α,β]
s , γ̃[α, β](s, .,Pt,µ,γ[α,β]

s ))ds+ J(θ, P t,µ,γ[α,β]
θ , γ[α, β])

]
where we define γ[α, β] ∈ A by: γ̃[α, β](s, .) = α̃(s, .)10≤s≤θ + β̃(s, .)1θ<s≤T . Now, it is clear that when
α, β run over A, then γ[α, β] also runs over A, and so:

w(t, µ) = inf
γ∈A

[ ∫ θ

t

f̂(s,Pt,µ,γs , γ̃(s, .,Pt,µ,γs ))ds+ J(θ, P t,µ,γθ , γ)
]

= inf
γ∈A

[ ∫ θ

t

f̂(s,Pt,µs , γ̃(s, .,Pt,µs ))ds+
∫ T

θ

f̂(s,Pθ,P
t,µ
θ

s , γ̃(s, .,Pθ,P
t,µ
θ

s )) + ĝ(Pθ,P
t,µ
θ

T )
]

= inf
γ∈A

[ ∫ θ

t

f̂(s,Pt,µs , γ̃(s, .,Pt,µs ))ds+
∫ T

θ

f̂(s,Pt,µs , γ̃(s, .,Pt,µs )) + ĝ(Pt,µT )
]
,

by the flow property (3.3.6) (here we have omitted in the second and third line the dependence of Ps in
γ). This proves the required equality: w(t, µ) = v(t, µ). �

Remark 3.3.2. Problem (3.2.4) includes the case where the cost functional in (3.2.3) is a nonlinear
function of the expected value of the state process, i.e. the running cost functions and the terminal gain
function are in the form: f(t,Xt, αt,P(Xt,αt)

) = f̄(t,Xt,E[Xt], αt), t ∈ [0, T ], g(XT ,PXT ) = ḡ(XT ,E[XT ]),
which arises for example in mean-variance problem (see Section 3.4). It is claimed in [BM14] and [Yon13]
that Bellman optimality principle does not hold, and therefore the problem is time-inconsistent. This
is correct when one takes into account only the state process X (that is its realization), since it is
not Markovian, but as shown in this section, dynamic programming principle holds true whenever we
consider the marginal distribution as state variable. This gives more information and the price to paid is
the infinite-dimensional feature of the marginal distribution state variable. �

3.3.2 Bellman equation

The purpose of this paragraph is to derive from the dynamic programming principle (3.3.10), a partial
differential equation (PDE) for the value function v(t, µ), called Bellman equation.

Notice that under condition (H1) on the coefficients b and σ, we have

E
[ ∫ T

t

∣∣b(s,Xt,ξ
s , α̃(s,Xt,ξ

s ,P
X
t,ξ
s

), Idα̃(s, .,P
X
t,ξ
s

) ? P
X
t,ξ
s

)
∣∣2

+
∣∣σ(s,Xt,ξ

s , α̃(s,Xt,ξ
s ,P

X
t,ξ
s

), Idα̃(s, .,P
X
t,ξ
s

) ? P
X
t,ξ
s

)
∣∣2ds] < ∞.
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Therefore, by relying on Itô’s formula along a flow of probability measures in Proposition 1.3.7, we derive
the Bellman equation associated to the DPP (3.3.10), which turns out to be in the following form: ∂tv + inf

α̃∈L(Rd;A)

[
f̂(t, µ, α̃) + < Lα̃t v(t, µ), µ >

]
= 0, on [0, T )× P2(Rd),

v(T, .) = ĝ, on P2(Rd)
(3.3.11)

where for α̃ ∈ L(Rd;A), ϕ ∈ C2
b (P2(Rd)) and (t, µ) ∈ [0, T ] × P2(Rd), Lα̃t ϕ(µ) ∈ L2

µ(R) is the function:
Rd → R defined by

Lα̃t ϕ(µ)(x) := ∂µϕ(µ)(x).b(t, x, α̃(x), Idα̃ ? µ)

+ 1
2tr
(
∂x∂µϕ(µ)(x)σσᵀ(t, x, α̃(x), Idα̃ ? µ)

)
. (3.3.12)

In the spirit of classical verification theorem for stochastic control of diffusion processes, we prove the
following result in our McKean-Vlasov control framework, which is a consequence of the Itô’s formula for
functions defined on the Wasserstein space.

Proposition 3.3.1. (Verification theorem)

Let w : [0, T ]×P2(Rd) → R be a function in C1,2
b ([0, T ]×P2(Rd)), i.e. w is continuous on [0, T ]×P2(Rd),

w(t, .) ∈ C2
b (P2(Rd)), for all t ∈ [0, T ], and w(., µ) ∈ C1([0, T )). Suppose that w is solution to (3.3.11),

and there exists for all (t, µ) ∈ [0, T ) × P2(Rd) an element α̃∗(t, ., µ) ∈ L(Rd;A) attaining the infimum
in (3.3.11) s.t. the mapping (t, x, µ) 7→ α̃∗(t, x, µ) ∈ Lip([0, T ]×Rd ×P2(Rd);A). Then, w = v, and the
feedback control α∗ ∈ A defined by

α∗t = α̃∗(t,Xt,PXt ), 0 ≤ t < T,

is an optimal control, i.e. V0 = J(α∗).

Proof. Fix (t, µ = Pξ) ∈ [0, T ) × P2(Rd), and consider some arbitrary feedback control α ∈ A
associated to Xt,ξ the solution to the controlled SDE (3.5.9). Under condition (H1), we have the
standard estimate

E
[

sup
t≤s≤T

|Xt,ξ
s |2

]
≤ C

(
1 + E|ξ|2

)
< ∞,

which implies that

E
[ ∫ T

t

∣∣b(s,Xt,ξ
s , α̃(s,Xt,ξ

s ,P
X
t,ξ
s

), Idα̃(s, .,P
X
t,ξ
s

) ? P
X
t,ξ
s

)
∣∣2

+
∣∣σ(s,Xt,ξ

s , α̃(s,Xt,ξ
s ,P

X
t,ξ
s

), Idα̃(s, .,P
X
t,ξ
s

) ? P
X
t,ξ
s

)
∣∣2ds] < ∞.

One can then apply the Itô’s formula (1.3.7) to w(s,P
X
t,ξ
s

) = w(s,Pt,µs ) (with the definition (3.3.5))
between s = t and s = T , and obtain

w(T,Pt,µT ) = w(t, µ) +
∫ T

t

∂w

∂t
(s,Pt,µs ) +

E
[
∂µw(s,Pt,µs )(Xt,ξ

s ).b(s,Xt,ξ
s , α̃(s,Xt,ξ

s ,Pt,µs ), Idα̃(s, .,Pt,µs ) ? Pt,µs )

+ 1
2tr
(
∂x∂µw(s,Pt,µs )(Xt,ξ

s )σsσᵀ
s(s,Xt,ξ

s , α̃(s,Xt,ξ
s ,Pt,µs ), Idα̃(s, .,Pt,µs ) ? Pt,µs )

)]
ds

= w(t, µ) +
∫ T

t

∂w

∂t
(s,Pt,µs ) + < Lα̃(s,.,Pt,µs )

s w(s,Pt,µs ),Pt,µs > ds, (3.3.13)
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where we used in the second equality the fact that Pt,µs is the distribution of Xt,ξ
s for s ∈ [t, T ]. Since x

7→ α̃(s, .,Pt,µs ) ∈ L(Rd;A) for s ∈ [t, T ], we deduce from the Bellman equation satisfied by w and (3.3.13)
that

ĝ(Pt,µT ) ≥ w(t, µ)−
∫ T

t

f̂(s,Pt,µs , α̃(s, .,Pt,µs ))ds.

Since α is arbitrary in A, this shows that w(t, µ) ≤ v(t, µ).

In the final step, let us apply the same Itô’s argument (3.3.13) with the feedback control α∗ ∈ A
associated with the fonction α̃∗ ∈ Lip([0, T ]×Rd ×P2(Rd);A). Since α̃ attains the infimum in (3.3.11),
we thus get

ĝ(Pt,µT ) = w(t, µ)−
∫ T

t

f̂(s,Pt,µs , α̃∗(s, .,Pt,µs ))ds,

which shows that w(t, µ) = J(t, µ, α∗) (≥ v(t, µ)), and therefore gives the required result: v(t, µ) = w(t, µ)
= J(t, µ, α∗). �

We shall apply the verification theorem in the next section, where we can derive explicit (smooth)
solutions to the Bellman equation (3.3.11) in some class of examples, but first discuss below the case
when there are no mean-field interaction, and the structure of the optimal control (when it exists).

Remark 3.3.3. (No mean-field interaction)

We consider the classical case of stochastic control where there is no mean-field interaction in the dynamics
of the state process, i.e. b(x, a) and σ(x, a) do not depend on µ, λ, as well as in the cost functions f(x, a)
and g(x). In this special case, let us show how the verification Theorem 3.3.1 is reduced to the classical
verification result for smooth functions on [0, T ]× Rd, see e.g. [FS06] or [Pha09].

Suppose that there exists a function u in C1,2([0, T ]× Rd) solution to the standard HJB equation{
∂tu+ inf

a∈A

[
f(t, x, a) + Lat u(t, x)

]
= 0, on [0, T )× Rd,

u(T, .) = g on Rd.
(3.3.14)

where Lat is the second-order differential operator

Lat u(t, x) = ∂xu(t, x).b(t, x, a) + 1
2tr
(
∂2
xxu(t, x)σσᵀ(t, x, a)

)
,

and that for all (t, x) ∈ [0, T ) × Rd, there exists â(t, x) attaining the argmin in (3.3.14), s.t. the map x
7→ â(t, x) is Lipschitz on Rd.

Let us then consider the function defined on [0, T ]× P2(Rd) by

w(t, µ) = < u(t, .), µ > =
∫
Rd
u(t, x)µ(dx).

The lifted function of w is thus equal to W(t,X) = E[u(t,X)] with Fréchet derivative (with respect to X
∈ L2(F0,P)): [DW](t,X)(Y ) = E[∂xu(t,X).Y ]. Assuming that the time derivative of u w.r.t. t satisfies
a quadratic growth condition in x, the first derivative of u w.r.t. x satisfies a linear growth condition,
and the second derivative of u w.r.t. x is bounded, this shows that w lies in C1,2

b ([0, T ]× P2(Rd)) with

∂tw(t, µ) = < ∂tu(t, .), µ >, ∂µw(t, µ) = ∂xu(t, .), ∂x∂µv(t, µ) = ∂2
xxu(t, .).



3.3. Dynamic programming and Bellman equation 51

Recalling the definition (3.3.12) of Lα̃t w(t, µ), we then get for any fixed (t, µ) ∈ [0, T )× P2(Rd):

∂tw(t, µ) + inf
α̃∈L(Rd;A)

[
f̂(t, µ, α̃) + < Lα̃t w(t, µ), µ >

]
= inf

α̃∈L(Rd;A)

∫
Rd

[
∂tu(t, x) + f(t, x, α̃(x)) + L

α̃(x)
t u(t, x)

]
µ(dx)

=
∫
Rd

inf
a∈A

[
∂tu(t, x) + f(t, x, a) + Lat u(t, x)

]
µ(dx). (3.3.15)

Indeed, the inequality ≥ in (3.3.15) is clear since α̃(x) lies in A for all x ∈ Rd, and α̃ ∈ L(Rd;A).
Conversely, by taking â(t, x) which attains the infimum in (3.3.14), and since the map x ∈ Rd 7→ â(t, x)
is Lipschitz, we then have

∫
Rd

inf
a∈A

[
∂tu(t, x) + f(t, x, a) + Lat u(t, x)

]
µ(dx)

=
∫
Rd

[
∂tu(t, x) + f(t, x, â(t, x)) + L

â(t,x)
t u(t, x)

]
µ(dx)

≥ inf
α̃∈L(Rd;A)

∫
Rd

[
∂tu(t, x) + f(t, x, α̃(x)) + L

α̃(x)
t u(t, x)

]
µ(dx),

which thus shows the equality (3.3.15). Since u is solution to (3.3.14), this proves that w is solution to
the Bellman equation (3.3.11), α̃∗(t, x) = â(t, x) is an optimal feedback control, and therefore, the value
function is equal to v(t, µ) = < u(t, .), µ >. �

Remark 3.3.4. (Form of the optimal control)

Consider the case where the coefficients of the McKean-Vlasov SDE and of the running costs do not depend
upon the law of the control, hence in the form: b(t,Xt, αt,PXt ), σ(t,Xt, αt,PXt ), f(t,Xt, αt,PXt ), and
denote by

H(t, x, a, µ, q,M) = f(t, x, a, µ) + q.b(t, x, a, µ) + 1
2tr
(
Mσσᵀ(t, x, a, µ)

)
(3.3.16)

for (t, x, a, µ, q,M) ∈ [0, T ]×Rd×A×P2(Rd)×Rd×Sd, the Hamiltonian function related to the Bellman
equation (3.3.11) rewritten as:

∂tw(t, µ) + inf
α̃∈L(Rd;A)

∫
Rd

H
(
t, x, α̃(x), µ, ∂µw(t, µ)(x), ∂x∂µw(t, µ)(x)

)
µ(dx) = 0, (3.3.17)

for (t, µ) ∈ [0, T )×P2(Rd). Under suitable convexity conditions on the function a ∈ A 7→H(t, x, a, µ, q,M),
there exists a minimizer, say â(t, x, µ, q,M), to infa∈AH(t, x, a, µ, q,M). Then, an optimal control α̃∗
in the statement of the verification theorem 3.3.1, obtained from the minimization of the (infinite di-
mensional) Hamiltonian in (3.3.17), is written merely as α̃∗(t, x, µ) = â(t, x, µ, ∂µw(µ)(x), ∂x∂µw(µ)(x)),
which extends the form discuss in Remark 3.3.3, and says that it depends locally upon the derivatives of
the value function. In the more general case when the coefficients depend upon the law of the control,
we shall see how one can derive the form of the optimal control for the linear-quadratic problem. �
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3.4 Application: linear-quadratic McKean-Vlasov control pro-
blem

We consider a multivariate linear McKean-Vlasov controlled dynamics with coefficients given by

b(t, x, µ, a, λ) = b0(t) +B(t)x+ B̄(t)µ̄+ C(t)a+ C̄(t)λ̄,
σ(t, x, µ, a, λ) = σ0(t) +D(t)x+ D̄(t)µ̄+ F (t)a+ F̄ (t)λ̄, (3.4.1)

for (t, x, µ, a, λ) ∈ [0, T ]× Rd × P2(Rd)× Rm × P2(Rm), where we set

µ̄ :=
∫
Rd
xµ(dx), λ̄ :=

∫
Rm

aλ(da).

Here B, B̄, D, D̄ are deterministic continuous functions valued in Rd×d, and C, C̄, F , F̄ are deterministic
continuous functions valued in Rd×m, and b0, σ0 are deterministic continuous function valued in Rd. The
quadratic cost functions are given by

f(t, x, µ, a, λ) = xᵀQ2(t)x+ µ̄ᵀQ̄2(t)µ̄+ aᵀR2(t)a+ λ̄ᵀR̄2(t)λ̄+ 2xᵀM2(t)a
+ 2µ̄ᵀM̄2(t)λ̄+ q1(t).x+ q̄1(t).µ̄+ r1(t).a+ r̄1(t).λ̄,

g(x, µ) = xᵀP2x+ µ̄ᵀP̄2µ̄+ p1.x+ p̄1.µ̄,

(3.4.2)

where Q2, Q̄2 are deterministic continuous functions, P2, P̄2 are constants valued in Rd×d, R2, R̄2 are
deterministic continuous functions valued in Rm×m,M2, M̄2 are deterministic continuous functions valued
in Rd×m, q1, q̄1 are deterministic continuous functions, p1, p̄1 are constants valued in Rd, and r1, r̄1 are
deterministic continuous functions valued in Rm. Since f and g are real-valued, we may assume w.l.o.g.
that all the matrices Q2, Q̄2, R2, R̄2, P2, P̄2 are symmetric. This linear quadratic (LQ) framework is
similar to the one in [Yon13], and extends the one considered in [BSYY16] where there is no dependence
on the law of the control, and the diffusion coefficient is deterministic.

The functions f̂ and ĝ defined in (3.3.7) are then given by

f̂(t, µ, α̃) = Var(µ)(Q2(t)) + µ̄ᵀ(Q2(t) + Q̄2(t))µ̄
+ Var(α̃ ? µ)(R2(t)) + α̃ ? µ

ᵀ(R2(t) + R̄2(t))α̃ ? µ
+ 2µ̄ᵀ(M2(t) + M̄2(t))α̃ ? µ + 2

∫
Rd(x− µ̄)ᵀM2(t)α̃(x)µ(dx)

+
(
q1(t) + q̄1(t)

)
.µ̄+

(
r1(t) + r̄1(t)

)
.α̃ ? µ

ĝ(µ) = Var(µ)(P2) + µ̄ᵀ(P2 + P̄2)µ̄+ (p1 + p̄1).µ̄,

(3.4.3)

for any (t, µ) ∈ [0, T )× P2(Rd), α̃ ∈ L(Rd;A) (here with A = Rm), where we set for any Λ in Sd (resp.
in Sm), and µ ∈ P2(Rd) (resp. P2(Rm)):

µ̄2(Λ) :=
∫
xᵀΛxµ(dx), Var(µ)(Λ) := µ̄2(Λ)− µ̄ᵀΛµ̄.

We look for a value function solution to the Bellman equation (3.3.11) in the form

w(t, µ) = Var(µ)(Λ(t)) + µ̄ᵀΓ(t)µ̄+ γ(t).µ̄+ χ(t), (3.4.4)

for some functions Λ, Γ ∈ C1([0, T ];Sd), γ ∈ C1([0, T ];Rd), and χ ∈ C1([0, T ];R). The lifted function of
w in (3.4.4) is given by

W(t,X) = E[XᵀΛ(t)X] + E[X]ᵀ(Γ(t)− Λ(t))E[X] + γ(t).E[X] + χ(t),
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for X ∈ L2(F0;Rd). By computing for all Y ∈ L2(F0;Rd) the difference

W(t,X + Y )−W(t,X) = E
[(

2XᵀΛ(t) + 2E[X]ᵀ(Γ(t)− Λ(t)) + γ(t)
)
.Y
]

+ o(‖Y ‖
L2 ),

we see that W is Fréchet differentiable (w.r.t. X) with [DW](t,X)(Y ) = E
[(

2XᵀΛ(t) + 2E[X]ᵀ(Γ(t) −
Λ(t)) + γ(t)

)
.Y
]
. This shows that w lies in C1,2

b ([0, T ]× P2(Rd)) with

∂tw(t, µ) = Var(µ)(Λ′(t)) + µ̄ᵀΓ′(t)µ̄+ γ′(t)µ̄+ χ′(t),
∂µw(t, µ)(x) = 2xᵀΛ(t) + 2µ̄ᵀ(Γ(t)− Λ(t)) + γ(t),

∂x∂µw(t, µ)(x) = 2Λ(t).

Together with the quadratic expression (3.4.3) of f̂ , ĝ, we then see that w satisfies the Bellman equation
(3.3.11) iff

Var(µ)(Λ(T )) + µ̄ᵀΓ(T )µ̄+ γ(T ).µ̄+ χ(T )
= Var(µ)(P2) + µ̄ᵀ(P2 + P̄2)µ̄+ (p1 + p̄1).µ̄, (3.4.5)

holds for all µ ∈ P2(Rd), and

Var(µ)
(
Λ′(t) +Q2(t) +D(t)ᵀΛ(t)D(t) + Λ(t)B(t) +B(t)ᵀΛ(t)

)
+ inf
α̃∈L(Rd,A)

Gµt (α̃)

+ µ̄ᵀ

(
Γ′(t) +Q2(t) + Q̄2(t) + (D(t) + D̄(t))ᵀΛ(t)(D(t) + D̄(t))

+ Γ(t)(B(t) + B̄(t)) + (B(t) + B̄(t))ᵀΓ(t)
)
µ̄

+
(
q1(t) + q̄1(t) + γ(t)(B(t) + B̄(t)) + 2σᵀ

0Λ(t)(D(t) + D̄(t)) + 2b0(t)ᵀΓ(t)
)
µ̄

+ χ′(t) + γ(t).b0(t) + σ0(t)ᵀΛ(t)b0(t)
= 0, (3.4.6)

holds for all t ∈ [0, T ), µ ∈ P2(Rd), where the function Gµt : L2
µ(A) ⊃ L(Rd;A) → R is defined by

Gµt (α̃) = Var(α̃ ? µ)(Ut) + α̃ ? µ
ᵀ
Vtα̃ ? µ + 2

∫
Rd

(x− µ̄)ᵀStα̃(x)µ(dx)

+ 2µ̄ᵀZtα̃ ? µ + Yt.α̃ ? µ, (3.4.7)

and we set Ut = U(t,Λ(t)), Vt = V (t,Λ(t)), St = S(t,Λ(t)), Zt = Z(t,Λ(t),Γ(t)), Yt = Y (t,Γ(t), γ(t))
with

U(t,Λ(t)) = F (t)ᵀΛ(t)F (t) +R2(t),
V (t,Λ(t)) = (F (t) + F̄ (t))ᵀΛ(t)(F (t) + F̄ (t)) +R2(t) + R̄2(t),
S(t,Λ(t)) = D(t)ᵀΛ(t)F (t) + Λ(t)C(t) +M2(t),

Z(t,Λ(t),Γ(t)) = (D(t) + D̄(t))ᵀΛ(t)(F (t) + F̄ (t)) + Γ(t)(C(t) + C̄(t)) +M2(t) + M̄2(t)
Y (t,Γ(t), γ(t)) =

(
C(t) + C̄(t)

)ᵀ
γ(t) + r1(t) + r̄1(t) + 2

(
F (t) + F̄ (t)

)ᵀΛ(t)σ0(t).
(3.4.8)

We now search for the infimum of the function Gµt . After some straightforward calculation, we derive the
Gateaux derivative of Gµt at α̃ in the direction β ∈ L2

µ(A), which is given by:

DGµt (α̃, β) := lim
ε→0

Gµt (α̃+ εβ)−Gµt (α̃)
ε

=
∫
Rd
ġµt (x, α̃).β(x)µ(dx)
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with

ġµt (x, α̃) = 2Utα̃+ 2(Vt − Ut)α̃ ? µ+ 2Sᵀ

t (x− µ̄) + 2Zᵀ

t µ̄+ Yt.

Suppose that the symmetric matrices Ut and Vt in (3.4.8) are positive, hence invertible (this will be
discussed later on). Then, the function Gµt is convex and coercive on the Hilbert space L2

µ(A), and
attains its infimum at some α̃ = α̃∗(t, ., µ) s.t. DGµt (α̃; .) vanishes, i.e. ġµt (x, α̃∗(t, ., µ)) = 0 for all x ∈
Rd, which gives:

α̃∗(t, x, µ) = −U−1
t Sᵀ

t (x− µ̄) − V −1
t Zᵀ

t µ̄ −
1
2V
−1
t Yt. (3.4.9)

It is clear that α̃∗(t, ., µ) lies in L(Rd;A), and so after some straightforward caculation:

inf
α̃∈L(Rd,A)

Gµt (α̃) = Gµt (α̃∗(t, ., µ)) = −Var(µ)
(
StU

−1
t Sᵀ

t

)
− µ̄ᵀ

(
ZtV

−1
t Zᵀ

t

)
µ̄

− Y ᵀ

t V
−1
t Zᵀ

t µ̄ −
1
4Y

ᵀ

t V
−1
t Yt.

Plugging the above expression in (3.4.6), we observe that the relation (3.4.5)-(3.4.6), hence the Bellman
equation, is satisfied by identifying the terms in Var(µ)(.), µ̄ᵀ(.)µ̄, µ̄, which leads to the system of ordinary
differential equations (ODEs) for (Λ,Γ, γ, χ):

Λ′(t) +Q2(t) +D(t)ᵀΛ(t)D(t) + Λ(t)B(t) +B(t)ᵀΛ(t)
−S(t,Λ(t))U(t,Λ(t))−1S(t,Λ(t))ᵀ = 0,

Λ(T ) = P2,

(3.4.10)


Γ′(t) +Q2(t) + Q̄2(t) + (D(t) + D̄(t))ᵀΛ(t)(D(t) + D̄(t)) + Γ(t)(B(t) + B̄(t))

+ (B(t) + B̄(t))ᵀΓ(t)− Z(t,Λ(t),Γ(t))V (t,Λ(t))−1Z(t,Λ(t),Γ(t))ᵀ = 0,
Γ(T ) = P2 + P̄2,

(3.4.11)


γ′(t) +

(
B(t) + B̄(t))ᵀγ(t)− Z(t,Λ(t),Γ(t))V (t,Λ(t))−1Y (t,Γ(t), γ(t))

+ q1(t) + q̄1(t) + 2
(
D(t) + D̄(t)

)ᵀΛ(t)σ0(t) + 2Γ(t)b0(t) = 0,
γ(T ) = p1 + p̄1

(3.4.12)


χ′(t)− 1

4Y (t,Γ(t), γ(t))ᵀV (t,Λ(t))−1Y (t,Γ(t), γ(t))
+ γ(t).b0(t) + σ0(t)ᵀΛ(t)σ0(t) = 0,

χ(T ) = 0.
(3.4.13)

Therefore, the resolution of the Bellman equation in the LQ framework is reduced to the resolution
of the Riccati equations (3.4.10) and (3.4.11) for Λ and Γ, and then given (Λ,Γ), to the resolution
of the linear ODEs (3.4.12) and (3.4.13) for γ and χ. Suppose that there exists a solution (Λ,Γ) ∈
C1([0, T ];Sd)× C1([0, T ];Sd) to (3.4.10)-(3.4.11) s.t. (Ut, Vt) in (3.4.8) lies in Sm>+ × Sm>+ for all t ∈ [0, T ]
(see Remark 3.4.1). Then, the above calculations are justified a posteriori, and by noting also that the
mapping (t, x, µ) 7→ α̃∗(t, x, µ) ∈ Lip([0, T ]×Rd×P2(Rd);A), we deduce by the verification theorem that
the value function v is equal to w in (3.4.4) with (Λ,Γ, γ, χ) solution to (3.4.10)-(3.4.11)-(3.4.12)-(3.4.13).
Moreover, the optimal control is given in feedback form from (3.4.9) by

α∗t = α̃∗(t,X∗t ,PX∗
t

) = −U−1
t Sᵀ

t (X∗t − E[X∗t ]) − V −1
t Zᵀ

t E[X∗t ] − 1
2V
−1
t Yt, (3.4.14)

where X∗ is the state process controlled by α∗.
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Remark 3.4.1. In the case where M2 = M̄2 = 0 (i.e. no crossing term between the state and the
control in the quadratic cost function f), it is shown in Proposition 3.1 and 3.2 in [Yon13] that under the
condition

P2 ≥ 0, P2 + P̄2 ≥ 0, Q2(t) ≥ 0, Q2(t) + Q̄2(t) ≥ 0,
R2(t) ≥ δIm, R2(t) + R̄2(t) ≥ δIm

(3.4.15)

for some δ > 0, the Riccati equations (3.4.10)-(3.4.11) admit unique solutions (Λ,Γ) ∈ C1([0, T ]; Sd+) ×
C1([0, T ];Sd+), and then Ut, Vt in (3.4.8) are symmetric positive definite matrices, i.e. lie in Sm>+ for all t ∈
[0, T ]. In this case, we retrieve the expressions (3.4.14) of the optimal control in feedback form obtained
in [Yon13].

We shall see in the next two paragraphs, some other examples arising from finance with explicit
solutions where condition (3.4.15) is not satisfied. �

3.4.1 Mean-variance portfolio selection

The mean-variance problem consists in minimizing a cost functional of the form:

J(α) = η

2Var(XT )− E[XT ]

= E
[η
2
(
XT

)2 −XT

]
− η

2

(
E[XT ]

)2

for some η > 0, with a dynamics for the wealth process X = (Xα) controlled by the amount αt valued
in A = Rd invested in d risky stocks at time t:

dXt = r(t)Xtdt+ αᵀ

t

(
ρ(t)dt+ ϑ(t)dBt), X0 = x0 ∈ R,

where r is the interest rate, ρ and ϑ > 0 are the excess rate of return (w.r.t. the interest rate) valued in Rd

and volatility of the stock price valued in Rd×d, and we denote by Σ(t) = ϑ(t)ϑ(t)ᵀ, called the covariance
matrix of the stock price, and these deterministic functions are assumed to be continuous. This model fits
into the LQ framework (3.4.1)-(3.4.2) of the McKean-Vlasov problem, with a linear controlled dynamics
that does not have mean-field interaction:

b0 = 0, B(t) = r(t), B̄ = 0, C(t) = ρ(t), C̄ = 0,
σ0 = D = D̄ = 0, F (t) = ϑ(t), F̄ = 0,
Q2 = Q̄2 = M2 = M̄2 = R2 = R̄2 = 0,

q1 = q̄1 = r1 = r̄1 = 0, P2 = η

2 , P̄2 = −η2 , p1 = 0, p̄1 = −1.

The Riccati system (3.4.10)-(3.4.11)-(3.4.12)-(3.4.13) for (Λ(t),Γ(t), γ(t), χ(t)) is written in this case as
Λ′(t)−

(
ρ(t)ᵀΣ(t)−1ρ(t)− 2r(t)

)
Λ(t) = 0, Λ(T ) = η

2 ,

Γ′(t)− ρ(t)ᵀΣ(t)−1ρ(t)Γ2(t)
Λ(t) + 2r(t)Γ(t) = 0, Γ(T ) = 0,

γ′(t) + r(t)γ(t)− ρ(t)ᵀΣ(t)−1ρ(t) Γ(t)
Λ(t) = 0, γ(T ) = −1,

χ′(t)− ρ(t)ᵀΣ(t)−1ρ(t) γ
2(t)

4Λ(t) = 0, χ(T ) = 0,

(3.4.16)

whose explicit solution is given by
Λ(t) = η

2 exp
( ∫ T

t
2r(s)− ρ(s)ᵀΣ(s)−1ρ(s) ds

)
,

Γ(t) = 0,
γ(t) = − exp

( ∫ T
t
r(s)ds

)
χ(t) = 1

4 exp
( ∫ T

t
ρ(s)ᵀΣ(s)−1ρ(s)ds

)
− 1

4 .

(3.4.17)
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Although the condition (3.4.15) is not satisfied, we see that (Ut, Vt) in (3.4.8), which are here explicitly
given by Ut = Vt = Σ(t)Λ(t), are positive definite, and this validates our calculations for the verification
theorem. Notice also that the functions (Zt, Yt) in (3.4.8) are explicitly given by Zt = 0, Yt = ρ(t)γ(t).
Therefore, the optimal control is given in feedback form from (3.4.14) by

α∗t = α̃∗(t,X∗t ,PX∗
t

)

= −Σ(t)−1ρ(t)(X∗t − E[X∗t ]) + 1
η

Σ(t)−1ρ(t) exp
(∫ T

t

ρ(s)ᵀΣ(s)−1ρ(s)− r(s) ds
)
,(3.4.18)

where X∗ is the optimal wealth process with portfolio strategy α∗, hence with mean process governed by

dE[X∗t ] = r(t)E[X∗t ]dt + 1
η
ρ(t)ᵀΣ(t)−1ρ(t) exp

(∫ T

t

ρ(s)ᵀΣ(s)−1ρ(s)− r(s) ds
)
dt,

and explicitly given by

E[X∗t ] = x0e

∫ t
0
r(s)ds + 1

η
exp

(∫ T

t

ρ(s)ᵀΣ(s)−1ρ(s)− r(s) ds
)(

exp
( ∫ t

0
ρ(s)ᵀΣ(s)−1ρ(s)ds

)
− 1
)
.

Plugging into (3.4.18), we get the optimal control for the mean-variance portfolio problem

α∗t = Σ(t)−1ρ(t)
[
x0e

∫ t
0
r(s)ds + 1

η
exp

(∫ T

0
ρ(s)ᵀΣ(s)−1ρ(s)ds−

∫ T

t

r(s)ds
)
−X∗t

]
,

and retrieve the closed-form expression of the optimal control found in [LZ00], [AD10] or [FL16] by
different approaches.

3.4.2 Interbank systemic risk model

We consider a model of interbank borrowing and lending studied in [CFS15] where the log-monetary
reserve of each bank in the asymptotics when the number of banks tend to infinity, is governed by the
McKean-Vlasov equation:

dXt =
[
κ(E[Xt]−Xt) + αt]dt+ σdBt, X0 = x0 ∈ R. (3.4.19)

Here, κ ≥ 0 is the rate of mean-reversion in the interaction from borrowing and lending between the
banks, and σ > 0 is the volatility coefficient of the bank reserve, assumed to be constant. Moreover, all
banks can control their rate of borrowing/lending to a central bank with the same policy α in order to
minimize a cost functional of the form

J(α) = E
[ ∫ T

0

(1
2α

2
t − qαt(E[Xt]−Xt) + η

2 (E[Xt]−Xt)2
)
dt+ c

2(E[XT ]−XT )2
]
,

where q > 0 is a positive parameter for the incentive to borrowing (αt > 0) or lending (αt < 0), and η >
0, c > 0 are positive parameters for penalizing departure from the average. This model fits into the LQ
McKean-Vlasov framework (3.4.1)-(3.4.2) with d = m = 1 and

b0 = 0, B = −κ, B̄ = κ, C = 1, C̄ = 0,
σ0 = σ, D = D̄ = F = F̄ = 0,

Q2 = η

2 , Q̄2 = −η2 , R2 = 1
2 , R̄2 = 0, M2 = q

2 , M̄2 = −q2 ,

q1 = q̄1 = r1 = r̄1 = 0, P2 = c

2 , P̄2 = − c2 , p1 = p̄1 = 0.
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The Riccati system (3.4.10)-(3.4.11)-(3.4.12)-(3.4.13) for (Λ(t),Γ(t), γ(t), χ(t)) is written in this case as
Λ′(t)− 2(κ+ q)Λ(t)− 2Λ2(t)− 1

2 (q2 − η) = 0, Λ(T ) = c
2 ,

Γ′(t)− 2Γ2(t) = 0, Γ(T ) = 0,
γ′(t)− 2γ(t)Γ(t) = 0, γ(T ) = 0,

χ′(t) + σ2Λ(t)− 1
2γ

2(t) = 0, χ(T ) = 0,

(3.4.20)

whose explicit solution is given by Γ = γ = 0, and

χ(t) = σ2
∫ T

t

Λ(s)ds,

Λ(t) = 1
2

(q − η2)
(
e(δ+−δ−)(T−t) − 1

)
− c
(
δ+e(δ+−δ−)(T−t) − δ−

)
δ−e(δ+−δ−)(T−t) − δ+

)
− ce(δ+−δ−)(T−t) − 1

,

where we set

δ± = −(κ+ q)±
√

(κ+ q)2 + (η − q2).

Moreover, the functions (Ut, Vt, Zt, Yt) in (3.4.8) are explicitly given by: Ut = Vt = 1
2 (hence > 0), St =

Λ(t) + q
2 , Zt = Γ(t) = 0, Yt = γ(t) = 0. Therefore, the optimal control is given in feedback form from

(3.4.14) by

α∗t = α̃∗(t,X∗t ,PX∗
t

) = −(2Λ(t) + q)(X∗t − E[X∗t ]), (3.4.21)

where X∗ is the optimal log-monetary reserve controlled by the rate of borrowing/lending α∗. We then
retrieve the expression found in [CFS15] by sending the number of banks N to infinity in their formula for
the optimal control. Actually, from (3.4.19), we have dE[X∗t ] = E[α∗t ]dt, while E[α∗t ] = 0 from (3.4.21).
We conclude that the optimal rate of borrowing/lending is equal to

α∗t = −(2Λ(t) + q)(X∗t − x0), 0 ≤ t ≤ T.

3.5 Viscosity solutions

In general, there are no smooth solutions to the HJB equation, and in the spirit of HJB equation
for standard stochastic control, we shall introduce in this section a notion of viscosity solutions for
the Bellman equation (3.3.11) in the Wasserstein space of probability measures P2(Rd). We adopt
the approach in [Lio12], and detailed in [Car12], which consists, after the lifting identification between
measures and random variables, in working in the Hilbert space L2(F0;Rd) instead of working in the
Wasserstein space P2(Rd), in order to use the various tools developed for viscosity solutions in Hilbert
spaces, in particular in our context, for second order Hamilton-Jacobi equations.

Let us rewrite the the Bellman equation (3.3.11) in the “Hamiltonian" form: −
∂v

∂t
+H(t, µ, ∂µv(t, µ), ∂x∂µv(t, µ)) = 0 on [0, T )× P2(Rd),

v(T, .) = ĝ on P2(Rd)
(3.5.1)

where H is the function defined by

H(t, µ, p,Γ) = − inf
α̃∈L(Rd;A)

[
< f(t, ., α̃(.), Idα̃ ? µ) + p(.).b(t, ., α̃(.), Idα̃ ? µ)

+ 1
2tr
(
Γ(.)σσᵀ(t, ., α̃(.), Idα̃ ? µ)

)
, µ >

]
, (3.5.2)
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for (t, µ) ∈ [0, T ]× P2(Rd), (p,Γ) ∈ L2
µ(Rd)× L∞µ (Sd).

We identify v and its lifted version by using the same notation v(t,L(ξ)) = v(t, ξ), and then consider
the “lifted" Bellman equation in [0, T ]× L2(F0;Rd): −

∂v

∂t
+H(t, ξ,Dv(t, ξ), D2v(t, ξ)) = 0 on [0, T )× L2(F0;Rd),

v(T, ξ) = Ĝ(ξ) := E[g(ξ,P
ξ
)], ξ ∈ L2(F0;Rd),

(3.5.3)

where H : [0, T ]× L2(F0;Rd)× L2(F0;Rd)× S(L2(F0;Rd)) → R is defined by

H(t, ξ, P,Q) = − inf
α̃∈L(Rd;A)

{
E
[
f(t, ξ, α̃(ξ), Idα̃ ? P

ξ
) + P.b(t, ξ, α̃(ξ), Idα̃ ? P

ξ
) (3.5.4)

+ 1
2Q
(
σ(t, ξ, α̃(ξ), Idα̃ ? P

ξ
)N
)
.
(
σ(t, ξ, α̃(ξ), Idα̃ ? P

ξ
)N
)]}

,

with N ∈ L2(F0;Rn) of zero mean, unit variance, and independent of ξ. Observe that when v(t, µ) and
v(t, ξ) are smooth functions respectively in [0, T ]× P2(Rd) and [0, T ]× L2(F0;Rd), linked by the lifting
relation v(t, ξ) = v(t,P

ξ
), then from the relations (1.2.1)-(1.2.2), v(t, µ) is solution to the "lifted" Bellman

equation (3.5.1) iff v(t, ξ) with L(ξ) = µ is solution to the Bellman equation (3.5.3). Let us mention that
the lifted Bellman equation was also derived in [BFY15] in the case where σ = σ(x) is not controlled and
does not depend on the distribution of the state process, and there is no dependence on the marginal
distribution of the control process on the coefficients b and f .

It is then natural to define viscosity solutions for the Bellman equation (3.5.1) (hence (3.3.11)) from
viscosity solutions to (3.5.3). As usual, we say that a function u (resp. ũ) is locally bounded in on
[0, T ] × P2(Rd) (resp. [0, T ]× L2(F0;Rd)) if it is bounded on bounded subsets of [0, T ] × P2(Rd) (resp.
[0, T ]× L2(F0;Rd)), and we denote by u∗ (resp. ũ∗) its upper semicontinuous envelope, and by u∗(resp.
ũ∗) its lower semicontinuous envelope. Similarly as in [GNT08], we define the set C2

` ([0, T ]×L2(F0;Rd)) of
test functions for the lifted Bellman equation, as the set of real-valued continuous functions ϕ on [0, T ]×
L2(F0;Rd) which are continuously differentiable in t ∈ [0, T ), twice continuously Fréchet differentiable
on L2(F0;Rd).

Definition 3.5.1. We say that a locally bounded function u : [0, T ] × P2(Rd) → R is a viscosity (sub,
super) solution to (3.5.1) if the lifted function ũ : [0, T ]× L2(F0;Rd) → R defined by

ũ(t, ξ) = u(t,P
ξ
), (t, ξ) ∈ [0, T ]× L2(F0;Rd),

is a viscosity (sub, super) solution to the lifted Bellman equation (3.5.3), that is:

(i) ũ∗(T, .) ≤ Ĝ, and for any test function ϕ ∈ C2
` ([0, T ]×L2(F0;Rd)) such that ũ∗ − ϕ has a maximum

at (t0 , ξ0) ∈ [0, T )× L2(F0;Rd), one has

−∂tϕ(t0 , ξ0) +H(t0 , ξ0 , Dϕ(t0 , ξ0), D2ϕ(t0 , ξ0)) ≤ 0.

(ii) ũ∗(T, .) ≥ Ĝ, and for any test function ϕ ∈ C2
` ([0, T ]×L2(F0;Rd)) such that ũ∗−ϕ has a minimum

at (t0 , ξ0) ∈ [0, T )× L2(F0;Rd), one has

−∂tϕ(t0 , ξ0) +H(t0 , ξ0 , Dϕ(t0 , ξ0), D2ϕ(t0 , ξ0)) ≥ 0.

The main goal of this section is to prove the viscosity characterization of the value function v in
(3.3.8) to the Bellman equation (3.3.11), hence equivalently the viscosity characterization of the lifted
value function v : [0, T ]× L2(F0;Rd) via the lifted identification

v(t, ξ) = v(t,P
ξ
), ξ ∈ L2(F0;Rd),
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to the lifted Bellman equation (3.5.3). We shall strenghten condition (H1) by assuming in addition that
b, σ are uniformly continuous in t, and bounded in (a, λ):

(H1’) There exists some constant Cb,σ > 0 s.t. for all t, t′ ∈ [0, T ], x, x′ ∈ Rd, a, a′ ∈ A, λ, λ′ ∈ P2(Rd×A),

|b(t, x, a, λ)− b(t′, x′, a′, λ′)|+ |σ(t, x, a, λ)− σ(t′, x′, a′, λ′)|
≤ Cb,σ

[
mb,σ(|t− t′|) + |x− x′|+ |a− a′|+W2(λ, λ′)

]
,

for some modulus mb,σ (i.e. mb,σ(τ) → 0 when τ goes to zero) and

|b(t, 0, a, δ(0,0))|+ |σ(t, 0, a, δ(0,0))| ≤ Cb,σ.

We also strenghten condition (H2) by making additional (uniform) continuity assumptions on the
running and terminal cost functions, and boundedness conditions in (a, λ):

(H2’) (i) g is continuous on Rd ×P2(Rd) and there exists some constant Cg > 0 s.t. for all x ∈ Rd, µ ∈
P2(Rd),

|g(x, µ)| ≤ Cg
(
1 + |x|2 + ‖µ‖2

2

)
.

(ii) There exists some constant Cf > 0 s.t. for all t ∈ [0, T ], x ∈ Rd, a ∈ A, λ ∈ P2(Rd ×A),

|f(t, x, a, λ)| ≤ Cf
(
1 + |x|2 + ‖λ‖2

2

)
,

and some modulus mf (i.e. mf (τ) → 0 when τ goes to zero) s.t. for all t, t′ ∈ [0, T ], x, x′ ∈ Rd, a ∈ A,
λ, λ′ ∈ P2(Rd ×A),

|f(t, x, a, λ)− f(t′, x′, a, λ′)| ≤ mf

(
|t− t′|+ |x− x′|+W2(λ, λ′)

)
.

The boundedness condition in (H1’)-(H2’) of b, σ, f w.r.t. (a, λ) ∈ A × P2(A) is typically satisfied
when A is bounded. Under (H1’), we get by standard arguments

sup
α∈A

E
[

sup
t≤s≤T

|Xt,ξ
s |2

]
< ∞,

for any t ∈ [0, T ], ξ ∈ L2(Ft;Rd), which shows under the quadratic growth condition of g and f in (H2’)
(uniformly in a) that v also satisfy a quadratic growth condition: there exists some positive constant C
s.t. {

|v(t, µ)| ≤ C
(
1 + ‖µ‖2

2

)
, (t, µ) ∈ [0, T ]× P2(Rd),

|v(t, ξ)| ≤ C
(
1 + E|ξ|2

)
, (t, ξ) ∈ [0, T ]× L2(F0;Rd), (3.5.5)

and are thus in particular locally bounded.

We first state a flow continuity property of the marginal distribution of the controlled state process,
and the continuity property of the value function. Indeed, from standard estimates on the state process
under (H1’) one easily checks (see also Lemma 3.1 in [BLPR17]) that there exists some positive constant
C (independent of t, µ, α), such that for all α ∈ A, t, t′ ∈ [0, T ], t ≤ s ≤ T, t′ ≤ s′ ≤ T , µ = Pξ, µ′ = Pξ′
∈ P2(Rd):

E
∣∣Xt,ξ

s −X
t′,ξ′

s′

∣∣2 ≤ C
(
1 + E|ξ|2 + E|ξ′|2

)(
|t− t′|+ |s− s′|+ E|ξ − ξ′|2

)
, (3.5.6)
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and so from the definition of the 2-Wasserstein distance

‖Pt,µs ‖2 ≤ C(1 + ‖µ‖2) (3.5.7)
W2(Pt,µs ,Pt

′,µ′

s′ ) ≤ C
(
1 + ‖µ‖2 + ‖µ′‖2

)(
|t− t′| 12 + |s− s′| 12 +W2(µ, µ′)

)
(3.5.8)

Now from the definition of v(t, µ) in (3.3.8), together with (3.5.7), (3.5.8) and the growth condition
on f in (H2’), we have for all 0 ≤ t ≤ t′ ≤ T , µ, µ′ ∈ P2(Rd),

|v(t, µ)− v(t′, µ′)| ≤ sup
α∈A
|J(t, µ, α)− J(t′, µ′, α)|

≤ sup
α∈A
{
∫ t′

t

|f̂(s,Pt,µs , α̃(s, ·,Pt,µs ))|ds

+
∫ T

t′
|f̂(s,Pt,µs , α̃(s, ·,Pt,µs )− f̂(s,Pt

′,µ′

s , α̃(s, ·,Pt
′,µ′

s ))|ds+ |ĝ(Pt,µT )− ĝ(Pt
′,µ′

T )|}

≤ C(t′ − t)(1 + sup
t≤s≤t′

‖Pt,µs ‖2)

+ Cmf

(
sup

t′≤s≤T
W2(Pt,µs ,Pt

′,µ′

s )
)

+ |ĝ(Pt,µT )− ĝ(Pt
′,µ′

T )|

≤ C(t′ − t)(1 + ‖µ‖2) + Cmf

(
(1 + ‖µ‖2 + ‖µ′‖2)(|t− t′| 12 +W2(µ, µ′))

)
+ |ĝ(Pt,µT )− ĝ(Pt

′,µ′

T )|.

By the continuity assumption on g together with the growth condition on g in (H2′), which allows to
use the dominated converge theorem, we deduce from (3.5.8) that ĝ(Pt,µs ) converges to ĝ(Pt′,µ′s ) when t
↗ t′ uniformly in α ∈ A. Then we get the desired continuity property of the value function v(t, µ), i.e.
v∗(t, µ) = v∗(t, µ) = v(t, µ), and equivalently v∗(T, ξ) = v∗(T, ξ) = v(T, ξ).

The next result states the viscosity property of the value function to the Bellman equation as a
consequence of the dynamic programming principle (3.3.10).

Proposition 3.5.1. The value function v is a viscosity solution to the Bellman equation (3.3.11).

Proof. Let us first reformulate the dynamic programming principle (DPP) of Theorem 3.3.1 for
the value function viewed as a function on [0, T ] × L2(F0;Rd). For this, we take a copy B̃ of B on
the probability space (Ω,F0,P), and given (t, ξ) ∈ [0, T ] × L2(F0;Rd), α ∈ A, we consider the solution
X̃t,ξ,α
s , t ≤ s ≤ T , to the McKean-Vlasov equation

X̃t,ξ
s = ξ +

∫ s

t

b(r, X̃t,ξ
r , α̃(r, X̃t,ξ

r ,P
X̃
t,ξ
r

), Idα̃(r, .,P
X̃
t,ξ
r

) ? P
X̃
t,ξ
r

)dr

+
∫ s

t

σ(r, X̃t,ξ
r , α̃(r, X̃t,ξ

r ,PX̃t,ξr ), Idα̃(r, .,P
X̃
t,ξ
r

) ? P
X̃
t,ξ
r

)dB̃r, t ≤ s ≤ T.

Therefore, X̃t,ξ is a copy of Xt,ξ on (Ω,F0,P). The lifted value function on [0, T ] × L2(F0;Rd)
identified with the value function on [0, T ] × P2(Rd) satisfies v(s, X̃t,ξ

s ) = v(s, ρt,µs ). By noting that
f̂(s,Pt,µs , α̃(s, ·,Pt,µs )) = E[f(s, X̃t,ξ

s , α̃(s, X̃t,ξ
s ,Pt,µs ), Idα̃(s, X̃t,ξ

s ,Pt,µs ) ? Pt,µs )], we obtain from Theorem
3.3.1 the lifted DPP: for all (t, ξ) ∈ [0, T ] × L2(F0;Rd),

v(t, ξ) = inf
α∈A

∫ θ

t

E[f(s, X̃t,ξ
s , α̃(s, X̃t,ξ

s ,Pt,µs ), Idα̃(s, X̃t,ξ
s ,Pt,µs ) ? Pt,µs )]ds+ v(θ, X̃t,ξ

θ ) (3.5.9)
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We already know that v is continuous on [0, T ] × L2(F0;Rd), hence in particular at T , so that v(T, ξ) =
E[g(ξ,Pξ)], and it remains to derive the viscosity property for the value function in [0, T ) × L2(F0;Rd)
by following standard arguments that we adapt in our context.

(i) Subsolution property. Let us now prove the viscosity subsolution property of v on [0, T )×L2(F0;Rd).
Fix (t0 , ξ0) ∈ [0, T )× L2(F0;Rd), and consider some test function ϕ ∈ C2

` ([0, T ]× L2(F0;Rd)) such that
v − ϕ has a maximum at (t0 , ξ0), and w.l.o.g. v(t0 , ξ0) = ϕ(t0 , ξ0), so that v ≤ ϕ. and let h be a strictly
positive s.t. h→ 0, let α̃ be an arbitrary element in L(Rd;A), and consider the time-independent feedback
control α ∈ A associated with α̃. From the DPP (3.5.9) applied to v(t0 , ξ0), we have

v(t0 , ξ0) ≤
∫ t0+h

t0

E[f(s, X̃t0 ,ξ0
s , α̃(X̃t0 ,ξ0

s ), Idα̃ ? Pt0 ,µ0
s )]ds + v(t0 + h, X̃

t0 ,ξ0
t0+h).

Since v(t, ξ) ≤ v∗(t, ξ) ≤ ϕ(t, ξ) for all (t, ξ) ∈ [0, T ]× P2(Rd), this implies

0 ≤ 1
h

∫ t0+h

t0

E[f(s, X̃t0 ,ξ0
s , α̃(X̃t0 ,ξ0

s ), Idα̃ ? Pt0 ,µ0
s )]ds +

ϕ(t0 + h, X̃
t0 ,ξ0
t0+h)− ϕ(t0 , ξ0)
h

Applying Itô’s formula (1.3.4) to ϕ(s, X̃t,ξ
s ) between t0 and t0 + h, we get

0 ≤ 1
h

∫ t0+h

t0

[∂ϕ
∂t

(s, X̃t0 ,ξ0
s ) + E

[
f(s, X̃t0 ,ξ0

s , α̃(X̃t0 ,ξ0
s ), Idα̃ ? Pt0 ,µ0

s )

+ Dϕ(s, X̃t0 ,ξ0
s ).b(s, X̃t0 ,ξ0

s , α̃(X̃t0 ,ξ0
s ), Idα̃ ? Pt0 ,µ0

s )

+ 1
2D

2ϕ(s, X̃t0 ,ξ0
s )(σ(s, X̃t0 ,ξ0

s , α̃(X̃t0 ,ξ0
s ), Idα̃ ? Pt0 ,µ0

s )N).(σ(s, X̃t0 ,ξ0
s , α̃(X̃t0 ,ξ0

s ), Idα̃ ? Pt0 ,µ0
s )N)

]
ds

with N ∈ L2(F0;Rn) of zero mean, and unit variance, independent of ξ. By the continuity of b, σ, f, ϕ on
their respective domains, and the flow continuity property (3.5.6), we then obtain by sending h to zero
in the above inequality:

−∂ϕ
∂t

(t0 , ξ0)− E
[
f(t0 , ξ0 , α̃(ξ0), Idα̃ ? P

ξ0
) +Dϕ(t0 , ξ0).b(t0 , ξ0 , α̃(ξ0), Idα̃ ? P

ξ0
))

−1
2D

2ϕ(t0 , ξ0)(σ(t0 , ξ0 , α̃(ξ0), Idα̃ ? P
ξ0

)N)(σ(t0 , ξ0 , α̃(ξ0), Idα̃ ? P
ξ0

)N)
]
≤ 0.

Since α̃ is arbitrary in L(Rd;A), this shows

−∂ϕ
∂t

(t0 , ξ0) +H(t0, ξ0 , Dϕ(t0 , ξ0), D2ϕ(t0, ξ0)) ≤ 0,

which is the required viscosity subsolution property.

(ii) Supersolution property. We proceed finally with the viscosity supersolution property. Fix (t0 , ξ0) ∈
[0, T ) × L2(F0;Rd), and consider some test function ϕ ∈ C2

` ([0, T ] × L2(F0;Rd)) such that v − ϕ has a
minimum at (t0 , ξ0), and w.l.o.g. v(t0 , ξ0) = ϕ(t0 , ξ0), so that v ≥ ϕ. From the lifted DPP (3.5.9), for
small h ∈ [0, T − t], there exists α ∈ A associated to a feedback control α̃ ∈ Lip([0, T ]×Rd×P2(Rd);A)
s.t.

v(t0 , ξ0) + h2 ≥
∫ t0+h

t0

E[f(s, X̃t0 ,ξ0
s , α̃(X̃t0 ,ξ0

s ), Idα̃ ? Pt0 ,µ0
s )]ds + v(t0 + h, X̃

t0 ,ξ0
t0+h).

Since v(t, ξ) ≥ v∗(t, ξ) ≥ ϕ(t, ξ) for all (t, ξ) ∈ [0, T ]× L2(G;Rd), this implies

h ≥ 1
h

∫ t0+h

t0

E[f(s, X̃t0 ,ξ0
s , α̃(X̃t0 ,ξ0

s ), Idα̃ ? Pt0 ,µ0
s )]ds +

ϕ(t0 + h, X̃
t0 ,ξ0
t0+h)− ϕ(t0 , ξ0)
h

.
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Applying again Itô’s formula (1.3.7) to ϕ(s, X̃t,ξ
s ), we then get

h ≥ 1
h

∫ t0+h

t0

[∂ϕ
∂t

(s, X̃t0 ,ξ0
s ) + E

[
f(s, X̃t0 ,ξ0

s , α̃(X̃t0 ,ξ0
s ), Idα̃ ? Pt0 ,µ0

s )

+ Dϕ(s, X̃t0 ,ξ0
s ).b(s, X̃t0 ,ξ0

s , α̃(X̃t0 ,ξ0
s ), Idα̃ ? Pt0 ,µ0

s )

+ 1
2D

2ϕ(s, X̃t0 ,ξ0
s )(σ(s, X̃t0 ,ξ0

s , α̃(X̃t0 ,ξ0
s ), Idα̃ ? Pt0 ,µ0

s )N).(σ(s, X̃t0 ,ξ0
s , α̃(X̃t0 ,ξ0

s ), Idα̃ ? Pt0 ,µ0
s )N)

]
≥ 1

h

∫ t0+h

t0

[∂ϕ
∂t

(s, X̃t0 ,ξ0
s ) +H(s, X̃t0 ,ξ0

s , Dϕ(X̃t0 ,ξ0
s ), D2ϕ(X̃t0 ,ξ0

s ))
]

where N is independent of (ξ0 , B), with zero mean and unit variance. By sending h to zero together
with the continuity assumption in (H1’)-(H2’) of b, σ, f, ϕ, uniformly in a ∈ A, and the flow continuity
property (3.5.6), we get

−∂ϕ
∂t

(t0 , ξ0) +H(t0, ξ0 , Dϕ(t0 , ξ0), D2ϕ(t0, ξ0)) ≥ 0,

which gives the required viscosity supersolution property of v, and ends the proof. �

We finally turn to comparison principle (hence uniqueness result) for the Bellman equation (3.3.11)
(or (3.5.1)), hence equivalently for the lifted Bellman equation (3.5.3), which shall follow from comparison
results for second order Hamilton-Jacobi equations in separable Hilbert space stated in [Lio89b], see also
[FGS15]. We shall assume that the σ-algebra F0 is countably generated upto null sets, which ensures that
the Hilbert space L2(F0;Rd) is separable, see [Doo94], p. 92. This is satisfied for example when F0 is the
Borel σ-algebra of a canonical space Ω0 of continuous functions on R+, in which case, F0 = ∨

s≥0FB
0

s ,
where (FB0

s ) is the canonical filtration on Ω0, and it is then known that F0 is countably generated, see
for instance Exercise 4.21 in Chapter 1 of [RY99].

Proposition 3.5.2. Let u and w be two functions defined on [0, T ] × P2(Rd) satisfying a quadratic
growth condition such that u (resp. w) is an upper (resp. lower) semicontinuous viscosity subsolution
(resp. supersolution) to (3.3.11). Then u ≤ w. Consequently, the value function v is the unique viscosity
solution to the Bellman equation (3.3.11) satisfying a quadratic growth condition (3.5.5).

Proof. In view of our definition 3.5.1 of viscosity solution, we have to show a comparison principle
for viscosity solutions to the lifted Bellman equation (3.5.3). We use the comparison principle proved in
Theorem 3.50 in [FGS15] and only need to check that the hypotheses of this theorem are satisfied in our
context for the lifted Hamiltonian H defined in (3.5.4). Notice that the lifted Bellman equation (3.5.3)
is a bounded equation in the terminology of [FGS15] (see their section 3.3.1) meaning that there is no
linear dissipative operator on L2(F0;Rd) in the equation. Therefore, the notion of B-continuity reduces
to the standard notion of continuity in L2(F0;Rd) since one can take for B the identity operator. Their
Hypothesis 3.44 follows from the uniform continuity of b, σ, and f in (H1’)-(H2’). Hypothesis 3.45 is
immediately satisfied since there is no discount factor in our equation, i.e. H does not depend on v but
only on its derivatives. The monotonicity condition in Q ∈ S(L2(F0;Rd)) of H in Hypothesis 3.46 is
clearly satisfied. Hypothesis 3.47 holds directly when dealing with bounded equations. Hypothesis 3.48
is obtained from the Lipschitz condition of b, σ in (H1’), and the uniform continuity condition on f in
(H2’), while Hypothesis 3.49 follows from the quadratic growth condition of σ in (H1’). One can then
apply Theorem 3.50 in [FGS15] and conclude that comparison principle holds for the Bellman equation
(3.5.3), hence for the Bellman equation (3.3.11). �
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3.6 The case of open-loop controls

In this section, we discuss how one can consider more generally open-loop controls instead of (Lip-
schitz) closed-loop controls as imposed in the previous sections, hence allowing a priori in particular
bang-bang controls, which is useful in the applications. We shall restrict our framework to usual con-
trolled McKean-Vlasov SDE with coefficients that not depend on the law of the control but only on the
law of the state process, hence in the form

dXs = b(s,Xs, αs,PXs )ds+ σ(s,Xs, αs,PXs )dBs, (3.6.1)

where b, σ are measurable functions from [0, T ]×Rd×A×P2(Rd) into Rd, respectively Rd×n, satisfying
a Lipschitz condition: for all t ∈ [0, T ], x, x′ ∈ Rd, a ∈ A, µ, µ′ ∈ P2(Rd),

|b(t, x, a, µ)− b(t, x′, a, µ′)|+ |σ(t, x, a, µ)− σ(t, x′, a, µ′)|
≤ C

[
|x− x′|+W2(µ, µ′)

]
, (3.6.2)

for some positive constant C. We denote by Ao the set of F-progressive processes α valued in A, assumed
for simplicity here to be a compact space of Rm, and consider the McKean-Vlasov control problem with
open-loop controls with running cost not depending on the law of the control:

V0 := inf
α∈Ao

E
[ ∫ T

0
f(t,Xt, αt,PXt )dt+ g(XT ,PXT )

]
.

Under (3.6.2), and given t ∈ [0, T ], ξ ∈ L2(Ft;Rd), α ∈ Ao, there exists a unique (pathwise and in law)
solution Xt,ξ

s = Xt,ξ,α
s , t ≤ s ≤ T , solution to (3.6.1) starting from ξ at time t, satisfying

E
[

sup
t≤s≤T

|Xt,ξ
s |2

]
≤ C

(
1 + E|ξ|2),

for some positive constant C independent of α ∈ Ao. As in (3.3.5), one can then define the flow Pt,µs =
Pt,µ,αs , t ≤ s ≤ T , µ ∈ P2(Rd), α ∈ Ao, of the law of Xt,ξ

s , for µ = Pξ, and they satisfy the flow properties
(3.3.4) and (3.3.6). We then define the value function in the Wasserstein space

vo(t, µ) := inf
α∈Ao

E
[ ∫ T

t

f(s,Xt,ξ
s , αs,Pt,µs )ds+ g(Xt,ξ

T ,Pt,µT )
]
, t ∈ [0, T ], µ = Pξ ∈ P2(Rd),

so that V0 = vo(0,PX0
). Since the set of open-loop controls is larger than the set of feedback controls, it

is clear that vo is smaller than v, the value function to the McKean-Vlasov control problem with feedback
controls considered in the previous sections.

Notice that when f ≡ 0, one can reformulate the value function vo as a deterministic control problem
as in the case of feedback controls: vo(t, µ) = infα∈Ao ĝ(Pt,µT ), but in general this is not possible. Anyway,
by similar arguments as in Theorem 3.3.1, but more technical and requiring some measurable selection
arguments due to the stochastic control formulation of the value function vo, one could show the DPP
for the value function with open-loop controls, namely:

vo(t, µ) = inf
α∈Ao

E
[ ∫ θ

t

f(s,Xt,ξ
s , αs,Pt,µs )ds+ vo(θ,Pt,µθ )

]
for all 0 ≤ t ≤ θ ≤ T , µ = Pξ ∈ P2(Rd). From Itô’s formula (1.3.7), the infinitesimal version of the above
DPP leads to the dynamic programming Bellman equation:{

−∂tvo(t, µ) +Ho

(
t, µ, ∂µvo(t, µ), ∂x∂µvo(t, µ)

)
= 0, on [0, T )× P2(Rd),

vo(T, .) = ĝ, on P2(Rd) (3.6.3)
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where Ho is the function defined by

Ho(t, µ, p,Γ) := − inf
α∈Ao

E
[
f(t, ξ, αt, µ) + p(ξ).b(t, ξ, αt, µ) + 1

2tr
(
Γ(ξ)σσᵀ(t, ξ, αt, µ)

)]
,

for (t, µ) ∈ [0, T ]×P2(Rd), (p,Γ) ∈ L2
µ(Rd)×L∞µ (Sd), and with Pξ = µ. Similarly as in Propositions 3.3.1

and 3.5.2, one can show a verification theorem for vo and prove that vo is the unique viscosity solution
to (3.6.3).

For any α̃ ∈ L(Rd;A), it is clear that the control α defined by αs = α̃(ξ), t ≤ s ≤ T , lies in Ao, so
that

Ho(t, µ, p,Γ) ≥ − inf
α̃∈L(Rd;A)

E
[
f(t, ξ, α̃(ξ), µ)

+ p(ξ).b(t, ξ, α̃(ξ), µ) + 1
2tr
(
Γ(ξ)σσᵀ(t, ξ, α̃(ξ), µ)

)]
= H(t, µ, p,Γ),

with H the Hamiltonian in (3.5.2) for the McKean-Vlasov control problem with feedback control. This
inequality Ho ≥ H combined with comparison principle for the Bellman equation (3.6.3) is consistent
with the inequality v ≥ vo. If we could prove that Ho is equal to H (which is not trivial in general),
then this would show that vo is equal to v, i.e. the value functions to the McKean-Vlasov control
problems with open-loop and feedback controls coincide. Actually, we notice that the minimization over
the infinite dimensional space Ao in the Hamiltonian Ho can be reduced into a minimization over the
finite dimensional space A, namely:

Ho(t, µ, p,Γ) = H̃o(t, µ, p,Γ) := − < inf
a∈A

H(t, x, a, µ, p(.),Γ(.)), µ > (3.6.4)

where H(t, x, a, µ, q,M) is defined by (3.3.16) in Remark 3.3.4.
Indeed, it is clear that Ho ≤ H̃o. Conversely, by continuity of the coefficients b, σ, f w.r.t. the argument
a lying the compact space A, and invoking a measurable selection theorem, one can find for any (t, µ, p,Γ)
∈ [0, T ]× P2(Rd)× L2

µ(Rd)× L∞µ (Sd), some measurable function x ∈ Rd 7→ â(t, x, µ, p(x),Γ(x)) = α̂(x)
s.t. for all x ∈ Rd,

inf
a∈A

[
f(t, x, a, µ) + p(x).b(t, x, a, µ) + 1

2tr
(
Γ(x)σσᵀ(t, x, a, µ)

)]
= f(t, x, α̂(x), µ) + p(x).b(t, x, α̂(x), µ) + 1

2tr
(
Γ(x)σσᵀ(t, x, α̂(x), µ)

)
.

By integrating w.r.t. µ, we then get

H̃o(t, µ, p,Γ) = −E
[
f(t, ξ, α̂(ξ), µ) + p(ξ).b(t, ξ, α̂(ξ), µ) + 1

2tr
(
Γ(ξ)σσᵀ(t, ξ, α̂(ξ), µ)

)]
≤ Ho(t, µ, p,Γ),

which shows the equality (3.6.4). Suppose now that there exists some smooth solution w on [0, T ]×P2(Rd)
to the equation:{

−∂tw(t, µ) + H̃o

(
t, µ, ∂µw(t, µ), ∂x∂µw(t, µ)

)
= 0, on [0, T )× P2(Rd),

w(T, .) = ĝ, on P2(Rd), (3.6.5)

such that for all (t, µ) ∈ [0, T )×P2(Rd), the element x 7→ â(t, x, µ, ∂µw(t, µ)(x), ∂x∂µw(t, µ)(x)) achieving
the infimum in the definition of H̃o

(
t, µ, ∂µw(t, µ), ∂x∂µw(t, µ)

)
, is Lipschitz, i.e. lies in L(Rd;A), then

(recall also Remark 3.3.2)

H̃o

(
t, µ, ∂µw(t, µ), ∂x∂µw(t, µ)

)
= H

(
t, µ, ∂µw(t, µ), ∂x∂µw(t, µ)

)
,
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which shows with (3.6.4) that w solves both the Bellman equations (3.6.3) and (3.5.1). By comparison
principle, we conclude that w = v = vo, which means in this case that the value functions to the McKean-
Vlasov control problems with open-loop and feedback controls coincide. Such condition was satisfied for
example in the case of the mean-variance portfolio selection problem studied in paragraph 3.4.1.

Remark 3.6.1. (Existence of smooth solution)

Let us mention that the existence of classical solution to HJB equation (3.6.3) or (3.6.5) was derived
in [CCD15] in the case where σ is uncontrolled. Briefly speaking, under coercive conditions on the
coefficients, α̂(x) is the minimizer of H(t, x, ∂µvo(t, µ), ∂x∂µvo(t, µ)), and V (t, x, µ) on the enlarged space
Rd × P2(Rd) defined by

V (t, x, µ) = E[
∫ T

t

f(s,Xt,x,µ
s ,PXt,µs , α̂(Xt,x,µ

s ))ds+ g(Xt,x,µ
T ,PXt,µ

T
)],

where Xt,x,µ
s is the solution of the SDE

dXt,x,µ
s = b(s,Xt,x,µ

s ,PXt,µs , α̂(Xt,x,µ
s ))ds+ σ(s,Xt,x,µ

s ,PXt,µs )dBs, t ≤ s ≤ T,

with the initial condition x at time t. Then V (t, x, µ) is the unique classical solution to the following
master equation

∂tV (t, x, µ) + b(t, x, µ, α̂(x)).∂xV (t, x, µ) + f(t, x, µ, α̂(x))

+1
2tr(∂2

xxV (t, x, µ)σσᵀ(t, x, µ)) +
∫
Rd

[
b(t, x′, µ, α̂(x′)).∂µV (t, x, µ)(x′)

+1
2tr(∂x∂µV (t, x, µ)(x′)σσᵀ(t, x, µ))

]
µ(dx′) = 0.

Moreover, the identification of value function vo(t, µ) in terms of V (t, x, µ) is given by vo(t, µ) = v(t, µ)
=
∫
Rd V (t, x, µ)µ(dx), or equivalently reads as ∂µvo(t, µ)(x) = ∂xV (t, x, µ) +

∫
Rd ∂µV (t, x′, µ)(x)µ(dx′).

Therefore, we conclude that vo(t, µ) is the unique classical solution to HJB equation. �





Chapter 4

Dynamic programming for
continuous time conditional
McKean-Vlasov control problem a

Abstract: We study the optimal control of general stochastic McKean-Vlasov equation. Such problem
is motivated originally from the asymptotic formulation of cooperative equilibrium for a large population
of particles (players) in mean-field interaction under common noise. Our first main result is to state a
dynamic programming principle for the value function in the Wasserstein space of probability measures,
which is proved from a flow property of the conditional law of the controlled state process. Next, by
relying on the notion of differentiability with respect to probability measures due to P.L. Lions [Lio12],
and Itô’s formula along a flow of conditional measures, we derive the dynamic programming Hamilton-
Jacobi-Bellman equation, and prove the viscosity property together with a uniqueness result for the value
function. Finally, we solve explicitly the linear-quadratic stochastic McKean-Vlasov control problem and
give an application to an interbank systemic risk model with common noise.

Keywords: Stochastic McKean-Vlasov SDEs, dynamic programming principle, Bellman equation, Wasser-
stein space, viscosity solutions.

a. This chapter is based on a paper in collaboration with Pham Huyên [PW17]. This paper is published in SIAM Journal
on Control and Optimization, 55(2), 2017.
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4.1 Introduction

Let us consider the controlled McKean-Vlasov dynamics in Rd given by

dXt = b(Xt,PW
0

Xt , αt)dt+ σ(Xt,PW
0

Xt , αt)dBt + σ0(Xt,PW
0

Xt , αt)dW
0
t , (4.1.1)

where B,W 0 are two independent Brownian motions on some complete probability space (Ω,F ,P), PW 0

Xt

denotes the conditional distribution of Xt given W 0 (or equivalently given F0
t where F0 = (F0

t )t≥0 is
the natural filtration generated by W 0), valued in P(Rd) the set of probability measures on Rd, and the
control α is an F0-progressive process valued in some Polish space A. When there is no control, the
dynamics (4.1.1) is sometimes called stochastic McKean-Vlasov equation (see [DV95]), where the term
“stochastic" refers to the presence of the random noise caused by the Brownian motion W 0 w.r.t. a
McKean-Vlasov equation when σ0 = 0, and for which coefficients depend on the (deterministic) marginal
distribution PXt . One also uses the terminology conditional mean-field stochastic differential equation
(CMFSDE) to emphasize the dependence of the coefficients on the conditional law with respect to the
random noise, and such CMFSDE was studied in [CZ16], and more generally in [BLM17]. In this context,
the control problem is to minimize over α a cost functional of the form:

J(α) = E
[ ∫ T

0
f(Xt,PW

0

Xt , αt)dt+ g(XT ,PW
0

XT )
]
. (4.1.2)

The motivation and applications for the study of such stochastic control problem, referred to alter-
natively as control of stochastic McKean-Vlasov dynamics, or stochastic control of conditional McKean-
Vlasov equation, comes mainly from the McKean-Vlasov control problem with common noise, that we
briefly describe now: we consider a system of controlled individuals (referred also to as particles or play-
ers) in mutual interaction, where the dynamics of the state process Xi of player i ∈ {1, . . . , N} is governed
by

dXi
t = b̃(Xi

t , ρ̄
N
t , α̃

i
t)dt+ σ̃(Xi

t , ρ̄
N
t , α̃

i
t)dBit + σ̃0(Xi

t , ρ̄
N
t , α̃

i
t)dW 0

t .

Here, the Wiener process W 0 accounts for the common random environment in which all the individuals
evolve, called common noise, and B1, . . . , BN are independent Brownian motions, independent of W 0,
called idiosyncratic noises. The particles are in interaction of mean-field type in the sense that at any
time t, the coefficients b̃, σ̃, σ̃0 of their state process depend on the empirical distribution of all individual
states

ρ̄Nt = 1
N

N∑
i=1

δXit .

The processes (α̃it)t≥0, i = 1, . . . , N , are in general progressively measurable w.r.t. the filtration generated
by B1, . . . , BN ,W 0, valued in some subset A of a Euclidian space, and represent the control processes of
the players with cost functionals:

J i(α̃1, . . . , α̃n) = E
[ ∫ T

0
f̃(Xi

t , ρ̄
N
t , α̃

i
t)dt+ g(Xi

T , ρ̄
N
T )
]
.

For this N -player stochastic differential game, one looks for equilibriums, and different notions may
be considered. Classically, the search for a consensus among the players leads to the concept of Nash
equilibrium where each player minimizes its own cost functional, and the goal is to find a N -tuple control
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strategy for which there is no interest for any player to leave from this consensus state. The asymptotic
formulation of this Nash equilibrium when the number of players N goes to infinity leads to the (now
well-known) theory of MFG pioneered in the works by Lasry and Lions [LL07], and Huang, Malhamé
and Caines [HMC06]. In this framework, the analysis is reduced to the problem of a single representative
player in interaction with the theoretical distribution of the whole population by the propagation of chaos
phenomenon, who first solves a control problem by freezing a probability law in the coefficients of her/his
state process and cost function, and then has to find a fixed point probability measure that matches the
distribution of her/his optimal state process. The case of MFG with common noise has been recently
studied in [Ahu16] and [CDL16]. Alternatively, one may take the point of view of a center of decision
(or social planner), which decides the strategies for all players, with the goal of minimizing the global
cost to the collectivity. This leads to the concept of Pareto or cooperative equilibrium whose asymptotic
formulation is reduced to the optimal control of McKean-Vlasov dynamics for a representative player.
More precisely, given the symmetry of the set-up, when the social planner chooses the same control policy
for all the players in feedback form: α̃it = α̃(t,Xi

t , ρ̄
N
t ), i = 1, . . . , N , for some deterministic function α̃

depending upon time, private state of player, and the empirical distribution of all players, then the
theory of propagation of chaos implies that, in the limit N →∞, the particles Xi become asymptotically
independent conditionally on the random environment W 0, and the empirical measure ρ̄Nt converge to
the distribution PW 0

Xt
of Xt given W 0, and X is governed by the (stochastic) McKean-Vlasov equation:

dXt = b̃(Xt,PW
0

Xt , α̃(t,Xt,PW
0

Xt ))dt+ σ̃(Xt,PW
0

Xt , α̃(t,Xt,PW
0

Xt ))dBt
+ σ̃0(Xt,PW

0

Xt , α̃(t,Xt,PW
0

Xt ))dW 0
t ,

for some Brownian motion B independent of W 0. The objective of the representative player for the
Pareto equilibrium becomes the minimization of the functional

J(α̃) = E
[ ∫ T

0
f̃(Xt,PW

0

Xt , α̃(t,Xt,PW
0

Xt ))dt+ g(XT ,PW
0

XT )
]

over the class of feedback controls α̃. We refer to [CDL13] for a detailed discussion of the differences
between the nature and solutions to the MFG and optimal control of McKean-Vlasov dynamics related
respectively to the notions of Nash and Pareto equilibrium. Notice that in this McKean-Vlasov control
formulation, the control α̃ is of feedback (also called closed-loop) form both w.r.t. the state process Xt,
and its conditional law process PW 0

Xt
, which is F0-adapted. More generally, we can consider semi-feedback

control α(t, x, ω0), in the sense that it is of closed-loop form w.r.t. the state process Xt, but of open-loop
form w.r.t. the common noise W 0. In other words, one can consider random field control F0-progressive
control process α = {αt(x), x ∈ Rd}, which may be viewed equivalently as processes valued in some
functional space A on Rd, typically a closed subset of the Polish space C(Rd, A), of continuous functions
from Rd into some Euclidian space A. In this case, we are in the framework (4.1.1)-(4.1.2) with b(x, µ, a) =
b̃(x, µ, a(x)), σ(x, µ, a) = σ̃(x, µ, a(x)), σ0(x, µ, a) = σ̃0(x, µ, a(x)), f(x, µ, a) = f̃(x, µ, a(x)), for (x, µ, a)
∈ Rd × P(Rd)×A.

We also mention that partial observation control problem arises as a particular case of our stochastic
control framework (4.1.1)-(4.1.2): Indeed, let us consider a controlled process with dynamics

dX̄t = b̄(X̄t, αt)dt+ σ̄(X̄t, αt)dBt + σ̄0(X̄t, αt)dB0
t ,

where B,B0 are two independent Brownian motions on some physical probability space (Ω,F ,Q), and
the signal control process can only be observed through W 0 given by

dW 0
t = h(X̄t)dt+ dB0

t .
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The control process α is progressively measurable w.r.t. the observation filtration F0 generated by W 0,
valued typically in some Euclidian space A, and the cost functional to minimize over α is

J(α) = EQ
[ ∫ T

0
f̄(X̄t, αt)dt+ ḡ(X̄T )

]
.

By considering the process Z via

Z−1
t = exp

(
−
∫ t

0
h(X̄s)dB0

s −
1
2

∫ t

0
|h(X̄s)|2ds

)
, 0 ≤ t ≤ T,

the process Z−1 is (under suitable integrability conditions on h) a martingale under Q, and by Girsanov’s
theorem, this defines a probability measure P(dω) = Z−1

T (ω)Q(dω), called reference probability measure,
under which the pair (B,W 0) is a Brownian motion. We then see that the partial observation control
problem can be recast into the framework (4.1.1)-(4.1.2) of a particular stochastic McKean-Vlasov control
problem with X = (X̄, Z) governed by

dX̄t =
(
b̄(X̄t, αt)− σ̄0(X̄t, αt)h(X̄t)

)
dt+ σ̄(X̄t, αt)dBt + σ̄0(X̄t, αt)dW 0

t ,

dZt = Zth(X̄t)dW 0
t ,

and a cost functional rewritten under the reference probability measure from Bayes formula as

J(α) = E
[ ∫ T

0
Ztf̄(X̄t, αt)dt+ ZT ḡ(X̄T )

]
.

The optimal control of McKean-Vlasov dynamics is a rather new problem with an increasing interest
in the field of stochastic control problem. It has been studied by maximum principle methods in [AD10],
[BDL11], [CD15] for state dynamics depending upon marginal distribution, and in [CZ16], [BLM17] for
conditional McKean-Vlasov dynamics. This leads to a characterization of the solution in terms of an
adjoint BSDE coupled with a forward SDE, and we refer to [CCD15] for a theory of BSDE of McKean-
Vlasov type. Alternatively, dynamic programming approach for the control of McKean-Vlasov dynamics
has been considered in [BFY15], [BFY17], [LP14] for specific McKean-Vlasov dynamics and under a
density assumption on the probability law of the state process, and then analyzed in a general framework
in [PW18] (without noise W 0), where the problem is reformulated into a deterministic control problem
involving the marginal distribution process.

The aim of this paper is to develop the dynamic programming method for stochastic McKean-Vlasov
equation in a general setting. For this purpose, a key step is to show the flow property of the conditional
distribution PW 0

Xt
of the controlled state process Xt given the noise W 0. Then, by reformulating the

original control problem into a stochastic control problem where the conditional law PW 0

Xt
is the sole

controlled state variable driven by the random noise W 0, and by showing the continuity of the value
function in the Wasserstein space of probability measures, we are able to prove a dynamic programming
principle (DPP) for our stochastic McKean-Vlasov control problem. Next, for exploiting the DPP, we
use a notion of differentiability with respect to probability measures introduced by P.L. Lions in his
lectures at the Collège de France [Lio12], and detailed in the notes [Car12]. This notion of derivative
is based on the lifting of functions defined on the Hilbert space of square integrable random variables
distributed according to the “lifted" probability measure. By combining with a special Itô’s chain rule for
flows of conditional distributions, we derive the dynamic programming Bellman equation for stochastic
McKean-Vlasov control problem, which is a fully nonlinear second order PDE in the infinite dimensional
Wasserstein space of probability measures. By adapting standard arguments to our context, we prove the



4.2. Conditional McKean-Vlasov control problem 71

viscosity property of the value function to the Bellman equation from the dynamic programming principle.
To complete our PDE characterization of the value function with a uniqueness result, it is convenient to
work in the lifted Hilbert space of square integrable random variables instead of the Wasserstein metric
space of probability measures, in order to rely on the general results for viscosity solutions of second order
Hamilton-Jacobi-Bellman equations in separable Hilbert spaces, see [Lio88], [Lio89b], [FGS15]. We also
state a verification theorem which is useful for getting an analytic feedback form of the optimal control
when there is a smooth solution to the Bellman equation. Finally, we apply our results to the class
of linear-quadratic (LQ) stochastic McKean-Vlasov control problem for which one can obtain explicit
solutions, and we illustrate with an example arising from an interbank systemic risk model.

The outline of the paper is organized as follows. Section 2 formulates the stochastic McKean-Vlasov
control problem, and fix the standing assumptions. Section 3 is devoted to the proof and statement of
the dynamic programming principle. We prove in Section 4 the viscosity characterization of the value
function to the Bellman equation, and the last Section 5 presents the application to the LQ framework
with explicit solutions.

4.2 Conditional McKean-Vlasov control problem

Let us fix some complete probability space (Ω,F ,P) assumed of the form (Ω0 × Ω1,F0 ⊗ F1,P0 ⊗
P1), where (Ω0,F0,P0) supports a m-dimensional Brownian motion W 0, and (Ω1,F1,P1) supports a
n-dimensional Brownian motion B. So an element ω ∈ Ω is written as ω = (ω0, ω1) ∈ Ω0 × Ω1, and we
extend canonically W 0 and B on Ω by setting W 0(ω0, ω1) := W 0(ω0), B(ω0, ω1) := B(ω1), and extend
similarly on Ω any random variable on Ω0 or Ω1. We assume that (Ω1,F1,P1) is in the form Ω1 =
Ω̃1×Ω′1, F1 = G ⊗F ′1, P1 = P̃1⊗P′1, where Ω̃1 is a Polish space, G its Borel σ-algebra, P̃1 an atomless
probability measure on (Ω̃1,G), while (Ω′1,F ′1,P′1) supports B. We denote by E0 (resp. E1 and Ẽ1)
the expectation under P0 (resp. P1 and P̃1), by F0 = (F0

t )t≥0 the P0-completion of the natural filtration
generated by W 0 (and w.l.o.g. we assume that F0 = F0

∞), and by F = (Ft)t≥0 the natural filtration
generated by W 0, B, augmented with the independent σ-algebra G. We often omit some arguments and
write L2(Ω̃1,G, P̃1;Rd) (resp. L2(Ω,Ft,P;Rd)) as L2(G;Rd) (resp. L2(Ft;Rd)). We know that P2(Rd)
= {Pξ = P̃1

ξ : ξ ∈ L2(G;Rd)} since (Ω̃1,G, P̃1) is Polish and atomless (we say that G is rich enough). We
often write L(ξ) = Pξ = P̃1

ξ for the law of ξ ∈ L2(G;Rd).

• Admissible controls. We are given a Polish set A equipped with the distance d
A
, satisfying w.l.o.g. d

A

< 1, representing the control set, and we denote by A the set of F0-progressive processes α valued in A.
Notice thatA is a separable metric space endowed with the Krylov distance ∆(α, β) = E0[

∫ T
0 d

A
(αt, βt)dt].

We denote by BA the Borel σ-algebra of A.

• Controlled stochastic McKean-Vlasov dynamics. For (t, ξ) ∈ [0, T ] × L2(Ft;Rd), and given α ∈ A, we
consider the stochastic McKean-Vlasov equation:

dXs = b(Xs,PW
0

Xs
, αs)ds+ σ(Xs,PW

0

Xs
, αs)dBs

+ σ0(Xs,PW
0

Xs
, αs)dW 0

s , t ≤ s ≤ T,
Xt = ξ.

(4.2.1)

Here, PW 0

Xs
denotes the regular conditional distribution of Xs given F0, and its realization at some ω0

∈ Ω0 also reads as the law under P1 of the random variable Xs(ω0, .) on (Ω1,F1,P1), i.e. PW 0

Xs
(ω0) =

P1
Xs(ω0,.). The coefficients b, σ, σ0 are measurable functions from Rd ×P2(Rd)×A into Rd, respectively
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Rd×n, Rd×m, and satisfy the condition:

(H1)

(i) There exists some positive constant C s.t. for all x, x′ ∈ Rd, µ, µ′ ∈ ×P2(Rd), and a ∈ A,

|b(x, µ, a)− b(x′, µ′, a)|+ |σ(x, µ, a)− σ(x′, µ′, a)|+ |σ0(x, µ, a)− σ0(x′, µ′, a)|

≤ C
(
|x− x′|+W2(µ, µ′)

)
,

and

|b(0, δ0, a)|+ |σ(0, δ0, a)|+ |σ0(0, δ0, a)| ≤ C.

(ii) For all (x, µ) ∈ Rd × P2(Rd), the functions a 7→ b(x, µ, a), σ(x, µ, a), σ0(x, µ, a) are continuous on
A.

Remark 4.2.1. We have chosen a control formulation where the process α is required to be progressively
measurable w.r.t. the filtration F0 of the sole common noise. This form is used for rewriting the cost
functional in terms of the conditional law as sole state variable, see (4.3.3), which is then convenient for
deriving the dynamic programming principle. In the case where A is a functional space on the state space
Rd, meaning that α is a semi closed-loop control, and when the coefficients are in the form: b(x, µ, a)
= b̃(x, µ, a(x)), σ(x, µ, a) = σ̃(x, µ, a(x)), σ0(x, µ, a) = σ̃0(x, µ, a(x)) (see discussion in the introduction),
the Lipschitz condition in (H1)(i) requires that a ∈ A is Lipschitz continuous with a prescribed Lipschitz
constant, which is somewhat a restrictive condition. The more general case where the control α is allowed
to be measurable with respect to the filtration F of both noises, i.e., α of open-loop form, is certainly an
important extension, and left for future work. In this case, one should consider as state variables the pair
composed of the process Xt and its conditional law PW 0

Xt
, see the recent paper [BCP18] where a dynamic

programming principle is stated when the control is allowed to be of open-loop form in the case without
common noise. �

Under (H1)(i), there exists a unique solution to (4.2.1) (see e.g. [KX99]), denoted by {Xt,ξ,α
s , t ≤

s ≤ T}, which is F-adapted, and satisfies the square-integrability condition:

E
[

sup
t≤s≤T

|Xt,ξ,α
s |2

]
≤ C

(
1 + E|ξ|2

)
< ∞, (4.2.2)

for some positive constant C independent of α. We shall sometimes omit the dependence of Xt,ξ =
Xt,ξ,α on α when there is no ambiguity. Since {Xt,ξ

s , t ≤ s ≤ T} is F-adapted, and W 0 is a (P,F)-Wiener
process, we notice that PW 0

Xt,ξs
(dx) = P[Xt,ξ

s ∈ dx|F0] = P[Xt,ξ
s ∈ dx|F0

s ]. We thus have for any ϕ ∈
C2(Rd):

PW
0

Xt,ξs
(ϕ) = E

[
ϕ(Xt,ξ

s )
∣∣F0

]
= E

[
ϕ(Xt,ξ

s )
∣∣F0
s

]
, t ≤ s ≤ T, (4.2.3)

which shows that PW 0

Xt,ξs
(ϕ) is F0

s -measurable, and therefore, in view of the measurability property in
Property 1.1.1, that {PW 0

Xt,ξs
, t ≤ s ≤ T} is (F0

s )t≤s≤T -adapted. Moreover, since {PW 0

Xt,ξs
, t ≤ s ≤ T} is

valued in P2(C([t, T ];Rd)), the set of square integrable probability measures on the space C([t, T ];Rd) of
continuous functions from [t, T ] into Rd, it also has continuous trajectories, and is then F0-progressively
measurable (actually even F0-predictable).
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• Cost functional and value function. We are given a running cost function f defined on Rd×P2(Rd)×A,
and a terminal cost function g defined on Rd × P2(Rd), assumed to satisfy the condition

(H2)

(i) There exists some positive constant C s.t. for all (x, µ, a) ∈ Rd × P2(Rd)×A,

|f(x, µ, a)|+ |g(x, µ)| ≤ C
(
1 + |x|2 + ‖µ‖2

2

)
.

(ii) The functions f , g are continuous on Rd×P2(Rd)×A, resp. on Rd×P2(Rd), and satisfy the local
Lipschitz condition, uniformly w.r.t. A: there exists some positive constant C s.t. for all x, x′ ∈
Rd, µ, µ′ ∈ P2(Rd), a ∈ A,

|f(x, µ, a)− f(x′, µ′, a)|+ |g(x, µ)− g(x′, µ′)|
≤ C(1 + |x|+ |x′|+ ‖µ‖2 + ‖µ′‖2)

(
|x− x′|+W2(µ, µ′)

)
.

We then consider the cost functional:

J(t, ξ, α) := E
[ ∫ T

t

f
(
Xt,ξ
s ,PW

0

Xt,ξs
, αs
)
ds+ g

(
Xt,ξ
T ,PW

0

Xt,ξ
T

)]
,

which is well-defined and finite for all (t, ξ, α) ∈ [0, T ]× L2(G;Rd)×A, and we define the value function
of the conditional McKean-Vlasov control problem as

v(t, ξ) := inf
α∈A

J(t, ξ, α), (t, ξ) ∈ [0, T ]× L2(G;Rd). (4.2.4)

From the estimate (4.2.2) and the growth condition in (H2)(i), it is clear that v also satisfies a quadratic
growth condition:

|v(t, ξ)| ≤ C
(
1 + E|ξ|2

)
, ∀ξ ∈ L2(G;Rd). (4.2.5)

Our goal is to characterize the value function v as solution of a partial differential equation by means
of a dynamic programming approach.

4.3 Dynamic programming

The aim of this section is to prove the dynamic programming principle (DPP) for the value function
v in (4.2.4) of the conditional McKean-Vlasov control problem.

4.3.1 Flow properties

We shall assume that (Ω0,W 0,P0) is the canonical space, i.e. Ω0 = C(R+,Rm), the set of continuous
functions from R+ into Rm,W 0 is the canonical process, and P0 the Wiener measure. Following [CTT16],
we introduce the class of shifted control processes constructed by concatenation of paths: for α ∈ A, (t, ω̄0)
∈ [0, T ]× Ω0, we set

αt,ω̄
0

s (ω0) := αs(ω̄0 ⊗t ω0), (s, ω0) ∈ [0, T ]× Ω0,
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where ω̄0 ⊗t ω0 is the element in Ω0 defined by

ω̄0 ⊗t ω0(s) := ω̄0(s)1s<t +
(
ω̄0(t) + ω0(s)− ω0(t)

)
1s≥t.

We notice that for fixed (t, ω̄0), the process αt,ω̄0 lies in At, the set of elements in A which are independent
of F0

t under P0. For any α ∈ A, and F0-stopping time θ, we denote by αθ the map

αθ : (Ω0,F0
θ ) → (A,BA)
ω0 7→ αθ(ω

0),ω0
.

The key step in the proof of the DPP is to obtain a flow property on the controlled conditional
distribution F0-progressively measurable process {PW 0

Xt,ξs
, t ≤ s ≤ T}, for (t, ξ) ∈ [0, T ]× L2(Ft;Rd), and

α ∈ A.

Lemma 4.3.1. For any t ∈ [0, T ], µ ∈ P2(Rd), α ∈ A, the relation given by

ρt,µ,αs := PW
0

Xt,ξ,αs
, t ≤ s ≤ T, for ξ ∈ L2(Ft;Rd) s.t. PW

0

ξ = µ, (4.3.1)

defines a square integrable F0-progressive continuous process in P2(Rd). Moreover, the map (s, t, ω0, µ, α)
∈ [0, T ]× [0, T ]× Ω0 ×P2(Rd)×A → ρt,µ,αs (ω0) ∈ P2(Rd) (with the convention that ρt,µ,αs = µ for s ≤
t) is measurable, and satisfies the flow property: ρt,µ,αs = ρ

θ,ρt,µ,α
θ

,αθ

s , P0-a.s., i.e.

ρt,µ,αs (ω0) = ρ
θ(ω0),ρt,µ,α

θ(ω0)
(ω0),αθ(ω

0),ω0

s (ω0), s ∈ [θ, T ], P0(dω0)− a.s (4.3.2)

for all θ ∈ T 0
t,T , the set of F0-stopping times valued in [t, T ].

Proof. 1. First observe that for any t ∈ [0, T ], ξ ∈ L2(Ft;Rd), α ∈ A, we have: E0[‖PW 0

Xt,ξ,αs
‖2

2
] =

E[|Xt,ξ,α
s |2] < ∞, which means that the process {PW 0

Xt,ξ,αs
, t ≤ s ≤ T} is square integrable, and we recall

(see the discussion after (4.2.3)) that it is F0-progressively measurable.

(i) Notice that for P0-a.s ω0 ∈ Ω0, the law of the solution {Xt,ξ,α
s (ω0, .), t ≤ s ≤ T} to (4.2.1) on

(Ω1,F1,P1) is unique in law, which implies that PW 0

Xt,ξ,αs
(ω0) = P1

Xt,ξ,αs (ω0,.)
, t ≤ s ≤ T , depends on

ξ only through PW 0

ξ (ω0) = P1
ξ(ω0,.). In other words, for any ξ1, ξ2 ∈ L2(Ft;Rd) s.t. PW 0

ξ1
= PW 0

ξ2
,

the processes {PW 0

X
t,ξ1,α
s

, t ≤ s ≤ T} and {PW 0

X
t,ξ2,α
s

, t ≤ s ≤ T} are indistinguishable.

(ii) Let us now check that for any µ ∈ P2(Rd), one can find ξ ∈ L2(Ft;Rd) s.t. PW 0

ξ = µ. Indeed,
recalling that G is rich enough, one can find ξ ∈ L2(G;Rd) ⊂ L2(Ft;Rd) s.t. L(ξ) = µ. Since G is
independent of W 0, this also means that PW 0

ξ = µ.

In view of the uniqueness result in (i), and the representation result in (ii), one can define the process
{ρt,µ,αs , t ≤ s ≤ T} by the relation (4.3.1), and this process is a square integrable F0-progressively
measurable process in P2(Rd).

2. Let us now prove the joint measurability of ρt,µ,αs (ω0) in (t, s, ω0, µ, α) ∈ [0, T ]×[0, T ]×Ω0×P2(Rd)×A.
Given t ∈ [0, T ], µ ∈ P2(Rd), α ∈ A, let ξ ∈ L2(G;Rd) s.t. L(ξ) = µ. We construct Xt,ξ,α using Picard’s
iteration by defining recursively a sequence of processes (X(m),t,ξ,α)m as follows: we start from X(0),t,ξ,α

≡ 0, and define ρ(0),t,µ,α by formula (4.3.1) with X(0),t,ξ,α instead of Xt,ξ,α, and see that ρ(0),t,µ,α = δ0.
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- The process X(1),t,ξ,α is given by

X(1),t,ξ,α
s = ξ +

∫ s

t

b(0, δ0, αr)dr +
∫ s

t

σ(0, δ0, αr)dBr +
∫ s

t

σ0(0, δ0, αr)dW 0
r ,

for 0 ≤ t ≤ s ≤ T (and X
(1),t,ξ,α
s = ξ when s < t), and we notice that the map X(1),t,ξ,α :

([t, T ] × Ω,B([t, T ]) ⊗ F) → (Rd,B(Rd)) is measurable, up to indistinguishability. We then define
ρ(1),t,µ,α by formula (4.3.1) with X(1),t,ξ,α instead of Xt,ξ,α, so that

ρ(1),t,µ,α
s (ω0)(ϕ) = E1

[
ϕ
(
X(1),t,ξ,α
s (ω0, .)

)]
=
∫
Rd

Φ(1)(x, t, s, ω0, α)µ(dx),

for any ϕ ∈ C2(Rn), where Φ(1) : Rd × [0, T ] × [0, T ] × Ω0 × A → R is measurable with quadratic
growth condition in x, uniformly in (t, s, ω0, α), and given by:

Φ(1)(x, t, s, ω0, α) = E1
[
ϕ
(
x+

∫ s

t

b(0, δ0, αr(ω0))dr +
∫ s

t

σ(0, δ0, αr(ω0))dBr

+
∫ s

t

σ0(0, δ0, αr(ω0))dW 0
r (ω0)

)]
, t ≤ s ≤ T,

and Φ(1)(x, t, s, ω0, α) = ϕ(x) when s < t. By a monotone class argument (first considering the
case when Φ(1)(x, t, s, ω0, α) is expressed as a product h(x)`(t, s, ω0, α) for some measurable and
bounded functions h, `), we deduce that ρ(1),t,µ,α

s (ω0)(ϕ) is jointly measurable in (t, s, ω0, µ, α). By
Proposition 1.1.1, this means that the map (t, s, ω0, µ, α) ∈ [0, T ] × [0, T ] × Ω0 × P2(Rd) × A 7→
ρ

(1),t,µ,α
s (ω0) ∈ P2(Rd) is measurable.

- We define recursively X(m+1),t,ξ,α assuming that X(m),t,ξ,α has been already defined. We assume
that the map X(m),t,ξ,α : ([t, T ] × Ω,B([t, T ]) ⊗ F) → (Rd,B(Rd)) is measurable (up to indistin-
guishability), and we define ρ(m),t,µ,α

s (ω0) given by formula (4.3.1) with X(m),t,ξ,α instead of Xt,ξ,α.
Moreover, we suppose that ρ(m),t,µ,α

s (ω0) is jointly measurable in (t, s, ω0, µ, α). Then, we define
the process X(m+1),t,ξ,α as follows:

X(m+1),t,ξ,α
s = ξ +

∫ s

t

b(X(m),t,ξ,α
r , ρ(m),t,µ,α

r , αr)dr +
∫ s

t

σ(X(m),t,ξ,α
r , ρ(m),t,µ,α

r , αr)dBr

+
∫ s

t

σ0(X(m),t,ξ,α
r , ρ(m),t,µ,α

r , αr)dW 0
r ,

for 0 ≤ t ≤ s ≤ T (and X
(m+1),t,ξ,α
s = ξ when s < t), and notice by construction that the map

X(m+1),t,ξ,α : [t, T ]×Ω,B([t, T ])⊗F) → (Rd,B(Rd)) is measurable, up to indistinguishability. We
can then define ρ(m+1),t,µ,α by formula (4.3.1) with X(m+1),t,ξ,α instead of Xt,ξ,α, namely

ρ(m+1),t,µ,α
s (ω0)(ϕ) = E1

[
ϕ
(
X(m+1),t,ξ,α
s (ω0, .)

)]
,

for any ϕ ∈ C2(Rn), ω0 ∈ Ω0. From the (iterated) dependence of X(m+1),t,ξ,α on ξ, and by Fubini’s
theorem (recalling the product structure of the probability space Ω1 on which are defined the
random variable ξ of law µ and the Brownian motion B), we then have

ρ(m+1),t,µ,α
s (ω0)(ϕ) =

∫
Rd

Φ(m+1)(x, t, s, ω0, µ, α)µ(dx),
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where Φ(m+1) : Rd × [0, T ] × [0, T ] × Ω0 × P2(Rd) × A → R is measurable with quadratic growth
condition uniformly in (t, s, ω0, α), and given by

Φ(m+1)(x, t, s, ω0, µ, α) = E1
[
ϕ
(
x+

∫ s

t

b(x+ . . . , ρ(m),t,µ,α
r , αr)dr

+
∫ s

t

σ(x+ . . . , ρ(m),t,µ,α
r , αr)dBr

+
∫ s

t

σ0(x+ . . . , ρ(m),t,µ,α
r , αr)dWr(ω0)

)]
, t ≤ s ≤ T,

and Φ(m+1)(x, t, s, ω0, α) = ϕ(x) when s < t. We then see that ρ(m+1),t,µ,α
s (ω0)(ϕ) is jointly mea-

surable in (t, s, ω0, µ, α) (using again a monotone class argument), and deduce by Proposition 1.1.1
that the map (t, s, ω0, µ, α) ∈ [0, T ] × [0, T ] × Ω0 × P2(Rd) × A 7→ ρ

(m+1),t,µ,α
s (ω0) ∈ P2(Rd) is

measurable.

Now that we have constructed the sequence (X(m),t,ξ,α)m, one can show by proceeding along the same
lines as in the proof of Theorem IX.2.1 in [RY99] or Theorem V.8 in [Pro05] that

sup
t≤s≤T

|X(m),t,ξ,α
s −Xt,ξ,α

s | P−→
m→∞

0,

where the convergence holds in probability. Then, by the same arguments as in the proof of Lemma 3.2
in [BCP18] (see their Appendix B), this implies that the following convergence holds in probability:

W2

(
ρ(m),t,µ,α
s , ρt,µ,αs

) P0

−→
m→∞

0,

for all s ∈ [t, T ], µ ∈ P2(Rd), and α ∈ A. Since for any m ∈ N, ρ(m),t,µ,α
s (ω0) is jointly measurable in

(t, s, ω0, µ, α), we deduce by proceeding for instance as in the first item of Exercise IV.5.17 in [RY99],
and recalling that F0 is assumed to be a complete σ-field, that the map (t, s, ω0, µ, α) ∈ [0, T ]× [0, T ]×
Ω0 × P2(Rd)×A 7→ ρt,µ,αs (ω0) ∈ P2(Rd) is measurable.

3. Let us finally check the flow property (4.3.2). From pathwise uniqueness of the solution {Xs(ω0, .), t ≤
s ≤ T} to (4.2.1) on (Ω,F1,P1) for P0-a.s. ω0 ∈ Ω0, and recalling the definition of the shifted control
process, we have the flow property: for t ∈ [0, T ], ξ ∈ L2(Ft;Rd), α ∈ A, and P0-a.s. ω0 ∈ Ω0,

Xt,ξ,α
s (ω0, .) = X

θ(ω0),Xt,ξ,α
θ(ω0)

(ω0,.),αθ(ω
0),ω0

s (ω0, .), P1 − a.s.

for all F0-stopping time θ valued in [t, T ]. It follows that for any Borel-measurable bounded function ϕ
on Rd, and for P0-a.s ω0 ∈ Ω0,

ρt,µ,αs (ω0)(ϕ) = E1
[
ϕ
(
Xt,ξ,α
s (ω0, .)

)]
= E1

[
ϕ
(
X
θ(ω0),Xt,ξ,α

θ(ω0)
(ω0,.),αθ(ω

0),ω0

s (ω0, .)
)]

= ρ
θ(ω0),ρt,µ,α

θ(ω0)
(ω0),αθ(ω

0),ω0

s (ω0)(ϕ),

where the last equality is obtained by noting that ρt,µ,αθ(ω0)(ω
0) = PW 0

Xt,ξ,α
θ(ω0)

(ω0,.)
, and the definition of ρt,µ,αs .

This shows the required flow property (4.3.2). �

Now, by the law of iterated conditional expectations, from (4.2.3), (4.3.1), and recalling that α ∈ A
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is F0-progressive, we can rewrite the cost functional as

J(t, ξ, α) = E
[ ∫ T

t

E
[
f
(
Xt,ξ
s ,PW

0

Xt,ξs
, αs
)∣∣F0

s

]
ds+ E

[
g
(
Xt,ξ
T ,PW

0

Xt,ξ
T

)∣∣F0
T

]]
= E

[ ∫ T

t

ρt,µs
(
f(., ρt,µs , αs)

)
ds+ ρt,µT

(
g(., ρt,µT )

)]
= E

[ ∫ T

t

f̂(ρt,µs , αs)ds+ ĝ(ρt,µT )
]
, (4.3.3)

for t ∈ [0, T ], ξ ∈ L2(G;Rd) with law µ = L(ξ) = PW 0

ξ ∈ P2(Rd), α ∈ A, and with the functions f̂ :
P2(Rd)×A → R, and ĝ : P2(Rd) → R, defined by{

f̂(µ, a) := µ
(
f(., µ, a)

)
=
∫
Rd f(x, µ, a)µ(dx)

ĝ(µ) := µ
(
g(., µ)

)
=
∫
Rd g(x, µ)µ(dx). (4.3.4)

(To alleviate notations, we have omitted here the dependence of ρt,µs = ρt,µ,αs on α). Relation (4.3.3)
means that the cost functional depends on ξ only through its distribution µ = L(ξ), and by misuse of
notation, we set:

J(t, µ, α) := J(t, ξ, α) = E0
[ ∫ T

t

f̂(ρt,µs , αs)ds+ ĝ(ρt,µT )
]
,

for (t, µ) ∈ [0, T ] × P2(Rd), ξ ∈ L2(G;Rd) with L(ξ) = µ, and the expectation is taken under P0 since
{ρt,µs , t ≤ s ≤ T} is F0-progressive, and the control α ∈ A is an F0-progressive process. Therefore, the
value function can be identified with a function defined on [0, T ] × P2(Rd), equal to (we keep the same
notation v(t, µ) = v(t, ξ)):

v(t, µ) = inf
α∈A

E0
[ ∫ T

t

f̂(ρt,µs , αs)ds+ ĝ(ρt,µT )
]
,

and satisfying from (4.2.5) the quadratic growth condition

|v(t, µ)| ≤ C(1 + ‖µ‖2
2
), ∀µ ∈ P2(Rd). (4.3.5)

As a consequence of the flow property in Lemma 4.3.1, we obtain the following conditioning lemma,
also called pseudo-Markov property in the terminology of [CTT16], for the controlled conditional distri-
bution F0-progressive process {ρt,µ,αs , t ≤ s ≤ T}.

Lemma 4.3.2. For any (t, µ, α) ∈ [0, T ]× P2(Rd)×A, and θ ∈ T 0
t,T , we have

J(θ, ρt,µ,αθ , αθ) = E0
[ ∫ T

θ

f̂(ρt,µ,αs , αs)ds+ ĝ(ρt,µ,αT )
∣∣F0
θ

]
, P0 − a.s (4.3.6)

Proof. By the joint measurability property of ρt,µ,αs in (t, s, ω0, µ, α) in Lemma 4.3.1, the flow property
(4.3.2), and since ρt,µ,αθ is F0

θ -measurable for θ F0-stopping time, we have for P0-a.s ω0 ∈ Ω0,

E0
[ ∫ T

θ

f̂(ρt,µ,αs , αs)ds+ ĝ(ρt,µ,αT )
∣∣F0
θ

]
(ω0)

= E0
[ ∫ T

r

f̂(ρr,π,βs , βs) + ĝ(ρr,π,βT )
∣∣F0
r

]
(ω0)

∣∣∣∣∣
r=θ(ω0),π=ρt,µ,α

θ(ω0)
(ω0),β=αr,ω0

= E0
[ ∫ T

r

f̂(ρr,π,βs , βs) + ĝ(ρr,π,βT )
]∣∣∣∣∣
r=θ(ω0),π=ρt,µ,α

θ(ω0)
(ω0),β=αr,ω0

,
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where we used in the second equality the fact that for fixed ω0, r ∈ [t, T ], π ∈ P2(Rd) represented by η
∈ L2(G;Rd) s.t. L(ξ) = π, the process αr,ω0 lies in Ar, hence is independent of F0

r , which implies that
Xr,η,αr,ω

0

s is independent of Fr, and thus ρr,π,αr,ω
0

s is also independent of F0
r for r ≤ s. This shows the

conditioning relation (4.3.6). �

4.3.2 Continuity of the value function and dynamic programming principle

In this paragraph, we show the continuity of the value function, which is helpful for proving next the
dynamic programming principle. We mainly follow arguments from [Kry08] for the continuity result that
we extend to our McKean-Vlasov framework.

Lemma 4.3.3. The function (t, µ) 7→ J(t, µ, α) is continuous on [0, T ]×P2(Rd), uniformly with respect to
α ∈ A, and the function α 7→ J(t, x, α) is continuous on A for any (t, µ) ∈ [0, T ]×P2(Rd). Consequently,
the cost functional J is continuous on [0, T ] × P2(Rd) × A, and the value function v is continuous on
[0, T ]× P2(Rd).

Proof. (1) For any 0 ≤ t ≤ s ≤ T , µ, π ∈ P2(Rd), α ∈ A, recall that P0-a.s. ω0 ∈ Ω0, we have
P1
Xt,ξ,αr (ω0,.)

= ρt,µ,αr (ω0), P1
Xs,ζ,αr (ω0,.)

= ρs,π,αr (ω0) for r ∈ [s, T ], and any ξ, ζ ∈ L2(G;Rd) s.t. L(ξ) = µ,
L(ζ) = π. By definition of ‖.‖2 and the Wasserstein distance in P2(Rd), we then have: ‖ρt,µ,αr (ω0)‖2 =
E1|Xt,ξ,α

r (ω0, .)|2, and W2
2
(
ρt,µ,αr (ω0), ρs,π,αr (ω0)

)
≤ E1|Xt,ξ,α

r (ω0, .)−Xs,ζ,α
r (ω0, .)|2, so that

E0
[

sup
s≤r≤T

‖ρt,µ,αr ‖2
2

]
≤ E

[
sup

s≤r≤T
|Xt,ξ,α

r |2
]
, (4.3.7)

E0
[

sup
s≤r≤T

W2
2 (ρt,µ,αr , ρs,π,αr )

]
≤ E

[
sup

s≤r≤T
|Xt,ξ,α

r −Xs,ζ,α
r |2

]
. (4.3.8)

From the state equation (4.2.1), and using standard arguments involving Burkholder-Davis-Gundy in-
equalities, (4.3.7), (4.3.8), and Gronwall lemma, under the Lipschitz condition in (H1)(i), we obtain the
following estimates similar to the ones for controlled diffusion processes (see [Kry08], Chap.2, Thm.5.9,
Cor.5.10): there exists some positive constant C s.t. for all t ∈ [0, T ], ξ, ζ ∈ L2(G;Rd), α ∈ A, h ∈ [0, T−t],

E
[

sup
t≤s≤t+h

|Xt,ξ,α
s − ξ|2

]
≤ C(1 + E|ξ|2)h,

E
[

sup
t≤s≤T

|Xt,ξ,α
s −Xt,ζ,α

s |2
]
≤ CE[|ξ − ζ|2],

from which we easily deduce that for all 0 ≤ t ≤ s ≤ T , ξ, ζ ∈ L2(G;Rd), α ∈ A

E
[

sup
s≤r≤T

|Xt,ξ,α
r −Xs,ζ,α

r |2
]
≤ C

(
E|ξ − ζ|2 + (1 + E|ξ|2 + E|ζ|2)|s− t|

)
. (4.3.9)

Together with the estimates (4.2.2), and by definition of W2(µ, π), ‖µ‖2 , ‖π‖2 , we then get from (4.3.7),
(4.3.8):

E0
[

sup
s≤r≤T

‖ρt,µ,αr ‖2
2

]
≤ C(1 + ‖µ‖2

2
), (4.3.10)

E0
[

sup
s≤r≤T

W2
2 (ρt,µ,αr , ρs,π,αr )

]
≤ C

(
W2

2 (µ, π) + (1 + ‖µ‖2
2

+ ‖π‖2
2
)|s− t|

)
. (4.3.11)

(2) Let us now show the continuity of the cost functional J in (t, µ), uniformly w.r.t. α ∈ A. First,
we notice from the growth condition in (H2)(i) and the local Lipschitz condition in (H2)(ii) that there
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exists some positive constant C s.t. for all µ, π ∈ P2(Rd), α ∈ A,

|f̂(µ, α)| ≤ C
(
1 + ‖µ‖2

2

)
,

|f̂(µ, α)− f̂(π, α)|+ |ĝ(µ)− ĝ(π)| ≤ C(1 + ‖µ‖2 + ‖π‖2)W2(µ, π).

Then, we have for all 0 ≤ t ≤ s ≤ T , µ, π ∈ P2(Rd), α ∈ A∣∣J(t, µ, α)− J(s, π, α)
∣∣ ≤ E0

[ ∫ s

t

|f̂(ρt,µ,αr )|dr
]

+ E0
[ ∫ T

s

∣∣f̂(ρt,µ,αr , αr)− f̂(ρs,π,αr , αr)
∣∣dr +

∣∣ĝ(ρt,µ,αT )− ĝ(ρs,π,αT )
∣∣]

≤ CE0
[
(1 + sup

t≤r≤s
(‖ρt,µ,αr ‖2)|s− t|

]
+ CE0

[(
1 + sup

s≤r≤T
(‖ρt,µ,αr ‖2 + ‖ρs,π,αr ‖2)

)
sup

s≤r≤T
W2(ρt,µ,αr , ρs,π,αr )

]
≤ C(1 + ‖µ‖2)|s− t|

+ C(1 + ‖µ‖2 + ‖π‖2)
(
W2(µ, π) + (1 + ‖µ‖2 + ‖π‖2)|s− t| 12

)
,

by Cauchy Schwarz inequality and (4.3.10)-(4.3.11), which shows the desired continuity result.

(3) Let us show the continuity of the cost functional with respect to the control. Fix (t, µ) ∈ [0, T ]×P2(Rd),
and consider α ∈ A, a sequence (αn)n in A s.t. ∆(αn, α) → 0, i.e. dA(αnt , αt) → 0 in dt⊗ dP0-measure,
as n goes to infinity. Denote by ρn = ρt,µ,α

n , ρ = ρt,µ,α, Xn = Xt,ξ,αn , X = Xt,ξ,α for ξ ∈ L2(G;Rd)
s.t. L(ξ) = µ. By the same arguments as in (4.3.8), we have

E0
[

sup
t≤s≤T

W2
2 (ρns , ρs)

]
≤ E

[
sup
t≤s≤T

|Xn
s −Xs|2

]
. (4.3.12)

Next, starting from the state equation (4.2.1), using standard arguments involving Burkholder-Davis-
Gundy inequalities, (4.3.12), and Gronwall lemma, under the Lipschitz condition in (H1)(i), we arrive
at:

E
[

sup
t≤s≤T

|Xn
s −Xs|2

]
≤ C

{
E
[ ∫ T

t

|b(Xs, ρs, αs)− b(Xs, ρs, α
n
s )|2ds

+
∫ T

t

|σ(Xs, ρs, αs)− σ(Xs, ρs, α
n
s )|2ds

+
∫ T

t

|σ0(Xs, ρs, αs)− σ0(Xs, ρs, α
n
s )|2ds

]}
,

for some positive constant C independent of n. Recalling the bound (4.2.2), and (4.3.7), we deduce by
the dominated convergence theorem under the linear growth condition in (H1)(i), and the continuity
assumption in (H1)(ii) that E

[
supt≤s≤T |Xn

s −Xs|2
]
→ 0, and thus by (4.3.12)

E0
[

sup
t≤s≤T

W2
2 (ρns , ρs)

]
→ 0, as n→∞. (4.3.13)

Now, by writing ∣∣J(t, µ, αn)− J(t, µ, α)
∣∣

≤ E0
[ ∫ T

t

∣∣f̂(ρns , αns )− f̂(ρs, αs)
∣∣ds+

∣∣ĝ(ρnT )− ĝ(ρT )
∣∣], (4.3.14)
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and noting that f̂ and ĝ are continuous on P2(Rd)×A, resp. on P2(Rd), under the continuity assumption
in (H2)(ii), we conclude by the same arguments as in [Kry08] using (4.3.13) (see Chapter 3, Sec. 2, or
also Lemma 4.1 in [FP15]) that the r.h.s. of (4.3.14) tends to zero as n goes to infinity, which proves the
continuity of J(t, µ, .) on A.

(4) Finally, the global continuity of the cost functional J on [0, T ]× P2(Rd)×A is a direct consequence
of the continuity of J(., ., α) on [0, T ]×P2(Rd) uniformly w.r.t. α ∈ A, and the continuity of J(t, µ, .) on
A, while the continuity of the value function v on [0, T ]×P2(Rd) follows immediately from the fact that

|v(t, µ)− v(s, π)| ≤ sup
α∈A
|J(t, µ, α)− J(s, π, α)|, t, s ∈ [0, T ], µ, π ∈ P2(Rd),

and again from the continuity of J(., ., α) on [0, T ]× P2(Rd) uniformly w.r.t. α ∈ A. �

Remark 4.3.1. Notice that the supremum defining the value function v(t, µ) can be taken over the
subset At of elements in A which are independent of F0

t under P0, i.e.

v(t, µ) = inf
α∈At

E0
[ ∫ T

t

f̂(ρt,µs , αs)ds+ ĝ(ρt,µT )
]
. (4.3.15)

Indeed, denoting by ṽ(t, µ) the r.h.s. of (4.3.15), and since At ⊂ A, it is clear that v(t, µ) ≤ ṽ(t, µ). To
prove the reverse inequality, we apply the conditioning relation (4.3.6) for θ = t, and get in particular for
all α ∈ A: ∫

Ω0
J(t, µ, αt,ω

0
)P0(dω0) = J(t, µ, α). (4.3.16)

Now, recalling that for any fixed ω0 ∈ Ω0, αt,ω0 lies in At, we have J(t, µ, αt,ω0) ≥ ṽ(t, µ), which proves
the required result since α is arbitrary in (4.3.16). �

We can now state the dynamic programming principle (DPP) for the value function to the stochastic
McKean-Vlasov control problem.

Proposition 4.3.1. (Dynamic Programming Principle)

We have for all (t, µ) ∈ [0, T ]× P2(Rd),

v(t, µ) = inf
α∈A

inf
θ∈T 0

t,T

E0
[ ∫ θ

t

f̂(ρt,µ,αs , αs)ds + v(θ, ρt,µ,αθ )
]

= inf
α∈A

sup
θ∈T 0

t,T

E0
[ ∫ θ

t

f̂(ρt,µ,αs , αs)ds + v(θ, ρt,µ,αθ )
]
,

which means equivalently that

(i) for all α ∈ A, θ ∈ T 0
t,T ,

v(t, µ) ≤ E0
[ ∫ θ

t

f̂(ρt,µ,αs , αs)ds + v(θ, ρt,µ,αθ )
]
, (4.3.17)

(ii) for all ε > 0, there exists α ∈ A, such that for all θ ∈ T 0
t,T ,

v(t, µ) + ε ≥ E0
[ ∫ θ

t

f̂(ρt,µ,αs , αs)ds + v(θ, ρt,µ,αθ )
]
. (4.3.18)
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Remark 4.3.2. The above formulation of the DPP implies in particular that for all θ ∈ T 0
t,T ,

v(t, µ) = inf
α∈A

E0
[ ∫ θ

t

f̂(ρt,µ,αs , αs)ds + v(θ, ρt,µ,αθ )
]
,

which is the usual formulation of the DPP. The formulation in Proposition 4.3.1 is stronger, and the
difference relies on the fact that in the inequality (4.3.18), the ε-optimal control α = αε does not depend
on θ. This condition will be useful to show later the viscosity supersolution property of the value function.

�

Proof. 1. Fix (t, µ) ∈ [0, T ]× P2(Rd). From the conditioning relation (4.3.6), we have for all θ ∈ T 0
t,T ,

α ∈ A,

J(t, µ, α) = E0
[ ∫ θ

t

f̂(ρt,µ,αs , αs)ds+ J(θ, ρt,µ,αθ , αθ)
]
. (4.3.19)

Since J(., ., αθ) ≥ v(., .), and θ is arbitrary in T 0
t,T , we have

J(t, µ, α) ≥ sup
θ∈T 0

t,T

E0
[ ∫ θ

t

f̂(ρt,µ,αs , αs)ds+ v(θ, ρt,µ,αθ )
]
,

and since α is arbitrary in A, it follows that

v(t, µ) ≥ inf
α∈A

sup
θ∈T 0

t,T

E0
[ ∫ θ

t

f̂(ρt,µ,αs , αs)ds + v(θ, ρt,µ,αθ )
]

(4.3.20)

2. Fix (t, µ) ∈ [0, T ]× P2(Rd), α ∈ A and θ ∈ T 0
t,T . For any ε > 0, ω0 ∈ Ω0, one can find from (4.3.15)

some α(ε,ω0) ∈ Aθ(ω0) s.t.

v(θ(ω0), ρt,µ,αθ(ω0)(ω
0)) + ε ≥ J(θ(ω0), ρt,µ,αθ(ω0)(ω

0), α(ε,ω0)). (4.3.21)

Since J and v are continuous (by Lemma 4.3.3), one can invoke measurable selection arguments (see e.g.
[Wag80]), to claim that the map ω0 ∈ (Ω0,F0) 7→ α(ε,ω0) ∈ (A,BA) can be chosen measurable. Let us
now define the process ᾱ on (Ω0,F0,P0) obtained by concatenation at θ of the processes α and α(ε,ω0)

in A, namely:

ᾱs(ω0) := αs(ω0)1s<θ(ω0) + α(ε,ω0)(ω0)1s≥θ(ω0), 0 ≤ s ≤ T.

By Lemma 2.1 in [ST02], and since A is a separable metric space, the process ᾱ is F0-progressively
measurable, and thus ᾱ ∈ A. Notice with our notations of shifted control process that ᾱθ(ω0),ω0 = α(ε,ω0)

for all ω0 in Ω0, and then (4.3.21) reads as

v(θ, ρt,µ,αθ ) + ε ≥ J(θ, ρt,µ,αθ , ᾱθ), P0 − a.s.

Therefore, by using again (4.3.19) to ᾱ, and since ρt,µ,ᾱs = ρt,µ,αs for s ≤ θ (recall that ᾱs = αs for s <
θ, and ρt,µ,α has continuous trajectories), we get

v(t, µ) ≤ J(t, µ, ᾱ) = E0
[ ∫ θ

t

f̂(ρt,µ,αs , αs)ds+ J(θ, ρt,µ,αθ , ᾱθ)
]

≤ E0
[ ∫ θ

t

f̂(ρt,µ,αs , αs)ds+ v(θ, ρt,µ,αθ )
]

+ ε
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Since α, θ and ε are arbitrary, this gives the inequality

v(t, µ) ≤ inf
α∈A

inf
θ∈T 0

t,T

E0
[ ∫ θ

t

f̂(ρt,µ,αs , αs)ds + v(θ, ρt,µ,αθ )
]
,

which, combined with the first inequality (4.3.20), proves the DPP result. �

4.4 Bellman equation and viscosity solutions

4.4.1 Dynamic programming equation

Based on the DPP in Proposition 4.3.1 and Itô’s formula for functions of measure-valued processes
in Proposition 1.3.2, the dynamic programming Bellman equation associated to the value function of the
stochastic McKean-Vlasov control problem takes the following form:{

−∂tv − inf
a∈A

[
f̂(µ, a) + µ

(
Łav(t, µ)

)
+ µ⊗ µ

(
Mav(t, µ)

)]
= 0, (t, µ) ∈ [0, T )× P2(Rd),

v(T, µ) = ĝ(µ), µ ∈ P2(Rd),
(4.4.1)

where for φ ∈ C2
c (P2(Rd)), a ∈ A, and µ ∈ P2(Rd), Łaφ(µ) ∈ L2

µ(R) is the function Rd → R defined by

Łaφ(µ)(x) := ∂µφ(µ)(x).b(x, µ, a) + 1
2tr
(
∂x∂µφ(µ)(x)(σσᵀ + σ0σ

ᵀ

0)(x, µ, a)
)
, (4.4.2)

and Maφ(µ) ∈ L2
µ⊗µ(R) is the function Rd × Rd → R defined by

Maφ(µ)(x, x′) := 1
2tr
(
∂2
µφ(µ)(x, x′)σ0(x, µ, a)σᵀ

0(x′, µ, a)
)
. (4.4.3)

Alternatively, by viewing the value function as a function on [0, T ]×L2(G;Rd) via the lifting identifi-
cation, and keeping the same notation v(t, ξ) = v(t,L(ξ)) (recall that v depends on ξ only via its distri-
bution), we see from the connection (1.2.1)-(1.3.8) between derivatives in the Wasserstein space P2(Rd)
and in the Hilbert space L2(G;Rd) that the Bellman equation (4.4.1) is written also in [0, T ]×L2(G;Rd)
as {

−∂tv −H
(
ξ,Dv(t, ξ), D2v(t, ξ)

)
= 0, (t, ξ) ∈ [0, T )× L2(G;Rd),

v(T, ξ) = Ẽ1[g(ξ,L(ξ))
]
, ξ ∈ L2(G;Rd), (4.4.4)

where H : L2(G;Rd)× L2(G;Rd)× S(L2(G;Rd)) → R is defined by

H(ξ, P,Q) = inf
a∈A

Ẽ1
[
f(ξ,L(ξ), a) + P.b(ξ,L(ξ), a) (4.4.5)

+ 1
2Q(σ0(ξ,L(ξ), a)).σ0(ξ,L(ξ), a) + 1

2Q(σ(ξ,L(ξ), a)N).σ(ξ,L(ξ), a)N
]
,

with N ∈ L2(G;Rn) of zero mean, and unit variance, and independent of ξ.

The purpose of this section is to prove an analytic characterization of the value function in terms of
the dynamic programming Bellman equation. We shall adopt a notion of viscosity solutions following the
approach in [Lio12], which consists via the lifting identification in working in the Hilbert space L2(G;Rd)
instead of working in the Wasserstein space P2(Rd). Indeed, comparison principles for viscosity solutions
in the Wasserstein space, or more generally in metric spaces, are difficult to obtain as we have to deal with
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locally non compact spaces (see e.g. [AGS08], [GNT08], [FK09]), and instead by working in separable
Hilbert spaces, one can essentially reduce to the case of Euclidian spaces by projection, and then take
advantage of the results developed for viscosity solutions, in particular here, for second order Hamilton-
Jacobi-Bellman equations, see [Lio89b], [FGS15]. We shall assume that the σ-algebra G is countably
generated upto null sets, which ensures that the Hilbert space L2(G;Rd) is separable, see [Doo94], p. 92.
This is satisfied for example when G is the Borel σ-algebra of a canonical space Ω̃1 of continuous functions
on R+ (see Exercise 4.21 in Chapter 1 of [RY99]).

Definition 4.4.1. We say that a continuous function u : [0, T ]×P2(Rd) → R is a viscosity (sub, super)
solution to (4.4.1) if its lifted version ũ on [0, T ]×L2(G;Rd) is a viscosity (sub, super) solution to (4.4.4),
that is:

(i) ũ(T, ξ) ≤ Ẽ1[g(ξ,L(ξ))
]
, and for any test function ϕ ∈ C2([0, T ] × L2(G;Rd)) (the set of real-valued

continuous functions on [0, T ] × L2(G;Rd) which are continuously differentiable in t ∈ [0, T ), and twice
continuously Fréchet differentiable on L2(G;Rd)) s.t. ũ−ϕ has a maximum at (t, ξ) ∈ [0, T )×L2(G;Rd),
one has

−∂tϕ(t, ξ)−H
(
ξ,Dϕ(t, ξ), D2ϕ(t, ξ)

)
≤ 0.

(ii) ũ(T, ξ) ≥ Ẽ1[g(ξ,L(ξ))
]
, and for any test function ϕ ∈ C2([0, T ]×L2(G;Rd) s.t. ũ−ϕ has a minimum

at (t, ξ) ∈ [0, T )× L2(G;Rd), one has

−∂tϕ(t, ξ)−H
(
ξ,Dϕ(t, ξ), D2ϕ(t, ξ)

)
≥ 0.

Remark 4.4.1. Since the lifted function ũ of a smooth solution u ∈ C2([0, T ]×P2(Rd)) to (4.4.1), may
not be smooth in [0, T ] × L2(G;Rd), it says that u cannot be viewed in general as a viscosity solution
to (4.4.1) in the sense of Definition 4.4.1 unless we add the extra-assumption that its lifted function
is indeed twice continuously Fréchet differentiable on L2(G;Rd). Hence, a more natural and intrinsic
definition of viscosity solutions would use test functions on [0, T ] × P2(Rd): in this case, it would be
possible to get the viscosity property from the dynamic programming principle and Itô’s formula (1.3.7),
but as pointed out above, the uniqueness result (and so the characterization) in the Wasserstein space is
a challenging issue, beyond the scope of this paper. We have then chosen here to work with test functions
on [0, T ]× L2(G;Rd), not necessarily of the lifted form. �

The main result of this section is the viscosity characterization of the value function for the stochas-
tic McKean-Vlasov control problem (4.2.4) to the dynamic programming Bellman equation (4.4.1) (or
(4.4.4)).

Theorem 4.4.1. The value function v is the unique continuous viscosity solution to (4.4.1) satisfying a
quadratic growth condition (4.3.5).

Proof. (1) Viscosity property. Let us first reformulate the dynamic programming principle (DPP)
of Proposition 4.3.1 for the value function viewed now as a function on [0, T ] × L2(G;Rd). For this, we
take a copy B̃ of B on the probability space (Ω̃1,G, P̃1), and given (t, ξ) ∈ [0, T ]× L2(G;Rd), α ∈ A, we
consider on (Ω̃ = Ω0×Ω̃1, F̃ = F0⊗G, P̃ = P0⊗P̃1) the solution X̃t,ξ,α, t ≤ s ≤ T , to the McKean-Vlasov
equation

X̃t,ξ,α
s = ξ +

∫ s

t

b(X̃t,ξ,α
r , P̃W

0

X̃t,ξ,αr
, αr)dr +

∫ s

t

σ(X̃t,ξ,α
r , P̃W

0

X̃t,ξ,αr
, αr)dB̃r

+
∫ s

t

σ0(X̃t,ξ,α
r , P̃W

0

X̃t,ξ,αr
, αr)dW 0

r , t ≤ s ≤ T,
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where P̃W 0

X̃t,ξ,αs
denotes the regular conditional distribution of X̃t,ξ,α

s given F0. In other words, X̃t,ξ,α is a
copy of Xt,ξ,α on (Ω̃, F̃ , P̃), and denoting by X̌t,ξ,α

s (ω0) = X̃t,ξ,α
s (ω0, .), t ≤ s ≤ T , we see that the process

{X̌t,ξ,α
s , t ≤ s ≤ T} is F0-progressive, valued in L2(G;Rd), and P̃1

X̌t,ξ,αs
= ρt,µ,αs for µ = L(ξ). Therefore,

the lifted value function on [0, T ]×L2(G;Rd) identified with the value function on [0, T ]×P2(Rd) satisfies
v(s, X̌t,ξ,α

s ) = v(s, ρt,µ,αs ), t ≤ s ≤ T . By noting that f̂(ρt,µ,αs , αs) = Ẽ1[f(X̃t,ξ,α
s , P̃1

X̌t,ξ,αs
, αs)

]
, we obtain

from Proposition 4.3.1 the lifted DPP: for all (t, ξ) ∈ [0, T ]× L2(G;Rd),

v(t, ξ) = inf
α∈A

inf
θ∈T 0

t,T

E0
[ ∫ θ

t

Ẽ1[f(X̃t,ξ,α
s , P̃1

X̌t,ξ,αs
, αs)

]
ds + v(θ, X̌t,ξ,α

θ )
]

(4.4.6)

= inf
α∈A

sup
θ∈T 0

t,T

E0
[ ∫ θ

t

Ẽ1[f(X̃t,ξ,α
s , P̃1

X̌t,ξ,αs
, αs)

]
ds + v(θ, X̌t,ξ,α

θ )
]
. (4.4.7)

We already know that v is continuous on [0, T ] × L2(G;Rd), hence in particular at T , so that v(T, ξ) =
Ẽ1[g(ξ,L(ξ))], and it remains to derive the viscosity property for the value function in [0, T )×L2(G;Rd)
by following standard arguments that we adapt in our context.

(i) Subsolution property. Fix (t, ξ) ∈ [0, T )× L2(G;Rd), and consider some test function ϕ ∈ C2([0, T ]×
L2(G;Rd)) s.t. v − ϕ has a maximum at (t, ξ), and w.l.o.g. v(t, ξ) = ϕ(t, ξ), so that v ≤ ϕ. Let a be an
arbitrary element in A, α ≡ a the constant control in A equal to a, and consider the stopping time in
T 0
t,T : θh = inf{s ≥ t : Ẽ1[|X̌t,ξ,a

s − ξ|2] ≥ δ2} ∧ (t+ h), with h ∈ (0, T − t), and δ some positive constant
small enough (depending on ξ), so that ϕ and its continuous derivatives ∂tϕ, Dϕ, D2ϕ are bounded on
the ball in L2(G;Rd) of center ξ and radius δ. From the first part (4.4.6) of the DPP, we get

ϕ(t, ξ) ≤ E0
[ ∫ θh

t

Ẽ1[f(X̃t,ξ,a
s , P̃1

X̌t,ξ,as
, a)
]
ds + ϕ(θh, X̌t,ξ,a

θh
)
]
.

Applying Itô’s formula (1.3.9) to ϕ(s, X̌t,ξ,a
s ), and noting that the stochastic integral w.r.t. W 0 vanishes

under expectation E0 by the localization with the stopping time θh, we then have

0 ≤ E0
[ 1
h

∫ θh

t

∂tϕ(s, X̌t,ξ,a
s ) + Ẽ1[f(X̃t,ξ,a

s , P̃1
X̌t,ξ,as

, a) +Dϕ(s, X̌t,ξ,a
s ).b(X̌t,ξ,a

s , P̃1
X̌t,ξ,as

, a)

+ 1
2D

2ϕ(s, X̌t,ξ,a
s )(σ(X̌t,ξ,a

s , P̃1
X̌t,ξ,as

, a)N).σ(X̌t,ξ,a
s , P̃1

X̌t,ξ,as
, a)N

+ 1
2D

2ϕ(s, X̌t,ξ,a
s )(σ0(X̌t,ξ,a

s , P̃1
X̌t,ξ,as

, a)).σ0(X̌t,ξ,a
s , P̃1

X̌t,ξ,as
, a)
]
ds
]

=: E0
[ 1
h

∫ θh

t

Fs(t, ξ, a)ds
]
, (4.4.8)

with N ∈ L2(G;Rn) of zero mean, and unit variance, and independent of (B̃, ξ). Since the map s

∈ [t, T ] 7→ Ẽ1[ψ(X̃t,ξ,a
s )] = E[ψ(Xt,ξ,a

s )|F0] = ρt,µ,as (ψ) (for µ = L(ξ)) is continuous P0-a.s. (recall
that ρt,µ,αs is continuous in s), for any bounded continuous function ψ on Rd, we see that the process
{Fs(t, ξ, a), t ≤ s ≤ θh} has continuous paths P0 almost surely. Moreover, by (standard) Itô’s formula,
we have for all t ≤ s ≤ T ,

Ẽ1[|X̌t,ξ,a
s − ξ|2

]
= E

[
|Xt,ξ,a

s − ξ|2|F0] =
∫ s

t

E
[
2(Xt,ξ,a

r − ξ).br + σrσ
ᵀ
r + σ0

r(σ0
r)ᵀ|F0]dr

+
∫ s

t

E
[
2(Xt,ξ,a

r − ξ)ᵀσ0
r |F0]dW 0

r ,
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where we set bs = b(Xt,ξ,a
s ,PW 0

Xt,ξ,as
, a), σs = σ(Xt,ξ,a

s ,PW 0

Xt,ξ,as
, a), σ0

s = σ0(Xt,ξ,a
s ,PW 0

Xt,ξ,as
, a). This shows

that the map s ∈ [t, T ] 7→ Ẽ1[|X̌t,ξ,a
s −ξ|2] is continuous P0-a.s., and thus θh(ω0) = t+h for h small enough

(≤ h̄(ω0)), P0(dω0)-a.s. By the mean-value theorem, we then get P0 almost surely, 1
h

∫ θh
t
Fs(t, ξ, a)ds →

Ft(t, ξ, a), as h goes to zero, and so from the dominated convergence theorem in (4.4.8):

0 ≤ Ft(t, ξ, a) = ∂tϕ(t, ξ) + Ẽ1[f(ξ,L(ξ), a) +Dϕ(t, ξ).b(ξ,L(ξ), a)

+ 1
2D

2ϕ(t, ξ)(σ(ξ,L(ξ), a)N).σ(ξ,L(ξ), a)N

+ 1
2D

2ϕ(t, ξ)(σ0(ξ,L(ξ), a)).σ0(ξ,L(ξ), a)
]
.

Since a is arbitrary in A, this shows the required viscosity subsolution property.

(ii) Supersolution property. Fix (t, ξ) ∈ [0, T )×L2(G;Rd), and consider some test function ϕ ∈ C2([0, T ]×
L2(G;Rd)) s.t. v − ϕ has a minimum at (t, ξ), and w.l.o.g. v(t, ξ) = ϕ(t, ξ), so that v ≥ ϕ. From the
continuity assumptions in (H1)-(H2), we observe that the function H defined on [0, T ]× L2(G;Rd) by

H(s, ζ) := H(ζ,Dϕ(s, ζ), D2ϕ(s, ζ)),

is continuous. Then, given an arbitrary ε > 0, there exists h̄ ∈ (0, T − t), δ > 0 s.t. for all s ∈ [t, t+ h̄],
and ζ ∈ L2(G;Rd) with Ẽ1[|ζ − ξ|2] ≤ δ,∣∣∣(∂tϕ+H

)
(s, ζ)−

(
∂tϕ+H

)
(t, ξ)

∣∣∣ ≤ ε.

From the second part (4.4.7) of the DPP, for any h ∈ (0, h̄), there exists α ∈ A s.t.

ϕ(t, ξ) + εh ≥ E0
[ ∫ θh

t

Ẽ1[f(X̃t,ξ,α
s , P̃1

X̌t,ξ,αs
, αs)

]
ds + ϕ(θh, X̌t,ξ,α

θh
)
]
,

where we take θh = inf{s ≥ t : Ẽ1[|X̌t,ξ,α
s − ξ|2] ≥ δ2} ∧ (t+h) (assuming w.l.o.g. that δ is small enough

(depending on ξ), so that ϕ and its continuous derivatives ∂tϕ, Dϕ, D2ϕ are bounded on the ball in
L2(G;Rd) of center ξ and radius δ). Applying again Itô’s formula (1.3.9) to ϕ(s, X̌t,ξ,α

s ), and by definition
of H, we get

ε ≥ E0
[ 1
h

∫ θh

t

(
∂tϕ+H

)
(s, X̌t,ξ,α

s )ds
]

≥
[(
∂tϕ+H

)
(t, ξ)− ε

]E0[θh]− t
h

, (4.4.9)

by the choice of h, δ, and θh. Now, by noting from Chebyshev’s inequality that

P0[θh < t+ h] ≤ P0[ sup
t≤s≤t+h

Ẽ1[|X̌t,ξ,α
s − ξ|2] ≥ δ

]

≤
E0
[

sup
t≤s≤t+h

Ẽ1[|X̌t,ξ,α
s − ξ|2]

]
δ

≤ C(1 + Ẽ1[|ξ|2])h
δ

and using the obvious inequality: 1− P0[θh < t+ h] = P[θh = t+ h] ≤ E0[θh]−t
h ≤ 1, we see that E0[θh]−t

h

converges to 1 when h goes to zero, and deduce from (4.4.9) that

2ε ≥
(
∂tϕ+H

)
(t, ξ).
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We obtain the required viscosity supersolution property by sending ε to zero.

(2) Uniqueness property. In view of our definition of viscosity solution, we have to show a comparison
principle for viscosity solutions to the lifted Bellman equation (4.4.4). We use the comparison principle
proved in Theorem 3.50 in [FGS15] and only need to check that the hypotheses of this theorem are
satisfied in our context for the lifted Hamiltonian H defined in (4.4.5). Notice that the Bellman equation
(4.4.4) is a bounded equation in the terminology of [FGS15] (see their section 3.3.1) meaning that there is
no linear dissipative operator on L2(G;Rd) in the equation. Therefore, the notion of B-continuity reduces
to the standard notion of continuity in L2(G;Rd) since one can take for B the identity operator. Their
Hypothesis 3.44 follows from the uniform continuity of b, σ, σ0 and f in (H1)-(H2). Hypothesis 3.45
is immediately satisfied since there is no discount factor in our equation, i.e. H does not depend on v

but only on its derivatives. The monotonicity condition in Q ∈ S(L2(G;Rd)) of H in Hypothesis 3.46 is
clearly satisfied. Hypothesis 3.47 holds directly when dealing with bounded equations. Hypothesis 3.48
is obtained from the Lipschitz condition of b, σ, σ0 in (H1), and the uniform continuity condition on f
in (H2), while Hypothesis 3.49 follows from the growth condition of σ, σ0 in (H1). One can then apply
Theorem 3.50 in [FGS15] and conclude that comparison principle holds for the Bellman equation (4.4.4).

�

We conclude this section with a verification theorem, which gives an analytic feedback form of the
optimal control when there is a smooth solution to the Bellman equation (4.4.1) in the Wasserstein space.
We refer to the recent paper [GŚ15a] for existence result of smooth solution to the Bellman equation on
small time horizon.

Theorem 4.4.2. (Verification theorem)

Let w : [0, T ]×P2(Rd) → R be a function in C1,2
b ([0, T ]×P2(Rd)), i.e. w is continuous on [0, T ]×P2(Rd),

w(t, .) ∈ C2
c (P2(Rd)), and w(., µ) ∈ C1([0, T )), and satisfying a quadratic growth condition as in (4.3.5),

together with a linear growth condition for its derivative:

|∂µw(t, µ)(x)| ≤ C(1 + |x|+ ‖µ‖2), ∀(t, x, µ) ∈ [0, T ]× Rd × P2(Rd), (4.4.10)

for some positive constant C. Suppose that w is solution to the Bellman equation (4.4.1), and there exists
for all (t, µ) ∈ [0, T )×P2(Rd) an element â(t, µ) ∈ A attaining the infimum in (4.4.1) s.t. the map (t, µ)
7→ â(t, µ) is measurable, and the stochastic McKean-Vlasov equation

dX̂s = b(X̂s,PW
0

X̂s
, â(s,PW

0

X̂s
))ds+ σ(X̂s,PW

0

X̂s
, â(s,PW

0

X̂s
))dBs

+ σ0(X̂s,PW
0

X̂s
, â(s,PW

0

X̂s
))dW 0

s , t ≤ s ≤ T, X̂t = ξ,

admits a unique solution denoted (X̂t,ξ
s )t≤s≤T , for any (t, ξ) ∈ [0, T ] × L2(G;Rd) (This is satisfied e.g.

when µ 7→ â(t, µ) is Lipschitz on P2(Rd)). Then, w = v, and the feedback control α∗ ∈ A defined by

α∗s = â(s,PW
0

X̂t,ξs
), t ≤ s < T, (4.4.11)

is an optimal control for v(t, µ), i.e. v(t, µ) = J(t, µ, α∗), with µ = L(ξ).

Proof. Fix (t, µ = L(ξ)) ∈ [0, T ] × P2(Rd), and consider some arbitrary control α ∈ A associated
to ρt,µ,αs = PW 0

Xt,ξ,αs
, t ≤ s ≤ T . Denote by X ′t,ξ,αs a copy of Xt,ξ,α

s on another probability space (Ω′ =
Ω0 × Ω′1 F0 ⊗ F ′1,P0 × P′1), with (Ω′1,F ′1,P′1) supporting B′ a copy of B. Applying Itô’s formula
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(1.3.7) to w(s, ρt,µ,αs ) between t and the F0-stopping time θnT = inf{s ≥ t : ‖ρt,µ,αs ‖2 ≥ n} ∧ T , we obtain

w(θnT , ρ
t,µ,α
θn
T

)

= w(t, µ) +
∫ θnT

t

{∂w
∂t

(s, ρt,µ,αs ) + E
W0

[
∂µw(s, ρt,µ,αs )(Xt,ξ,α

s ).b(Xt,ξ,α
s , ρt,µ,αs , αs)

+ 1
2tr
[
∂x∂µw(s, ρt,µ,αs )(Xt,ξ,α

s )(σσᵀ(Xt,ξ,α
s , ρt,µ,αs , αs) + σ0σ

ᵀ

0(Xt,ξ,α
s , ρt,µ,αs , αs))

]]
+ E

W0

[
E′
W0

[1
2tr
(
∂2
µw(s, ρt,µ,αs )(Xt,ξ,α

s , X
′t,ξ,α
s )σ0(Xt,ξ,α

s , ρt,µ,αs , αs)σᵀ

0(X
′t,ξ,α
s , ρt,µ,αs , αs)

)]]}
ds

+
∫ θnT

t

E
W0

[
∂µw(s, ρt,µ,αs )(Xt,ξ,α

s )ᵀσ0(Xt,ξ,α
s , ρt,ξ,αs , αs)

]
dW 0

s

= w(t, µ) +
∫ θnT

t

[∂w
∂t

(s, ρt,µ,αs ) + ρt,µ,αs

(
Łαsw(s, ρt,µ,αs )

)
+ ρt,µ,αs ⊗ ρt,µ,αs

(
Mαsw(s, ρt,µ,αs )

)]
ds

+
∫ θnT

t

E
W0

[
∂µw(s, ρt,µ,αs )(Xt,ξ,α

s )ᵀσ0(Xt,ξ,α
s , ρt,µ,αs , αs)

]
dW 0

s , (4.4.12)

by definition of Ła and Ma in (4.4.2)-(4.4.3), and recalling again that ρt,µ,αs = PW 0

Xt,ξ,αs
. Now, the integrand

of the stochastic integral w.r.t. W 0 in (4.4.12) satisfies:∣∣∣E
W0

[
∂µw(s, ρt,µ,αs )(Xt,ξ,α

s )ᵀσ0(Xt,ξ,α
s , ρt,µ,αs , αs)

]∣∣∣2
≤

(∫
Rd

∣∣∂µw(s, ρt,µ,αs )(x)ᵀσ0(x, ρt,µ,αs , αs)
∣∣ρt,µ,αs (dx)

)2

≤
∫
Rd

∣∣∂µw(s, ρt,µ,αs )(x)
∣∣2ρt,µ,αs (dx)

∫
Rd

∣∣σ0(x, ρt,µ,αs , αs)
∣∣2ρt,µ,αs (dx)

≤ C(1 + n2)2 < ∞, t ≤ s ≤ θnT ,

from Cauchy-Schwarz inequality, the linear growth condition of σ0 in (H1), the choice of θnT , and condition
(4.4.10). Therefore, the stochastic integral in (4.4.12) vanishes in E0-expectation, and we get

E0[w(θnT , ρ
t,µ,α
θn
T

)
]

= w(t, µ) + E0
[ ∫ θnT

t

∂w

∂t
(s, ρt,µ,αs ) + ρt,µ,αs

(
Łαsw(s, ρt,µ,αs )

)
+ ρt,µ,αs ⊗ ρt,µ,αs

(
Mαsw(s, ρt,µ,αs )

)
ds
]

≥ w(t, µ) − E0
[ ∫ θnT

t

f̂(ρt,µ,αs , αs)ds
]
, (4.4.13)

since w satisfies the Bellman equation (4.4.1). By sending n to infinity into (4.4.13), and from the
dominated convergence theorem (under the condition that w, f satisfy a quadratic growth condition and
recalling the estimation (4.3.10)), we obtain:

w(t, µ) ≤ J(t, µ, α) = E0
[ ∫ T

t

f̂(ρt,µ,αs , αs)ds+ ĝ(ρt,µ,αT )
]
.

Since α is arbitrary in A, this shows that w ≤ v.

Finally, by applying the same Itô’s argument with the feedback control α∗ ∈ A in (4.4.11), and noting
that X̂t,ξ

s = Xt,ξ,α∗

s , PW 0

X̂t,ξs
= ρt,µ,α

∗

s , we have now equality in (4.4.13), hence w(t, µ) = J(t, µ, α∗) (≥
v(t, µ)), and thus finally the required equality: w(t, µ) = v(t, µ) = J(t, µ, α∗). �
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4.5 Linear quadratic stochastic McKean-Vlasov control

We consider the linear-quadratic (LQ) stochastic McKean-Vlasov control problem where the control
set A is a functional space, which corresponds to the McKean-Vlasov problem with common noise as
presented in the introduction.

The control set A is the set L(Rd;Rm) of Lipschitz functions from Rd into A = Rm, and we consider
a multivariate linear McKean-Vlasov controlled dynamics with coefficients given by

b(x, µ, a) = b0 +Bx+ B̄µ̄+ Ca(x),
σ(x, µ, a) = ϑ+Dx+ D̄µ̄+ Fa(x),
σ0(x, µ, a) = ϑ0 +D0x+ D̄0µ̄+ F0a(x),

(4.5.1)

for (x, µ, a) ∈ Rd × P2(Rd)× L(Rd;Rm), where we set

µ̄ :=
∫
Rd
xµ(dx).

Here B, B̄, D, D̄, D0, D̄0, are constant matrices in Rd×d, C, F , F0 are constant matrices in Rd×m, and
b0, ϑ, ϑ0 are constant vectors in Rd. The quadratic cost functions are given by

f(x, µ, a) = xᵀQ2x+ µ̄ᵀQ̄2µ̄+ a(x)ᵀR2a(x)
g(x, µ) = xᵀP2x+ µ̄ᵀP̄2µ̄,

(4.5.2)

where Q2, Q̄2, P2, P̄2 are constant matrices in Rd×d, R2 is a constant matrix in Rm×m. Since f and g are
real-valued, we may assume w.l.o.g. that all the matrices Q2, Q̄2, R2, P2, P̄2 are symmetric. We denote
by Sd the set of symmetric matrices in Rd×d, by Sd+ the subset of nonnegative symmetric matrices, by
Sd>+ the subset of symmetric positive definite matrices, and similarly for Sm, Sm+ , Sm>+.

The functions f̂ and ĝ defined in (4.3.4) are then given by{
f̂(t, µ, a) = Var(µ)(Q2) + µ̄ᵀ(Q2 + Q̄2)µ̄+ a ? µ2(R2)

ĝ(µ) = Var(µ)(P2) + µ̄ᵀ(P2 + P̄2)µ̄ (4.5.3)

for any µ ∈ P2(Rd), a ∈ A = L(Rd;Rm), where we set for any Λ in Sd (resp. in Sm), and µ ∈ P2(Rd)
(resp. P2(Rm)):

µ̄2(Λ) :=
∫
xᵀΛxµ(dx), Var(µ)(Λ) := µ̄2(Λ)− µ̄ᵀΛµ̄,

and a ? µ ∈ P2(Rm) is the image by a ∈ L(Rd;Rm) of the measure µ ∈ Rm, so that

a ? µ =
∫
Rd
a(x)µ(dx), a ? µ2(Λ) :=

∫
a(x)ᵀΛa(x)µ(dx).

We look for a value function solution to the Bellman equation (4.4.1) in the form

w(t, µ) = Var(µ)(Λ(t)) + µ̄ᵀΓ(t)µ̄+ µ̄ᵀγ(t) + χ(t), (4.5.4)

for some functions Λ, Γ ∈ C1([0, T ]; Sd), γ ∈ C1([0, T ];Rd), and χ ∈ C1([0, T ];R). One easily checks that
w lies in C1,2

b ([0, T ]× P2(Rd)) with

∂tw(t, µ) = Var(µ)(Λ′(t)) + µ̄ᵀΓ′(t)µ̄+ γ′(t)µ̄+ χ′(t),
∂µw(t, µ)(x) = 2Λ(t)(x− µ̄) + 2Γ(t)µ̄+ γ(t),

∂x∂µw(t, µ)(x) = 2Λ(t),
∂2
µw(t, µ)(x, x′) = 2(Γ(t)− Λ(t)).
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Together with the quadratic expression (4.5.3) of f̂ , ĝ, we then see after some tedious but direct calcula-
tions that w satisfies the Bellman equation (4.4.1) iff

Var(µ)(Λ(T )) + µ̄ᵀΓ(T )µ̄+ µ̄ᵀγ(T ) + χ(T )
= Var(µ)(P2) + µ̄ᵀ(P2 + P̄2)µ̄, (4.5.5)

holds for all µ ∈ P2(Rd), and

Var(µ)
(
Λ′(t) +Q2 +DᵀΛ(t)D +Dᵀ

0Λ(t)D0 + Λ(t)B +BᵀΛ(t)
)

+ inf
a∈L(Rd;Rm)

Gµt (a)

+ µ̄ᵀ

(
Γ′(t) +Q2 + Q̄2 + (D + D̄)ᵀΛ(t)(D + D̄)

+ (D0 + D̄0)ᵀΓ(t)(D0 + D̄0) + Γ(t)(B + B̄) + (B + B̄)ᵀΓ(t)
)
µ̄

+ µ̄ᵀ
(
γ′(t) + (B + B̄)ᵀγ(t) + 2(D + D̄)ᵀΛ(t)ϑ+ 2(D0 + D̄0)ᵀΓ(t)ϑ0 + 2Γ(t)b0

)
+ χ′(t) + γ(t)ᵀb0 + ϑᵀΛ(t)ϑ+ ϑ0

ᵀΓ(t)ϑ0

= 0, (4.5.6)

holds for all t ∈ [0, T ), µ ∈ P2(Rd), where the function Gµt : L(Rd;Rm) → R is defined by

Gµt (a) = Var(a ? µ)(Ut) + a ? µᵀVta ? µ + 2
∫
Rd

(x− µ̄)ᵀSta(x)µ(dx)

+ 2µ̄ᵀZta ? µ + Yt.a ? µ,

and we set Ut = U(t,Λ(t)), Vt = V (t,Λ(t),Γ(t)), St = S(t,Λ(t)), Zt = Z(t,Λ(t),Γ(t)), Yt = Y (t,Γ(t), γ(t))
with 

U(t,Λ(t)) = F ᵀΛ(t)F + F ᵀ

0 Λ(t)F0 +R2,

V (t,Λ(t),Γ(t)) = F ᵀΛ(t)F + F ᵀ

0 Γ(t)F0 +R2
S(t,Λ(t)) = DᵀΛ(t)F +Dᵀ

0Λ(t)F0 + Λ(t)C +M2,

Z(t,Λ(t),Γ(t)) = (D + D̄)ᵀΛ(t)F + (D0 + D̄0)ᵀΓ(t)F + Γ(t)C +M2
Y (t,Γ(t), γ(t)) = Cᵀγ(t) + 2F ᵀΛ(t)ϑ+ 2F ᵀ

0 Γ(t)ϑ0.

(4.5.7)

Then, under the condition that the symmetric matrices Ut and Vt in (4.5.7) are positive, hence invertible
(this will be discussed later on), we get after square completion:

Gµt (a) = Var((a− a∗(t, ., µ)) ? µ)(Ut) + (a− a∗(t, ., µ)) ? µ
ᵀ

Vt(a− a∗(t, ., µ)) ? µ

− Var(µ)
(
StU

−1
t Sᵀ

t

)
− µ̄ᵀ

(
ZtV

−1
t Zᵀ

t

)
µ̄− Y ᵀ

t V
−1
t Zᵀ

t µ̄−
1
4Y

ᵀ

t V
−1
t Yt.

where a(t, ., µ) ∈ L(Rd;Rm) is given by

a∗(t, x, µ) = −U−1
t Sᵀ

t (x− µ̄) − V −1
t Zᵀ

t µ̄ −
1
2V
−1
t Yt. (4.5.8)

This means thatGµt attains its infimum at a∗(t, ., µ), and plugging the above expression ofGµt (a∗(t, ., µ)) in
(4.5.6), we observe that the relation (4.5.5)-(4.5.6), hence the Bellman equation, is satisfied by identifying
the terms in Var(.), µ̄ᵀ(.)µ̄, µ̄, which leads to the system of ordinary differential equations (ODEs) for
(Λ,Γ, γ, χ): 

Λ′(t) +Q2 +DᵀΛ(t)D +Dᵀ

0Λ(t)D0 + Λ(t)B +BᵀΛ(t)
−S(t,Λ(t))U(t,Λ(t))−1S(t,Λ(t))ᵀ = 0,

Λ(T ) = P2,

(4.5.9)
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Γ′(t) +Q2 + Q̄2 + (D + D̄)ᵀΛ(t)(D + D̄)

+(D0 + D̄0)ᵀΓ(t)(D0 + D̄0) + Γ(t)ᵀ(B + B̄)
+ (B + B̄)ᵀΓ(t)− Z(t,Λ(t),Γ(t))V (t,Λ(t),Γ(t))−1Z(t,Λ(t),Γ(t))ᵀ = 0,

Γ(T ) = P2 + P̄2,

(4.5.10)


γ′(t) +

(
B + B̄)ᵀγ(t)− Z(t,Λ(t),Γ(t))V (t,Λ(t),Γ(t))−1Y (t,Γ(t), γ(t))

+ 2
(
D + D̄

)ᵀΛ(t)ϑ+ 2
(
D0 + D̄0

)ᵀΓ(t)ϑ0 + 2Γ(t)b0 = 0,
γ(T ) = 0

(4.5.11)


χ′(t)− 1

4Y (t,Γ(t), γ(t))ᵀV (t,Λ(t),Γ(t))−1Y (t,Γ(t), γ(t))
+ γ(t)ᵀb0 + ϑᵀΛ(t)ϑ+ ϑᵀ

0Γ(t)ϑ0 = 0,
χ(T ) = 0.

(4.5.12)

Therefore, the resolution of the Bellman equation in the LQ framework is reduced to the resolution of the
Riccati equations (4.5.9) and (4.5.10) for Λ and Γ, and then given (Λ,Γ), to the resolution of the linear
ODEs (4.5.11) and (4.5.12) for γ and χ. Suppose that there exists a solution (Λ,Γ) ∈ C1([0, T ]; Sd) ×
C1([0, T ];Sd) to (4.5.9)-(4.5.10) s.t. (Ut, Vt) in (4.5.7) lies in Sm>+ × Sm>+ for all t ∈ [0, T ] (see Remark
4.5.1). Then, the above calculations are justified a posteriori, and by noting also that the mapping (x, µ)
7→ a∗(t, x, µ) is Lipschitz on Rd ×P2(Rd), we deduce by the verification theorem that the value function
v is equal to w in (4.5.4) with (Λ,Γ, γ, χ) solution to (4.5.9)-(4.5.10)-(4.5.11)-(4.5.12). Moreover, the
optimal control is given in feedback form from (4.5.8) by

α∗t (X∗t ) = a∗(t,X∗t ,PW
0

X∗t
)

= −U−1
t Sᵀ

t

(
X∗t − E[X∗t |F0

t ]
)
− V −1

t Zᵀ

t E[X∗t |F0
t ] − 1

2V
−1
t Yt, (4.5.13)

where X∗ is the state process controlled by α∗.

Remark 4.5.1. It is known from [Won68] that under the condition

P2 ≥ 0, P2 + P̄2 ≥ 0, Q2 ≥ 0, Q2 + Q̄2 ≥ 0, R2 ≥ δIm, (4.5.14)

for some δ > 0, the matrix Riccati equations (4.5.9)-(4.5.10) admit unique solutions (Λ,Γ) ∈ C1([0, T ];Sd+)
× C1([0, T ]; Sd+), and then Ut, Vt in (4.5.7) are symmetric positive definite matrices, i.e. lie in Sm>+ for all
t ∈ [0, T ]. The expression in (4.5.13) of the optimal control extends then to the case of stochastic LQ
McKean-Vlasov control problem the feedback form obtained in [Yon13] for LQ McKean-Vlasov without
common noise, i.e. σ0 = 0. �

Example: Interbank systemic risk model

We consider a model of interbank borrowing and lending studied in [CFS15] where the log-monetary
reserve of each bank in the asymptotics when the number of banks tend to infinity, is governed by the
McKean-Vlasov equation:

dXt =
[
κ(E[Xt|W 0]−Xt) + αt(Xt)]dt

+ (σ0 + σ1Xt)(
√

1− ρ2dBt + ρdW 0
t ), X0 = x0 ∈ R. (4.5.15)

Here, κ ≥ 0 is the rate of mean-reversion in the interaction from borrowing and lending between the
banks, σ0 > 0, σ1 ∈ R are the affine coefficients of the volatility of the bank reserve, and there is a
common noise W 0 for all the banks. This is a slight extension of the model considered in [CFS15] where
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σ1 = 0. Moreover, all banks can control their rate of borrowing/lending to a central bank with the same
feedback policy α in order to minimize a cost functional of the form

J(α) = E
[ ∫ T

0

(1
2αt(Xt)2 − qαt(Xt)(E[Xt|W 0]−Xt) + η

2 (E[Xt|W 0]−Xt)2
)
dt

+ c

2(E[XT |W 0]−XT )2
]
,

where q > 0 is a positive parameter for the incentive to borrowing (αt > 0) or lending (αt < 0), and η
> 0, c > 0 are positive parameters for penalizing departure from the average. After square completion,
we can rewrite the cost functional as

J(α) = E
[ ∫ T

0

(1
2 α̃t(Xt)2 + η − q2

2 (E[Xt|W 0]−Xt)2
)
dt+ c

2(E[XT |W 0]−XT )2
]
,

with α̃t(Xt) = αt(Xt) − q(E[Xt|W 0] −Xt). This model fits into the framework of (4.5.1)-(4.5.2) of the
LQ stochastic McKean-Vlasov problem with

b0 = 0, B = −(κ+ q), B̄ = κ+ q, C = 1,
D = σ1

√
1− ρ2, D0 = σ1ρ, D̄ = F = D̄0 = F 0 = 0, ϑ = σ0

√
1− ρ2, ϑ0 = σ0ρ,

Q2 = η − q2

2 , Q̄2 = −η − q
2

2 , R2 = 1
2 , P2 = c

2 , P̄2 = − c2 .

The Riccati system (4.5.9)-(4.5.10)-(4.5.11)-(4.5.12) for (Λ(t),Γ(t), γ(t), χ(t)) is written in this case as
Λ′(t)− 2(κ+ q − σ2

1
2 )Λ(t)− 2Λ2(t) + 1

2 (η − q2) = 0, Λ(T ) = c
2 ,

Γ′(t)− 2Γ2(t) + σ2
1ρ

2Γ(t) + σ2
1(1− ρ2)Λ(t) = 0, Γ(T ) = 0,

γ′(t)− 2Γ(t)γ(t) + 2σ0σ1ρ
2Γ(t) + 2σ0σ1(1− ρ2)Λ(t) = 0, γ(T ) = 0,

χ′(t)− 1
2γ

2(t) + σ2
0ρ

2Γ(t) + σ2
0(1− ρ2)Λ(t) = 0, χ(T ) = 0.

(4.5.16)

Assuming that q2 ≤ η, the explicit solution to the Riccati equation for Λ is given by

Λ(t) = 1
2

(η − q2)
(
e(δ+−δ−)(T−t) − 1

)
+ c
(
δ+e(δ+−δ−)(T−t) − δ−

)
c
(
e(δ+−δ−)(T−t) − 1

)
+ δ+ − δ−e(δ+−δ−)(T−t) > 0,

where we set

δ± = −
(
κ+ q − σ2

1
2
)
±
√(

κ+ q − σ2
1

2
)2 + η − q2.

Since Λ ≥ 0, there exists a unique solution to the Riccati equation for Γ, and then γ, and finally χ are
determined the linear ordinary differential equations in (4.5.16). Moreover, the functions (Ut, Vt, Zt, Yt)
in (4.5.7) are explicitly given by: Ut = Vt = 1

2 (hence > 0), St = Λ(t)+ q
2 , Zt = Γ(t), Yt = γ(t). Therefore,

the optimal control is given in feedback form from (4.5.13) by

α∗t (X∗t ) = a∗(t,X∗t ,PX∗
t

)

= −(2Λ(t) + q)(X∗t − E[X∗t |W 0])− 2Γ(t)E[X∗t |W 0]− γ(t), (4.5.17)

where X∗ is the optimal log-monetary reserve controlled by the rate of borrowing/lending α∗. Moreover,
denoting by X̄∗t = E[X∗t |W 0] the conditional mean of the optimal log monetary reserve, we see that
E[α∗t (X∗t )|W 0] = −2Γ(t)X̄∗t − γ(t), and thus X̄∗ is given from (4.5.15) by

dX̄∗t = −
(
2Γ(t)X̄∗t + γ(t)

)
dt+ (σ1X̄

∗
t + σ0)ρdW 0

t , X̄∗0 = x0.
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When σ1 = 0, we have Γ(t) = γ(t) = 0, hence X̄∗t = x0 + σ0ρW
0
t , and we retrieve the expression found

in [CFS15] by sending the number of banks N to infinity in their formula for the optimal control of the
borrowing/lending rate:

α∗t (X∗t ) = −(2Λ(t) + q)(X∗t − x0 − σρW 0
t ), 0 ≤ t ≤ T.
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under model uncertainty





Chapter 5

Portfolio diversification and model
uncertainty: a robust dynamic
mean-variance approach a

Abstract: This paper is concerned with a multi-asset mean-variance portfolio selection problem under
model uncertainty. We develop a continuous time framework for taking into account ambiguity aversion
about both expected rate of return and correlation matrix of stocks, and for studying the effects on
portfolio diversification. We prove a separation principle for the associated robust control problem,
which allows to reduce the determination of the optimal dynamic strategy to the parametric computation
of the minimal risk premium function. Our results provide a justification for under-diversification, as
documented in empirical studies, and that we explicitly quantify in terms of correlation and Sharpe ratio
ambiguity parameters. In particular, we show that an investor with a poor confidence in the expected
return estimation does not hold any risky asset, and on the other hand, trades only one risky asset when
the level of ambiguity on correlation matrix is large. This extends to the continuous-time setting the
results obtained by Garlappi, Uppal and Wang [GUW06], and Liu and Zeng [LZ17] in a one-period model.

Key words: Continuous-time Markowitz problem, model uncertainty, ambiguous drift and correlation,
separation principle, portfolio diversification.

a. This chapter is based on joint work with Pham Huyên and Zhou Chao [PWZ18]. The preprint is submitted and
available at arXiv: arXiv1809.01464, 2018.
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5.1 Introduction

In the Finance and Economics literature, there are many studies on under-diversification, i.e. when
investors hold only a small part of risky assets among a large number of available risky assets. In the
extreme case the anti-diversification means that investor holds only a single asset( or even do not hold any
risky asset and exclude many others). Empirical studies reported in numerous papers, [FP91], [CK94],
[MV07], [CCS07], [GL16], have shown the evidence of the under-diversification in practice. For example,
in [FP91], [CK94], it’s observed that there exists concentration on(bias towards) the domestic assets
compared to foreign assets in investors’ international equity portfolios. These results are in contrast
to the portfolio well-diversification suggested by the classical mean-variance portfolio theory initialed in
single period [Mar52], later in a continuous time model [LZ00].

A possible explanation to under-diversification is provided in the Finance and Economics literature by
model uncertainty, often also called ambiguity or Knightian uncertainty. In the classical portfolio theory,
the model and the parameters are assumed to be perfectly known. However, in reality, due to statistical
estimation errors. there is always ambiguity about the model or the parameters, see e.g. [Tal09], It’s
well known that robust approach is very notable to address the model uncertainty, where the investor
takes portfolio decisions under the worst-case scenario that corresponds to the least favorable distribution
implied by the set of ambiguous parameters.

Abundant research has been conducted to tackle different model uncertainty. Related works include
[GUW06], [Sch07], [BGUW12], [JZ15] among others for uncertainty about solely drift with a family of
dominated probability measure, [MPZ15] for ambiguity about volatility or equivalent covariance matrix
with a family of nondominated probability measures in a probabilistic setup, and [TTU13], [LR14],
[BK17], [NN18] for combined uncertainty about both drift and volatility, and also [GX13] for uncertainty
about probability law generating market data. It’s usually assumed that the covariance matrix falls
into the region [Σ, Σ̄] in the matrix sense. The worst-case scenario for ambiguity on the covariance
matrix is upper bound of covariance matrix Σ̄. Alternatively, the ambiguity on covariance matrix can
be characterized in terms of correlation with marginal volatility known. It is known that the estimation
of correlation between assets may be extremely inaccurate, due to the asynchronous data and lead-lag
effect, especially when the number of assets is large, see [JM03], [LW04]. We are aware of only a few
results on correlation ambiguity [FPW16], [LZ17], [IP17], in which they have shown that the worst-case
scenario for ambiguity on the correlation depends upon the correlation parameter. In the above cited
papers, only a few work connects the model uncertainty with portfolio diversification. We mention the
work [BGUW12], [UW03], [LZ17]. The authors in [BGUW12], [UW03] considered the ambiguity about
the assets’ rates of return. Their framework allows both for uncertainty about the joint distribution
of returns for all assets and for different levels of uncertainty for the marginal distribution of returns
for any subsets of these assets. They showed that the different levels of uncertainty on different asset
subclass could result in significant under-diversification. They also applied their theoretical results to
real data and found consistent results with the empirical studies by [CK94] and [FP91] among others,
showing that international equity portfolios are strongly biased toward domestic stocks, and in [Hub01]
and [Sch96], where a similar lack of diversification is revealed on domestic portfolios. The model in
[BGUW12], [UW03] offer a partial explanation for the observed under-diversification and bias toward
familiar securities. More recently, in [LZ17], the authors considered the ambiguity about the correlation
of the assets. With a static mean-variance investment, they found that the robust optimal portfolio is
of under-diversification depends on the level of correlation ambiguity. They also provided results with
market data and showed that using their ambiguous correlation model, the investor only holds less than
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20 (17 stocks in average) among 100 stocks randomly selected from about 100 stocks in S&P500.

A further possible explanation for under-diversification is that investors can reduce the uncertainty
on the model or the parameters through learning. In [VNV10], the authors built a framework to solve
jointly for investment and information choices, with general preferences and information cost functions.
They showed that, for some special preferences and information acquisition technologies, investors tend to
learn more about the assets they are familiar among many available assets (typically, the domestic assets
rather than foreign ones)and become even more familiar with those assets after learning. As a result of
this learning procedure, the investors select those assets they have learnt at the expense of others for
which they have less information. Their results are consistent with the empirical studies on the portfolios
of international investors.

In the existing literature on model uncertainty, investor seeks to maximize the expected utility cri-
terion. However, mean-variance criterion has received little attention, especially in the continuous-time
framework, see [IP17]. Inspired by [IP17], we develop a robust model that take into account uncertainty
about both drift and correlation of multi risky assets for d ≥ 2, in a dynamic mean-variance portfolio
setting. In view of drift uncertainty, our framework allows for both polyhedral set in [TTU13], [LR14]
and ellipsoidal set in [BP17]. The ellipsoidal representation for the drift uncertainty allows to take into
account drift structure of the assets in the correlation ambiguity modelling. Our purpose is to explore
the joint effects of ambiguity about drift and correlation on portfolio selection and diversification with
dynamic mean-variance criterion.

The paper’s first contribution is to derive a separation principle for solving the associated robust
control problem formulated as a McKean-Vlasov differential game, which allows us to reduce the original
min-max problem to the parametric computation of minimal risk premium. The main methodology for
the separation principle is based on a weak version of the martingale optimality principle. While the
robust dynamics mean-variance problem under covariance matrix uncertainty, in particular, correlation
ambiguity, has been analyzed in [IP17], the methods and techniques applied therein cannot tackle the
drift uncertainty. One key assumption in [IP17] is that one can aggregate a family of processes, however
in the case of drift uncertainty, this condition does not hold anymore. As a byproduct, to the best of our
knowledge, ours is the first paper to tackle the robust dynamic mean-variance portfolio selection under
drift uncertainty.

Our second contribution is to provide a possible explanation for under-diversification. The existing
literature mainly concentrate on two asset case see [FPW16], [IP17], [LZ17]. We distinguish the case of
ellipsoidal set and rectangular set in terms of drift uncertainty and quantify explicitly the diversification
effects on the optimal robust portfolio in terms of the ambiguity level. We provide notably a complete
picture of the diversification for the optimal robust portfolio strategy in the three risky assets case,
which is new to the best of our knowledge. In particular, our findings consist in no trading in assets
with large expected return ambiguity, and trading only one risky asset with high level of ambiguity
about correlation. A similar finding on phenomenon of trading only one risky asset with high level of
ambiguity about correlation is derived in [LZ17] with static mean-variance investment. By incorporating
drift uncertainty into our framework, the anti-diversification in our paper is in a more general sense
that the investor does not hold risky asset or holds one single risky asset. For our future studies, we
may incorporate the different uncertainty levels for return as in [UW03] or introduce the information
acquisition procedure as in [VNV10] in our framework.

The rest of paper is organized as follows. Section 2 presents the formulation of the model uncertainty
setting and the robust multi-asset mean-variance problem in continuous time. In section 3, we derive
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the separation principle for the associated robust control problem. Section 4 provides several examples
arising from the separation principle, and the implications for the optimal robust portfolio strategy and
the portfolio diversification.

5.2 Problem formulation

5.2.1 Model uncertainty setting

We consider a financial market with one risk-free asset, assumed to be constant equal to one, and d
risky assets on a finite investment horizon [0, T ]. Model uncertainty is formulated by using a probabilistic
setup as in [NN18]. We define the canonical state space by Ω = {ω = (ω(t))t∈[0,T ] ∈ C([0, T ],Rd) : ω(0) =
0} representing the continuous paths driving the risky assets. We equip Ω with the uniform norm and the
corresponding Borel σ-field F . We denote by B = (Bt)t∈[0,T ] the canonical process, i.e., Bt(ω) = ω(t),
and by F = (Ft)0≤t≤T the canonical filtration, i.e. the natural (raw) filtration generated by B.

We assume that the investor knows the marginal volatilities σi > 0 of each asset i = 1, . . . , d, typically
through a quadratic variation estimation of the assets, and we denote by S the known constant diagonal
matrix with i-th diagonal term equal to σi, i = 1, . . . , d. However, there is uncertainty about the drift
(expected rate of return) and the correlation between the multi-assets, which are parameters notoriously
difficult to estimate in practice.

The ambiguity about drift and correlation matrix is parametrized by a nonempty convex set

Θ ⊂ Rd × Cd>+,

where Cd>+ is the subset of all elements ρ = (ρij)1≤i<j≤d ∈ [−1, 1]d(d−1)/2 s.t. the symmetric matrix
C(ρ) with diagonal terms 1 and anti-diagonal terms ρij :

C(ρ) =


1 ρ12 . . . ρ1d
ρ12 1 . . . .
...

...
. . .

...
ρ1d . . . . 1


lies in Sd>+, the set of positive definite symmetric matrices in Rd×d. Notice that Cd>+ is an open convex
set of [−1, 1]d(d−1)/2. The first component set of Θ represent the prior values taken by the (possibly
random) drift of the assets, while the matrices C(ρ), when ρ runs in the second component set of Θ,
represent the prior correlation matrices of the multi-assets. The prior covariance matrices of the assets
are given by

Σ(ρ) = SC(ρ)S =


σ2

1 σ1σ2ρ12 . . . σ1σdρ1d
σ1σ2ρ12 σ2

2 . . . .
...

...
. . .

...
σ1σdρ1d . . . . σ2

d

 ,

and we denote by σ(ρ) = Σ 1
2 (ρ) the square-root matrix, called volatility matrix. Let us also introduce

the prior (square) risk premium

R(θ) = bᵀΣ−1(ρ)b = ‖σ(ρ)−1b‖22 for θ = (b, ρ) ∈ Θ. (5.2.1)
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Hereafter, ᵀ denotes the transpose of matrix and ‖ · ‖2 denotes the L2-norm in Rd.

Remark 5.2.1. There exists different conditions for characterizing the positive definiteness of the cor-
relation matrix C(ρ). For example, Sylvester’s criterion states that C(ρ) is positive definite if and only
if all the leading principal minors are positive, e.g., in dimension d = 2, ρ ∈ (−1, 1); in dimension d = 3,
ρij ∈ (−1, 1) 1 ≤ i < j ≤ 3 and ρ2

12 + ρ2
13 + ρ2

23− 1− 2ρ12ρ13ρ23 < 0. Alternatively, one can characterize
the positive definiteness of C(ρ) using angular coordinates as in [RBM07].

In the sequel, we shall focus on the two following cases for the parametrization of the ambiguity set
Θ, which are relevant for practical applications:

(HΘ)

(i) Product set: Θ = ∆ × Γ, where ∆ is a compact convex set of Rd, e.g., in rectangular form ∆ =∏d
i=1[bi, b̄i], for some constants bi ≤ b̄i, i = 1, . . . , d, and Γ is a convex set of Cd>+. In this product

formulation, one considers that the uncertainty on drift is independent of the uncertainty on the
correlation.

(ii) Ellipsoidal set: Θ = {(b, ρ) ∈ Rd × Γ : ‖σ(ρ)−1(b− b̂)‖2 ≤ δ}, for some convex set Γ of Cd>+, where
b̂ is a known vector, representing a priori expected rates of return, and δ > 0 represents a level of
ambiguity around b̂ due to estimation error. It is known from Lemma 2.2 in [CDH18] that Θ is
a convex set. This ellipsoidal set in which varies the uncertain drift, for fixed correlation, is used
in [BTMN00], and allows to take into account the correlation structure of the assets in the drift
uncertainty modelling.

We denote by VΘ the set of F-progressively measurable processes θ = (θt) = (bt, ρt)t = (b, ρ) valued
in Θ, and introduce the set of prior probability measures PΘ:

PΘ = {Pθ : θ ∈ VΘ},

where Pθ is the probability measure on (Ω,F) s.t. B is a semimartingale on (Ω,F ,Pθ) with absolutely
continuous characteristics (w.r.t. the Lebesgue measure dt) (b,Σ(ρ)). The prior probabilities Pθ are in
general non-equivalent, and actually mutually singular, and we say that a property holds PΘ-quasi surely
(PΘ-q.s. in short) if it holds Pθ-a.s. for all θ ∈ VΘ.

The (positive) price process of the d risky assets is given by the dynamics

dSt = diag(St)dBt, 0 ≤ t ≤ T, PΘ − q.s.
= diag(St)

(
btdt+ σ(ρt)dW θ

t ), Pθ − a.s., for θ = (b, ρ) ∈ VΘ,

where W θ is a d-dimensional Brownian motion under Pθ. Notice that in this uncertainty modeling, we
allow the unknown drift and correlation to be a priori random processes, valued in Θ.

5.2.2 Robust mean-variance problem

An admissible portfolio strategy α = (αt)0≤t≤T representing the amount invested in the d risky assets,
is an Rd-valued F-progressively measurable process, satisfying the integrability condition

sup
Pθ∈PΘ

Eθ
[ ∫ T

0
|αᵀ

t bt|dt +
∫ T

0
αᵀ

tΣ(ρt)αtdt] < ∞, (5.2.2)
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and denoted by α ∈ A. Hereafter, Eθ denotes the expectation under Pθ. This integrability condition
(5.2.2) ensures that diag(S)−1α is S-integrable under any P ∈ PΘ. For a portfolio strategy α ∈ A, and
an initial capital x0 ∈ R, the dynamics of the self-financed wealth process are driven by

dXα
t = αᵀ

tdiag(St)−1dSt = αᵀ

tdBt, 0 ≤ t ≤ T, Xα
0 = x0, PΘ − q.s.

= αᵀ

t

(
btdt+ σ(ρt)dW θ

t

)
, 0 ≤ t ≤ T, Xα

0 = x0 ∈ R, Pθ − a.s. (5.2.3)

for all θ = (b, ρ) ∈ VΘ.

Given a risk aversion parameter λ > 0, the worst-case mean-variance functional under ambiguous
drift and correlation is

Jwc(α) = inf
Pθ∈PΘ

(
Eθ[Xα

T ]− λVarθ(Xα
T )
)
< ∞, α ∈ A,

where Varθ(.) denotes the variance under Pθ, and the robust mean-variance portfolio selection is formu-
lated as {

V0 := sup
α∈A

Jwc(α) = sup
α∈A

inf
θ∈VΘ

J(α, θ)

J(α, θ) := Eθ[Xα
T ]− λVarθ(Xα

T ), α ∈ A, θ ∈ VΘ.
(5.2.4)

Notice that problem (5.2.4) is a non standard stochastic differential game due to the presence of the
variance term in the criterion, which prevents the use of classical control method by dynamic programming
or maximum principle. We end this section by recalling the solution to the mean-variance problem when
there is no ambiguity on the model parameters, and which will serve later as benchmark for comparison
when studying the uncertainty case.

Remark 5.2.2 (Case of no uncertainty model). When Θ = {θo = (bo, ρo)} is a singleton, we are reduced
to the Black-Scholes model with drift bo, covariance matrix Σo = Σ(ρo), volatility σ = σ(ρo), and risk
premium Ro = R(θo). In this case, it is known, see e.g. [LZ00], that the optimal mean-variance strategy
is given by

α∗t =
[
x0 + eR

oT

2λ −X∗t
]
(Σo)−1bo =: Λo(X∗t )(Σo)−1bo, 0 ≤ t ≤ T,

where X∗ is wealth process associated to α∗, while the optimal performance value is

V0 = x0 + 1
4λ
[
eR

oT − 1
]
.

The vector (Σo)−1bo, which depends only on the model parameters of the stock price, determines the
allocation in the multi-assets. The above expression of α∗ shows that, once we know the exact values of
the rate of return and covariance matrix, one diversifies her portfolio among all the assets according to
the components of the vector (Σo)−1bo, and this is weighted by the scalar term Λo(X∗t ), which depends on
the risk aversion of the investor via the parameter λ, on the current wealth but also on the initial capital
x0 (which is sometimes refereed to as the pre-committment of the mean-variance criterion). Notice that
Λo(X∗t ) is positive. Indeed, observe that

dΛo(X∗t ) = −dX∗t = −(α∗t )ᵀ(bodt+ σodW o
t )

= −Λo(X∗t )(Rodt+ (σo)−1bo.dW o
t ), 0 ≤ t ≤ T,
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with Λo(X∗0 ) = 1
2λe

RoT > 0, which shows clearly that Λo(X∗t ) > 0, 0 ≤ t ≤ T , and decreases with λ.

Let us discuss in particular the allocation in the two-asset case. Notice that the vector (Σo)−1bo of
allocation is then given by

(Σo)−1bo = 1
1− |ρo|2

(
βo1−ρ

oβo2
σo1

βo2−ρ
oβo1

σo2

)
=:

(
κo1
κo2

)
,

where βoi = boi /σ
o
i is the sharpe ratio of the i-th asset, i = 1, 2. To fix the idea, assume that βo1 > βo2 >

0. We then see that κo1 > 0, while κo2 ≥ 0 if and only if βo2
βo1
≥ ρo. The interpretation is the following:

the ratio βo2
βo1
∈ (0, 1) measures the “proximity" in terms of Sharpe ratio between the two assets, and has

to be compared with the correlation ρo between these assets in order to determine whether it is optimal
to invest according to a directional trading, i.e., κo1κo2 > 0 (thus here long in both assets) or according
to a spread trading, i.e., κo1κo2 < 0 (long in the first asset and short in the second one) or according to
under-diversification, i.e. κo1κ

o
2 = 0(only long in the first asset). For example, when both assets have

close Sharpe ratio, and their correlation is not too high, then one optimally invests in both assets with
a directional trading. In contrast, when one asset has a much larger Sharpe ratio than the other one, or
when the correlation between the assets is high, then one optimally invests in both assets with a spread
trading. ♦

In the sequel, we study the quantitative impact of the uncertainty model and ambiguity on the
drift and correlation, on the optimal robust mean-variance strategy, in particular regarding the portfolio
diversification.

5.3 Separation principle and robust solution

The main result of this section is to state a separation principle for solving the robust dynamic
mean-variance problem.

Theorem 5.3.1 (Separation Principle). Let us consider a parametric set Θ for model uncertainty as in
(HΘ). Suppose that there exists a (constant) pair θ∗ = (b∗, ρ∗) ∈ Θ solution to arg min

θ∈Θ
R(θ). Then the

robust mean-variance problem (5.2.4) admits an optimal portfolio strategy given by

α∗t = Λθ∗(X∗t )Σ(ρ∗)−1b∗, 0 ≤ t ≤ T, PΘ − q.s., (5.3.1)

where X∗ is the state process associated to α∗t , and Λθ∗(X∗t ) > 0 with

Λθ∗(x) := x0 + eR(θ∗)T

2λ − x, x ∈ R (5.3.2)

Moreover, the corresponding initial value function is

V0 = x0 + 1
4λ
[
eR(θ∗)T − 1

]
.

Interpretation. Theorem 5.3.1 means that the robust mean-variance problem (5.2.4) can be solved in
two steps according to a separation principle: (i) First, we search for the infimum of the risk premium
function θ ∈ Θ 7→ R(θ) as defined in (5.2.1), which depends only on the inputs of the uncertainty
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model. Existence and explicit determination of an element θ∗ = (b∗, ρ∗) ∈ Θ attaining this infimum will
be discussed and illustrated all along the paper through several examples. (ii) The solution to (5.2.4)
is then given by the solution to the mean-variance problem in the Black-Scholes model with drift b∗
and correlation ρ∗, see Remark 5.2.2, and the worst-case scenario of the robust dynamic mean-variance
problem is simply given by the constant parameter θ∗ = (b∗, ρ∗). Some interesting features show up,
especially regarding portfolio diversification, as detailed in the next section. ♦

The rest of this section is devoted to the proof of Theorem 5.3.1, and the methodology is based on
the following weak version of the martingale optimality principle.

Lemma 5.3.1 (Weak optimality principle). Let {V α,θt , t ∈ [0, T ], α ∈ A, θ ∈ VΘ} be a family of real-valued
processes in the form

V α,θt : = vt(Xα
t ,Eθ[Xα

t ]),

for some measurable functions vt on R× R, t ∈ [0, T ], such that :

(i) vT (x, x̄) = x− λ(x− x̄)2, for all x, x̄ ∈ R,

(ii) the function t ∈ [0, T ] 7→ Eθ∗ [V α,θ
∗

t ] is nonincreasing for all α ∈ A and some θ∗ ∈ VΘ,

(iii) Eθ[V α
∗,θ

T − V α
∗,θ

0 ] ≥ 0, for some α∗ ∈ A and all θ ∈ VΘ.

Then, α∗ is an optimal portfolio strategy for the robust mean-variance problem (5.2.4) with a worst-case
scenario θ∗, and

V0 = Jwc(α∗) = sup
α∈A

inf
θ∈VΘ

J(α, θ) = inf
θ∈VΘ

sup
α∈A

J(α, θ) = v0(x0, x0) (5.3.3)

= J(α∗, θ∗).

Proof. First, observe that V α,θ0 = v0(x0, x0) is a constant that does not depend on α, θ and from
condition (i) that Eθ[V α,θT ] = J(α, θ) for all α ∈ A, θ ∈ VΘ. Then, from condition (ii), we see that

v0(x0, x0) = Eθ∗ [V α,θ
∗

0 ] ≥ Eθ∗ [V α,θ
∗

T ] = J(α, θ∗),

for all α ∈ A, and thus: v0(x0, x0) ≥ sup
α∈A

J(α, θ∗) ≥ inf
θ∈VΘ

sup
α∈A

J(α, θ). Similarly, from condition (iii),

we have: v0(x0, x0) ≤ J(α∗, θ) for all θ ∈ VΘ, and thus: v0(x0, x0) ≤ inf
θ∈VΘ

J(α∗, θ) = Jwc(α∗) ≤
sup
α∈A

inf
θ∈VΘ

J(α, θ). Recalling that we always have sup
α∈A

inf
θ∈VΘ

J(α, θ) ≤ inf
θ∈VΘ

sup
α∈A

J(α, θ), we obtained the

required equality in (5.3.3). Then, finally, from (ii) with α∗ and (iii) with θ∗, we obtain that v0(x0, x0)
= J(α∗, θ∗). �

Remark 5.3.1. The usual martingale optimality principle for stochastic differential games as in robust
portfolio selection problem, and with classical expected utility criterion for some nondecreasing and
concave utility function U on R, e.g. U(x) = −e−ηx, η > 0:

sup
α∈A

inf
θ∈VΘ

Eθ[U(Xα
T )],

would consist in finding a family of processes V α,θt in the form vt(Xα
t ) for some measurable functions vt

on R s.t. (i) vT (x) = U(x), (ii’) the process (V α,θ
∗

t )t is a supermartingale under Pθ∗ for all α, and some
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θ∗, and (iii’) the process (V α
∗,θ

t )t is a submartingale under Pθ for some α∗ and all θ. Due to the nonlinear
dependence on the law of the state wealth process via the variance term in the mean-variance criterion,
making the problem a priori time inconsistent, we have to adopt a weaker version of the optimality
principle: first, the functions vt depend not only on the state process Xα

t but also on its mean Eθ[Xα
t ].

Second, we replace condition (ii’) by the weaker condition (ii) on the mean in Lemma 5.3.1, and third,
condition (iii’) is substituted by the even weaker condition (iii) than (iii”) t 7→ Eθ[V α

∗,θ
t ] is nondecreasing

for some α∗ and all θ. This asymmetry of condition between (ii) and (iii) is explained in more detail in
Remark 5.3.3. ♦

We shall also use the following saddle-point property on the infimum of the prior risk premium
function.

Lemma 5.3.2 (Saddle point property). Given Θ as in (HΘ), and assuming that there exists θ∗ =
(b∗, ρ∗) ∈ arg min

θ∈Θ
R(θ), let us define the function H on Θ by

H(θ) := bᵀΣ(ρ∗)−1Σ(ρ)Σ(ρ∗)−1b∗, for θ = (b, ρ) ∈ Θ. (5.3.4)

Then, we have for all θ = (b, ρ) ∈ Θ:

H(b∗, ρ) ≤ H(θ∗) = R(θ∗) ≤ H(b, ρ∗). (5.3.5)

Proof. See Section 5.5.2 in Appendix. �

Proof of Theorem 5.3.1. We aim to construct a family of processes {V α,θt , t ∈ [0, T ], α ∈ A, θ ∈ VΘ}
as in Lemma 5.3.1, and given the linear-quadratic structure of our optimization problem, we look for
measurable functions vt in the form:

vt(x, x̄) = Kt(x− x̄)2 + Ytx+ χt, t ∈ [0, T ], (x, x̄) ∈ R2, (5.3.6)

for some deterministic processes (Kt, Yt, χt)t to be determined. Condition (i) in Lemma 5.3.1 fixes the
terminal condition

KT = −λ, YT = 1, χT = 0. (5.3.7)

We now consider θ∗ ∈ Θ as in Theorem 5.3.1, hence defining in particular a (constant) process θ∗ ∈
VΘ, and α∗ given by (5.3.1). Let us first check that α∗ ∈ A. The corresponding wealth process X∗ satisfies
under any Pθ, θ = (b, ρ) ∈ VΘ, a linear stochastic differential equation with bounded random coefficients
(notice that b and σ(ρ) are bounded process), and thus by standard estimates: Eθ

[
sup0≤t≤T |X∗t |2] ≤

C(1 + |x0|2) for some constant C independent of θ ∈ VΘ. It follows immediately that α∗ satisfies the
integrability condition in (5.2.2), i.e., α∗ ∈ A.

The main issue is now to show that such a pair (α∗, θ∗) satisfies conditions (ii)-(iii) of Lemma 5.3.1.

• Step 1: condition (ii) of Lemma 5.3.1.

For any α ∈ A, with associated wealth process X = Xα, let us compute the derivative of the deterministic
function t 7→ Eθ∗ [V α,θ

∗

t ] = Eθ∗ [vt(Xt,Eθ∗ [Xt])] with vt as in (5.3.6). From the dynamics of X = Xα
t in

(5.2.3) under Pθ∗ and by applying Itô’s formula, we obtain
dEθ∗ [Xt]

dt
= Eθ∗ [αᵀ

t b
∗]

dVarθ∗(Xt)
dt

= 2Covθ∗(Xt, α
ᵀ

t b
∗) + Eθ∗ [αᵀ

tΣ(ρ∗)αt].
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From the quadratic form of vt in (5.3.6), with (K,Y, χ) differentiable in time, we then have

dEθ∗ [V α,θ
∗

t ]
dt

= dEθ∗ [vt(Xt,Eθ∗ [Xt])]
dt

= K̇tVarθ∗(Xt) +Kt
dVarθ∗(Xt)

dt
+ ẎtEθ∗ [Xt] + Yt

dEθ∗ [Xt]
dt

+ χ̇t

= K̇tVarθ∗(Xt) + ẎtEθ∗ [Xt] + χ̇t + Eθ∗ [Gt(α)] (5.3.8)

where

Gt(α) = αᵀ

tQtαt + αᵀ

t

[
2Ut(Xt − Eθ∗ [Xt]) +Ot

]
,

with the deterministic coefficients

Qt = KtΣ(ρ∗), Ut = Ktb
∗, Ot = Ytb

∗.

By square completion, we rewrite Gt(α) as

Gt(α) =
(
αt − ât(Xt,Eθ∗ [Xt])

)ᵀ
Qt
(
αt − ât(Xt,Eθ∗ [Xt])

)
− ζt,

where for t ∈ [0, T ], x, x̄ ∈ R2,

ât(x, x̄) := −Q−1
t Ut(x− x̄)− 1

2Q
−1
t Ot

and

ζt = Uᵀ

t Q
−1
t UtVarθ∗(Xt) + 1

4O
ᵀ

tQ
−1
t Ot = KtR(θ∗)Varθ∗(Xt) + Y 2

t

4Kt
R(θ∗).

The expression in (5.3.8) is then rewritten as

dEθ∗ [V α,θ
∗

t ]
dt

= (K̇t −KtR(θ∗))Varθ∗(Xt) + ẎtEθ∗ [Xt] + χ̇t −
Y 2
t

4Kt
R(θ∗) (5.3.9)

+ KtEθ∗
[(
αt − ât(Xt,Eθ∗ [Xt])

)ᵀΣ(ρ∗)
(
αt − ât(Xt,Eθ∗ [Xt])

)]
.

Therefore, whenever 
K̇t −KtR(θ∗) = 0,

Ẏt = 0,
χ̇t − Y 2

t

4KtR(θ∗) = 0,
(5.3.10)

holds for all t ∈ [0, T ], which yields, together with the terminal condition (5.3.7), the explicit forms:

Kt = −λeR(θ∗)(t−T ) < 0, Yt = 1, χt = 1
4λ
[
eR(θ∗)(T−t) − 1

]
, (5.3.11)

we have

dEθ∗ [V α,θ
∗

t ]
dt

= KtEθ∗
[(
αt − ât(Xt,Eθ∗ [Xt])

)ᵀΣ(ρ∗)
(
αt − ât(Xt,Eθ∗ [Xt])

)]
,

which is nonpositive for all α ∈ A, i.e., the process V α,θ
∗

t satisfies the condition (ii) of Lemma 5.3.1.
Moreover, notice that in this case,

V α,θ
∗

0 = v0(x0, x0) = x0 + 1
4λ
[
eR(θ∗)T − 1

]
, (5.3.12)
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and

ât(x, x̄) = −Σ(ρ∗)−1b∗
(
x− x̄− 1

2λe
R(θ∗)(T−t)). (5.3.13)

Notice that in this step, we have not yet used the property that θ∗ attains the infimum of the prior risk
premium function. This will be used in the next step.

• Step 2: Condition (iii) of Lemma 5.3.1.

Let us now prove that V α
∗,θ

0 ≤ Eθ[V α
∗,θ

T ], for all θ ∈ VΘ. A sufficient condition is the nondecreasing
monotonicity of the function t 7→ Eθ[V α

∗,θ
t ], by proving that dEθ[V α

∗,θ
t ]
dt is nonnegative, for all θ ∈ VΘ.

However, while this nondecreasing property is valid when there is no uncertainty on the drift, this does
not hold true in the general uncertainty case as shown in Remark 5.3.3. We then proceed by computing
directly the difference: Eθ[V α

∗,θ
T ] − V α

∗,θ
0 . Notice from (5.3.1), (5.2.3), that the dynamics of Λθ∗(X∗),

with Λθ∗(x) defined in (5.3.2), under Pθ, θ ∈ VΘ, are given by

dΛθ∗(X∗t ) = −Λθ∗(X∗t )(b∗)ᵀΣ(ρ∗)−1[btdt+ σ(ρt)dW θ
t

]
,

with Λθ∗(x0) = eR(θ∗)T

2λ . By setting N∗t := 2λ
eR(θ∗)T Λθ∗(X∗t ), we deduce that

N∗t = exp
(
−
∫ t

0

(
bᵀsΣ(ρ∗)−1b∗ + 1

2(b∗)ᵀΣ(ρ∗)−1Σ(ρ)Σ(ρ∗)−1b∗
)
ds

−
∫ t

0
(b∗)ᵀΣ(ρ∗)−1σ(ρs)dW θ

s

)
, 0 ≤ t ≤ T, Pθ − a.s.

X∗t = x0 + eR(θ∗)T

2λ (1−N∗t ), 0 ≤ t ≤ T, PΘ − q.s.

and thus

Eθ[X∗t ] = x0 + eR(θ∗)T

2λ (1− Eθ[N∗t ]), Varθ(X∗t ) = e2R(θ∗)T

4λ2 Varθ(N∗t ). (5.3.14)

By using the quadratic form (5.3.6) of vt, together with the terminal condition (5.3.7), (5.3.12), and
(5.3.14), we then obtain for all θ ∈ VΘ:

Eθ[V α
∗,θ

T ]− V α
∗,θ

0 = Eθ
[
vT (X∗T ,Eθ[X∗T ])

]
− v0(x0, x0)

= −λVarθ(X∗T ) + Eθ[X∗T ]− x0 −
1

4λ (eR(θ∗)T − 1)

= −e
2R(θ∗)T

4λ Varθ(N∗T ) + eR(θ∗)T

2λ (1− Eθ[N∗T ])− 1
4λ (eR(θ∗)T − 1)

= eR(θ∗)T

4λ

(
1− eR(θ∗)TEθ[|N∗T |2]

)
+ 1

4λ

(
eR(θ∗)TEθ[N∗T ]− 1

)2

≥ eR(θ∗)T

4λ

(
1− eR(θ∗)TEθ[|N∗T |2]

)
=: eR(θ∗)T

4λ ∆∗T (θ). (5.3.15)

Noting that N∗ is rewritten in terms of H introduced in Lemma 5.3.2 as

N∗t = exp
(
−
∫ t

0

(
H(bs, ρ∗) + 1

2H(b∗, ρs)
)
ds−

∫ t

0
(b∗)ᵀΣ(ρ∗)−1σ(ρs)dW θ

s

)
, 0 ≤ t ≤ T, Pθ − a.s.

and observing that |(b∗)ᵀΣ(ρ∗)−1σ(ρs)|2 = H(b∗, ρs), we see that

|N∗t |2 = exp
(
−
∫ t

0

(
2H(bs, ρ∗)−H(b∗, ρs)

)
ds
)
M∗t ,
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where

M∗t = exp
(
− 2

∫ t

0
|(b∗)ᵀΣ(ρ∗)−1σ(ρs)|2ds− 2

∫ t

0
(b∗)ᵀΣ(ρ∗)−1σ(ρs)dW θ

s

)
, 0 ≤ t ≤ T, Pθ − a.s.

is an exponential Doléans-Dade local martingale under any Pθ, θ ∈ VΘ. Actually, the Novikov criterion

Eθ
[

exp
(1

2

∫ T

0
|2(b∗)ᵀΣ(ρ∗)−1σ(ρt)|2dt

)]
= Eθ

[
exp

(
2
∫ T

0
H(b∗, ρt)dt

)]
≤ exp

(
2R(θ∗)T

)
< ∞,

is satisfied by (5.3.5), and then (M∗t )0≤t≤T is a martingale under any Pθ, θ ∈ VΘ. Consequently, we have

∆∗T (θ) = 1− Eθ
[

exp
(∫ t

0

(
R(θ∗)− 2H(bs, ρ∗) +H(b∗, ρs)

)
ds
)
M∗T

]
≥ 1− Eθ[M∗T ] = 1−M∗0 = 0,

where we used (5.3.5) in the above inequality. From (5.3.15), this proves condition (iii) of Lemma (5.3.1),
and finally concludes the proof of Theorem 5.3.1. �

Remark 5.3.2. The optimal strategy α∗ given in (5.3.1) can be expressed in feedback form as

α∗t = ât(X∗t ,Eθ∗ [X∗t ]), 0 ≤ t ≤ T, PΘ − q.s. (5.3.16)

where ât is defined in (5.3.13). Indeed, denoting by α̂ ∈ A the process defined by α̂t = ât(X̂t,Eθ∗ [X̂t]),
0 ≤ t ≤ T, PΘ − q.s, where X̂ is the wealth process associated to α̂, we see from (5.2.3) that X̂ satisfies
the dynamics under Pθ∗ :

dX̂t = −
[
X̂t − Eθ∗ [X̂t]−

1
2λe

R(θ∗)(T−t)
]
(b∗)ᵀΣ(ρ∗)−1[b∗dt+ σ(ρ∗)dW θ∗

t ].

By taking expectation under Pθ∗ , we get: dEθ∗ [X̂t] = 1
2λe

R(θ∗)(T−t)R(θ∗)dt, and thus

Eθ∗ [X̂t] = x0 + eR(θ∗)T

2λ
[
1− e−R(θ∗)t],

α̂t = Λθ∗(X̂t)Σ(ρ∗)−1b∗, 0 ≤ t ≤ T, PΘ − q.s.

This implies that X̂ and X∗ satisfy the same linear SDE under Pθ, for any θ ∈ VΘ, and so X̂t = X∗t ,
0 ≤ t ≤ T , PΘ-q.s. This proves that α∗ = α̂, equal to (5.3.16). ♦

Remark 5.3.3. By similar derivation as in (5.3.9), and using (5.3.10), (5.3.16), we have that for all θ =
(θt)t = (bt, ρt)t ∈ VΘ, t ∈ [0, T ],

dEθ[V α
∗,θ

t ]
dt

= Kt

(
R(θ∗)−R(θt)

)
Varθ(X∗t ) + 1

4Kt

(
R(θ∗)−R(θt)

)
(5.3.17)

+ KtEθ
[(
ât(X∗t ,Eθ∗ [X∗t ])− ât(X∗t ,Eθ[X∗t ])

)ᵀΣ(ρt)(
ât(X∗t ,Eθ∗ [X∗t ])− ât(X∗t ,Eθ[X∗t ])

)]
≥ KtEθ

[(
ât(X∗t ,Eθ∗ [X∗t ])− ât(X∗t ,Eθ[X∗t ])

)ᵀΣ(ρt)(
ât(X∗t ,Eθ∗ [X∗t ])− ât(X∗t ,Eθ[X∗t ])

)]
(5.3.18)
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by definition of θ∗ ∈ arg minθ∈ΘR(θ), and as Kt < 0. In the case when there is no uncertainty on the
drift, i.e., for any θ = (b, ρ) ∈ VΘ, b is a constant equal to bo, the dynamics of X∗ under any Pθ, θ ∈ VΘ,
is given by

dX∗t =
[
x0 + eR(θ∗)T

2λ −X∗t
]
(bo)ᵀΣ(ρ∗)−1[bodt+ σ(ρt)dW θ

t

]
,

from which, we deduce by taking expectation under Pθ:

Eθ[X∗t ] = x0 + eR(θ∗)T

2λ
[
1− e−R(θ∗)t].

This means that the expectation under Pθ of the optimal wealth process X∗ does not depend on θ ∈ VΘ,
and the r.h.s. of (5.3.18) is then equal to zero. Therefore, the function t 7→ Eθ[V α

∗,θ
t ] is nondecreasing

for all θ ∈ VΘ, which implies in particular condition (iii) of Lemma 5.3.1.

However, in the case of drift uncertainty, we cannot conclude as above, and actually this nondecreasing
property does not always hold true. Indeed, consider for example the case where there is only drift
uncertainty in a single asset model d = 1, with Θ = {θ ∈ [b, b̄]}, 0 ≤ b < b̄, and known variance Σo
normalized to one. Notice that R(θ) = θ2, and θ∗ = arg minθ∈ΘR(θ) = b. For any θ ∈ Θ, we can
compute explicitly from (5.3.14) the expectation and variance of X∗ under Pθ:

Eθ[X∗t ] = 1
2λe

R(θ∗)T [1− e−θθ∗t],
Varθ(X∗t ) = 1

4λ2 e
2R(θ∗)T [e(R(θ∗)−2θθ∗)t − e−2θθ∗t].

Plugging into (5.3.17), and using also the expression of K, â in (5.3.11), (5.3.13), we have for all θ ∈ Θ,
t ∈ [0, T ], after some straightforward rearrangement:

dEθ[V α
∗,θ

t ]
dt

= 1
2λe

R(θ∗)T
[
ce−2ct − e−R(θ∗)t(1− e−ct)

(R(θ∗)
2 −

(R(θ∗)
2 + c

)
e−ct

)]
=: f(t, c),

where we set c = (θ − θ∗)θ∗ ≥ 0. Now, we easily see that for all t ∈ [0, T ], f(t, c) converges to
−R(θ∗)

4λ eR(θ∗)(T−t) < 0, as c goes to infinity. Then, by continuity of f with respect to c, we deduce

that for θ large enough (hence for c large enough), dEθ[V α
∗,θ

t ]
dt is negative, which means that the function

t 7→ Eθ[V α
∗,θ

t ] is not nondecreasing for all θ ∈ Θ. Actually, we have proved in Theorem 5.3.1 the weaker
condition (iii) of Lemma 5.3.1 that V α

∗,θ
0 ≤ Eθ[V α

∗,θ
T ], for all θ ∈ VΘ. ♦

5.4 Applications and examples

We provide in this section several examples for the determination of the minimal risk premium arising
from the separation principle in Theorem 5.3.1, and the implications for the optimal robust portfolio
strategy and the portfolio diversification.

5.4.1 Minimal risk premium and worst-case scenario

We compute the infimum of the prior risk premium function θ ∈ Θ 7→ R(θ) as defined in (5.2.1),
and (when it exists) the element θ∗ ∈ Θ which achieves this minimum, i.e., the worst-case scenario
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for uncertain parameters. According to condition (HΘ), we distinguish the case of ellipsoidal set and
rectangular sets for the ambiguity parameter Θ.

5.4.1.1 Case of ellipsoidal ambiguity parameter set

In this paragraph, we consider Θ in the form:

Θ = {(b, ρ) ∈ Rd × Γ : ‖σ(ρ)−1(b− b̂)‖2 ≤ δ}, (5.4.1)

as in (H Θ), and denote by β̂i := b̂i
σi

the Sharpe ratio of the i-th asset associated with a priori expected
rate of return b̂i, and marginal volatility σi > 0, i = 1, . . . , d. We assume w.l.o.g that |β̂i| is in descending
order: |β̂1| ≥ |β̂2| ≥ . . . |β̂d|, and define the Sharpe ratio "proximity" between asset i and asset j by

%̂ij = β̂j

β̂i
∈ [−1, 1], 1 ≤ i < j ≤ d. (5.4.2)

with the convention that %̂ij = 0 when β̂i = 0.

Lemma 5.4.1. Let Θ be an ellipsoidal set , and assume that there exists ρ∗ ∈ arg min
ρ∈Γ

R(b̂, ρ)

= arg min
ρ∈Γ

∥∥σ(ρ)−1b̂
∥∥

2. Then θ∗ = (b∗, ρ∗) with

b∗ =
(

1− δ

‖σ(ρ∗)−1b̂‖2

)
1{‖σ(ρ∗)−1b̂‖2>δ} b̂,

and R(θ∗) =
(
‖σ(ρ∗)−1b̂‖2 − δ

)21{‖σ(ρ∗)−1b̂‖2>δ}.

Proof. See proof of Lemma 5.5.2 in Appendix. �

Remark 5.4.1. The existence of ρ∗ is guaranteed when Γ is a compact set of Cd>+ by continuity of the
function ρ 7→

∥∥σ(ρ)−1b̂
∥∥

2. We also show in Proposition 5.4.1 its existence when Γ = Cd>+, and under the
condition that there exists a highest priori Sharpe ratio. ♦

In the particular case when there is full ambiguity about the correlation, i.e. Γ = Cd>+, and there is
an asset with a priori highest (absolute value) Sharpe ratio, one can compute explicitly the worst-case
scenario ρ∗ ∈ Θ for correlation.

Proposition 5.4.1 (Full ambiguity correlation). Let Θ as in (5.4.1), with Γ = Cd>+, and assume that
|β̂1| > max

j 6=1
|β̂j |. Then, we have arg min

Θ
R(b, ρ) 6= ∅ and b∗, ρ∗ = (ρ∗ij)1≤i<j≤d ∈ Cd>+ with

ρ∗1j = %̂1j , b∗ = (1− δ

|β̂1|
)1{|β̂1|>δ}b̂, 1 < j ≤ d, (5.4.3)

and

R(θ∗) = (|β̂1| − δ)21{|β̂1|>δ}.

In particular, when |β̂1| > |β̂2| > . . . > |β̂d|, then ρ∗ij = %̂ij, 1 ≤ i < j ≤ d, and the associated correlation
matrix C(ρ∗) is positive definite.
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Proof. See 5.5.3 in Appendix. �

Remark 5.4.2. Proof of proposition 5.4.1 states that R(b̂, ρ) has minimum value over Cd>+ iff |β̂1| >
max
j 6=1
|β̂j |. If there are more than one greatest (absolute) Sharpe ratio, R(b̂, ρ) doesn’t have minimum

value. For example, if d = 2, β̂1 = β̂2, then C2
>+ = (−1, 1), R(b̂, ρ) = 2|β̂1|2

1+ρ . We obtain inf
C2
>+

R(b̂, ρ) =

|β̂1|2 but it can’t be attained. Therefore, the case with more than one greatest(absolute) Sharpe ratio
under full ambiguity correlation can not be tackled with our approach. ♦

We now consider a model for two-risky assets, i.e. with d = 2, mixing partial ambiguity about
correlation and drift uncertainty. In this case, the following result provides the explicit expression of the
worst-case scenario achieving the minimal risk premium.

Proposition 5.4.2 (Ambiguous drift and correlation in the two-assets case). Let Θ = {(b, ρ) ∈ R2×[ρ, ρ̄] :
‖σ(ρ)−1(b− b̂)‖2 ≤ δ}, with −1 < ρ ≤ ρ̄ < 1, and assume w.l.o.g that |β̂1| ≥ |β̂2|, (β̂1, β̂2) 6= (0, 0). Recall
that ρ̂12 : = β̂2

β̂1
. Then,

1. If %̂12 ∈ [ρ, ρ̄], then ρ∗ = %̂12, and b∗ = b̂(1− δ
|β̂1|

)1{|β̂1|>δ}.

2. If ρ̄ < %̂12, then ρ∗ = ρ̄, and b∗ = b̂(1− δ
‖σ(ρ̄)−1b̂‖2

)1{‖σ(ρ̄)−1b̂‖2>δ}.

3. If ρ > %̂12, then ρ∗ = ρ, and b∗ = b̂(1− δ
‖σ(ρ)−1b̂‖2

)1{‖σ(ρ)−1b̂‖2>δ}.

Proof. See 5.5.4 in Appendix. �

Remark 5.4.3. The computation of the worst-case correlation ρ∗ is determined according to three cases
depending on the relation between the Sharpe ratio proximity ρ̂12 and the two correlation bounds ρ and
ρ̄.

In the first case when the range of correlation ambiguity is large enough so that ρ̂12 ∈ [ρ, ρ̄], or in
other words, no stock is clearly dominating the other one in terms of Sharpe ratio, then the worst-case
correlation is attained at the point ρ̂12 inside the interval [ρ, ρ̄].

In the second case, when ρ̄ < %̂12, meaning that both assets have close Sharpe ratios with a correlation
upper bound not too large, then the worst-case correlation is attained at the prior highest correlation ρ̄.

In the third case, when ρ > %̂12, meaning that Sharpe ratios of the two assets are rather distinctive
with respect to the correlation lower bound, then the worst-case correlation is given by the prior lowest
correlation ρ. ♦

We finally consider a model for three-risky assets (d = 3) mixing partial ambiguity about correlation
and drift uncertainty, hence with Θ in the form Θ = {(b, ρ) ∈ R3 × Γ : ‖σ(ρ)−1(b − b̂)‖2 ≤ δ} with Γ =
[ρ12, ρ̄12] × [ρ13, ρ̄13] × [ρ23, ρ̄23], a subset of C3

>+.

Recall that

%̂12 := β̂2

β̂1
∈ [−1, 1], %̂13 := β̂3

β̂1
∈ [−1, 1], %̂23 := β̂3

β̂2
∈ [−1, 1]. (5.4.4)

We introduce the so-called variance risk ratio κ̂(ρ),

Σ(ρ)−1b̂ =: κ̂(ρ) = (κ̂1(ρ), κ̂2(ρ), κ̂3(ρ))ᵀ, (5.4.5)
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which represents (up to a scalar term) the vector of allocation in the assets when the drift is b̂ and the
correlation is ρ.

We denote by b̂−i the prior expected rate of return b̂ with the i-th component b̂i removed, and by
Σ−i(ρ) the covariance matrix Σ(ρ) with i-th row and i-th column removed, and σ−i(ρ) = Σ−i(ρ) 1

2 . Notice
that Σ−1(ρ) depends only on ρ23. We will write Σ−1(ρ) as Σ−1(ρ23), similarly, Σ−2(ρ13), Σ−3(ρ12).

In this case, the following result provides the explicit expression of the worst-case scenario achieving
the minimal risk premium.

Proposition 5.4.3 (Ambiguous drift and correlation in the three-asset case). Let Θ = {(b, ρ) ∈ R3×Γ :
‖σ(ρ)−1(b − b̂)‖2 ≤ δ} with Γ = [ρ12, ρ̄12] × [ρ13, ρ̄13] × [ρ23, ρ̄23] ⊂ C3

>+. Then, we have the following
possible exclusive cases:

1. (High-level correlation ambiguity for the second and third assets)

If %̂12 ∈ [ρ12, ρ̄12], %̂13 ∈ [ρ13, ρ̄13], then ρ∗ = (%̂12, %̂13, ρ
∗
23) for any ρ∗23 ∈ [ρ23, ρ̄23], and b∗ =

b̂(1− δ
|β̂1|

)1{|β̂1|>δ}.

2. (High-level correlation ambiguity for the third asset)
(i) If ρ̄12 < %̂12, κ̂3(ρ̄12, ρ̄13, ρ̄23)κ̂3(ρ̄12, ρ13, ρ23) ≤ 0, then ρ∗ = (ρ̄12, ρ

∗
13, ρ

∗
23) satisfying κ̂3(ρ̄12, ρ

∗
13, ρ

∗
23)

= 0, and b∗ = b̂(1− δ
‖σ−3(ρ̄12)−1b̂−3‖2

)1{‖σ−3(ρ̄12)−1b̂−3‖2>δ}.

(ii) If ρ12 > %̂12, κ̂3(ρ12, ρ13, ρ̄23)κ̂3(ρ12, ρ̄13, ρ23) ≤ 0, then ρ∗ = (ρ12, ρ
∗
13, ρ

∗
23) satisfying κ̂3(ρ12, ρ

∗
13, ρ

∗
23)

= 0, and b∗ = b̂(1− δ
‖σ−3(ρ

12
)−1b̂−3‖2

)1{‖σ−3(ρ
12

)−1b̂−3‖2>δ}.

3. (High-level correlation ambiguity for the second asset)
(i) If ρ̄13 < %̂13, κ̂2(ρ̄12, ρ̄13, ρ̄23)κ̂2(ρ12, ρ̄13, ρ23) ≤ 0, then ρ∗ = (ρ∗12, ρ̄13, ρ

∗
23) satisfying κ̂2(ρ∗12, ρ̄13, ρ

∗
23)

= 0, and b∗ = b̂(1− δ
‖σ−2(ρ̄13)−1b̂−2‖2

)1{‖σ−2(ρ̄13)−1b̂−2‖2>δ}.

(ii) If ρ13 > %̂13, κ̂2(ρ12, ρ13, ρ̄23)κ̂2(ρ̄12, ρ13, ρ23) ≤ 0, then ρ∗ = (ρ∗12, ρ13, ρ
∗
23) satisfying κ̂2(ρ∗12, ρ13, ρ

∗
23)

= 0, and b∗ = b̂(1− δ
‖σ−2(ρ

13
)−1b̂−2‖2

)1{‖σ−2(ρ
13

)−1b̂−2‖2>δ}.

4. (High-level correlation ambiguity for the first asset)
(i) If ρ̄23 < %̂23, κ̂1(ρ̄12, ρ̄13, ρ̄23)κ̂1(ρ12, ρ13, ρ̄23) ≤ 0, then ρ∗ = (ρ∗12, ρ

∗
13, ρ̄23) satisfying κ̂1(ρ∗12, ρ

∗
13, ρ̄23)

= 0, and b∗ = b̂(1− δ
‖σ−1(ρ̄23)−1b̂−1‖2

)1{‖σ−1(ρ̄23)−1b̂−1‖2>δ}.

(ii) If ρ23 > %̂23, κ̂1(ρ12, ρ̄13, ρ23)κ̂1(ρ̄12, ρ13, ρ23) ≤ 0, then ρ∗ = (ρ∗12, ρ
∗
13, ρ23) satisfying κ̂1(ρ∗12, ρ

∗
13, ρ23)

= 0, and b∗ = b̂(1− δ
‖σ−1(ρ

23
)−1b̂−1‖2

)1{‖σ−1(ρ
23

)−1b̂−1‖2>δ}.

5. (Small ambiguity about correlation)
(i) If κ̂1κ̂2(ρ̄12, ρ̄13, ρ̄23) > 0, κ̂1κ̂3(ρ̄12, ρ̄13, ρ̄23) > 0, then ρ∗ = (ρ̄12, ρ̄13, ρ̄23), and b∗ = b̂(1 −

δ
‖σ(ρ̄12,ρ̄13,ρ̄23)−1b̂‖2

)1{‖σ(ρ̄12,ρ̄13,ρ̄23)−1b̂‖2>δ}.

(ii) If κ̂1κ̂2(ρ12, ρ13, ρ̄23) < 0, κ̂1κ̂3(ρ12, ρ13, ρ̄23) < 0, then ρ∗ = (ρ12, ρ13, ρ̄23), and b∗ = b̂(1 −
δ

‖σ(ρ
12
,ρ

13
,ρ̄23)−1b̂‖2

)1{‖σ(ρ
12
,ρ

13
,ρ̄23)−1b̂‖2>δ}.

(iii) If κ̂1κ̂2(ρ̄12, ρ13, ρ23) > 0, κ̂1κ̂3(ρ̄12, ρ13, ρ23) < 0, then ρ∗ = (ρ̄12, ρ13, ρ23), and b∗ = b̂(1 −
δ

‖σ(ρ̄12,ρ13
,ρ

23
)−1b̂‖2

)1{‖σ(ρ̄12,ρ13
,ρ

23
)−1b̂‖2>δ}.

(iv) If κ̂1κ̂2(ρ12, ρ̄13, ρ23) < 0, κ̂1κ̂3(ρ12, ρ̄13, ρ23) > 0, then ρ∗ = (ρ12, ρ̄13, ρ23), and b∗ = b̂(1 −
δ

‖σ(ρ
12
,ρ̄13,ρ23

)−1b̂‖2
)1{‖σ(ρ

12
,ρ̄13,ρ23

)−1b̂‖2>δ}.
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Proof. See 5.5.5 in Appendix. �

Remark 5.4.4. The different cases in the above proposition depend on the relation between the Sharpe
ratio proximities and the correlation intervals bounds, and can be roughly divided into 5 cases with
subcases with the following interpretation:

In case 1. where the range of correlation ambiguity for the second and third asset is large enough, in
the sense that the intervals [ρ12, ρ̄12] and [ρ13, ρ̄13] contain respectively ρ̂12 and ρ̂13, then the worst-case
correlation is attained at the Sharpe ratio proximity value ρ∗ = (%̂12, %̂13, ρ

∗
23).

Let us now discuss case 2., and more specifically (i). This corresponds to the situation where the
assets 1 and 2 have close Sharpe ratios with a correlation upper bound between these assets not too
large, while the correlation ambiguity for the third asset is high, which is quantified by the fact that the
function (ρ13, ρ23) 7→ κ̂(ρ̄12, ρ13, ρ23) evaluated at the prior lower bounds (ρ13, ρ23) and the prior upper
bounds (ρ̄13, ρ̄23) have opposite signs. In this case, the worst-case correlation is achieved at the prior
highest correlation ρ̄12 for ρ12, and at the point (ρ∗13, ρ

∗
23) cancelling the term κ̂(ρ̄12, ρ

∗
13, ρ

∗
23). Similar

interpretations hold for cases 3. and 4.

Let us finally discuss case 5., which involves explicitly the signs of κ̂1κ̂2 and κ̂1κ̂3 at the prior corre-
lation bounds. Assuming that these functions κ̂1κ̂2 and κ̂1κ̂3 do not vanish at some point ρ ∈ [ρ12, ρ̄12]
× [ρ13, ρ̄13] × [ρ23, ρ̄23], then by continuity, and provided that the range of these correlation bounds are
small enough, we see that one should fall into one of the 4 subcases 5.(i), (ii), (iii), (iv), and for which
the worst-case correlation is obtained on the prior upper or lower correlation bounds. ♦

5.4.1.2 Case of rectangular ambiguity parameter set

In this paragraph, we consider Θ in the form

Θ = ∆× Γ :=
d∏
i=1

[bi, b̄i]× Γ, (5.4.6)

for some constants 0 ≤ bi ≤ b̄i, i = 1, . . . , d, and Γ is a convex set of Cd>+, as in (HΘ)(i). For any b =
(bi)i=1,...,d ∈ ∆, we denote by β = (βi)i=1,...,d with βi = bi

σi
, and also set β

i
= bi

σi
, minimum Sharpe ratio

of asset i, β̄i = b̄i
σi
, maximum Sharpe ratio of asset i, for 1 ≤ i ≤ d.

We focus first on the particular case of full ambiguity correlation, i.e., Γ = Cd>+, and compute explicitly
the worst-case scenario.

Proposition 5.4.4 (Full ambiguity correlation). Let Θ be a rectangular set Θ =
∏d
i=1[bi, b̄i] × Cd>+,

with 0 ≤ bi ≤ b̄i, i = 1, . . . , d, and assume that there exists β
i1
> max

j 6=i1
β
j
for some i1 ∈ {1, . . . , d}, hence

w.l.o.g., i1 = 1. Then

b∗1 = b1, b∗j = b1σj
σ1

ρ∗1j , for any ρ∗1j ∈
[β

j

β1
,min(1, β̄j

β1
)
)
, j 6= 1, (5.4.7)

and

R(θ∗) = β2
1. (5.4.8)

Proof. See 5.5.6 in Appendix. �
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Remark 5.4.5. When Γ = Cd>+, this means the investor has no confidence on the correlation estimates.
In this case, the worst-case scenario refers to the lower bound of the rate of return of the asset with the
highest instantaneous minimum Sharpe ratio. ♦

We next consider a model for two-risky assets mixing ambiguous correlation and drift uncertainty,
hence with d = 2. The following result provides the explicit expression of θ∗ achieving the minimal risk
premium.

Proposition 5.4.5 (Ambiguous drift and correlation in the two-assets case). Let Θ =
∏2
i=1[bi, b̄i] ×

[ρ, ρ̄], and assume that β1 ≥ β2 > 0. Then,

1. If ρ ≤ min
( β̄2

β1
, 1
)
and ρ̄ ≥

β
2
β

1
, then b∗ = (b1,

b1σ2
σ1

ρ∗), for any ρ∗ ∈ [ρ, ρ̄] ∩ [
β

2
β

1
,min( β̄2

β1
, 1)].

2. If ρ̄ <
β

2
β

1
, then b∗ = (b1, b2), ρ∗ = ρ̄.

3. If ρ > min(1, β̄2

β1
), then b∗ = (b1, b̄2), ρ∗ = ρ.

Proof. See 5.5.7 in Appendix. �

Remark 5.4.6. As in Remark 5.4.3, the separation of the three cases depends on the relation between
the Sharpe ratio proximities and the correlation interval bounds. Under the assumption β1 ≥ β2 > 0,
since the investor is looking for the worst case, she only takes the minimum Sharpe ratio for the first
asset.

In the first case, the Sharpe ratios of the two assets don’t have a proximate relation or a dominating
relation, the investor is not sure of making directional trading or spread trading. In Section 4.2.2, we
will see that in this case, the investor will only form a portfolio with the first asset, which has a larger
positive Sharpe ratio. So the second asset is irrelevant, the optimal correlation can takes any value in an
interval and the optimal drift b∗ only depends on the minimum Sharpe ratio of the first asset.

In the second case, when ρ̄ <
β

2
β

1
, the minimum Sharpe ratio of the two asset β1 and β2 are similar

compared to the correlation upper bound ρ̄. The investor will hold similar long positions in these assets
(known as directional trading), thus the optimal drift b∗ = (b1, b2) and the optimal correlation is the
upper bound.

In the third case, we have ρ > β̄2
β

1
, which means that the maximum Sharpe ratio of the second asset is

smaller than the minimum Sharpe ratio of the first asset compared to the correlation lower bound ρ. The
first asset dominates the second asset in term of Sharpe ratio. The investor will hold opposite positions
in these assets (known as spread trading), i.e. long in the first asset and short in the second asset, thus
the optimal drift b∗ = (b1, b̄2) and the optimal correlation is the lower bound. ♦

We finally consider a model for three-risky assets mixing ambiguous correlation and drift uncertainty,
hence with d = 3, and Θ in the form Θ =

∏3
i=1[bi, b̄i] × [ρ12, ρ̄12] × [ρ13, ρ̄13] × [ρ23, ρ̄23] with [ρ12, ρ̄12]

× [ρ13, ρ̄13] × [ρ23, ρ̄23] ⊂ C3
>+.

We define κ(b, ρ) as

Σ(ρ)−1b =: κ(b, ρ) = (κ1(b, ρ), κ2(b, ρ), κ3(b, ρ))ᵀ. (5.4.9)
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The following result provides the explicit expression of θ∗ achieving the minimal risk premium.

Proposition 5.4.6 (Ambiguous drift and correlation in the 3-assets case). Let Θ =
∏

1≤i≤3[bi, b̄i] ×∏
1≤i<j≤3[ρ

ij
, ρ̄ij ] and assume that β1 ≥ β2 ≥ β3 > 0. Then,

1. (High-level ambiguity about drift and correlation for the second and third assets) If ρ12 ≤ min(1, β̄2

β1
),

ρ̄12 ≥
β

2
β

1
, ρ13 ≤ min( β̄3

β1
, 1) and ρ̄13 ≥

β
3
β

1
, then b∗1 = b1, b∗2 = b1σ2

σ1
ρ∗12, b∗3 = b1σ3

σ1
ρ∗13 for any ρ∗12 ∈

[ρ12, ρ̄12] ∩ [
β

2
β

1
,min(1, β̄2

β1
)], ρ∗13 ∈ [ρ13, ρ̄13] ∩ [

β
2
β

1
,min(1, β̄2

β1
)] and ρ∗23 ∈ [ρ23, ρ̄23].

2. (High-level ambiguity about drift and correlation for the third asset)

(i) If ρ̄12 <
β

2
β

1
, κ3(b1, b2, b̄3, ρ̄12, ρ13, ρ23) ≥ 0 ≥ κ3(b1, b2, b3, ρ̄12, ρ̄13, ρ̄23), then b∗ = (b1, b2, b∗3),

ρ∗ = (ρ̄12, ρ
∗
13, ρ

∗
23) with b∗3, ρ∗13, ρ∗23 satisfying κ3(b1, b2, b∗3, ρ̄12, ρ

∗
13, ρ

∗
23) = 0.

(ii) If ρ12 > min( β̄2

β1
, 1), κ3(b1, b̄2, b̄3, ρ12, ρ13, ρ̄23) ≥ 0 ≥ κ3(b1, b̄2, b3, ρ12, ρ̄13, ρ23), then b∗ =

(b1, b̄2, b∗3), ρ∗ = (ρ12, ρ
∗
13, ρ

∗
23) with b∗3, ρ∗13, ρ∗23 satisfying

κ3(b1, b̄2, b∗3, ρ12, ρ
∗
13, ρ

∗
23) = 0.

3. (High-level ambiguity about drift and correlation for the second asset)

(i) If ρ̄13 <
β

3
β

1
, κ2(b1, b̄2, b3, ρ12, ρ̄13, ρ23) ≥ 0 ≥ κ2(b1, b2, b3, ρ̄12, ρ̄13, ρ̄23), then b∗ = (b1, b∗2, b3),

ρ∗ = (ρ∗12, ρ̄13, ρ
∗
23) with b∗2, ρ∗12, ρ∗23 satisfying κ2(b1, b∗2, b3, ρ∗12, ρ̄13, ρ

∗
23) = 0.

(ii) If ρ13 > min( β̄3

β1
, 1), κ2(b1, b̄2, b3, ρ12, ρ̄13, ρ̄23) ≥ 0 ≥ κ2(b1, b2, b3, ρ̄12, ρ̄13, ρ23), then b∗ =

(b1, b∗2, b̄3), ρ∗ = (ρ∗12, ρ̄13, ρ
∗
23) with b∗2, ρ∗12, ρ∗23 satisfying

κ2(b1, b∗2, b̄3, ρ∗12, ρ13, ρ
∗
23) = 0.

4. (High-level ambiguity about drift and correlation for the first asset)

(i) If ρ̄23 <
β

3
β

2
, κ1(b̄1, b2, b3, ρ12, ρ13, ρ̄23) ≥ 0 ≥ κ1(b1, b2, b3, ρ̄12, ρ̄13, ρ̄23), then b∗ = (b∗1, b2, b3),

ρ∗ = (ρ∗12, ρ
∗
13, ρ̄23) with b∗1, ρ∗12, ρ∗13 with b∗1, ρ∗12, ρ∗13 satisfying κ1(b∗1, b2, b3, ρ∗12, ρ

∗
13, ρ̄23) = 0.

(ii) If ρ23 > min(1, β̄3

β2
) κ1(b̄1, b2, b̄3, ρ12, ρ̄13, ρ23) ≥ 0 ≥ κ1(b1, b2, b̄3, ρ̄12, ρ13, ρ23), then b∗ =

(b∗1, b2, b̄3), ρ∗ = (ρ∗12, ρ
∗
13, ρ23) with b∗1, ρ∗12, ρ∗13 satisfying

κ1(b∗1, b2, b̄3, ρ∗12, ρ
∗
13, ρ23) = 0.

5. (Small ambiguity about drift and correlation)
(i) If κ1(b1, b2, b3, ρ̄12, ρ̄13, ρ̄23) > 0, κ2(b1, b2, b3, ρ̄12, ρ̄13, ρ̄23) > 0, κ3(b1, b2, b3, ρ̄12, ρ̄13, ρ̄23) > 0,

then b∗ = (b1, b2, b3) and ρ∗ = (ρ̄12, ρ̄13, ρ̄23).
(ii) If κ1(b1, b̄2, b3, ρ12, ρ̄13, ρ23) > 0, κ2(b1, b̄2, b3, ρ12, ρ̄13, ρ23) < 0, κ3(b1, b̄2, b3, ρ12, ρ̄13, ρ23) > 0,

then b∗ = (b1, b̄2, b3) and ρ∗ = (ρ12, ρ̄13, ρ23).

(iii) If κ1(b̄1, b2, b̄3, ρ12, ρ̄13, ρ23) < 0, κ2(b̄1, b2, b̄3, ρ12, ρ̄13, ρ23) > 0, κ3(b̄1, b2, b̄3, ρ12, ρ̄13, ρ23) < 0,
then b∗ = (b̄1, b2, b̄3) and ρ∗ = (ρ12, ρ̄13, ρ23).

(iv) If κ1(b1, b̄2, b̄3, ρ12, ρ13, ρ̄23) > 0, κ2(b1, b̄2, b̄3, ρ12, ρ13, ρ̄23) < 0, κ3(b1, b̄2, b̄3, ρ12, ρ13, ρ̄23) < 0,
then b∗ = (b1, b̄2, b̄3) and ρ∗ = (ρ12, ρ13, ρ̄23).
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(v) If κ1(b̄1, b2, b3, ρ12, ρ13, ρ̄23) < 0, κ2(b̄1, b2, b3, ρ12, ρ13, ρ̄23) > 0, κ3(b̄1, b2, b3, ρ12, ρ13, ρ̄23) > 0,
then b∗ = (b̄1, b2, b3) and ρ∗ = (ρ12, ρ13, ρ̄23).

(vi) If κ1(b1, b2, b̄3, ρ̄12, ρ13, ρ23) > 0, κ2(b1, b2, b̄3, ρ̄12, ρ13, ρ23) > 0, κ3(b1, b2, b̄3, ρ̄12, ρ13, ρ23) < 0,
then b∗ = (b1, b2, b̄3) and ρ∗ = (ρ̄12, ρ13, ρ23).

(vii) If κ1(b̄1, b̄2, b3, ρ̄12, ρ13, ρ23) < 0, κ2(b̄1, b̄2, b3, ρ̄12, ρ13, ρ23) < 0, κ3(b̄1, b̄2, b3, ρ̄12, ρ13, ρ23) > 0,
then b∗ = (b̄1, b̄2, b3) and ρ∗ = (ρ̄12, ρ13, ρ23).

Remark 5.4.7. For the ellipsoidal set in Remark 5.4.4, the level of drift uncertainty of each asset is
the same characterized by the radius δ. If δ is not very large, the portfolio diversification is caused by
the level of correlation ambiguity, see Remark 5.4.4, however, for the rectangular set, the level of drift
uncertainty of each asset is different for each asset. For simplicity and clarity, we consider the only impact
of drift uncertainty, or equivalently Sharpe ratio uncertainty, on the portfolio diversification, i.e. there is
no ambiguity on correlation with ρoij := ρ

ij
= ρ̄ij , 1 ≤ i < j ≤ 3. As in Remark 5.4.4, the different cases

in the above proposition depend on the relation between Sharpe ratio proximities and correlation, and
can be roughly divided into 5 cases with the following interpretation:

In case 1. where the range of Sharpe ratio uncertainty for the second and third asset is large enough,
in the sense that the intervals [

β
2
β

1
, β̄2
β

1
] and [

β
3
β

1
, β̄3
β

1
] contain respectively correlation ρo12 and ρo13, then the

worst-case Sharpe ratio (drift) is attained at the prior lower bound β1 for β1, and at the point (β∗2 , β∗3)
= (β1ρ

o
12, β1ρ

o
13).

Let us now discuss case 2., and more specifically (i). This corresponds to the situation where the
assets 1 and 2 have close minimum Sharpe ratios with correlation between these assets not too large,
while the Sharpe ratio uncertainty for the third asset is high, which is quantified by the fact that the
function b3 7→ κ3(b1, b2, b3) (we omit ρo arguments in the function κ3(b1, b2, b3, ρo12, ρ

o
13, ρ

o
23) for simplicity)

evaluated at the prior lower bounds b3 and the prior upper bounds b̄3 have opposite signs. In this case,
the worst-case drift or Sharpe ratio is achieved at the prior lower bound b1 for b1, prior lower bound b2
for b2, and at the point b∗3 cancelling the term κ(b1, b2, b∗3). Similar interpretations hold for cases 3. and
4.

Let us finally discuss case 5., which involves explicitly the signs of κ1, κ2 and κ3 at the prior drift
or Sharpe ratio bounds. Assuming that these functions κ1, κ2 and κ3 do not vanish at some point b ∈
[b1, b̄1] × [b2, b̄2] × [b3, b̄3], then by continuity, and provided that the range of these correlation bounds
are small enough, we see that one should fall into one of the 7 subcases 5.(i), (ii), (iii), (iv), and for which
the worst-case drift is obtained on the prior upper or lower drift (Sharpe ratio) bounds. ♦

5.4.2 Optimal robust strategy and portfolio diversification

We first provide the general explicit expression of the robust optimal strategy in the case of ellipsoidal
ambiguity set. This follows directly from Theorem 5.3.1 and Lemma 5.4.1.

Proposition 5.4.7. Let Θ be an ellipsoidal set as in (5.4.1), and assume that there exists ρ∗ ∈
arg min

ρ∈Γ

∥∥σ(ρ)−1b̂
∥∥

2. Then, an optimal portfolio strategy for (5.2.4) is given by

α∗t =
[
x0 + 1

2λe
(‖σ(ρ∗)−1b̂‖2−δ)2T −X∗t

](
1− δ

‖σ(ρ∗)−1b̂‖2

)
1{‖σ(ρ∗)−1b̂‖2>δ}Σ(ρ∗)−1b̂. (5.4.10)
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Remark 5.4.8. We have seen in the previous section that ρ∗ exists when Γ is compact (in particular
when it is a singleton, i.e., there is no ambiguity on correlation) or when Γ = Cd>+, i.e., there is full
ambiguity on correlation. From (5.4.10), we observe notably that whenever δ ≥ ‖σ(ρ∗)−1b̂‖2, then α∗ ≡
0. In other words, when the level of ambiguity about the expected rate of return is high (or when the
investor is poorly confident about her estimation b̂ on the expected rate of return), then she does not
make risky investment at all. ♦

5.4.2.1 Full ambiguity correlation and anti-diversification

In this paragraph, we consider the case of full ambiguity on correlation, i.e., Γ = Cd>+, and investigate
the impact on optimal robust portfolio strategy.

Theorem 5.4.1 (Full ambiguity correlation). I. Let Θ be an ellipsoidal set as in (5.4.1), with Γ = Cd>+,
and assume that |β̂1| > max

j 6=1
|β̂j |. Then an optimal portfolio strategy for the robust mean-variance problem

(5.2.4) is explicitly given by

α∗t =
[
x0 + 1

2λe
(|β̂1 |−δ)

2T −X∗t
](

1− δ

|β̂1|

)
1|β̂1|>δ

( b̂1
σ2

1
, 0, . . . , 0

)ᵀ
, 0 ≤ t ≤ T, PΘ − q.s.

II. Let Θ be a rectangular set as in (5.4.6), with Γ = Cd>+, and assume that β1 > max
j 6=1

β
j
. Then, an

optimal portfolio strategy for the robust mean-variance problem (5.2.4) is explicitly given by

α∗t =
[
x0 + 1

2λe
β2

1
T

−X∗t
]( b1
σ2

1
, 0, . . . , 0

)ᵀ
, 0 ≤ t ≤ T, PΘ − q.s..

Proof. I. From the formula (5.4.10) of the optimal portfolio strategy in Proposition 5.4.7, we only
have to compute the vector κ̂(ρ∗) = Σ(ρ∗)−1b̂, and R(b̂, ρ∗), which have been already given in (5.5.28),
(5.5.29) in Section 5.5.3.
II. In view of the formula (5.3.1) of the optimal portfolio strategy in Theorem 5.3.1, we only have to
compute the vector κ(b∗, ρ∗) = Σ(ρ∗)−1b∗, and R(b∗, ρ∗), which have been already given in (5.5.49),
(5.5.48) in Section 5.5.6. �

Remark 5.4.9 (Financial interpretation: anti-diversification). If the investor is poorly confident on the
drift estimate, i.e., whenever δ is large enough, then she does not make risky investments at all, i.e. α∗t
≡ 0. When the investor has good knowledge of drift estimates but is poorly confident of correlation
estimates, she only invests in one asset, namely the one with the highest estimated Sharpe ratio. This
anti-diversification result under full ambiguity about correlation has been also observed in [LZ17] for a
single-period mean-variance problem without drift uncertainty, and is extended here in a continuous time
framework. ♦

5.4.2.2 Partial diversification

• Two-asset model: d = 2

We provide a complete picture of the optimal robust portfolio strategy in a two-asset model with am-
biguous drift and correlation.

Theorem 5.4.2 (Ambiguous drift and correlation in the two-assets case). I. Let Θ = {(b, ρ) ∈ R2×[ρ, ρ̄] :
‖σ(ρ)−1(b − b̂)‖2 ≤ δ}, with −1 < ρ ≤ ρ̄ < 1, and assume w.l.o.g that |β̂1| ≥ |β̂2|, (β̂1, β̂2) 6= (0, 0). We
have the following possible cases:
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1. If %̂12 ∈ [ρ, ρ̄], then an optimal portfolio strategy is explicitly given by

α∗t =
[
x0 + 1

2λe
(|β̂1|−δ)2T −X∗t

](
1− δ

|β̂1|
)
1{|β̂1|>δ}

(
b̂1
σ2

1

0

)
, 0 ≤ t ≤ T, PΘ − q.s.

2. If ρ̄ < %̂12, then an optimal portfolio strategy is explicitly given by

α∗t =
[
x0 + 1

2λe
(‖σ(ρ̄)−1b̂‖2−δ)2T −X∗t

](
1− δ

‖σ(ρ̄)−1b̂‖2

)
1{‖σ(ρ̄)−1b̂‖2>δ}Σ(ρ̄)−1b̂,

and if ‖σ(ρ̄)−1b̂‖2 > δ, then α1,∗
t α2,∗

t > 0.

3. If ρ > %̂12, then an optimal portfolio strategy is explicitly given by

α∗t =
[
x0 + 1

2λe
(‖σ(ρ)−1b̂‖2−δ)2T −X∗t

](
1− δ

‖σ(ρ)−1b̂‖2

)
1{‖σ(ρ)−1b̂‖2>δ}Σ(ρ)−1b̂,

and if ‖σ(ρ)−1b̂‖2 > δ, then α1,∗
t α2,∗

t < 0.

II. Let Θ =
∏2
i=1[bi, b̄i]× [ρ, ρ̄], and assume that β1 ≥ β2 > 0. We have the following possible cases:

1. If ρ ≤ min( β̄2

β1
, 1) and ρ̄ ≥

β
2
β

1
, then an optimal portfolio strategy is explicitly given by

α∗t =
[
x0 + 1

2λe
β2

1
T

−X∗t
]( b

1
σ2

1

0

)
, 0 ≤ t ≤ T, PΘ − q.s.,

2. If ρ̄ <
β

2
β

1
, then an optimal portfolio strategy is explicitly given by

α∗t =
[
x0 + 1

2λe
‖σ(ρ̄)−1(b1,b2)ᵀ‖22T −X∗t

]
Σ(ρ̄)−1

(
b1
b2

)
, 0 ≤ t ≤ T, PΘ − q.s.,

and α1,∗
t > 0, α2,∗

t > 0.

3. If ρ > min(1, β̄2

β1
), then an optimal portfolio strategy is explicitly given by

α∗t =
[
x0 + 1

2λe
‖σ(ρ)−1(b1,b̄2)ᵀ‖22T −X∗t

]
Σ(ρ)−1

(
b1
b̄2

)
, 0 ≤ t ≤ T, PΘ − q.s.,

and α1,∗
t > 0, α2,∗

t < 0.

Proof. I. In light of formula (5.4.10) of the optimal portfolio strategy in Proposition 5.4.7, we only
need to compute ‖σ(ρ∗)−1b̂‖2, i.e., R(b̂, ρ∗), vector κ̂(ρ∗) = Σ(ρ∗)−1b̂, explicitly given in the proof of
Proposition 5.4.2 (see 5.5.4 in Appendix) when computing ρ∗, which leads to the three cases of Theorem
5.4.2 I..
II. In light of formula (5.3.1) of the optimal portfolio strategy in Theorem 5.3.1, we only need to compute
Σ(ρ∗)−1b∗, R(b∗, ρ∗), explicitly given in the proof of Proposition 5.4.5 (see 5.5.7 in Appendix) when
computing (b∗, ρ∗), which lead to the three possible cases of Theorem 5.4.2 II.. �
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Remark 5.4.10. When there is no ambiguity on the drift, which corresponds to δ = 0 or bi = b̄i, i = 1,
2, we retrieve the results obtained in [IP17] for the correlation ambiguity between two assets (see their
Theorem 4.2). Our Theorem includes in addition the case when there is uncertainty on the expected rate
of return. ♦

Remark 5.4.11 (Financial interpretation). We first look at the ellipsoidal set: In the first case when the
range of correlation ambiguity is large enough so that ρ̂12 ∈ (ρ, ρ̄), and thus no stock is clearly dominating
the other one in terms of Sharpe ratio, it is optimal to invest only in one asset, namely the one with the
highest estimated Sharpe ratio.

In the second case when ρ̄ < ρ̂12, this means that no stock is “dominating" the other one in terms of
Sharpe ratio, and it is optimal to invest in both assets with a directional trading, that is buying or selling
simultaneously, and the worst-case correlation refers to the highest prior correlation ρ̄ (recall Remark
5.4.3) where the diversification effect is minimal.

Finally, when ρ > ρ̂12, this means that one asset is clearly dominating the other one, and it is optimal
to invest in both assets with a spread trading, that is buying one and selling another, and the worst-
case correlation corresponds to the lowest prior correlation ρ where the profit from the spread trading is
minimal.

For the rectangular set, the interpretation is similar, and the worst-case drift refers to lower bound of
the drift if the asset is in long position and upper bound of the drift if the asset is in short position, see
5.4.6. ♦

• Three-asset model: d = 3

We finally provide an explicit description of the optimal robust strategy in a three-asset model under
drift uncertainty and ambiguous correlation.

Theorem 5.4.3. I. Let Θ = {(b, ρ) ∈ R3 × Γ : ‖σ(ρ)−1(b− b̂)‖2 ≤ δ} with Γ = [ρ12, ρ̄12] × [ρ13, ρ̄13] ×
[ρ23, ρ̄23] ⊂ C3

>+, and assume w.l.o.g that |β̂1| ≥ |β̂2| ≥ |β̂3|, (β̂1, β̂2, β̂3) 6= (0, 0, 0), Then, we have the
following possible exclusive cases:

1. (Anti-diversification) If %̂12 ∈ [ρ12, ρ̄12], and %̂13 ∈ [ρ13, ρ̄13], then an optimal portfolio strategy is
explicitly given by

α∗t =
[
x0 + 1

2λe
(|β̂1|−δ)2T −X∗t

](
1− δ

|β̂1|

)
1{|β̂1|>δ}

 b̂1
σ2

1

0
0

 , 0 ≤ t ≤ T, PΘ − q.s.,

2. (Under-diversification: no investment in the third asset)
(i) If ρ̄12 < %̂12, and κ̂3(ρ̄12, ρ̄13, ρ̄23)κ̂3(ρ̄12, ρ13, ρ23) ≤ 0, then an optimal portfolio strategy is(

α1,∗
t

α2,∗
t

)
=

[
x0 + 1

2λe
(‖σ−3(ρ̄12)−1b̂−3‖2−δ)2T −X∗t

](
1− δ

‖σ−3(ρ̄12)−1b̂−3‖2

)
1{‖σ−3(ρ̄12)−1b̂−3‖2>δ}Σ−3(ρ̄12)−1b̂−3,

α3,∗
t ≡ 0,

and if ‖σ−3(ρ̄12)−1b̂−3‖2 > δ, then α1,∗
t α2,∗

t > 0.
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(ii) If ρ12 > %̂12, and κ̂3(ρ12, ρ13, ρ̄23)κ̂3(ρ12, ρ̄13, ρ23) ≤ 0, then an optimal portfolio strategy is(
α1,∗
t

α2,∗
t

)
=

[
x0 + 1

2λe
(‖σ−3(ρ

12
)−1b̂−3‖2)−δ)2T −X∗t

](
1− δ

‖σ−3(ρ12)−1b̂−3‖2

)
1{‖σ−3(ρ

12
)−1b̂−3‖2>δ}Σ−3(ρ̄12)−1b̂−3

α3,∗
t ≡ 0,

and if ‖σ−3(ρ12)−1b̂−3‖2 > δ, then α1,∗
t α2,∗

t < 0.

3. (Under-diversification: no investment in the second asset)
(i) If ρ̄13 < %̂13, and κ̂2(ρ̄12, ρ̄13, ρ̄23)κ̂2(ρ12, ρ̄13, ρ23) ≤ 0, then an optimal portfolio strategy is(

α1,∗
t

α3,∗
t

)
=

[
x0 + 1

2λe
(‖σ−2(ρ̄13)−1b̂−2‖2−δ)2T −X∗t

](
1− δ

‖σ−2(ρ̄13)−1b̂−2‖2

)
1{‖σ−2(ρ̄13)−1b̂−2‖2>δ}Σ−2(ρ̄13)−1b̂−2

α2,∗
t ≡ 0,

and if ‖σ−2(ρ̄13)−1b̂−2‖2 > δ, then α1,∗
t α3,∗

t > 0.
(ii) If ρ13 > %̂13, and κ̂2(ρ12, ρ13, ρ̄23)κ̂2(ρ̄12, ρ13, ρ23) ≤ 0, then an optimal portfolio strategy is

given by(
α1,∗
t

α3,∗
t

)
=

[
x0 + 1

2λe
(‖σ−2(ρ

13
)−1b̂−2‖2−δ)2T −X∗t

](
1− δ

‖σ−2(ρ13)−1b̂−2‖2

)
1{‖σ−2(ρ

13
)−1b̂−2‖2>δ}Σ−2(ρ13)−1b̂−2,

α2,∗
t ≡ 0,

and if ‖σ−2(ρ13)−1b̂−2‖2 > δ, then α1,∗
t α3,∗

t < 0.

4. (Under-diversification: no investment in the second asset)
(i) If ρ̄23 < %̂23, and κ̂1(ρ12, ρ13, ρ̄23)κ̂1(ρ̄12, ρ̄13, ρ̄23) ≤ 0, then an optimal portfolio strategy is(

α2,∗
t

α3,∗
t

)
=

[
x0 + 1

2λe
(‖σ−1(ρ̄23)−1b̂−1‖2−δ)2T −X∗t

](
1− δ

‖σ−1(ρ̄23)−1b̂−1‖2

)
1{‖σ−1(ρ̄23)−1b̂−1‖2>δ}Σ−1(ρ̄23)−1b̂−1,

α1,∗
t ≡ 0,

and if ‖σ−1(ρ̄23)−1b̂−1‖2 > δ, then α2,∗
t α3,∗

t > 0.
(ii) If ρ23 > %̂23, and κ̂1(ρ12, ρ̄13, ρ23)κ̂1(ρ̄12, ρ13, ρ23) ≤ 0, then an optimal portfolio strategy is(

α2,∗
t

α3,∗
t

)
=

[
x0 + 1

2λe
(‖σ−1(ρ

23
)−1b̂−1‖2−δ)2T −X∗t

](
1− δ

‖σ−1(ρ23)−1b̂−1‖2

)
1{‖σ−1(ρ

23
)−1b̂−1‖2>δ}Σ−1(ρ23)−1b̂−1

α1,∗
t ≡ 0,

and if ‖σ−1(ρ23)−1b̂−1‖2 > δ, then α2,∗
t α3,∗

t < 0.
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5. (Well-diversification)
(i) If κ̂1κ̂2(ρ̄12, ρ̄13, ρ̄23) > 0, and κ̂1κ̂3(ρ̄12, ρ̄13, ρ̄23) > 0, then an optimal portfolio strategy is

given by

α∗t =
[
x0 + 1

2λe
(‖σ(ρ̄12,ρ̄13,ρ̄23)−1b̂‖2−δ)2T −X∗t

](
1− δ

‖σ(ρ̄12, ρ̄13, ρ̄23)−1b̂‖2

)
1{‖σ(ρ̄12,ρ̄13,ρ̄23)−1b̂‖2>δ}Σ(ρ̄12, ρ̄13, ρ̄23)−1b̂.

(ii) If κ̂1κ̂2(ρ12, ρ13, ρ̄23) < 0, and κ̂1κ̂3(ρ12, ρ13, ρ̄23) < 0, then an optimal portfolio strategy is
given by

α∗t =
[
x0 + 1

2λe
(‖σ(ρ

12
,ρ

13
,ρ̄23)−1b̂‖2−δ)2T −X∗t

](
1− δ

‖σ(ρ12, ρ13, ρ̄23)−1b̂‖2

)
1{‖σ(ρ

12
,ρ

13
,ρ̄23)−1b̂‖2>δ}Σ(ρ12, ρ13, ρ̄23)−1b̂.

(iii) If κ̂1κ̂2(ρ̄12, ρ13, ρ23) > 0, and κ̂1κ̂3(ρ̄12, ρ13, ρ23) < 0, then an optimal portfolio strategy is
given by

α∗t =
[
x0 + 1

2λe
(‖σ(ρ̄12,ρ13

,ρ
23

)−1b̂‖2−δ)2T −X∗t
](

1− δ

‖σ(ρ̄12, ρ13, ρ23)−1b̂‖2

)
1{‖σ(ρ̄12,ρ13

,ρ
23

)−1b̂‖2>δ}Σ(ρ̄12, ρ13, ρ23)−1b̂.

(iv) If κ̂1κ̂2(ρ12, ρ̄13, ρ23) < 0, and κ̂1κ̂3(ρ12, ρ̄13, ρ23) > 0, then an optimal portfolio strategy is
given by

α∗t =
[
x0 + 1

2λe
‖(σ(ρ

12
,ρ̄13,ρ23

)−1b̂‖2−δ)2T −X∗t
](

1− δ

‖σ(ρ12, ρ̄13, ρ23)−1b̂‖2

)
1{‖σ(ρ

12
,ρ̄13,ρ23

)−1b̂‖2>δ}Σ(ρ12, ρ̄13, ρ23)−1b̂.

II. Let Θ =
∏3
i=1[bi, b̄i] ×

∏
1≤i<j≤3[ρ

ij
, ρ̄ij ] and assume that β1 ≥ β2 ≥ β3 > 0. Then, we have the

following possible cases:

1. (Anti-diversification) If ρ12 ≤ min(1, β̄2

β1
), ρ̄12 ≥

β
2
β

1
and ρ13 ≤ min(1, β̄3

β1
), ρ̄13 ≥

β
3
β

1
, then an

optimal portfolio strategy is explicitly given by

α∗t =
[
x0 + 1

2λe
β2

1
T

−X∗t
]

b1
σ2

1

0
0

 , 0 ≤ t ≤ T, PΘ − q.s.,

2. (Under-diversification: no investment in the third asset)

(i) If ρ̄12 <
β

2
β

1
, κ3(b1, b2, b̄3, ρ̄12, ρ13, ρ23) ≥ 0 ≥ κ3(b1, b2, b3, ρ̄12, ρ̄13, ρ̄23), then an optimal port-

folio strategy is explicitly given by(
α1,∗
t

α2,∗
t

)
=

[
x0 + 1

2λe
‖σ−3(ρ̄12)−1(b1,b2)>‖22T −X∗t

]
Σ−3(ρ̄12)−1

(
b1
b2

)
,

α3,∗
t ≡ 0,

and α1,∗
t > 0, α2,∗

t > 0.
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(ii) If ρ12 > min( β̄2

β1
, 1), κ3(b1, b̄2, b̄3, ρ12, ρ13, ρ̄23) ≥ 0 ≥ κ3(b1, b̄2, b3, ρ12, ρ̄13, ρ23), then an optimal

portfolio strategy is explicitly given by(
α1,∗
t

α2,∗
t

)
=

[
x0 + 1

2λe
‖σ−3(ρ

12
)−1(b1,b̄2)>‖22T −X∗t

]
Σ−3(ρ12)−1

(
b1
b̄2

)
,

α3,∗
t ≡ 0,

and α1,∗
t > 0, α2,∗

t < 0.

3. (Under-diversification: no investment in the second asset)

(i) If ρ̄13 <
β

3
β

1
, κ2(b1, b̄2, b3, ρ12, ρ̄13, ρ23) ≥ 0 κ2(b1, b2, b3, ρ̄12, ρ̄13, ρ̄23), then an optimal portfolio

strategy is explicitly given by(
α1,∗
t

α3,∗
t

)
=

[
x0 + 1

2λe
(‖σ−2(ρ̄13)−1(b1,b3)>‖22T −X∗t

]
Σ−2(ρ̄13)−1

(
b1
b3

)
,

α2,∗
t ≡ 0,

and α1,∗
t > 0, α3,∗

t > 0.

(ii) If ρ13 > min( β̄3

β1
, 1), κ2(b1, b̄2, b3, ρ12, ρ13, ρ̄23) ≥ 0 ≥ κ2(b1, b2, b3, ρ̄12, ρ13, ρ23), then an optimal

portfolio strategy is explicitly given by(
α1,∗
t

α3,∗
t

)
=

[
x0 + 1

2λe
(‖σ−2(ρ

13
)−1(b1,b̄3)>‖22T −X∗t

]
Σ−2(ρ13)−1

(
b1
b̄3

)
,

α2,∗
t ≡ 0,

and α1,∗
t > 0, α3,∗

t < 0.

4. (Under-diversification: no investment in the third asset)

(i) If ρ̄23 <
β

3
β

2
, κ1(b̄1, b2, b3, ρ12, ρ13, ρ̄23) ≥ 0 ≥ κ1(b1, b2, b3, ρ̄12, ρ̄13, ρ̄23), then an optimal port-

folio strategy is explicitly given by(
α2,∗
t

α3,∗
t

)
=

[
x0 + 1

2λe
‖σ−1(ρ̄23)−1(b2,b3)>‖22T −X∗t

]
Σ−1(ρ̄23)−1

(
b2
b3

)
,

α1,∗
t ≡ 0,

and α2,∗
t > 0, α3,∗

t > 0.

(ii) If ρ23 > min(1, β̄3

β2
) κ1(b̄1, b2, b̄3, ρ12, ρ̄13, ρ23) ≥ 0 ≥ κ1(b1, b2, b̄3, ρ̄12, ρ13, ρ23), then an optimal

portfolio strategy is explicitly given by(
α2,∗
t

α3,∗
t

)
=

[
x0 + 1

2λe
‖σ−1(ρ

23
)−1(b2,b̄3)>‖22T −X∗t

]
Σ−1(ρ23)−1

(
b2
b̄3

)
,

α1,∗
t ≡ 0,

and α2,∗
t > 0, α3,∗

t < 0.

5. (Well diversification)
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(i) If κ1(b1, b2, b3, ρ̄12, ρ̄13, ρ̄23) > 0, κ2(b1, b2, b3, ρ̄12, ρ̄13, ρ̄23) > 0, κ3(b1, b2, b3, ρ̄12, ρ̄13, ρ̄23) > 0,
then an optimal portfolio strategy is explicitly given by

α∗t =
[
x0 + 1

2λe
‖σ(ρ̄12,ρ̄13,ρ̄23)−1(b1,b2,b3)>‖22T −X∗t

]
Σ(ρ̄12, ρ̄13, ρ̄23)−1(b1, b2, b3)>.

(ii) If κ1(b1, b̄2, b3, ρ12, ρ̄13, ρ23) > 0, κ2(b1, b̄2, b3, ρ12, ρ̄13, ρ23) < 0, κ3(b1, b̄2, b3, ρ12, ρ̄13, ρ23) > 0,
then an optimal portfolio strategy is explicitly given by

α∗t =
[
x0 + 1

2λe
‖σ(ρ

12
,ρ̄13,ρ23

)−1(b1,b̄2,b3)>‖22T −X∗t
]
Σ(ρ12, ρ̄13, ρ23)−1(b1, b̄2, b3)>.

(iii) If κ1(b̄1, b2, b̄3, ρ12, ρ̄13, ρ23) < 0, κ2(b̄1, b2, b̄3, ρ12, ρ̄13, ρ23) > 0, κ3(b̄1, b2, b̄3, ρ12, ρ̄13, ρ23) < 0,
then an optimal portfolio strategy is explicitly given by

α∗t =
[
x0 + 1

2λe
‖σ(ρ

12
,ρ̄13,ρ23

)−1(b̄1,b2,b̄3)>‖22T −X∗t
]
Σ(ρ12, ρ̄13, ρ23)−1(b̄1, b2, b̄3)>.

(iv) If κ1(b1, b̄2, b̄3, ρ12, ρ13, ρ̄23) > 0, κ2(b1, b̄2, b̄3, ρ12, ρ13, ρ̄23) < 0, κ3(b1, b̄2, b̄3, ρ12, ρ13, ρ̄23) < 0,
then an optimal portfolio strategy is explicitly given by

α∗t =
[
x0 + 1

2λe
‖σ(ρ

12
,ρ

13
,ρ̄23)−1(b1,b̄2,b̄3)>‖22T −X∗t

]
Σ(ρ12, ρ13, ρ̄23)−1(b1, b̄2, b̄3)>.

(v) If κ1(b̄1, b2, b3, ρ12, ρ13, ρ̄23) < 0, κ2(b̄1, b2, b3, ρ12, ρ13, ρ̄23) > 0, κ3(b̄1, b2, b3, ρ12, ρ13, ρ̄23) > 0,
then an optimal portfolio strategy is explicitly given by

α∗t =
[
x0 + 1

2λe
‖σ(ρ

12
,ρ

13
,ρ̄23)−1(b̄1,b2,b3)>‖22T −X∗t

]
Σ(ρ12, ρ13, ρ̄23)−1(b̄1, b2, b3)>.

(vi) If κ1(b1, b2, b̄3, ρ̄12, ρ13, ρ23) > 0, κ2(b1, b2, b̄3, ρ̄12, ρ13, ρ23) > 0, κ3(b1, b2, b̄3, ρ̄12, ρ13, ρ23) < 0,
then an optimal portfolio strategy is explicitly given by

α∗t =
[
x0 + 1

2λe
‖σ(ρ̄12,ρ13

,ρ
23

)−1(b1,b2,b̄3)>‖22T −X∗t
]
Σ(ρ̄12, ρ13, ρ23)−1(b1, b2, b̄3)>.

(vii) If κ1(b̄1, b̄2, b3, ρ̄12, ρ13, ρ23) < 0, κ2(b̄1, b̄2, b3, ρ̄12, ρ13, ρ23) < 0, κ3(b̄1, b̄2, b3, ρ̄12, ρ13, ρ23) > 0,
then an optimal portfolio strategy is explicitly given by

α∗t =
[
x0 + 1

2λe
‖σ(ρ̄12,ρ13

,ρ
23

)−1(b̄1,b̄2,b3)>‖22T −X∗t
]
Σ(ρ̄12, ρ13, ρ23)−1(b̄1, b̄2, b3)>.

Proof. I. In view of formula (5.4.10) of the optimal portfolio strategy in Proposition 5.4.7, we only
need to compute κ̂(ρ∗) = Σ(ρ∗)−1b̂, and ‖σ(ρ∗)−1b̂‖2, i.e., R(b̂, ρ∗), which have been given explicitly in
the proof of Proposition 5.4.3 (see 5.5.5 in Appendix) when computing ρ∗. In the case 1., we obtained
(see (5.5.33) in Appendix) κ̂(ρ∗) = ( b̂1

σ2
1
, 0, 0)ᵀ, and R(b̂, ρ∗) = b̂ᵀκ̂(ρ∗) = β̂2

1 . In the case 2., let us focus
on subcase (i) as the other subcase (ii) is dealt with similarly: we have ρ∗12 = ρ̄12, (κ̂1(ρ̄12), κ̂2(ρ̄12))ᵀ =
Σ−3(ρ̄12)b̂−3, κ̂3(ρ̄12, ρ

∗
13, ρ

∗
23) = 0, and R(b̂, ρ∗) = b̂ᵀ−3Σ−3(ρ̄12)b̂−3, by (5.5.40), (5.5.41). The other cases

are computed in the same way and are omitted here.
II. From (5.3.1) of the optimal portfolio strategy in Theorem 5.3.1, we only need to compute κ(b∗, ρ∗) =
Σ(ρ∗)−1b∗, and ‖σ(ρ∗)−1b∗‖2, i.e. R(b∗, ρ∗), which have been given explicitly in the proof of Proposition
5.4.6 (see 5.5.8 in Appendix) when computing (b∗, ρ∗). �
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Remark 5.4.12 (Financial interpretation). We will see that in the above proposition, both I. for ellip-
soidal set and II. for rectangular set lead to possible positions formed with a single asset, two assets and
all three assets.

In case 1. corresponding to large correlation ambiguity for the second and third asset (recall Remark
5.4.4), it is optimal to invest only in the first asset, namely the one with the highest estimated Sharpe
ratio, which is consistent with the anti-diversification result obtained in Theorem 5.4.1 (see also Remark
5.4.9).

In case 2., corresponding to a large correlation ambiguity for the third asset (see Remark 5.4.4), the
investor does not invest in the third asset, but only in the first and second assets. Moreover, depending
whether the assets 1 and 2 have close Sharpe ratios with a correlation upper bound between these
assets not too large (subcase (i)), or the asset 1 dominates the asset 2 in terms of Sharpe ratio (subcase
(ii)), the investment in assets 1 or 2 follows a directional trading or a spread trading. This under-
diversification result has been also observed in [LZ17] for a single-period mean-variance problem without
drift uncertainty, and is extended here in a continuous time framework.

We have similar under-diversification effect in cases 3. and 4., and notice that it may happen that
one does not invest in the first asset even though it has the highest estimated Sharpe ratio.

Finally, in the case 5., corresponding to a small correlation ambiguity (see Remark 5.4.4), the investor
has interest to well-diversify her portfolio among the three assets. ♦

5.5 Appendix

5.5.1 Differentiation and characterization of convex function

Let us introduce some notations and state some results which will be used frequently in the proof of
Lemma 5.3.2 and also for the next propositions.

1. We introduce the so-called variance risk ratio

κ̂(ρ) := Σ(ρ)−1b̂ = (κ̂1(ρ), . . . , κ̂d(ρ))ᵀ, (5.5.1)
κ(b, ρ) := Σ(ρ)−1b = (κ1(b, ρ), . . . , κd(b, ρ))ᵀ. (5.5.2)

2. From some matrix calculations (see e.g. corollary 95 and corollary 105 in [Dhr78]), we obtain the
explicit expressions of the first partial derivatives of R(b, ρ) with respect to bi, ρij denoted by ∂R(b,ρ)

∂bi

and ∂R(b,ρ)
∂ρij

, 1 ≤ i < j ≤ d,

∂R(b, ρ)
∂bi

= 2κi(b, ρ), ∂R(b, ρ)
∂ρij

= −σiσjκi(b, ρ)κj(b, ρ). (5.5.3)

We also denote by ∇bR(b, ρ) and ∇ρR(b, ρ) gradient of R(b, ρ) with respect to b and ρ respectively,{
∇bR(b, ρ) = (∂R(b,ρ)

∂b1
, . . . , ∂R(b,ρ)

∂bd
)ᵀ

∇ρR(b, ρ) = (∂R(b,ρ)
∂ρ12

, . . . , ∂R(b,ρ)
∂ρ1d

, . . . , ∂R(b,ρ)
∂ρ(d−1)d

)ᵀ
(5.5.4)

3. (Sufficient and necessary optimality condition). It is known (see e.g. Lemma 2.2 in [CDH18]) that
R(b, ρ) is jointly convex in b and ρ. Similarly, R(b̂, ρ) is convex in ρ. Then
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(1) ρ∗ is a global minimum of R(b̂, ρ) over Γ if and only if, for any ρ ∈ Γ (see e.g. section 4.2.3 in
[BV04]),

(ρ− ρ∗)ᵀ∇ρR(b̂, ρ∗) =
d∑
j=1

j−1∑
i=1

∂R(b̂, ρ∗)
∂ρij

(ρij − ρ∗ij) ≥ 0,

which is written from (5.5.3) as,

d∑
j=1

j−1∑
i=1

σiσj κ̂
iκ̂j(ρ∗)(ρij − ρ∗ij) ≤ 0. (5.5.5)

(2) (b∗, ρ∗) is a global minimum of R(b, ρ) over ∆ × Γ if and only if for any (b, ρ) ∈ ∆ × Γ,

d∑
i=1

∂R(b∗, ρ∗)
∂bi

(bi − b∗i ) +
d∑
j=1

j−1∑
i=1

∂R(b∗, ρ∗)
∂ρij

(ρij − ρ∗ij) ≥ 0, (5.5.6)

which is written together with (5.5.3) as,∑
1≤i≤d

2κi(b∗, ρ∗)(bi − b∗i )−
∑

1≤i<j≤d
σiσjκ

iκj(b∗, ρ∗)(ρij − ρ∗ij) ≥ 0. (5.5.7)

5.5.2 Proof of Lemma 5.3.2

The statement of Lemma 5.3.2 is minimax type theorem, as it implies obviously in the case where Θ
= ∆× Γ is a rectangular set that the function H in (5.3.4) satisfies

min
b∈∆

max
ρ∈Γ

H(b, ρ) = max
ρ∈Γ

min
b∈∆

H(b, ρ).

However, its proof cannot be deduced directly from standard minimax theorem (see e.g. Theorem 45.8 in
[Str85]), as it does not fulfill totally their conditions: the function H is linear (hence convex) in b, linear
(hence concave) in ρ, but we do not assume that Γ is a compact set, and we also consider the case where
Θ is an ellipsoidal set.

We distinguish the two cases in (HΘ) whether Θ is a rectangular or ellipsoidal set.

Lemma 5.5.1. Suppose that Θ = ∆ × Γ is in product set as in (HΘ)(i), and assume that there exists
θ∗ ∈ arg min

Θ
R(θ). Then, we have for all θ = (b, ρ) ∈ Θ:

H(b∗, ρ) ≤ H(θ∗) = R(θ∗) ≤ H(b, ρ∗).

Moreover, (b∗, ρ∗) is a saddle point, namely,

inf
b∈∆

sup
ρ∈Γ

H(b, ρ) = sup
ρ∈Γ

inf
b∈∆

H(b, ρ) = H(b∗, ρ∗).

Proof. Note that if there exists (b∗, ρ∗) ∈ arg min
Θ

R(θ), the first-order condition implies that for any
(b, ρ) ∈ Θ,

(b− b∗)ᵀ∇bR(θ∗) + (ρ− ρ∗)ᵀ∇ρR(θ∗) ≥ 0, (5.5.8)
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where ∇bR(θ∗) and ∇ρR(θ∗) are given in (5.5.4).
Recalling H(b, ρ) in (5.3.4) and explicit expressions (5.5.4) of ∇bR(θ∗) and ∇ρR(θ∗), and taking b = b∗

or ρ = ρ∗ in (5.5.8) respectively, we get

H(b∗, ρ)−H(b∗, ρ∗) =
d∑
j=1

j−1∑
i=1

κi(b∗, ρ∗)κj(b∗, ρ∗)σiσj(ρij − ρ∗ij)

= (ρ∗ − ρ)ᵀ∇ρR(θ∗) ≤ 0, ∀ρ ∈ Γ,

H(b, ρ∗)−H(b∗, ρ∗) =
d∑
i=1

(bi − b∗i )κi(b∗, ρ∗)

= 1
2(b− b∗)ᵀ∇bR(θ∗) ≥ 0, ∀b ∈ ∆.

It follows that

inf
b∈∆

sup
ρ∈Γ

H(b, ρ) ≤ sup
ρ∈Γ

H(b∗, ρ) = H(b∗, ρ∗) = inf
b∈∆

H(b, ρ∗) ≤ sup
ρ∈Γ

inf
b∈∆

H(b, ρ). (5.5.9)

Since we always have inf
b∈∆

sup
ρ∈Γ

H(b, ρ) ≥ sup
ρ∈Γ

inf
b∈∆

H(b, ρ), the above inequality is indeed an equality, and

this proves the required result. �

Lemma 5.5.2. Suppose that Θ = {(b, ρ) ∈ Rd × Γ : ‖σ(ρ)−1(b − b̂)‖2 ≤ δ} is an ellipsoidal set as in
(HΘ)(ii), and assume that ρ∗ = arg min

Γ
‖σ(ρ)−1b̂‖2 exists. Then there exists θ∗ ∈ arg min

Θ
R(θ) with

ρ∗ ∈ arg min ‖σ(ρ)−1b̂‖2, b∗ = b̂(1− δ

‖σ(ρ∗)−1b̂‖2
)1{‖σ(ρ∗)−1b̂‖2>δ}, (5.5.10)

and

R(θ∗) = (‖σ(ρ∗)−1b̂‖2 − δ)21{‖σ(ρ∗)−1b̂‖2>δ}. (5.5.11)

Moreover, we have for all θ = (b, ρ) ∈ Θ:

H(b∗, ρ) ≤ H(θ∗) = R(θ∗) ≤ H(b, ρ∗). (5.5.12)

Proof. Due to the dependence of b on ρ in the ellipsoidal set Θ written as Θ = {(b, ρ) ∈ Rd ×Γ : b ∈
∆ρ} where

∆ρ := {b ∈ Rd : ‖σ(ρ)−1(b− b̂)‖2 ≤ δ}, (5.5.13)

We use a Lagrangian approach.
Step 1. For fixed ρ ∈ Γ, let us first focus on the inner minimization

min
b∈∆ρ

R(b, ρ). (5.5.14)

The Lagrangian with nonnegative multiplier µ associated to this constrained minimization problem is

L1(b, µ) = R(b, ρ)− µ
(
δ2 − (b− b̂)ᵀΣ(ρ)−1(b− b̂)

)
, (5.5.15)
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and the first-order condition gives

∂L1(b, µ)
∂b

= 2Σ(ρ)−1b+ 2µΣ(ρ)−1(b− b̂) = 0

∂L1(b, µ)
∂µ

= δ2 − (b− b̂)ᵀΣ(ρ)−1(b− b̂) = 0.

Solving these two equations for fixed ρ, and recalling that the Lagrange multiplier is nonnegative, yield µ∗(ρ) = (‖σ(ρ)−1b̂‖2
δ − 1)1{‖σ(ρ)−1b̂‖2>δ}

,

b∗(ρ) = b̂(1− δ
‖σ(ρ)−1b̂‖2

)1{‖σ(ρ)−1b̂‖2>δ}.
(5.5.16)

Substituting these expressions into the Lagrangian (5.5.15), we get

L1(b∗(ρ), ρ) = R(b∗(ρ), ρ) =
(
‖σ(ρ)−1b̂‖2 − δ

)21{‖σ(ρ)−1b̂‖2>δ}.

and thus, the original problem inf
Θ
R(θ) is reduced to

inf
θ=(b,ρ)∈Θ

R(θ) = inf
ρ∈Γ

inf
b∈∆ρ

R(b, ρ) = inf
ρ∈Γ

R(b∗(ρ), ρ)

= inf
ρ∈Γ

{(
‖σ(ρ)−1b̂‖2 − δ)21

{‖σ(ρ)−1b̂‖2>δ}
}

=
(

inf
ρ∈Γ
‖σ(ρ)−1b̂‖2 − δ

)2
1
{ inf
ρ∈Γ
‖σ(ρ)−1b̂‖2 > δ}. (5.5.17)

Therefore, whenever ρ∗ ∈ arg min
Γ
‖σ(ρ)−1b̂‖2 exists, we see from (5.5.17) that R attains its infimum at

θ∗ = (b∗, ρ∗) with b∗ = b∗(ρ∗) as in (5.5.16) with ρ = ρ∗, which leads to the expressions as described in
(5.5.10) and (5.5.11) of Lemma 5.5.2.

Step 2. Suppose that there exists ρ∗ ∈ arg min
Γ
‖σ(ρ)−1b̂‖2. From Step 1, there exists θ∗ = (b∗, ρ∗) ∈

arg min
Θ

R(θ). Let us now prove that H(b∗, ρ) ≤ R(θ∗) for any ρ ∈ Γ. Substituting the expression (5.5.10)
of b∗ in H(b∗, ρ), we rewrite H(b∗, ρ) as

H(b∗, ρ) =
(

1− δ

‖σ(ρ∗)b̂‖2

)2
b̂ᵀΣ(ρ∗)−1Σ(ρ)Σ(ρ∗)−1b̂1{‖σ(ρ∗)−1b̂‖2>δ}.

As ρ∗ ∈ arg min
Γ
b̂ᵀΣ(ρ)−1b̂, we use Lemma 5.5.1 by setting ∆ = {b̂}, and immediately obtain

sup
ρ∈Γ

b̂ᵀΣ(ρ∗)−1Σ(ρ)Σ(ρ∗)−1b̂ = b̂ᵀΣ(ρ∗)−1b̂. (5.5.18)

By multiplying both sides of the above equality with the constant
(

1 − δ
‖σ(ρ∗)b̂‖2

)2
1{‖σ(ρ∗)−1b̂‖2>δ}, we

get

sup
ρ∈Γ

H(b∗, ρ) = H(b∗, ρ∗) = R(θ∗), (5.5.19)

which shows that

H(b∗, ρ) ≤ R(θ∗), for all ρ ∈ Γ.
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Step 3. Let us finally prove that H(b, ρ∗) ≥ R(θ∗) for any b ∈ Θb. Again, we use a Lagrangian approach.
For fixed ρ ∈ Γ, we focus on the inner minimization

inf
b∈∆ρ

H(b, ρ∗),

and consider the associated Lagrangian function with nonnegative multiplier µ

L2(b, µ) = H(b, ρ∗)− µ
(
δ2 − (b− b̂)ᵀΣ(ρ)−1(b− b̂)

)
. (5.5.20)

The first-order condition gives

∂L2(b, µ)
∂b

= Σ(ρ∗)−1b∗ + 2µΣ(ρ)−1(b− b̂) = 0,

∂L2(b, µ)
∂µ

= δ2 − (b− b̂)ᵀΣ(ρ)−1(b− b̂) = 0,

and by solving these two equations for fixed ρ (recalling also that the Lagrangian multiplier is nonnega-
tive), we get  µ∗∗(ρ) =

√
H(b∗,ρ)

2δ ≥ 0
b∗∗(ρ) = b̂− δ√

H(b∗,ρ)
Σ(ρ)Σ(ρ∗)−1b∗.

(5.5.21)

Substituting these expressions into the Lagrangian (5.5.20), we get

L2(b∗∗(ρ), ρ) = H(b∗∗(ρ), ρ∗) = b̂ᵀΣ(ρ∗)−1b∗ − δ
√
H(b∗, ρ).

The outer minimization over Γ then yields

inf
b∈Θb

H(b, ρ∗) = inf
ρ∈Γ

inf
b∈∆ρ

H(b, ρ∗) = inf
ρ∈Γ

H(b∗∗(ρ), ρ∗)

= inf
ρ∈Γ

{
b̂ᵀΣ(ρ∗)−1b∗ − δ

√
H(b∗, ρ)

}
= b̂ᵀΣ(ρ∗)−1b∗ − δ sup

ρ∈Γ

√
H(b∗, ρ)

= b̂ᵀΣ(ρ∗)−1b∗ − δ
√
R(θ∗)

= R(θ∗),

where we used (5.5.19) in the last second equality, and last equality comes from (5.5.10). This shows that
the infimum of H(b, ρ∗) over b ∈ Θb is attained at b∗∗(ρ∗) = b∗ as in (5.5.21) with ρ = ρ∗. We conclude
that for any b ∈ Θb,

H(b, ρ∗) ≥ R(θ∗), (5.5.22)

which completes the proof. �

5.5.3 Proof of Proposition 5.4.1

Let us prove that under the condition |β̂1| > |β̂2| = max
i 6=1
|β̂i|, the function ρ 7→ R(b̂, ρ) attains its

infimum over Cd>+ ⊂ (−1, 1)d(d−1)/2, and this infimum ρ∗ can be computed explicitly. By convexity and
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differentiability of ρ 7→ R(b̂, ρ) over the convex open set Γ = Cd>+, the existence of such minimum is
equivalent to the existence of critical points to R(b̂, .), i.e.,

∂R(b̂, ρ∗)
∂ρij

= 0, 1 ≤ i < j ≤ d. (5.5.23)

Recalling that σi > 0 i = 1, . . . , d, this is written from (5.5.3) as the system of d(d− 1)/2 equations:

κ̂i(ρ∗)κ̂j(ρ∗) = 0, 1 ≤ i < j ≤ d, (5.5.24)

which indicates that at most one component of κ̂(ρ∗) is not zero. Notice that due to the assumption that
b̂ 6= 0, κ̂(ρ∗) = Σ(ρ∗)−1b̂ is never zero, i.e. at least one component of κ̂(ρ∗) is not zero. Therefore, exactly
one component of κ̂(ρ∗) is not zero. Then (5.5.24) is equivalent to κ̂i1(ρ∗) 6= 0, κ̂j(ρ∗) = 0, j 6= i1, for
some i1 = 1, . . ., d. In other words, we have

(0, . . . , 0, κ̂i1(ρ∗), 0, . . . , 0)ᵀ = Σ(ρ∗)−1b̂, for some i1 = 1, . . . , d. (5.5.25)

Pre-multiplying Σ(ρ∗) on both sides of (5.5.25) and then writing out l.h.s, we obtain{
σ2
i1
κ̂i1(ρ∗) = b̂i1

σi1σiρ
∗
i1i
κ̂i1(ρ∗) = b̂i 1 ≤ i ≤ d, i 6= i1,

(5.5.26)

which yields the explicit form: κ̂i1(ρ∗) = b̂i1
σ2
i1

ρ∗i1i = β̂i
β̂i1

i 6= i1, 1 ≤ i ≤ d.
(5.5.27)

As |ρ∗i1i| < 1 in (5.5.27), together with condition |β̂1| > max
i 6=1
|β̂i|, we thus have i1 = 1 and

Σ(ρ∗)−1b̂ = κ̂(ρ∗) = ( b̂1
σ2

1
, 0, . . . , 0)ᵀ, ρ∗1i = %̂1i, 2 ≤ i ≤ d. (5.5.28)

Once {ρ∗1i}2≤i≤d is given as in (5.5.28), we can complete the other values of ρ∗ij ∈ (−1, 1) such that ρ∗
belongs to Cd>+. For instance, by choosing as in Corollary 2 in [LZ17], ρ∗ij = ρ∗1iρ

∗
1j = %̂1i%̂1j , 2 ≤ i < j

≤ d, we check that C(ρ∗) ∈ Sd>+. Indeed, in this case we have


1 0 . . . 0
−%̂12 1 . . . 0
...

...
. . .

...
−%̂1d 0 . . . 1




1 %̂12 %̂13 . . . %̂1d
%̂12 1 %̂12%̂13 . . . %̂12%̂1d
%̂13 %̂12%̂13 1 . . . %̂13%̂1d
...

...
...

. . .
...

%̂1d %̂12%̂1d %̂13%̂1d . . . 1




1 0 . . . 0
−%̂12 1 . . . 0
...

...
. . .

...
−%̂1d 0 . . . 1


ᵀ

= diag{1, 1− |%̂12|2, 1− |%̂13|2, . . . , 1− |%̂1d|2},

which is positive definite since 1− |%̂1i|2 > 0, i = 2, . . ., d.

In particular when |β̂i| is in strictly descending order, i.e. |β̂1| > |β̂2| > . . . > |β̂d|, ρ∗ = (ρ∗ij)1≤i<j≤d
= (%̂ij)1≤i≤j≤d = : %̂ also belongs to Cd>+. Indeed, in this case, observe that


1 0 . . . 0
−%̂12 1 . . . 0
...

...
. . .

...
−%̂1d 0 . . . 1

C(%̂)


1 0 . . . 0
−%̂12 1 . . . 0
...

...
. . .

...
−%̂1d 0 . . . 1


ᵀ

=


1 0 0 . . . 0
0 1− %̂2

12 %̂23 − %̂12%̂13 . . . %̂2d − %̂12%̂1d
0 %̂23 − %̂12%̂13 1− %̂2

13 . . . %̂3d − %̂13%̂1d
...

...
...

. . .
...

0 %̂2d − %̂12%̂1d %̂3d − %̂13%̂1d . . . 1− %̂2
1d

 .
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Denote by C1(%̂) the matrix in the r.h.s of the above equality and note that %̂1i = %̂12%̂2i, i = 3, . . ., d.
Then we have 

1 0 0 . . . 0
0 1 0 . . . 0
0 −%̂23 1 . . . 0
...

...
...

. . .
...

0 −%̂2d 0 . . . 1

C1(%̂)


1 0 0 . . . 0
0 1 0 . . . 0
0 −%̂23 1 . . . 0
...

...
...

. . .
...

0 −%̂2d 0 . . . 1



ᵀ

=



1 0 0 0 . . . 0
0 1− %̂2

12 0 0 . . . 0
0 0 1− %̂2

23 ρ̂34 − ρ̂23ρ̂24 . . . ρ̂3d − %̂23%̂2d
0 0 %̂34 − %̂23%̂24 1− %̂2

24 . . . %̂4d − %̂24%̂2d
...

...
...

...
. . .

...
0 0 %̂3d − %̂23%̂2d %̂4d − %̂24%̂2d . . . 1− %̂2

2d


.

Denote by C2(%̂) the matrix in the r.h.s of the above equality and again note that %̂2i = %̂23 %̂3i, i = 4,
. . ., d. Then we can do the similar matrix congruence with C2(%̂) as with C1(%̂). And so on. After d− 1
steps of matrix congruence, we arrive at the diagonalization of the matrix C(%̂)

TC(%̂)T ᵀ = diag{1, 1− |%̂12|2, 1− |%̂23|2, . . . , 1− |%̂d−1d|2},

where T = Td · · · T1 with Ti being invertible matrix with diagonal terms 1, (j, i)-th term −%̂ij , j > i,
and other terms 0.

We deduce that the system of equations (5.5.24) has solutions in Cd>+ given by (5.5.28). Moreover,
we have from (5.5.28)

min
ρ∈Cd>+

R(b̂, ρ) = R(b̂, ρ∗) = b̂ᵀκ̂(ρ∗) = b̂1κ̂
1(ρ∗) = β̂2

1 . (5.5.29)

Combining this with Lemma 5.5.2, we obtain b∗ described in 5.4.1. �

5.5.4 Proof of Proposition 5.4.2

As Γ = [ρ, ρ̄] is compact, we already know that ρ∗ = arg minρ∈ΓR(b̂, ρ) exists, and from Lemma 5.5.2,
we only need to compute the minimum of the function ρ 7→ R(b̂, ρ) over Γ. From (5.5.5) with d = 2, we
obtain the sufficient and necessary condition of ρ∗ for being global minima of R(b̂, ρ) over Γ:

κ̂1(ρ∗)κ̂2(ρ∗)(ρ− ρ∗) ≤ 0, ∀ρ ∈ [ρ, ρ̄], (5.5.30)

where κ̂(ρ) is explicitly written as

κ̂(ρ) = 1
1− ρ2

 b̂1
σ2

1
− b̂2

σ1σ2
ρ

b̂2
σ2

2
− b̂1

σ1σ2
ρ

 = 1
1− ρ2

(
β̂1−β̂2ρ
σ1

β̂2−β̂1ρ
σ2

)
. (5.5.31)

From (5.5.30), we have three possible cases:

1. κ̂1(ρ∗)κ̂2(ρ∗) = 0. From the explicit expression (5.5.31) of κ̂(ρ∗), and as ρ∗ has to belong to [ρ, ρ̄]
⊂ (−1, 1), we obtain κ̂2(ρ∗) = 0, i.e., ρ∗ = %̂12, and so R(b̂, ρ∗) = β̂2

1 .
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2. κ̂1(ρ∗)κ̂2(ρ∗) > 0. Then (5.5.30) is satisfied iff ρ∗ = ρ̄. Moreover, from the above explicit expression
of κ̂(ρ∗), we obtain ρ̄ < %̂12.

3. κ̂1(ρ∗)κ̂2(ρ∗) < 0. Then (5.5.30) is satisfied iff ρ∗ = ρ. Moreover, from the explicit expression of
κ̂(ρ∗), we obtain ρ > %̂12.

By combining this with Lemma 5.5.2, we obtain b∗ described as in Proposition 5.4.2. �

5.5.5 Proof of Proposition 5.4.3

As Γ =
∏3
j=1

∏j−1
i=1 [ρ

ij
, ρ̄ij ] is compact, we already know that ρ∗ = arg min

ρ∈Γ
R(b̂, ρ) exists. From

Lemma 5.5.2, we only need to compute the minimum of the function ρ 7→ R(b̂, ρ) over Γ by applying the
optimality principle (5.5.5) when d = 3,

3∑
j=1

j−1∑
i=1

σiσj κ̂
i(ρ∗)κ̂j(ρ∗)(ρij − ρ∗ij) ≤ 0 for any ρ ∈ Γ. (5.5.32)

We observe from (5.5.32) that similar as Proposition 5.4.2, each ρ∗ij , 1 ≤ i < j ≤ 3 may be lower bound
ρ
ij
, upper bound ρ̄ij , or an interior point in (ρ

ij
, ρ̄ij), which corresponds to κiκj(ρ∗) > 0, κiκj(ρ∗) < 0,

or κiκj(ρ∗) = 0 respectively. Therefore, we consider the following possible exclusive cases depending on
the number of zero components in κ̂(ρ∗):

1. κ̂1κ̂2(ρ∗) = 0, κ̂1κ̂3(ρ∗) = 0, κ̂2κ̂3(ρ∗) = 0.
In this case, (5.5.32) is immediately satisfied. As we assume that b̂ 6= 0, κ̂(ρ∗) is not zero, i.e. at least
one component of κ̂(ρ∗) is nonzero. Then, two components of κ̂(ρ∗) are zero. Under the assumption
that |β̂1| ≥ |β̂2| ≥ |β̂3|, (5.5.28) and (5.5.29) in Section 5.5.3 yield the explicit expressions of ρ∗,
κ̂(ρ∗) and R(b̂, ρ∗)

ρ∗12 = %̂12 ∈ [ρ12, ρ̄12], ρ∗13 = %̂13 ∈ [ρ13, ρ̄13], any ρ∗23 ∈ [ρ23, ρ̄23]

and

κ̂(ρ∗) = ( b̂1
σ2

1
, 0, 0)ᵀ, R(b̂, ρ∗) = β̂2

1 . (5.5.33)

Let us show that β̂2
1 in (5.5.33) is strict minimum value in the sense that R(b̂, ρ∗) = β̂2

1 if and only
if ρ∗12 = %̂12 ∈ [ρ12, ρ̄12], ρ∗13 = %̂13 ∈ [ρ13, ρ̄13] and any ρ∗23 ∈ [ρ23, ρ̄23]. We express Σ(ρ) as the
following block matrix

Σ(ρ) =
(
σ2

1 Cᵀ

1
C1 Σ−1(ρ23)

)
,

where the vector C1 = (σ1σ2ρ12, σ1σ3ρ13)ᵀ.(
1 01×2
−C1
σ2

1
I2×2

)(
σ2

1 Cᵀ

1
C1 Σ−1(ρ23)

)(
1 −C

ᵀ
1
σ2

1

02×1 I2×2

)
=

(
σ2

1 01×2
02×1 A

)
, (5.5.34)

where A = Σ−1(ρ23)− C1C
ᵀ
1

σ4
1

is 2 × 2 positive definite matrix.
Inverting on both sides of (5.5.34), we get

Σ−1(ρ) =
(

1 −C
ᵀ
1
σ2

1

02×1 I2×2

)(
σ−2

1 01×2
02×1 A−1

)( 1 01×2
−C1
σ2

1
I2×2

)
. (5.5.35)
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We express b̂ as (b̂1, b̂ᵀ−1)ᵀ and then write R(b̂, ρ) as two nonnegative decompositions from (5.5.35),

R(b̂, ρ) = β̂2
1 + (b̂−1 −

b̂1
σ2

1
C1)ᵀA−1(b̂−1 −

b̂1
σ2

1
C1)

≥ β̂2
1 ,

where in the last inequality, ‘=’ holds if and only if b̂−1− b̂1
σ2

1
C1 = 0, i.e. ρ∗12 = %̂12, ρ∗13 = %̂13. This

corresponds to case 1. of Proposition 5.4.3.

2. κ̂1κ̂2(ρ∗) 6= 0, κ̂1κ̂3(ρ∗) = 0, κ̂2κ̂3(ρ∗) = 0.
In this case, we express Σ(ρ) as the following block-matrix form for convenience,

Σ(ρ) =
(

Σ−3(ρ12) C3
Cᵀ

3 σ2
3

)
,

where the vector C3 = (σ1σ3ρ13, σ2σ3ρ23)ᵀ.
By first transforming Σ(ρ) to block diagonal matrix as (5.5.35) and then taking inverse, we obtain

Σ(ρ)−1 =
(
I2×2 −Σ−3(ρ12)−1C3
01×2 1

)(
Σ−3(ρ12)−1 02×1

01×2 a(ρ)−1

)
(

I2×2 02×1
−Cᵀ

3Σ−3(ρ12)−1 1

)
, (5.5.36)

where a(ρ) = σ2
3 − C

ᵀ

3Σ−3(ρ12)−1C3 is positive.

Recalling the definition of κ(b̂, ρ) and R(b̂, ρ) , we obtain from (5.5.36)
(
κ̂1(ρ)
κ̂2(ρ)

)
= Σ−3(ρ12)−1b̂−3 − κ̂3(ρ)Σ−3(ρ12)−1C3

κ̂3(ρ) = 1
a(ρ) (b̂3 − Cᵀ

3Σ−3(ρ12)−1b̂−3)
(5.5.37)

and

R(b̂, ρ) = b̂ᵀ−3Σ−3(ρ12)−1b̂−3 + a(ρ)
(
κ̂3(ρ)

)2
. (5.5.38)

In the following, we write b̂ᵀ−3Σ−3(ρ12)−1b̂−3 as R(b̂−3, ρ12).
As κ̂3(ρ∗) = 0, we obtain from (5.5.32) that

σ1σ2κ̂
1κ̂2(ρ∗12)(ρ12 − ρ∗12) ≤ 0 for all ρ12 ∈ [ρ12, ρ̄12] (5.5.39)

and from (5.5.37) and (5.5.38) that
(
κ̂1(ρ∗12)
κ̂2(ρ∗12)

)
= Σ−3(ρ∗12)−1b̂−3

R(b̂, ρ∗) = R(b̂−3, ρ
∗
12).

(5.5.40)

This is the case of ambiguous correlation in the two-risky assets: risky asset 1 and risky asset 2
with ambiguous correlation ρ12 in [ρ12, ρ̄12]. In this case, κ̂1(ρ∗) and κ̂2(ρ∗) are not zero, therefore
we have that from Proposition 5.4.2

ρ∗12 = ρ̄121{ρ̄12<%̂12} + ρ121{ρ
12
>%̂12}. (5.5.41)
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By setting g(ρ∗12, ρ13, ρ23) : = a(ρ∗12, ρ13, ρ23)κ3(ρ∗12, ρ13, ρ23) for fixed ρ∗12 in (5.5.41), we deduce
from (5.5.37) that the function

(ρ13, ρ23) 7→ g(ρ∗12, ρ13, ρ23) = b̂3 − σ1σ3κ̂
1(ρ∗12)ρ13 − σ2σ3κ̂

2(ρ∗12)ρ23,

is linear in (ρ13, ρ23) ∈ [ρ13, ρ̄13] × [ρ23, ρ̄23], and has the same sign as κ̂3(ρ∗12, ρ13, ρ23) due to the
positiveness of a(ρ∗12, ρ13, ρ23). To study the condition of κ3(ρ∗) = 0, we discuss it in the following
two cases:

(i) if ρ̄12 < %̂12, then κ̂1κ̂2(ρ̄12) > 0, the function (ρ13, ρ23) 7→ g(ρ̄12, ρ13, ρ23) has the same
monotonicity with respect to ρ13, ρ23. Therefore, to ensure that the function g(ρ̄12, ρ13, ρ23)
has a root in [ρ13, ρ̄13] × [ρ23, ρ̄23], we need g(ρ̄12, ρ13, ρ23)
g(ρ̄12, ρ̄13, ρ̄23) ≤ 0, or equivalently κ̂3(ρ̄12, ρ13, ρ23) κ̂3(ρ̄12, ρ̄13, ρ̄23) ≤ 0.

(ii) if ρ12 > %̂12, then κ̂1κ̂2(ρ12) < 0, the function (ρ13, ρ23) 7→ g(ρ12, ρ13, ρ23) has the opposite
monotonicity with respect to ρ13, ρ23. Therefore, when g(ρ12, ρ̄13, ρ23) g(ρ12, ρ13, ρ̄23) ≤ 0,
or equivalently κ̂3(ρ12, ρ̄13, ρ23)κ̂3(ρ12, ρ13, ρ̄13) ≤ 0, the function g(ρ12, ρ13, ρ23) has a root in
[ρ13, ρ̄13] × [ρ23, ρ̄23].

Therefore, we deduce that R(b̂, ρ) ≥ R(b̂−3, ρ12) ≥ R(b̂−3, ρ̄121{ρ̄12<%̂12} + ρ121{ρ
12
>%̂12}) and that

‘=’ holds if and only if ρ∗12 = ρ̄121{ρ̄12<%̂12} + ρ121{ρ
12
>%̂12} and ρ∗13, ρ∗23 satisfies κ̂3(ρ∗12, ρ

∗
13, ρ

∗
23) =

0.This corresponds to subcases 2.(i) and 2.(ii) of Proposition 5.4.3.

3. κ̂1κ̂2(ρ∗) = 0, κ̂1κ̂3(ρ∗) 6= 0, κ̂2(ρ∗)κ̂3(ρ∗) = 0.
In this case, we make permutations as follows,

(
κ̂−2(ρ)
κ̂2(ρ)

)
=

(
Σ−2(ρ13) C2

Cᵀ

2 σ2
2

)−1(
b̂−2
b̂2

)
, (5.5.42)

where κ̂−2(ρ) = (κ̂1(ρ), κ̂3(ρ))ᵀ and C2 = (σ1σ2ρ12, σ2σ3ρ23)ᵀ. Using (5.5.42) and proceeding with
the same arguments as in the case 2., we obtain the result of κ̂2(ρ∗) = 0, κ̂1(ρ∗)κ̂3(ρ∗) 6= 0 as
described in the subcases 3.(i) and 3.(ii) of Proposition 5.4.3.

4. κ̂1κ̂2(ρ∗) = 0, κ̂1κ̂3(ρ∗) = 0, κ̂2(ρ∗)κ̂3(ρ∗) 6= 0.
Note that (

κ̂−1(ρ)
κ̂1(ρ)

)
=

(
Σ−1(ρ23) C1

Cᵀ

1 σ2
1

)−1(
b̂−1
b̂1

)
, (5.5.43)

where κ̂−1(ρ) = (κ̂2(ρ), κ̂3(ρ))ᵀ and C1 = (σ1σ2ρ12, σ1σ3ρ13)ᵀ. Using (5.5.43) and proceeding with
the same arguments as in the case 2., we obtain the result of κ̂1(ρ∗) = 0, κ̂2(ρ∗)κ̂3(ρ∗) 6= 0 as
described in subcases 4.(i) and 4.(ii) of Proposition 5.4.3.

5. κ̂1κ̂2(ρ∗) 6= 0, κ̂1κ̂3(ρ∗) 6= 0, κ̂2(ρ∗)κ̂3(ρ∗) 6= 0.
In this case, we see from (5.5.32) that each ρ∗ij takes value in {ρ

ij
, ρ̄ij} relying on the sign of

κ̂iκ̂j(ρ∗). Note that once the signs of κ̂1κ̂2(ρ∗) and κ̂1κ̂3(ρ∗) are known, the sign of κ̂2(ρ∗)κ̂3(ρ∗) is
determined. Therefore, by combination, there are 4 possible sub-cases as described in the case 5.
of Proposition 5.4.3.
As κ̂i(ρ∗)κ̂j(ρ∗) 6= 0 in each sub case, l.h.s of (5.5.32) is strictly negative for any ρ ∈ Γ \ {ρ∗}.
From the first-order characterization for convexity of R(b̂, ρ) (see e.g. Section 3.1.3 in [BV04]) and
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(5.5.3), we obtain for any ρ ∈ Γ \ {ρ∗},

R(b̂, ρ) ≥ R(b̂, ρ∗) + (ρ− ρ∗)ᵀDρR(b̂, ρ∗)

= R(b̂, ρ∗)−
3∑
j=1

j−1∑
i=1

σiσj κ̂
i(ρ∗)κ̂j(ρ∗)(ρij − ρ∗ij)

> R(b̂, ρ∗),

which indicates that ρ∗ in each sub-case of case 5. in Proposition 5.4.3 is a strict minimum of
R(b̂, ρ).

As R(b̂, ρ∗) in this subcase is strict minimum value, we conclude that each subcase in Proposition 5.4.3
is exclusive.
By combining this with Lemma 5.5.2, we obtain b∗ described as in Proposition 5.4.3. �

5.5.6 Proof of Proposition 5.4.4

We express Σ(ρ) in block matrix form,

Σ(ρ) =
(
σ2

1 Cᵀ

C Σ−1(ρ)

)
, (5.5.44)

where the vector C = (σ1σ2ρ12, . . . , σ1σdρ1d)ᵀ.

(
1 01×(d−1)
− C
σ2

1
I(d−1)×(d−1)

)
Σ(ρ)

(
1 −C

ᵀ

σ2
1

0(d−1)×1 I(d−1)×(d−1)

)
=

(
σ2

1 01×(d−1)
0(d−1)×1 A

)
, (5.5.45)

where I(d−1)×(d−1) is d− 1 × d− 1 identity matrix and A = Σ−1(ρ)− CCᵀ

σ4
1
, d− 1 × d− 1 > 0.

Inverting on both sides of (5.5.45), we get

Σ(ρ)−1 =
(

1 −C
ᵀ

σ2
1

0(d−1)×1 I(d−1)×(d−1)

)(
σ−2

1 01×(d−1)
0(d−1)×1 A−1

)( 1 01×(d−1)
− C
σ2

1
I(d−1)×(d−1)

)
. (5.5.46)

We write b as (b1, bᵀ−1)ᵀ where b−1 denotes b with the first component removed, and express from (5.5.46)
R(b, ρ) as two nonnegative parts

R(b, ρ) = β2
1 + (b−1 −

b1
σ2

1
C)ᵀA−1(b−1 −

b1
σ2

1
C)

≥ β2
1.

Note that β2
1 can be attained if and only if b1 = b1 and b−1 − b1

σ2
1
C = 0, which is equivalent to

b∗1 = b1, β∗i = β1ρ
∗
1i 2 ≤ i ≤ d. (5.5.47)

As long as |ρ∗1i| in (5.5.47) is less than 1, we can complete the other values of ρ∗ij ∈ (−1, 1) such that ρ∗

belongs to Cd>+. For instance, by choosing ρ∗ij = ρ∗1iρ
∗
1j = β∗i β

∗
j

β2
1
, 2 ≤ i < j ≤ d, we check that C(ρ∗) ∈
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Sd>+. A sufficient condition is β1 > max
j 6=1

β
j
. Therefore, if β1 > max

i 6=1
β
i
, then

min
∆×Cd>+

R(b, ρ) = β2
1, (5.5.48)

b∗1 = b1, ρ∗1i = β∗i
β1

for any β∗i ∈ [β
i
,min(β̄i, β1)).

Moreover, in this case, we obtain from (5.5.46)

κ(b∗, ρ∗) = Σ(ρ∗)−1b∗ =
(
b∗1
σ2

1
− Cᵀ

σ2
1
A−1(b∗−1 − C

σ2
1
)

A−1(b∗−1 − C
σ2

1
))

)
=
(

b
1
σ2

1

0(d−1)×1

)
. (5.5.49)

�

5.5.7 Proof of Proposition 5.4.5

As ∆ and Γ are compact, we know that min
∆×Γ

R(b, ρ) exists. In the following, we compute the minimum

(b∗, ρ∗) of R(b, ρ) by using (5.5.7) with d = 2: for any (b, ρ) ∈
∏2
i=1[bi, b̄i] × [ρ, ρ̄],∑

1≤i≤2
κi(b∗, ρ∗)(bi − b∗i )− σ1σ2κ

1(b∗, ρ∗)κ2(b∗, ρ∗)(ρ− ρ∗) ≥ 0, (5.5.50)

where κ(b, ρ) is explicitly written as

κ(b, ρ) = Σ(ρ)−1b = 1
1− ρ2

(
b1
σ2

1
− b2

σ1σ2
ρ

b2
σ2

2
− b1

σ1σ2
ρ

)
. (5.5.51)

From (5.5.50), we have the following cases:

1. If κ1(b∗, ρ∗) 6= 0, κ2(b∗, ρ∗) = 0, then solving (5.5.51) yields ρ∗ = β∗2
β∗1

and κ1(b∗, ρ∗) = b∗1
σ2

1
≥

b
1
σ2

1
>

0. Substituting these back in (5.5.50), we have b∗1 = b
1
and ρ∗ = β∗2

β
1
∈ [

β
2
β

1
,min(1, β̄2

β1
)]. As ρ∗ has

to belong to [ρ, ρ̄], we have [
β

2
β

1
,min(1, β̄2

β1
)] ∩ [ρ, ρ̄] 6= ∅, i.e. ρ ≤ min(1, β̄2

β1
) and ρ̄ ≥

β
2
β

1
. This is

the case as described in 1. of Proposition 5.4.5.

2. If κ1(b∗, ρ∗) = 0, κ2(b∗, ρ∗) 6= 0, then solving (5.5.51) yields ρ∗ = β∗1
β∗2

and κ2(b∗, ρ∗) = b∗2
σ2

2
≥ b2

σ2
2
>

0. Substituting these in (5.5.50), we have b∗2 = b2 and ρ∗ = β∗1
β

2
≥

β
1
β

2
≥ 1, a contradiction with |ρ∗|

< 1.

3. If κ1(b∗, ρ∗) > 0, κ2(b∗, ρ∗) > 0, then we have b∗ = (b1, b2), ρ∗ = ρ̄. Using (5.5.51), we obtain ρ̄ <
β

2
β

1
, which is described as in case 2. of Proposition 5.4.5.

4. If κ1(b∗, ρ∗) > 0, κ2(b∗, ρ∗) < 0, then we have b∗ = (b1, b̄2), ρ∗ = ρ. Using (5.5.51), we obtain ρ >

min(1, β̄2

β1
), which is described in case 3. of Proposition 5.4.5.

5. If κ1(b∗, ρ∗) < 0, κ2(b∗, ρ∗) > 0, then we have b∗ = (b̄1, b2), ρ∗ = ρ. Using (5.5.51), we obtain β̄1 <

ρ β2, a contradiction with β1 ≥ β2.
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6. If κ1(b∗, ρ∗) < 0, κ2(b∗, ρ∗) < 0, then we have b∗ = (b̄1, b̄2), ρ∗ = ρ̄. Using (5.5.51), we obtain β̄1 <

ρ̄β̄2 and β̄2 < ρ̄β̄1, a contradiction with natural bound of |ρ̄| < 1.

5.5.8 Proof of Proposition 5.4.6

As ∆ =
∏3
i=1[bi, b̄i] and Γ =

∏
1≤i<j≤3[ρ

ij
, ρ̄ij ] are compact, we already know that (b∗, ρ∗) =

arg min
∆×Γ

R(b, ρ) exists. we compute the minimum of the function (b, ρ) 7→ R(b, ρ) over ∆ × Γ by ap-
plying the optimality condition (5.5.7) when d = 3:

3∑
i=1

κi(b∗, ρ∗)(bi − b∗i )−
3∑
j=1

j−1∑
i=1

σiσjκ
iκj(ρ∗)(ρij − ρ∗ij) ≥ 0. (5.5.52)

We consider the following possible exclusive cases depending on the number of zero components in
κ̂(b∗, ρ∗):

1. κ1κ2(b∗, ρ∗) = 0, κ1κ3(b∗, ρ∗) = 0, κ2κ3(b∗, ρ∗) = 0.
In this case, (5.5.52) immediately holds. As we assume that β1 ≥ β2 ≥ β3 > 0, (5.5.48) and (5.5.49)
in Section 5.5.6 yields the explicit expression of (b∗, ρ∗), κ(b∗, ρ∗) and R(b∗, ρ∗)

b∗1 = b1, ρ
∗
1j =

β∗j
β1
, for any ρ∗1j ∈ [ρ1j , ρ̄1j ] ∩ [

β
j

β1
,min(1, β̄j

β1
)), j = 2, 3, (5.5.53)

and

κ(b∗, ρ∗) = (
b

1

σ2
1
, 0, 0)ᵀ, R(θ∗) = β2

1. (5.5.54)

Let us show that β2
1 is strict minimum value in the sense that R(θ∗) = β2

1 if and only if b∗1 = b1,
b∗2 = b1ρ

∗
12, b∗3 = b1ρ

∗
13. From the block-matrix form of Σ(ρ)−1 in (5.5.35), we write R(b, ρ) as two

nonnegative parts

R(b, ρ) = β2
1 + (b−1 −

b1
σ2

1
C1)ᵀA−1(b−1 −

b1
σ2

1
C1)

≥ β2
1,

where C1 = (σ1σ2ρ12, σ1σ3ρ13)ᵀ and A = Σ−1(ρ23)− C1C
ᵀ
1

σ4
1

> 0. ‘=’ holds true if and only if b1 =

b1 and b−1 −
b
1
σ2

1
C1 = 0, i.e. b∗1 = b1, β∗2 = β1ρ

∗
12, β∗3 = β1ρ

∗
13.

2. κ1κ2(b∗, ρ∗) 6= 0, κ1κ3(b∗, ρ∗) = 0, κ2κ3(b∗, ρ∗) = 0.
In this case, we obtain from (5.5.36)

(
κ1(b, ρ)
κ2(b, ρ)

)
= Σ−3(ρ12)−1b−3 − κ3(ρ)Σ−3(ρ12)−1C3

κ3(b, ρ) = 1
a(ρ) (b3 − Cᵀ

3Σ−3(ρ12)−1b−3)
(5.5.55)

and

R(b, ρ) = bᵀ−3Σ−3(ρ12)−1b−3 + a(ρ)
(
κ3(b, ρ)

)2
. (5.5.56)
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When there is no ambiguity, we write b−3Σ−3(ρ12)b−3 as R(b−3, ρ12).
As κ3(b∗, ρ∗) = 0, we get from (5.5.52) that

κ1(b∗, ρ∗)(b1 − b∗1) + κ2(b∗, ρ∗)(b2 − b∗2)− σ1σ2κ
1κ2(b∗, ρ∗)(ρ12 − ρ∗12) ≥ 0. (5.5.57)

and from (5.5.55) and (5.5.56) that
(
κ1(b∗−3, ρ

∗
12)

κ2(b∗−3, ρ
∗
12)

)
= Σ−3(ρ∗12)−1b∗−3

R(b∗, ρ∗) = R(b∗−3, ρ
∗
12)

(5.5.58)

This is the case of mixing drift uncertainty (b1, b2) in [b1, b̄1] × [b2, b̄2] and correlation ambiguity ρ12
∈ [ρ12, ρ̄12] in the two-risky asset described in Proposition 5.4.5. Therefore, we obtain the explicit
expression of b∗1, b∗2 and ρ∗12

b∗1 = b1, b∗2 = b21
{ρ̄12<

β
2
β

1
}

+ b̄21
{ρ

12
>
β̄2
β

1
}
, ρ∗12 = ρ121

{ρ̄12<
β

2
β

1
}

+ ρ̄121
{ρ

12
>
β̄2
β

1
}
(5.5.59)

By setting g(b∗1, b∗2, b3, ρ∗12, ρ13, ρ23) : = a(b∗1, b∗2, b3, ρ∗12, ρ13, ρ23) κ3(b∗1, b∗2, b3, ρ∗12, ρ13, ρ23) for fixed
b∗1, b∗2 and ρ∗12 in (5.5.59), we deduce from (5.5.55) that the function

(b3, ρ13, ρ23) 7→ g(b∗1, b∗2, b3, ρ∗12, ρ13, ρ23) = b3 − σ1σ3ρ13κ
1(b∗−3, ρ

∗
12)− σ2σ3ρ23κ

2(b∗−3, ρ
∗
12)

is linear in (b3, ρ13, ρ23) ∈ [b3, b̄3]× [ρ13, ρ̄13]× [ρ23, ρ̄23], and has the same sign as κ3(b∗1, b∗2, b3, ρ∗12, ρ13, ρ23)
due to the positiveness of a(b∗1, b∗2, b3, ρ∗12, ρ13, ρ23) = 0. To study the condition of κ3(b∗1, b∗2, b3, ρ∗12, ρ13, ρ23),
we discuss it in the following two cases:

(i) If ρ̄12 <
β

2
β

1
, then κ1(b1, b2, ρ̄12) > 0, κ2(b1, b2, ρ̄12) > 0, the linear function (b3, ρ13, ρ23) 7→

g(b1, b2, b3, ρ̄12, ρ13, ρ23) is increasing in b3, decreasing in ρ13 and ρ23. To ensure that the
function g(b1, b2, b3, ρ̄12, ρ13, ρ23) has a root in [b3, b̄3] × [ρ13, ρ̄13] × [ρ23, ρ̄23], we need

g(b1, b2, b3, ρ̄12, ρ̄13, ρ̄23) ≤ 0 ≤ g(b1, b2, b̄3, ρ̄12, ρ13, ρ23),

or equivalently,

κ3(b1, b2, b3, ρ̄12, ρ̄13, ρ̄23) ≤ 0 ≤ κ3(b1, b2, b̄3, ρ̄12, ρ13, ρ23).

(ii) If ρ12 >min(1, β̄2

β1
), then κ1(b1, b̄2, ρ12)> 0, κ2(b1, b̄2, ρ12)< 0. The linear function (b3, ρ13, ρ23)

7→ g(b1, b̄2, b3, ρ12, ρ13, ρ23) is increasing in b3 and ρ23, and decreasing in ρ13. As (b∗3, ρ∗13, ρ
∗
23)

satisfying g(b1, b̄2, b∗3, ρ12, ρ
∗
13, ρ

∗
23) = 0 has to belong to [b3, b̄3] × [ρ13, ρ̄13] × [ρ23, ρ̄23], we

obtain

κ3(b1, b̄2, b̄3, ρ12, ρ13, ρ̄23) ≥ 0 ≥ κ3(b1, b̄2, b3, ρ12, ρ̄13, ρ23).

Therefore, we deduce that

R(b, ρ) ≥ R(b1, b2, ρ̄12)1
{ρ̄12<

β
2
β

1
}

+R(b1, b̄2, ρ12)1
{ρ

12
>
β̄2
β

1
}

(5.5.60)

and that ‘=’ holds if and only if b∗1 = b1, b∗2 = b21
{ρ̄12<

β
2
β

1
}

+ b̄21
{ρ

12
>
β̄2
β

1
}
, ρ∗12 = ρ121

{ρ
12
≥ β̄2
β

1
}

+

ρ̄121
{ρ̄12≤

β
2
β

1
}
. This corresponds to the subcases 2.(i) and 2.(ii) as described in Proposition 5.4.6.
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3. κ1κ2(b∗, ρ∗) = 0, κ1κ3(b∗, ρ∗) 6= 0, κ2κ3(b∗, ρ∗) = 0.
In this case, we make permutations as follows,(

κ−2(b, ρ)
κ2(b, ρ)

)
=

(
Σ−2(ρ13) C2

Cᵀ

2 σ2
2))

)−1(
b−2
b2

)
, (5.5.61)

where κ−2(b, ρ) = (κ1(b, ρ), κ3(b, ρ))ᵀ and C2 = (σ1σ2ρ12, σ2σ3ρ23)ᵀ. Using (5.5.61) and proceeding
with the same arguments as in the case 2., we obtain the result of κ2(b∗, ρ∗) = 0, κ1κ3(b∗, ρ∗) 6= 0
as described in case 3.(i) and 3.(ii) of Proposition 5.4.6. Proceeding with the same arguments as
in the case of κ3(b∗, ρ∗) = 0, we obtain the results of case κ2(b∗, ρ∗) = 0 described in subcase 3.(i)
and 3.(ii) of Proposition 5.4.6

4. κ1κ2(b∗, ρ∗) = 0, κ1κ3(b∗, ρ∗) = 0, κ2κ3(b∗, ρ∗) 6= 0.
Note that (

κ−1(b, ρ)
κ1(b, ρ)

)
=

(
Σ−1(ρ23) C1

Cᵀ

1 σ2
1

)−1(
b−1
b1

)
, (5.5.62)

where κ−1(b, ρ) = (κ2(b, ρ), κ3(b, ρ))ᵀ and the vector C1 = (σ1σ2ρ12, σ1σ3ρ13)ᵀ. Using (5.5.62) and
proceeding with the same arguments as in case 2., we obtain the result of κ1(b∗, ρ∗) = 0, κ2κ3(b∗, ρ∗)
6= 0 as described in subcases 4.(i) and 4.(ii) of Proposition 5.4.6.

5. κ1κ2(b∗, ρ∗) 6= 0, κ1κ3(b∗, ρ∗) 6= 0, κ2κ3(b∗, ρ∗) 6= 0.
In this case, we see from (5.5.52) that each b∗i takes value in {bi, b̄i} depending on the sign of κi(b∗, ρ∗)
and that each ρ∗ij takes value in {ρ

ij
, ρ̄ij} depending on the sign of κiκj(b∗, ρ∗). Moreover, due to

the assumption β1 > β2 > β3 > 0, we obtain that R(b∗, ρ∗) =
3∑
i=1

b∗i κ
i(b∗, ρ∗) > 0 , hence at least

one component of κ(b∗, ρ∗) is positive. By combination, there are 7 possible subcases as described
in case 5. of Proposition 5.4.6.
As κiκj(b∗, ρ∗) 6= 0 in each possible subcase, l.h.s of (5.5.52) is strictly negative for any (b, ρ) ∈ ∆
× Γ \ {(b∗, ρ∗)}. From first order condition of convexity of R(b, ρ) at point (b∗, ρ∗), we have for
any (b, ρ) ∈ ∆ × Γ \ {(b∗, ρ∗)}

R(b, ρ) ≥ R(b∗, ρ∗) +
3∑
i=1

κi(b∗, ρ∗)(bi − b∗i )−
3∑
j=1

j−1∑
i=1

σiσjκ
iκj(ρ∗)(ρij − ρ∗ij)

> R(b∗, ρ∗),

which indicates that (b∗, ρ∗) in each subcase of case 5. in Proposition 5.4.6 is strict minimum of
R(b, ρ).

As R(b, ρ) in each subcase is strict minimum value, we conclude that each subcase in Proposition 5.4.6
is exclusive. �
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